1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/MachineValueType.h"
51 #include "llvm/CodeGen/RuntimeLibcalls.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/MC/MCExpr.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Support/AtomicOrdering.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/Format.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetLowering.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Target/TargetRegisterInfo.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 STATISTIC(NumTailCalls, "Number of tail calls");
115 STATISTIC(NumSiblingCalls, "Number of sibling calls");
116 
117 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
118 
119 // FIXME: Remove this once the bug has been fixed!
120 extern cl::opt<bool> ANDIGlueBug;
121 
122 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
123                                      const PPCSubtarget &STI)
124     : TargetLowering(TM), Subtarget(STI) {
125   // Use _setjmp/_longjmp instead of setjmp/longjmp.
126   setUseUnderscoreSetJmp(true);
127   setUseUnderscoreLongJmp(true);
128 
129   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
130   // arguments are at least 4/8 bytes aligned.
131   bool isPPC64 = Subtarget.isPPC64();
132   setMinStackArgumentAlignment(isPPC64 ? 8:4);
133 
134   // Set up the register classes.
135   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
136   if (!useSoftFloat()) {
137     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
138     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
139   }
140 
141   // Match BITREVERSE to customized fast code sequence in the td file.
142   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
143   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
144 
145   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
146   for (MVT VT : MVT::integer_valuetypes()) {
147     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
148     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
149   }
150 
151   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
152 
153   // PowerPC has pre-inc load and store's.
154   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
155   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
156   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
157   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
158   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
159   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
160   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
161   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
162   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
163   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
164   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
165   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
166   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
167   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
168 
169   if (Subtarget.useCRBits()) {
170     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
171 
172     if (isPPC64 || Subtarget.hasFPCVT()) {
173       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
174       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
175                          isPPC64 ? MVT::i64 : MVT::i32);
176       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
177       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
178                         isPPC64 ? MVT::i64 : MVT::i32);
179     } else {
180       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
181       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
182     }
183 
184     // PowerPC does not support direct load/store of condition registers.
185     setOperationAction(ISD::LOAD, MVT::i1, Custom);
186     setOperationAction(ISD::STORE, MVT::i1, Custom);
187 
188     // FIXME: Remove this once the ANDI glue bug is fixed:
189     if (ANDIGlueBug)
190       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
191 
192     for (MVT VT : MVT::integer_valuetypes()) {
193       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
194       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
195       setTruncStoreAction(VT, MVT::i1, Expand);
196     }
197 
198     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
199   }
200 
201   // This is used in the ppcf128->int sequence.  Note it has different semantics
202   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
203   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
204 
205   // We do not currently implement these libm ops for PowerPC.
206   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
207   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
208   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
209   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
210   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
211   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
212 
213   // PowerPC has no SREM/UREM instructions unless we are on P9
214   // On P9 we may use a hardware instruction to compute the remainder.
215   // The instructions are not legalized directly because in the cases where the
216   // result of both the remainder and the division is required it is more
217   // efficient to compute the remainder from the result of the division rather
218   // than use the remainder instruction.
219   if (Subtarget.isISA3_0()) {
220     setOperationAction(ISD::SREM, MVT::i32, Custom);
221     setOperationAction(ISD::UREM, MVT::i32, Custom);
222     setOperationAction(ISD::SREM, MVT::i64, Custom);
223     setOperationAction(ISD::UREM, MVT::i64, Custom);
224   } else {
225     setOperationAction(ISD::SREM, MVT::i32, Expand);
226     setOperationAction(ISD::UREM, MVT::i32, Expand);
227     setOperationAction(ISD::SREM, MVT::i64, Expand);
228     setOperationAction(ISD::UREM, MVT::i64, Expand);
229   }
230 
231   if (Subtarget.hasP9Vector()) {
232     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
233     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
234     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
235   }
236 
237   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
238   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
239   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
240   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
241   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
242   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
243   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
244   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
245   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
246 
247   // We don't support sin/cos/sqrt/fmod/pow
248   setOperationAction(ISD::FSIN , MVT::f64, Expand);
249   setOperationAction(ISD::FCOS , MVT::f64, Expand);
250   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
251   setOperationAction(ISD::FREM , MVT::f64, Expand);
252   setOperationAction(ISD::FPOW , MVT::f64, Expand);
253   setOperationAction(ISD::FMA  , MVT::f64, Legal);
254   setOperationAction(ISD::FSIN , MVT::f32, Expand);
255   setOperationAction(ISD::FCOS , MVT::f32, Expand);
256   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
257   setOperationAction(ISD::FREM , MVT::f32, Expand);
258   setOperationAction(ISD::FPOW , MVT::f32, Expand);
259   setOperationAction(ISD::FMA  , MVT::f32, Legal);
260 
261   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
262 
263   // If we're enabling GP optimizations, use hardware square root
264   if (!Subtarget.hasFSQRT() &&
265       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
266         Subtarget.hasFRE()))
267     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
268 
269   if (!Subtarget.hasFSQRT() &&
270       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
271         Subtarget.hasFRES()))
272     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
273 
274   if (Subtarget.hasFCPSGN()) {
275     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
276     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
277   } else {
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
280   }
281 
282   if (Subtarget.hasFPRND()) {
283     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
284     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
285     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
286     setOperationAction(ISD::FROUND, MVT::f64, Legal);
287 
288     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
289     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
290     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
291     setOperationAction(ISD::FROUND, MVT::f32, Legal);
292   }
293 
294   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
295   // to speed up scalar BSWAP64.
296   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
297   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
298   if (Subtarget.isISA3_0()) {
299     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
300     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
301     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
302   } else {
303     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
304     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
305     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
306   }
307 
308   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
309     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
310     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
311   } else {
312     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
313     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
314   }
315 
316   // PowerPC does not have ROTR
317   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
318   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
319 
320   if (!Subtarget.useCRBits()) {
321     // PowerPC does not have Select
322     setOperationAction(ISD::SELECT, MVT::i32, Expand);
323     setOperationAction(ISD::SELECT, MVT::i64, Expand);
324     setOperationAction(ISD::SELECT, MVT::f32, Expand);
325     setOperationAction(ISD::SELECT, MVT::f64, Expand);
326   }
327 
328   // PowerPC wants to turn select_cc of FP into fsel when possible.
329   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
330   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
331 
332   // PowerPC wants to optimize integer setcc a bit
333   if (!Subtarget.useCRBits())
334     setOperationAction(ISD::SETCC, MVT::i32, Custom);
335 
336   // PowerPC does not have BRCOND which requires SetCC
337   if (!Subtarget.useCRBits())
338     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
339 
340   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
341 
342   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
343   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
344 
345   // PowerPC does not have [U|S]INT_TO_FP
346   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
347   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
348 
349   if (Subtarget.hasDirectMove() && isPPC64) {
350     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
351     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
352     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
353     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
354   } else {
355     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
356     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
357     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
358     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
359   }
360 
361   // We cannot sextinreg(i1).  Expand to shifts.
362   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
363 
364   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
365   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
366   // support continuation, user-level threading, and etc.. As a result, no
367   // other SjLj exception interfaces are implemented and please don't build
368   // your own exception handling based on them.
369   // LLVM/Clang supports zero-cost DWARF exception handling.
370   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
371   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
372 
373   // We want to legalize GlobalAddress and ConstantPool nodes into the
374   // appropriate instructions to materialize the address.
375   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
376   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
377   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
378   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
379   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
380   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
381   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
382   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
383   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
384   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
385 
386   // TRAP is legal.
387   setOperationAction(ISD::TRAP, MVT::Other, Legal);
388 
389   // TRAMPOLINE is custom lowered.
390   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
391   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
392 
393   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
394   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
395 
396   if (Subtarget.isSVR4ABI()) {
397     if (isPPC64) {
398       // VAARG always uses double-word chunks, so promote anything smaller.
399       setOperationAction(ISD::VAARG, MVT::i1, Promote);
400       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
401       setOperationAction(ISD::VAARG, MVT::i8, Promote);
402       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
403       setOperationAction(ISD::VAARG, MVT::i16, Promote);
404       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
405       setOperationAction(ISD::VAARG, MVT::i32, Promote);
406       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
407       setOperationAction(ISD::VAARG, MVT::Other, Expand);
408     } else {
409       // VAARG is custom lowered with the 32-bit SVR4 ABI.
410       setOperationAction(ISD::VAARG, MVT::Other, Custom);
411       setOperationAction(ISD::VAARG, MVT::i64, Custom);
412     }
413   } else
414     setOperationAction(ISD::VAARG, MVT::Other, Expand);
415 
416   if (Subtarget.isSVR4ABI() && !isPPC64)
417     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
418     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
419   else
420     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
421 
422   // Use the default implementation.
423   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
424   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
425   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
426   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
427   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
428   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
429   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
430   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
431   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
432 
433   // We want to custom lower some of our intrinsics.
434   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
435 
436   // To handle counter-based loop conditions.
437   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
438 
439   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
440   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
441   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
442   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
443 
444   // Comparisons that require checking two conditions.
445   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
446   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
447   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
448   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
449   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
450   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
451   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
452   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
453   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
454   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
455   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
456   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
457 
458   if (Subtarget.has64BitSupport()) {
459     // They also have instructions for converting between i64 and fp.
460     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
461     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
462     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
463     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
464     // This is just the low 32 bits of a (signed) fp->i64 conversion.
465     // We cannot do this with Promote because i64 is not a legal type.
466     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
467 
468     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
469       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
470   } else {
471     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
472     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
473   }
474 
475   // With the instructions enabled under FPCVT, we can do everything.
476   if (Subtarget.hasFPCVT()) {
477     if (Subtarget.has64BitSupport()) {
478       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
479       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
480       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
481       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
482     }
483 
484     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
485     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
486     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
487     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
488   }
489 
490   if (Subtarget.use64BitRegs()) {
491     // 64-bit PowerPC implementations can support i64 types directly
492     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
493     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
494     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
495     // 64-bit PowerPC wants to expand i128 shifts itself.
496     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
497     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
498     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
499   } else {
500     // 32-bit PowerPC wants to expand i64 shifts itself.
501     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
502     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
503     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
504   }
505 
506   if (Subtarget.hasAltivec()) {
507     // First set operation action for all vector types to expand. Then we
508     // will selectively turn on ones that can be effectively codegen'd.
509     for (MVT VT : MVT::vector_valuetypes()) {
510       // add/sub are legal for all supported vector VT's.
511       setOperationAction(ISD::ADD, VT, Legal);
512       setOperationAction(ISD::SUB, VT, Legal);
513 
514       // Vector instructions introduced in P8
515       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
516         setOperationAction(ISD::CTPOP, VT, Legal);
517         setOperationAction(ISD::CTLZ, VT, Legal);
518       }
519       else {
520         setOperationAction(ISD::CTPOP, VT, Expand);
521         setOperationAction(ISD::CTLZ, VT, Expand);
522       }
523 
524       // Vector instructions introduced in P9
525       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
526         setOperationAction(ISD::CTTZ, VT, Legal);
527       else
528         setOperationAction(ISD::CTTZ, VT, Expand);
529 
530       // We promote all shuffles to v16i8.
531       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
532       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
533 
534       // We promote all non-typed operations to v4i32.
535       setOperationAction(ISD::AND   , VT, Promote);
536       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
537       setOperationAction(ISD::OR    , VT, Promote);
538       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
539       setOperationAction(ISD::XOR   , VT, Promote);
540       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
541       setOperationAction(ISD::LOAD  , VT, Promote);
542       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
543       setOperationAction(ISD::SELECT, VT, Promote);
544       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
545       setOperationAction(ISD::SELECT_CC, VT, Promote);
546       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
547       setOperationAction(ISD::STORE, VT, Promote);
548       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
549 
550       // No other operations are legal.
551       setOperationAction(ISD::MUL , VT, Expand);
552       setOperationAction(ISD::SDIV, VT, Expand);
553       setOperationAction(ISD::SREM, VT, Expand);
554       setOperationAction(ISD::UDIV, VT, Expand);
555       setOperationAction(ISD::UREM, VT, Expand);
556       setOperationAction(ISD::FDIV, VT, Expand);
557       setOperationAction(ISD::FREM, VT, Expand);
558       setOperationAction(ISD::FNEG, VT, Expand);
559       setOperationAction(ISD::FSQRT, VT, Expand);
560       setOperationAction(ISD::FLOG, VT, Expand);
561       setOperationAction(ISD::FLOG10, VT, Expand);
562       setOperationAction(ISD::FLOG2, VT, Expand);
563       setOperationAction(ISD::FEXP, VT, Expand);
564       setOperationAction(ISD::FEXP2, VT, Expand);
565       setOperationAction(ISD::FSIN, VT, Expand);
566       setOperationAction(ISD::FCOS, VT, Expand);
567       setOperationAction(ISD::FABS, VT, Expand);
568       setOperationAction(ISD::FFLOOR, VT, Expand);
569       setOperationAction(ISD::FCEIL,  VT, Expand);
570       setOperationAction(ISD::FTRUNC, VT, Expand);
571       setOperationAction(ISD::FRINT,  VT, Expand);
572       setOperationAction(ISD::FNEARBYINT, VT, Expand);
573       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
574       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
575       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
576       setOperationAction(ISD::MULHU, VT, Expand);
577       setOperationAction(ISD::MULHS, VT, Expand);
578       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
579       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
580       setOperationAction(ISD::UDIVREM, VT, Expand);
581       setOperationAction(ISD::SDIVREM, VT, Expand);
582       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
583       setOperationAction(ISD::FPOW, VT, Expand);
584       setOperationAction(ISD::BSWAP, VT, Expand);
585       setOperationAction(ISD::VSELECT, VT, Expand);
586       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
587       setOperationAction(ISD::ROTL, VT, Expand);
588       setOperationAction(ISD::ROTR, VT, Expand);
589 
590       for (MVT InnerVT : MVT::vector_valuetypes()) {
591         setTruncStoreAction(VT, InnerVT, Expand);
592         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
593         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
594         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
595       }
596     }
597 
598     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
599     // with merges, splats, etc.
600     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
601 
602     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
603     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
604     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
605     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
606     setOperationAction(ISD::SELECT, MVT::v4i32,
607                        Subtarget.useCRBits() ? Legal : Expand);
608     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
609     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
610     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
611     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
612     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
613     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
614     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
615     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
616     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
617 
618     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
619     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
620     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
621     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
622 
623     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
624     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
625 
626     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
627       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
628       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
629     }
630 
631     if (Subtarget.hasP8Altivec())
632       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
633     else
634       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
635 
636     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
637     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
638 
639     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
640     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
641 
642     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
643     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
644     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
645     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
646 
647     // Altivec does not contain unordered floating-point compare instructions
648     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
649     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
650     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
651     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
652 
653     if (Subtarget.hasVSX()) {
654       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
655       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
656       if (Subtarget.hasP8Vector()) {
657         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
658         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
659       }
660       if (Subtarget.hasDirectMove() && isPPC64) {
661         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
662         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
663         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
664         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
665         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
666         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
667         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
668         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
669       }
670       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
671 
672       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
673       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
674       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
675       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
676       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
677 
678       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
679 
680       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
681       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
682 
683       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
684       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
685 
686       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
687       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
688       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
689       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
690       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
691 
692       // Share the Altivec comparison restrictions.
693       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
694       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
695       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
696       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
697 
698       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
699       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
700 
701       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
702 
703       if (Subtarget.hasP8Vector())
704         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
705 
706       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
707 
708       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
709       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
710       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
711 
712       if (Subtarget.hasP8Altivec()) {
713         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
714         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
715         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
716 
717         // 128 bit shifts can be accomplished via 3 instructions for SHL and
718         // SRL, but not for SRA because of the instructions available:
719         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
720         // doing
721         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
722         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
723         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
724 
725         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
726       }
727       else {
728         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
729         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
730         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
731 
732         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
733 
734         // VSX v2i64 only supports non-arithmetic operations.
735         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
736         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
737       }
738 
739       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
740       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
741       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
742       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
743 
744       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
745 
746       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
747       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
748       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
749       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
750 
751       // Vector operation legalization checks the result type of
752       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
753       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
754       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
755       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
756       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
757 
758       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
759       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
760       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
761       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
762 
763       if (Subtarget.hasDirectMove())
764         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
765       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
766 
767       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
768     }
769 
770     if (Subtarget.hasP8Altivec()) {
771       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
772       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
773     }
774 
775     if (Subtarget.hasP9Vector()) {
776       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
777       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
778 
779       // 128 bit shifts can be accomplished via 3 instructions for SHL and
780       // SRL, but not for SRA because of the instructions available:
781       // VS{RL} and VS{RL}O.
782       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
783       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
784       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
785     }
786 
787     if (Subtarget.hasP9Altivec()) {
788       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
789       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
790     }
791   }
792 
793   if (Subtarget.hasQPX()) {
794     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
795     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
796     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
797     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
798 
799     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
800     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
801 
802     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
803     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
804 
805     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
806     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
807 
808     if (!Subtarget.useCRBits())
809       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
810     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
811 
812     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
813     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
814     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
815     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
816     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
817     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
818     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
819 
820     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
821     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
822 
823     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
824     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
825     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
826 
827     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
828     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
829     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
830     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
831     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
832     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
833     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
834     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
835     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
836     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
837 
838     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
839     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
840 
841     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
842     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
843 
844     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
845 
846     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
847     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
848     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
849     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
850 
851     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
852     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
853 
854     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
855     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
856 
857     if (!Subtarget.useCRBits())
858       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
859     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
860 
861     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
862     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
863     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
864     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
865     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
866     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
867     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
868 
869     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
870     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
871 
872     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
873     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
874     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
875     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
876     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
877     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
878     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
879     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
880     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
881     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
882 
883     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
884     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
885 
886     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
887     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
888 
889     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
890 
891     setOperationAction(ISD::AND , MVT::v4i1, Legal);
892     setOperationAction(ISD::OR , MVT::v4i1, Legal);
893     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
894 
895     if (!Subtarget.useCRBits())
896       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
897     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
898 
899     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
900     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
901 
902     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
903     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
904     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
905     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
906     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
907     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
908     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
909 
910     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
911     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
912 
913     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
914 
915     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
916     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
917     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
918     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
919 
920     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
921     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
922     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
923     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
924 
925     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
926     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
927 
928     // These need to set FE_INEXACT, and so cannot be vectorized here.
929     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
930     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
931 
932     if (TM.Options.UnsafeFPMath) {
933       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
934       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
935 
936       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
937       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
938     } else {
939       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
940       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
941 
942       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
943       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
944     }
945   }
946 
947   if (Subtarget.has64BitSupport())
948     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
949 
950   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
951 
952   if (!isPPC64) {
953     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
954     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
955   }
956 
957   setBooleanContents(ZeroOrOneBooleanContent);
958 
959   if (Subtarget.hasAltivec()) {
960     // Altivec instructions set fields to all zeros or all ones.
961     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
962   }
963 
964   if (!isPPC64) {
965     // These libcalls are not available in 32-bit.
966     setLibcallName(RTLIB::SHL_I128, nullptr);
967     setLibcallName(RTLIB::SRL_I128, nullptr);
968     setLibcallName(RTLIB::SRA_I128, nullptr);
969   }
970 
971   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
972 
973   // We have target-specific dag combine patterns for the following nodes:
974   setTargetDAGCombine(ISD::SHL);
975   setTargetDAGCombine(ISD::SRA);
976   setTargetDAGCombine(ISD::SRL);
977   setTargetDAGCombine(ISD::SINT_TO_FP);
978   setTargetDAGCombine(ISD::BUILD_VECTOR);
979   if (Subtarget.hasFPCVT())
980     setTargetDAGCombine(ISD::UINT_TO_FP);
981   setTargetDAGCombine(ISD::LOAD);
982   setTargetDAGCombine(ISD::STORE);
983   setTargetDAGCombine(ISD::BR_CC);
984   if (Subtarget.useCRBits())
985     setTargetDAGCombine(ISD::BRCOND);
986   setTargetDAGCombine(ISD::BSWAP);
987   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
988   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
989   setTargetDAGCombine(ISD::INTRINSIC_VOID);
990 
991   setTargetDAGCombine(ISD::SIGN_EXTEND);
992   setTargetDAGCombine(ISD::ZERO_EXTEND);
993   setTargetDAGCombine(ISD::ANY_EXTEND);
994 
995   if (Subtarget.useCRBits()) {
996     setTargetDAGCombine(ISD::TRUNCATE);
997     setTargetDAGCombine(ISD::SETCC);
998     setTargetDAGCombine(ISD::SELECT_CC);
999   }
1000 
1001   // Use reciprocal estimates.
1002   if (TM.Options.UnsafeFPMath) {
1003     setTargetDAGCombine(ISD::FDIV);
1004     setTargetDAGCombine(ISD::FSQRT);
1005   }
1006 
1007   // Darwin long double math library functions have $LDBL128 appended.
1008   if (Subtarget.isDarwin()) {
1009     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1010     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1011     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1012     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1013     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1014     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1015     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1016     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1017     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1018     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1019   }
1020 
1021   // With 32 condition bits, we don't need to sink (and duplicate) compares
1022   // aggressively in CodeGenPrep.
1023   if (Subtarget.useCRBits()) {
1024     setHasMultipleConditionRegisters();
1025     setJumpIsExpensive();
1026   }
1027 
1028   setMinFunctionAlignment(2);
1029   if (Subtarget.isDarwin())
1030     setPrefFunctionAlignment(4);
1031 
1032   switch (Subtarget.getDarwinDirective()) {
1033   default: break;
1034   case PPC::DIR_970:
1035   case PPC::DIR_A2:
1036   case PPC::DIR_E500mc:
1037   case PPC::DIR_E5500:
1038   case PPC::DIR_PWR4:
1039   case PPC::DIR_PWR5:
1040   case PPC::DIR_PWR5X:
1041   case PPC::DIR_PWR6:
1042   case PPC::DIR_PWR6X:
1043   case PPC::DIR_PWR7:
1044   case PPC::DIR_PWR8:
1045   case PPC::DIR_PWR9:
1046     setPrefFunctionAlignment(4);
1047     setPrefLoopAlignment(4);
1048     break;
1049   }
1050 
1051   if (Subtarget.enableMachineScheduler())
1052     setSchedulingPreference(Sched::Source);
1053   else
1054     setSchedulingPreference(Sched::Hybrid);
1055 
1056   computeRegisterProperties(STI.getRegisterInfo());
1057 
1058   // The Freescale cores do better with aggressive inlining of memcpy and
1059   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1060   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1061       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1062     MaxStoresPerMemset = 32;
1063     MaxStoresPerMemsetOptSize = 16;
1064     MaxStoresPerMemcpy = 32;
1065     MaxStoresPerMemcpyOptSize = 8;
1066     MaxStoresPerMemmove = 32;
1067     MaxStoresPerMemmoveOptSize = 8;
1068   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1069     // The A2 also benefits from (very) aggressive inlining of memcpy and
1070     // friends. The overhead of a the function call, even when warm, can be
1071     // over one hundred cycles.
1072     MaxStoresPerMemset = 128;
1073     MaxStoresPerMemcpy = 128;
1074     MaxStoresPerMemmove = 128;
1075     MaxLoadsPerMemcmp = 128;
1076   } else {
1077     MaxLoadsPerMemcmp = 8;
1078     MaxLoadsPerMemcmpOptSize = 4;
1079   }
1080 }
1081 
1082 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1083 /// the desired ByVal argument alignment.
1084 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1085                              unsigned MaxMaxAlign) {
1086   if (MaxAlign == MaxMaxAlign)
1087     return;
1088   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1089     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1090       MaxAlign = 32;
1091     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1092       MaxAlign = 16;
1093   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1094     unsigned EltAlign = 0;
1095     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1096     if (EltAlign > MaxAlign)
1097       MaxAlign = EltAlign;
1098   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1099     for (auto *EltTy : STy->elements()) {
1100       unsigned EltAlign = 0;
1101       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1102       if (EltAlign > MaxAlign)
1103         MaxAlign = EltAlign;
1104       if (MaxAlign == MaxMaxAlign)
1105         break;
1106     }
1107   }
1108 }
1109 
1110 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1111 /// function arguments in the caller parameter area.
1112 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1113                                                   const DataLayout &DL) const {
1114   // Darwin passes everything on 4 byte boundary.
1115   if (Subtarget.isDarwin())
1116     return 4;
1117 
1118   // 16byte and wider vectors are passed on 16byte boundary.
1119   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1120   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1121   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1122     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1123   return Align;
1124 }
1125 
1126 bool PPCTargetLowering::useSoftFloat() const {
1127   return Subtarget.useSoftFloat();
1128 }
1129 
1130 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1131   switch ((PPCISD::NodeType)Opcode) {
1132   case PPCISD::FIRST_NUMBER:    break;
1133   case PPCISD::FSEL:            return "PPCISD::FSEL";
1134   case PPCISD::FCFID:           return "PPCISD::FCFID";
1135   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1136   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1137   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1138   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1139   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1140   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1141   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1142   case PPCISD::FRE:             return "PPCISD::FRE";
1143   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1144   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1145   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1146   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1147   case PPCISD::VPERM:           return "PPCISD::VPERM";
1148   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1149   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1150   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1151   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1152   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1153   case PPCISD::CMPB:            return "PPCISD::CMPB";
1154   case PPCISD::Hi:              return "PPCISD::Hi";
1155   case PPCISD::Lo:              return "PPCISD::Lo";
1156   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1157   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1158   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1159   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1160   case PPCISD::SRL:             return "PPCISD::SRL";
1161   case PPCISD::SRA:             return "PPCISD::SRA";
1162   case PPCISD::SHL:             return "PPCISD::SHL";
1163   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1164   case PPCISD::CALL:            return "PPCISD::CALL";
1165   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1166   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1167   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1168   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1169   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1170   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1171   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1172   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1173   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1174   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1175   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1176   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1177   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1178   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1179   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1180   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1181   case PPCISD::VCMP:            return "PPCISD::VCMP";
1182   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1183   case PPCISD::LBRX:            return "PPCISD::LBRX";
1184   case PPCISD::STBRX:           return "PPCISD::STBRX";
1185   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1186   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1187   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1188   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1189   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1190   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1191   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1192   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1193   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1194   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1195   case PPCISD::BDZ:             return "PPCISD::BDZ";
1196   case PPCISD::MFFS:            return "PPCISD::MFFS";
1197   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1198   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1199   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1200   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1201   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1202   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1203   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1204   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1205   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1206   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1207   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1208   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1209   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1210   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1211   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1212   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1213   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1214   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1215   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1216   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1217   case PPCISD::SC:              return "PPCISD::SC";
1218   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1219   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1220   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1221   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1222   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1223   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1224   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1225   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1226   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1227   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1228   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1229   }
1230   return nullptr;
1231 }
1232 
1233 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1234                                           EVT VT) const {
1235   if (!VT.isVector())
1236     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1237 
1238   if (Subtarget.hasQPX())
1239     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1240 
1241   return VT.changeVectorElementTypeToInteger();
1242 }
1243 
1244 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1245   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1246   return true;
1247 }
1248 
1249 //===----------------------------------------------------------------------===//
1250 // Node matching predicates, for use by the tblgen matching code.
1251 //===----------------------------------------------------------------------===//
1252 
1253 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1254 static bool isFloatingPointZero(SDValue Op) {
1255   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1256     return CFP->getValueAPF().isZero();
1257   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1258     // Maybe this has already been legalized into the constant pool?
1259     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1260       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1261         return CFP->getValueAPF().isZero();
1262   }
1263   return false;
1264 }
1265 
1266 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1267 /// true if Op is undef or if it matches the specified value.
1268 static bool isConstantOrUndef(int Op, int Val) {
1269   return Op < 0 || Op == Val;
1270 }
1271 
1272 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1273 /// VPKUHUM instruction.
1274 /// The ShuffleKind distinguishes between big-endian operations with
1275 /// two different inputs (0), either-endian operations with two identical
1276 /// inputs (1), and little-endian operations with two different inputs (2).
1277 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1278 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1279                                SelectionDAG &DAG) {
1280   bool IsLE = DAG.getDataLayout().isLittleEndian();
1281   if (ShuffleKind == 0) {
1282     if (IsLE)
1283       return false;
1284     for (unsigned i = 0; i != 16; ++i)
1285       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1286         return false;
1287   } else if (ShuffleKind == 2) {
1288     if (!IsLE)
1289       return false;
1290     for (unsigned i = 0; i != 16; ++i)
1291       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1292         return false;
1293   } else if (ShuffleKind == 1) {
1294     unsigned j = IsLE ? 0 : 1;
1295     for (unsigned i = 0; i != 8; ++i)
1296       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1297           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1298         return false;
1299   }
1300   return true;
1301 }
1302 
1303 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1304 /// VPKUWUM instruction.
1305 /// The ShuffleKind distinguishes between big-endian operations with
1306 /// two different inputs (0), either-endian operations with two identical
1307 /// inputs (1), and little-endian operations with two different inputs (2).
1308 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1309 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1310                                SelectionDAG &DAG) {
1311   bool IsLE = DAG.getDataLayout().isLittleEndian();
1312   if (ShuffleKind == 0) {
1313     if (IsLE)
1314       return false;
1315     for (unsigned i = 0; i != 16; i += 2)
1316       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1317           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1318         return false;
1319   } else if (ShuffleKind == 2) {
1320     if (!IsLE)
1321       return false;
1322     for (unsigned i = 0; i != 16; i += 2)
1323       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1324           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1325         return false;
1326   } else if (ShuffleKind == 1) {
1327     unsigned j = IsLE ? 0 : 2;
1328     for (unsigned i = 0; i != 8; i += 2)
1329       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1330           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1331           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1332           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1333         return false;
1334   }
1335   return true;
1336 }
1337 
1338 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1339 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1340 /// current subtarget.
1341 ///
1342 /// The ShuffleKind distinguishes between big-endian operations with
1343 /// two different inputs (0), either-endian operations with two identical
1344 /// inputs (1), and little-endian operations with two different inputs (2).
1345 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1346 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1347                                SelectionDAG &DAG) {
1348   const PPCSubtarget& Subtarget =
1349     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1350   if (!Subtarget.hasP8Vector())
1351     return false;
1352 
1353   bool IsLE = DAG.getDataLayout().isLittleEndian();
1354   if (ShuffleKind == 0) {
1355     if (IsLE)
1356       return false;
1357     for (unsigned i = 0; i != 16; i += 4)
1358       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1359           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1360           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1361           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1362         return false;
1363   } else if (ShuffleKind == 2) {
1364     if (!IsLE)
1365       return false;
1366     for (unsigned i = 0; i != 16; i += 4)
1367       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1368           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1369           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1370           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1371         return false;
1372   } else if (ShuffleKind == 1) {
1373     unsigned j = IsLE ? 0 : 4;
1374     for (unsigned i = 0; i != 8; i += 4)
1375       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1376           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1377           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1378           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1379           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1380           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1381           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1382           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1383         return false;
1384   }
1385   return true;
1386 }
1387 
1388 /// isVMerge - Common function, used to match vmrg* shuffles.
1389 ///
1390 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1391                      unsigned LHSStart, unsigned RHSStart) {
1392   if (N->getValueType(0) != MVT::v16i8)
1393     return false;
1394   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1395          "Unsupported merge size!");
1396 
1397   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1398     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1399       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1400                              LHSStart+j+i*UnitSize) ||
1401           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1402                              RHSStart+j+i*UnitSize))
1403         return false;
1404     }
1405   return true;
1406 }
1407 
1408 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1409 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1410 /// The ShuffleKind distinguishes between big-endian merges with two
1411 /// different inputs (0), either-endian merges with two identical inputs (1),
1412 /// and little-endian merges with two different inputs (2).  For the latter,
1413 /// the input operands are swapped (see PPCInstrAltivec.td).
1414 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1415                              unsigned ShuffleKind, SelectionDAG &DAG) {
1416   if (DAG.getDataLayout().isLittleEndian()) {
1417     if (ShuffleKind == 1) // unary
1418       return isVMerge(N, UnitSize, 0, 0);
1419     else if (ShuffleKind == 2) // swapped
1420       return isVMerge(N, UnitSize, 0, 16);
1421     else
1422       return false;
1423   } else {
1424     if (ShuffleKind == 1) // unary
1425       return isVMerge(N, UnitSize, 8, 8);
1426     else if (ShuffleKind == 0) // normal
1427       return isVMerge(N, UnitSize, 8, 24);
1428     else
1429       return false;
1430   }
1431 }
1432 
1433 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1434 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1435 /// The ShuffleKind distinguishes between big-endian merges with two
1436 /// different inputs (0), either-endian merges with two identical inputs (1),
1437 /// and little-endian merges with two different inputs (2).  For the latter,
1438 /// the input operands are swapped (see PPCInstrAltivec.td).
1439 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1440                              unsigned ShuffleKind, SelectionDAG &DAG) {
1441   if (DAG.getDataLayout().isLittleEndian()) {
1442     if (ShuffleKind == 1) // unary
1443       return isVMerge(N, UnitSize, 8, 8);
1444     else if (ShuffleKind == 2) // swapped
1445       return isVMerge(N, UnitSize, 8, 24);
1446     else
1447       return false;
1448   } else {
1449     if (ShuffleKind == 1) // unary
1450       return isVMerge(N, UnitSize, 0, 0);
1451     else if (ShuffleKind == 0) // normal
1452       return isVMerge(N, UnitSize, 0, 16);
1453     else
1454       return false;
1455   }
1456 }
1457 
1458 /**
1459  * \brief Common function used to match vmrgew and vmrgow shuffles
1460  *
1461  * The indexOffset determines whether to look for even or odd words in
1462  * the shuffle mask. This is based on the of the endianness of the target
1463  * machine.
1464  *   - Little Endian:
1465  *     - Use offset of 0 to check for odd elements
1466  *     - Use offset of 4 to check for even elements
1467  *   - Big Endian:
1468  *     - Use offset of 0 to check for even elements
1469  *     - Use offset of 4 to check for odd elements
1470  * A detailed description of the vector element ordering for little endian and
1471  * big endian can be found at
1472  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1473  * Targeting your applications - what little endian and big endian IBM XL C/C++
1474  * compiler differences mean to you
1475  *
1476  * The mask to the shuffle vector instruction specifies the indices of the
1477  * elements from the two input vectors to place in the result. The elements are
1478  * numbered in array-access order, starting with the first vector. These vectors
1479  * are always of type v16i8, thus each vector will contain 16 elements of size
1480  * 8. More info on the shuffle vector can be found in the
1481  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1482  * Language Reference.
1483  *
1484  * The RHSStartValue indicates whether the same input vectors are used (unary)
1485  * or two different input vectors are used, based on the following:
1486  *   - If the instruction uses the same vector for both inputs, the range of the
1487  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1488  *     be 0.
1489  *   - If the instruction has two different vectors then the range of the
1490  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1491  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1492  *     to 31 specify elements in the second vector).
1493  *
1494  * \param[in] N The shuffle vector SD Node to analyze
1495  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1496  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1497  * vector to the shuffle_vector instruction
1498  * \return true iff this shuffle vector represents an even or odd word merge
1499  */
1500 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1501                      unsigned RHSStartValue) {
1502   if (N->getValueType(0) != MVT::v16i8)
1503     return false;
1504 
1505   for (unsigned i = 0; i < 2; ++i)
1506     for (unsigned j = 0; j < 4; ++j)
1507       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1508                              i*RHSStartValue+j+IndexOffset) ||
1509           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1510                              i*RHSStartValue+j+IndexOffset+8))
1511         return false;
1512   return true;
1513 }
1514 
1515 /**
1516  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1517  * vmrgow instructions.
1518  *
1519  * \param[in] N The shuffle vector SD Node to analyze
1520  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1521  * \param[in] ShuffleKind Identify the type of merge:
1522  *   - 0 = big-endian merge with two different inputs;
1523  *   - 1 = either-endian merge with two identical inputs;
1524  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1525  *     little-endian merges).
1526  * \param[in] DAG The current SelectionDAG
1527  * \return true iff this shuffle mask
1528  */
1529 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1530                               unsigned ShuffleKind, SelectionDAG &DAG) {
1531   if (DAG.getDataLayout().isLittleEndian()) {
1532     unsigned indexOffset = CheckEven ? 4 : 0;
1533     if (ShuffleKind == 1) // Unary
1534       return isVMerge(N, indexOffset, 0);
1535     else if (ShuffleKind == 2) // swapped
1536       return isVMerge(N, indexOffset, 16);
1537     else
1538       return false;
1539   }
1540   else {
1541     unsigned indexOffset = CheckEven ? 0 : 4;
1542     if (ShuffleKind == 1) // Unary
1543       return isVMerge(N, indexOffset, 0);
1544     else if (ShuffleKind == 0) // Normal
1545       return isVMerge(N, indexOffset, 16);
1546     else
1547       return false;
1548   }
1549   return false;
1550 }
1551 
1552 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1553 /// amount, otherwise return -1.
1554 /// The ShuffleKind distinguishes between big-endian operations with two
1555 /// different inputs (0), either-endian operations with two identical inputs
1556 /// (1), and little-endian operations with two different inputs (2).  For the
1557 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1558 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1559                              SelectionDAG &DAG) {
1560   if (N->getValueType(0) != MVT::v16i8)
1561     return -1;
1562 
1563   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1564 
1565   // Find the first non-undef value in the shuffle mask.
1566   unsigned i;
1567   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1568     /*search*/;
1569 
1570   if (i == 16) return -1;  // all undef.
1571 
1572   // Otherwise, check to see if the rest of the elements are consecutively
1573   // numbered from this value.
1574   unsigned ShiftAmt = SVOp->getMaskElt(i);
1575   if (ShiftAmt < i) return -1;
1576 
1577   ShiftAmt -= i;
1578   bool isLE = DAG.getDataLayout().isLittleEndian();
1579 
1580   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1581     // Check the rest of the elements to see if they are consecutive.
1582     for (++i; i != 16; ++i)
1583       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1584         return -1;
1585   } else if (ShuffleKind == 1) {
1586     // Check the rest of the elements to see if they are consecutive.
1587     for (++i; i != 16; ++i)
1588       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1589         return -1;
1590   } else
1591     return -1;
1592 
1593   if (isLE)
1594     ShiftAmt = 16 - ShiftAmt;
1595 
1596   return ShiftAmt;
1597 }
1598 
1599 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1600 /// specifies a splat of a single element that is suitable for input to
1601 /// VSPLTB/VSPLTH/VSPLTW.
1602 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1603   assert(N->getValueType(0) == MVT::v16i8 &&
1604          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1605 
1606   // The consecutive indices need to specify an element, not part of two
1607   // different elements.  So abandon ship early if this isn't the case.
1608   if (N->getMaskElt(0) % EltSize != 0)
1609     return false;
1610 
1611   // This is a splat operation if each element of the permute is the same, and
1612   // if the value doesn't reference the second vector.
1613   unsigned ElementBase = N->getMaskElt(0);
1614 
1615   // FIXME: Handle UNDEF elements too!
1616   if (ElementBase >= 16)
1617     return false;
1618 
1619   // Check that the indices are consecutive, in the case of a multi-byte element
1620   // splatted with a v16i8 mask.
1621   for (unsigned i = 1; i != EltSize; ++i)
1622     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1623       return false;
1624 
1625   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1626     if (N->getMaskElt(i) < 0) continue;
1627     for (unsigned j = 0; j != EltSize; ++j)
1628       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1629         return false;
1630   }
1631   return true;
1632 }
1633 
1634 /// Check that the mask is shuffling N byte elements. Within each N byte
1635 /// element of the mask, the indices could be either in increasing or
1636 /// decreasing order as long as they are consecutive.
1637 /// \param[in] N the shuffle vector SD Node to analyze
1638 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1639 /// Word/DoubleWord/QuadWord).
1640 /// \param[in] StepLen the delta indices number among the N byte element, if
1641 /// the mask is in increasing/decreasing order then it is 1/-1.
1642 /// \return true iff the mask is shuffling N byte elements.
1643 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1644                                    int StepLen) {
1645   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1646          "Unexpected element width.");
1647   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1648 
1649   unsigned NumOfElem = 16 / Width;
1650   unsigned MaskVal[16]; //  Width is never greater than 16
1651   for (unsigned i = 0; i < NumOfElem; ++i) {
1652     MaskVal[0] = N->getMaskElt(i * Width);
1653     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1654       return false;
1655     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1656       return false;
1657     }
1658 
1659     for (unsigned int j = 1; j < Width; ++j) {
1660       MaskVal[j] = N->getMaskElt(i * Width + j);
1661       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1662         return false;
1663       }
1664     }
1665   }
1666 
1667   return true;
1668 }
1669 
1670 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1671                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1672   if (!isNByteElemShuffleMask(N, 4, 1))
1673     return false;
1674 
1675   // Now we look at mask elements 0,4,8,12
1676   unsigned M0 = N->getMaskElt(0) / 4;
1677   unsigned M1 = N->getMaskElt(4) / 4;
1678   unsigned M2 = N->getMaskElt(8) / 4;
1679   unsigned M3 = N->getMaskElt(12) / 4;
1680   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1681   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1682 
1683   // Below, let H and L be arbitrary elements of the shuffle mask
1684   // where H is in the range [4,7] and L is in the range [0,3].
1685   // H, 1, 2, 3 or L, 5, 6, 7
1686   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1687       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1688     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1689     InsertAtByte = IsLE ? 12 : 0;
1690     Swap = M0 < 4;
1691     return true;
1692   }
1693   // 0, H, 2, 3 or 4, L, 6, 7
1694   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1695       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1696     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1697     InsertAtByte = IsLE ? 8 : 4;
1698     Swap = M1 < 4;
1699     return true;
1700   }
1701   // 0, 1, H, 3 or 4, 5, L, 7
1702   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1703       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1704     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1705     InsertAtByte = IsLE ? 4 : 8;
1706     Swap = M2 < 4;
1707     return true;
1708   }
1709   // 0, 1, 2, H or 4, 5, 6, L
1710   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1711       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1712     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1713     InsertAtByte = IsLE ? 0 : 12;
1714     Swap = M3 < 4;
1715     return true;
1716   }
1717 
1718   // If both vector operands for the shuffle are the same vector, the mask will
1719   // contain only elements from the first one and the second one will be undef.
1720   if (N->getOperand(1).isUndef()) {
1721     ShiftElts = 0;
1722     Swap = true;
1723     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1724     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1725       InsertAtByte = IsLE ? 12 : 0;
1726       return true;
1727     }
1728     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1729       InsertAtByte = IsLE ? 8 : 4;
1730       return true;
1731     }
1732     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1733       InsertAtByte = IsLE ? 4 : 8;
1734       return true;
1735     }
1736     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1737       InsertAtByte = IsLE ? 0 : 12;
1738       return true;
1739     }
1740   }
1741 
1742   return false;
1743 }
1744 
1745 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1746                                bool &Swap, bool IsLE) {
1747   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1748   // Ensure each byte index of the word is consecutive.
1749   if (!isNByteElemShuffleMask(N, 4, 1))
1750     return false;
1751 
1752   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1753   unsigned M0 = N->getMaskElt(0) / 4;
1754   unsigned M1 = N->getMaskElt(4) / 4;
1755   unsigned M2 = N->getMaskElt(8) / 4;
1756   unsigned M3 = N->getMaskElt(12) / 4;
1757 
1758   // If both vector operands for the shuffle are the same vector, the mask will
1759   // contain only elements from the first one and the second one will be undef.
1760   if (N->getOperand(1).isUndef()) {
1761     assert(M0 < 4 && "Indexing into an undef vector?");
1762     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1763       return false;
1764 
1765     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1766     Swap = false;
1767     return true;
1768   }
1769 
1770   // Ensure each word index of the ShuffleVector Mask is consecutive.
1771   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1772     return false;
1773 
1774   if (IsLE) {
1775     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1776       // Input vectors don't need to be swapped if the leading element
1777       // of the result is one of the 3 left elements of the second vector
1778       // (or if there is no shift to be done at all).
1779       Swap = false;
1780       ShiftElts = (8 - M0) % 8;
1781     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1782       // Input vectors need to be swapped if the leading element
1783       // of the result is one of the 3 left elements of the first vector
1784       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1785       Swap = true;
1786       ShiftElts = (4 - M0) % 4;
1787     }
1788 
1789     return true;
1790   } else {                                          // BE
1791     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1792       // Input vectors don't need to be swapped if the leading element
1793       // of the result is one of the 4 elements of the first vector.
1794       Swap = false;
1795       ShiftElts = M0;
1796     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1797       // Input vectors need to be swapped if the leading element
1798       // of the result is one of the 4 elements of the right vector.
1799       Swap = true;
1800       ShiftElts = M0 - 4;
1801     }
1802 
1803     return true;
1804   }
1805 }
1806 
1807 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1808   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1809 
1810   if (!isNByteElemShuffleMask(N, Width, -1))
1811     return false;
1812 
1813   for (int i = 0; i < 16; i += Width)
1814     if (N->getMaskElt(i) != i + Width - 1)
1815       return false;
1816 
1817   return true;
1818 }
1819 
1820 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1821   return isXXBRShuffleMaskHelper(N, 2);
1822 }
1823 
1824 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1825   return isXXBRShuffleMaskHelper(N, 4);
1826 }
1827 
1828 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1829   return isXXBRShuffleMaskHelper(N, 8);
1830 }
1831 
1832 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1833   return isXXBRShuffleMaskHelper(N, 16);
1834 }
1835 
1836 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1837 /// if the inputs to the instruction should be swapped and set \p DM to the
1838 /// value for the immediate.
1839 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1840 /// AND element 0 of the result comes from the first input (LE) or second input
1841 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1842 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1843 /// mask.
1844 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1845                                bool &Swap, bool IsLE) {
1846   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1847 
1848   // Ensure each byte index of the double word is consecutive.
1849   if (!isNByteElemShuffleMask(N, 8, 1))
1850     return false;
1851 
1852   unsigned M0 = N->getMaskElt(0) / 8;
1853   unsigned M1 = N->getMaskElt(8) / 8;
1854   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1855 
1856   // If both vector operands for the shuffle are the same vector, the mask will
1857   // contain only elements from the first one and the second one will be undef.
1858   if (N->getOperand(1).isUndef()) {
1859     if ((M0 | M1) < 2) {
1860       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1861       Swap = false;
1862       return true;
1863     } else
1864       return false;
1865   }
1866 
1867   if (IsLE) {
1868     if (M0 > 1 && M1 < 2) {
1869       Swap = false;
1870     } else if (M0 < 2 && M1 > 1) {
1871       M0 = (M0 + 2) % 4;
1872       M1 = (M1 + 2) % 4;
1873       Swap = true;
1874     } else
1875       return false;
1876 
1877     // Note: if control flow comes here that means Swap is already set above
1878     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
1879     return true;
1880   } else { // BE
1881     if (M0 < 2 && M1 > 1) {
1882       Swap = false;
1883     } else if (M0 > 1 && M1 < 2) {
1884       M0 = (M0 + 2) % 4;
1885       M1 = (M1 + 2) % 4;
1886       Swap = true;
1887     } else
1888       return false;
1889 
1890     // Note: if control flow comes here that means Swap is already set above
1891     DM = (M0 << 1) + (M1 & 1);
1892     return true;
1893   }
1894 }
1895 
1896 
1897 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1898 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1899 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1900                                 SelectionDAG &DAG) {
1901   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1902   assert(isSplatShuffleMask(SVOp, EltSize));
1903   if (DAG.getDataLayout().isLittleEndian())
1904     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1905   else
1906     return SVOp->getMaskElt(0) / EltSize;
1907 }
1908 
1909 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1910 /// by using a vspltis[bhw] instruction of the specified element size, return
1911 /// the constant being splatted.  The ByteSize field indicates the number of
1912 /// bytes of each element [124] -> [bhw].
1913 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1914   SDValue OpVal(nullptr, 0);
1915 
1916   // If ByteSize of the splat is bigger than the element size of the
1917   // build_vector, then we have a case where we are checking for a splat where
1918   // multiple elements of the buildvector are folded together into a single
1919   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1920   unsigned EltSize = 16/N->getNumOperands();
1921   if (EltSize < ByteSize) {
1922     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1923     SDValue UniquedVals[4];
1924     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1925 
1926     // See if all of the elements in the buildvector agree across.
1927     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1928       if (N->getOperand(i).isUndef()) continue;
1929       // If the element isn't a constant, bail fully out.
1930       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1931 
1932       if (!UniquedVals[i&(Multiple-1)].getNode())
1933         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1934       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1935         return SDValue();  // no match.
1936     }
1937 
1938     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1939     // either constant or undef values that are identical for each chunk.  See
1940     // if these chunks can form into a larger vspltis*.
1941 
1942     // Check to see if all of the leading entries are either 0 or -1.  If
1943     // neither, then this won't fit into the immediate field.
1944     bool LeadingZero = true;
1945     bool LeadingOnes = true;
1946     for (unsigned i = 0; i != Multiple-1; ++i) {
1947       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1948 
1949       LeadingZero &= isNullConstant(UniquedVals[i]);
1950       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1951     }
1952     // Finally, check the least significant entry.
1953     if (LeadingZero) {
1954       if (!UniquedVals[Multiple-1].getNode())
1955         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1956       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1957       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1958         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1959     }
1960     if (LeadingOnes) {
1961       if (!UniquedVals[Multiple-1].getNode())
1962         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1963       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1964       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1965         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1966     }
1967 
1968     return SDValue();
1969   }
1970 
1971   // Check to see if this buildvec has a single non-undef value in its elements.
1972   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1973     if (N->getOperand(i).isUndef()) continue;
1974     if (!OpVal.getNode())
1975       OpVal = N->getOperand(i);
1976     else if (OpVal != N->getOperand(i))
1977       return SDValue();
1978   }
1979 
1980   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1981 
1982   unsigned ValSizeInBytes = EltSize;
1983   uint64_t Value = 0;
1984   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1985     Value = CN->getZExtValue();
1986   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1987     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1988     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1989   }
1990 
1991   // If the splat value is larger than the element value, then we can never do
1992   // this splat.  The only case that we could fit the replicated bits into our
1993   // immediate field for would be zero, and we prefer to use vxor for it.
1994   if (ValSizeInBytes < ByteSize) return SDValue();
1995 
1996   // If the element value is larger than the splat value, check if it consists
1997   // of a repeated bit pattern of size ByteSize.
1998   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1999     return SDValue();
2000 
2001   // Properly sign extend the value.
2002   int MaskVal = SignExtend32(Value, ByteSize * 8);
2003 
2004   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2005   if (MaskVal == 0) return SDValue();
2006 
2007   // Finally, if this value fits in a 5 bit sext field, return it
2008   if (SignExtend32<5>(MaskVal) == MaskVal)
2009     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2010   return SDValue();
2011 }
2012 
2013 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2014 /// amount, otherwise return -1.
2015 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2016   EVT VT = N->getValueType(0);
2017   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2018     return -1;
2019 
2020   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2021 
2022   // Find the first non-undef value in the shuffle mask.
2023   unsigned i;
2024   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2025     /*search*/;
2026 
2027   if (i == 4) return -1;  // all undef.
2028 
2029   // Otherwise, check to see if the rest of the elements are consecutively
2030   // numbered from this value.
2031   unsigned ShiftAmt = SVOp->getMaskElt(i);
2032   if (ShiftAmt < i) return -1;
2033   ShiftAmt -= i;
2034 
2035   // Check the rest of the elements to see if they are consecutive.
2036   for (++i; i != 4; ++i)
2037     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2038       return -1;
2039 
2040   return ShiftAmt;
2041 }
2042 
2043 //===----------------------------------------------------------------------===//
2044 //  Addressing Mode Selection
2045 //===----------------------------------------------------------------------===//
2046 
2047 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2048 /// or 64-bit immediate, and if the value can be accurately represented as a
2049 /// sign extension from a 16-bit value.  If so, this returns true and the
2050 /// immediate.
2051 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2052   if (!isa<ConstantSDNode>(N))
2053     return false;
2054 
2055   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2056   if (N->getValueType(0) == MVT::i32)
2057     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2058   else
2059     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2060 }
2061 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2062   return isIntS16Immediate(Op.getNode(), Imm);
2063 }
2064 
2065 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2066 /// can be represented as an indexed [r+r] operation.  Returns false if it
2067 /// can be more efficiently represented with [r+imm].
2068 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2069                                             SDValue &Index,
2070                                             SelectionDAG &DAG) const {
2071   int16_t imm = 0;
2072   if (N.getOpcode() == ISD::ADD) {
2073     if (isIntS16Immediate(N.getOperand(1), imm))
2074       return false;    // r+i
2075     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2076       return false;    // r+i
2077 
2078     Base = N.getOperand(0);
2079     Index = N.getOperand(1);
2080     return true;
2081   } else if (N.getOpcode() == ISD::OR) {
2082     if (isIntS16Immediate(N.getOperand(1), imm))
2083       return false;    // r+i can fold it if we can.
2084 
2085     // If this is an or of disjoint bitfields, we can codegen this as an add
2086     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2087     // disjoint.
2088     KnownBits LHSKnown, RHSKnown;
2089     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2090 
2091     if (LHSKnown.Zero.getBoolValue()) {
2092       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2093       // If all of the bits are known zero on the LHS or RHS, the add won't
2094       // carry.
2095       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2096         Base = N.getOperand(0);
2097         Index = N.getOperand(1);
2098         return true;
2099       }
2100     }
2101   }
2102 
2103   return false;
2104 }
2105 
2106 // If we happen to be doing an i64 load or store into a stack slot that has
2107 // less than a 4-byte alignment, then the frame-index elimination may need to
2108 // use an indexed load or store instruction (because the offset may not be a
2109 // multiple of 4). The extra register needed to hold the offset comes from the
2110 // register scavenger, and it is possible that the scavenger will need to use
2111 // an emergency spill slot. As a result, we need to make sure that a spill slot
2112 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2113 // stack slot.
2114 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2115   // FIXME: This does not handle the LWA case.
2116   if (VT != MVT::i64)
2117     return;
2118 
2119   // NOTE: We'll exclude negative FIs here, which come from argument
2120   // lowering, because there are no known test cases triggering this problem
2121   // using packed structures (or similar). We can remove this exclusion if
2122   // we find such a test case. The reason why this is so test-case driven is
2123   // because this entire 'fixup' is only to prevent crashes (from the
2124   // register scavenger) on not-really-valid inputs. For example, if we have:
2125   //   %a = alloca i1
2126   //   %b = bitcast i1* %a to i64*
2127   //   store i64* a, i64 b
2128   // then the store should really be marked as 'align 1', but is not. If it
2129   // were marked as 'align 1' then the indexed form would have been
2130   // instruction-selected initially, and the problem this 'fixup' is preventing
2131   // won't happen regardless.
2132   if (FrameIdx < 0)
2133     return;
2134 
2135   MachineFunction &MF = DAG.getMachineFunction();
2136   MachineFrameInfo &MFI = MF.getFrameInfo();
2137 
2138   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2139   if (Align >= 4)
2140     return;
2141 
2142   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2143   FuncInfo->setHasNonRISpills();
2144 }
2145 
2146 /// Returns true if the address N can be represented by a base register plus
2147 /// a signed 16-bit displacement [r+imm], and if it is not better
2148 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2149 /// displacements that are multiples of that value.
2150 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2151                                             SDValue &Base,
2152                                             SelectionDAG &DAG,
2153                                             unsigned Alignment) const {
2154   // FIXME dl should come from parent load or store, not from address
2155   SDLoc dl(N);
2156   // If this can be more profitably realized as r+r, fail.
2157   if (SelectAddressRegReg(N, Disp, Base, DAG))
2158     return false;
2159 
2160   if (N.getOpcode() == ISD::ADD) {
2161     int16_t imm = 0;
2162     if (isIntS16Immediate(N.getOperand(1), imm) &&
2163         (!Alignment || (imm % Alignment) == 0)) {
2164       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2165       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2166         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2167         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2168       } else {
2169         Base = N.getOperand(0);
2170       }
2171       return true; // [r+i]
2172     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2173       // Match LOAD (ADD (X, Lo(G))).
2174       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2175              && "Cannot handle constant offsets yet!");
2176       Disp = N.getOperand(1).getOperand(0);  // The global address.
2177       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2178              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2179              Disp.getOpcode() == ISD::TargetConstantPool ||
2180              Disp.getOpcode() == ISD::TargetJumpTable);
2181       Base = N.getOperand(0);
2182       return true;  // [&g+r]
2183     }
2184   } else if (N.getOpcode() == ISD::OR) {
2185     int16_t imm = 0;
2186     if (isIntS16Immediate(N.getOperand(1), imm) &&
2187         (!Alignment || (imm % Alignment) == 0)) {
2188       // If this is an or of disjoint bitfields, we can codegen this as an add
2189       // (for better address arithmetic) if the LHS and RHS of the OR are
2190       // provably disjoint.
2191       KnownBits LHSKnown;
2192       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2193 
2194       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2195         // If all of the bits are known zero on the LHS or RHS, the add won't
2196         // carry.
2197         if (FrameIndexSDNode *FI =
2198               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2199           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2200           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2201         } else {
2202           Base = N.getOperand(0);
2203         }
2204         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2205         return true;
2206       }
2207     }
2208   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2209     // Loading from a constant address.
2210 
2211     // If this address fits entirely in a 16-bit sext immediate field, codegen
2212     // this as "d, 0"
2213     int16_t Imm;
2214     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2215       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2216       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2217                              CN->getValueType(0));
2218       return true;
2219     }
2220 
2221     // Handle 32-bit sext immediates with LIS + addr mode.
2222     if ((CN->getValueType(0) == MVT::i32 ||
2223          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2224         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2225       int Addr = (int)CN->getZExtValue();
2226 
2227       // Otherwise, break this down into an LIS + disp.
2228       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2229 
2230       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2231                                    MVT::i32);
2232       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2233       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2234       return true;
2235     }
2236   }
2237 
2238   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2239   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2240     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2241     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2242   } else
2243     Base = N;
2244   return true;      // [r+0]
2245 }
2246 
2247 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2248 /// represented as an indexed [r+r] operation.
2249 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2250                                                 SDValue &Index,
2251                                                 SelectionDAG &DAG) const {
2252   // Check to see if we can easily represent this as an [r+r] address.  This
2253   // will fail if it thinks that the address is more profitably represented as
2254   // reg+imm, e.g. where imm = 0.
2255   if (SelectAddressRegReg(N, Base, Index, DAG))
2256     return true;
2257 
2258   // If the address is the result of an add, we will utilize the fact that the
2259   // address calculation includes an implicit add.  However, we can reduce
2260   // register pressure if we do not materialize a constant just for use as the
2261   // index register.  We only get rid of the add if it is not an add of a
2262   // value and a 16-bit signed constant and both have a single use.
2263   int16_t imm = 0;
2264   if (N.getOpcode() == ISD::ADD &&
2265       (!isIntS16Immediate(N.getOperand(1), imm) ||
2266        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2267     Base = N.getOperand(0);
2268     Index = N.getOperand(1);
2269     return true;
2270   }
2271 
2272   // Otherwise, do it the hard way, using R0 as the base register.
2273   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2274                          N.getValueType());
2275   Index = N;
2276   return true;
2277 }
2278 
2279 /// getPreIndexedAddressParts - returns true by value, base pointer and
2280 /// offset pointer and addressing mode by reference if the node's address
2281 /// can be legally represented as pre-indexed load / store address.
2282 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2283                                                   SDValue &Offset,
2284                                                   ISD::MemIndexedMode &AM,
2285                                                   SelectionDAG &DAG) const {
2286   if (DisablePPCPreinc) return false;
2287 
2288   bool isLoad = true;
2289   SDValue Ptr;
2290   EVT VT;
2291   unsigned Alignment;
2292   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2293     Ptr = LD->getBasePtr();
2294     VT = LD->getMemoryVT();
2295     Alignment = LD->getAlignment();
2296   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2297     Ptr = ST->getBasePtr();
2298     VT  = ST->getMemoryVT();
2299     Alignment = ST->getAlignment();
2300     isLoad = false;
2301   } else
2302     return false;
2303 
2304   // PowerPC doesn't have preinc load/store instructions for vectors (except
2305   // for QPX, which does have preinc r+r forms).
2306   if (VT.isVector()) {
2307     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2308       return false;
2309     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2310       AM = ISD::PRE_INC;
2311       return true;
2312     }
2313   }
2314 
2315   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2316     // Common code will reject creating a pre-inc form if the base pointer
2317     // is a frame index, or if N is a store and the base pointer is either
2318     // the same as or a predecessor of the value being stored.  Check for
2319     // those situations here, and try with swapped Base/Offset instead.
2320     bool Swap = false;
2321 
2322     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2323       Swap = true;
2324     else if (!isLoad) {
2325       SDValue Val = cast<StoreSDNode>(N)->getValue();
2326       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2327         Swap = true;
2328     }
2329 
2330     if (Swap)
2331       std::swap(Base, Offset);
2332 
2333     AM = ISD::PRE_INC;
2334     return true;
2335   }
2336 
2337   // LDU/STU can only handle immediates that are a multiple of 4.
2338   if (VT != MVT::i64) {
2339     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2340       return false;
2341   } else {
2342     // LDU/STU need an address with at least 4-byte alignment.
2343     if (Alignment < 4)
2344       return false;
2345 
2346     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2347       return false;
2348   }
2349 
2350   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2351     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2352     // sext i32 to i64 when addr mode is r+i.
2353     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2354         LD->getExtensionType() == ISD::SEXTLOAD &&
2355         isa<ConstantSDNode>(Offset))
2356       return false;
2357   }
2358 
2359   AM = ISD::PRE_INC;
2360   return true;
2361 }
2362 
2363 //===----------------------------------------------------------------------===//
2364 //  LowerOperation implementation
2365 //===----------------------------------------------------------------------===//
2366 
2367 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2368 /// and LoOpFlags to the target MO flags.
2369 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2370                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2371                                const GlobalValue *GV = nullptr) {
2372   HiOpFlags = PPCII::MO_HA;
2373   LoOpFlags = PPCII::MO_LO;
2374 
2375   // Don't use the pic base if not in PIC relocation model.
2376   if (IsPIC) {
2377     HiOpFlags |= PPCII::MO_PIC_FLAG;
2378     LoOpFlags |= PPCII::MO_PIC_FLAG;
2379   }
2380 
2381   // If this is a reference to a global value that requires a non-lazy-ptr, make
2382   // sure that instruction lowering adds it.
2383   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2384     HiOpFlags |= PPCII::MO_NLP_FLAG;
2385     LoOpFlags |= PPCII::MO_NLP_FLAG;
2386 
2387     if (GV->hasHiddenVisibility()) {
2388       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2389       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2390     }
2391   }
2392 }
2393 
2394 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2395                              SelectionDAG &DAG) {
2396   SDLoc DL(HiPart);
2397   EVT PtrVT = HiPart.getValueType();
2398   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2399 
2400   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2401   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2402 
2403   // With PIC, the first instruction is actually "GR+hi(&G)".
2404   if (isPIC)
2405     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2406                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2407 
2408   // Generate non-pic code that has direct accesses to the constant pool.
2409   // The address of the global is just (hi(&g)+lo(&g)).
2410   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2411 }
2412 
2413 static void setUsesTOCBasePtr(MachineFunction &MF) {
2414   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2415   FuncInfo->setUsesTOCBasePtr();
2416 }
2417 
2418 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2419   setUsesTOCBasePtr(DAG.getMachineFunction());
2420 }
2421 
2422 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2423                            SDValue GA) {
2424   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2425   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2426                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2427 
2428   SDValue Ops[] = { GA, Reg };
2429   return DAG.getMemIntrinsicNode(
2430       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2431       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2432       false, 0);
2433 }
2434 
2435 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2436                                              SelectionDAG &DAG) const {
2437   EVT PtrVT = Op.getValueType();
2438   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2439   const Constant *C = CP->getConstVal();
2440 
2441   // 64-bit SVR4 ABI code is always position-independent.
2442   // The actual address of the GlobalValue is stored in the TOC.
2443   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2444     setUsesTOCBasePtr(DAG);
2445     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2446     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2447   }
2448 
2449   unsigned MOHiFlag, MOLoFlag;
2450   bool IsPIC = isPositionIndependent();
2451   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2452 
2453   if (IsPIC && Subtarget.isSVR4ABI()) {
2454     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2455                                            PPCII::MO_PIC_FLAG);
2456     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2457   }
2458 
2459   SDValue CPIHi =
2460     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2461   SDValue CPILo =
2462     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2463   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2464 }
2465 
2466 // For 64-bit PowerPC, prefer the more compact relative encodings.
2467 // This trades 32 bits per jump table entry for one or two instructions
2468 // on the jump site.
2469 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2470   if (isJumpTableRelative())
2471     return MachineJumpTableInfo::EK_LabelDifference32;
2472 
2473   return TargetLowering::getJumpTableEncoding();
2474 }
2475 
2476 bool PPCTargetLowering::isJumpTableRelative() const {
2477   if (Subtarget.isPPC64())
2478     return true;
2479   return TargetLowering::isJumpTableRelative();
2480 }
2481 
2482 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2483                                                     SelectionDAG &DAG) const {
2484   if (!Subtarget.isPPC64())
2485     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2486 
2487   switch (getTargetMachine().getCodeModel()) {
2488   case CodeModel::Small:
2489   case CodeModel::Medium:
2490     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2491   default:
2492     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2493                        getPointerTy(DAG.getDataLayout()));
2494   }
2495 }
2496 
2497 const MCExpr *
2498 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2499                                                 unsigned JTI,
2500                                                 MCContext &Ctx) const {
2501   if (!Subtarget.isPPC64())
2502     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2503 
2504   switch (getTargetMachine().getCodeModel()) {
2505   case CodeModel::Small:
2506   case CodeModel::Medium:
2507     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2508   default:
2509     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2510   }
2511 }
2512 
2513 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2514   EVT PtrVT = Op.getValueType();
2515   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2516 
2517   // 64-bit SVR4 ABI code is always position-independent.
2518   // The actual address of the GlobalValue is stored in the TOC.
2519   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2520     setUsesTOCBasePtr(DAG);
2521     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2522     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2523   }
2524 
2525   unsigned MOHiFlag, MOLoFlag;
2526   bool IsPIC = isPositionIndependent();
2527   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2528 
2529   if (IsPIC && Subtarget.isSVR4ABI()) {
2530     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2531                                         PPCII::MO_PIC_FLAG);
2532     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2533   }
2534 
2535   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2536   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2537   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2538 }
2539 
2540 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2541                                              SelectionDAG &DAG) const {
2542   EVT PtrVT = Op.getValueType();
2543   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2544   const BlockAddress *BA = BASDN->getBlockAddress();
2545 
2546   // 64-bit SVR4 ABI code is always position-independent.
2547   // The actual BlockAddress is stored in the TOC.
2548   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2549     setUsesTOCBasePtr(DAG);
2550     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2551     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2552   }
2553 
2554   unsigned MOHiFlag, MOLoFlag;
2555   bool IsPIC = isPositionIndependent();
2556   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2557   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2558   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2559   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2560 }
2561 
2562 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2563                                               SelectionDAG &DAG) const {
2564   // FIXME: TLS addresses currently use medium model code sequences,
2565   // which is the most useful form.  Eventually support for small and
2566   // large models could be added if users need it, at the cost of
2567   // additional complexity.
2568   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2569   if (DAG.getTarget().Options.EmulatedTLS)
2570     return LowerToTLSEmulatedModel(GA, DAG);
2571 
2572   SDLoc dl(GA);
2573   const GlobalValue *GV = GA->getGlobal();
2574   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2575   bool is64bit = Subtarget.isPPC64();
2576   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2577   PICLevel::Level picLevel = M->getPICLevel();
2578 
2579   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2580 
2581   if (Model == TLSModel::LocalExec) {
2582     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2583                                                PPCII::MO_TPREL_HA);
2584     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2585                                                PPCII::MO_TPREL_LO);
2586     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2587                              : DAG.getRegister(PPC::R2, MVT::i32);
2588 
2589     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2590     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2591   }
2592 
2593   if (Model == TLSModel::InitialExec) {
2594     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2595     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2596                                                 PPCII::MO_TLS);
2597     SDValue GOTPtr;
2598     if (is64bit) {
2599       setUsesTOCBasePtr(DAG);
2600       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2601       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2602                            PtrVT, GOTReg, TGA);
2603     } else
2604       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2605     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2606                                    PtrVT, TGA, GOTPtr);
2607     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2608   }
2609 
2610   if (Model == TLSModel::GeneralDynamic) {
2611     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2612     SDValue GOTPtr;
2613     if (is64bit) {
2614       setUsesTOCBasePtr(DAG);
2615       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2616       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2617                                    GOTReg, TGA);
2618     } else {
2619       if (picLevel == PICLevel::SmallPIC)
2620         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2621       else
2622         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2623     }
2624     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2625                        GOTPtr, TGA, TGA);
2626   }
2627 
2628   if (Model == TLSModel::LocalDynamic) {
2629     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2630     SDValue GOTPtr;
2631     if (is64bit) {
2632       setUsesTOCBasePtr(DAG);
2633       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2634       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2635                            GOTReg, TGA);
2636     } else {
2637       if (picLevel == PICLevel::SmallPIC)
2638         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2639       else
2640         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2641     }
2642     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2643                                   PtrVT, GOTPtr, TGA, TGA);
2644     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2645                                       PtrVT, TLSAddr, TGA);
2646     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2647   }
2648 
2649   llvm_unreachable("Unknown TLS model!");
2650 }
2651 
2652 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2653                                               SelectionDAG &DAG) const {
2654   EVT PtrVT = Op.getValueType();
2655   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2656   SDLoc DL(GSDN);
2657   const GlobalValue *GV = GSDN->getGlobal();
2658 
2659   // 64-bit SVR4 ABI code is always position-independent.
2660   // The actual address of the GlobalValue is stored in the TOC.
2661   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2662     setUsesTOCBasePtr(DAG);
2663     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2664     return getTOCEntry(DAG, DL, true, GA);
2665   }
2666 
2667   unsigned MOHiFlag, MOLoFlag;
2668   bool IsPIC = isPositionIndependent();
2669   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2670 
2671   if (IsPIC && Subtarget.isSVR4ABI()) {
2672     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2673                                             GSDN->getOffset(),
2674                                             PPCII::MO_PIC_FLAG);
2675     return getTOCEntry(DAG, DL, false, GA);
2676   }
2677 
2678   SDValue GAHi =
2679     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2680   SDValue GALo =
2681     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2682 
2683   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2684 
2685   // If the global reference is actually to a non-lazy-pointer, we have to do an
2686   // extra load to get the address of the global.
2687   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2688     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2689   return Ptr;
2690 }
2691 
2692 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2693   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2694   SDLoc dl(Op);
2695 
2696   if (Op.getValueType() == MVT::v2i64) {
2697     // When the operands themselves are v2i64 values, we need to do something
2698     // special because VSX has no underlying comparison operations for these.
2699     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2700       // Equality can be handled by casting to the legal type for Altivec
2701       // comparisons, everything else needs to be expanded.
2702       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2703         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2704                  DAG.getSetCC(dl, MVT::v4i32,
2705                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2706                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2707                    CC));
2708       }
2709 
2710       return SDValue();
2711     }
2712 
2713     // We handle most of these in the usual way.
2714     return Op;
2715   }
2716 
2717   // If we're comparing for equality to zero, expose the fact that this is
2718   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2719   // fold the new nodes.
2720   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2721     return V;
2722 
2723   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2724     // Leave comparisons against 0 and -1 alone for now, since they're usually
2725     // optimized.  FIXME: revisit this when we can custom lower all setcc
2726     // optimizations.
2727     if (C->isAllOnesValue() || C->isNullValue())
2728       return SDValue();
2729   }
2730 
2731   // If we have an integer seteq/setne, turn it into a compare against zero
2732   // by xor'ing the rhs with the lhs, which is faster than setting a
2733   // condition register, reading it back out, and masking the correct bit.  The
2734   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2735   // the result to other bit-twiddling opportunities.
2736   EVT LHSVT = Op.getOperand(0).getValueType();
2737   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2738     EVT VT = Op.getValueType();
2739     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2740                                 Op.getOperand(1));
2741     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2742   }
2743   return SDValue();
2744 }
2745 
2746 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2747   SDNode *Node = Op.getNode();
2748   EVT VT = Node->getValueType(0);
2749   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2750   SDValue InChain = Node->getOperand(0);
2751   SDValue VAListPtr = Node->getOperand(1);
2752   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2753   SDLoc dl(Node);
2754 
2755   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2756 
2757   // gpr_index
2758   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2759                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2760   InChain = GprIndex.getValue(1);
2761 
2762   if (VT == MVT::i64) {
2763     // Check if GprIndex is even
2764     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2765                                  DAG.getConstant(1, dl, MVT::i32));
2766     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2767                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2768     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2769                                           DAG.getConstant(1, dl, MVT::i32));
2770     // Align GprIndex to be even if it isn't
2771     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2772                            GprIndex);
2773   }
2774 
2775   // fpr index is 1 byte after gpr
2776   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2777                                DAG.getConstant(1, dl, MVT::i32));
2778 
2779   // fpr
2780   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2781                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2782   InChain = FprIndex.getValue(1);
2783 
2784   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2785                                        DAG.getConstant(8, dl, MVT::i32));
2786 
2787   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2788                                         DAG.getConstant(4, dl, MVT::i32));
2789 
2790   // areas
2791   SDValue OverflowArea =
2792       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2793   InChain = OverflowArea.getValue(1);
2794 
2795   SDValue RegSaveArea =
2796       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2797   InChain = RegSaveArea.getValue(1);
2798 
2799   // select overflow_area if index > 8
2800   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2801                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2802 
2803   // adjustment constant gpr_index * 4/8
2804   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2805                                     VT.isInteger() ? GprIndex : FprIndex,
2806                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2807                                                     MVT::i32));
2808 
2809   // OurReg = RegSaveArea + RegConstant
2810   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2811                                RegConstant);
2812 
2813   // Floating types are 32 bytes into RegSaveArea
2814   if (VT.isFloatingPoint())
2815     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2816                          DAG.getConstant(32, dl, MVT::i32));
2817 
2818   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2819   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2820                                    VT.isInteger() ? GprIndex : FprIndex,
2821                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2822                                                    MVT::i32));
2823 
2824   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2825                               VT.isInteger() ? VAListPtr : FprPtr,
2826                               MachinePointerInfo(SV), MVT::i8);
2827 
2828   // determine if we should load from reg_save_area or overflow_area
2829   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2830 
2831   // increase overflow_area by 4/8 if gpr/fpr > 8
2832   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2833                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2834                                           dl, MVT::i32));
2835 
2836   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2837                              OverflowAreaPlusN);
2838 
2839   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2840                               MachinePointerInfo(), MVT::i32);
2841 
2842   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2843 }
2844 
2845 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2846   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2847 
2848   // We have to copy the entire va_list struct:
2849   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2850   return DAG.getMemcpy(Op.getOperand(0), Op,
2851                        Op.getOperand(1), Op.getOperand(2),
2852                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2853                        false, MachinePointerInfo(), MachinePointerInfo());
2854 }
2855 
2856 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2857                                                   SelectionDAG &DAG) const {
2858   return Op.getOperand(0);
2859 }
2860 
2861 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2862                                                 SelectionDAG &DAG) const {
2863   SDValue Chain = Op.getOperand(0);
2864   SDValue Trmp = Op.getOperand(1); // trampoline
2865   SDValue FPtr = Op.getOperand(2); // nested function
2866   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2867   SDLoc dl(Op);
2868 
2869   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2870   bool isPPC64 = (PtrVT == MVT::i64);
2871   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2872 
2873   TargetLowering::ArgListTy Args;
2874   TargetLowering::ArgListEntry Entry;
2875 
2876   Entry.Ty = IntPtrTy;
2877   Entry.Node = Trmp; Args.push_back(Entry);
2878 
2879   // TrampSize == (isPPC64 ? 48 : 40);
2880   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2881                                isPPC64 ? MVT::i64 : MVT::i32);
2882   Args.push_back(Entry);
2883 
2884   Entry.Node = FPtr; Args.push_back(Entry);
2885   Entry.Node = Nest; Args.push_back(Entry);
2886 
2887   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2888   TargetLowering::CallLoweringInfo CLI(DAG);
2889   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2890       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2891       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
2892 
2893   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2894   return CallResult.second;
2895 }
2896 
2897 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2898   MachineFunction &MF = DAG.getMachineFunction();
2899   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2900   EVT PtrVT = getPointerTy(MF.getDataLayout());
2901 
2902   SDLoc dl(Op);
2903 
2904   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2905     // vastart just stores the address of the VarArgsFrameIndex slot into the
2906     // memory location argument.
2907     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2908     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2909     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2910                         MachinePointerInfo(SV));
2911   }
2912 
2913   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2914   // We suppose the given va_list is already allocated.
2915   //
2916   // typedef struct {
2917   //  char gpr;     /* index into the array of 8 GPRs
2918   //                 * stored in the register save area
2919   //                 * gpr=0 corresponds to r3,
2920   //                 * gpr=1 to r4, etc.
2921   //                 */
2922   //  char fpr;     /* index into the array of 8 FPRs
2923   //                 * stored in the register save area
2924   //                 * fpr=0 corresponds to f1,
2925   //                 * fpr=1 to f2, etc.
2926   //                 */
2927   //  char *overflow_arg_area;
2928   //                /* location on stack that holds
2929   //                 * the next overflow argument
2930   //                 */
2931   //  char *reg_save_area;
2932   //               /* where r3:r10 and f1:f8 (if saved)
2933   //                * are stored
2934   //                */
2935   // } va_list[1];
2936 
2937   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2938   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2939   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2940                                             PtrVT);
2941   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2942                                  PtrVT);
2943 
2944   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2945   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2946 
2947   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2948   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2949 
2950   uint64_t FPROffset = 1;
2951   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2952 
2953   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2954 
2955   // Store first byte : number of int regs
2956   SDValue firstStore =
2957       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2958                         MachinePointerInfo(SV), MVT::i8);
2959   uint64_t nextOffset = FPROffset;
2960   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2961                                   ConstFPROffset);
2962 
2963   // Store second byte : number of float regs
2964   SDValue secondStore =
2965       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2966                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2967   nextOffset += StackOffset;
2968   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2969 
2970   // Store second word : arguments given on stack
2971   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2972                                     MachinePointerInfo(SV, nextOffset));
2973   nextOffset += FrameOffset;
2974   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2975 
2976   // Store third word : arguments given in registers
2977   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2978                       MachinePointerInfo(SV, nextOffset));
2979 }
2980 
2981 #include "PPCGenCallingConv.inc"
2982 
2983 // Function whose sole purpose is to kill compiler warnings
2984 // stemming from unused functions included from PPCGenCallingConv.inc.
2985 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2986   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2987 }
2988 
2989 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2990                                       CCValAssign::LocInfo &LocInfo,
2991                                       ISD::ArgFlagsTy &ArgFlags,
2992                                       CCState &State) {
2993   return true;
2994 }
2995 
2996 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2997                                              MVT &LocVT,
2998                                              CCValAssign::LocInfo &LocInfo,
2999                                              ISD::ArgFlagsTy &ArgFlags,
3000                                              CCState &State) {
3001   static const MCPhysReg ArgRegs[] = {
3002     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3003     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3004   };
3005   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3006 
3007   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3008 
3009   // Skip one register if the first unallocated register has an even register
3010   // number and there are still argument registers available which have not been
3011   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3012   // need to skip a register if RegNum is odd.
3013   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3014     State.AllocateReg(ArgRegs[RegNum]);
3015   }
3016 
3017   // Always return false here, as this function only makes sure that the first
3018   // unallocated register has an odd register number and does not actually
3019   // allocate a register for the current argument.
3020   return false;
3021 }
3022 
3023 bool
3024 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3025                                                   MVT &LocVT,
3026                                                   CCValAssign::LocInfo &LocInfo,
3027                                                   ISD::ArgFlagsTy &ArgFlags,
3028                                                   CCState &State) {
3029   static const MCPhysReg ArgRegs[] = {
3030     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3031     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3032   };
3033   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3034 
3035   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3036   int RegsLeft = NumArgRegs - RegNum;
3037 
3038   // Skip if there is not enough registers left for long double type (4 gpr regs
3039   // in soft float mode) and put long double argument on the stack.
3040   if (RegNum != NumArgRegs && RegsLeft < 4) {
3041     for (int i = 0; i < RegsLeft; i++) {
3042       State.AllocateReg(ArgRegs[RegNum + i]);
3043     }
3044   }
3045 
3046   return false;
3047 }
3048 
3049 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3050                                                MVT &LocVT,
3051                                                CCValAssign::LocInfo &LocInfo,
3052                                                ISD::ArgFlagsTy &ArgFlags,
3053                                                CCState &State) {
3054   static const MCPhysReg ArgRegs[] = {
3055     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3056     PPC::F8
3057   };
3058 
3059   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3060 
3061   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3062 
3063   // If there is only one Floating-point register left we need to put both f64
3064   // values of a split ppc_fp128 value on the stack.
3065   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3066     State.AllocateReg(ArgRegs[RegNum]);
3067   }
3068 
3069   // Always return false here, as this function only makes sure that the two f64
3070   // values a ppc_fp128 value is split into are both passed in registers or both
3071   // passed on the stack and does not actually allocate a register for the
3072   // current argument.
3073   return false;
3074 }
3075 
3076 /// FPR - The set of FP registers that should be allocated for arguments,
3077 /// on Darwin.
3078 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3079                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3080                                 PPC::F11, PPC::F12, PPC::F13};
3081 
3082 /// QFPR - The set of QPX registers that should be allocated for arguments.
3083 static const MCPhysReg QFPR[] = {
3084     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3085     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3086 
3087 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3088 /// the stack.
3089 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3090                                        unsigned PtrByteSize) {
3091   unsigned ArgSize = ArgVT.getStoreSize();
3092   if (Flags.isByVal())
3093     ArgSize = Flags.getByValSize();
3094 
3095   // Round up to multiples of the pointer size, except for array members,
3096   // which are always packed.
3097   if (!Flags.isInConsecutiveRegs())
3098     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3099 
3100   return ArgSize;
3101 }
3102 
3103 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3104 /// on the stack.
3105 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3106                                             ISD::ArgFlagsTy Flags,
3107                                             unsigned PtrByteSize) {
3108   unsigned Align = PtrByteSize;
3109 
3110   // Altivec parameters are padded to a 16 byte boundary.
3111   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3112       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3113       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3114       ArgVT == MVT::v1i128)
3115     Align = 16;
3116   // QPX vector types stored in double-precision are padded to a 32 byte
3117   // boundary.
3118   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3119     Align = 32;
3120 
3121   // ByVal parameters are aligned as requested.
3122   if (Flags.isByVal()) {
3123     unsigned BVAlign = Flags.getByValAlign();
3124     if (BVAlign > PtrByteSize) {
3125       if (BVAlign % PtrByteSize != 0)
3126           llvm_unreachable(
3127             "ByVal alignment is not a multiple of the pointer size");
3128 
3129       Align = BVAlign;
3130     }
3131   }
3132 
3133   // Array members are always packed to their original alignment.
3134   if (Flags.isInConsecutiveRegs()) {
3135     // If the array member was split into multiple registers, the first
3136     // needs to be aligned to the size of the full type.  (Except for
3137     // ppcf128, which is only aligned as its f64 components.)
3138     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3139       Align = OrigVT.getStoreSize();
3140     else
3141       Align = ArgVT.getStoreSize();
3142   }
3143 
3144   return Align;
3145 }
3146 
3147 /// CalculateStackSlotUsed - Return whether this argument will use its
3148 /// stack slot (instead of being passed in registers).  ArgOffset,
3149 /// AvailableFPRs, and AvailableVRs must hold the current argument
3150 /// position, and will be updated to account for this argument.
3151 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3152                                    ISD::ArgFlagsTy Flags,
3153                                    unsigned PtrByteSize,
3154                                    unsigned LinkageSize,
3155                                    unsigned ParamAreaSize,
3156                                    unsigned &ArgOffset,
3157                                    unsigned &AvailableFPRs,
3158                                    unsigned &AvailableVRs, bool HasQPX) {
3159   bool UseMemory = false;
3160 
3161   // Respect alignment of argument on the stack.
3162   unsigned Align =
3163     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3164   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3165   // If there's no space left in the argument save area, we must
3166   // use memory (this check also catches zero-sized arguments).
3167   if (ArgOffset >= LinkageSize + ParamAreaSize)
3168     UseMemory = true;
3169 
3170   // Allocate argument on the stack.
3171   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3172   if (Flags.isInConsecutiveRegsLast())
3173     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3174   // If we overran the argument save area, we must use memory
3175   // (this check catches arguments passed partially in memory)
3176   if (ArgOffset > LinkageSize + ParamAreaSize)
3177     UseMemory = true;
3178 
3179   // However, if the argument is actually passed in an FPR or a VR,
3180   // we don't use memory after all.
3181   if (!Flags.isByVal()) {
3182     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3183         // QPX registers overlap with the scalar FP registers.
3184         (HasQPX && (ArgVT == MVT::v4f32 ||
3185                     ArgVT == MVT::v4f64 ||
3186                     ArgVT == MVT::v4i1)))
3187       if (AvailableFPRs > 0) {
3188         --AvailableFPRs;
3189         return false;
3190       }
3191     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3192         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3193         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3194         ArgVT == MVT::v1i128)
3195       if (AvailableVRs > 0) {
3196         --AvailableVRs;
3197         return false;
3198       }
3199   }
3200 
3201   return UseMemory;
3202 }
3203 
3204 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3205 /// ensure minimum alignment required for target.
3206 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3207                                      unsigned NumBytes) {
3208   unsigned TargetAlign = Lowering->getStackAlignment();
3209   unsigned AlignMask = TargetAlign - 1;
3210   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3211   return NumBytes;
3212 }
3213 
3214 SDValue PPCTargetLowering::LowerFormalArguments(
3215     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3216     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3217     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3218   if (Subtarget.isSVR4ABI()) {
3219     if (Subtarget.isPPC64())
3220       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3221                                          dl, DAG, InVals);
3222     else
3223       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3224                                          dl, DAG, InVals);
3225   } else {
3226     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3227                                        dl, DAG, InVals);
3228   }
3229 }
3230 
3231 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3232     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3233     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3234     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3235 
3236   // 32-bit SVR4 ABI Stack Frame Layout:
3237   //              +-----------------------------------+
3238   //        +-->  |            Back chain             |
3239   //        |     +-----------------------------------+
3240   //        |     | Floating-point register save area |
3241   //        |     +-----------------------------------+
3242   //        |     |    General register save area     |
3243   //        |     +-----------------------------------+
3244   //        |     |          CR save word             |
3245   //        |     +-----------------------------------+
3246   //        |     |         VRSAVE save word          |
3247   //        |     +-----------------------------------+
3248   //        |     |         Alignment padding         |
3249   //        |     +-----------------------------------+
3250   //        |     |     Vector register save area     |
3251   //        |     +-----------------------------------+
3252   //        |     |       Local variable space        |
3253   //        |     +-----------------------------------+
3254   //        |     |        Parameter list area        |
3255   //        |     +-----------------------------------+
3256   //        |     |           LR save word            |
3257   //        |     +-----------------------------------+
3258   // SP-->  +---  |            Back chain             |
3259   //              +-----------------------------------+
3260   //
3261   // Specifications:
3262   //   System V Application Binary Interface PowerPC Processor Supplement
3263   //   AltiVec Technology Programming Interface Manual
3264 
3265   MachineFunction &MF = DAG.getMachineFunction();
3266   MachineFrameInfo &MFI = MF.getFrameInfo();
3267   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3268 
3269   EVT PtrVT = getPointerTy(MF.getDataLayout());
3270   // Potential tail calls could cause overwriting of argument stack slots.
3271   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3272                        (CallConv == CallingConv::Fast));
3273   unsigned PtrByteSize = 4;
3274 
3275   // Assign locations to all of the incoming arguments.
3276   SmallVector<CCValAssign, 16> ArgLocs;
3277   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3278                  *DAG.getContext());
3279 
3280   // Reserve space for the linkage area on the stack.
3281   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3282   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3283   if (useSoftFloat())
3284     CCInfo.PreAnalyzeFormalArguments(Ins);
3285 
3286   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3287   CCInfo.clearWasPPCF128();
3288 
3289   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3290     CCValAssign &VA = ArgLocs[i];
3291 
3292     // Arguments stored in registers.
3293     if (VA.isRegLoc()) {
3294       const TargetRegisterClass *RC;
3295       EVT ValVT = VA.getValVT();
3296 
3297       switch (ValVT.getSimpleVT().SimpleTy) {
3298         default:
3299           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3300         case MVT::i1:
3301         case MVT::i32:
3302           RC = &PPC::GPRCRegClass;
3303           break;
3304         case MVT::f32:
3305           if (Subtarget.hasP8Vector())
3306             RC = &PPC::VSSRCRegClass;
3307           else
3308             RC = &PPC::F4RCRegClass;
3309           break;
3310         case MVT::f64:
3311           if (Subtarget.hasVSX())
3312             RC = &PPC::VSFRCRegClass;
3313           else
3314             RC = &PPC::F8RCRegClass;
3315           break;
3316         case MVT::v16i8:
3317         case MVT::v8i16:
3318         case MVT::v4i32:
3319           RC = &PPC::VRRCRegClass;
3320           break;
3321         case MVT::v4f32:
3322           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3323           break;
3324         case MVT::v2f64:
3325         case MVT::v2i64:
3326           RC = &PPC::VRRCRegClass;
3327           break;
3328         case MVT::v4f64:
3329           RC = &PPC::QFRCRegClass;
3330           break;
3331         case MVT::v4i1:
3332           RC = &PPC::QBRCRegClass;
3333           break;
3334       }
3335 
3336       // Transform the arguments stored in physical registers into virtual ones.
3337       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3338       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3339                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3340 
3341       if (ValVT == MVT::i1)
3342         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3343 
3344       InVals.push_back(ArgValue);
3345     } else {
3346       // Argument stored in memory.
3347       assert(VA.isMemLoc());
3348 
3349       unsigned ArgSize = VA.getLocVT().getStoreSize();
3350       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3351                                      isImmutable);
3352 
3353       // Create load nodes to retrieve arguments from the stack.
3354       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3355       InVals.push_back(
3356           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3357     }
3358   }
3359 
3360   // Assign locations to all of the incoming aggregate by value arguments.
3361   // Aggregates passed by value are stored in the local variable space of the
3362   // caller's stack frame, right above the parameter list area.
3363   SmallVector<CCValAssign, 16> ByValArgLocs;
3364   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3365                       ByValArgLocs, *DAG.getContext());
3366 
3367   // Reserve stack space for the allocations in CCInfo.
3368   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3369 
3370   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3371 
3372   // Area that is at least reserved in the caller of this function.
3373   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3374   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3375 
3376   // Set the size that is at least reserved in caller of this function.  Tail
3377   // call optimized function's reserved stack space needs to be aligned so that
3378   // taking the difference between two stack areas will result in an aligned
3379   // stack.
3380   MinReservedArea =
3381       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3382   FuncInfo->setMinReservedArea(MinReservedArea);
3383 
3384   SmallVector<SDValue, 8> MemOps;
3385 
3386   // If the function takes variable number of arguments, make a frame index for
3387   // the start of the first vararg value... for expansion of llvm.va_start.
3388   if (isVarArg) {
3389     static const MCPhysReg GPArgRegs[] = {
3390       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3391       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3392     };
3393     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3394 
3395     static const MCPhysReg FPArgRegs[] = {
3396       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3397       PPC::F8
3398     };
3399     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3400 
3401     if (useSoftFloat())
3402        NumFPArgRegs = 0;
3403 
3404     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3405     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3406 
3407     // Make room for NumGPArgRegs and NumFPArgRegs.
3408     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3409                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3410 
3411     FuncInfo->setVarArgsStackOffset(
3412       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3413                             CCInfo.getNextStackOffset(), true));
3414 
3415     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3416     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3417 
3418     // The fixed integer arguments of a variadic function are stored to the
3419     // VarArgsFrameIndex on the stack so that they may be loaded by
3420     // dereferencing the result of va_next.
3421     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3422       // Get an existing live-in vreg, or add a new one.
3423       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3424       if (!VReg)
3425         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3426 
3427       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3428       SDValue Store =
3429           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3430       MemOps.push_back(Store);
3431       // Increment the address by four for the next argument to store
3432       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3433       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3434     }
3435 
3436     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3437     // is set.
3438     // The double arguments are stored to the VarArgsFrameIndex
3439     // on the stack.
3440     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3441       // Get an existing live-in vreg, or add a new one.
3442       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3443       if (!VReg)
3444         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3445 
3446       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3447       SDValue Store =
3448           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3449       MemOps.push_back(Store);
3450       // Increment the address by eight for the next argument to store
3451       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3452                                          PtrVT);
3453       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3454     }
3455   }
3456 
3457   if (!MemOps.empty())
3458     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3459 
3460   return Chain;
3461 }
3462 
3463 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3464 // value to MVT::i64 and then truncate to the correct register size.
3465 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3466                                              EVT ObjectVT, SelectionDAG &DAG,
3467                                              SDValue ArgVal,
3468                                              const SDLoc &dl) const {
3469   if (Flags.isSExt())
3470     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3471                          DAG.getValueType(ObjectVT));
3472   else if (Flags.isZExt())
3473     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3474                          DAG.getValueType(ObjectVT));
3475 
3476   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3477 }
3478 
3479 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3480     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3481     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3482     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3483   // TODO: add description of PPC stack frame format, or at least some docs.
3484   //
3485   bool isELFv2ABI = Subtarget.isELFv2ABI();
3486   bool isLittleEndian = Subtarget.isLittleEndian();
3487   MachineFunction &MF = DAG.getMachineFunction();
3488   MachineFrameInfo &MFI = MF.getFrameInfo();
3489   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3490 
3491   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3492          "fastcc not supported on varargs functions");
3493 
3494   EVT PtrVT = getPointerTy(MF.getDataLayout());
3495   // Potential tail calls could cause overwriting of argument stack slots.
3496   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3497                        (CallConv == CallingConv::Fast));
3498   unsigned PtrByteSize = 8;
3499   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3500 
3501   static const MCPhysReg GPR[] = {
3502     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3503     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3504   };
3505   static const MCPhysReg VR[] = {
3506     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3507     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3508   };
3509 
3510   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3511   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3512   const unsigned Num_VR_Regs  = array_lengthof(VR);
3513   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3514 
3515   // Do a first pass over the arguments to determine whether the ABI
3516   // guarantees that our caller has allocated the parameter save area
3517   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3518   // in the ELFv2 ABI, it is true if this is a vararg function or if
3519   // any parameter is located in a stack slot.
3520 
3521   bool HasParameterArea = !isELFv2ABI || isVarArg;
3522   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3523   unsigned NumBytes = LinkageSize;
3524   unsigned AvailableFPRs = Num_FPR_Regs;
3525   unsigned AvailableVRs = Num_VR_Regs;
3526   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3527     if (Ins[i].Flags.isNest())
3528       continue;
3529 
3530     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3531                                PtrByteSize, LinkageSize, ParamAreaSize,
3532                                NumBytes, AvailableFPRs, AvailableVRs,
3533                                Subtarget.hasQPX()))
3534       HasParameterArea = true;
3535   }
3536 
3537   // Add DAG nodes to load the arguments or copy them out of registers.  On
3538   // entry to a function on PPC, the arguments start after the linkage area,
3539   // although the first ones are often in registers.
3540 
3541   unsigned ArgOffset = LinkageSize;
3542   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3543   unsigned &QFPR_idx = FPR_idx;
3544   SmallVector<SDValue, 8> MemOps;
3545   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3546   unsigned CurArgIdx = 0;
3547   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3548     SDValue ArgVal;
3549     bool needsLoad = false;
3550     EVT ObjectVT = Ins[ArgNo].VT;
3551     EVT OrigVT = Ins[ArgNo].ArgVT;
3552     unsigned ObjSize = ObjectVT.getStoreSize();
3553     unsigned ArgSize = ObjSize;
3554     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3555     if (Ins[ArgNo].isOrigArg()) {
3556       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3557       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3558     }
3559     // We re-align the argument offset for each argument, except when using the
3560     // fast calling convention, when we need to make sure we do that only when
3561     // we'll actually use a stack slot.
3562     unsigned CurArgOffset, Align;
3563     auto ComputeArgOffset = [&]() {
3564       /* Respect alignment of argument on the stack.  */
3565       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3566       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3567       CurArgOffset = ArgOffset;
3568     };
3569 
3570     if (CallConv != CallingConv::Fast) {
3571       ComputeArgOffset();
3572 
3573       /* Compute GPR index associated with argument offset.  */
3574       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3575       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3576     }
3577 
3578     // FIXME the codegen can be much improved in some cases.
3579     // We do not have to keep everything in memory.
3580     if (Flags.isByVal()) {
3581       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3582 
3583       if (CallConv == CallingConv::Fast)
3584         ComputeArgOffset();
3585 
3586       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3587       ObjSize = Flags.getByValSize();
3588       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3589       // Empty aggregate parameters do not take up registers.  Examples:
3590       //   struct { } a;
3591       //   union  { } b;
3592       //   int c[0];
3593       // etc.  However, we have to provide a place-holder in InVals, so
3594       // pretend we have an 8-byte item at the current address for that
3595       // purpose.
3596       if (!ObjSize) {
3597         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3598         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3599         InVals.push_back(FIN);
3600         continue;
3601       }
3602 
3603       // Create a stack object covering all stack doublewords occupied
3604       // by the argument.  If the argument is (fully or partially) on
3605       // the stack, or if the argument is fully in registers but the
3606       // caller has allocated the parameter save anyway, we can refer
3607       // directly to the caller's stack frame.  Otherwise, create a
3608       // local copy in our own frame.
3609       int FI;
3610       if (HasParameterArea ||
3611           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3612         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3613       else
3614         FI = MFI.CreateStackObject(ArgSize, Align, false);
3615       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3616 
3617       // Handle aggregates smaller than 8 bytes.
3618       if (ObjSize < PtrByteSize) {
3619         // The value of the object is its address, which differs from the
3620         // address of the enclosing doubleword on big-endian systems.
3621         SDValue Arg = FIN;
3622         if (!isLittleEndian) {
3623           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3624           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3625         }
3626         InVals.push_back(Arg);
3627 
3628         if (GPR_idx != Num_GPR_Regs) {
3629           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3630           FuncInfo->addLiveInAttr(VReg, Flags);
3631           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3632           SDValue Store;
3633 
3634           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3635             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3636                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3637             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3638                                       MachinePointerInfo(&*FuncArg), ObjType);
3639           } else {
3640             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3641             // store the whole register as-is to the parameter save area
3642             // slot.
3643             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3644                                  MachinePointerInfo(&*FuncArg));
3645           }
3646 
3647           MemOps.push_back(Store);
3648         }
3649         // Whether we copied from a register or not, advance the offset
3650         // into the parameter save area by a full doubleword.
3651         ArgOffset += PtrByteSize;
3652         continue;
3653       }
3654 
3655       // The value of the object is its address, which is the address of
3656       // its first stack doubleword.
3657       InVals.push_back(FIN);
3658 
3659       // Store whatever pieces of the object are in registers to memory.
3660       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3661         if (GPR_idx == Num_GPR_Regs)
3662           break;
3663 
3664         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3665         FuncInfo->addLiveInAttr(VReg, Flags);
3666         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3667         SDValue Addr = FIN;
3668         if (j) {
3669           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3670           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3671         }
3672         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3673                                      MachinePointerInfo(&*FuncArg, j));
3674         MemOps.push_back(Store);
3675         ++GPR_idx;
3676       }
3677       ArgOffset += ArgSize;
3678       continue;
3679     }
3680 
3681     switch (ObjectVT.getSimpleVT().SimpleTy) {
3682     default: llvm_unreachable("Unhandled argument type!");
3683     case MVT::i1:
3684     case MVT::i32:
3685     case MVT::i64:
3686       if (Flags.isNest()) {
3687         // The 'nest' parameter, if any, is passed in R11.
3688         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3689         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3690 
3691         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3692           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3693 
3694         break;
3695       }
3696 
3697       // These can be scalar arguments or elements of an integer array type
3698       // passed directly.  Clang may use those instead of "byval" aggregate
3699       // types to avoid forcing arguments to memory unnecessarily.
3700       if (GPR_idx != Num_GPR_Regs) {
3701         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3702         FuncInfo->addLiveInAttr(VReg, Flags);
3703         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3704 
3705         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3706           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3707           // value to MVT::i64 and then truncate to the correct register size.
3708           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3709       } else {
3710         if (CallConv == CallingConv::Fast)
3711           ComputeArgOffset();
3712 
3713         needsLoad = true;
3714         ArgSize = PtrByteSize;
3715       }
3716       if (CallConv != CallingConv::Fast || needsLoad)
3717         ArgOffset += 8;
3718       break;
3719 
3720     case MVT::f32:
3721     case MVT::f64:
3722       // These can be scalar arguments or elements of a float array type
3723       // passed directly.  The latter are used to implement ELFv2 homogenous
3724       // float aggregates.
3725       if (FPR_idx != Num_FPR_Regs) {
3726         unsigned VReg;
3727 
3728         if (ObjectVT == MVT::f32)
3729           VReg = MF.addLiveIn(FPR[FPR_idx],
3730                               Subtarget.hasP8Vector()
3731                                   ? &PPC::VSSRCRegClass
3732                                   : &PPC::F4RCRegClass);
3733         else
3734           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3735                                                 ? &PPC::VSFRCRegClass
3736                                                 : &PPC::F8RCRegClass);
3737 
3738         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3739         ++FPR_idx;
3740       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3741         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3742         // once we support fp <-> gpr moves.
3743 
3744         // This can only ever happen in the presence of f32 array types,
3745         // since otherwise we never run out of FPRs before running out
3746         // of GPRs.
3747         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3748         FuncInfo->addLiveInAttr(VReg, Flags);
3749         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3750 
3751         if (ObjectVT == MVT::f32) {
3752           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3753             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3754                                  DAG.getConstant(32, dl, MVT::i32));
3755           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3756         }
3757 
3758         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3759       } else {
3760         if (CallConv == CallingConv::Fast)
3761           ComputeArgOffset();
3762 
3763         needsLoad = true;
3764       }
3765 
3766       // When passing an array of floats, the array occupies consecutive
3767       // space in the argument area; only round up to the next doubleword
3768       // at the end of the array.  Otherwise, each float takes 8 bytes.
3769       if (CallConv != CallingConv::Fast || needsLoad) {
3770         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3771         ArgOffset += ArgSize;
3772         if (Flags.isInConsecutiveRegsLast())
3773           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3774       }
3775       break;
3776     case MVT::v4f32:
3777     case MVT::v4i32:
3778     case MVT::v8i16:
3779     case MVT::v16i8:
3780     case MVT::v2f64:
3781     case MVT::v2i64:
3782     case MVT::v1i128:
3783       if (!Subtarget.hasQPX()) {
3784       // These can be scalar arguments or elements of a vector array type
3785       // passed directly.  The latter are used to implement ELFv2 homogenous
3786       // vector aggregates.
3787       if (VR_idx != Num_VR_Regs) {
3788         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3789         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3790         ++VR_idx;
3791       } else {
3792         if (CallConv == CallingConv::Fast)
3793           ComputeArgOffset();
3794 
3795         needsLoad = true;
3796       }
3797       if (CallConv != CallingConv::Fast || needsLoad)
3798         ArgOffset += 16;
3799       break;
3800       } // not QPX
3801 
3802       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3803              "Invalid QPX parameter type");
3804       /* fall through */
3805 
3806     case MVT::v4f64:
3807     case MVT::v4i1:
3808       // QPX vectors are treated like their scalar floating-point subregisters
3809       // (except that they're larger).
3810       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3811       if (QFPR_idx != Num_QFPR_Regs) {
3812         const TargetRegisterClass *RC;
3813         switch (ObjectVT.getSimpleVT().SimpleTy) {
3814         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3815         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3816         default:         RC = &PPC::QBRCRegClass; break;
3817         }
3818 
3819         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3820         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3821         ++QFPR_idx;
3822       } else {
3823         if (CallConv == CallingConv::Fast)
3824           ComputeArgOffset();
3825         needsLoad = true;
3826       }
3827       if (CallConv != CallingConv::Fast || needsLoad)
3828         ArgOffset += Sz;
3829       break;
3830     }
3831 
3832     // We need to load the argument to a virtual register if we determined
3833     // above that we ran out of physical registers of the appropriate type.
3834     if (needsLoad) {
3835       if (ObjSize < ArgSize && !isLittleEndian)
3836         CurArgOffset += ArgSize - ObjSize;
3837       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3838       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3839       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3840     }
3841 
3842     InVals.push_back(ArgVal);
3843   }
3844 
3845   // Area that is at least reserved in the caller of this function.
3846   unsigned MinReservedArea;
3847   if (HasParameterArea)
3848     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3849   else
3850     MinReservedArea = LinkageSize;
3851 
3852   // Set the size that is at least reserved in caller of this function.  Tail
3853   // call optimized functions' reserved stack space needs to be aligned so that
3854   // taking the difference between two stack areas will result in an aligned
3855   // stack.
3856   MinReservedArea =
3857       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3858   FuncInfo->setMinReservedArea(MinReservedArea);
3859 
3860   // If the function takes variable number of arguments, make a frame index for
3861   // the start of the first vararg value... for expansion of llvm.va_start.
3862   if (isVarArg) {
3863     int Depth = ArgOffset;
3864 
3865     FuncInfo->setVarArgsFrameIndex(
3866       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3867     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3868 
3869     // If this function is vararg, store any remaining integer argument regs
3870     // to their spots on the stack so that they may be loaded by dereferencing
3871     // the result of va_next.
3872     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3873          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3874       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3875       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3876       SDValue Store =
3877           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3878       MemOps.push_back(Store);
3879       // Increment the address by four for the next argument to store
3880       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3881       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3882     }
3883   }
3884 
3885   if (!MemOps.empty())
3886     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3887 
3888   return Chain;
3889 }
3890 
3891 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3892     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3893     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3894     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3895   // TODO: add description of PPC stack frame format, or at least some docs.
3896   //
3897   MachineFunction &MF = DAG.getMachineFunction();
3898   MachineFrameInfo &MFI = MF.getFrameInfo();
3899   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3900 
3901   EVT PtrVT = getPointerTy(MF.getDataLayout());
3902   bool isPPC64 = PtrVT == MVT::i64;
3903   // Potential tail calls could cause overwriting of argument stack slots.
3904   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3905                        (CallConv == CallingConv::Fast));
3906   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3907   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3908   unsigned ArgOffset = LinkageSize;
3909   // Area that is at least reserved in caller of this function.
3910   unsigned MinReservedArea = ArgOffset;
3911 
3912   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3913     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3914     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3915   };
3916   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3917     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3918     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3919   };
3920   static const MCPhysReg VR[] = {
3921     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3922     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3923   };
3924 
3925   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3926   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3927   const unsigned Num_VR_Regs  = array_lengthof( VR);
3928 
3929   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3930 
3931   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3932 
3933   // In 32-bit non-varargs functions, the stack space for vectors is after the
3934   // stack space for non-vectors.  We do not use this space unless we have
3935   // too many vectors to fit in registers, something that only occurs in
3936   // constructed examples:), but we have to walk the arglist to figure
3937   // that out...for the pathological case, compute VecArgOffset as the
3938   // start of the vector parameter area.  Computing VecArgOffset is the
3939   // entire point of the following loop.
3940   unsigned VecArgOffset = ArgOffset;
3941   if (!isVarArg && !isPPC64) {
3942     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3943          ++ArgNo) {
3944       EVT ObjectVT = Ins[ArgNo].VT;
3945       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3946 
3947       if (Flags.isByVal()) {
3948         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3949         unsigned ObjSize = Flags.getByValSize();
3950         unsigned ArgSize =
3951                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3952         VecArgOffset += ArgSize;
3953         continue;
3954       }
3955 
3956       switch(ObjectVT.getSimpleVT().SimpleTy) {
3957       default: llvm_unreachable("Unhandled argument type!");
3958       case MVT::i1:
3959       case MVT::i32:
3960       case MVT::f32:
3961         VecArgOffset += 4;
3962         break;
3963       case MVT::i64:  // PPC64
3964       case MVT::f64:
3965         // FIXME: We are guaranteed to be !isPPC64 at this point.
3966         // Does MVT::i64 apply?
3967         VecArgOffset += 8;
3968         break;
3969       case MVT::v4f32:
3970       case MVT::v4i32:
3971       case MVT::v8i16:
3972       case MVT::v16i8:
3973         // Nothing to do, we're only looking at Nonvector args here.
3974         break;
3975       }
3976     }
3977   }
3978   // We've found where the vector parameter area in memory is.  Skip the
3979   // first 12 parameters; these don't use that memory.
3980   VecArgOffset = ((VecArgOffset+15)/16)*16;
3981   VecArgOffset += 12*16;
3982 
3983   // Add DAG nodes to load the arguments or copy them out of registers.  On
3984   // entry to a function on PPC, the arguments start after the linkage area,
3985   // although the first ones are often in registers.
3986 
3987   SmallVector<SDValue, 8> MemOps;
3988   unsigned nAltivecParamsAtEnd = 0;
3989   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3990   unsigned CurArgIdx = 0;
3991   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3992     SDValue ArgVal;
3993     bool needsLoad = false;
3994     EVT ObjectVT = Ins[ArgNo].VT;
3995     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3996     unsigned ArgSize = ObjSize;
3997     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3998     if (Ins[ArgNo].isOrigArg()) {
3999       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4000       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4001     }
4002     unsigned CurArgOffset = ArgOffset;
4003 
4004     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4005     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4006         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4007       if (isVarArg || isPPC64) {
4008         MinReservedArea = ((MinReservedArea+15)/16)*16;
4009         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4010                                                   Flags,
4011                                                   PtrByteSize);
4012       } else  nAltivecParamsAtEnd++;
4013     } else
4014       // Calculate min reserved area.
4015       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4016                                                 Flags,
4017                                                 PtrByteSize);
4018 
4019     // FIXME the codegen can be much improved in some cases.
4020     // We do not have to keep everything in memory.
4021     if (Flags.isByVal()) {
4022       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4023 
4024       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4025       ObjSize = Flags.getByValSize();
4026       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4027       // Objects of size 1 and 2 are right justified, everything else is
4028       // left justified.  This means the memory address is adjusted forwards.
4029       if (ObjSize==1 || ObjSize==2) {
4030         CurArgOffset = CurArgOffset + (4 - ObjSize);
4031       }
4032       // The value of the object is its address.
4033       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4034       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4035       InVals.push_back(FIN);
4036       if (ObjSize==1 || ObjSize==2) {
4037         if (GPR_idx != Num_GPR_Regs) {
4038           unsigned VReg;
4039           if (isPPC64)
4040             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4041           else
4042             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4043           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4044           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4045           SDValue Store =
4046               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4047                                 MachinePointerInfo(&*FuncArg), ObjType);
4048           MemOps.push_back(Store);
4049           ++GPR_idx;
4050         }
4051 
4052         ArgOffset += PtrByteSize;
4053 
4054         continue;
4055       }
4056       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4057         // Store whatever pieces of the object are in registers
4058         // to memory.  ArgOffset will be the address of the beginning
4059         // of the object.
4060         if (GPR_idx != Num_GPR_Regs) {
4061           unsigned VReg;
4062           if (isPPC64)
4063             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4064           else
4065             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4066           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4067           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4068           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4069           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4070                                        MachinePointerInfo(&*FuncArg, j));
4071           MemOps.push_back(Store);
4072           ++GPR_idx;
4073           ArgOffset += PtrByteSize;
4074         } else {
4075           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4076           break;
4077         }
4078       }
4079       continue;
4080     }
4081 
4082     switch (ObjectVT.getSimpleVT().SimpleTy) {
4083     default: llvm_unreachable("Unhandled argument type!");
4084     case MVT::i1:
4085     case MVT::i32:
4086       if (!isPPC64) {
4087         if (GPR_idx != Num_GPR_Regs) {
4088           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4089           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4090 
4091           if (ObjectVT == MVT::i1)
4092             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4093 
4094           ++GPR_idx;
4095         } else {
4096           needsLoad = true;
4097           ArgSize = PtrByteSize;
4098         }
4099         // All int arguments reserve stack space in the Darwin ABI.
4100         ArgOffset += PtrByteSize;
4101         break;
4102       }
4103       LLVM_FALLTHROUGH;
4104     case MVT::i64:  // PPC64
4105       if (GPR_idx != Num_GPR_Regs) {
4106         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4107         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4108 
4109         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4110           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4111           // value to MVT::i64 and then truncate to the correct register size.
4112           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4113 
4114         ++GPR_idx;
4115       } else {
4116         needsLoad = true;
4117         ArgSize = PtrByteSize;
4118       }
4119       // All int arguments reserve stack space in the Darwin ABI.
4120       ArgOffset += 8;
4121       break;
4122 
4123     case MVT::f32:
4124     case MVT::f64:
4125       // Every 4 bytes of argument space consumes one of the GPRs available for
4126       // argument passing.
4127       if (GPR_idx != Num_GPR_Regs) {
4128         ++GPR_idx;
4129         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4130           ++GPR_idx;
4131       }
4132       if (FPR_idx != Num_FPR_Regs) {
4133         unsigned VReg;
4134 
4135         if (ObjectVT == MVT::f32)
4136           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4137         else
4138           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4139 
4140         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4141         ++FPR_idx;
4142       } else {
4143         needsLoad = true;
4144       }
4145 
4146       // All FP arguments reserve stack space in the Darwin ABI.
4147       ArgOffset += isPPC64 ? 8 : ObjSize;
4148       break;
4149     case MVT::v4f32:
4150     case MVT::v4i32:
4151     case MVT::v8i16:
4152     case MVT::v16i8:
4153       // Note that vector arguments in registers don't reserve stack space,
4154       // except in varargs functions.
4155       if (VR_idx != Num_VR_Regs) {
4156         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4157         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4158         if (isVarArg) {
4159           while ((ArgOffset % 16) != 0) {
4160             ArgOffset += PtrByteSize;
4161             if (GPR_idx != Num_GPR_Regs)
4162               GPR_idx++;
4163           }
4164           ArgOffset += 16;
4165           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4166         }
4167         ++VR_idx;
4168       } else {
4169         if (!isVarArg && !isPPC64) {
4170           // Vectors go after all the nonvectors.
4171           CurArgOffset = VecArgOffset;
4172           VecArgOffset += 16;
4173         } else {
4174           // Vectors are aligned.
4175           ArgOffset = ((ArgOffset+15)/16)*16;
4176           CurArgOffset = ArgOffset;
4177           ArgOffset += 16;
4178         }
4179         needsLoad = true;
4180       }
4181       break;
4182     }
4183 
4184     // We need to load the argument to a virtual register if we determined above
4185     // that we ran out of physical registers of the appropriate type.
4186     if (needsLoad) {
4187       int FI = MFI.CreateFixedObject(ObjSize,
4188                                      CurArgOffset + (ArgSize - ObjSize),
4189                                      isImmutable);
4190       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4191       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4192     }
4193 
4194     InVals.push_back(ArgVal);
4195   }
4196 
4197   // Allow for Altivec parameters at the end, if needed.
4198   if (nAltivecParamsAtEnd) {
4199     MinReservedArea = ((MinReservedArea+15)/16)*16;
4200     MinReservedArea += 16*nAltivecParamsAtEnd;
4201   }
4202 
4203   // Area that is at least reserved in the caller of this function.
4204   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4205 
4206   // Set the size that is at least reserved in caller of this function.  Tail
4207   // call optimized functions' reserved stack space needs to be aligned so that
4208   // taking the difference between two stack areas will result in an aligned
4209   // stack.
4210   MinReservedArea =
4211       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4212   FuncInfo->setMinReservedArea(MinReservedArea);
4213 
4214   // If the function takes variable number of arguments, make a frame index for
4215   // the start of the first vararg value... for expansion of llvm.va_start.
4216   if (isVarArg) {
4217     int Depth = ArgOffset;
4218 
4219     FuncInfo->setVarArgsFrameIndex(
4220       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4221                             Depth, true));
4222     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4223 
4224     // If this function is vararg, store any remaining integer argument regs
4225     // to their spots on the stack so that they may be loaded by dereferencing
4226     // the result of va_next.
4227     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4228       unsigned VReg;
4229 
4230       if (isPPC64)
4231         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4232       else
4233         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4234 
4235       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4236       SDValue Store =
4237           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4238       MemOps.push_back(Store);
4239       // Increment the address by four for the next argument to store
4240       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4241       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4242     }
4243   }
4244 
4245   if (!MemOps.empty())
4246     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4247 
4248   return Chain;
4249 }
4250 
4251 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4252 /// adjusted to accommodate the arguments for the tailcall.
4253 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4254                                    unsigned ParamSize) {
4255 
4256   if (!isTailCall) return 0;
4257 
4258   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4259   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4260   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4261   // Remember only if the new adjustement is bigger.
4262   if (SPDiff < FI->getTailCallSPDelta())
4263     FI->setTailCallSPDelta(SPDiff);
4264 
4265   return SPDiff;
4266 }
4267 
4268 static bool isFunctionGlobalAddress(SDValue Callee);
4269 
4270 static bool
4271 callsShareTOCBase(const Function *Caller, SDValue Callee,
4272                     const TargetMachine &TM) {
4273   // If !G, Callee can be an external symbol.
4274   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4275   if (!G)
4276     return false;
4277 
4278   // The medium and large code models are expected to provide a sufficiently
4279   // large TOC to provide all data addressing needs of a module with a
4280   // single TOC. Since each module will be addressed with a single TOC then we
4281   // only need to check that caller and callee don't cross dso boundaries.
4282   if (CodeModel::Medium == TM.getCodeModel() ||
4283       CodeModel::Large == TM.getCodeModel())
4284     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4285 
4286   // Otherwise we need to ensure callee and caller are in the same section,
4287   // since the linker may allocate multiple TOCs, and we don't know which
4288   // sections will belong to the same TOC base.
4289 
4290   const GlobalValue *GV = G->getGlobal();
4291   if (!GV->isStrongDefinitionForLinker())
4292     return false;
4293 
4294   // Any explicitly-specified sections and section prefixes must also match.
4295   // Also, if we're using -ffunction-sections, then each function is always in
4296   // a different section (the same is true for COMDAT functions).
4297   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4298       GV->getSection() != Caller->getSection())
4299     return false;
4300   if (const auto *F = dyn_cast<Function>(GV)) {
4301     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4302       return false;
4303   }
4304 
4305   // If the callee might be interposed, then we can't assume the ultimate call
4306   // target will be in the same section. Even in cases where we can assume that
4307   // interposition won't happen, in any case where the linker might insert a
4308   // stub to allow for interposition, we must generate code as though
4309   // interposition might occur. To understand why this matters, consider a
4310   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4311   // in the same section, but a is in a different module (i.e. has a different
4312   // TOC base pointer). If the linker allows for interposition between b and c,
4313   // then it will generate a stub for the call edge between b and c which will
4314   // save the TOC pointer into the designated stack slot allocated by b. If we
4315   // return true here, and therefore allow a tail call between b and c, that
4316   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4317   // pointer into the stack slot allocated by a (where the a -> b stub saved
4318   // a's TOC base pointer). If we're not considering a tail call, but rather,
4319   // whether a nop is needed after the call instruction in b, because the linker
4320   // will insert a stub, it might complain about a missing nop if we omit it
4321   // (although many don't complain in this case).
4322   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4323     return false;
4324 
4325   return true;
4326 }
4327 
4328 static bool
4329 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4330                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4331   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4332 
4333   const unsigned PtrByteSize = 8;
4334   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4335 
4336   static const MCPhysReg GPR[] = {
4337     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4338     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4339   };
4340   static const MCPhysReg VR[] = {
4341     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4342     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4343   };
4344 
4345   const unsigned NumGPRs = array_lengthof(GPR);
4346   const unsigned NumFPRs = 13;
4347   const unsigned NumVRs = array_lengthof(VR);
4348   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4349 
4350   unsigned NumBytes = LinkageSize;
4351   unsigned AvailableFPRs = NumFPRs;
4352   unsigned AvailableVRs = NumVRs;
4353 
4354   for (const ISD::OutputArg& Param : Outs) {
4355     if (Param.Flags.isNest()) continue;
4356 
4357     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4358                                PtrByteSize, LinkageSize, ParamAreaSize,
4359                                NumBytes, AvailableFPRs, AvailableVRs,
4360                                Subtarget.hasQPX()))
4361       return true;
4362   }
4363   return false;
4364 }
4365 
4366 static bool
4367 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4368   if (CS.arg_size() != CallerFn->arg_size())
4369     return false;
4370 
4371   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4372   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4373   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4374 
4375   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4376     const Value* CalleeArg = *CalleeArgIter;
4377     const Value* CallerArg = &(*CallerArgIter);
4378     if (CalleeArg == CallerArg)
4379       continue;
4380 
4381     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4382     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4383     //      }
4384     // 1st argument of callee is undef and has the same type as caller.
4385     if (CalleeArg->getType() == CallerArg->getType() &&
4386         isa<UndefValue>(CalleeArg))
4387       continue;
4388 
4389     return false;
4390   }
4391 
4392   return true;
4393 }
4394 
4395 bool
4396 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4397                                     SDValue Callee,
4398                                     CallingConv::ID CalleeCC,
4399                                     ImmutableCallSite CS,
4400                                     bool isVarArg,
4401                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4402                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4403                                     SelectionDAG& DAG) const {
4404   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4405 
4406   if (DisableSCO && !TailCallOpt) return false;
4407 
4408   // Variadic argument functions are not supported.
4409   if (isVarArg) return false;
4410 
4411   MachineFunction &MF = DAG.getMachineFunction();
4412   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4413 
4414   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
4415   // the same calling convention
4416   if (CallerCC != CalleeCC) return false;
4417 
4418   // SCO support C calling convention
4419   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
4420     return false;
4421 
4422   // Caller contains any byval parameter is not supported.
4423   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4424     return false;
4425 
4426   // Callee contains any byval parameter is not supported, too.
4427   // Note: This is a quick work around, because in some cases, e.g.
4428   // caller's stack size > callee's stack size, we are still able to apply
4429   // sibling call optimization. See: https://reviews.llvm.org/D23441#513574
4430   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4431     return false;
4432 
4433   // No TCO/SCO on indirect call because Caller have to restore its TOC
4434   if (!isFunctionGlobalAddress(Callee) &&
4435       !isa<ExternalSymbolSDNode>(Callee))
4436     return false;
4437 
4438   // If the caller and callee potentially have different TOC bases then we
4439   // cannot tail call since we need to restore the TOC pointer after the call.
4440   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4441   if (!callsShareTOCBase(MF.getFunction(), Callee, getTargetMachine()))
4442     return false;
4443 
4444   // TCO allows altering callee ABI, so we don't have to check further.
4445   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4446     return true;
4447 
4448   if (DisableSCO) return false;
4449 
4450   // If callee use the same argument list that caller is using, then we can
4451   // apply SCO on this case. If it is not, then we need to check if callee needs
4452   // stack for passing arguments.
4453   if (!hasSameArgumentList(MF.getFunction(), CS) &&
4454       needStackSlotPassParameters(Subtarget, Outs)) {
4455     return false;
4456   }
4457 
4458   return true;
4459 }
4460 
4461 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4462 /// for tail call optimization. Targets which want to do tail call
4463 /// optimization should implement this function.
4464 bool
4465 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4466                                                      CallingConv::ID CalleeCC,
4467                                                      bool isVarArg,
4468                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4469                                                      SelectionDAG& DAG) const {
4470   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4471     return false;
4472 
4473   // Variable argument functions are not supported.
4474   if (isVarArg)
4475     return false;
4476 
4477   MachineFunction &MF = DAG.getMachineFunction();
4478   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4479   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4480     // Functions containing by val parameters are not supported.
4481     for (unsigned i = 0; i != Ins.size(); i++) {
4482        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4483        if (Flags.isByVal()) return false;
4484     }
4485 
4486     // Non-PIC/GOT tail calls are supported.
4487     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4488       return true;
4489 
4490     // At the moment we can only do local tail calls (in same module, hidden
4491     // or protected) if we are generating PIC.
4492     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4493       return G->getGlobal()->hasHiddenVisibility()
4494           || G->getGlobal()->hasProtectedVisibility();
4495   }
4496 
4497   return false;
4498 }
4499 
4500 /// isCallCompatibleAddress - Return the immediate to use if the specified
4501 /// 32-bit value is representable in the immediate field of a BxA instruction.
4502 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4503   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4504   if (!C) return nullptr;
4505 
4506   int Addr = C->getZExtValue();
4507   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4508       SignExtend32<26>(Addr) != Addr)
4509     return nullptr;  // Top 6 bits have to be sext of immediate.
4510 
4511   return DAG
4512       .getConstant(
4513           (int)C->getZExtValue() >> 2, SDLoc(Op),
4514           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4515       .getNode();
4516 }
4517 
4518 namespace {
4519 
4520 struct TailCallArgumentInfo {
4521   SDValue Arg;
4522   SDValue FrameIdxOp;
4523   int FrameIdx = 0;
4524 
4525   TailCallArgumentInfo() = default;
4526 };
4527 
4528 } // end anonymous namespace
4529 
4530 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4531 static void StoreTailCallArgumentsToStackSlot(
4532     SelectionDAG &DAG, SDValue Chain,
4533     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4534     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4535   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4536     SDValue Arg = TailCallArgs[i].Arg;
4537     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4538     int FI = TailCallArgs[i].FrameIdx;
4539     // Store relative to framepointer.
4540     MemOpChains.push_back(DAG.getStore(
4541         Chain, dl, Arg, FIN,
4542         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4543   }
4544 }
4545 
4546 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4547 /// the appropriate stack slot for the tail call optimized function call.
4548 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4549                                              SDValue OldRetAddr, SDValue OldFP,
4550                                              int SPDiff, const SDLoc &dl) {
4551   if (SPDiff) {
4552     // Calculate the new stack slot for the return address.
4553     MachineFunction &MF = DAG.getMachineFunction();
4554     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4555     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4556     bool isPPC64 = Subtarget.isPPC64();
4557     int SlotSize = isPPC64 ? 8 : 4;
4558     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4559     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4560                                                          NewRetAddrLoc, true);
4561     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4562     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4563     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4564                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4565 
4566     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4567     // slot as the FP is never overwritten.
4568     if (Subtarget.isDarwinABI()) {
4569       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4570       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4571                                                          true);
4572       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4573       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4574                            MachinePointerInfo::getFixedStack(
4575                                DAG.getMachineFunction(), NewFPIdx));
4576     }
4577   }
4578   return Chain;
4579 }
4580 
4581 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4582 /// the position of the argument.
4583 static void
4584 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4585                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4586                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4587   int Offset = ArgOffset + SPDiff;
4588   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4589   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4590   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4591   SDValue FIN = DAG.getFrameIndex(FI, VT);
4592   TailCallArgumentInfo Info;
4593   Info.Arg = Arg;
4594   Info.FrameIdxOp = FIN;
4595   Info.FrameIdx = FI;
4596   TailCallArguments.push_back(Info);
4597 }
4598 
4599 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4600 /// stack slot. Returns the chain as result and the loaded frame pointers in
4601 /// LROpOut/FPOpout. Used when tail calling.
4602 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4603     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4604     SDValue &FPOpOut, const SDLoc &dl) const {
4605   if (SPDiff) {
4606     // Load the LR and FP stack slot for later adjusting.
4607     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4608     LROpOut = getReturnAddrFrameIndex(DAG);
4609     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4610     Chain = SDValue(LROpOut.getNode(), 1);
4611 
4612     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4613     // slot as the FP is never overwritten.
4614     if (Subtarget.isDarwinABI()) {
4615       FPOpOut = getFramePointerFrameIndex(DAG);
4616       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4617       Chain = SDValue(FPOpOut.getNode(), 1);
4618     }
4619   }
4620   return Chain;
4621 }
4622 
4623 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4624 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4625 /// specified by the specific parameter attribute. The copy will be passed as
4626 /// a byval function parameter.
4627 /// Sometimes what we are copying is the end of a larger object, the part that
4628 /// does not fit in registers.
4629 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4630                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4631                                          SelectionDAG &DAG, const SDLoc &dl) {
4632   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4633   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4634                        false, false, false, MachinePointerInfo(),
4635                        MachinePointerInfo());
4636 }
4637 
4638 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4639 /// tail calls.
4640 static void LowerMemOpCallTo(
4641     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4642     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4643     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4644     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4645   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4646   if (!isTailCall) {
4647     if (isVector) {
4648       SDValue StackPtr;
4649       if (isPPC64)
4650         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4651       else
4652         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4653       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4654                            DAG.getConstant(ArgOffset, dl, PtrVT));
4655     }
4656     MemOpChains.push_back(
4657         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4658     // Calculate and remember argument location.
4659   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4660                                   TailCallArguments);
4661 }
4662 
4663 static void
4664 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4665                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4666                 SDValue FPOp,
4667                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4668   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4669   // might overwrite each other in case of tail call optimization.
4670   SmallVector<SDValue, 8> MemOpChains2;
4671   // Do not flag preceding copytoreg stuff together with the following stuff.
4672   InFlag = SDValue();
4673   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4674                                     MemOpChains2, dl);
4675   if (!MemOpChains2.empty())
4676     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4677 
4678   // Store the return address to the appropriate stack slot.
4679   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4680 
4681   // Emit callseq_end just before tailcall node.
4682   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4683                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4684   InFlag = Chain.getValue(1);
4685 }
4686 
4687 // Is this global address that of a function that can be called by name? (as
4688 // opposed to something that must hold a descriptor for an indirect call).
4689 static bool isFunctionGlobalAddress(SDValue Callee) {
4690   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4691     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4692         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4693       return false;
4694 
4695     return G->getGlobal()->getValueType()->isFunctionTy();
4696   }
4697 
4698   return false;
4699 }
4700 
4701 static unsigned
4702 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4703             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4704             bool isPatchPoint, bool hasNest,
4705             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4706             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4707             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4708   bool isPPC64 = Subtarget.isPPC64();
4709   bool isSVR4ABI = Subtarget.isSVR4ABI();
4710   bool isELFv2ABI = Subtarget.isELFv2ABI();
4711 
4712   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4713   NodeTys.push_back(MVT::Other);   // Returns a chain
4714   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4715 
4716   unsigned CallOpc = PPCISD::CALL;
4717 
4718   bool needIndirectCall = true;
4719   if (!isSVR4ABI || !isPPC64)
4720     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4721       // If this is an absolute destination address, use the munged value.
4722       Callee = SDValue(Dest, 0);
4723       needIndirectCall = false;
4724     }
4725 
4726   // PC-relative references to external symbols should go through $stub, unless
4727   // we're building with the leopard linker or later, which automatically
4728   // synthesizes these stubs.
4729   const TargetMachine &TM = DAG.getTarget();
4730   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4731   const GlobalValue *GV = nullptr;
4732   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4733     GV = G->getGlobal();
4734   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4735   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4736 
4737   if (isFunctionGlobalAddress(Callee)) {
4738     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4739     // A call to a TLS address is actually an indirect call to a
4740     // thread-specific pointer.
4741     unsigned OpFlags = 0;
4742     if (UsePlt)
4743       OpFlags = PPCII::MO_PLT;
4744 
4745     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4746     // every direct call is) turn it into a TargetGlobalAddress /
4747     // TargetExternalSymbol node so that legalize doesn't hack it.
4748     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4749                                         Callee.getValueType(), 0, OpFlags);
4750     needIndirectCall = false;
4751   }
4752 
4753   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4754     unsigned char OpFlags = 0;
4755 
4756     if (UsePlt)
4757       OpFlags = PPCII::MO_PLT;
4758 
4759     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4760                                          OpFlags);
4761     needIndirectCall = false;
4762   }
4763 
4764   if (isPatchPoint) {
4765     // We'll form an invalid direct call when lowering a patchpoint; the full
4766     // sequence for an indirect call is complicated, and many of the
4767     // instructions introduced might have side effects (and, thus, can't be
4768     // removed later). The call itself will be removed as soon as the
4769     // argument/return lowering is complete, so the fact that it has the wrong
4770     // kind of operands should not really matter.
4771     needIndirectCall = false;
4772   }
4773 
4774   if (needIndirectCall) {
4775     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4776     // to do the call, we can't use PPCISD::CALL.
4777     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4778 
4779     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4780       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4781       // entry point, but to the function descriptor (the function entry point
4782       // address is part of the function descriptor though).
4783       // The function descriptor is a three doubleword structure with the
4784       // following fields: function entry point, TOC base address and
4785       // environment pointer.
4786       // Thus for a call through a function pointer, the following actions need
4787       // to be performed:
4788       //   1. Save the TOC of the caller in the TOC save area of its stack
4789       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4790       //   2. Load the address of the function entry point from the function
4791       //      descriptor.
4792       //   3. Load the TOC of the callee from the function descriptor into r2.
4793       //   4. Load the environment pointer from the function descriptor into
4794       //      r11.
4795       //   5. Branch to the function entry point address.
4796       //   6. On return of the callee, the TOC of the caller needs to be
4797       //      restored (this is done in FinishCall()).
4798       //
4799       // The loads are scheduled at the beginning of the call sequence, and the
4800       // register copies are flagged together to ensure that no other
4801       // operations can be scheduled in between. E.g. without flagging the
4802       // copies together, a TOC access in the caller could be scheduled between
4803       // the assignment of the callee TOC and the branch to the callee, which
4804       // results in the TOC access going through the TOC of the callee instead
4805       // of going through the TOC of the caller, which leads to incorrect code.
4806 
4807       // Load the address of the function entry point from the function
4808       // descriptor.
4809       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4810       if (LDChain.getValueType() == MVT::Glue)
4811         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4812 
4813       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4814                           ? (MachineMemOperand::MODereferenceable |
4815                              MachineMemOperand::MOInvariant)
4816                           : MachineMemOperand::MONone;
4817 
4818       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4819       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4820                                         /* Alignment = */ 8, MMOFlags);
4821 
4822       // Load environment pointer into r11.
4823       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4824       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4825       SDValue LoadEnvPtr =
4826           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4827                       /* Alignment = */ 8, MMOFlags);
4828 
4829       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4830       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4831       SDValue TOCPtr =
4832           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4833                       /* Alignment = */ 8, MMOFlags);
4834 
4835       setUsesTOCBasePtr(DAG);
4836       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4837                                         InFlag);
4838       Chain = TOCVal.getValue(0);
4839       InFlag = TOCVal.getValue(1);
4840 
4841       // If the function call has an explicit 'nest' parameter, it takes the
4842       // place of the environment pointer.
4843       if (!hasNest) {
4844         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4845                                           InFlag);
4846 
4847         Chain = EnvVal.getValue(0);
4848         InFlag = EnvVal.getValue(1);
4849       }
4850 
4851       MTCTROps[0] = Chain;
4852       MTCTROps[1] = LoadFuncPtr;
4853       MTCTROps[2] = InFlag;
4854     }
4855 
4856     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4857                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4858     InFlag = Chain.getValue(1);
4859 
4860     NodeTys.clear();
4861     NodeTys.push_back(MVT::Other);
4862     NodeTys.push_back(MVT::Glue);
4863     Ops.push_back(Chain);
4864     CallOpc = PPCISD::BCTRL;
4865     Callee.setNode(nullptr);
4866     // Add use of X11 (holding environment pointer)
4867     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4868       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4869     // Add CTR register as callee so a bctr can be emitted later.
4870     if (isTailCall)
4871       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4872   }
4873 
4874   // If this is a direct call, pass the chain and the callee.
4875   if (Callee.getNode()) {
4876     Ops.push_back(Chain);
4877     Ops.push_back(Callee);
4878   }
4879   // If this is a tail call add stack pointer delta.
4880   if (isTailCall)
4881     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4882 
4883   // Add argument registers to the end of the list so that they are known live
4884   // into the call.
4885   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4886     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4887                                   RegsToPass[i].second.getValueType()));
4888 
4889   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4890   // into the call.
4891   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4892     setUsesTOCBasePtr(DAG);
4893     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4894   }
4895 
4896   return CallOpc;
4897 }
4898 
4899 SDValue PPCTargetLowering::LowerCallResult(
4900     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4901     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4902     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4903   SmallVector<CCValAssign, 16> RVLocs;
4904   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4905                     *DAG.getContext());
4906   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4907 
4908   // Copy all of the result registers out of their specified physreg.
4909   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4910     CCValAssign &VA = RVLocs[i];
4911     assert(VA.isRegLoc() && "Can only return in registers!");
4912 
4913     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4914                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4915     Chain = Val.getValue(1);
4916     InFlag = Val.getValue(2);
4917 
4918     switch (VA.getLocInfo()) {
4919     default: llvm_unreachable("Unknown loc info!");
4920     case CCValAssign::Full: break;
4921     case CCValAssign::AExt:
4922       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4923       break;
4924     case CCValAssign::ZExt:
4925       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4926                         DAG.getValueType(VA.getValVT()));
4927       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4928       break;
4929     case CCValAssign::SExt:
4930       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4931                         DAG.getValueType(VA.getValVT()));
4932       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4933       break;
4934     }
4935 
4936     InVals.push_back(Val);
4937   }
4938 
4939   return Chain;
4940 }
4941 
4942 SDValue PPCTargetLowering::FinishCall(
4943     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4944     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4945     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4946     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4947     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4948     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
4949   std::vector<EVT> NodeTys;
4950   SmallVector<SDValue, 8> Ops;
4951   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4952                                  SPDiff, isTailCall, isPatchPoint, hasNest,
4953                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4954 
4955   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4956   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4957     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4958 
4959   // When performing tail call optimization the callee pops its arguments off
4960   // the stack. Account for this here so these bytes can be pushed back on in
4961   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4962   int BytesCalleePops =
4963     (CallConv == CallingConv::Fast &&
4964      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4965 
4966   // Add a register mask operand representing the call-preserved registers.
4967   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4968   const uint32_t *Mask =
4969       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4970   assert(Mask && "Missing call preserved mask for calling convention");
4971   Ops.push_back(DAG.getRegisterMask(Mask));
4972 
4973   if (InFlag.getNode())
4974     Ops.push_back(InFlag);
4975 
4976   // Emit tail call.
4977   if (isTailCall) {
4978     assert(((Callee.getOpcode() == ISD::Register &&
4979              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4980             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4981             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4982             isa<ConstantSDNode>(Callee)) &&
4983     "Expecting an global address, external symbol, absolute value or register");
4984 
4985     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
4986     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4987   }
4988 
4989   // Add a NOP immediately after the branch instruction when using the 64-bit
4990   // SVR4 ABI. At link time, if caller and callee are in a different module and
4991   // thus have a different TOC, the call will be replaced with a call to a stub
4992   // function which saves the current TOC, loads the TOC of the callee and
4993   // branches to the callee. The NOP will be replaced with a load instruction
4994   // which restores the TOC of the caller from the TOC save slot of the current
4995   // stack frame. If caller and callee belong to the same module (and have the
4996   // same TOC), the NOP will remain unchanged.
4997 
4998   MachineFunction &MF = DAG.getMachineFunction();
4999   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5000       !isPatchPoint) {
5001     if (CallOpc == PPCISD::BCTRL) {
5002       // This is a call through a function pointer.
5003       // Restore the caller TOC from the save area into R2.
5004       // See PrepareCall() for more information about calls through function
5005       // pointers in the 64-bit SVR4 ABI.
5006       // We are using a target-specific load with r2 hard coded, because the
5007       // result of a target-independent load would never go directly into r2,
5008       // since r2 is a reserved register (which prevents the register allocator
5009       // from allocating it), resulting in an additional register being
5010       // allocated and an unnecessary move instruction being generated.
5011       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5012 
5013       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5014       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5015       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5016       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5017       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5018 
5019       // The address needs to go after the chain input but before the flag (or
5020       // any other variadic arguments).
5021       Ops.insert(std::next(Ops.begin()), AddTOC);
5022     } else if (CallOpc == PPCISD::CALL &&
5023       !callsShareTOCBase(MF.getFunction(), Callee, DAG.getTarget())) {
5024       // Otherwise insert NOP for non-local calls.
5025       CallOpc = PPCISD::CALL_NOP;
5026     }
5027   }
5028 
5029   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5030   InFlag = Chain.getValue(1);
5031 
5032   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5033                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5034                              InFlag, dl);
5035   if (!Ins.empty())
5036     InFlag = Chain.getValue(1);
5037 
5038   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5039                          Ins, dl, DAG, InVals);
5040 }
5041 
5042 SDValue
5043 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5044                              SmallVectorImpl<SDValue> &InVals) const {
5045   SelectionDAG &DAG                     = CLI.DAG;
5046   SDLoc &dl                             = CLI.DL;
5047   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5048   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5049   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5050   SDValue Chain                         = CLI.Chain;
5051   SDValue Callee                        = CLI.Callee;
5052   bool &isTailCall                      = CLI.IsTailCall;
5053   CallingConv::ID CallConv              = CLI.CallConv;
5054   bool isVarArg                         = CLI.IsVarArg;
5055   bool isPatchPoint                     = CLI.IsPatchPoint;
5056   ImmutableCallSite CS                  = CLI.CS;
5057 
5058   if (isTailCall) {
5059     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5060       isTailCall = false;
5061     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5062       isTailCall =
5063         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5064                                                  isVarArg, Outs, Ins, DAG);
5065     else
5066       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5067                                                      Ins, DAG);
5068     if (isTailCall) {
5069       ++NumTailCalls;
5070       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5071         ++NumSiblingCalls;
5072 
5073       assert(isa<GlobalAddressSDNode>(Callee) &&
5074              "Callee should be an llvm::Function object.");
5075       DEBUG(
5076         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5077         const unsigned Width = 80 - strlen("TCO caller: ")
5078                                   - strlen(", callee linkage: 0, 0");
5079         dbgs() << "TCO caller: "
5080                << left_justify(DAG.getMachineFunction().getName(), Width)
5081                << ", callee linkage: "
5082                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
5083       );
5084     }
5085   }
5086 
5087   if (!isTailCall && CS && CS.isMustTailCall())
5088     report_fatal_error("failed to perform tail call elimination on a call "
5089                        "site marked musttail");
5090 
5091   // When long calls (i.e. indirect calls) are always used, calls are always
5092   // made via function pointer. If we have a function name, first translate it
5093   // into a pointer.
5094   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5095       !isTailCall)
5096     Callee = LowerGlobalAddress(Callee, DAG);
5097 
5098   if (Subtarget.isSVR4ABI()) {
5099     if (Subtarget.isPPC64())
5100       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5101                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5102                               dl, DAG, InVals, CS);
5103     else
5104       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5105                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5106                               dl, DAG, InVals, CS);
5107   }
5108 
5109   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5110                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5111                           dl, DAG, InVals, CS);
5112 }
5113 
5114 SDValue PPCTargetLowering::LowerCall_32SVR4(
5115     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5116     bool isTailCall, bool isPatchPoint,
5117     const SmallVectorImpl<ISD::OutputArg> &Outs,
5118     const SmallVectorImpl<SDValue> &OutVals,
5119     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5120     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5121     ImmutableCallSite CS) const {
5122   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5123   // of the 32-bit SVR4 ABI stack frame layout.
5124 
5125   assert((CallConv == CallingConv::C ||
5126           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5127 
5128   unsigned PtrByteSize = 4;
5129 
5130   MachineFunction &MF = DAG.getMachineFunction();
5131 
5132   // Mark this function as potentially containing a function that contains a
5133   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5134   // and restoring the callers stack pointer in this functions epilog. This is
5135   // done because by tail calling the called function might overwrite the value
5136   // in this function's (MF) stack pointer stack slot 0(SP).
5137   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5138       CallConv == CallingConv::Fast)
5139     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5140 
5141   // Count how many bytes are to be pushed on the stack, including the linkage
5142   // area, parameter list area and the part of the local variable space which
5143   // contains copies of aggregates which are passed by value.
5144 
5145   // Assign locations to all of the outgoing arguments.
5146   SmallVector<CCValAssign, 16> ArgLocs;
5147   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5148 
5149   // Reserve space for the linkage area on the stack.
5150   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5151                        PtrByteSize);
5152   if (useSoftFloat())
5153     CCInfo.PreAnalyzeCallOperands(Outs);
5154 
5155   if (isVarArg) {
5156     // Handle fixed and variable vector arguments differently.
5157     // Fixed vector arguments go into registers as long as registers are
5158     // available. Variable vector arguments always go into memory.
5159     unsigned NumArgs = Outs.size();
5160 
5161     for (unsigned i = 0; i != NumArgs; ++i) {
5162       MVT ArgVT = Outs[i].VT;
5163       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5164       bool Result;
5165 
5166       if (Outs[i].IsFixed) {
5167         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5168                                CCInfo);
5169       } else {
5170         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5171                                       ArgFlags, CCInfo);
5172       }
5173 
5174       if (Result) {
5175 #ifndef NDEBUG
5176         errs() << "Call operand #" << i << " has unhandled type "
5177              << EVT(ArgVT).getEVTString() << "\n";
5178 #endif
5179         llvm_unreachable(nullptr);
5180       }
5181     }
5182   } else {
5183     // All arguments are treated the same.
5184     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5185   }
5186   CCInfo.clearWasPPCF128();
5187 
5188   // Assign locations to all of the outgoing aggregate by value arguments.
5189   SmallVector<CCValAssign, 16> ByValArgLocs;
5190   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5191 
5192   // Reserve stack space for the allocations in CCInfo.
5193   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5194 
5195   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5196 
5197   // Size of the linkage area, parameter list area and the part of the local
5198   // space variable where copies of aggregates which are passed by value are
5199   // stored.
5200   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5201 
5202   // Calculate by how many bytes the stack has to be adjusted in case of tail
5203   // call optimization.
5204   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5205 
5206   // Adjust the stack pointer for the new arguments...
5207   // These operations are automatically eliminated by the prolog/epilog pass
5208   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5209   SDValue CallSeqStart = Chain;
5210 
5211   // Load the return address and frame pointer so it can be moved somewhere else
5212   // later.
5213   SDValue LROp, FPOp;
5214   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5215 
5216   // Set up a copy of the stack pointer for use loading and storing any
5217   // arguments that may not fit in the registers available for argument
5218   // passing.
5219   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5220 
5221   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5222   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5223   SmallVector<SDValue, 8> MemOpChains;
5224 
5225   bool seenFloatArg = false;
5226   // Walk the register/memloc assignments, inserting copies/loads.
5227   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5228        i != e;
5229        ++i) {
5230     CCValAssign &VA = ArgLocs[i];
5231     SDValue Arg = OutVals[i];
5232     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5233 
5234     if (Flags.isByVal()) {
5235       // Argument is an aggregate which is passed by value, thus we need to
5236       // create a copy of it in the local variable space of the current stack
5237       // frame (which is the stack frame of the caller) and pass the address of
5238       // this copy to the callee.
5239       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5240       CCValAssign &ByValVA = ByValArgLocs[j++];
5241       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5242 
5243       // Memory reserved in the local variable space of the callers stack frame.
5244       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5245 
5246       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5247       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5248                            StackPtr, PtrOff);
5249 
5250       // Create a copy of the argument in the local area of the current
5251       // stack frame.
5252       SDValue MemcpyCall =
5253         CreateCopyOfByValArgument(Arg, PtrOff,
5254                                   CallSeqStart.getNode()->getOperand(0),
5255                                   Flags, DAG, dl);
5256 
5257       // This must go outside the CALLSEQ_START..END.
5258       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5259                                                      SDLoc(MemcpyCall));
5260       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5261                              NewCallSeqStart.getNode());
5262       Chain = CallSeqStart = NewCallSeqStart;
5263 
5264       // Pass the address of the aggregate copy on the stack either in a
5265       // physical register or in the parameter list area of the current stack
5266       // frame to the callee.
5267       Arg = PtrOff;
5268     }
5269 
5270     if (VA.isRegLoc()) {
5271       if (Arg.getValueType() == MVT::i1)
5272         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5273 
5274       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5275       // Put argument in a physical register.
5276       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5277     } else {
5278       // Put argument in the parameter list area of the current stack frame.
5279       assert(VA.isMemLoc());
5280       unsigned LocMemOffset = VA.getLocMemOffset();
5281 
5282       if (!isTailCall) {
5283         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5284         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5285                              StackPtr, PtrOff);
5286 
5287         MemOpChains.push_back(
5288             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5289       } else {
5290         // Calculate and remember argument location.
5291         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5292                                  TailCallArguments);
5293       }
5294     }
5295   }
5296 
5297   if (!MemOpChains.empty())
5298     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5299 
5300   // Build a sequence of copy-to-reg nodes chained together with token chain
5301   // and flag operands which copy the outgoing args into the appropriate regs.
5302   SDValue InFlag;
5303   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5304     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5305                              RegsToPass[i].second, InFlag);
5306     InFlag = Chain.getValue(1);
5307   }
5308 
5309   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5310   // registers.
5311   if (isVarArg) {
5312     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5313     SDValue Ops[] = { Chain, InFlag };
5314 
5315     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5316                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5317 
5318     InFlag = Chain.getValue(1);
5319   }
5320 
5321   if (isTailCall)
5322     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5323                     TailCallArguments);
5324 
5325   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5326                     /* unused except on PPC64 ELFv1 */ false, DAG,
5327                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5328                     NumBytes, Ins, InVals, CS);
5329 }
5330 
5331 // Copy an argument into memory, being careful to do this outside the
5332 // call sequence for the call to which the argument belongs.
5333 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5334     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5335     SelectionDAG &DAG, const SDLoc &dl) const {
5336   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5337                         CallSeqStart.getNode()->getOperand(0),
5338                         Flags, DAG, dl);
5339   // The MEMCPY must go outside the CALLSEQ_START..END.
5340   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5341   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5342                                                  SDLoc(MemcpyCall));
5343   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5344                          NewCallSeqStart.getNode());
5345   return NewCallSeqStart;
5346 }
5347 
5348 SDValue PPCTargetLowering::LowerCall_64SVR4(
5349     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5350     bool isTailCall, bool isPatchPoint,
5351     const SmallVectorImpl<ISD::OutputArg> &Outs,
5352     const SmallVectorImpl<SDValue> &OutVals,
5353     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5354     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5355     ImmutableCallSite CS) const {
5356   bool isELFv2ABI = Subtarget.isELFv2ABI();
5357   bool isLittleEndian = Subtarget.isLittleEndian();
5358   unsigned NumOps = Outs.size();
5359   bool hasNest = false;
5360   bool IsSibCall = false;
5361 
5362   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5363   unsigned PtrByteSize = 8;
5364 
5365   MachineFunction &MF = DAG.getMachineFunction();
5366 
5367   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5368     IsSibCall = true;
5369 
5370   // Mark this function as potentially containing a function that contains a
5371   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5372   // and restoring the callers stack pointer in this functions epilog. This is
5373   // done because by tail calling the called function might overwrite the value
5374   // in this function's (MF) stack pointer stack slot 0(SP).
5375   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5376       CallConv == CallingConv::Fast)
5377     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5378 
5379   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5380          "fastcc not supported on varargs functions");
5381 
5382   // Count how many bytes are to be pushed on the stack, including the linkage
5383   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5384   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5385   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5386   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5387   unsigned NumBytes = LinkageSize;
5388   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5389   unsigned &QFPR_idx = FPR_idx;
5390 
5391   static const MCPhysReg GPR[] = {
5392     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5393     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5394   };
5395   static const MCPhysReg VR[] = {
5396     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5397     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5398   };
5399 
5400   const unsigned NumGPRs = array_lengthof(GPR);
5401   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5402   const unsigned NumVRs  = array_lengthof(VR);
5403   const unsigned NumQFPRs = NumFPRs;
5404 
5405   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5406   // can be passed to the callee in registers.
5407   // For the fast calling convention, there is another check below.
5408   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5409   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5410   if (!HasParameterArea) {
5411     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5412     unsigned AvailableFPRs = NumFPRs;
5413     unsigned AvailableVRs = NumVRs;
5414     unsigned NumBytesTmp = NumBytes;
5415     for (unsigned i = 0; i != NumOps; ++i) {
5416       if (Outs[i].Flags.isNest()) continue;
5417       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5418                                 PtrByteSize, LinkageSize, ParamAreaSize,
5419                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5420                                 Subtarget.hasQPX()))
5421         HasParameterArea = true;
5422     }
5423   }
5424 
5425   // When using the fast calling convention, we don't provide backing for
5426   // arguments that will be in registers.
5427   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5428 
5429   // Add up all the space actually used.
5430   for (unsigned i = 0; i != NumOps; ++i) {
5431     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5432     EVT ArgVT = Outs[i].VT;
5433     EVT OrigVT = Outs[i].ArgVT;
5434 
5435     if (Flags.isNest())
5436       continue;
5437 
5438     if (CallConv == CallingConv::Fast) {
5439       if (Flags.isByVal())
5440         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5441       else
5442         switch (ArgVT.getSimpleVT().SimpleTy) {
5443         default: llvm_unreachable("Unexpected ValueType for argument!");
5444         case MVT::i1:
5445         case MVT::i32:
5446         case MVT::i64:
5447           if (++NumGPRsUsed <= NumGPRs)
5448             continue;
5449           break;
5450         case MVT::v4i32:
5451         case MVT::v8i16:
5452         case MVT::v16i8:
5453         case MVT::v2f64:
5454         case MVT::v2i64:
5455         case MVT::v1i128:
5456           if (++NumVRsUsed <= NumVRs)
5457             continue;
5458           break;
5459         case MVT::v4f32:
5460           // When using QPX, this is handled like a FP register, otherwise, it
5461           // is an Altivec register.
5462           if (Subtarget.hasQPX()) {
5463             if (++NumFPRsUsed <= NumFPRs)
5464               continue;
5465           } else {
5466             if (++NumVRsUsed <= NumVRs)
5467               continue;
5468           }
5469           break;
5470         case MVT::f32:
5471         case MVT::f64:
5472         case MVT::v4f64: // QPX
5473         case MVT::v4i1:  // QPX
5474           if (++NumFPRsUsed <= NumFPRs)
5475             continue;
5476           break;
5477         }
5478     }
5479 
5480     /* Respect alignment of argument on the stack.  */
5481     unsigned Align =
5482       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5483     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5484 
5485     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5486     if (Flags.isInConsecutiveRegsLast())
5487       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5488   }
5489 
5490   unsigned NumBytesActuallyUsed = NumBytes;
5491 
5492   // In the old ELFv1 ABI,
5493   // the prolog code of the callee may store up to 8 GPR argument registers to
5494   // the stack, allowing va_start to index over them in memory if its varargs.
5495   // Because we cannot tell if this is needed on the caller side, we have to
5496   // conservatively assume that it is needed.  As such, make sure we have at
5497   // least enough stack space for the caller to store the 8 GPRs.
5498   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5499   // really requires memory operands, e.g. a vararg function.
5500   if (HasParameterArea)
5501     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5502   else
5503     NumBytes = LinkageSize;
5504 
5505   // Tail call needs the stack to be aligned.
5506   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5507       CallConv == CallingConv::Fast)
5508     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5509 
5510   int SPDiff = 0;
5511 
5512   // Calculate by how many bytes the stack has to be adjusted in case of tail
5513   // call optimization.
5514   if (!IsSibCall)
5515     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5516 
5517   // To protect arguments on the stack from being clobbered in a tail call,
5518   // force all the loads to happen before doing any other lowering.
5519   if (isTailCall)
5520     Chain = DAG.getStackArgumentTokenFactor(Chain);
5521 
5522   // Adjust the stack pointer for the new arguments...
5523   // These operations are automatically eliminated by the prolog/epilog pass
5524   if (!IsSibCall)
5525     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5526   SDValue CallSeqStart = Chain;
5527 
5528   // Load the return address and frame pointer so it can be move somewhere else
5529   // later.
5530   SDValue LROp, FPOp;
5531   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5532 
5533   // Set up a copy of the stack pointer for use loading and storing any
5534   // arguments that may not fit in the registers available for argument
5535   // passing.
5536   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5537 
5538   // Figure out which arguments are going to go in registers, and which in
5539   // memory.  Also, if this is a vararg function, floating point operations
5540   // must be stored to our stack, and loaded into integer regs as well, if
5541   // any integer regs are available for argument passing.
5542   unsigned ArgOffset = LinkageSize;
5543 
5544   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5545   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5546 
5547   SmallVector<SDValue, 8> MemOpChains;
5548   for (unsigned i = 0; i != NumOps; ++i) {
5549     SDValue Arg = OutVals[i];
5550     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5551     EVT ArgVT = Outs[i].VT;
5552     EVT OrigVT = Outs[i].ArgVT;
5553 
5554     // PtrOff will be used to store the current argument to the stack if a
5555     // register cannot be found for it.
5556     SDValue PtrOff;
5557 
5558     // We re-align the argument offset for each argument, except when using the
5559     // fast calling convention, when we need to make sure we do that only when
5560     // we'll actually use a stack slot.
5561     auto ComputePtrOff = [&]() {
5562       /* Respect alignment of argument on the stack.  */
5563       unsigned Align =
5564         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5565       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5566 
5567       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5568 
5569       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5570     };
5571 
5572     if (CallConv != CallingConv::Fast) {
5573       ComputePtrOff();
5574 
5575       /* Compute GPR index associated with argument offset.  */
5576       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5577       GPR_idx = std::min(GPR_idx, NumGPRs);
5578     }
5579 
5580     // Promote integers to 64-bit values.
5581     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5582       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5583       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5584       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5585     }
5586 
5587     // FIXME memcpy is used way more than necessary.  Correctness first.
5588     // Note: "by value" is code for passing a structure by value, not
5589     // basic types.
5590     if (Flags.isByVal()) {
5591       // Note: Size includes alignment padding, so
5592       //   struct x { short a; char b; }
5593       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5594       // These are the proper values we need for right-justifying the
5595       // aggregate in a parameter register.
5596       unsigned Size = Flags.getByValSize();
5597 
5598       // An empty aggregate parameter takes up no storage and no
5599       // registers.
5600       if (Size == 0)
5601         continue;
5602 
5603       if (CallConv == CallingConv::Fast)
5604         ComputePtrOff();
5605 
5606       // All aggregates smaller than 8 bytes must be passed right-justified.
5607       if (Size==1 || Size==2 || Size==4) {
5608         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5609         if (GPR_idx != NumGPRs) {
5610           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5611                                         MachinePointerInfo(), VT);
5612           MemOpChains.push_back(Load.getValue(1));
5613           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5614 
5615           ArgOffset += PtrByteSize;
5616           continue;
5617         }
5618       }
5619 
5620       if (GPR_idx == NumGPRs && Size < 8) {
5621         SDValue AddPtr = PtrOff;
5622         if (!isLittleEndian) {
5623           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5624                                           PtrOff.getValueType());
5625           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5626         }
5627         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5628                                                           CallSeqStart,
5629                                                           Flags, DAG, dl);
5630         ArgOffset += PtrByteSize;
5631         continue;
5632       }
5633       // Copy entire object into memory.  There are cases where gcc-generated
5634       // code assumes it is there, even if it could be put entirely into
5635       // registers.  (This is not what the doc says.)
5636 
5637       // FIXME: The above statement is likely due to a misunderstanding of the
5638       // documents.  All arguments must be copied into the parameter area BY
5639       // THE CALLEE in the event that the callee takes the address of any
5640       // formal argument.  That has not yet been implemented.  However, it is
5641       // reasonable to use the stack area as a staging area for the register
5642       // load.
5643 
5644       // Skip this for small aggregates, as we will use the same slot for a
5645       // right-justified copy, below.
5646       if (Size >= 8)
5647         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5648                                                           CallSeqStart,
5649                                                           Flags, DAG, dl);
5650 
5651       // When a register is available, pass a small aggregate right-justified.
5652       if (Size < 8 && GPR_idx != NumGPRs) {
5653         // The easiest way to get this right-justified in a register
5654         // is to copy the structure into the rightmost portion of a
5655         // local variable slot, then load the whole slot into the
5656         // register.
5657         // FIXME: The memcpy seems to produce pretty awful code for
5658         // small aggregates, particularly for packed ones.
5659         // FIXME: It would be preferable to use the slot in the
5660         // parameter save area instead of a new local variable.
5661         SDValue AddPtr = PtrOff;
5662         if (!isLittleEndian) {
5663           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5664           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5665         }
5666         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5667                                                           CallSeqStart,
5668                                                           Flags, DAG, dl);
5669 
5670         // Load the slot into the register.
5671         SDValue Load =
5672             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5673         MemOpChains.push_back(Load.getValue(1));
5674         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5675 
5676         // Done with this argument.
5677         ArgOffset += PtrByteSize;
5678         continue;
5679       }
5680 
5681       // For aggregates larger than PtrByteSize, copy the pieces of the
5682       // object that fit into registers from the parameter save area.
5683       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5684         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5685         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5686         if (GPR_idx != NumGPRs) {
5687           SDValue Load =
5688               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5689           MemOpChains.push_back(Load.getValue(1));
5690           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5691           ArgOffset += PtrByteSize;
5692         } else {
5693           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5694           break;
5695         }
5696       }
5697       continue;
5698     }
5699 
5700     switch (Arg.getSimpleValueType().SimpleTy) {
5701     default: llvm_unreachable("Unexpected ValueType for argument!");
5702     case MVT::i1:
5703     case MVT::i32:
5704     case MVT::i64:
5705       if (Flags.isNest()) {
5706         // The 'nest' parameter, if any, is passed in R11.
5707         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5708         hasNest = true;
5709         break;
5710       }
5711 
5712       // These can be scalar arguments or elements of an integer array type
5713       // passed directly.  Clang may use those instead of "byval" aggregate
5714       // types to avoid forcing arguments to memory unnecessarily.
5715       if (GPR_idx != NumGPRs) {
5716         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5717       } else {
5718         if (CallConv == CallingConv::Fast)
5719           ComputePtrOff();
5720 
5721         assert(HasParameterArea &&
5722                "Parameter area must exist to pass an argument in memory.");
5723         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5724                          true, isTailCall, false, MemOpChains,
5725                          TailCallArguments, dl);
5726         if (CallConv == CallingConv::Fast)
5727           ArgOffset += PtrByteSize;
5728       }
5729       if (CallConv != CallingConv::Fast)
5730         ArgOffset += PtrByteSize;
5731       break;
5732     case MVT::f32:
5733     case MVT::f64: {
5734       // These can be scalar arguments or elements of a float array type
5735       // passed directly.  The latter are used to implement ELFv2 homogenous
5736       // float aggregates.
5737 
5738       // Named arguments go into FPRs first, and once they overflow, the
5739       // remaining arguments go into GPRs and then the parameter save area.
5740       // Unnamed arguments for vararg functions always go to GPRs and
5741       // then the parameter save area.  For now, put all arguments to vararg
5742       // routines always in both locations (FPR *and* GPR or stack slot).
5743       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5744       bool NeededLoad = false;
5745 
5746       // First load the argument into the next available FPR.
5747       if (FPR_idx != NumFPRs)
5748         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5749 
5750       // Next, load the argument into GPR or stack slot if needed.
5751       if (!NeedGPROrStack)
5752         ;
5753       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5754         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5755         // once we support fp <-> gpr moves.
5756 
5757         // In the non-vararg case, this can only ever happen in the
5758         // presence of f32 array types, since otherwise we never run
5759         // out of FPRs before running out of GPRs.
5760         SDValue ArgVal;
5761 
5762         // Double values are always passed in a single GPR.
5763         if (Arg.getValueType() != MVT::f32) {
5764           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5765 
5766         // Non-array float values are extended and passed in a GPR.
5767         } else if (!Flags.isInConsecutiveRegs()) {
5768           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5769           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5770 
5771         // If we have an array of floats, we collect every odd element
5772         // together with its predecessor into one GPR.
5773         } else if (ArgOffset % PtrByteSize != 0) {
5774           SDValue Lo, Hi;
5775           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5776           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5777           if (!isLittleEndian)
5778             std::swap(Lo, Hi);
5779           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5780 
5781         // The final element, if even, goes into the first half of a GPR.
5782         } else if (Flags.isInConsecutiveRegsLast()) {
5783           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5784           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5785           if (!isLittleEndian)
5786             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5787                                  DAG.getConstant(32, dl, MVT::i32));
5788 
5789         // Non-final even elements are skipped; they will be handled
5790         // together the with subsequent argument on the next go-around.
5791         } else
5792           ArgVal = SDValue();
5793 
5794         if (ArgVal.getNode())
5795           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5796       } else {
5797         if (CallConv == CallingConv::Fast)
5798           ComputePtrOff();
5799 
5800         // Single-precision floating-point values are mapped to the
5801         // second (rightmost) word of the stack doubleword.
5802         if (Arg.getValueType() == MVT::f32 &&
5803             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5804           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5805           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5806         }
5807 
5808         assert(HasParameterArea &&
5809                "Parameter area must exist to pass an argument in memory.");
5810         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5811                          true, isTailCall, false, MemOpChains,
5812                          TailCallArguments, dl);
5813 
5814         NeededLoad = true;
5815       }
5816       // When passing an array of floats, the array occupies consecutive
5817       // space in the argument area; only round up to the next doubleword
5818       // at the end of the array.  Otherwise, each float takes 8 bytes.
5819       if (CallConv != CallingConv::Fast || NeededLoad) {
5820         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5821                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5822         if (Flags.isInConsecutiveRegsLast())
5823           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5824       }
5825       break;
5826     }
5827     case MVT::v4f32:
5828     case MVT::v4i32:
5829     case MVT::v8i16:
5830     case MVT::v16i8:
5831     case MVT::v2f64:
5832     case MVT::v2i64:
5833     case MVT::v1i128:
5834       if (!Subtarget.hasQPX()) {
5835       // These can be scalar arguments or elements of a vector array type
5836       // passed directly.  The latter are used to implement ELFv2 homogenous
5837       // vector aggregates.
5838 
5839       // For a varargs call, named arguments go into VRs or on the stack as
5840       // usual; unnamed arguments always go to the stack or the corresponding
5841       // GPRs when within range.  For now, we always put the value in both
5842       // locations (or even all three).
5843       if (isVarArg) {
5844         assert(HasParameterArea &&
5845                "Parameter area must exist if we have a varargs call.");
5846         // We could elide this store in the case where the object fits
5847         // entirely in R registers.  Maybe later.
5848         SDValue Store =
5849             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5850         MemOpChains.push_back(Store);
5851         if (VR_idx != NumVRs) {
5852           SDValue Load =
5853               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5854           MemOpChains.push_back(Load.getValue(1));
5855           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5856         }
5857         ArgOffset += 16;
5858         for (unsigned i=0; i<16; i+=PtrByteSize) {
5859           if (GPR_idx == NumGPRs)
5860             break;
5861           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5862                                    DAG.getConstant(i, dl, PtrVT));
5863           SDValue Load =
5864               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5865           MemOpChains.push_back(Load.getValue(1));
5866           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5867         }
5868         break;
5869       }
5870 
5871       // Non-varargs Altivec params go into VRs or on the stack.
5872       if (VR_idx != NumVRs) {
5873         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5874       } else {
5875         if (CallConv == CallingConv::Fast)
5876           ComputePtrOff();
5877 
5878         assert(HasParameterArea &&
5879                "Parameter area must exist to pass an argument in memory.");
5880         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5881                          true, isTailCall, true, MemOpChains,
5882                          TailCallArguments, dl);
5883         if (CallConv == CallingConv::Fast)
5884           ArgOffset += 16;
5885       }
5886 
5887       if (CallConv != CallingConv::Fast)
5888         ArgOffset += 16;
5889       break;
5890       } // not QPX
5891 
5892       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5893              "Invalid QPX parameter type");
5894 
5895       /* fall through */
5896     case MVT::v4f64:
5897     case MVT::v4i1: {
5898       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5899       if (isVarArg) {
5900         assert(HasParameterArea &&
5901                "Parameter area must exist if we have a varargs call.");
5902         // We could elide this store in the case where the object fits
5903         // entirely in R registers.  Maybe later.
5904         SDValue Store =
5905             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5906         MemOpChains.push_back(Store);
5907         if (QFPR_idx != NumQFPRs) {
5908           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5909                                      PtrOff, MachinePointerInfo());
5910           MemOpChains.push_back(Load.getValue(1));
5911           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5912         }
5913         ArgOffset += (IsF32 ? 16 : 32);
5914         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5915           if (GPR_idx == NumGPRs)
5916             break;
5917           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5918                                    DAG.getConstant(i, dl, PtrVT));
5919           SDValue Load =
5920               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5921           MemOpChains.push_back(Load.getValue(1));
5922           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5923         }
5924         break;
5925       }
5926 
5927       // Non-varargs QPX params go into registers or on the stack.
5928       if (QFPR_idx != NumQFPRs) {
5929         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5930       } else {
5931         if (CallConv == CallingConv::Fast)
5932           ComputePtrOff();
5933 
5934         assert(HasParameterArea &&
5935                "Parameter area must exist to pass an argument in memory.");
5936         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5937                          true, isTailCall, true, MemOpChains,
5938                          TailCallArguments, dl);
5939         if (CallConv == CallingConv::Fast)
5940           ArgOffset += (IsF32 ? 16 : 32);
5941       }
5942 
5943       if (CallConv != CallingConv::Fast)
5944         ArgOffset += (IsF32 ? 16 : 32);
5945       break;
5946       }
5947     }
5948   }
5949 
5950   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
5951          "mismatch in size of parameter area");
5952   (void)NumBytesActuallyUsed;
5953 
5954   if (!MemOpChains.empty())
5955     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5956 
5957   // Check if this is an indirect call (MTCTR/BCTRL).
5958   // See PrepareCall() for more information about calls through function
5959   // pointers in the 64-bit SVR4 ABI.
5960   if (!isTailCall && !isPatchPoint &&
5961       !isFunctionGlobalAddress(Callee) &&
5962       !isa<ExternalSymbolSDNode>(Callee)) {
5963     // Load r2 into a virtual register and store it to the TOC save area.
5964     setUsesTOCBasePtr(DAG);
5965     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5966     // TOC save area offset.
5967     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5968     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5969     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5970     Chain = DAG.getStore(
5971         Val.getValue(1), dl, Val, AddPtr,
5972         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
5973     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5974     // This does not mean the MTCTR instruction must use R12; it's easier
5975     // to model this as an extra parameter, so do that.
5976     if (isELFv2ABI && !isPatchPoint)
5977       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5978   }
5979 
5980   // Build a sequence of copy-to-reg nodes chained together with token chain
5981   // and flag operands which copy the outgoing args into the appropriate regs.
5982   SDValue InFlag;
5983   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5984     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5985                              RegsToPass[i].second, InFlag);
5986     InFlag = Chain.getValue(1);
5987   }
5988 
5989   if (isTailCall && !IsSibCall)
5990     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5991                     TailCallArguments);
5992 
5993   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
5994                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5995                     SPDiff, NumBytes, Ins, InVals, CS);
5996 }
5997 
5998 SDValue PPCTargetLowering::LowerCall_Darwin(
5999     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6000     bool isTailCall, bool isPatchPoint,
6001     const SmallVectorImpl<ISD::OutputArg> &Outs,
6002     const SmallVectorImpl<SDValue> &OutVals,
6003     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6004     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6005     ImmutableCallSite CS) const {
6006   unsigned NumOps = Outs.size();
6007 
6008   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6009   bool isPPC64 = PtrVT == MVT::i64;
6010   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6011 
6012   MachineFunction &MF = DAG.getMachineFunction();
6013 
6014   // Mark this function as potentially containing a function that contains a
6015   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6016   // and restoring the callers stack pointer in this functions epilog. This is
6017   // done because by tail calling the called function might overwrite the value
6018   // in this function's (MF) stack pointer stack slot 0(SP).
6019   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6020       CallConv == CallingConv::Fast)
6021     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6022 
6023   // Count how many bytes are to be pushed on the stack, including the linkage
6024   // area, and parameter passing area.  We start with 24/48 bytes, which is
6025   // prereserved space for [SP][CR][LR][3 x unused].
6026   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6027   unsigned NumBytes = LinkageSize;
6028 
6029   // Add up all the space actually used.
6030   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6031   // they all go in registers, but we must reserve stack space for them for
6032   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6033   // assigned stack space in order, with padding so Altivec parameters are
6034   // 16-byte aligned.
6035   unsigned nAltivecParamsAtEnd = 0;
6036   for (unsigned i = 0; i != NumOps; ++i) {
6037     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6038     EVT ArgVT = Outs[i].VT;
6039     // Varargs Altivec parameters are padded to a 16 byte boundary.
6040     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6041         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6042         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6043       if (!isVarArg && !isPPC64) {
6044         // Non-varargs Altivec parameters go after all the non-Altivec
6045         // parameters; handle those later so we know how much padding we need.
6046         nAltivecParamsAtEnd++;
6047         continue;
6048       }
6049       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6050       NumBytes = ((NumBytes+15)/16)*16;
6051     }
6052     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6053   }
6054 
6055   // Allow for Altivec parameters at the end, if needed.
6056   if (nAltivecParamsAtEnd) {
6057     NumBytes = ((NumBytes+15)/16)*16;
6058     NumBytes += 16*nAltivecParamsAtEnd;
6059   }
6060 
6061   // The prolog code of the callee may store up to 8 GPR argument registers to
6062   // the stack, allowing va_start to index over them in memory if its varargs.
6063   // Because we cannot tell if this is needed on the caller side, we have to
6064   // conservatively assume that it is needed.  As such, make sure we have at
6065   // least enough stack space for the caller to store the 8 GPRs.
6066   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6067 
6068   // Tail call needs the stack to be aligned.
6069   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6070       CallConv == CallingConv::Fast)
6071     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6072 
6073   // Calculate by how many bytes the stack has to be adjusted in case of tail
6074   // call optimization.
6075   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6076 
6077   // To protect arguments on the stack from being clobbered in a tail call,
6078   // force all the loads to happen before doing any other lowering.
6079   if (isTailCall)
6080     Chain = DAG.getStackArgumentTokenFactor(Chain);
6081 
6082   // Adjust the stack pointer for the new arguments...
6083   // These operations are automatically eliminated by the prolog/epilog pass
6084   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6085   SDValue CallSeqStart = Chain;
6086 
6087   // Load the return address and frame pointer so it can be move somewhere else
6088   // later.
6089   SDValue LROp, FPOp;
6090   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6091 
6092   // Set up a copy of the stack pointer for use loading and storing any
6093   // arguments that may not fit in the registers available for argument
6094   // passing.
6095   SDValue StackPtr;
6096   if (isPPC64)
6097     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6098   else
6099     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6100 
6101   // Figure out which arguments are going to go in registers, and which in
6102   // memory.  Also, if this is a vararg function, floating point operations
6103   // must be stored to our stack, and loaded into integer regs as well, if
6104   // any integer regs are available for argument passing.
6105   unsigned ArgOffset = LinkageSize;
6106   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6107 
6108   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6109     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6110     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6111   };
6112   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6113     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6114     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6115   };
6116   static const MCPhysReg VR[] = {
6117     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6118     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6119   };
6120   const unsigned NumGPRs = array_lengthof(GPR_32);
6121   const unsigned NumFPRs = 13;
6122   const unsigned NumVRs  = array_lengthof(VR);
6123 
6124   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6125 
6126   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6127   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6128 
6129   SmallVector<SDValue, 8> MemOpChains;
6130   for (unsigned i = 0; i != NumOps; ++i) {
6131     SDValue Arg = OutVals[i];
6132     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6133 
6134     // PtrOff will be used to store the current argument to the stack if a
6135     // register cannot be found for it.
6136     SDValue PtrOff;
6137 
6138     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6139 
6140     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6141 
6142     // On PPC64, promote integers to 64-bit values.
6143     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6144       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6145       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6146       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6147     }
6148 
6149     // FIXME memcpy is used way more than necessary.  Correctness first.
6150     // Note: "by value" is code for passing a structure by value, not
6151     // basic types.
6152     if (Flags.isByVal()) {
6153       unsigned Size = Flags.getByValSize();
6154       // Very small objects are passed right-justified.  Everything else is
6155       // passed left-justified.
6156       if (Size==1 || Size==2) {
6157         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6158         if (GPR_idx != NumGPRs) {
6159           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6160                                         MachinePointerInfo(), VT);
6161           MemOpChains.push_back(Load.getValue(1));
6162           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6163 
6164           ArgOffset += PtrByteSize;
6165         } else {
6166           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6167                                           PtrOff.getValueType());
6168           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6169           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6170                                                             CallSeqStart,
6171                                                             Flags, DAG, dl);
6172           ArgOffset += PtrByteSize;
6173         }
6174         continue;
6175       }
6176       // Copy entire object into memory.  There are cases where gcc-generated
6177       // code assumes it is there, even if it could be put entirely into
6178       // registers.  (This is not what the doc says.)
6179       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6180                                                         CallSeqStart,
6181                                                         Flags, DAG, dl);
6182 
6183       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6184       // copy the pieces of the object that fit into registers from the
6185       // parameter save area.
6186       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6187         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6188         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6189         if (GPR_idx != NumGPRs) {
6190           SDValue Load =
6191               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6192           MemOpChains.push_back(Load.getValue(1));
6193           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6194           ArgOffset += PtrByteSize;
6195         } else {
6196           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6197           break;
6198         }
6199       }
6200       continue;
6201     }
6202 
6203     switch (Arg.getSimpleValueType().SimpleTy) {
6204     default: llvm_unreachable("Unexpected ValueType for argument!");
6205     case MVT::i1:
6206     case MVT::i32:
6207     case MVT::i64:
6208       if (GPR_idx != NumGPRs) {
6209         if (Arg.getValueType() == MVT::i1)
6210           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6211 
6212         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6213       } else {
6214         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6215                          isPPC64, isTailCall, false, MemOpChains,
6216                          TailCallArguments, dl);
6217       }
6218       ArgOffset += PtrByteSize;
6219       break;
6220     case MVT::f32:
6221     case MVT::f64:
6222       if (FPR_idx != NumFPRs) {
6223         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6224 
6225         if (isVarArg) {
6226           SDValue Store =
6227               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6228           MemOpChains.push_back(Store);
6229 
6230           // Float varargs are always shadowed in available integer registers
6231           if (GPR_idx != NumGPRs) {
6232             SDValue Load =
6233                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6234             MemOpChains.push_back(Load.getValue(1));
6235             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6236           }
6237           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6238             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6239             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6240             SDValue Load =
6241                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6242             MemOpChains.push_back(Load.getValue(1));
6243             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6244           }
6245         } else {
6246           // If we have any FPRs remaining, we may also have GPRs remaining.
6247           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6248           // GPRs.
6249           if (GPR_idx != NumGPRs)
6250             ++GPR_idx;
6251           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6252               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6253             ++GPR_idx;
6254         }
6255       } else
6256         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6257                          isPPC64, isTailCall, false, MemOpChains,
6258                          TailCallArguments, dl);
6259       if (isPPC64)
6260         ArgOffset += 8;
6261       else
6262         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6263       break;
6264     case MVT::v4f32:
6265     case MVT::v4i32:
6266     case MVT::v8i16:
6267     case MVT::v16i8:
6268       if (isVarArg) {
6269         // These go aligned on the stack, or in the corresponding R registers
6270         // when within range.  The Darwin PPC ABI doc claims they also go in
6271         // V registers; in fact gcc does this only for arguments that are
6272         // prototyped, not for those that match the ...  We do it for all
6273         // arguments, seems to work.
6274         while (ArgOffset % 16 !=0) {
6275           ArgOffset += PtrByteSize;
6276           if (GPR_idx != NumGPRs)
6277             GPR_idx++;
6278         }
6279         // We could elide this store in the case where the object fits
6280         // entirely in R registers.  Maybe later.
6281         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6282                              DAG.getConstant(ArgOffset, dl, PtrVT));
6283         SDValue Store =
6284             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6285         MemOpChains.push_back(Store);
6286         if (VR_idx != NumVRs) {
6287           SDValue Load =
6288               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6289           MemOpChains.push_back(Load.getValue(1));
6290           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6291         }
6292         ArgOffset += 16;
6293         for (unsigned i=0; i<16; i+=PtrByteSize) {
6294           if (GPR_idx == NumGPRs)
6295             break;
6296           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6297                                    DAG.getConstant(i, dl, PtrVT));
6298           SDValue Load =
6299               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6300           MemOpChains.push_back(Load.getValue(1));
6301           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6302         }
6303         break;
6304       }
6305 
6306       // Non-varargs Altivec params generally go in registers, but have
6307       // stack space allocated at the end.
6308       if (VR_idx != NumVRs) {
6309         // Doesn't have GPR space allocated.
6310         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6311       } else if (nAltivecParamsAtEnd==0) {
6312         // We are emitting Altivec params in order.
6313         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6314                          isPPC64, isTailCall, true, MemOpChains,
6315                          TailCallArguments, dl);
6316         ArgOffset += 16;
6317       }
6318       break;
6319     }
6320   }
6321   // If all Altivec parameters fit in registers, as they usually do,
6322   // they get stack space following the non-Altivec parameters.  We
6323   // don't track this here because nobody below needs it.
6324   // If there are more Altivec parameters than fit in registers emit
6325   // the stores here.
6326   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6327     unsigned j = 0;
6328     // Offset is aligned; skip 1st 12 params which go in V registers.
6329     ArgOffset = ((ArgOffset+15)/16)*16;
6330     ArgOffset += 12*16;
6331     for (unsigned i = 0; i != NumOps; ++i) {
6332       SDValue Arg = OutVals[i];
6333       EVT ArgType = Outs[i].VT;
6334       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6335           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6336         if (++j > NumVRs) {
6337           SDValue PtrOff;
6338           // We are emitting Altivec params in order.
6339           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6340                            isPPC64, isTailCall, true, MemOpChains,
6341                            TailCallArguments, dl);
6342           ArgOffset += 16;
6343         }
6344       }
6345     }
6346   }
6347 
6348   if (!MemOpChains.empty())
6349     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6350 
6351   // On Darwin, R12 must contain the address of an indirect callee.  This does
6352   // not mean the MTCTR instruction must use R12; it's easier to model this as
6353   // an extra parameter, so do that.
6354   if (!isTailCall &&
6355       !isFunctionGlobalAddress(Callee) &&
6356       !isa<ExternalSymbolSDNode>(Callee) &&
6357       !isBLACompatibleAddress(Callee, DAG))
6358     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6359                                                    PPC::R12), Callee));
6360 
6361   // Build a sequence of copy-to-reg nodes chained together with token chain
6362   // and flag operands which copy the outgoing args into the appropriate regs.
6363   SDValue InFlag;
6364   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6365     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6366                              RegsToPass[i].second, InFlag);
6367     InFlag = Chain.getValue(1);
6368   }
6369 
6370   if (isTailCall)
6371     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6372                     TailCallArguments);
6373 
6374   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6375                     /* unused except on PPC64 ELFv1 */ false, DAG,
6376                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6377                     NumBytes, Ins, InVals, CS);
6378 }
6379 
6380 bool
6381 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6382                                   MachineFunction &MF, bool isVarArg,
6383                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6384                                   LLVMContext &Context) const {
6385   SmallVector<CCValAssign, 16> RVLocs;
6386   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6387   return CCInfo.CheckReturn(Outs, RetCC_PPC);
6388 }
6389 
6390 SDValue
6391 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6392                                bool isVarArg,
6393                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6394                                const SmallVectorImpl<SDValue> &OutVals,
6395                                const SDLoc &dl, SelectionDAG &DAG) const {
6396   SmallVector<CCValAssign, 16> RVLocs;
6397   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6398                  *DAG.getContext());
6399   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6400 
6401   SDValue Flag;
6402   SmallVector<SDValue, 4> RetOps(1, Chain);
6403 
6404   // Copy the result values into the output registers.
6405   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6406     CCValAssign &VA = RVLocs[i];
6407     assert(VA.isRegLoc() && "Can only return in registers!");
6408 
6409     SDValue Arg = OutVals[i];
6410 
6411     switch (VA.getLocInfo()) {
6412     default: llvm_unreachable("Unknown loc info!");
6413     case CCValAssign::Full: break;
6414     case CCValAssign::AExt:
6415       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6416       break;
6417     case CCValAssign::ZExt:
6418       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6419       break;
6420     case CCValAssign::SExt:
6421       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6422       break;
6423     }
6424 
6425     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6426     Flag = Chain.getValue(1);
6427     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6428   }
6429 
6430   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6431   const MCPhysReg *I =
6432     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6433   if (I) {
6434     for (; *I; ++I) {
6435 
6436       if (PPC::G8RCRegClass.contains(*I))
6437         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6438       else if (PPC::F8RCRegClass.contains(*I))
6439         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6440       else if (PPC::CRRCRegClass.contains(*I))
6441         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6442       else if (PPC::VRRCRegClass.contains(*I))
6443         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6444       else
6445         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6446     }
6447   }
6448 
6449   RetOps[0] = Chain;  // Update chain.
6450 
6451   // Add the flag if we have it.
6452   if (Flag.getNode())
6453     RetOps.push_back(Flag);
6454 
6455   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6456 }
6457 
6458 SDValue
6459 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6460                                                 SelectionDAG &DAG) const {
6461   SDLoc dl(Op);
6462 
6463   // Get the correct type for integers.
6464   EVT IntVT = Op.getValueType();
6465 
6466   // Get the inputs.
6467   SDValue Chain = Op.getOperand(0);
6468   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6469   // Build a DYNAREAOFFSET node.
6470   SDValue Ops[2] = {Chain, FPSIdx};
6471   SDVTList VTs = DAG.getVTList(IntVT);
6472   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6473 }
6474 
6475 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6476                                              SelectionDAG &DAG) const {
6477   // When we pop the dynamic allocation we need to restore the SP link.
6478   SDLoc dl(Op);
6479 
6480   // Get the correct type for pointers.
6481   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6482 
6483   // Construct the stack pointer operand.
6484   bool isPPC64 = Subtarget.isPPC64();
6485   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6486   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6487 
6488   // Get the operands for the STACKRESTORE.
6489   SDValue Chain = Op.getOperand(0);
6490   SDValue SaveSP = Op.getOperand(1);
6491 
6492   // Load the old link SP.
6493   SDValue LoadLinkSP =
6494       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6495 
6496   // Restore the stack pointer.
6497   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6498 
6499   // Store the old link SP.
6500   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6501 }
6502 
6503 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6504   MachineFunction &MF = DAG.getMachineFunction();
6505   bool isPPC64 = Subtarget.isPPC64();
6506   EVT PtrVT = getPointerTy(MF.getDataLayout());
6507 
6508   // Get current frame pointer save index.  The users of this index will be
6509   // primarily DYNALLOC instructions.
6510   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6511   int RASI = FI->getReturnAddrSaveIndex();
6512 
6513   // If the frame pointer save index hasn't been defined yet.
6514   if (!RASI) {
6515     // Find out what the fix offset of the frame pointer save area.
6516     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6517     // Allocate the frame index for frame pointer save area.
6518     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6519     // Save the result.
6520     FI->setReturnAddrSaveIndex(RASI);
6521   }
6522   return DAG.getFrameIndex(RASI, PtrVT);
6523 }
6524 
6525 SDValue
6526 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6527   MachineFunction &MF = DAG.getMachineFunction();
6528   bool isPPC64 = Subtarget.isPPC64();
6529   EVT PtrVT = getPointerTy(MF.getDataLayout());
6530 
6531   // Get current frame pointer save index.  The users of this index will be
6532   // primarily DYNALLOC instructions.
6533   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6534   int FPSI = FI->getFramePointerSaveIndex();
6535 
6536   // If the frame pointer save index hasn't been defined yet.
6537   if (!FPSI) {
6538     // Find out what the fix offset of the frame pointer save area.
6539     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6540     // Allocate the frame index for frame pointer save area.
6541     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6542     // Save the result.
6543     FI->setFramePointerSaveIndex(FPSI);
6544   }
6545   return DAG.getFrameIndex(FPSI, PtrVT);
6546 }
6547 
6548 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6549                                                    SelectionDAG &DAG) const {
6550   // Get the inputs.
6551   SDValue Chain = Op.getOperand(0);
6552   SDValue Size  = Op.getOperand(1);
6553   SDLoc dl(Op);
6554 
6555   // Get the correct type for pointers.
6556   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6557   // Negate the size.
6558   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6559                                 DAG.getConstant(0, dl, PtrVT), Size);
6560   // Construct a node for the frame pointer save index.
6561   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6562   // Build a DYNALLOC node.
6563   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6564   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6565   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6566 }
6567 
6568 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6569                                                      SelectionDAG &DAG) const {
6570   MachineFunction &MF = DAG.getMachineFunction();
6571 
6572   bool isPPC64 = Subtarget.isPPC64();
6573   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6574 
6575   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6576   return DAG.getFrameIndex(FI, PtrVT);
6577 }
6578 
6579 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6580                                                SelectionDAG &DAG) const {
6581   SDLoc DL(Op);
6582   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6583                      DAG.getVTList(MVT::i32, MVT::Other),
6584                      Op.getOperand(0), Op.getOperand(1));
6585 }
6586 
6587 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6588                                                 SelectionDAG &DAG) const {
6589   SDLoc DL(Op);
6590   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6591                      Op.getOperand(0), Op.getOperand(1));
6592 }
6593 
6594 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6595   if (Op.getValueType().isVector())
6596     return LowerVectorLoad(Op, DAG);
6597 
6598   assert(Op.getValueType() == MVT::i1 &&
6599          "Custom lowering only for i1 loads");
6600 
6601   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6602 
6603   SDLoc dl(Op);
6604   LoadSDNode *LD = cast<LoadSDNode>(Op);
6605 
6606   SDValue Chain = LD->getChain();
6607   SDValue BasePtr = LD->getBasePtr();
6608   MachineMemOperand *MMO = LD->getMemOperand();
6609 
6610   SDValue NewLD =
6611       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6612                      BasePtr, MVT::i8, MMO);
6613   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6614 
6615   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6616   return DAG.getMergeValues(Ops, dl);
6617 }
6618 
6619 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6620   if (Op.getOperand(1).getValueType().isVector())
6621     return LowerVectorStore(Op, DAG);
6622 
6623   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6624          "Custom lowering only for i1 stores");
6625 
6626   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6627 
6628   SDLoc dl(Op);
6629   StoreSDNode *ST = cast<StoreSDNode>(Op);
6630 
6631   SDValue Chain = ST->getChain();
6632   SDValue BasePtr = ST->getBasePtr();
6633   SDValue Value = ST->getValue();
6634   MachineMemOperand *MMO = ST->getMemOperand();
6635 
6636   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6637                       Value);
6638   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6639 }
6640 
6641 // FIXME: Remove this once the ANDI glue bug is fixed:
6642 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6643   assert(Op.getValueType() == MVT::i1 &&
6644          "Custom lowering only for i1 results");
6645 
6646   SDLoc DL(Op);
6647   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6648                      Op.getOperand(0));
6649 }
6650 
6651 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6652 /// possible.
6653 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6654   // Not FP? Not a fsel.
6655   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6656       !Op.getOperand(2).getValueType().isFloatingPoint())
6657     return Op;
6658 
6659   // We might be able to do better than this under some circumstances, but in
6660   // general, fsel-based lowering of select is a finite-math-only optimization.
6661   // For more information, see section F.3 of the 2.06 ISA specification.
6662   if (!DAG.getTarget().Options.NoInfsFPMath ||
6663       !DAG.getTarget().Options.NoNaNsFPMath)
6664     return Op;
6665   // TODO: Propagate flags from the select rather than global settings.
6666   SDNodeFlags Flags;
6667   Flags.setNoInfs(true);
6668   Flags.setNoNaNs(true);
6669 
6670   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6671 
6672   EVT ResVT = Op.getValueType();
6673   EVT CmpVT = Op.getOperand(0).getValueType();
6674   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6675   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6676   SDLoc dl(Op);
6677 
6678   // If the RHS of the comparison is a 0.0, we don't need to do the
6679   // subtraction at all.
6680   SDValue Sel1;
6681   if (isFloatingPointZero(RHS))
6682     switch (CC) {
6683     default: break;       // SETUO etc aren't handled by fsel.
6684     case ISD::SETNE:
6685       std::swap(TV, FV);
6686       LLVM_FALLTHROUGH;
6687     case ISD::SETEQ:
6688       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6689         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6690       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6691       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6692         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6693       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6694                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6695     case ISD::SETULT:
6696     case ISD::SETLT:
6697       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6698       LLVM_FALLTHROUGH;
6699     case ISD::SETOGE:
6700     case ISD::SETGE:
6701       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6702         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6703       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6704     case ISD::SETUGT:
6705     case ISD::SETGT:
6706       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6707       LLVM_FALLTHROUGH;
6708     case ISD::SETOLE:
6709     case ISD::SETLE:
6710       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6711         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6712       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6713                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6714     }
6715 
6716   SDValue Cmp;
6717   switch (CC) {
6718   default: break;       // SETUO etc aren't handled by fsel.
6719   case ISD::SETNE:
6720     std::swap(TV, FV);
6721     LLVM_FALLTHROUGH;
6722   case ISD::SETEQ:
6723     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6724     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6725       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6726     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6727     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6728       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6729     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6730                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6731   case ISD::SETULT:
6732   case ISD::SETLT:
6733     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6734     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6735       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6736     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6737   case ISD::SETOGE:
6738   case ISD::SETGE:
6739     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6740     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6741       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6742     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6743   case ISD::SETUGT:
6744   case ISD::SETGT:
6745     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6746     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6747       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6748     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6749   case ISD::SETOLE:
6750   case ISD::SETLE:
6751     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6752     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6753       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6754     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6755   }
6756   return Op;
6757 }
6758 
6759 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6760                                                SelectionDAG &DAG,
6761                                                const SDLoc &dl) const {
6762   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6763   SDValue Src = Op.getOperand(0);
6764   if (Src.getValueType() == MVT::f32)
6765     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6766 
6767   SDValue Tmp;
6768   switch (Op.getSimpleValueType().SimpleTy) {
6769   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6770   case MVT::i32:
6771     Tmp = DAG.getNode(
6772         Op.getOpcode() == ISD::FP_TO_SINT
6773             ? PPCISD::FCTIWZ
6774             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6775         dl, MVT::f64, Src);
6776     break;
6777   case MVT::i64:
6778     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6779            "i64 FP_TO_UINT is supported only with FPCVT");
6780     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6781                                                         PPCISD::FCTIDUZ,
6782                       dl, MVT::f64, Src);
6783     break;
6784   }
6785 
6786   // Convert the FP value to an int value through memory.
6787   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6788     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6789   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6790   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6791   MachinePointerInfo MPI =
6792       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6793 
6794   // Emit a store to the stack slot.
6795   SDValue Chain;
6796   if (i32Stack) {
6797     MachineFunction &MF = DAG.getMachineFunction();
6798     MachineMemOperand *MMO =
6799       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6800     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6801     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6802               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6803   } else
6804     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6805 
6806   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6807   // add in a bias on big endian.
6808   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6809     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6810                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6811     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6812   }
6813 
6814   RLI.Chain = Chain;
6815   RLI.Ptr = FIPtr;
6816   RLI.MPI = MPI;
6817 }
6818 
6819 /// \brief Custom lowers floating point to integer conversions to use
6820 /// the direct move instructions available in ISA 2.07 to avoid the
6821 /// need for load/store combinations.
6822 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6823                                                     SelectionDAG &DAG,
6824                                                     const SDLoc &dl) const {
6825   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6826   SDValue Src = Op.getOperand(0);
6827 
6828   if (Src.getValueType() == MVT::f32)
6829     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6830 
6831   SDValue Tmp;
6832   switch (Op.getSimpleValueType().SimpleTy) {
6833   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6834   case MVT::i32:
6835     Tmp = DAG.getNode(
6836         Op.getOpcode() == ISD::FP_TO_SINT
6837             ? PPCISD::FCTIWZ
6838             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6839         dl, MVT::f64, Src);
6840     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6841     break;
6842   case MVT::i64:
6843     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6844            "i64 FP_TO_UINT is supported only with FPCVT");
6845     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6846                                                         PPCISD::FCTIDUZ,
6847                       dl, MVT::f64, Src);
6848     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6849     break;
6850   }
6851   return Tmp;
6852 }
6853 
6854 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6855                                           const SDLoc &dl) const {
6856   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6857     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6858 
6859   ReuseLoadInfo RLI;
6860   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6861 
6862   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6863                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6864 }
6865 
6866 // We're trying to insert a regular store, S, and then a load, L. If the
6867 // incoming value, O, is a load, we might just be able to have our load use the
6868 // address used by O. However, we don't know if anything else will store to
6869 // that address before we can load from it. To prevent this situation, we need
6870 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6871 // the same chain operand as O, we create a token factor from the chain results
6872 // of O and L, and we replace all uses of O's chain result with that token
6873 // factor (see spliceIntoChain below for this last part).
6874 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6875                                             ReuseLoadInfo &RLI,
6876                                             SelectionDAG &DAG,
6877                                             ISD::LoadExtType ET) const {
6878   SDLoc dl(Op);
6879   if (ET == ISD::NON_EXTLOAD &&
6880       (Op.getOpcode() == ISD::FP_TO_UINT ||
6881        Op.getOpcode() == ISD::FP_TO_SINT) &&
6882       isOperationLegalOrCustom(Op.getOpcode(),
6883                                Op.getOperand(0).getValueType())) {
6884 
6885     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6886     return true;
6887   }
6888 
6889   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6890   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6891       LD->isNonTemporal())
6892     return false;
6893   if (LD->getMemoryVT() != MemVT)
6894     return false;
6895 
6896   RLI.Ptr = LD->getBasePtr();
6897   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6898     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6899            "Non-pre-inc AM on PPC?");
6900     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6901                           LD->getOffset());
6902   }
6903 
6904   RLI.Chain = LD->getChain();
6905   RLI.MPI = LD->getPointerInfo();
6906   RLI.IsDereferenceable = LD->isDereferenceable();
6907   RLI.IsInvariant = LD->isInvariant();
6908   RLI.Alignment = LD->getAlignment();
6909   RLI.AAInfo = LD->getAAInfo();
6910   RLI.Ranges = LD->getRanges();
6911 
6912   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6913   return true;
6914 }
6915 
6916 // Given the head of the old chain, ResChain, insert a token factor containing
6917 // it and NewResChain, and make users of ResChain now be users of that token
6918 // factor.
6919 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
6920 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6921                                         SDValue NewResChain,
6922                                         SelectionDAG &DAG) const {
6923   if (!ResChain)
6924     return;
6925 
6926   SDLoc dl(NewResChain);
6927 
6928   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6929                            NewResChain, DAG.getUNDEF(MVT::Other));
6930   assert(TF.getNode() != NewResChain.getNode() &&
6931          "A new TF really is required here");
6932 
6933   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6934   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6935 }
6936 
6937 /// \brief Analyze profitability of direct move
6938 /// prefer float load to int load plus direct move
6939 /// when there is no integer use of int load
6940 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
6941   SDNode *Origin = Op.getOperand(0).getNode();
6942   if (Origin->getOpcode() != ISD::LOAD)
6943     return true;
6944 
6945   // If there is no LXSIBZX/LXSIHZX, like Power8,
6946   // prefer direct move if the memory size is 1 or 2 bytes.
6947   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
6948   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
6949     return true;
6950 
6951   for (SDNode::use_iterator UI = Origin->use_begin(),
6952                             UE = Origin->use_end();
6953        UI != UE; ++UI) {
6954 
6955     // Only look at the users of the loaded value.
6956     if (UI.getUse().get().getResNo() != 0)
6957       continue;
6958 
6959     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6960         UI->getOpcode() != ISD::UINT_TO_FP)
6961       return true;
6962   }
6963 
6964   return false;
6965 }
6966 
6967 /// \brief Custom lowers integer to floating point conversions to use
6968 /// the direct move instructions available in ISA 2.07 to avoid the
6969 /// need for load/store combinations.
6970 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6971                                                     SelectionDAG &DAG,
6972                                                     const SDLoc &dl) const {
6973   assert((Op.getValueType() == MVT::f32 ||
6974           Op.getValueType() == MVT::f64) &&
6975          "Invalid floating point type as target of conversion");
6976   assert(Subtarget.hasFPCVT() &&
6977          "Int to FP conversions with direct moves require FPCVT");
6978   SDValue FP;
6979   SDValue Src = Op.getOperand(0);
6980   bool SinglePrec = Op.getValueType() == MVT::f32;
6981   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6982   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6983   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6984                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6985 
6986   if (WordInt) {
6987     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6988                      dl, MVT::f64, Src);
6989     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6990   }
6991   else {
6992     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6993     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6994   }
6995 
6996   return FP;
6997 }
6998 
6999 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7000                                           SelectionDAG &DAG) const {
7001   SDLoc dl(Op);
7002 
7003   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7004     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7005       return SDValue();
7006 
7007     SDValue Value = Op.getOperand(0);
7008     // The values are now known to be -1 (false) or 1 (true). To convert this
7009     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7010     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7011     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7012 
7013     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7014 
7015     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7016 
7017     if (Op.getValueType() != MVT::v4f64)
7018       Value = DAG.getNode(ISD::FP_ROUND, dl,
7019                           Op.getValueType(), Value,
7020                           DAG.getIntPtrConstant(1, dl));
7021     return Value;
7022   }
7023 
7024   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7025   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7026     return SDValue();
7027 
7028   if (Op.getOperand(0).getValueType() == MVT::i1)
7029     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7030                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7031                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7032 
7033   // If we have direct moves, we can do all the conversion, skip the store/load
7034   // however, without FPCVT we can't do most conversions.
7035   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7036       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7037     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7038 
7039   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7040          "UINT_TO_FP is supported only with FPCVT");
7041 
7042   // If we have FCFIDS, then use it when converting to single-precision.
7043   // Otherwise, convert to double-precision and then round.
7044   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7045                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7046                                                             : PPCISD::FCFIDS)
7047                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7048                                                             : PPCISD::FCFID);
7049   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7050                   ? MVT::f32
7051                   : MVT::f64;
7052 
7053   if (Op.getOperand(0).getValueType() == MVT::i64) {
7054     SDValue SINT = Op.getOperand(0);
7055     // When converting to single-precision, we actually need to convert
7056     // to double-precision first and then round to single-precision.
7057     // To avoid double-rounding effects during that operation, we have
7058     // to prepare the input operand.  Bits that might be truncated when
7059     // converting to double-precision are replaced by a bit that won't
7060     // be lost at this stage, but is below the single-precision rounding
7061     // position.
7062     //
7063     // However, if -enable-unsafe-fp-math is in effect, accept double
7064     // rounding to avoid the extra overhead.
7065     if (Op.getValueType() == MVT::f32 &&
7066         !Subtarget.hasFPCVT() &&
7067         !DAG.getTarget().Options.UnsafeFPMath) {
7068 
7069       // Twiddle input to make sure the low 11 bits are zero.  (If this
7070       // is the case, we are guaranteed the value will fit into the 53 bit
7071       // mantissa of an IEEE double-precision value without rounding.)
7072       // If any of those low 11 bits were not zero originally, make sure
7073       // bit 12 (value 2048) is set instead, so that the final rounding
7074       // to single-precision gets the correct result.
7075       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7076                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7077       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7078                           Round, DAG.getConstant(2047, dl, MVT::i64));
7079       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7080       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7081                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7082 
7083       // However, we cannot use that value unconditionally: if the magnitude
7084       // of the input value is small, the bit-twiddling we did above might
7085       // end up visibly changing the output.  Fortunately, in that case, we
7086       // don't need to twiddle bits since the original input will convert
7087       // exactly to double-precision floating-point already.  Therefore,
7088       // construct a conditional to use the original value if the top 11
7089       // bits are all sign-bit copies, and use the rounded value computed
7090       // above otherwise.
7091       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7092                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7093       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7094                          Cond, DAG.getConstant(1, dl, MVT::i64));
7095       Cond = DAG.getSetCC(dl, MVT::i32,
7096                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7097 
7098       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7099     }
7100 
7101     ReuseLoadInfo RLI;
7102     SDValue Bits;
7103 
7104     MachineFunction &MF = DAG.getMachineFunction();
7105     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7106       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7107                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7108       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7109     } else if (Subtarget.hasLFIWAX() &&
7110                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7111       MachineMemOperand *MMO =
7112         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7113                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7114       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7115       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7116                                      DAG.getVTList(MVT::f64, MVT::Other),
7117                                      Ops, MVT::i32, MMO);
7118       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7119     } else if (Subtarget.hasFPCVT() &&
7120                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7121       MachineMemOperand *MMO =
7122         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7123                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7124       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7125       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7126                                      DAG.getVTList(MVT::f64, MVT::Other),
7127                                      Ops, MVT::i32, MMO);
7128       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7129     } else if (((Subtarget.hasLFIWAX() &&
7130                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7131                 (Subtarget.hasFPCVT() &&
7132                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7133                SINT.getOperand(0).getValueType() == MVT::i32) {
7134       MachineFrameInfo &MFI = MF.getFrameInfo();
7135       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7136 
7137       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7138       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7139 
7140       SDValue Store =
7141           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7142                        MachinePointerInfo::getFixedStack(
7143                            DAG.getMachineFunction(), FrameIdx));
7144 
7145       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7146              "Expected an i32 store");
7147 
7148       RLI.Ptr = FIdx;
7149       RLI.Chain = Store;
7150       RLI.MPI =
7151           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7152       RLI.Alignment = 4;
7153 
7154       MachineMemOperand *MMO =
7155         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7156                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7157       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7158       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7159                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7160                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7161                                      Ops, MVT::i32, MMO);
7162     } else
7163       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7164 
7165     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7166 
7167     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7168       FP = DAG.getNode(ISD::FP_ROUND, dl,
7169                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7170     return FP;
7171   }
7172 
7173   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7174          "Unhandled INT_TO_FP type in custom expander!");
7175   // Since we only generate this in 64-bit mode, we can take advantage of
7176   // 64-bit registers.  In particular, sign extend the input value into the
7177   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7178   // then lfd it and fcfid it.
7179   MachineFunction &MF = DAG.getMachineFunction();
7180   MachineFrameInfo &MFI = MF.getFrameInfo();
7181   EVT PtrVT = getPointerTy(MF.getDataLayout());
7182 
7183   SDValue Ld;
7184   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7185     ReuseLoadInfo RLI;
7186     bool ReusingLoad;
7187     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7188                                             DAG))) {
7189       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7190       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7191 
7192       SDValue Store =
7193           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7194                        MachinePointerInfo::getFixedStack(
7195                            DAG.getMachineFunction(), FrameIdx));
7196 
7197       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7198              "Expected an i32 store");
7199 
7200       RLI.Ptr = FIdx;
7201       RLI.Chain = Store;
7202       RLI.MPI =
7203           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7204       RLI.Alignment = 4;
7205     }
7206 
7207     MachineMemOperand *MMO =
7208       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7209                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7210     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7211     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7212                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7213                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7214                                  Ops, MVT::i32, MMO);
7215     if (ReusingLoad)
7216       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7217   } else {
7218     assert(Subtarget.isPPC64() &&
7219            "i32->FP without LFIWAX supported only on PPC64");
7220 
7221     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7222     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7223 
7224     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7225                                 Op.getOperand(0));
7226 
7227     // STD the extended value into the stack slot.
7228     SDValue Store = DAG.getStore(
7229         DAG.getEntryNode(), dl, Ext64, FIdx,
7230         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7231 
7232     // Load the value as a double.
7233     Ld = DAG.getLoad(
7234         MVT::f64, dl, Store, FIdx,
7235         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7236   }
7237 
7238   // FCFID it and return it.
7239   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7240   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7241     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7242                      DAG.getIntPtrConstant(0, dl));
7243   return FP;
7244 }
7245 
7246 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7247                                             SelectionDAG &DAG) const {
7248   SDLoc dl(Op);
7249   /*
7250    The rounding mode is in bits 30:31 of FPSR, and has the following
7251    settings:
7252      00 Round to nearest
7253      01 Round to 0
7254      10 Round to +inf
7255      11 Round to -inf
7256 
7257   FLT_ROUNDS, on the other hand, expects the following:
7258     -1 Undefined
7259      0 Round to 0
7260      1 Round to nearest
7261      2 Round to +inf
7262      3 Round to -inf
7263 
7264   To perform the conversion, we do:
7265     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7266   */
7267 
7268   MachineFunction &MF = DAG.getMachineFunction();
7269   EVT VT = Op.getValueType();
7270   EVT PtrVT = getPointerTy(MF.getDataLayout());
7271 
7272   // Save FP Control Word to register
7273   EVT NodeTys[] = {
7274     MVT::f64,    // return register
7275     MVT::Glue    // unused in this context
7276   };
7277   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7278 
7279   // Save FP register to stack slot
7280   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7281   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7282   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7283                                MachinePointerInfo());
7284 
7285   // Load FP Control Word from low 32 bits of stack slot.
7286   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7287   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7288   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7289 
7290   // Transform as necessary
7291   SDValue CWD1 =
7292     DAG.getNode(ISD::AND, dl, MVT::i32,
7293                 CWD, DAG.getConstant(3, dl, MVT::i32));
7294   SDValue CWD2 =
7295     DAG.getNode(ISD::SRL, dl, MVT::i32,
7296                 DAG.getNode(ISD::AND, dl, MVT::i32,
7297                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7298                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7299                             DAG.getConstant(3, dl, MVT::i32)),
7300                 DAG.getConstant(1, dl, MVT::i32));
7301 
7302   SDValue RetVal =
7303     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7304 
7305   return DAG.getNode((VT.getSizeInBits() < 16 ?
7306                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7307 }
7308 
7309 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7310   EVT VT = Op.getValueType();
7311   unsigned BitWidth = VT.getSizeInBits();
7312   SDLoc dl(Op);
7313   assert(Op.getNumOperands() == 3 &&
7314          VT == Op.getOperand(1).getValueType() &&
7315          "Unexpected SHL!");
7316 
7317   // Expand into a bunch of logical ops.  Note that these ops
7318   // depend on the PPC behavior for oversized shift amounts.
7319   SDValue Lo = Op.getOperand(0);
7320   SDValue Hi = Op.getOperand(1);
7321   SDValue Amt = Op.getOperand(2);
7322   EVT AmtVT = Amt.getValueType();
7323 
7324   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7325                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7326   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7327   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7328   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7329   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7330                              DAG.getConstant(-BitWidth, dl, AmtVT));
7331   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7332   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7333   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7334   SDValue OutOps[] = { OutLo, OutHi };
7335   return DAG.getMergeValues(OutOps, dl);
7336 }
7337 
7338 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7339   EVT VT = Op.getValueType();
7340   SDLoc dl(Op);
7341   unsigned BitWidth = VT.getSizeInBits();
7342   assert(Op.getNumOperands() == 3 &&
7343          VT == Op.getOperand(1).getValueType() &&
7344          "Unexpected SRL!");
7345 
7346   // Expand into a bunch of logical ops.  Note that these ops
7347   // depend on the PPC behavior for oversized shift amounts.
7348   SDValue Lo = Op.getOperand(0);
7349   SDValue Hi = Op.getOperand(1);
7350   SDValue Amt = Op.getOperand(2);
7351   EVT AmtVT = Amt.getValueType();
7352 
7353   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7354                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7355   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7356   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7357   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7358   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7359                              DAG.getConstant(-BitWidth, dl, AmtVT));
7360   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7361   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7362   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7363   SDValue OutOps[] = { OutLo, OutHi };
7364   return DAG.getMergeValues(OutOps, dl);
7365 }
7366 
7367 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7368   SDLoc dl(Op);
7369   EVT VT = Op.getValueType();
7370   unsigned BitWidth = VT.getSizeInBits();
7371   assert(Op.getNumOperands() == 3 &&
7372          VT == Op.getOperand(1).getValueType() &&
7373          "Unexpected SRA!");
7374 
7375   // Expand into a bunch of logical ops, followed by a select_cc.
7376   SDValue Lo = Op.getOperand(0);
7377   SDValue Hi = Op.getOperand(1);
7378   SDValue Amt = Op.getOperand(2);
7379   EVT AmtVT = Amt.getValueType();
7380 
7381   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7382                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7383   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7384   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7385   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7386   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7387                              DAG.getConstant(-BitWidth, dl, AmtVT));
7388   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7389   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7390   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7391                                   Tmp4, Tmp6, ISD::SETLE);
7392   SDValue OutOps[] = { OutLo, OutHi };
7393   return DAG.getMergeValues(OutOps, dl);
7394 }
7395 
7396 //===----------------------------------------------------------------------===//
7397 // Vector related lowering.
7398 //
7399 
7400 /// BuildSplatI - Build a canonical splati of Val with an element size of
7401 /// SplatSize.  Cast the result to VT.
7402 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7403                            SelectionDAG &DAG, const SDLoc &dl) {
7404   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7405 
7406   static const MVT VTys[] = { // canonical VT to use for each size.
7407     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7408   };
7409 
7410   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7411 
7412   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7413   if (Val == -1)
7414     SplatSize = 1;
7415 
7416   EVT CanonicalVT = VTys[SplatSize-1];
7417 
7418   // Build a canonical splat for this value.
7419   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7420 }
7421 
7422 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7423 /// specified intrinsic ID.
7424 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7425                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7426   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7427   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7428                      DAG.getConstant(IID, dl, MVT::i32), Op);
7429 }
7430 
7431 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7432 /// specified intrinsic ID.
7433 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7434                                 SelectionDAG &DAG, const SDLoc &dl,
7435                                 EVT DestVT = MVT::Other) {
7436   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7437   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7438                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7439 }
7440 
7441 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7442 /// specified intrinsic ID.
7443 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7444                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7445                                 EVT DestVT = MVT::Other) {
7446   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7447   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7448                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7449 }
7450 
7451 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7452 /// amount.  The result has the specified value type.
7453 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7454                            SelectionDAG &DAG, const SDLoc &dl) {
7455   // Force LHS/RHS to be the right type.
7456   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7457   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7458 
7459   int Ops[16];
7460   for (unsigned i = 0; i != 16; ++i)
7461     Ops[i] = i + Amt;
7462   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7463   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7464 }
7465 
7466 /// Do we have an efficient pattern in a .td file for this node?
7467 ///
7468 /// \param V - pointer to the BuildVectorSDNode being matched
7469 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7470 ///
7471 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7472 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7473 /// the opposite is true (expansion is beneficial) are:
7474 /// - The node builds a vector out of integers that are not 32 or 64-bits
7475 /// - The node builds a vector out of constants
7476 /// - The node is a "load-and-splat"
7477 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7478 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7479                                             bool HasDirectMove,
7480                                             bool HasP8Vector) {
7481   EVT VecVT = V->getValueType(0);
7482   bool RightType = VecVT == MVT::v2f64 ||
7483     (HasP8Vector && VecVT == MVT::v4f32) ||
7484     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7485   if (!RightType)
7486     return false;
7487 
7488   bool IsSplat = true;
7489   bool IsLoad = false;
7490   SDValue Op0 = V->getOperand(0);
7491 
7492   // This function is called in a block that confirms the node is not a constant
7493   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7494   // different constants.
7495   if (V->isConstant())
7496     return false;
7497   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7498     if (V->getOperand(i).isUndef())
7499       return false;
7500     // We want to expand nodes that represent load-and-splat even if the
7501     // loaded value is a floating point truncation or conversion to int.
7502     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7503         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7504          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7505         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7506          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7507         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7508          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7509       IsLoad = true;
7510     // If the operands are different or the input is not a load and has more
7511     // uses than just this BV node, then it isn't a splat.
7512     if (V->getOperand(i) != Op0 ||
7513         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7514       IsSplat = false;
7515   }
7516   return !(IsSplat && IsLoad);
7517 }
7518 
7519 // If this is a case we can't handle, return null and let the default
7520 // expansion code take care of it.  If we CAN select this case, and if it
7521 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7522 // this case more efficiently than a constant pool load, lower it to the
7523 // sequence of ops that should be used.
7524 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7525                                              SelectionDAG &DAG) const {
7526   SDLoc dl(Op);
7527   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7528   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7529 
7530   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7531     // We first build an i32 vector, load it into a QPX register,
7532     // then convert it to a floating-point vector and compare it
7533     // to a zero vector to get the boolean result.
7534     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7535     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7536     MachinePointerInfo PtrInfo =
7537         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7538     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7539     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7540 
7541     assert(BVN->getNumOperands() == 4 &&
7542       "BUILD_VECTOR for v4i1 does not have 4 operands");
7543 
7544     bool IsConst = true;
7545     for (unsigned i = 0; i < 4; ++i) {
7546       if (BVN->getOperand(i).isUndef()) continue;
7547       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7548         IsConst = false;
7549         break;
7550       }
7551     }
7552 
7553     if (IsConst) {
7554       Constant *One =
7555         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7556       Constant *NegOne =
7557         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7558 
7559       Constant *CV[4];
7560       for (unsigned i = 0; i < 4; ++i) {
7561         if (BVN->getOperand(i).isUndef())
7562           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7563         else if (isNullConstant(BVN->getOperand(i)))
7564           CV[i] = NegOne;
7565         else
7566           CV[i] = One;
7567       }
7568 
7569       Constant *CP = ConstantVector::get(CV);
7570       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7571                                           16 /* alignment */);
7572 
7573       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7574       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7575       return DAG.getMemIntrinsicNode(
7576           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7577           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7578     }
7579 
7580     SmallVector<SDValue, 4> Stores;
7581     for (unsigned i = 0; i < 4; ++i) {
7582       if (BVN->getOperand(i).isUndef()) continue;
7583 
7584       unsigned Offset = 4*i;
7585       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7586       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7587 
7588       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7589       if (StoreSize > 4) {
7590         Stores.push_back(
7591             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7592                               PtrInfo.getWithOffset(Offset), MVT::i32));
7593       } else {
7594         SDValue StoreValue = BVN->getOperand(i);
7595         if (StoreSize < 4)
7596           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7597 
7598         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7599                                       PtrInfo.getWithOffset(Offset)));
7600       }
7601     }
7602 
7603     SDValue StoreChain;
7604     if (!Stores.empty())
7605       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7606     else
7607       StoreChain = DAG.getEntryNode();
7608 
7609     // Now load from v4i32 into the QPX register; this will extend it to
7610     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7611     // is typed as v4f64 because the QPX register integer states are not
7612     // explicitly represented.
7613 
7614     SDValue Ops[] = {StoreChain,
7615                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7616                      FIdx};
7617     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7618 
7619     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7620       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7621     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7622       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7623       LoadedVect);
7624 
7625     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7626 
7627     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7628   }
7629 
7630   // All other QPX vectors are handled by generic code.
7631   if (Subtarget.hasQPX())
7632     return SDValue();
7633 
7634   // Check if this is a splat of a constant value.
7635   APInt APSplatBits, APSplatUndef;
7636   unsigned SplatBitSize;
7637   bool HasAnyUndefs;
7638   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7639                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7640       SplatBitSize > 32) {
7641     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7642     // lowered to VSX instructions under certain conditions.
7643     // Without VSX, there is no pattern more efficient than expanding the node.
7644     if (Subtarget.hasVSX() &&
7645         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7646                                         Subtarget.hasP8Vector()))
7647       return Op;
7648     return SDValue();
7649   }
7650 
7651   unsigned SplatBits = APSplatBits.getZExtValue();
7652   unsigned SplatUndef = APSplatUndef.getZExtValue();
7653   unsigned SplatSize = SplatBitSize / 8;
7654 
7655   // First, handle single instruction cases.
7656 
7657   // All zeros?
7658   if (SplatBits == 0) {
7659     // Canonicalize all zero vectors to be v4i32.
7660     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7661       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7662       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7663     }
7664     return Op;
7665   }
7666 
7667   // We have XXSPLTIB for constant splats one byte wide
7668   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7669     // This is a splat of 1-byte elements with some elements potentially undef.
7670     // Rather than trying to match undef in the SDAG patterns, ensure that all
7671     // elements are the same constant.
7672     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7673       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7674                                                        dl, MVT::i32));
7675       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7676       if (Op.getValueType() != MVT::v16i8)
7677         return DAG.getBitcast(Op.getValueType(), NewBV);
7678       return NewBV;
7679     }
7680 
7681     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7682     // detect that constant splats like v8i16: 0xABAB are really just splats
7683     // of a 1-byte constant. In this case, we need to convert the node to a
7684     // splat of v16i8 and a bitcast.
7685     if (Op.getValueType() != MVT::v16i8)
7686       return DAG.getBitcast(Op.getValueType(),
7687                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
7688 
7689     return Op;
7690   }
7691 
7692   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7693   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7694                     (32-SplatBitSize));
7695   if (SextVal >= -16 && SextVal <= 15)
7696     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7697 
7698   // Two instruction sequences.
7699 
7700   // If this value is in the range [-32,30] and is even, use:
7701   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7702   // If this value is in the range [17,31] and is odd, use:
7703   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7704   // If this value is in the range [-31,-17] and is odd, use:
7705   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7706   // Note the last two are three-instruction sequences.
7707   if (SextVal >= -32 && SextVal <= 31) {
7708     // To avoid having these optimizations undone by constant folding,
7709     // we convert to a pseudo that will be expanded later into one of
7710     // the above forms.
7711     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7712     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7713               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7714     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7715     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7716     if (VT == Op.getValueType())
7717       return RetVal;
7718     else
7719       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7720   }
7721 
7722   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7723   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7724   // for fneg/fabs.
7725   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7726     // Make -1 and vspltisw -1:
7727     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7728 
7729     // Make the VSLW intrinsic, computing 0x8000_0000.
7730     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7731                                    OnesV, DAG, dl);
7732 
7733     // xor by OnesV to invert it.
7734     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7735     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7736   }
7737 
7738   // Check to see if this is a wide variety of vsplti*, binop self cases.
7739   static const signed char SplatCsts[] = {
7740     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7741     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7742   };
7743 
7744   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7745     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7746     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7747     int i = SplatCsts[idx];
7748 
7749     // Figure out what shift amount will be used by altivec if shifted by i in
7750     // this splat size.
7751     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7752 
7753     // vsplti + shl self.
7754     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7755       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7756       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7757         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7758         Intrinsic::ppc_altivec_vslw
7759       };
7760       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7761       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7762     }
7763 
7764     // vsplti + srl self.
7765     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7766       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7767       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7768         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7769         Intrinsic::ppc_altivec_vsrw
7770       };
7771       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7772       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7773     }
7774 
7775     // vsplti + sra self.
7776     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7777       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7778       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7779         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7780         Intrinsic::ppc_altivec_vsraw
7781       };
7782       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7783       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7784     }
7785 
7786     // vsplti + rol self.
7787     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7788                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7789       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7790       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7791         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7792         Intrinsic::ppc_altivec_vrlw
7793       };
7794       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7795       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7796     }
7797 
7798     // t = vsplti c, result = vsldoi t, t, 1
7799     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7800       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7801       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7802       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7803     }
7804     // t = vsplti c, result = vsldoi t, t, 2
7805     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7806       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7807       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7808       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7809     }
7810     // t = vsplti c, result = vsldoi t, t, 3
7811     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7812       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7813       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7814       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7815     }
7816   }
7817 
7818   return SDValue();
7819 }
7820 
7821 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7822 /// the specified operations to build the shuffle.
7823 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7824                                       SDValue RHS, SelectionDAG &DAG,
7825                                       const SDLoc &dl) {
7826   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7827   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7828   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7829 
7830   enum {
7831     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7832     OP_VMRGHW,
7833     OP_VMRGLW,
7834     OP_VSPLTISW0,
7835     OP_VSPLTISW1,
7836     OP_VSPLTISW2,
7837     OP_VSPLTISW3,
7838     OP_VSLDOI4,
7839     OP_VSLDOI8,
7840     OP_VSLDOI12
7841   };
7842 
7843   if (OpNum == OP_COPY) {
7844     if (LHSID == (1*9+2)*9+3) return LHS;
7845     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7846     return RHS;
7847   }
7848 
7849   SDValue OpLHS, OpRHS;
7850   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7851   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7852 
7853   int ShufIdxs[16];
7854   switch (OpNum) {
7855   default: llvm_unreachable("Unknown i32 permute!");
7856   case OP_VMRGHW:
7857     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7858     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7859     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7860     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7861     break;
7862   case OP_VMRGLW:
7863     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7864     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7865     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7866     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7867     break;
7868   case OP_VSPLTISW0:
7869     for (unsigned i = 0; i != 16; ++i)
7870       ShufIdxs[i] = (i&3)+0;
7871     break;
7872   case OP_VSPLTISW1:
7873     for (unsigned i = 0; i != 16; ++i)
7874       ShufIdxs[i] = (i&3)+4;
7875     break;
7876   case OP_VSPLTISW2:
7877     for (unsigned i = 0; i != 16; ++i)
7878       ShufIdxs[i] = (i&3)+8;
7879     break;
7880   case OP_VSPLTISW3:
7881     for (unsigned i = 0; i != 16; ++i)
7882       ShufIdxs[i] = (i&3)+12;
7883     break;
7884   case OP_VSLDOI4:
7885     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7886   case OP_VSLDOI8:
7887     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7888   case OP_VSLDOI12:
7889     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7890   }
7891   EVT VT = OpLHS.getValueType();
7892   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7893   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7894   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7895   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7896 }
7897 
7898 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
7899 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
7900 /// SDValue.
7901 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
7902                                            SelectionDAG &DAG) const {
7903   const unsigned BytesInVector = 16;
7904   bool IsLE = Subtarget.isLittleEndian();
7905   SDLoc dl(N);
7906   SDValue V1 = N->getOperand(0);
7907   SDValue V2 = N->getOperand(1);
7908   unsigned ShiftElts = 0, InsertAtByte = 0;
7909   bool Swap = false;
7910 
7911   // Shifts required to get the byte we want at element 7.
7912   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
7913                                    0, 15, 14, 13, 12, 11, 10, 9};
7914   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
7915                                 1, 2,  3,  4,  5,  6,  7,  8};
7916 
7917   ArrayRef<int> Mask = N->getMask();
7918   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
7919 
7920   // For each mask element, find out if we're just inserting something
7921   // from V2 into V1 or vice versa.
7922   // Possible permutations inserting an element from V2 into V1:
7923   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
7924   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
7925   //   ...
7926   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
7927   // Inserting from V1 into V2 will be similar, except mask range will be
7928   // [16,31].
7929 
7930   bool FoundCandidate = false;
7931   // If both vector operands for the shuffle are the same vector, the mask
7932   // will contain only elements from the first one and the second one will be
7933   // undef.
7934   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
7935   // Go through the mask of half-words to find an element that's being moved
7936   // from one vector to the other.
7937   for (unsigned i = 0; i < BytesInVector; ++i) {
7938     unsigned CurrentElement = Mask[i];
7939     // If 2nd operand is undefined, we should only look for element 7 in the
7940     // Mask.
7941     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
7942       continue;
7943 
7944     bool OtherElementsInOrder = true;
7945     // Examine the other elements in the Mask to see if they're in original
7946     // order.
7947     for (unsigned j = 0; j < BytesInVector; ++j) {
7948       if (j == i)
7949         continue;
7950       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
7951       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
7952       // in which we always assume we're always picking from the 1st operand.
7953       int MaskOffset =
7954           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
7955       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
7956         OtherElementsInOrder = false;
7957         break;
7958       }
7959     }
7960     // If other elements are in original order, we record the number of shifts
7961     // we need to get the element we want into element 7. Also record which byte
7962     // in the vector we should insert into.
7963     if (OtherElementsInOrder) {
7964       // If 2nd operand is undefined, we assume no shifts and no swapping.
7965       if (V2.isUndef()) {
7966         ShiftElts = 0;
7967         Swap = false;
7968       } else {
7969         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
7970         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
7971                          : BigEndianShifts[CurrentElement & 0xF];
7972         Swap = CurrentElement < BytesInVector;
7973       }
7974       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
7975       FoundCandidate = true;
7976       break;
7977     }
7978   }
7979 
7980   if (!FoundCandidate)
7981     return SDValue();
7982 
7983   // Candidate found, construct the proper SDAG sequence with VINSERTB,
7984   // optionally with VECSHL if shift is required.
7985   if (Swap)
7986     std::swap(V1, V2);
7987   if (V2.isUndef())
7988     V2 = V1;
7989   if (ShiftElts) {
7990     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
7991                               DAG.getConstant(ShiftElts, dl, MVT::i32));
7992     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
7993                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
7994   }
7995   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
7996                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
7997 }
7998 
7999 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8000 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8001 /// SDValue.
8002 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8003                                            SelectionDAG &DAG) const {
8004   const unsigned NumHalfWords = 8;
8005   const unsigned BytesInVector = NumHalfWords * 2;
8006   // Check that the shuffle is on half-words.
8007   if (!isNByteElemShuffleMask(N, 2, 1))
8008     return SDValue();
8009 
8010   bool IsLE = Subtarget.isLittleEndian();
8011   SDLoc dl(N);
8012   SDValue V1 = N->getOperand(0);
8013   SDValue V2 = N->getOperand(1);
8014   unsigned ShiftElts = 0, InsertAtByte = 0;
8015   bool Swap = false;
8016 
8017   // Shifts required to get the half-word we want at element 3.
8018   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8019   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8020 
8021   uint32_t Mask = 0;
8022   uint32_t OriginalOrderLow = 0x1234567;
8023   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8024   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8025   // 32-bit space, only need 4-bit nibbles per element.
8026   for (unsigned i = 0; i < NumHalfWords; ++i) {
8027     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8028     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8029   }
8030 
8031   // For each mask element, find out if we're just inserting something
8032   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8033   // from V2 into V1:
8034   //   X, 1, 2, 3, 4, 5, 6, 7
8035   //   0, X, 2, 3, 4, 5, 6, 7
8036   //   0, 1, X, 3, 4, 5, 6, 7
8037   //   0, 1, 2, X, 4, 5, 6, 7
8038   //   0, 1, 2, 3, X, 5, 6, 7
8039   //   0, 1, 2, 3, 4, X, 6, 7
8040   //   0, 1, 2, 3, 4, 5, X, 7
8041   //   0, 1, 2, 3, 4, 5, 6, X
8042   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8043 
8044   bool FoundCandidate = false;
8045   // Go through the mask of half-words to find an element that's being moved
8046   // from one vector to the other.
8047   for (unsigned i = 0; i < NumHalfWords; ++i) {
8048     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8049     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8050     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8051     uint32_t TargetOrder = 0x0;
8052 
8053     // If both vector operands for the shuffle are the same vector, the mask
8054     // will contain only elements from the first one and the second one will be
8055     // undef.
8056     if (V2.isUndef()) {
8057       ShiftElts = 0;
8058       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8059       TargetOrder = OriginalOrderLow;
8060       Swap = false;
8061       // Skip if not the correct element or mask of other elements don't equal
8062       // to our expected order.
8063       if (MaskOneElt == VINSERTHSrcElem &&
8064           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8065         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8066         FoundCandidate = true;
8067         break;
8068       }
8069     } else { // If both operands are defined.
8070       // Target order is [8,15] if the current mask is between [0,7].
8071       TargetOrder =
8072           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8073       // Skip if mask of other elements don't equal our expected order.
8074       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8075         // We only need the last 3 bits for the number of shifts.
8076         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8077                          : BigEndianShifts[MaskOneElt & 0x7];
8078         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8079         Swap = MaskOneElt < NumHalfWords;
8080         FoundCandidate = true;
8081         break;
8082       }
8083     }
8084   }
8085 
8086   if (!FoundCandidate)
8087     return SDValue();
8088 
8089   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8090   // optionally with VECSHL if shift is required.
8091   if (Swap)
8092     std::swap(V1, V2);
8093   if (V2.isUndef())
8094     V2 = V1;
8095   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8096   if (ShiftElts) {
8097     // Double ShiftElts because we're left shifting on v16i8 type.
8098     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8099                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8100     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8101     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8102                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8103     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8104   }
8105   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8106   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8107                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8108   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8109 }
8110 
8111 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8112 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8113 /// return the code it can be lowered into.  Worst case, it can always be
8114 /// lowered into a vperm.
8115 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8116                                                SelectionDAG &DAG) const {
8117   SDLoc dl(Op);
8118   SDValue V1 = Op.getOperand(0);
8119   SDValue V2 = Op.getOperand(1);
8120   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8121   EVT VT = Op.getValueType();
8122   bool isLittleEndian = Subtarget.isLittleEndian();
8123 
8124   unsigned ShiftElts, InsertAtByte;
8125   bool Swap = false;
8126   if (Subtarget.hasP9Vector() &&
8127       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8128                            isLittleEndian)) {
8129     if (Swap)
8130       std::swap(V1, V2);
8131     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8132     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8133     if (ShiftElts) {
8134       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8135                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8136       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8137                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8138       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8139     }
8140     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8141                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8142     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8143   }
8144 
8145   if (Subtarget.hasP9Altivec()) {
8146     SDValue NewISDNode;
8147     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8148       return NewISDNode;
8149 
8150     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8151       return NewISDNode;
8152   }
8153 
8154   if (Subtarget.hasVSX() &&
8155       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8156     if (Swap)
8157       std::swap(V1, V2);
8158     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8159     SDValue Conv2 =
8160         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8161 
8162     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8163                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8164     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8165   }
8166 
8167   if (Subtarget.hasVSX() &&
8168     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8169     if (Swap)
8170       std::swap(V1, V2);
8171     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8172     SDValue Conv2 =
8173         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8174 
8175     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8176                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8177     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8178   }
8179 
8180   if (Subtarget.hasP9Vector()) {
8181      if (PPC::isXXBRHShuffleMask(SVOp)) {
8182       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8183       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8184       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8185     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8186       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8187       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8188       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8189     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8190       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8191       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8192       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8193     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8194       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8195       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8196       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8197     }
8198   }
8199 
8200   if (Subtarget.hasVSX()) {
8201     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8202       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8203 
8204       // If the source for the shuffle is a scalar_to_vector that came from a
8205       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
8206       if (Subtarget.hasP9Vector() &&
8207           ((isLittleEndian && SplatIdx == 3) ||
8208            (!isLittleEndian && SplatIdx == 0))) {
8209         SDValue Src = V1.getOperand(0);
8210         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8211             Src.getOperand(0).getOpcode() == ISD::LOAD &&
8212             Src.getOperand(0).hasOneUse())
8213           return V1;
8214       }
8215       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8216       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8217                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8218       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8219     }
8220 
8221     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8222     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8223       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8224       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8225       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8226     }
8227   }
8228 
8229   if (Subtarget.hasQPX()) {
8230     if (VT.getVectorNumElements() != 4)
8231       return SDValue();
8232 
8233     if (V2.isUndef()) V2 = V1;
8234 
8235     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8236     if (AlignIdx != -1) {
8237       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8238                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8239     } else if (SVOp->isSplat()) {
8240       int SplatIdx = SVOp->getSplatIndex();
8241       if (SplatIdx >= 4) {
8242         std::swap(V1, V2);
8243         SplatIdx -= 4;
8244       }
8245 
8246       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8247                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8248     }
8249 
8250     // Lower this into a qvgpci/qvfperm pair.
8251 
8252     // Compute the qvgpci literal
8253     unsigned idx = 0;
8254     for (unsigned i = 0; i < 4; ++i) {
8255       int m = SVOp->getMaskElt(i);
8256       unsigned mm = m >= 0 ? (unsigned) m : i;
8257       idx |= mm << (3-i)*3;
8258     }
8259 
8260     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8261                              DAG.getConstant(idx, dl, MVT::i32));
8262     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8263   }
8264 
8265   // Cases that are handled by instructions that take permute immediates
8266   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8267   // selected by the instruction selector.
8268   if (V2.isUndef()) {
8269     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8270         PPC::isSplatShuffleMask(SVOp, 2) ||
8271         PPC::isSplatShuffleMask(SVOp, 4) ||
8272         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8273         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8274         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8275         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8276         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8277         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8278         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8279         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8280         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8281         (Subtarget.hasP8Altivec() && (
8282          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8283          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8284          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8285       return Op;
8286     }
8287   }
8288 
8289   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8290   // and produce a fixed permutation.  If any of these match, do not lower to
8291   // VPERM.
8292   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8293   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8294       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8295       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8296       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8297       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8298       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8299       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8300       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8301       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8302       (Subtarget.hasP8Altivec() && (
8303        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8304        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8305        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8306     return Op;
8307 
8308   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8309   // perfect shuffle table to emit an optimal matching sequence.
8310   ArrayRef<int> PermMask = SVOp->getMask();
8311 
8312   unsigned PFIndexes[4];
8313   bool isFourElementShuffle = true;
8314   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8315     unsigned EltNo = 8;   // Start out undef.
8316     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8317       if (PermMask[i*4+j] < 0)
8318         continue;   // Undef, ignore it.
8319 
8320       unsigned ByteSource = PermMask[i*4+j];
8321       if ((ByteSource & 3) != j) {
8322         isFourElementShuffle = false;
8323         break;
8324       }
8325 
8326       if (EltNo == 8) {
8327         EltNo = ByteSource/4;
8328       } else if (EltNo != ByteSource/4) {
8329         isFourElementShuffle = false;
8330         break;
8331       }
8332     }
8333     PFIndexes[i] = EltNo;
8334   }
8335 
8336   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8337   // perfect shuffle vector to determine if it is cost effective to do this as
8338   // discrete instructions, or whether we should use a vperm.
8339   // For now, we skip this for little endian until such time as we have a
8340   // little-endian perfect shuffle table.
8341   if (isFourElementShuffle && !isLittleEndian) {
8342     // Compute the index in the perfect shuffle table.
8343     unsigned PFTableIndex =
8344       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8345 
8346     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8347     unsigned Cost  = (PFEntry >> 30);
8348 
8349     // Determining when to avoid vperm is tricky.  Many things affect the cost
8350     // of vperm, particularly how many times the perm mask needs to be computed.
8351     // For example, if the perm mask can be hoisted out of a loop or is already
8352     // used (perhaps because there are multiple permutes with the same shuffle
8353     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8354     // the loop requires an extra register.
8355     //
8356     // As a compromise, we only emit discrete instructions if the shuffle can be
8357     // generated in 3 or fewer operations.  When we have loop information
8358     // available, if this block is within a loop, we should avoid using vperm
8359     // for 3-operation perms and use a constant pool load instead.
8360     if (Cost < 3)
8361       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8362   }
8363 
8364   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8365   // vector that will get spilled to the constant pool.
8366   if (V2.isUndef()) V2 = V1;
8367 
8368   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8369   // that it is in input element units, not in bytes.  Convert now.
8370 
8371   // For little endian, the order of the input vectors is reversed, and
8372   // the permutation mask is complemented with respect to 31.  This is
8373   // necessary to produce proper semantics with the big-endian-biased vperm
8374   // instruction.
8375   EVT EltVT = V1.getValueType().getVectorElementType();
8376   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8377 
8378   SmallVector<SDValue, 16> ResultMask;
8379   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8380     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8381 
8382     for (unsigned j = 0; j != BytesPerElement; ++j)
8383       if (isLittleEndian)
8384         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8385                                              dl, MVT::i32));
8386       else
8387         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8388                                              MVT::i32));
8389   }
8390 
8391   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8392   if (isLittleEndian)
8393     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8394                        V2, V1, VPermMask);
8395   else
8396     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8397                        V1, V2, VPermMask);
8398 }
8399 
8400 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8401 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8402 /// information about the intrinsic.
8403 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8404                                  bool &isDot, const PPCSubtarget &Subtarget) {
8405   unsigned IntrinsicID =
8406       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8407   CompareOpc = -1;
8408   isDot = false;
8409   switch (IntrinsicID) {
8410   default:
8411     return false;
8412   // Comparison predicates.
8413   case Intrinsic::ppc_altivec_vcmpbfp_p:
8414     CompareOpc = 966;
8415     isDot = true;
8416     break;
8417   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8418     CompareOpc = 198;
8419     isDot = true;
8420     break;
8421   case Intrinsic::ppc_altivec_vcmpequb_p:
8422     CompareOpc = 6;
8423     isDot = true;
8424     break;
8425   case Intrinsic::ppc_altivec_vcmpequh_p:
8426     CompareOpc = 70;
8427     isDot = true;
8428     break;
8429   case Intrinsic::ppc_altivec_vcmpequw_p:
8430     CompareOpc = 134;
8431     isDot = true;
8432     break;
8433   case Intrinsic::ppc_altivec_vcmpequd_p:
8434     if (Subtarget.hasP8Altivec()) {
8435       CompareOpc = 199;
8436       isDot = true;
8437     } else
8438       return false;
8439     break;
8440   case Intrinsic::ppc_altivec_vcmpneb_p:
8441   case Intrinsic::ppc_altivec_vcmpneh_p:
8442   case Intrinsic::ppc_altivec_vcmpnew_p:
8443   case Intrinsic::ppc_altivec_vcmpnezb_p:
8444   case Intrinsic::ppc_altivec_vcmpnezh_p:
8445   case Intrinsic::ppc_altivec_vcmpnezw_p:
8446     if (Subtarget.hasP9Altivec()) {
8447       switch (IntrinsicID) {
8448       default:
8449         llvm_unreachable("Unknown comparison intrinsic.");
8450       case Intrinsic::ppc_altivec_vcmpneb_p:
8451         CompareOpc = 7;
8452         break;
8453       case Intrinsic::ppc_altivec_vcmpneh_p:
8454         CompareOpc = 71;
8455         break;
8456       case Intrinsic::ppc_altivec_vcmpnew_p:
8457         CompareOpc = 135;
8458         break;
8459       case Intrinsic::ppc_altivec_vcmpnezb_p:
8460         CompareOpc = 263;
8461         break;
8462       case Intrinsic::ppc_altivec_vcmpnezh_p:
8463         CompareOpc = 327;
8464         break;
8465       case Intrinsic::ppc_altivec_vcmpnezw_p:
8466         CompareOpc = 391;
8467         break;
8468       }
8469       isDot = true;
8470     } else
8471       return false;
8472     break;
8473   case Intrinsic::ppc_altivec_vcmpgefp_p:
8474     CompareOpc = 454;
8475     isDot = true;
8476     break;
8477   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8478     CompareOpc = 710;
8479     isDot = true;
8480     break;
8481   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8482     CompareOpc = 774;
8483     isDot = true;
8484     break;
8485   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8486     CompareOpc = 838;
8487     isDot = true;
8488     break;
8489   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8490     CompareOpc = 902;
8491     isDot = true;
8492     break;
8493   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8494     if (Subtarget.hasP8Altivec()) {
8495       CompareOpc = 967;
8496       isDot = true;
8497     } else
8498       return false;
8499     break;
8500   case Intrinsic::ppc_altivec_vcmpgtub_p:
8501     CompareOpc = 518;
8502     isDot = true;
8503     break;
8504   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8505     CompareOpc = 582;
8506     isDot = true;
8507     break;
8508   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8509     CompareOpc = 646;
8510     isDot = true;
8511     break;
8512   case Intrinsic::ppc_altivec_vcmpgtud_p:
8513     if (Subtarget.hasP8Altivec()) {
8514       CompareOpc = 711;
8515       isDot = true;
8516     } else
8517       return false;
8518     break;
8519 
8520   // VSX predicate comparisons use the same infrastructure
8521   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8522   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8523   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8524   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8525   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8526   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8527     if (Subtarget.hasVSX()) {
8528       switch (IntrinsicID) {
8529       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8530         CompareOpc = 99;
8531         break;
8532       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8533         CompareOpc = 115;
8534         break;
8535       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8536         CompareOpc = 107;
8537         break;
8538       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8539         CompareOpc = 67;
8540         break;
8541       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8542         CompareOpc = 83;
8543         break;
8544       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8545         CompareOpc = 75;
8546         break;
8547       }
8548       isDot = true;
8549     } else
8550       return false;
8551     break;
8552 
8553   // Normal Comparisons.
8554   case Intrinsic::ppc_altivec_vcmpbfp:
8555     CompareOpc = 966;
8556     break;
8557   case Intrinsic::ppc_altivec_vcmpeqfp:
8558     CompareOpc = 198;
8559     break;
8560   case Intrinsic::ppc_altivec_vcmpequb:
8561     CompareOpc = 6;
8562     break;
8563   case Intrinsic::ppc_altivec_vcmpequh:
8564     CompareOpc = 70;
8565     break;
8566   case Intrinsic::ppc_altivec_vcmpequw:
8567     CompareOpc = 134;
8568     break;
8569   case Intrinsic::ppc_altivec_vcmpequd:
8570     if (Subtarget.hasP8Altivec())
8571       CompareOpc = 199;
8572     else
8573       return false;
8574     break;
8575   case Intrinsic::ppc_altivec_vcmpneb:
8576   case Intrinsic::ppc_altivec_vcmpneh:
8577   case Intrinsic::ppc_altivec_vcmpnew:
8578   case Intrinsic::ppc_altivec_vcmpnezb:
8579   case Intrinsic::ppc_altivec_vcmpnezh:
8580   case Intrinsic::ppc_altivec_vcmpnezw:
8581     if (Subtarget.hasP9Altivec())
8582       switch (IntrinsicID) {
8583       default:
8584         llvm_unreachable("Unknown comparison intrinsic.");
8585       case Intrinsic::ppc_altivec_vcmpneb:
8586         CompareOpc = 7;
8587         break;
8588       case Intrinsic::ppc_altivec_vcmpneh:
8589         CompareOpc = 71;
8590         break;
8591       case Intrinsic::ppc_altivec_vcmpnew:
8592         CompareOpc = 135;
8593         break;
8594       case Intrinsic::ppc_altivec_vcmpnezb:
8595         CompareOpc = 263;
8596         break;
8597       case Intrinsic::ppc_altivec_vcmpnezh:
8598         CompareOpc = 327;
8599         break;
8600       case Intrinsic::ppc_altivec_vcmpnezw:
8601         CompareOpc = 391;
8602         break;
8603       }
8604     else
8605       return false;
8606     break;
8607   case Intrinsic::ppc_altivec_vcmpgefp:
8608     CompareOpc = 454;
8609     break;
8610   case Intrinsic::ppc_altivec_vcmpgtfp:
8611     CompareOpc = 710;
8612     break;
8613   case Intrinsic::ppc_altivec_vcmpgtsb:
8614     CompareOpc = 774;
8615     break;
8616   case Intrinsic::ppc_altivec_vcmpgtsh:
8617     CompareOpc = 838;
8618     break;
8619   case Intrinsic::ppc_altivec_vcmpgtsw:
8620     CompareOpc = 902;
8621     break;
8622   case Intrinsic::ppc_altivec_vcmpgtsd:
8623     if (Subtarget.hasP8Altivec())
8624       CompareOpc = 967;
8625     else
8626       return false;
8627     break;
8628   case Intrinsic::ppc_altivec_vcmpgtub:
8629     CompareOpc = 518;
8630     break;
8631   case Intrinsic::ppc_altivec_vcmpgtuh:
8632     CompareOpc = 582;
8633     break;
8634   case Intrinsic::ppc_altivec_vcmpgtuw:
8635     CompareOpc = 646;
8636     break;
8637   case Intrinsic::ppc_altivec_vcmpgtud:
8638     if (Subtarget.hasP8Altivec())
8639       CompareOpc = 711;
8640     else
8641       return false;
8642     break;
8643   }
8644   return true;
8645 }
8646 
8647 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8648 /// lower, do it, otherwise return null.
8649 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8650                                                    SelectionDAG &DAG) const {
8651   unsigned IntrinsicID =
8652     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8653 
8654   SDLoc dl(Op);
8655 
8656   if (IntrinsicID == Intrinsic::thread_pointer) {
8657     // Reads the thread pointer register, used for __builtin_thread_pointer.
8658     if (Subtarget.isPPC64())
8659       return DAG.getRegister(PPC::X13, MVT::i64);
8660     return DAG.getRegister(PPC::R2, MVT::i32);
8661   }
8662 
8663   // We are looking for absolute values here.
8664   // The idea is to try to fit one of two patterns:
8665   //  max (a, (0-a))  OR  max ((0-a), a)
8666   if (Subtarget.hasP9Vector() &&
8667       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8668        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8669        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8670     SDValue V1 = Op.getOperand(1);
8671     SDValue V2 = Op.getOperand(2);
8672     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8673         (V1.getSimpleValueType() == MVT::v4i32 ||
8674          V1.getSimpleValueType() == MVT::v8i16 ||
8675          V1.getSimpleValueType() == MVT::v16i8)) {
8676       if ( V1.getOpcode() == ISD::SUB &&
8677            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8678            V1.getOperand(1) == V2 ) {
8679         // Generate the abs instruction with the operands
8680         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8681       }
8682 
8683       if ( V2.getOpcode() == ISD::SUB &&
8684            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8685            V2.getOperand(1) == V1 ) {
8686         // Generate the abs instruction with the operands
8687         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8688       }
8689     }
8690   }
8691 
8692   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8693   // opcode number of the comparison.
8694   int CompareOpc;
8695   bool isDot;
8696   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8697     return SDValue();    // Don't custom lower most intrinsics.
8698 
8699   // If this is a non-dot comparison, make the VCMP node and we are done.
8700   if (!isDot) {
8701     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8702                               Op.getOperand(1), Op.getOperand(2),
8703                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8704     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8705   }
8706 
8707   // Create the PPCISD altivec 'dot' comparison node.
8708   SDValue Ops[] = {
8709     Op.getOperand(2),  // LHS
8710     Op.getOperand(3),  // RHS
8711     DAG.getConstant(CompareOpc, dl, MVT::i32)
8712   };
8713   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8714   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8715 
8716   // Now that we have the comparison, emit a copy from the CR to a GPR.
8717   // This is flagged to the above dot comparison.
8718   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8719                                 DAG.getRegister(PPC::CR6, MVT::i32),
8720                                 CompNode.getValue(1));
8721 
8722   // Unpack the result based on how the target uses it.
8723   unsigned BitNo;   // Bit # of CR6.
8724   bool InvertBit;   // Invert result?
8725   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8726   default:  // Can't happen, don't crash on invalid number though.
8727   case 0:   // Return the value of the EQ bit of CR6.
8728     BitNo = 0; InvertBit = false;
8729     break;
8730   case 1:   // Return the inverted value of the EQ bit of CR6.
8731     BitNo = 0; InvertBit = true;
8732     break;
8733   case 2:   // Return the value of the LT bit of CR6.
8734     BitNo = 2; InvertBit = false;
8735     break;
8736   case 3:   // Return the inverted value of the LT bit of CR6.
8737     BitNo = 2; InvertBit = true;
8738     break;
8739   }
8740 
8741   // Shift the bit into the low position.
8742   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8743                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8744   // Isolate the bit.
8745   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8746                       DAG.getConstant(1, dl, MVT::i32));
8747 
8748   // If we are supposed to, toggle the bit.
8749   if (InvertBit)
8750     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8751                         DAG.getConstant(1, dl, MVT::i32));
8752   return Flags;
8753 }
8754 
8755 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8756                                                SelectionDAG &DAG) const {
8757   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
8758   // the beginning of the argument list.
8759   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
8760   SDLoc DL(Op);
8761   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
8762   case Intrinsic::ppc_cfence: {
8763     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
8764     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
8765     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
8766                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
8767                                                   Op.getOperand(ArgStart + 1)),
8768                                       Op.getOperand(0)),
8769                    0);
8770   }
8771   default:
8772     break;
8773   }
8774   return SDValue();
8775 }
8776 
8777 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
8778   // Check for a DIV with the same operands as this REM.
8779   for (auto UI : Op.getOperand(1)->uses()) {
8780     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
8781         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
8782       if (UI->getOperand(0) == Op.getOperand(0) &&
8783           UI->getOperand(1) == Op.getOperand(1))
8784         return SDValue();
8785   }
8786   return Op;
8787 }
8788 
8789 // Lower scalar BSWAP64 to xxbrd.
8790 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
8791   SDLoc dl(Op);
8792   // MTVSRDD
8793   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
8794                    Op.getOperand(0));
8795   // XXBRD
8796   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
8797   // MFVSRD
8798   int VectorIndex = 0;
8799   if (Subtarget.isLittleEndian())
8800     VectorIndex = 1;
8801   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
8802                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
8803   return Op;
8804 }
8805 
8806 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8807                                                   SelectionDAG &DAG) const {
8808   SDLoc dl(Op);
8809   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8810   // instructions), but for smaller types, we need to first extend up to v2i32
8811   // before doing going farther.
8812   if (Op.getValueType() == MVT::v2i64) {
8813     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8814     if (ExtVT != MVT::v2i32) {
8815       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8816       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8817                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8818                                         ExtVT.getVectorElementType(), 4)));
8819       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8820       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8821                        DAG.getValueType(MVT::v2i32));
8822     }
8823 
8824     return Op;
8825   }
8826 
8827   return SDValue();
8828 }
8829 
8830 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8831                                                  SelectionDAG &DAG) const {
8832   SDLoc dl(Op);
8833   // Create a stack slot that is 16-byte aligned.
8834   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8835   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8836   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8837   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8838 
8839   // Store the input value into Value#0 of the stack slot.
8840   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8841                                MachinePointerInfo());
8842   // Load it out.
8843   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8844 }
8845 
8846 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8847                                                   SelectionDAG &DAG) const {
8848   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
8849          "Should only be called for ISD::INSERT_VECTOR_ELT");
8850 
8851   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8852   // We have legal lowering for constant indices but not for variable ones.
8853   if (!C)
8854     return SDValue();
8855 
8856   EVT VT = Op.getValueType();
8857   SDLoc dl(Op);
8858   SDValue V1 = Op.getOperand(0);
8859   SDValue V2 = Op.getOperand(1);
8860   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
8861   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
8862     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
8863     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
8864     unsigned InsertAtElement = C->getZExtValue();
8865     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
8866     if (Subtarget.isLittleEndian()) {
8867       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
8868     }
8869     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
8870                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8871   }
8872   return Op;
8873 }
8874 
8875 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8876                                                    SelectionDAG &DAG) const {
8877   SDLoc dl(Op);
8878   SDNode *N = Op.getNode();
8879 
8880   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
8881          "Unknown extract_vector_elt type");
8882 
8883   SDValue Value = N->getOperand(0);
8884 
8885   // The first part of this is like the store lowering except that we don't
8886   // need to track the chain.
8887 
8888   // The values are now known to be -1 (false) or 1 (true). To convert this
8889   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8890   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8891   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8892 
8893   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8894   // understand how to form the extending load.
8895   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8896 
8897   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8898 
8899   // Now convert to an integer and store.
8900   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8901     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8902     Value);
8903 
8904   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8905   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8906   MachinePointerInfo PtrInfo =
8907       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8908   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8909   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8910 
8911   SDValue StoreChain = DAG.getEntryNode();
8912   SDValue Ops[] = {StoreChain,
8913                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8914                    Value, FIdx};
8915   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8916 
8917   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8918     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8919 
8920   // Extract the value requested.
8921   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8922   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8923   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8924 
8925   SDValue IntVal =
8926       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
8927 
8928   if (!Subtarget.useCRBits())
8929     return IntVal;
8930 
8931   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
8932 }
8933 
8934 /// Lowering for QPX v4i1 loads
8935 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
8936                                            SelectionDAG &DAG) const {
8937   SDLoc dl(Op);
8938   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
8939   SDValue LoadChain = LN->getChain();
8940   SDValue BasePtr = LN->getBasePtr();
8941 
8942   if (Op.getValueType() == MVT::v4f64 ||
8943       Op.getValueType() == MVT::v4f32) {
8944     EVT MemVT = LN->getMemoryVT();
8945     unsigned Alignment = LN->getAlignment();
8946 
8947     // If this load is properly aligned, then it is legal.
8948     if (Alignment >= MemVT.getStoreSize())
8949       return Op;
8950 
8951     EVT ScalarVT = Op.getValueType().getScalarType(),
8952         ScalarMemVT = MemVT.getScalarType();
8953     unsigned Stride = ScalarMemVT.getStoreSize();
8954 
8955     SDValue Vals[4], LoadChains[4];
8956     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8957       SDValue Load;
8958       if (ScalarVT != ScalarMemVT)
8959         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
8960                               BasePtr,
8961                               LN->getPointerInfo().getWithOffset(Idx * Stride),
8962                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8963                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
8964       else
8965         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
8966                            LN->getPointerInfo().getWithOffset(Idx * Stride),
8967                            MinAlign(Alignment, Idx * Stride),
8968                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
8969 
8970       if (Idx == 0 && LN->isIndexed()) {
8971         assert(LN->getAddressingMode() == ISD::PRE_INC &&
8972                "Unknown addressing mode on vector load");
8973         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
8974                                   LN->getAddressingMode());
8975       }
8976 
8977       Vals[Idx] = Load;
8978       LoadChains[Idx] = Load.getValue(1);
8979 
8980       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8981                             DAG.getConstant(Stride, dl,
8982                                             BasePtr.getValueType()));
8983     }
8984 
8985     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8986     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
8987 
8988     if (LN->isIndexed()) {
8989       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
8990       return DAG.getMergeValues(RetOps, dl);
8991     }
8992 
8993     SDValue RetOps[] = { Value, TF };
8994     return DAG.getMergeValues(RetOps, dl);
8995   }
8996 
8997   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
8998   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
8999 
9000   // To lower v4i1 from a byte array, we load the byte elements of the
9001   // vector and then reuse the BUILD_VECTOR logic.
9002 
9003   SDValue VectElmts[4], VectElmtChains[4];
9004   for (unsigned i = 0; i < 4; ++i) {
9005     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9006     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9007 
9008     VectElmts[i] = DAG.getExtLoad(
9009         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9010         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9011         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9012     VectElmtChains[i] = VectElmts[i].getValue(1);
9013   }
9014 
9015   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9016   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9017 
9018   SDValue RVals[] = { Value, LoadChain };
9019   return DAG.getMergeValues(RVals, dl);
9020 }
9021 
9022 /// Lowering for QPX v4i1 stores
9023 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9024                                             SelectionDAG &DAG) const {
9025   SDLoc dl(Op);
9026   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9027   SDValue StoreChain = SN->getChain();
9028   SDValue BasePtr = SN->getBasePtr();
9029   SDValue Value = SN->getValue();
9030 
9031   if (Value.getValueType() == MVT::v4f64 ||
9032       Value.getValueType() == MVT::v4f32) {
9033     EVT MemVT = SN->getMemoryVT();
9034     unsigned Alignment = SN->getAlignment();
9035 
9036     // If this store is properly aligned, then it is legal.
9037     if (Alignment >= MemVT.getStoreSize())
9038       return Op;
9039 
9040     EVT ScalarVT = Value.getValueType().getScalarType(),
9041         ScalarMemVT = MemVT.getScalarType();
9042     unsigned Stride = ScalarMemVT.getStoreSize();
9043 
9044     SDValue Stores[4];
9045     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9046       SDValue Ex = DAG.getNode(
9047           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9048           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9049       SDValue Store;
9050       if (ScalarVT != ScalarMemVT)
9051         Store =
9052             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9053                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9054                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9055                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9056       else
9057         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9058                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9059                              MinAlign(Alignment, Idx * Stride),
9060                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9061 
9062       if (Idx == 0 && SN->isIndexed()) {
9063         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9064                "Unknown addressing mode on vector store");
9065         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9066                                     SN->getAddressingMode());
9067       }
9068 
9069       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9070                             DAG.getConstant(Stride, dl,
9071                                             BasePtr.getValueType()));
9072       Stores[Idx] = Store;
9073     }
9074 
9075     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9076 
9077     if (SN->isIndexed()) {
9078       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9079       return DAG.getMergeValues(RetOps, dl);
9080     }
9081 
9082     return TF;
9083   }
9084 
9085   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9086   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9087 
9088   // The values are now known to be -1 (false) or 1 (true). To convert this
9089   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9090   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9091   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9092 
9093   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9094   // understand how to form the extending load.
9095   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9096 
9097   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9098 
9099   // Now convert to an integer and store.
9100   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9101     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9102     Value);
9103 
9104   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9105   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9106   MachinePointerInfo PtrInfo =
9107       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9108   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9109   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9110 
9111   SDValue Ops[] = {StoreChain,
9112                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9113                    Value, FIdx};
9114   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9115 
9116   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9117     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9118 
9119   // Move data into the byte array.
9120   SDValue Loads[4], LoadChains[4];
9121   for (unsigned i = 0; i < 4; ++i) {
9122     unsigned Offset = 4*i;
9123     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9124     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9125 
9126     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9127                            PtrInfo.getWithOffset(Offset));
9128     LoadChains[i] = Loads[i].getValue(1);
9129   }
9130 
9131   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9132 
9133   SDValue Stores[4];
9134   for (unsigned i = 0; i < 4; ++i) {
9135     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9136     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9137 
9138     Stores[i] = DAG.getTruncStore(
9139         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9140         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9141         SN->getAAInfo());
9142   }
9143 
9144   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9145 
9146   return StoreChain;
9147 }
9148 
9149 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9150   SDLoc dl(Op);
9151   if (Op.getValueType() == MVT::v4i32) {
9152     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9153 
9154     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9155     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9156 
9157     SDValue RHSSwap =   // = vrlw RHS, 16
9158       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9159 
9160     // Shrinkify inputs to v8i16.
9161     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9162     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9163     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9164 
9165     // Low parts multiplied together, generating 32-bit results (we ignore the
9166     // top parts).
9167     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9168                                         LHS, RHS, DAG, dl, MVT::v4i32);
9169 
9170     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9171                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9172     // Shift the high parts up 16 bits.
9173     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9174                               Neg16, DAG, dl);
9175     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9176   } else if (Op.getValueType() == MVT::v8i16) {
9177     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9178 
9179     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9180 
9181     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9182                             LHS, RHS, Zero, DAG, dl);
9183   } else if (Op.getValueType() == MVT::v16i8) {
9184     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9185     bool isLittleEndian = Subtarget.isLittleEndian();
9186 
9187     // Multiply the even 8-bit parts, producing 16-bit sums.
9188     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9189                                            LHS, RHS, DAG, dl, MVT::v8i16);
9190     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9191 
9192     // Multiply the odd 8-bit parts, producing 16-bit sums.
9193     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9194                                           LHS, RHS, DAG, dl, MVT::v8i16);
9195     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9196 
9197     // Merge the results together.  Because vmuleub and vmuloub are
9198     // instructions with a big-endian bias, we must reverse the
9199     // element numbering and reverse the meaning of "odd" and "even"
9200     // when generating little endian code.
9201     int Ops[16];
9202     for (unsigned i = 0; i != 8; ++i) {
9203       if (isLittleEndian) {
9204         Ops[i*2  ] = 2*i;
9205         Ops[i*2+1] = 2*i+16;
9206       } else {
9207         Ops[i*2  ] = 2*i+1;
9208         Ops[i*2+1] = 2*i+1+16;
9209       }
9210     }
9211     if (isLittleEndian)
9212       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9213     else
9214       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9215   } else {
9216     llvm_unreachable("Unknown mul to lower!");
9217   }
9218 }
9219 
9220 /// LowerOperation - Provide custom lowering hooks for some operations.
9221 ///
9222 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9223   switch (Op.getOpcode()) {
9224   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9225   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9226   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9227   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9228   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9229   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9230   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9231   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9232   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9233   case ISD::VASTART:
9234     return LowerVASTART(Op, DAG);
9235 
9236   case ISD::VAARG:
9237     return LowerVAARG(Op, DAG);
9238 
9239   case ISD::VACOPY:
9240     return LowerVACOPY(Op, DAG);
9241 
9242   case ISD::STACKRESTORE:
9243     return LowerSTACKRESTORE(Op, DAG);
9244 
9245   case ISD::DYNAMIC_STACKALLOC:
9246     return LowerDYNAMIC_STACKALLOC(Op, DAG);
9247 
9248   case ISD::GET_DYNAMIC_AREA_OFFSET:
9249     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9250 
9251   case ISD::EH_DWARF_CFA:
9252     return LowerEH_DWARF_CFA(Op, DAG);
9253 
9254   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9255   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9256 
9257   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9258   case ISD::STORE:              return LowerSTORE(Op, DAG);
9259   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9260   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9261   case ISD::FP_TO_UINT:
9262   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
9263                                                       SDLoc(Op));
9264   case ISD::UINT_TO_FP:
9265   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9266   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9267 
9268   // Lower 64-bit shifts.
9269   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9270   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9271   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9272 
9273   // Vector-related lowering.
9274   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9275   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9276   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9277   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9278   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
9279   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9280   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9281   case ISD::MUL:                return LowerMUL(Op, DAG);
9282 
9283   // For counter-based loop handling.
9284   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9285 
9286   // Frame & Return address.
9287   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9288   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9289 
9290   case ISD::INTRINSIC_VOID:
9291     return LowerINTRINSIC_VOID(Op, DAG);
9292   case ISD::SREM:
9293   case ISD::UREM:
9294     return LowerREM(Op, DAG);
9295   case ISD::BSWAP:
9296     return LowerBSWAP(Op, DAG);
9297   }
9298 }
9299 
9300 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9301                                            SmallVectorImpl<SDValue>&Results,
9302                                            SelectionDAG &DAG) const {
9303   SDLoc dl(N);
9304   switch (N->getOpcode()) {
9305   default:
9306     llvm_unreachable("Do not know how to custom type legalize this operation!");
9307   case ISD::READCYCLECOUNTER: {
9308     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9309     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9310 
9311     Results.push_back(RTB);
9312     Results.push_back(RTB.getValue(1));
9313     Results.push_back(RTB.getValue(2));
9314     break;
9315   }
9316   case ISD::INTRINSIC_W_CHAIN: {
9317     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9318         Intrinsic::ppc_is_decremented_ctr_nonzero)
9319       break;
9320 
9321     assert(N->getValueType(0) == MVT::i1 &&
9322            "Unexpected result type for CTR decrement intrinsic");
9323     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9324                                  N->getValueType(0));
9325     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9326     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9327                                  N->getOperand(1));
9328 
9329     Results.push_back(NewInt);
9330     Results.push_back(NewInt.getValue(1));
9331     break;
9332   }
9333   case ISD::VAARG: {
9334     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9335       return;
9336 
9337     EVT VT = N->getValueType(0);
9338 
9339     if (VT == MVT::i64) {
9340       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9341 
9342       Results.push_back(NewNode);
9343       Results.push_back(NewNode.getValue(1));
9344     }
9345     return;
9346   }
9347   case ISD::FP_ROUND_INREG: {
9348     assert(N->getValueType(0) == MVT::ppcf128);
9349     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
9350     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
9351                              MVT::f64, N->getOperand(0),
9352                              DAG.getIntPtrConstant(0, dl));
9353     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
9354                              MVT::f64, N->getOperand(0),
9355                              DAG.getIntPtrConstant(1, dl));
9356 
9357     // Add the two halves of the long double in round-to-zero mode.
9358     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
9359 
9360     // We know the low half is about to be thrown away, so just use something
9361     // convenient.
9362     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
9363                                 FPreg, FPreg));
9364     return;
9365   }
9366   case ISD::FP_TO_SINT:
9367   case ISD::FP_TO_UINT:
9368     // LowerFP_TO_INT() can only handle f32 and f64.
9369     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9370       return;
9371     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9372     return;
9373   }
9374 }
9375 
9376 //===----------------------------------------------------------------------===//
9377 //  Other Lowering Code
9378 //===----------------------------------------------------------------------===//
9379 
9380 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9381   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9382   Function *Func = Intrinsic::getDeclaration(M, Id);
9383   return Builder.CreateCall(Func, {});
9384 }
9385 
9386 // The mappings for emitLeading/TrailingFence is taken from
9387 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9388 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9389                                                  Instruction *Inst,
9390                                                  AtomicOrdering Ord) const {
9391   if (Ord == AtomicOrdering::SequentiallyConsistent)
9392     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9393   if (isReleaseOrStronger(Ord))
9394     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9395   return nullptr;
9396 }
9397 
9398 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9399                                                   Instruction *Inst,
9400                                                   AtomicOrdering Ord) const {
9401   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9402     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9403     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9404     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9405     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9406       return Builder.CreateCall(
9407           Intrinsic::getDeclaration(
9408               Builder.GetInsertBlock()->getParent()->getParent(),
9409               Intrinsic::ppc_cfence, {Inst->getType()}),
9410           {Inst});
9411     // FIXME: Can use isync for rmw operation.
9412     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9413   }
9414   return nullptr;
9415 }
9416 
9417 MachineBasicBlock *
9418 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9419                                     unsigned AtomicSize,
9420                                     unsigned BinOpcode,
9421                                     unsigned CmpOpcode,
9422                                     unsigned CmpPred) const {
9423   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9424   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9425 
9426   auto LoadMnemonic = PPC::LDARX;
9427   auto StoreMnemonic = PPC::STDCX;
9428   switch (AtomicSize) {
9429   default:
9430     llvm_unreachable("Unexpected size of atomic entity");
9431   case 1:
9432     LoadMnemonic = PPC::LBARX;
9433     StoreMnemonic = PPC::STBCX;
9434     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9435     break;
9436   case 2:
9437     LoadMnemonic = PPC::LHARX;
9438     StoreMnemonic = PPC::STHCX;
9439     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9440     break;
9441   case 4:
9442     LoadMnemonic = PPC::LWARX;
9443     StoreMnemonic = PPC::STWCX;
9444     break;
9445   case 8:
9446     LoadMnemonic = PPC::LDARX;
9447     StoreMnemonic = PPC::STDCX;
9448     break;
9449   }
9450 
9451   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9452   MachineFunction *F = BB->getParent();
9453   MachineFunction::iterator It = ++BB->getIterator();
9454 
9455   unsigned dest = MI.getOperand(0).getReg();
9456   unsigned ptrA = MI.getOperand(1).getReg();
9457   unsigned ptrB = MI.getOperand(2).getReg();
9458   unsigned incr = MI.getOperand(3).getReg();
9459   DebugLoc dl = MI.getDebugLoc();
9460 
9461   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9462   MachineBasicBlock *loop2MBB =
9463     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9464   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9465   F->insert(It, loopMBB);
9466   if (CmpOpcode)
9467     F->insert(It, loop2MBB);
9468   F->insert(It, exitMBB);
9469   exitMBB->splice(exitMBB->begin(), BB,
9470                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9471   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9472 
9473   MachineRegisterInfo &RegInfo = F->getRegInfo();
9474   unsigned TmpReg = (!BinOpcode) ? incr :
9475     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9476                                            : &PPC::GPRCRegClass);
9477 
9478   //  thisMBB:
9479   //   ...
9480   //   fallthrough --> loopMBB
9481   BB->addSuccessor(loopMBB);
9482 
9483   //  loopMBB:
9484   //   l[wd]arx dest, ptr
9485   //   add r0, dest, incr
9486   //   st[wd]cx. r0, ptr
9487   //   bne- loopMBB
9488   //   fallthrough --> exitMBB
9489 
9490   // For max/min...
9491   //  loopMBB:
9492   //   l[wd]arx dest, ptr
9493   //   cmpl?[wd] incr, dest
9494   //   bgt exitMBB
9495   //  loop2MBB:
9496   //   st[wd]cx. dest, ptr
9497   //   bne- loopMBB
9498   //   fallthrough --> exitMBB
9499 
9500   BB = loopMBB;
9501   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9502     .addReg(ptrA).addReg(ptrB);
9503   if (BinOpcode)
9504     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9505   if (CmpOpcode) {
9506     // Signed comparisons of byte or halfword values must be sign-extended.
9507     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9508       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9509       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9510               ExtReg).addReg(dest);
9511       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9512         .addReg(incr).addReg(ExtReg);
9513     } else
9514       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9515         .addReg(incr).addReg(dest);
9516 
9517     BuildMI(BB, dl, TII->get(PPC::BCC))
9518       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9519     BB->addSuccessor(loop2MBB);
9520     BB->addSuccessor(exitMBB);
9521     BB = loop2MBB;
9522   }
9523   BuildMI(BB, dl, TII->get(StoreMnemonic))
9524     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9525   BuildMI(BB, dl, TII->get(PPC::BCC))
9526     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9527   BB->addSuccessor(loopMBB);
9528   BB->addSuccessor(exitMBB);
9529 
9530   //  exitMBB:
9531   //   ...
9532   BB = exitMBB;
9533   return BB;
9534 }
9535 
9536 MachineBasicBlock *
9537 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9538                                             MachineBasicBlock *BB,
9539                                             bool is8bit, // operation
9540                                             unsigned BinOpcode,
9541                                             unsigned CmpOpcode,
9542                                             unsigned CmpPred) const {
9543   // If we support part-word atomic mnemonics, just use them
9544   if (Subtarget.hasPartwordAtomics())
9545     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9546                             CmpOpcode, CmpPred);
9547 
9548   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9549   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9550   // In 64 bit mode we have to use 64 bits for addresses, even though the
9551   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9552   // registers without caring whether they're 32 or 64, but here we're
9553   // doing actual arithmetic on the addresses.
9554   bool is64bit = Subtarget.isPPC64();
9555   bool isLittleEndian = Subtarget.isLittleEndian();
9556   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9557 
9558   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9559   MachineFunction *F = BB->getParent();
9560   MachineFunction::iterator It = ++BB->getIterator();
9561 
9562   unsigned dest = MI.getOperand(0).getReg();
9563   unsigned ptrA = MI.getOperand(1).getReg();
9564   unsigned ptrB = MI.getOperand(2).getReg();
9565   unsigned incr = MI.getOperand(3).getReg();
9566   DebugLoc dl = MI.getDebugLoc();
9567 
9568   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9569   MachineBasicBlock *loop2MBB =
9570     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9571   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9572   F->insert(It, loopMBB);
9573   if (CmpOpcode)
9574     F->insert(It, loop2MBB);
9575   F->insert(It, exitMBB);
9576   exitMBB->splice(exitMBB->begin(), BB,
9577                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9578   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9579 
9580   MachineRegisterInfo &RegInfo = F->getRegInfo();
9581   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9582                                           : &PPC::GPRCRegClass;
9583   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9584   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9585   unsigned ShiftReg =
9586     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9587   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9588   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9589   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9590   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9591   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9592   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9593   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9594   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9595   unsigned Ptr1Reg;
9596   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9597 
9598   //  thisMBB:
9599   //   ...
9600   //   fallthrough --> loopMBB
9601   BB->addSuccessor(loopMBB);
9602 
9603   // The 4-byte load must be aligned, while a char or short may be
9604   // anywhere in the word.  Hence all this nasty bookkeeping code.
9605   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9606   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9607   //   xori shift, shift1, 24 [16]
9608   //   rlwinm ptr, ptr1, 0, 0, 29
9609   //   slw incr2, incr, shift
9610   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9611   //   slw mask, mask2, shift
9612   //  loopMBB:
9613   //   lwarx tmpDest, ptr
9614   //   add tmp, tmpDest, incr2
9615   //   andc tmp2, tmpDest, mask
9616   //   and tmp3, tmp, mask
9617   //   or tmp4, tmp3, tmp2
9618   //   stwcx. tmp4, ptr
9619   //   bne- loopMBB
9620   //   fallthrough --> exitMBB
9621   //   srw dest, tmpDest, shift
9622   if (ptrA != ZeroReg) {
9623     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9624     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9625       .addReg(ptrA).addReg(ptrB);
9626   } else {
9627     Ptr1Reg = ptrB;
9628   }
9629   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9630       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9631   if (!isLittleEndian)
9632     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9633         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9634   if (is64bit)
9635     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9636       .addReg(Ptr1Reg).addImm(0).addImm(61);
9637   else
9638     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9639       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9640   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9641       .addReg(incr).addReg(ShiftReg);
9642   if (is8bit)
9643     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9644   else {
9645     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9646     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9647   }
9648   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9649       .addReg(Mask2Reg).addReg(ShiftReg);
9650 
9651   BB = loopMBB;
9652   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9653     .addReg(ZeroReg).addReg(PtrReg);
9654   if (BinOpcode)
9655     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9656       .addReg(Incr2Reg).addReg(TmpDestReg);
9657   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9658     .addReg(TmpDestReg).addReg(MaskReg);
9659   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9660     .addReg(TmpReg).addReg(MaskReg);
9661   if (CmpOpcode) {
9662     // For unsigned comparisons, we can directly compare the shifted values.
9663     // For signed comparisons we shift and sign extend.
9664     unsigned SReg = RegInfo.createVirtualRegister(RC);
9665     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9666       .addReg(TmpDestReg).addReg(MaskReg);
9667     unsigned ValueReg = SReg;
9668     unsigned CmpReg = Incr2Reg;
9669     if (CmpOpcode == PPC::CMPW) {
9670       ValueReg = RegInfo.createVirtualRegister(RC);
9671       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9672         .addReg(SReg).addReg(ShiftReg);
9673       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9674       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9675         .addReg(ValueReg);
9676       ValueReg = ValueSReg;
9677       CmpReg = incr;
9678     }
9679     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9680       .addReg(CmpReg).addReg(ValueReg);
9681     BuildMI(BB, dl, TII->get(PPC::BCC))
9682       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9683     BB->addSuccessor(loop2MBB);
9684     BB->addSuccessor(exitMBB);
9685     BB = loop2MBB;
9686   }
9687   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9688     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9689   BuildMI(BB, dl, TII->get(PPC::STWCX))
9690     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9691   BuildMI(BB, dl, TII->get(PPC::BCC))
9692     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9693   BB->addSuccessor(loopMBB);
9694   BB->addSuccessor(exitMBB);
9695 
9696   //  exitMBB:
9697   //   ...
9698   BB = exitMBB;
9699   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9700     .addReg(ShiftReg);
9701   return BB;
9702 }
9703 
9704 llvm::MachineBasicBlock *
9705 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9706                                     MachineBasicBlock *MBB) const {
9707   DebugLoc DL = MI.getDebugLoc();
9708   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9709   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9710 
9711   MachineFunction *MF = MBB->getParent();
9712   MachineRegisterInfo &MRI = MF->getRegInfo();
9713 
9714   const BasicBlock *BB = MBB->getBasicBlock();
9715   MachineFunction::iterator I = ++MBB->getIterator();
9716 
9717   // Memory Reference
9718   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9719   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9720 
9721   unsigned DstReg = MI.getOperand(0).getReg();
9722   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9723   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9724   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9725   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9726 
9727   MVT PVT = getPointerTy(MF->getDataLayout());
9728   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9729          "Invalid Pointer Size!");
9730   // For v = setjmp(buf), we generate
9731   //
9732   // thisMBB:
9733   //  SjLjSetup mainMBB
9734   //  bl mainMBB
9735   //  v_restore = 1
9736   //  b sinkMBB
9737   //
9738   // mainMBB:
9739   //  buf[LabelOffset] = LR
9740   //  v_main = 0
9741   //
9742   // sinkMBB:
9743   //  v = phi(main, restore)
9744   //
9745 
9746   MachineBasicBlock *thisMBB = MBB;
9747   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
9748   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
9749   MF->insert(I, mainMBB);
9750   MF->insert(I, sinkMBB);
9751 
9752   MachineInstrBuilder MIB;
9753 
9754   // Transfer the remainder of BB and its successor edges to sinkMBB.
9755   sinkMBB->splice(sinkMBB->begin(), MBB,
9756                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9757   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
9758 
9759   // Note that the structure of the jmp_buf used here is not compatible
9760   // with that used by libc, and is not designed to be. Specifically, it
9761   // stores only those 'reserved' registers that LLVM does not otherwise
9762   // understand how to spill. Also, by convention, by the time this
9763   // intrinsic is called, Clang has already stored the frame address in the
9764   // first slot of the buffer and stack address in the third. Following the
9765   // X86 target code, we'll store the jump address in the second slot. We also
9766   // need to save the TOC pointer (R2) to handle jumps between shared
9767   // libraries, and that will be stored in the fourth slot. The thread
9768   // identifier (R13) is not affected.
9769 
9770   // thisMBB:
9771   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9772   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9773   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9774 
9775   // Prepare IP either in reg.
9776   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
9777   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
9778   unsigned BufReg = MI.getOperand(1).getReg();
9779 
9780   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
9781     setUsesTOCBasePtr(*MBB->getParent());
9782     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
9783             .addReg(PPC::X2)
9784             .addImm(TOCOffset)
9785             .addReg(BufReg);
9786     MIB.setMemRefs(MMOBegin, MMOEnd);
9787   }
9788 
9789   // Naked functions never have a base pointer, and so we use r1. For all
9790   // other functions, this decision must be delayed until during PEI.
9791   unsigned BaseReg;
9792   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
9793     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
9794   else
9795     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
9796 
9797   MIB = BuildMI(*thisMBB, MI, DL,
9798                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
9799             .addReg(BaseReg)
9800             .addImm(BPOffset)
9801             .addReg(BufReg);
9802   MIB.setMemRefs(MMOBegin, MMOEnd);
9803 
9804   // Setup
9805   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
9806   MIB.addRegMask(TRI->getNoPreservedMask());
9807 
9808   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
9809 
9810   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
9811           .addMBB(mainMBB);
9812   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
9813 
9814   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
9815   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9816 
9817   // mainMBB:
9818   //  mainDstReg = 0
9819   MIB =
9820       BuildMI(mainMBB, DL,
9821               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9822 
9823   // Store IP
9824   if (Subtarget.isPPC64()) {
9825     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9826             .addReg(LabelReg)
9827             .addImm(LabelOffset)
9828             .addReg(BufReg);
9829   } else {
9830     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9831             .addReg(LabelReg)
9832             .addImm(LabelOffset)
9833             .addReg(BufReg);
9834   }
9835 
9836   MIB.setMemRefs(MMOBegin, MMOEnd);
9837 
9838   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9839   mainMBB->addSuccessor(sinkMBB);
9840 
9841   // sinkMBB:
9842   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9843           TII->get(PPC::PHI), DstReg)
9844     .addReg(mainDstReg).addMBB(mainMBB)
9845     .addReg(restoreDstReg).addMBB(thisMBB);
9846 
9847   MI.eraseFromParent();
9848   return sinkMBB;
9849 }
9850 
9851 MachineBasicBlock *
9852 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9853                                      MachineBasicBlock *MBB) const {
9854   DebugLoc DL = MI.getDebugLoc();
9855   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9856 
9857   MachineFunction *MF = MBB->getParent();
9858   MachineRegisterInfo &MRI = MF->getRegInfo();
9859 
9860   // Memory Reference
9861   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9862   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9863 
9864   MVT PVT = getPointerTy(MF->getDataLayout());
9865   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9866          "Invalid Pointer Size!");
9867 
9868   const TargetRegisterClass *RC =
9869     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9870   unsigned Tmp = MRI.createVirtualRegister(RC);
9871   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9872   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9873   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9874   unsigned BP =
9875       (PVT == MVT::i64)
9876           ? PPC::X30
9877           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
9878                                                               : PPC::R30);
9879 
9880   MachineInstrBuilder MIB;
9881 
9882   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9883   const int64_t SPOffset    = 2 * PVT.getStoreSize();
9884   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9885   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9886 
9887   unsigned BufReg = MI.getOperand(0).getReg();
9888 
9889   // Reload FP (the jumped-to function may not have had a
9890   // frame pointer, and if so, then its r31 will be restored
9891   // as necessary).
9892   if (PVT == MVT::i64) {
9893     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
9894             .addImm(0)
9895             .addReg(BufReg);
9896   } else {
9897     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
9898             .addImm(0)
9899             .addReg(BufReg);
9900   }
9901   MIB.setMemRefs(MMOBegin, MMOEnd);
9902 
9903   // Reload IP
9904   if (PVT == MVT::i64) {
9905     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
9906             .addImm(LabelOffset)
9907             .addReg(BufReg);
9908   } else {
9909     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
9910             .addImm(LabelOffset)
9911             .addReg(BufReg);
9912   }
9913   MIB.setMemRefs(MMOBegin, MMOEnd);
9914 
9915   // Reload SP
9916   if (PVT == MVT::i64) {
9917     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
9918             .addImm(SPOffset)
9919             .addReg(BufReg);
9920   } else {
9921     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
9922             .addImm(SPOffset)
9923             .addReg(BufReg);
9924   }
9925   MIB.setMemRefs(MMOBegin, MMOEnd);
9926 
9927   // Reload BP
9928   if (PVT == MVT::i64) {
9929     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
9930             .addImm(BPOffset)
9931             .addReg(BufReg);
9932   } else {
9933     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
9934             .addImm(BPOffset)
9935             .addReg(BufReg);
9936   }
9937   MIB.setMemRefs(MMOBegin, MMOEnd);
9938 
9939   // Reload TOC
9940   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
9941     setUsesTOCBasePtr(*MBB->getParent());
9942     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
9943             .addImm(TOCOffset)
9944             .addReg(BufReg);
9945 
9946     MIB.setMemRefs(MMOBegin, MMOEnd);
9947   }
9948 
9949   // Jump
9950   BuildMI(*MBB, MI, DL,
9951           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
9952   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
9953 
9954   MI.eraseFromParent();
9955   return MBB;
9956 }
9957 
9958 MachineBasicBlock *
9959 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9960                                                MachineBasicBlock *BB) const {
9961   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
9962       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9963     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
9964         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9965       // Call lowering should have added an r2 operand to indicate a dependence
9966       // on the TOC base pointer value. It can't however, because there is no
9967       // way to mark the dependence as implicit there, and so the stackmap code
9968       // will confuse it with a regular operand. Instead, add the dependence
9969       // here.
9970       setUsesTOCBasePtr(*BB->getParent());
9971       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
9972     }
9973 
9974     return emitPatchPoint(MI, BB);
9975   }
9976 
9977   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
9978       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
9979     return emitEHSjLjSetJmp(MI, BB);
9980   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
9981              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
9982     return emitEHSjLjLongJmp(MI, BB);
9983   }
9984 
9985   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9986 
9987   // To "insert" these instructions we actually have to insert their
9988   // control-flow patterns.
9989   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9990   MachineFunction::iterator It = ++BB->getIterator();
9991 
9992   MachineFunction *F = BB->getParent();
9993 
9994   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9995        MI.getOpcode() == PPC::SELECT_CC_I8 ||
9996        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
9997     SmallVector<MachineOperand, 2> Cond;
9998     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9999         MI.getOpcode() == PPC::SELECT_CC_I8)
10000       Cond.push_back(MI.getOperand(4));
10001     else
10002       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10003     Cond.push_back(MI.getOperand(1));
10004 
10005     DebugLoc dl = MI.getDebugLoc();
10006     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10007                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10008   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10009              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10010              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10011              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10012              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10013              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10014              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10015              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10016              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10017              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10018              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10019              MI.getOpcode() == PPC::SELECT_I4 ||
10020              MI.getOpcode() == PPC::SELECT_I8 ||
10021              MI.getOpcode() == PPC::SELECT_F4 ||
10022              MI.getOpcode() == PPC::SELECT_F8 ||
10023              MI.getOpcode() == PPC::SELECT_QFRC ||
10024              MI.getOpcode() == PPC::SELECT_QSRC ||
10025              MI.getOpcode() == PPC::SELECT_QBRC ||
10026              MI.getOpcode() == PPC::SELECT_VRRC ||
10027              MI.getOpcode() == PPC::SELECT_VSFRC ||
10028              MI.getOpcode() == PPC::SELECT_VSSRC ||
10029              MI.getOpcode() == PPC::SELECT_VSRC) {
10030     // The incoming instruction knows the destination vreg to set, the
10031     // condition code register to branch on, the true/false values to
10032     // select between, and a branch opcode to use.
10033 
10034     //  thisMBB:
10035     //  ...
10036     //   TrueVal = ...
10037     //   cmpTY ccX, r1, r2
10038     //   bCC copy1MBB
10039     //   fallthrough --> copy0MBB
10040     MachineBasicBlock *thisMBB = BB;
10041     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10042     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10043     DebugLoc dl = MI.getDebugLoc();
10044     F->insert(It, copy0MBB);
10045     F->insert(It, sinkMBB);
10046 
10047     // Transfer the remainder of BB and its successor edges to sinkMBB.
10048     sinkMBB->splice(sinkMBB->begin(), BB,
10049                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10050     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10051 
10052     // Next, add the true and fallthrough blocks as its successors.
10053     BB->addSuccessor(copy0MBB);
10054     BB->addSuccessor(sinkMBB);
10055 
10056     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10057         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10058         MI.getOpcode() == PPC::SELECT_QFRC ||
10059         MI.getOpcode() == PPC::SELECT_QSRC ||
10060         MI.getOpcode() == PPC::SELECT_QBRC ||
10061         MI.getOpcode() == PPC::SELECT_VRRC ||
10062         MI.getOpcode() == PPC::SELECT_VSFRC ||
10063         MI.getOpcode() == PPC::SELECT_VSSRC ||
10064         MI.getOpcode() == PPC::SELECT_VSRC) {
10065       BuildMI(BB, dl, TII->get(PPC::BC))
10066           .addReg(MI.getOperand(1).getReg())
10067           .addMBB(sinkMBB);
10068     } else {
10069       unsigned SelectPred = MI.getOperand(4).getImm();
10070       BuildMI(BB, dl, TII->get(PPC::BCC))
10071           .addImm(SelectPred)
10072           .addReg(MI.getOperand(1).getReg())
10073           .addMBB(sinkMBB);
10074     }
10075 
10076     //  copy0MBB:
10077     //   %FalseValue = ...
10078     //   # fallthrough to sinkMBB
10079     BB = copy0MBB;
10080 
10081     // Update machine-CFG edges
10082     BB->addSuccessor(sinkMBB);
10083 
10084     //  sinkMBB:
10085     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10086     //  ...
10087     BB = sinkMBB;
10088     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10089         .addReg(MI.getOperand(3).getReg())
10090         .addMBB(copy0MBB)
10091         .addReg(MI.getOperand(2).getReg())
10092         .addMBB(thisMBB);
10093   } else if (MI.getOpcode() == PPC::ReadTB) {
10094     // To read the 64-bit time-base register on a 32-bit target, we read the
10095     // two halves. Should the counter have wrapped while it was being read, we
10096     // need to try again.
10097     // ...
10098     // readLoop:
10099     // mfspr Rx,TBU # load from TBU
10100     // mfspr Ry,TB  # load from TB
10101     // mfspr Rz,TBU # load from TBU
10102     // cmpw crX,Rx,Rz # check if 'old'='new'
10103     // bne readLoop   # branch if they're not equal
10104     // ...
10105 
10106     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10107     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10108     DebugLoc dl = MI.getDebugLoc();
10109     F->insert(It, readMBB);
10110     F->insert(It, sinkMBB);
10111 
10112     // Transfer the remainder of BB and its successor edges to sinkMBB.
10113     sinkMBB->splice(sinkMBB->begin(), BB,
10114                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10115     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10116 
10117     BB->addSuccessor(readMBB);
10118     BB = readMBB;
10119 
10120     MachineRegisterInfo &RegInfo = F->getRegInfo();
10121     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10122     unsigned LoReg = MI.getOperand(0).getReg();
10123     unsigned HiReg = MI.getOperand(1).getReg();
10124 
10125     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10126     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10127     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10128 
10129     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10130 
10131     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10132       .addReg(HiReg).addReg(ReadAgainReg);
10133     BuildMI(BB, dl, TII->get(PPC::BCC))
10134       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10135 
10136     BB->addSuccessor(readMBB);
10137     BB->addSuccessor(sinkMBB);
10138   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10139     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10140   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10141     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10142   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10143     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10144   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10145     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10146 
10147   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10148     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10149   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10150     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10151   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10152     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10153   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10154     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10155 
10156   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10157     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10158   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10159     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10160   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10161     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10162   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10163     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10164 
10165   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10166     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10167   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10168     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10169   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10170     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10171   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10172     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10173 
10174   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10175     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10176   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10177     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10178   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10179     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10180   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10181     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10182 
10183   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10184     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10185   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10186     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10187   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10188     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10189   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10190     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10191 
10192   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10193     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10194   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10195     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10196   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10197     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10198   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10199     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10200 
10201   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10202     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10203   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10204     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10205   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10206     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10207   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10208     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10209 
10210   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10211     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10212   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10213     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10214   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10215     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10216   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10217     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10218 
10219   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10220     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10221   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10222     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10223   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10224     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10225   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10226     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10227 
10228   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10229     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10230   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10231     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10232   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10233     BB = EmitAtomicBinary(MI, BB, 4, 0);
10234   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10235     BB = EmitAtomicBinary(MI, BB, 8, 0);
10236   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10237            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10238            (Subtarget.hasPartwordAtomics() &&
10239             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10240            (Subtarget.hasPartwordAtomics() &&
10241             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10242     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10243 
10244     auto LoadMnemonic = PPC::LDARX;
10245     auto StoreMnemonic = PPC::STDCX;
10246     switch (MI.getOpcode()) {
10247     default:
10248       llvm_unreachable("Compare and swap of unknown size");
10249     case PPC::ATOMIC_CMP_SWAP_I8:
10250       LoadMnemonic = PPC::LBARX;
10251       StoreMnemonic = PPC::STBCX;
10252       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10253       break;
10254     case PPC::ATOMIC_CMP_SWAP_I16:
10255       LoadMnemonic = PPC::LHARX;
10256       StoreMnemonic = PPC::STHCX;
10257       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10258       break;
10259     case PPC::ATOMIC_CMP_SWAP_I32:
10260       LoadMnemonic = PPC::LWARX;
10261       StoreMnemonic = PPC::STWCX;
10262       break;
10263     case PPC::ATOMIC_CMP_SWAP_I64:
10264       LoadMnemonic = PPC::LDARX;
10265       StoreMnemonic = PPC::STDCX;
10266       break;
10267     }
10268     unsigned dest = MI.getOperand(0).getReg();
10269     unsigned ptrA = MI.getOperand(1).getReg();
10270     unsigned ptrB = MI.getOperand(2).getReg();
10271     unsigned oldval = MI.getOperand(3).getReg();
10272     unsigned newval = MI.getOperand(4).getReg();
10273     DebugLoc dl = MI.getDebugLoc();
10274 
10275     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10276     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10277     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10278     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10279     F->insert(It, loop1MBB);
10280     F->insert(It, loop2MBB);
10281     F->insert(It, midMBB);
10282     F->insert(It, exitMBB);
10283     exitMBB->splice(exitMBB->begin(), BB,
10284                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10285     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10286 
10287     //  thisMBB:
10288     //   ...
10289     //   fallthrough --> loopMBB
10290     BB->addSuccessor(loop1MBB);
10291 
10292     // loop1MBB:
10293     //   l[bhwd]arx dest, ptr
10294     //   cmp[wd] dest, oldval
10295     //   bne- midMBB
10296     // loop2MBB:
10297     //   st[bhwd]cx. newval, ptr
10298     //   bne- loopMBB
10299     //   b exitBB
10300     // midMBB:
10301     //   st[bhwd]cx. dest, ptr
10302     // exitBB:
10303     BB = loop1MBB;
10304     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10305       .addReg(ptrA).addReg(ptrB);
10306     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10307       .addReg(oldval).addReg(dest);
10308     BuildMI(BB, dl, TII->get(PPC::BCC))
10309       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10310     BB->addSuccessor(loop2MBB);
10311     BB->addSuccessor(midMBB);
10312 
10313     BB = loop2MBB;
10314     BuildMI(BB, dl, TII->get(StoreMnemonic))
10315       .addReg(newval).addReg(ptrA).addReg(ptrB);
10316     BuildMI(BB, dl, TII->get(PPC::BCC))
10317       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10318     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10319     BB->addSuccessor(loop1MBB);
10320     BB->addSuccessor(exitMBB);
10321 
10322     BB = midMBB;
10323     BuildMI(BB, dl, TII->get(StoreMnemonic))
10324       .addReg(dest).addReg(ptrA).addReg(ptrB);
10325     BB->addSuccessor(exitMBB);
10326 
10327     //  exitMBB:
10328     //   ...
10329     BB = exitMBB;
10330   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10331              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10332     // We must use 64-bit registers for addresses when targeting 64-bit,
10333     // since we're actually doing arithmetic on them.  Other registers
10334     // can be 32-bit.
10335     bool is64bit = Subtarget.isPPC64();
10336     bool isLittleEndian = Subtarget.isLittleEndian();
10337     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10338 
10339     unsigned dest = MI.getOperand(0).getReg();
10340     unsigned ptrA = MI.getOperand(1).getReg();
10341     unsigned ptrB = MI.getOperand(2).getReg();
10342     unsigned oldval = MI.getOperand(3).getReg();
10343     unsigned newval = MI.getOperand(4).getReg();
10344     DebugLoc dl = MI.getDebugLoc();
10345 
10346     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10347     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10348     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10349     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10350     F->insert(It, loop1MBB);
10351     F->insert(It, loop2MBB);
10352     F->insert(It, midMBB);
10353     F->insert(It, exitMBB);
10354     exitMBB->splice(exitMBB->begin(), BB,
10355                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10356     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10357 
10358     MachineRegisterInfo &RegInfo = F->getRegInfo();
10359     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10360                                             : &PPC::GPRCRegClass;
10361     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10362     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10363     unsigned ShiftReg =
10364       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10365     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10366     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10367     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10368     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10369     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10370     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10371     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10372     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10373     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10374     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10375     unsigned Ptr1Reg;
10376     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10377     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10378     //  thisMBB:
10379     //   ...
10380     //   fallthrough --> loopMBB
10381     BB->addSuccessor(loop1MBB);
10382 
10383     // The 4-byte load must be aligned, while a char or short may be
10384     // anywhere in the word.  Hence all this nasty bookkeeping code.
10385     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10386     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10387     //   xori shift, shift1, 24 [16]
10388     //   rlwinm ptr, ptr1, 0, 0, 29
10389     //   slw newval2, newval, shift
10390     //   slw oldval2, oldval,shift
10391     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10392     //   slw mask, mask2, shift
10393     //   and newval3, newval2, mask
10394     //   and oldval3, oldval2, mask
10395     // loop1MBB:
10396     //   lwarx tmpDest, ptr
10397     //   and tmp, tmpDest, mask
10398     //   cmpw tmp, oldval3
10399     //   bne- midMBB
10400     // loop2MBB:
10401     //   andc tmp2, tmpDest, mask
10402     //   or tmp4, tmp2, newval3
10403     //   stwcx. tmp4, ptr
10404     //   bne- loop1MBB
10405     //   b exitBB
10406     // midMBB:
10407     //   stwcx. tmpDest, ptr
10408     // exitBB:
10409     //   srw dest, tmpDest, shift
10410     if (ptrA != ZeroReg) {
10411       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10412       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10413         .addReg(ptrA).addReg(ptrB);
10414     } else {
10415       Ptr1Reg = ptrB;
10416     }
10417     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10418         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10419     if (!isLittleEndian)
10420       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10421           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10422     if (is64bit)
10423       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10424         .addReg(Ptr1Reg).addImm(0).addImm(61);
10425     else
10426       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10427         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10428     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10429         .addReg(newval).addReg(ShiftReg);
10430     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10431         .addReg(oldval).addReg(ShiftReg);
10432     if (is8bit)
10433       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10434     else {
10435       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10436       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10437         .addReg(Mask3Reg).addImm(65535);
10438     }
10439     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10440         .addReg(Mask2Reg).addReg(ShiftReg);
10441     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10442         .addReg(NewVal2Reg).addReg(MaskReg);
10443     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10444         .addReg(OldVal2Reg).addReg(MaskReg);
10445 
10446     BB = loop1MBB;
10447     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10448         .addReg(ZeroReg).addReg(PtrReg);
10449     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10450         .addReg(TmpDestReg).addReg(MaskReg);
10451     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10452         .addReg(TmpReg).addReg(OldVal3Reg);
10453     BuildMI(BB, dl, TII->get(PPC::BCC))
10454         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10455     BB->addSuccessor(loop2MBB);
10456     BB->addSuccessor(midMBB);
10457 
10458     BB = loop2MBB;
10459     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10460         .addReg(TmpDestReg).addReg(MaskReg);
10461     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10462         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10463     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10464         .addReg(ZeroReg).addReg(PtrReg);
10465     BuildMI(BB, dl, TII->get(PPC::BCC))
10466       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10467     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10468     BB->addSuccessor(loop1MBB);
10469     BB->addSuccessor(exitMBB);
10470 
10471     BB = midMBB;
10472     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10473       .addReg(ZeroReg).addReg(PtrReg);
10474     BB->addSuccessor(exitMBB);
10475 
10476     //  exitMBB:
10477     //   ...
10478     BB = exitMBB;
10479     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10480       .addReg(ShiftReg);
10481   } else if (MI.getOpcode() == PPC::FADDrtz) {
10482     // This pseudo performs an FADD with rounding mode temporarily forced
10483     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10484     // is not modeled at the SelectionDAG level.
10485     unsigned Dest = MI.getOperand(0).getReg();
10486     unsigned Src1 = MI.getOperand(1).getReg();
10487     unsigned Src2 = MI.getOperand(2).getReg();
10488     DebugLoc dl = MI.getDebugLoc();
10489 
10490     MachineRegisterInfo &RegInfo = F->getRegInfo();
10491     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10492 
10493     // Save FPSCR value.
10494     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10495 
10496     // Set rounding mode to round-to-zero.
10497     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10498     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10499 
10500     // Perform addition.
10501     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10502 
10503     // Restore FPSCR value.
10504     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10505   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10506              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10507              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10508              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10509     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10510                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10511                           ? PPC::ANDIo8
10512                           : PPC::ANDIo;
10513     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10514                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10515 
10516     MachineRegisterInfo &RegInfo = F->getRegInfo();
10517     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10518                                                   &PPC::GPRCRegClass :
10519                                                   &PPC::G8RCRegClass);
10520 
10521     DebugLoc dl = MI.getDebugLoc();
10522     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10523         .addReg(MI.getOperand(1).getReg())
10524         .addImm(1);
10525     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10526             MI.getOperand(0).getReg())
10527         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10528   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10529     DebugLoc Dl = MI.getDebugLoc();
10530     MachineRegisterInfo &RegInfo = F->getRegInfo();
10531     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10532     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10533     return BB;
10534   } else {
10535     llvm_unreachable("Unexpected instr type to insert");
10536   }
10537 
10538   MI.eraseFromParent(); // The pseudo instruction is gone now.
10539   return BB;
10540 }
10541 
10542 //===----------------------------------------------------------------------===//
10543 // Target Optimization Hooks
10544 //===----------------------------------------------------------------------===//
10545 
10546 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10547   // For the estimates, convergence is quadratic, so we essentially double the
10548   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10549   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10550   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10551   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10552   if (VT.getScalarType() == MVT::f64)
10553     RefinementSteps++;
10554   return RefinementSteps;
10555 }
10556 
10557 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10558                                            int Enabled, int &RefinementSteps,
10559                                            bool &UseOneConstNR,
10560                                            bool Reciprocal) const {
10561   EVT VT = Operand.getValueType();
10562   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10563       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10564       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10565       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10566       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10567       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10568     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10569       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10570 
10571     UseOneConstNR = true;
10572     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10573   }
10574   return SDValue();
10575 }
10576 
10577 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10578                                             int Enabled,
10579                                             int &RefinementSteps) const {
10580   EVT VT = Operand.getValueType();
10581   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10582       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10583       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10584       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10585       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10586       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10587     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10588       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10589     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10590   }
10591   return SDValue();
10592 }
10593 
10594 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10595   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10596   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10597   // enabled for division), this functionality is redundant with the default
10598   // combiner logic (once the division -> reciprocal/multiply transformation
10599   // has taken place). As a result, this matters more for older cores than for
10600   // newer ones.
10601 
10602   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10603   // reciprocal if there are two or more FDIVs (for embedded cores with only
10604   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10605   switch (Subtarget.getDarwinDirective()) {
10606   default:
10607     return 3;
10608   case PPC::DIR_440:
10609   case PPC::DIR_A2:
10610   case PPC::DIR_E500mc:
10611   case PPC::DIR_E5500:
10612     return 2;
10613   }
10614 }
10615 
10616 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10617 // collapsed, and so we need to look through chains of them.
10618 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10619                                      int64_t& Offset, SelectionDAG &DAG) {
10620   if (DAG.isBaseWithConstantOffset(Loc)) {
10621     Base = Loc.getOperand(0);
10622     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10623 
10624     // The base might itself be a base plus an offset, and if so, accumulate
10625     // that as well.
10626     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10627   }
10628 }
10629 
10630 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10631                             unsigned Bytes, int Dist,
10632                             SelectionDAG &DAG) {
10633   if (VT.getSizeInBits() / 8 != Bytes)
10634     return false;
10635 
10636   SDValue BaseLoc = Base->getBasePtr();
10637   if (Loc.getOpcode() == ISD::FrameIndex) {
10638     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10639       return false;
10640     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10641     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10642     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10643     int FS  = MFI.getObjectSize(FI);
10644     int BFS = MFI.getObjectSize(BFI);
10645     if (FS != BFS || FS != (int)Bytes) return false;
10646     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10647   }
10648 
10649   SDValue Base1 = Loc, Base2 = BaseLoc;
10650   int64_t Offset1 = 0, Offset2 = 0;
10651   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10652   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10653   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10654     return true;
10655 
10656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10657   const GlobalValue *GV1 = nullptr;
10658   const GlobalValue *GV2 = nullptr;
10659   Offset1 = 0;
10660   Offset2 = 0;
10661   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10662   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10663   if (isGA1 && isGA2 && GV1 == GV2)
10664     return Offset1 == (Offset2 + Dist*Bytes);
10665   return false;
10666 }
10667 
10668 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10669 // not enforce equality of the chain operands.
10670 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10671                             unsigned Bytes, int Dist,
10672                             SelectionDAG &DAG) {
10673   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10674     EVT VT = LS->getMemoryVT();
10675     SDValue Loc = LS->getBasePtr();
10676     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10677   }
10678 
10679   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10680     EVT VT;
10681     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10682     default: return false;
10683     case Intrinsic::ppc_qpx_qvlfd:
10684     case Intrinsic::ppc_qpx_qvlfda:
10685       VT = MVT::v4f64;
10686       break;
10687     case Intrinsic::ppc_qpx_qvlfs:
10688     case Intrinsic::ppc_qpx_qvlfsa:
10689       VT = MVT::v4f32;
10690       break;
10691     case Intrinsic::ppc_qpx_qvlfcd:
10692     case Intrinsic::ppc_qpx_qvlfcda:
10693       VT = MVT::v2f64;
10694       break;
10695     case Intrinsic::ppc_qpx_qvlfcs:
10696     case Intrinsic::ppc_qpx_qvlfcsa:
10697       VT = MVT::v2f32;
10698       break;
10699     case Intrinsic::ppc_qpx_qvlfiwa:
10700     case Intrinsic::ppc_qpx_qvlfiwz:
10701     case Intrinsic::ppc_altivec_lvx:
10702     case Intrinsic::ppc_altivec_lvxl:
10703     case Intrinsic::ppc_vsx_lxvw4x:
10704     case Intrinsic::ppc_vsx_lxvw4x_be:
10705       VT = MVT::v4i32;
10706       break;
10707     case Intrinsic::ppc_vsx_lxvd2x:
10708     case Intrinsic::ppc_vsx_lxvd2x_be:
10709       VT = MVT::v2f64;
10710       break;
10711     case Intrinsic::ppc_altivec_lvebx:
10712       VT = MVT::i8;
10713       break;
10714     case Intrinsic::ppc_altivec_lvehx:
10715       VT = MVT::i16;
10716       break;
10717     case Intrinsic::ppc_altivec_lvewx:
10718       VT = MVT::i32;
10719       break;
10720     }
10721 
10722     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10723   }
10724 
10725   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10726     EVT VT;
10727     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10728     default: return false;
10729     case Intrinsic::ppc_qpx_qvstfd:
10730     case Intrinsic::ppc_qpx_qvstfda:
10731       VT = MVT::v4f64;
10732       break;
10733     case Intrinsic::ppc_qpx_qvstfs:
10734     case Intrinsic::ppc_qpx_qvstfsa:
10735       VT = MVT::v4f32;
10736       break;
10737     case Intrinsic::ppc_qpx_qvstfcd:
10738     case Intrinsic::ppc_qpx_qvstfcda:
10739       VT = MVT::v2f64;
10740       break;
10741     case Intrinsic::ppc_qpx_qvstfcs:
10742     case Intrinsic::ppc_qpx_qvstfcsa:
10743       VT = MVT::v2f32;
10744       break;
10745     case Intrinsic::ppc_qpx_qvstfiw:
10746     case Intrinsic::ppc_qpx_qvstfiwa:
10747     case Intrinsic::ppc_altivec_stvx:
10748     case Intrinsic::ppc_altivec_stvxl:
10749     case Intrinsic::ppc_vsx_stxvw4x:
10750       VT = MVT::v4i32;
10751       break;
10752     case Intrinsic::ppc_vsx_stxvd2x:
10753       VT = MVT::v2f64;
10754       break;
10755     case Intrinsic::ppc_vsx_stxvw4x_be:
10756       VT = MVT::v4i32;
10757       break;
10758     case Intrinsic::ppc_vsx_stxvd2x_be:
10759       VT = MVT::v2f64;
10760       break;
10761     case Intrinsic::ppc_altivec_stvebx:
10762       VT = MVT::i8;
10763       break;
10764     case Intrinsic::ppc_altivec_stvehx:
10765       VT = MVT::i16;
10766       break;
10767     case Intrinsic::ppc_altivec_stvewx:
10768       VT = MVT::i32;
10769       break;
10770     }
10771 
10772     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
10773   }
10774 
10775   return false;
10776 }
10777 
10778 // Return true is there is a nearyby consecutive load to the one provided
10779 // (regardless of alignment). We search up and down the chain, looking though
10780 // token factors and other loads (but nothing else). As a result, a true result
10781 // indicates that it is safe to create a new consecutive load adjacent to the
10782 // load provided.
10783 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
10784   SDValue Chain = LD->getChain();
10785   EVT VT = LD->getMemoryVT();
10786 
10787   SmallSet<SDNode *, 16> LoadRoots;
10788   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
10789   SmallSet<SDNode *, 16> Visited;
10790 
10791   // First, search up the chain, branching to follow all token-factor operands.
10792   // If we find a consecutive load, then we're done, otherwise, record all
10793   // nodes just above the top-level loads and token factors.
10794   while (!Queue.empty()) {
10795     SDNode *ChainNext = Queue.pop_back_val();
10796     if (!Visited.insert(ChainNext).second)
10797       continue;
10798 
10799     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
10800       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10801         return true;
10802 
10803       if (!Visited.count(ChainLD->getChain().getNode()))
10804         Queue.push_back(ChainLD->getChain().getNode());
10805     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
10806       for (const SDUse &O : ChainNext->ops())
10807         if (!Visited.count(O.getNode()))
10808           Queue.push_back(O.getNode());
10809     } else
10810       LoadRoots.insert(ChainNext);
10811   }
10812 
10813   // Second, search down the chain, starting from the top-level nodes recorded
10814   // in the first phase. These top-level nodes are the nodes just above all
10815   // loads and token factors. Starting with their uses, recursively look though
10816   // all loads (just the chain uses) and token factors to find a consecutive
10817   // load.
10818   Visited.clear();
10819   Queue.clear();
10820 
10821   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10822        IE = LoadRoots.end(); I != IE; ++I) {
10823     Queue.push_back(*I);
10824 
10825     while (!Queue.empty()) {
10826       SDNode *LoadRoot = Queue.pop_back_val();
10827       if (!Visited.insert(LoadRoot).second)
10828         continue;
10829 
10830       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10831         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10832           return true;
10833 
10834       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10835            UE = LoadRoot->use_end(); UI != UE; ++UI)
10836         if (((isa<MemSDNode>(*UI) &&
10837             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10838             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10839           Queue.push_back(*UI);
10840     }
10841   }
10842 
10843   return false;
10844 }
10845 
10846 /// This function is called when we have proved that a SETCC node can be replaced
10847 /// by subtraction (and other supporting instructions) so that the result of
10848 /// comparison is kept in a GPR instead of CR. This function is purely for
10849 /// codegen purposes and has some flags to guide the codegen process.
10850 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10851                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10852   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10853 
10854   // Zero extend the operands to the largest legal integer. Originally, they
10855   // must be of a strictly smaller size.
10856   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10857                          DAG.getConstant(Size, DL, MVT::i32));
10858   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10859                          DAG.getConstant(Size, DL, MVT::i32));
10860 
10861   // Swap if needed. Depends on the condition code.
10862   if (Swap)
10863     std::swap(Op0, Op1);
10864 
10865   // Subtract extended integers.
10866   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10867 
10868   // Move the sign bit to the least significant position and zero out the rest.
10869   // Now the least significant bit carries the result of original comparison.
10870   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10871                              DAG.getConstant(Size - 1, DL, MVT::i32));
10872   auto Final = Shifted;
10873 
10874   // Complement the result if needed. Based on the condition code.
10875   if (Complement)
10876     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
10877                         DAG.getConstant(1, DL, MVT::i64));
10878 
10879   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
10880 }
10881 
10882 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
10883                                                   DAGCombinerInfo &DCI) const {
10884   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10885 
10886   SelectionDAG &DAG = DCI.DAG;
10887   SDLoc DL(N);
10888 
10889   // Size of integers being compared has a critical role in the following
10890   // analysis, so we prefer to do this when all types are legal.
10891   if (!DCI.isAfterLegalizeVectorOps())
10892     return SDValue();
10893 
10894   // If all users of SETCC extend its value to a legal integer type
10895   // then we replace SETCC with a subtraction
10896   for (SDNode::use_iterator UI = N->use_begin(),
10897        UE = N->use_end(); UI != UE; ++UI) {
10898     if (UI->getOpcode() != ISD::ZERO_EXTEND)
10899       return SDValue();
10900   }
10901 
10902   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10903   auto OpSize = N->getOperand(0).getValueSizeInBits();
10904 
10905   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
10906 
10907   if (OpSize < Size) {
10908     switch (CC) {
10909     default: break;
10910     case ISD::SETULT:
10911       return generateEquivalentSub(N, Size, false, false, DL, DAG);
10912     case ISD::SETULE:
10913       return generateEquivalentSub(N, Size, true, true, DL, DAG);
10914     case ISD::SETUGT:
10915       return generateEquivalentSub(N, Size, false, true, DL, DAG);
10916     case ISD::SETUGE:
10917       return generateEquivalentSub(N, Size, true, false, DL, DAG);
10918     }
10919   }
10920 
10921   return SDValue();
10922 }
10923 
10924 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
10925                                                   DAGCombinerInfo &DCI) const {
10926   SelectionDAG &DAG = DCI.DAG;
10927   SDLoc dl(N);
10928 
10929   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
10930   // If we're tracking CR bits, we need to be careful that we don't have:
10931   //   trunc(binary-ops(zext(x), zext(y)))
10932   // or
10933   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
10934   // such that we're unnecessarily moving things into GPRs when it would be
10935   // better to keep them in CR bits.
10936 
10937   // Note that trunc here can be an actual i1 trunc, or can be the effective
10938   // truncation that comes from a setcc or select_cc.
10939   if (N->getOpcode() == ISD::TRUNCATE &&
10940       N->getValueType(0) != MVT::i1)
10941     return SDValue();
10942 
10943   if (N->getOperand(0).getValueType() != MVT::i32 &&
10944       N->getOperand(0).getValueType() != MVT::i64)
10945     return SDValue();
10946 
10947   if (N->getOpcode() == ISD::SETCC ||
10948       N->getOpcode() == ISD::SELECT_CC) {
10949     // If we're looking at a comparison, then we need to make sure that the
10950     // high bits (all except for the first) don't matter the result.
10951     ISD::CondCode CC =
10952       cast<CondCodeSDNode>(N->getOperand(
10953         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
10954     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
10955 
10956     if (ISD::isSignedIntSetCC(CC)) {
10957       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
10958           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
10959         return SDValue();
10960     } else if (ISD::isUnsignedIntSetCC(CC)) {
10961       if (!DAG.MaskedValueIsZero(N->getOperand(0),
10962                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
10963           !DAG.MaskedValueIsZero(N->getOperand(1),
10964                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
10965         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
10966                                              : SDValue());
10967     } else {
10968       // This is neither a signed nor an unsigned comparison, just make sure
10969       // that the high bits are equal.
10970       KnownBits Op1Known, Op2Known;
10971       DAG.computeKnownBits(N->getOperand(0), Op1Known);
10972       DAG.computeKnownBits(N->getOperand(1), Op2Known);
10973 
10974       // We don't really care about what is known about the first bit (if
10975       // anything), so clear it in all masks prior to comparing them.
10976       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
10977       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
10978 
10979       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
10980         return SDValue();
10981     }
10982   }
10983 
10984   // We now know that the higher-order bits are irrelevant, we just need to
10985   // make sure that all of the intermediate operations are bit operations, and
10986   // all inputs are extensions.
10987   if (N->getOperand(0).getOpcode() != ISD::AND &&
10988       N->getOperand(0).getOpcode() != ISD::OR  &&
10989       N->getOperand(0).getOpcode() != ISD::XOR &&
10990       N->getOperand(0).getOpcode() != ISD::SELECT &&
10991       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
10992       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
10993       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
10994       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
10995       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
10996     return SDValue();
10997 
10998   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
10999       N->getOperand(1).getOpcode() != ISD::AND &&
11000       N->getOperand(1).getOpcode() != ISD::OR  &&
11001       N->getOperand(1).getOpcode() != ISD::XOR &&
11002       N->getOperand(1).getOpcode() != ISD::SELECT &&
11003       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11004       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11005       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11006       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11007       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11008     return SDValue();
11009 
11010   SmallVector<SDValue, 4> Inputs;
11011   SmallVector<SDValue, 8> BinOps, PromOps;
11012   SmallPtrSet<SDNode *, 16> Visited;
11013 
11014   for (unsigned i = 0; i < 2; ++i) {
11015     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11016           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11017           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11018           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11019         isa<ConstantSDNode>(N->getOperand(i)))
11020       Inputs.push_back(N->getOperand(i));
11021     else
11022       BinOps.push_back(N->getOperand(i));
11023 
11024     if (N->getOpcode() == ISD::TRUNCATE)
11025       break;
11026   }
11027 
11028   // Visit all inputs, collect all binary operations (and, or, xor and
11029   // select) that are all fed by extensions.
11030   while (!BinOps.empty()) {
11031     SDValue BinOp = BinOps.back();
11032     BinOps.pop_back();
11033 
11034     if (!Visited.insert(BinOp.getNode()).second)
11035       continue;
11036 
11037     PromOps.push_back(BinOp);
11038 
11039     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11040       // The condition of the select is not promoted.
11041       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11042         continue;
11043       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11044         continue;
11045 
11046       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11047             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11048             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11049            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11050           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11051         Inputs.push_back(BinOp.getOperand(i));
11052       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11053                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11054                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11055                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11056                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11057                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11058                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11059                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11060                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11061         BinOps.push_back(BinOp.getOperand(i));
11062       } else {
11063         // We have an input that is not an extension or another binary
11064         // operation; we'll abort this transformation.
11065         return SDValue();
11066       }
11067     }
11068   }
11069 
11070   // Make sure that this is a self-contained cluster of operations (which
11071   // is not quite the same thing as saying that everything has only one
11072   // use).
11073   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11074     if (isa<ConstantSDNode>(Inputs[i]))
11075       continue;
11076 
11077     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11078                               UE = Inputs[i].getNode()->use_end();
11079          UI != UE; ++UI) {
11080       SDNode *User = *UI;
11081       if (User != N && !Visited.count(User))
11082         return SDValue();
11083 
11084       // Make sure that we're not going to promote the non-output-value
11085       // operand(s) or SELECT or SELECT_CC.
11086       // FIXME: Although we could sometimes handle this, and it does occur in
11087       // practice that one of the condition inputs to the select is also one of
11088       // the outputs, we currently can't deal with this.
11089       if (User->getOpcode() == ISD::SELECT) {
11090         if (User->getOperand(0) == Inputs[i])
11091           return SDValue();
11092       } else if (User->getOpcode() == ISD::SELECT_CC) {
11093         if (User->getOperand(0) == Inputs[i] ||
11094             User->getOperand(1) == Inputs[i])
11095           return SDValue();
11096       }
11097     }
11098   }
11099 
11100   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11101     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11102                               UE = PromOps[i].getNode()->use_end();
11103          UI != UE; ++UI) {
11104       SDNode *User = *UI;
11105       if (User != N && !Visited.count(User))
11106         return SDValue();
11107 
11108       // Make sure that we're not going to promote the non-output-value
11109       // operand(s) or SELECT or SELECT_CC.
11110       // FIXME: Although we could sometimes handle this, and it does occur in
11111       // practice that one of the condition inputs to the select is also one of
11112       // the outputs, we currently can't deal with this.
11113       if (User->getOpcode() == ISD::SELECT) {
11114         if (User->getOperand(0) == PromOps[i])
11115           return SDValue();
11116       } else if (User->getOpcode() == ISD::SELECT_CC) {
11117         if (User->getOperand(0) == PromOps[i] ||
11118             User->getOperand(1) == PromOps[i])
11119           return SDValue();
11120       }
11121     }
11122   }
11123 
11124   // Replace all inputs with the extension operand.
11125   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11126     // Constants may have users outside the cluster of to-be-promoted nodes,
11127     // and so we need to replace those as we do the promotions.
11128     if (isa<ConstantSDNode>(Inputs[i]))
11129       continue;
11130     else
11131       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11132   }
11133 
11134   std::list<HandleSDNode> PromOpHandles;
11135   for (auto &PromOp : PromOps)
11136     PromOpHandles.emplace_back(PromOp);
11137 
11138   // Replace all operations (these are all the same, but have a different
11139   // (i1) return type). DAG.getNode will validate that the types of
11140   // a binary operator match, so go through the list in reverse so that
11141   // we've likely promoted both operands first. Any intermediate truncations or
11142   // extensions disappear.
11143   while (!PromOpHandles.empty()) {
11144     SDValue PromOp = PromOpHandles.back().getValue();
11145     PromOpHandles.pop_back();
11146 
11147     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11148         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11149         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11150         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11151       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11152           PromOp.getOperand(0).getValueType() != MVT::i1) {
11153         // The operand is not yet ready (see comment below).
11154         PromOpHandles.emplace_front(PromOp);
11155         continue;
11156       }
11157 
11158       SDValue RepValue = PromOp.getOperand(0);
11159       if (isa<ConstantSDNode>(RepValue))
11160         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11161 
11162       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11163       continue;
11164     }
11165 
11166     unsigned C;
11167     switch (PromOp.getOpcode()) {
11168     default:             C = 0; break;
11169     case ISD::SELECT:    C = 1; break;
11170     case ISD::SELECT_CC: C = 2; break;
11171     }
11172 
11173     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11174          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11175         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11176          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11177       // The to-be-promoted operands of this node have not yet been
11178       // promoted (this should be rare because we're going through the
11179       // list backward, but if one of the operands has several users in
11180       // this cluster of to-be-promoted nodes, it is possible).
11181       PromOpHandles.emplace_front(PromOp);
11182       continue;
11183     }
11184 
11185     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11186                                 PromOp.getNode()->op_end());
11187 
11188     // If there are any constant inputs, make sure they're replaced now.
11189     for (unsigned i = 0; i < 2; ++i)
11190       if (isa<ConstantSDNode>(Ops[C+i]))
11191         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11192 
11193     DAG.ReplaceAllUsesOfValueWith(PromOp,
11194       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11195   }
11196 
11197   // Now we're left with the initial truncation itself.
11198   if (N->getOpcode() == ISD::TRUNCATE)
11199     return N->getOperand(0);
11200 
11201   // Otherwise, this is a comparison. The operands to be compared have just
11202   // changed type (to i1), but everything else is the same.
11203   return SDValue(N, 0);
11204 }
11205 
11206 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11207                                                   DAGCombinerInfo &DCI) const {
11208   SelectionDAG &DAG = DCI.DAG;
11209   SDLoc dl(N);
11210 
11211   // If we're tracking CR bits, we need to be careful that we don't have:
11212   //   zext(binary-ops(trunc(x), trunc(y)))
11213   // or
11214   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11215   // such that we're unnecessarily moving things into CR bits that can more
11216   // efficiently stay in GPRs. Note that if we're not certain that the high
11217   // bits are set as required by the final extension, we still may need to do
11218   // some masking to get the proper behavior.
11219 
11220   // This same functionality is important on PPC64 when dealing with
11221   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11222   // the return values of functions. Because it is so similar, it is handled
11223   // here as well.
11224 
11225   if (N->getValueType(0) != MVT::i32 &&
11226       N->getValueType(0) != MVT::i64)
11227     return SDValue();
11228 
11229   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11230         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11231     return SDValue();
11232 
11233   if (N->getOperand(0).getOpcode() != ISD::AND &&
11234       N->getOperand(0).getOpcode() != ISD::OR  &&
11235       N->getOperand(0).getOpcode() != ISD::XOR &&
11236       N->getOperand(0).getOpcode() != ISD::SELECT &&
11237       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11238     return SDValue();
11239 
11240   SmallVector<SDValue, 4> Inputs;
11241   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11242   SmallPtrSet<SDNode *, 16> Visited;
11243 
11244   // Visit all inputs, collect all binary operations (and, or, xor and
11245   // select) that are all fed by truncations.
11246   while (!BinOps.empty()) {
11247     SDValue BinOp = BinOps.back();
11248     BinOps.pop_back();
11249 
11250     if (!Visited.insert(BinOp.getNode()).second)
11251       continue;
11252 
11253     PromOps.push_back(BinOp);
11254 
11255     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11256       // The condition of the select is not promoted.
11257       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11258         continue;
11259       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11260         continue;
11261 
11262       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11263           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11264         Inputs.push_back(BinOp.getOperand(i));
11265       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11266                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11267                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11268                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11269                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11270         BinOps.push_back(BinOp.getOperand(i));
11271       } else {
11272         // We have an input that is not a truncation or another binary
11273         // operation; we'll abort this transformation.
11274         return SDValue();
11275       }
11276     }
11277   }
11278 
11279   // The operands of a select that must be truncated when the select is
11280   // promoted because the operand is actually part of the to-be-promoted set.
11281   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11282 
11283   // Make sure that this is a self-contained cluster of operations (which
11284   // is not quite the same thing as saying that everything has only one
11285   // use).
11286   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11287     if (isa<ConstantSDNode>(Inputs[i]))
11288       continue;
11289 
11290     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11291                               UE = Inputs[i].getNode()->use_end();
11292          UI != UE; ++UI) {
11293       SDNode *User = *UI;
11294       if (User != N && !Visited.count(User))
11295         return SDValue();
11296 
11297       // If we're going to promote the non-output-value operand(s) or SELECT or
11298       // SELECT_CC, record them for truncation.
11299       if (User->getOpcode() == ISD::SELECT) {
11300         if (User->getOperand(0) == Inputs[i])
11301           SelectTruncOp[0].insert(std::make_pair(User,
11302                                     User->getOperand(0).getValueType()));
11303       } else if (User->getOpcode() == ISD::SELECT_CC) {
11304         if (User->getOperand(0) == Inputs[i])
11305           SelectTruncOp[0].insert(std::make_pair(User,
11306                                     User->getOperand(0).getValueType()));
11307         if (User->getOperand(1) == Inputs[i])
11308           SelectTruncOp[1].insert(std::make_pair(User,
11309                                     User->getOperand(1).getValueType()));
11310       }
11311     }
11312   }
11313 
11314   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11315     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11316                               UE = PromOps[i].getNode()->use_end();
11317          UI != UE; ++UI) {
11318       SDNode *User = *UI;
11319       if (User != N && !Visited.count(User))
11320         return SDValue();
11321 
11322       // If we're going to promote the non-output-value operand(s) or SELECT or
11323       // SELECT_CC, record them for truncation.
11324       if (User->getOpcode() == ISD::SELECT) {
11325         if (User->getOperand(0) == PromOps[i])
11326           SelectTruncOp[0].insert(std::make_pair(User,
11327                                     User->getOperand(0).getValueType()));
11328       } else if (User->getOpcode() == ISD::SELECT_CC) {
11329         if (User->getOperand(0) == PromOps[i])
11330           SelectTruncOp[0].insert(std::make_pair(User,
11331                                     User->getOperand(0).getValueType()));
11332         if (User->getOperand(1) == PromOps[i])
11333           SelectTruncOp[1].insert(std::make_pair(User,
11334                                     User->getOperand(1).getValueType()));
11335       }
11336     }
11337   }
11338 
11339   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11340   bool ReallyNeedsExt = false;
11341   if (N->getOpcode() != ISD::ANY_EXTEND) {
11342     // If all of the inputs are not already sign/zero extended, then
11343     // we'll still need to do that at the end.
11344     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11345       if (isa<ConstantSDNode>(Inputs[i]))
11346         continue;
11347 
11348       unsigned OpBits =
11349         Inputs[i].getOperand(0).getValueSizeInBits();
11350       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11351 
11352       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11353            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11354                                   APInt::getHighBitsSet(OpBits,
11355                                                         OpBits-PromBits))) ||
11356           (N->getOpcode() == ISD::SIGN_EXTEND &&
11357            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11358              (OpBits-(PromBits-1)))) {
11359         ReallyNeedsExt = true;
11360         break;
11361       }
11362     }
11363   }
11364 
11365   // Replace all inputs, either with the truncation operand, or a
11366   // truncation or extension to the final output type.
11367   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11368     // Constant inputs need to be replaced with the to-be-promoted nodes that
11369     // use them because they might have users outside of the cluster of
11370     // promoted nodes.
11371     if (isa<ConstantSDNode>(Inputs[i]))
11372       continue;
11373 
11374     SDValue InSrc = Inputs[i].getOperand(0);
11375     if (Inputs[i].getValueType() == N->getValueType(0))
11376       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11377     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11378       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11379         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11380     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11381       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11382         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11383     else
11384       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11385         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11386   }
11387 
11388   std::list<HandleSDNode> PromOpHandles;
11389   for (auto &PromOp : PromOps)
11390     PromOpHandles.emplace_back(PromOp);
11391 
11392   // Replace all operations (these are all the same, but have a different
11393   // (promoted) return type). DAG.getNode will validate that the types of
11394   // a binary operator match, so go through the list in reverse so that
11395   // we've likely promoted both operands first.
11396   while (!PromOpHandles.empty()) {
11397     SDValue PromOp = PromOpHandles.back().getValue();
11398     PromOpHandles.pop_back();
11399 
11400     unsigned C;
11401     switch (PromOp.getOpcode()) {
11402     default:             C = 0; break;
11403     case ISD::SELECT:    C = 1; break;
11404     case ISD::SELECT_CC: C = 2; break;
11405     }
11406 
11407     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11408          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11409         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11410          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11411       // The to-be-promoted operands of this node have not yet been
11412       // promoted (this should be rare because we're going through the
11413       // list backward, but if one of the operands has several users in
11414       // this cluster of to-be-promoted nodes, it is possible).
11415       PromOpHandles.emplace_front(PromOp);
11416       continue;
11417     }
11418 
11419     // For SELECT and SELECT_CC nodes, we do a similar check for any
11420     // to-be-promoted comparison inputs.
11421     if (PromOp.getOpcode() == ISD::SELECT ||
11422         PromOp.getOpcode() == ISD::SELECT_CC) {
11423       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11424            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11425           (SelectTruncOp[1].count(PromOp.getNode()) &&
11426            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11427         PromOpHandles.emplace_front(PromOp);
11428         continue;
11429       }
11430     }
11431 
11432     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11433                                 PromOp.getNode()->op_end());
11434 
11435     // If this node has constant inputs, then they'll need to be promoted here.
11436     for (unsigned i = 0; i < 2; ++i) {
11437       if (!isa<ConstantSDNode>(Ops[C+i]))
11438         continue;
11439       if (Ops[C+i].getValueType() == N->getValueType(0))
11440         continue;
11441 
11442       if (N->getOpcode() == ISD::SIGN_EXTEND)
11443         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11444       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11445         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11446       else
11447         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11448     }
11449 
11450     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11451     // truncate them again to the original value type.
11452     if (PromOp.getOpcode() == ISD::SELECT ||
11453         PromOp.getOpcode() == ISD::SELECT_CC) {
11454       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11455       if (SI0 != SelectTruncOp[0].end())
11456         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11457       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11458       if (SI1 != SelectTruncOp[1].end())
11459         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11460     }
11461 
11462     DAG.ReplaceAllUsesOfValueWith(PromOp,
11463       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11464   }
11465 
11466   // Now we're left with the initial extension itself.
11467   if (!ReallyNeedsExt)
11468     return N->getOperand(0);
11469 
11470   // To zero extend, just mask off everything except for the first bit (in the
11471   // i1 case).
11472   if (N->getOpcode() == ISD::ZERO_EXTEND)
11473     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11474                        DAG.getConstant(APInt::getLowBitsSet(
11475                                          N->getValueSizeInBits(0), PromBits),
11476                                        dl, N->getValueType(0)));
11477 
11478   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11479          "Invalid extension type");
11480   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11481   SDValue ShiftCst =
11482       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11483   return DAG.getNode(
11484       ISD::SRA, dl, N->getValueType(0),
11485       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11486       ShiftCst);
11487 }
11488 
11489 /// \brief Reduces the number of fp-to-int conversion when building a vector.
11490 ///
11491 /// If this vector is built out of floating to integer conversions,
11492 /// transform it to a vector built out of floating point values followed by a
11493 /// single floating to integer conversion of the vector.
11494 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11495 /// becomes (fptosi (build_vector ($A, $B, ...)))
11496 SDValue PPCTargetLowering::
11497 combineElementTruncationToVectorTruncation(SDNode *N,
11498                                            DAGCombinerInfo &DCI) const {
11499   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11500          "Should be called with a BUILD_VECTOR node");
11501 
11502   SelectionDAG &DAG = DCI.DAG;
11503   SDLoc dl(N);
11504 
11505   SDValue FirstInput = N->getOperand(0);
11506   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11507          "The input operand must be an fp-to-int conversion.");
11508 
11509   // This combine happens after legalization so the fp_to_[su]i nodes are
11510   // already converted to PPCSISD nodes.
11511   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11512   if (FirstConversion == PPCISD::FCTIDZ ||
11513       FirstConversion == PPCISD::FCTIDUZ ||
11514       FirstConversion == PPCISD::FCTIWZ ||
11515       FirstConversion == PPCISD::FCTIWUZ) {
11516     bool IsSplat = true;
11517     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11518       FirstConversion == PPCISD::FCTIWUZ;
11519     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11520     SmallVector<SDValue, 4> Ops;
11521     EVT TargetVT = N->getValueType(0);
11522     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11523       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
11524         return SDValue();
11525       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
11526       if (NextConversion != FirstConversion)
11527         return SDValue();
11528       if (N->getOperand(i) != FirstInput)
11529         IsSplat = false;
11530     }
11531 
11532     // If this is a splat, we leave it as-is since there will be only a single
11533     // fp-to-int conversion followed by a splat of the integer. This is better
11534     // for 32-bit and smaller ints and neutral for 64-bit ints.
11535     if (IsSplat)
11536       return SDValue();
11537 
11538     // Now that we know we have the right type of node, get its operands
11539     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11540       SDValue In = N->getOperand(i).getOperand(0);
11541       // For 32-bit values, we need to add an FP_ROUND node.
11542       if (Is32Bit) {
11543         if (In.isUndef())
11544           Ops.push_back(DAG.getUNDEF(SrcVT));
11545         else {
11546           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11547                                       MVT::f32, In.getOperand(0),
11548                                       DAG.getIntPtrConstant(1, dl));
11549           Ops.push_back(Trunc);
11550         }
11551       } else
11552         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11553     }
11554 
11555     unsigned Opcode;
11556     if (FirstConversion == PPCISD::FCTIDZ ||
11557         FirstConversion == PPCISD::FCTIWZ)
11558       Opcode = ISD::FP_TO_SINT;
11559     else
11560       Opcode = ISD::FP_TO_UINT;
11561 
11562     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11563     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11564     return DAG.getNode(Opcode, dl, TargetVT, BV);
11565   }
11566   return SDValue();
11567 }
11568 
11569 /// \brief Reduce the number of loads when building a vector.
11570 ///
11571 /// Building a vector out of multiple loads can be converted to a load
11572 /// of the vector type if the loads are consecutive. If the loads are
11573 /// consecutive but in descending order, a shuffle is added at the end
11574 /// to reorder the vector.
11575 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11576   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11577          "Should be called with a BUILD_VECTOR node");
11578 
11579   SDLoc dl(N);
11580   bool InputsAreConsecutiveLoads = true;
11581   bool InputsAreReverseConsecutive = true;
11582   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11583   SDValue FirstInput = N->getOperand(0);
11584   bool IsRoundOfExtLoad = false;
11585 
11586   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11587       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11588     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11589     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11590   }
11591   // Not a build vector of (possibly fp_rounded) loads.
11592   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11593     return SDValue();
11594 
11595   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11596     // If any inputs are fp_round(extload), they all must be.
11597     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11598       return SDValue();
11599 
11600     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11601       N->getOperand(i);
11602     if (NextInput.getOpcode() != ISD::LOAD)
11603       return SDValue();
11604 
11605     SDValue PreviousInput =
11606       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11607     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11608     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11609 
11610     // If any inputs are fp_round(extload), they all must be.
11611     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11612       return SDValue();
11613 
11614     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11615       InputsAreConsecutiveLoads = false;
11616     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11617       InputsAreReverseConsecutive = false;
11618 
11619     // Exit early if the loads are neither consecutive nor reverse consecutive.
11620     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11621       return SDValue();
11622   }
11623 
11624   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11625          "The loads cannot be both consecutive and reverse consecutive.");
11626 
11627   SDValue FirstLoadOp =
11628     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11629   SDValue LastLoadOp =
11630     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11631                        N->getOperand(N->getNumOperands()-1);
11632 
11633   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11634   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11635   if (InputsAreConsecutiveLoads) {
11636     assert(LD1 && "Input needs to be a LoadSDNode.");
11637     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11638                        LD1->getBasePtr(), LD1->getPointerInfo(),
11639                        LD1->getAlignment());
11640   }
11641   if (InputsAreReverseConsecutive) {
11642     assert(LDL && "Input needs to be a LoadSDNode.");
11643     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11644                                LDL->getBasePtr(), LDL->getPointerInfo(),
11645                                LDL->getAlignment());
11646     SmallVector<int, 16> Ops;
11647     for (int i = N->getNumOperands() - 1; i >= 0; i--)
11648       Ops.push_back(i);
11649 
11650     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11651                                 DAG.getUNDEF(N->getValueType(0)), Ops);
11652   }
11653   return SDValue();
11654 }
11655 
11656 // This function adds the required vector_shuffle needed to get
11657 // the elements of the vector extract in the correct position
11658 // as specified by the CorrectElems encoding.
11659 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11660                                       SDValue Input, uint64_t Elems,
11661                                       uint64_t CorrectElems) {
11662   SDLoc dl(N);
11663 
11664   unsigned NumElems = Input.getValueType().getVectorNumElements();
11665   SmallVector<int, 16> ShuffleMask(NumElems, -1);
11666 
11667   // Knowing the element indices being extracted from the original
11668   // vector and the order in which they're being inserted, just put
11669   // them at element indices required for the instruction.
11670   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11671     if (DAG.getDataLayout().isLittleEndian())
11672       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11673     else
11674       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11675     CorrectElems = CorrectElems >> 8;
11676     Elems = Elems >> 8;
11677   }
11678 
11679   SDValue Shuffle =
11680       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11681                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11682 
11683   EVT Ty = N->getValueType(0);
11684   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11685   return BV;
11686 }
11687 
11688 // Look for build vector patterns where input operands come from sign
11689 // extended vector_extract elements of specific indices. If the correct indices
11690 // aren't used, add a vector shuffle to fix up the indices and create a new
11691 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11692 // during instruction selection.
11693 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11694   // This array encodes the indices that the vector sign extend instructions
11695   // extract from when extending from one type to another for both BE and LE.
11696   // The right nibble of each byte corresponds to the LE incides.
11697   // and the left nibble of each byte corresponds to the BE incides.
11698   // For example: 0x3074B8FC  byte->word
11699   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11700   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11701   // For example: 0x000070F8  byte->double word
11702   // For LE: the allowed indices are: 0x0,0x8
11703   // For BE: the allowed indices are: 0x7,0xF
11704   uint64_t TargetElems[] = {
11705       0x3074B8FC, // b->w
11706       0x000070F8, // b->d
11707       0x10325476, // h->w
11708       0x00003074, // h->d
11709       0x00001032, // w->d
11710   };
11711 
11712   uint64_t Elems = 0;
11713   int Index;
11714   SDValue Input;
11715 
11716   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
11717     if (!Op)
11718       return false;
11719     if (Op.getOpcode() != ISD::SIGN_EXTEND)
11720       return false;
11721 
11722     SDValue Extract = Op.getOperand(0);
11723     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11724       return false;
11725 
11726     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
11727     if (!ExtOp)
11728       return false;
11729 
11730     Index = ExtOp->getZExtValue();
11731     if (Input && Input != Extract.getOperand(0))
11732       return false;
11733 
11734     if (!Input)
11735       Input = Extract.getOperand(0);
11736 
11737     Elems = Elems << 8;
11738     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
11739     Elems |= Index;
11740 
11741     return true;
11742   };
11743 
11744   // If the build vector operands aren't sign extended vector extracts,
11745   // of the same input vector, then return.
11746   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11747     if (!isSExtOfVecExtract(N->getOperand(i))) {
11748       return SDValue();
11749     }
11750   }
11751 
11752   // If the vector extract indicies are not correct, add the appropriate
11753   // vector_shuffle.
11754   int TgtElemArrayIdx;
11755   int InputSize = Input.getValueType().getScalarSizeInBits();
11756   int OutputSize = N->getValueType(0).getScalarSizeInBits();
11757   if (InputSize + OutputSize == 40)
11758     TgtElemArrayIdx = 0;
11759   else if (InputSize + OutputSize == 72)
11760     TgtElemArrayIdx = 1;
11761   else if (InputSize + OutputSize == 48)
11762     TgtElemArrayIdx = 2;
11763   else if (InputSize + OutputSize == 80)
11764     TgtElemArrayIdx = 3;
11765   else if (InputSize + OutputSize == 96)
11766     TgtElemArrayIdx = 4;
11767   else
11768     return SDValue();
11769 
11770   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
11771   CorrectElems = DAG.getDataLayout().isLittleEndian()
11772                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
11773                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
11774   if (Elems != CorrectElems) {
11775     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
11776   }
11777 
11778   // Regular lowering will catch cases where a shuffle is not needed.
11779   return SDValue();
11780 }
11781 
11782 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
11783                                                  DAGCombinerInfo &DCI) const {
11784   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11785          "Should be called with a BUILD_VECTOR node");
11786 
11787   SelectionDAG &DAG = DCI.DAG;
11788   SDLoc dl(N);
11789 
11790   if (!Subtarget.hasVSX())
11791     return SDValue();
11792 
11793   // The target independent DAG combiner will leave a build_vector of
11794   // float-to-int conversions intact. We can generate MUCH better code for
11795   // a float-to-int conversion of a vector of floats.
11796   SDValue FirstInput = N->getOperand(0);
11797   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
11798     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
11799     if (Reduced)
11800       return Reduced;
11801   }
11802 
11803   // If we're building a vector out of consecutive loads, just load that
11804   // vector type.
11805   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
11806   if (Reduced)
11807     return Reduced;
11808 
11809   // If we're building a vector out of extended elements from another vector
11810   // we have P9 vector integer extend instructions.
11811   if (Subtarget.hasP9Altivec()) {
11812     Reduced = combineBVOfVecSExt(N, DAG);
11813     if (Reduced)
11814       return Reduced;
11815   }
11816 
11817 
11818   if (N->getValueType(0) != MVT::v2f64)
11819     return SDValue();
11820 
11821   // Looking for:
11822   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
11823   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
11824       FirstInput.getOpcode() != ISD::UINT_TO_FP)
11825     return SDValue();
11826   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
11827       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
11828     return SDValue();
11829   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
11830     return SDValue();
11831 
11832   SDValue Ext1 = FirstInput.getOperand(0);
11833   SDValue Ext2 = N->getOperand(1).getOperand(0);
11834   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11835      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11836     return SDValue();
11837 
11838   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
11839   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
11840   if (!Ext1Op || !Ext2Op)
11841     return SDValue();
11842   if (Ext1.getValueType() != MVT::i32 ||
11843       Ext2.getValueType() != MVT::i32)
11844   if (Ext1.getOperand(0) != Ext2.getOperand(0))
11845     return SDValue();
11846 
11847   int FirstElem = Ext1Op->getZExtValue();
11848   int SecondElem = Ext2Op->getZExtValue();
11849   int SubvecIdx;
11850   if (FirstElem == 0 && SecondElem == 1)
11851     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
11852   else if (FirstElem == 2 && SecondElem == 3)
11853     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
11854   else
11855     return SDValue();
11856 
11857   SDValue SrcVec = Ext1.getOperand(0);
11858   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
11859     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
11860   return DAG.getNode(NodeType, dl, MVT::v2f64,
11861                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
11862 }
11863 
11864 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
11865                                               DAGCombinerInfo &DCI) const {
11866   assert((N->getOpcode() == ISD::SINT_TO_FP ||
11867           N->getOpcode() == ISD::UINT_TO_FP) &&
11868          "Need an int -> FP conversion node here");
11869 
11870   if (useSoftFloat() || !Subtarget.has64BitSupport())
11871     return SDValue();
11872 
11873   SelectionDAG &DAG = DCI.DAG;
11874   SDLoc dl(N);
11875   SDValue Op(N, 0);
11876 
11877   SDValue FirstOperand(Op.getOperand(0));
11878   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
11879     (FirstOperand.getValueType() == MVT::i8 ||
11880      FirstOperand.getValueType() == MVT::i16);
11881   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
11882     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
11883     bool DstDouble = Op.getValueType() == MVT::f64;
11884     unsigned ConvOp = Signed ?
11885       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
11886       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
11887     SDValue WidthConst =
11888       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
11889                             dl, false);
11890     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
11891     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
11892     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
11893                                          DAG.getVTList(MVT::f64, MVT::Other),
11894                                          Ops, MVT::i8, LDN->getMemOperand());
11895 
11896     // For signed conversion, we need to sign-extend the value in the VSR
11897     if (Signed) {
11898       SDValue ExtOps[] = { Ld, WidthConst };
11899       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
11900       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
11901     } else
11902       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
11903   }
11904 
11905   // Don't handle ppc_fp128 here or i1 conversions.
11906   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
11907     return SDValue();
11908   if (Op.getOperand(0).getValueType() == MVT::i1)
11909     return SDValue();
11910 
11911   // For i32 intermediate values, unfortunately, the conversion functions
11912   // leave the upper 32 bits of the value are undefined. Within the set of
11913   // scalar instructions, we have no method for zero- or sign-extending the
11914   // value. Thus, we cannot handle i32 intermediate values here.
11915   if (Op.getOperand(0).getValueType() == MVT::i32)
11916     return SDValue();
11917 
11918   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
11919          "UINT_TO_FP is supported only with FPCVT");
11920 
11921   // If we have FCFIDS, then use it when converting to single-precision.
11922   // Otherwise, convert to double-precision and then round.
11923   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
11924                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
11925                                                             : PPCISD::FCFIDS)
11926                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
11927                                                             : PPCISD::FCFID);
11928   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
11929                   ? MVT::f32
11930                   : MVT::f64;
11931 
11932   // If we're converting from a float, to an int, and back to a float again,
11933   // then we don't need the store/load pair at all.
11934   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
11935        Subtarget.hasFPCVT()) ||
11936       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
11937     SDValue Src = Op.getOperand(0).getOperand(0);
11938     if (Src.getValueType() == MVT::f32) {
11939       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
11940       DCI.AddToWorklist(Src.getNode());
11941     } else if (Src.getValueType() != MVT::f64) {
11942       // Make sure that we don't pick up a ppc_fp128 source value.
11943       return SDValue();
11944     }
11945 
11946     unsigned FCTOp =
11947       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
11948                                                         PPCISD::FCTIDUZ;
11949 
11950     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
11951     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
11952 
11953     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
11954       FP = DAG.getNode(ISD::FP_ROUND, dl,
11955                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
11956       DCI.AddToWorklist(FP.getNode());
11957     }
11958 
11959     return FP;
11960   }
11961 
11962   return SDValue();
11963 }
11964 
11965 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
11966 // builtins) into loads with swaps.
11967 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
11968                                               DAGCombinerInfo &DCI) const {
11969   SelectionDAG &DAG = DCI.DAG;
11970   SDLoc dl(N);
11971   SDValue Chain;
11972   SDValue Base;
11973   MachineMemOperand *MMO;
11974 
11975   switch (N->getOpcode()) {
11976   default:
11977     llvm_unreachable("Unexpected opcode for little endian VSX load");
11978   case ISD::LOAD: {
11979     LoadSDNode *LD = cast<LoadSDNode>(N);
11980     Chain = LD->getChain();
11981     Base = LD->getBasePtr();
11982     MMO = LD->getMemOperand();
11983     // If the MMO suggests this isn't a load of a full vector, leave
11984     // things alone.  For a built-in, we have to make the change for
11985     // correctness, so if there is a size problem that will be a bug.
11986     if (MMO->getSize() < 16)
11987       return SDValue();
11988     break;
11989   }
11990   case ISD::INTRINSIC_W_CHAIN: {
11991     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11992     Chain = Intrin->getChain();
11993     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
11994     // us what we want. Get operand 2 instead.
11995     Base = Intrin->getOperand(2);
11996     MMO = Intrin->getMemOperand();
11997     break;
11998   }
11999   }
12000 
12001   MVT VecTy = N->getValueType(0).getSimpleVT();
12002 
12003   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12004   // aligned and the type is a vector with elements up to 4 bytes
12005   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12006       && VecTy.getScalarSizeInBits() <= 32 ) {
12007     return SDValue();
12008   }
12009 
12010   SDValue LoadOps[] = { Chain, Base };
12011   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12012                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12013                                          LoadOps, MVT::v2f64, MMO);
12014 
12015   DCI.AddToWorklist(Load.getNode());
12016   Chain = Load.getValue(1);
12017   SDValue Swap = DAG.getNode(
12018       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12019   DCI.AddToWorklist(Swap.getNode());
12020 
12021   // Add a bitcast if the resulting load type doesn't match v2f64.
12022   if (VecTy != MVT::v2f64) {
12023     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12024     DCI.AddToWorklist(N.getNode());
12025     // Package {bitcast value, swap's chain} to match Load's shape.
12026     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12027                        N, Swap.getValue(1));
12028   }
12029 
12030   return Swap;
12031 }
12032 
12033 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12034 // builtins) into stores with swaps.
12035 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12036                                                DAGCombinerInfo &DCI) const {
12037   SelectionDAG &DAG = DCI.DAG;
12038   SDLoc dl(N);
12039   SDValue Chain;
12040   SDValue Base;
12041   unsigned SrcOpnd;
12042   MachineMemOperand *MMO;
12043 
12044   switch (N->getOpcode()) {
12045   default:
12046     llvm_unreachable("Unexpected opcode for little endian VSX store");
12047   case ISD::STORE: {
12048     StoreSDNode *ST = cast<StoreSDNode>(N);
12049     Chain = ST->getChain();
12050     Base = ST->getBasePtr();
12051     MMO = ST->getMemOperand();
12052     SrcOpnd = 1;
12053     // If the MMO suggests this isn't a store of a full vector, leave
12054     // things alone.  For a built-in, we have to make the change for
12055     // correctness, so if there is a size problem that will be a bug.
12056     if (MMO->getSize() < 16)
12057       return SDValue();
12058     break;
12059   }
12060   case ISD::INTRINSIC_VOID: {
12061     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12062     Chain = Intrin->getChain();
12063     // Intrin->getBasePtr() oddly does not get what we want.
12064     Base = Intrin->getOperand(3);
12065     MMO = Intrin->getMemOperand();
12066     SrcOpnd = 2;
12067     break;
12068   }
12069   }
12070 
12071   SDValue Src = N->getOperand(SrcOpnd);
12072   MVT VecTy = Src.getValueType().getSimpleVT();
12073 
12074   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12075   // aligned and the type is a vector with elements up to 4 bytes
12076   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12077       && VecTy.getScalarSizeInBits() <= 32 ) {
12078     return SDValue();
12079   }
12080 
12081   // All stores are done as v2f64 and possible bit cast.
12082   if (VecTy != MVT::v2f64) {
12083     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12084     DCI.AddToWorklist(Src.getNode());
12085   }
12086 
12087   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12088                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12089   DCI.AddToWorklist(Swap.getNode());
12090   Chain = Swap.getValue(1);
12091   SDValue StoreOps[] = { Chain, Swap, Base };
12092   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12093                                           DAG.getVTList(MVT::Other),
12094                                           StoreOps, VecTy, MMO);
12095   DCI.AddToWorklist(Store.getNode());
12096   return Store;
12097 }
12098 
12099 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12100                                              DAGCombinerInfo &DCI) const {
12101   SelectionDAG &DAG = DCI.DAG;
12102   SDLoc dl(N);
12103   switch (N->getOpcode()) {
12104   default: break;
12105   case ISD::SHL:
12106     return combineSHL(N, DCI);
12107   case ISD::SRA:
12108     return combineSRA(N, DCI);
12109   case ISD::SRL:
12110     return combineSRL(N, DCI);
12111   case PPCISD::SHL:
12112     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12113         return N->getOperand(0);
12114     break;
12115   case PPCISD::SRL:
12116     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12117         return N->getOperand(0);
12118     break;
12119   case PPCISD::SRA:
12120     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12121       if (C->isNullValue() ||   //  0 >>s V -> 0.
12122           C->isAllOnesValue())    // -1 >>s V -> -1.
12123         return N->getOperand(0);
12124     }
12125     break;
12126   case ISD::SIGN_EXTEND:
12127   case ISD::ZERO_EXTEND:
12128   case ISD::ANY_EXTEND:
12129     return DAGCombineExtBoolTrunc(N, DCI);
12130   case ISD::TRUNCATE:
12131   case ISD::SETCC:
12132   case ISD::SELECT_CC:
12133     return DAGCombineTruncBoolExt(N, DCI);
12134   case ISD::SINT_TO_FP:
12135   case ISD::UINT_TO_FP:
12136     return combineFPToIntToFP(N, DCI);
12137   case ISD::STORE: {
12138     EVT Op1VT = N->getOperand(1).getValueType();
12139     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
12140       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
12141 
12142     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
12143     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
12144         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
12145         ValidTypeForStoreFltAsInt &&
12146         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
12147       SDValue Val = N->getOperand(1).getOperand(0);
12148       if (Val.getValueType() == MVT::f32) {
12149         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12150         DCI.AddToWorklist(Val.getNode());
12151       }
12152       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
12153       DCI.AddToWorklist(Val.getNode());
12154 
12155       if (Op1VT == MVT::i32) {
12156         SDValue Ops[] = {
12157           N->getOperand(0), Val, N->getOperand(2),
12158           DAG.getValueType(N->getOperand(1).getValueType())
12159         };
12160 
12161         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
12162                 DAG.getVTList(MVT::Other), Ops,
12163                 cast<StoreSDNode>(N)->getMemoryVT(),
12164                 cast<StoreSDNode>(N)->getMemOperand());
12165       } else {
12166         unsigned WidthInBytes =
12167           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
12168         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
12169 
12170         SDValue Ops[] = {
12171           N->getOperand(0), Val, N->getOperand(2), WidthConst,
12172           DAG.getValueType(N->getOperand(1).getValueType())
12173         };
12174         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
12175                                       DAG.getVTList(MVT::Other), Ops,
12176                                       cast<StoreSDNode>(N)->getMemoryVT(),
12177                                       cast<StoreSDNode>(N)->getMemOperand());
12178       }
12179 
12180       DCI.AddToWorklist(Val.getNode());
12181       return Val;
12182     }
12183 
12184     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12185     if (cast<StoreSDNode>(N)->isUnindexed() &&
12186         N->getOperand(1).getOpcode() == ISD::BSWAP &&
12187         N->getOperand(1).getNode()->hasOneUse() &&
12188         (N->getOperand(1).getValueType() == MVT::i32 ||
12189          N->getOperand(1).getValueType() == MVT::i16 ||
12190          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12191           N->getOperand(1).getValueType() == MVT::i64))) {
12192       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12193       // Do an any-extend to 32-bits if this is a half-word input.
12194       if (BSwapOp.getValueType() == MVT::i16)
12195         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12196 
12197       // If the type of BSWAP operand is wider than stored memory width
12198       // it need to be shifted to the right side before STBRX.
12199       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12200       if (Op1VT.bitsGT(mVT)) {
12201         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12202         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12203                               DAG.getConstant(Shift, dl, MVT::i32));
12204         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12205         if (Op1VT == MVT::i64)
12206           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12207       }
12208 
12209       SDValue Ops[] = {
12210         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12211       };
12212       return
12213         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12214                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12215                                 cast<StoreSDNode>(N)->getMemOperand());
12216     }
12217 
12218     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12219     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12220     EVT VT = N->getOperand(1).getValueType();
12221     if (VT.isSimple()) {
12222       MVT StoreVT = VT.getSimpleVT();
12223       if (Subtarget.needsSwapsForVSXMemOps() &&
12224           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12225            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12226         return expandVSXStoreForLE(N, DCI);
12227     }
12228     break;
12229   }
12230   case ISD::LOAD: {
12231     LoadSDNode *LD = cast<LoadSDNode>(N);
12232     EVT VT = LD->getValueType(0);
12233 
12234     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12235     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12236     if (VT.isSimple()) {
12237       MVT LoadVT = VT.getSimpleVT();
12238       if (Subtarget.needsSwapsForVSXMemOps() &&
12239           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12240            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12241         return expandVSXLoadForLE(N, DCI);
12242     }
12243 
12244     // We sometimes end up with a 64-bit integer load, from which we extract
12245     // two single-precision floating-point numbers. This happens with
12246     // std::complex<float>, and other similar structures, because of the way we
12247     // canonicalize structure copies. However, if we lack direct moves,
12248     // then the final bitcasts from the extracted integer values to the
12249     // floating-point numbers turn into store/load pairs. Even with direct moves,
12250     // just loading the two floating-point numbers is likely better.
12251     auto ReplaceTwoFloatLoad = [&]() {
12252       if (VT != MVT::i64)
12253         return false;
12254 
12255       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12256           LD->isVolatile())
12257         return false;
12258 
12259       //  We're looking for a sequence like this:
12260       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12261       //      t16: i64 = srl t13, Constant:i32<32>
12262       //    t17: i32 = truncate t16
12263       //  t18: f32 = bitcast t17
12264       //    t19: i32 = truncate t13
12265       //  t20: f32 = bitcast t19
12266 
12267       if (!LD->hasNUsesOfValue(2, 0))
12268         return false;
12269 
12270       auto UI = LD->use_begin();
12271       while (UI.getUse().getResNo() != 0) ++UI;
12272       SDNode *Trunc = *UI++;
12273       while (UI.getUse().getResNo() != 0) ++UI;
12274       SDNode *RightShift = *UI;
12275       if (Trunc->getOpcode() != ISD::TRUNCATE)
12276         std::swap(Trunc, RightShift);
12277 
12278       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12279           Trunc->getValueType(0) != MVT::i32 ||
12280           !Trunc->hasOneUse())
12281         return false;
12282       if (RightShift->getOpcode() != ISD::SRL ||
12283           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12284           RightShift->getConstantOperandVal(1) != 32 ||
12285           !RightShift->hasOneUse())
12286         return false;
12287 
12288       SDNode *Trunc2 = *RightShift->use_begin();
12289       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12290           Trunc2->getValueType(0) != MVT::i32 ||
12291           !Trunc2->hasOneUse())
12292         return false;
12293 
12294       SDNode *Bitcast = *Trunc->use_begin();
12295       SDNode *Bitcast2 = *Trunc2->use_begin();
12296 
12297       if (Bitcast->getOpcode() != ISD::BITCAST ||
12298           Bitcast->getValueType(0) != MVT::f32)
12299         return false;
12300       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12301           Bitcast2->getValueType(0) != MVT::f32)
12302         return false;
12303 
12304       if (Subtarget.isLittleEndian())
12305         std::swap(Bitcast, Bitcast2);
12306 
12307       // Bitcast has the second float (in memory-layout order) and Bitcast2
12308       // has the first one.
12309 
12310       SDValue BasePtr = LD->getBasePtr();
12311       if (LD->isIndexed()) {
12312         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12313                "Non-pre-inc AM on PPC?");
12314         BasePtr =
12315           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12316                       LD->getOffset());
12317       }
12318 
12319       auto MMOFlags =
12320           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12321       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12322                                       LD->getPointerInfo(), LD->getAlignment(),
12323                                       MMOFlags, LD->getAAInfo());
12324       SDValue AddPtr =
12325         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12326                     BasePtr, DAG.getIntPtrConstant(4, dl));
12327       SDValue FloatLoad2 = DAG.getLoad(
12328           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12329           LD->getPointerInfo().getWithOffset(4),
12330           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12331 
12332       if (LD->isIndexed()) {
12333         // Note that DAGCombine should re-form any pre-increment load(s) from
12334         // what is produced here if that makes sense.
12335         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12336       }
12337 
12338       DCI.CombineTo(Bitcast2, FloatLoad);
12339       DCI.CombineTo(Bitcast, FloatLoad2);
12340 
12341       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12342                                     SDValue(FloatLoad2.getNode(), 1));
12343       return true;
12344     };
12345 
12346     if (ReplaceTwoFloatLoad())
12347       return SDValue(N, 0);
12348 
12349     EVT MemVT = LD->getMemoryVT();
12350     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12351     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12352     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12353     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12354     if (LD->isUnindexed() && VT.isVector() &&
12355         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12356           // P8 and later hardware should just use LOAD.
12357           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12358                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12359          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12360           LD->getAlignment() >= ScalarABIAlignment)) &&
12361         LD->getAlignment() < ABIAlignment) {
12362       // This is a type-legal unaligned Altivec or QPX load.
12363       SDValue Chain = LD->getChain();
12364       SDValue Ptr = LD->getBasePtr();
12365       bool isLittleEndian = Subtarget.isLittleEndian();
12366 
12367       // This implements the loading of unaligned vectors as described in
12368       // the venerable Apple Velocity Engine overview. Specifically:
12369       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12370       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12371       //
12372       // The general idea is to expand a sequence of one or more unaligned
12373       // loads into an alignment-based permutation-control instruction (lvsl
12374       // or lvsr), a series of regular vector loads (which always truncate
12375       // their input address to an aligned address), and a series of
12376       // permutations.  The results of these permutations are the requested
12377       // loaded values.  The trick is that the last "extra" load is not taken
12378       // from the address you might suspect (sizeof(vector) bytes after the
12379       // last requested load), but rather sizeof(vector) - 1 bytes after the
12380       // last requested vector. The point of this is to avoid a page fault if
12381       // the base address happened to be aligned. This works because if the
12382       // base address is aligned, then adding less than a full vector length
12383       // will cause the last vector in the sequence to be (re)loaded.
12384       // Otherwise, the next vector will be fetched as you might suspect was
12385       // necessary.
12386 
12387       // We might be able to reuse the permutation generation from
12388       // a different base address offset from this one by an aligned amount.
12389       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12390       // optimization later.
12391       Intrinsic::ID Intr, IntrLD, IntrPerm;
12392       MVT PermCntlTy, PermTy, LDTy;
12393       if (Subtarget.hasAltivec()) {
12394         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12395                                  Intrinsic::ppc_altivec_lvsl;
12396         IntrLD = Intrinsic::ppc_altivec_lvx;
12397         IntrPerm = Intrinsic::ppc_altivec_vperm;
12398         PermCntlTy = MVT::v16i8;
12399         PermTy = MVT::v4i32;
12400         LDTy = MVT::v4i32;
12401       } else {
12402         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12403                                        Intrinsic::ppc_qpx_qvlpcls;
12404         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12405                                        Intrinsic::ppc_qpx_qvlfs;
12406         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12407         PermCntlTy = MVT::v4f64;
12408         PermTy = MVT::v4f64;
12409         LDTy = MemVT.getSimpleVT();
12410       }
12411 
12412       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12413 
12414       // Create the new MMO for the new base load. It is like the original MMO,
12415       // but represents an area in memory almost twice the vector size centered
12416       // on the original address. If the address is unaligned, we might start
12417       // reading up to (sizeof(vector)-1) bytes below the address of the
12418       // original unaligned load.
12419       MachineFunction &MF = DAG.getMachineFunction();
12420       MachineMemOperand *BaseMMO =
12421         MF.getMachineMemOperand(LD->getMemOperand(),
12422                                 -(long)MemVT.getStoreSize()+1,
12423                                 2*MemVT.getStoreSize()-1);
12424 
12425       // Create the new base load.
12426       SDValue LDXIntID =
12427           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12428       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12429       SDValue BaseLoad =
12430         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12431                                 DAG.getVTList(PermTy, MVT::Other),
12432                                 BaseLoadOps, LDTy, BaseMMO);
12433 
12434       // Note that the value of IncOffset (which is provided to the next
12435       // load's pointer info offset value, and thus used to calculate the
12436       // alignment), and the value of IncValue (which is actually used to
12437       // increment the pointer value) are different! This is because we
12438       // require the next load to appear to be aligned, even though it
12439       // is actually offset from the base pointer by a lesser amount.
12440       int IncOffset = VT.getSizeInBits() / 8;
12441       int IncValue = IncOffset;
12442 
12443       // Walk (both up and down) the chain looking for another load at the real
12444       // (aligned) offset (the alignment of the other load does not matter in
12445       // this case). If found, then do not use the offset reduction trick, as
12446       // that will prevent the loads from being later combined (as they would
12447       // otherwise be duplicates).
12448       if (!findConsecutiveLoad(LD, DAG))
12449         --IncValue;
12450 
12451       SDValue Increment =
12452           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12453       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12454 
12455       MachineMemOperand *ExtraMMO =
12456         MF.getMachineMemOperand(LD->getMemOperand(),
12457                                 1, 2*MemVT.getStoreSize()-1);
12458       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12459       SDValue ExtraLoad =
12460         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12461                                 DAG.getVTList(PermTy, MVT::Other),
12462                                 ExtraLoadOps, LDTy, ExtraMMO);
12463 
12464       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12465         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12466 
12467       // Because vperm has a big-endian bias, we must reverse the order
12468       // of the input vectors and complement the permute control vector
12469       // when generating little endian code.  We have already handled the
12470       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12471       // and ExtraLoad here.
12472       SDValue Perm;
12473       if (isLittleEndian)
12474         Perm = BuildIntrinsicOp(IntrPerm,
12475                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12476       else
12477         Perm = BuildIntrinsicOp(IntrPerm,
12478                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12479 
12480       if (VT != PermTy)
12481         Perm = Subtarget.hasAltivec() ?
12482                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12483                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12484                                DAG.getTargetConstant(1, dl, MVT::i64));
12485                                // second argument is 1 because this rounding
12486                                // is always exact.
12487 
12488       // The output of the permutation is our loaded result, the TokenFactor is
12489       // our new chain.
12490       DCI.CombineTo(N, Perm, TF);
12491       return SDValue(N, 0);
12492     }
12493     }
12494     break;
12495     case ISD::INTRINSIC_WO_CHAIN: {
12496       bool isLittleEndian = Subtarget.isLittleEndian();
12497       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12498       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12499                                            : Intrinsic::ppc_altivec_lvsl);
12500       if ((IID == Intr ||
12501            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12502            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12503         N->getOperand(1)->getOpcode() == ISD::ADD) {
12504         SDValue Add = N->getOperand(1);
12505 
12506         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12507                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12508 
12509         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12510                                   APInt::getAllOnesValue(Bits /* alignment */)
12511                                       .zext(Add.getScalarValueSizeInBits()))) {
12512           SDNode *BasePtr = Add->getOperand(0).getNode();
12513           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12514                                     UE = BasePtr->use_end();
12515                UI != UE; ++UI) {
12516             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12517                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12518               // We've found another LVSL/LVSR, and this address is an aligned
12519               // multiple of that one. The results will be the same, so use the
12520               // one we've just found instead.
12521 
12522               return SDValue(*UI, 0);
12523             }
12524           }
12525         }
12526 
12527         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12528           SDNode *BasePtr = Add->getOperand(0).getNode();
12529           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12530                UE = BasePtr->use_end(); UI != UE; ++UI) {
12531             if (UI->getOpcode() == ISD::ADD &&
12532                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12533                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12534                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12535                 (1ULL << Bits) == 0) {
12536               SDNode *OtherAdd = *UI;
12537               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12538                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12539                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12540                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12541                   return SDValue(*VI, 0);
12542                 }
12543               }
12544             }
12545           }
12546         }
12547       }
12548     }
12549 
12550     break;
12551   case ISD::INTRINSIC_W_CHAIN:
12552     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12553     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12554     if (Subtarget.needsSwapsForVSXMemOps()) {
12555       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12556       default:
12557         break;
12558       case Intrinsic::ppc_vsx_lxvw4x:
12559       case Intrinsic::ppc_vsx_lxvd2x:
12560         return expandVSXLoadForLE(N, DCI);
12561       }
12562     }
12563     break;
12564   case ISD::INTRINSIC_VOID:
12565     // For little endian, VSX stores require generating xxswapd/stxvd2x.
12566     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12567     if (Subtarget.needsSwapsForVSXMemOps()) {
12568       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12569       default:
12570         break;
12571       case Intrinsic::ppc_vsx_stxvw4x:
12572       case Intrinsic::ppc_vsx_stxvd2x:
12573         return expandVSXStoreForLE(N, DCI);
12574       }
12575     }
12576     break;
12577   case ISD::BSWAP:
12578     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12579     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12580         N->getOperand(0).hasOneUse() &&
12581         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12582          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12583           N->getValueType(0) == MVT::i64))) {
12584       SDValue Load = N->getOperand(0);
12585       LoadSDNode *LD = cast<LoadSDNode>(Load);
12586       // Create the byte-swapping load.
12587       SDValue Ops[] = {
12588         LD->getChain(),    // Chain
12589         LD->getBasePtr(),  // Ptr
12590         DAG.getValueType(N->getValueType(0)) // VT
12591       };
12592       SDValue BSLoad =
12593         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12594                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12595                                               MVT::i64 : MVT::i32, MVT::Other),
12596                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
12597 
12598       // If this is an i16 load, insert the truncate.
12599       SDValue ResVal = BSLoad;
12600       if (N->getValueType(0) == MVT::i16)
12601         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12602 
12603       // First, combine the bswap away.  This makes the value produced by the
12604       // load dead.
12605       DCI.CombineTo(N, ResVal);
12606 
12607       // Next, combine the load away, we give it a bogus result value but a real
12608       // chain result.  The result value is dead because the bswap is dead.
12609       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12610 
12611       // Return N so it doesn't get rechecked!
12612       return SDValue(N, 0);
12613     }
12614     break;
12615   case PPCISD::VCMP:
12616     // If a VCMPo node already exists with exactly the same operands as this
12617     // node, use its result instead of this node (VCMPo computes both a CR6 and
12618     // a normal output).
12619     //
12620     if (!N->getOperand(0).hasOneUse() &&
12621         !N->getOperand(1).hasOneUse() &&
12622         !N->getOperand(2).hasOneUse()) {
12623 
12624       // Scan all of the users of the LHS, looking for VCMPo's that match.
12625       SDNode *VCMPoNode = nullptr;
12626 
12627       SDNode *LHSN = N->getOperand(0).getNode();
12628       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12629            UI != E; ++UI)
12630         if (UI->getOpcode() == PPCISD::VCMPo &&
12631             UI->getOperand(1) == N->getOperand(1) &&
12632             UI->getOperand(2) == N->getOperand(2) &&
12633             UI->getOperand(0) == N->getOperand(0)) {
12634           VCMPoNode = *UI;
12635           break;
12636         }
12637 
12638       // If there is no VCMPo node, or if the flag value has a single use, don't
12639       // transform this.
12640       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12641         break;
12642 
12643       // Look at the (necessarily single) use of the flag value.  If it has a
12644       // chain, this transformation is more complex.  Note that multiple things
12645       // could use the value result, which we should ignore.
12646       SDNode *FlagUser = nullptr;
12647       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12648            FlagUser == nullptr; ++UI) {
12649         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12650         SDNode *User = *UI;
12651         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12652           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12653             FlagUser = User;
12654             break;
12655           }
12656         }
12657       }
12658 
12659       // If the user is a MFOCRF instruction, we know this is safe.
12660       // Otherwise we give up for right now.
12661       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12662         return SDValue(VCMPoNode, 0);
12663     }
12664     break;
12665   case ISD::BRCOND: {
12666     SDValue Cond = N->getOperand(1);
12667     SDValue Target = N->getOperand(2);
12668 
12669     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12670         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
12671           Intrinsic::ppc_is_decremented_ctr_nonzero) {
12672 
12673       // We now need to make the intrinsic dead (it cannot be instruction
12674       // selected).
12675       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
12676       assert(Cond.getNode()->hasOneUse() &&
12677              "Counter decrement has more than one use");
12678 
12679       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
12680                          N->getOperand(0), Target);
12681     }
12682   }
12683   break;
12684   case ISD::BR_CC: {
12685     // If this is a branch on an altivec predicate comparison, lower this so
12686     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
12687     // lowering is done pre-legalize, because the legalizer lowers the predicate
12688     // compare down to code that is difficult to reassemble.
12689     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
12690     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
12691 
12692     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
12693     // value. If so, pass-through the AND to get to the intrinsic.
12694     if (LHS.getOpcode() == ISD::AND &&
12695         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12696         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
12697           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12698         isa<ConstantSDNode>(LHS.getOperand(1)) &&
12699         !isNullConstant(LHS.getOperand(1)))
12700       LHS = LHS.getOperand(0);
12701 
12702     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12703         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
12704           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12705         isa<ConstantSDNode>(RHS)) {
12706       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
12707              "Counter decrement comparison is not EQ or NE");
12708 
12709       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12710       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
12711                     (CC == ISD::SETNE && !Val);
12712 
12713       // We now need to make the intrinsic dead (it cannot be instruction
12714       // selected).
12715       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
12716       assert(LHS.getNode()->hasOneUse() &&
12717              "Counter decrement has more than one use");
12718 
12719       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
12720                          N->getOperand(0), N->getOperand(4));
12721     }
12722 
12723     int CompareOpc;
12724     bool isDot;
12725 
12726     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12727         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
12728         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
12729       assert(isDot && "Can't compare against a vector result!");
12730 
12731       // If this is a comparison against something other than 0/1, then we know
12732       // that the condition is never/always true.
12733       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12734       if (Val != 0 && Val != 1) {
12735         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
12736           return N->getOperand(0);
12737         // Always !=, turn it into an unconditional branch.
12738         return DAG.getNode(ISD::BR, dl, MVT::Other,
12739                            N->getOperand(0), N->getOperand(4));
12740       }
12741 
12742       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
12743 
12744       // Create the PPCISD altivec 'dot' comparison node.
12745       SDValue Ops[] = {
12746         LHS.getOperand(2),  // LHS of compare
12747         LHS.getOperand(3),  // RHS of compare
12748         DAG.getConstant(CompareOpc, dl, MVT::i32)
12749       };
12750       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
12751       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
12752 
12753       // Unpack the result based on how the target uses it.
12754       PPC::Predicate CompOpc;
12755       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
12756       default:  // Can't happen, don't crash on invalid number though.
12757       case 0:   // Branch on the value of the EQ bit of CR6.
12758         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
12759         break;
12760       case 1:   // Branch on the inverted value of the EQ bit of CR6.
12761         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
12762         break;
12763       case 2:   // Branch on the value of the LT bit of CR6.
12764         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
12765         break;
12766       case 3:   // Branch on the inverted value of the LT bit of CR6.
12767         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
12768         break;
12769       }
12770 
12771       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
12772                          DAG.getConstant(CompOpc, dl, MVT::i32),
12773                          DAG.getRegister(PPC::CR6, MVT::i32),
12774                          N->getOperand(4), CompNode.getValue(1));
12775     }
12776     break;
12777   }
12778   case ISD::BUILD_VECTOR:
12779     return DAGCombineBuildVector(N, DCI);
12780   }
12781 
12782   return SDValue();
12783 }
12784 
12785 SDValue
12786 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12787                                   SelectionDAG &DAG,
12788                                   std::vector<SDNode *> *Created) const {
12789   // fold (sdiv X, pow2)
12790   EVT VT = N->getValueType(0);
12791   if (VT == MVT::i64 && !Subtarget.isPPC64())
12792     return SDValue();
12793   if ((VT != MVT::i32 && VT != MVT::i64) ||
12794       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
12795     return SDValue();
12796 
12797   SDLoc DL(N);
12798   SDValue N0 = N->getOperand(0);
12799 
12800   bool IsNegPow2 = (-Divisor).isPowerOf2();
12801   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
12802   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
12803 
12804   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
12805   if (Created)
12806     Created->push_back(Op.getNode());
12807 
12808   if (IsNegPow2) {
12809     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
12810     if (Created)
12811       Created->push_back(Op.getNode());
12812   }
12813 
12814   return Op;
12815 }
12816 
12817 //===----------------------------------------------------------------------===//
12818 // Inline Assembly Support
12819 //===----------------------------------------------------------------------===//
12820 
12821 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
12822                                                       KnownBits &Known,
12823                                                       const APInt &DemandedElts,
12824                                                       const SelectionDAG &DAG,
12825                                                       unsigned Depth) const {
12826   Known.resetAll();
12827   switch (Op.getOpcode()) {
12828   default: break;
12829   case PPCISD::LBRX: {
12830     // lhbrx is known to have the top bits cleared out.
12831     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
12832       Known.Zero = 0xFFFF0000;
12833     break;
12834   }
12835   case ISD::INTRINSIC_WO_CHAIN: {
12836     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
12837     default: break;
12838     case Intrinsic::ppc_altivec_vcmpbfp_p:
12839     case Intrinsic::ppc_altivec_vcmpeqfp_p:
12840     case Intrinsic::ppc_altivec_vcmpequb_p:
12841     case Intrinsic::ppc_altivec_vcmpequh_p:
12842     case Intrinsic::ppc_altivec_vcmpequw_p:
12843     case Intrinsic::ppc_altivec_vcmpequd_p:
12844     case Intrinsic::ppc_altivec_vcmpgefp_p:
12845     case Intrinsic::ppc_altivec_vcmpgtfp_p:
12846     case Intrinsic::ppc_altivec_vcmpgtsb_p:
12847     case Intrinsic::ppc_altivec_vcmpgtsh_p:
12848     case Intrinsic::ppc_altivec_vcmpgtsw_p:
12849     case Intrinsic::ppc_altivec_vcmpgtsd_p:
12850     case Intrinsic::ppc_altivec_vcmpgtub_p:
12851     case Intrinsic::ppc_altivec_vcmpgtuh_p:
12852     case Intrinsic::ppc_altivec_vcmpgtuw_p:
12853     case Intrinsic::ppc_altivec_vcmpgtud_p:
12854       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
12855       break;
12856     }
12857   }
12858   }
12859 }
12860 
12861 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12862   switch (Subtarget.getDarwinDirective()) {
12863   default: break;
12864   case PPC::DIR_970:
12865   case PPC::DIR_PWR4:
12866   case PPC::DIR_PWR5:
12867   case PPC::DIR_PWR5X:
12868   case PPC::DIR_PWR6:
12869   case PPC::DIR_PWR6X:
12870   case PPC::DIR_PWR7:
12871   case PPC::DIR_PWR8:
12872   case PPC::DIR_PWR9: {
12873     if (!ML)
12874       break;
12875 
12876     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
12877 
12878     // For small loops (between 5 and 8 instructions), align to a 32-byte
12879     // boundary so that the entire loop fits in one instruction-cache line.
12880     uint64_t LoopSize = 0;
12881     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
12882       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
12883         LoopSize += TII->getInstSizeInBytes(*J);
12884         if (LoopSize > 32)
12885           break;
12886       }
12887 
12888     if (LoopSize > 16 && LoopSize <= 32)
12889       return 5;
12890 
12891     break;
12892   }
12893   }
12894 
12895   return TargetLowering::getPrefLoopAlignment(ML);
12896 }
12897 
12898 /// getConstraintType - Given a constraint, return the type of
12899 /// constraint it is for this target.
12900 PPCTargetLowering::ConstraintType
12901 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
12902   if (Constraint.size() == 1) {
12903     switch (Constraint[0]) {
12904     default: break;
12905     case 'b':
12906     case 'r':
12907     case 'f':
12908     case 'd':
12909     case 'v':
12910     case 'y':
12911       return C_RegisterClass;
12912     case 'Z':
12913       // FIXME: While Z does indicate a memory constraint, it specifically
12914       // indicates an r+r address (used in conjunction with the 'y' modifier
12915       // in the replacement string). Currently, we're forcing the base
12916       // register to be r0 in the asm printer (which is interpreted as zero)
12917       // and forming the complete address in the second register. This is
12918       // suboptimal.
12919       return C_Memory;
12920     }
12921   } else if (Constraint == "wc") { // individual CR bits.
12922     return C_RegisterClass;
12923   } else if (Constraint == "wa" || Constraint == "wd" ||
12924              Constraint == "wf" || Constraint == "ws") {
12925     return C_RegisterClass; // VSX registers.
12926   }
12927   return TargetLowering::getConstraintType(Constraint);
12928 }
12929 
12930 /// Examine constraint type and operand type and determine a weight value.
12931 /// This object must already have been set up with the operand type
12932 /// and the current alternative constraint selected.
12933 TargetLowering::ConstraintWeight
12934 PPCTargetLowering::getSingleConstraintMatchWeight(
12935     AsmOperandInfo &info, const char *constraint) const {
12936   ConstraintWeight weight = CW_Invalid;
12937   Value *CallOperandVal = info.CallOperandVal;
12938     // If we don't have a value, we can't do a match,
12939     // but allow it at the lowest weight.
12940   if (!CallOperandVal)
12941     return CW_Default;
12942   Type *type = CallOperandVal->getType();
12943 
12944   // Look at the constraint type.
12945   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
12946     return CW_Register; // an individual CR bit.
12947   else if ((StringRef(constraint) == "wa" ||
12948             StringRef(constraint) == "wd" ||
12949             StringRef(constraint) == "wf") &&
12950            type->isVectorTy())
12951     return CW_Register;
12952   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
12953     return CW_Register;
12954 
12955   switch (*constraint) {
12956   default:
12957     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12958     break;
12959   case 'b':
12960     if (type->isIntegerTy())
12961       weight = CW_Register;
12962     break;
12963   case 'f':
12964     if (type->isFloatTy())
12965       weight = CW_Register;
12966     break;
12967   case 'd':
12968     if (type->isDoubleTy())
12969       weight = CW_Register;
12970     break;
12971   case 'v':
12972     if (type->isVectorTy())
12973       weight = CW_Register;
12974     break;
12975   case 'y':
12976     weight = CW_Register;
12977     break;
12978   case 'Z':
12979     weight = CW_Memory;
12980     break;
12981   }
12982   return weight;
12983 }
12984 
12985 std::pair<unsigned, const TargetRegisterClass *>
12986 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
12987                                                 StringRef Constraint,
12988                                                 MVT VT) const {
12989   if (Constraint.size() == 1) {
12990     // GCC RS6000 Constraint Letters
12991     switch (Constraint[0]) {
12992     case 'b':   // R1-R31
12993       if (VT == MVT::i64 && Subtarget.isPPC64())
12994         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
12995       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
12996     case 'r':   // R0-R31
12997       if (VT == MVT::i64 && Subtarget.isPPC64())
12998         return std::make_pair(0U, &PPC::G8RCRegClass);
12999       return std::make_pair(0U, &PPC::GPRCRegClass);
13000     // 'd' and 'f' constraints are both defined to be "the floating point
13001     // registers", where one is for 32-bit and the other for 64-bit. We don't
13002     // really care overly much here so just give them all the same reg classes.
13003     case 'd':
13004     case 'f':
13005       if (VT == MVT::f32 || VT == MVT::i32)
13006         return std::make_pair(0U, &PPC::F4RCRegClass);
13007       if (VT == MVT::f64 || VT == MVT::i64)
13008         return std::make_pair(0U, &PPC::F8RCRegClass);
13009       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13010         return std::make_pair(0U, &PPC::QFRCRegClass);
13011       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13012         return std::make_pair(0U, &PPC::QSRCRegClass);
13013       break;
13014     case 'v':
13015       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13016         return std::make_pair(0U, &PPC::QFRCRegClass);
13017       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13018         return std::make_pair(0U, &PPC::QSRCRegClass);
13019       if (Subtarget.hasAltivec())
13020         return std::make_pair(0U, &PPC::VRRCRegClass);
13021     case 'y':   // crrc
13022       return std::make_pair(0U, &PPC::CRRCRegClass);
13023     }
13024   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13025     // An individual CR bit.
13026     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13027   } else if ((Constraint == "wa" || Constraint == "wd" ||
13028              Constraint == "wf") && Subtarget.hasVSX()) {
13029     return std::make_pair(0U, &PPC::VSRCRegClass);
13030   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13031     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13032       return std::make_pair(0U, &PPC::VSSRCRegClass);
13033     else
13034       return std::make_pair(0U, &PPC::VSFRCRegClass);
13035   }
13036 
13037   std::pair<unsigned, const TargetRegisterClass *> R =
13038       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13039 
13040   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13041   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13042   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13043   // register.
13044   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13045   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13046   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13047       PPC::GPRCRegClass.contains(R.first))
13048     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13049                             PPC::sub_32, &PPC::G8RCRegClass),
13050                           &PPC::G8RCRegClass);
13051 
13052   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13053   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13054     R.first = PPC::CR0;
13055     R.second = &PPC::CRRCRegClass;
13056   }
13057 
13058   return R;
13059 }
13060 
13061 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13062 /// vector.  If it is invalid, don't add anything to Ops.
13063 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13064                                                      std::string &Constraint,
13065                                                      std::vector<SDValue>&Ops,
13066                                                      SelectionDAG &DAG) const {
13067   SDValue Result;
13068 
13069   // Only support length 1 constraints.
13070   if (Constraint.length() > 1) return;
13071 
13072   char Letter = Constraint[0];
13073   switch (Letter) {
13074   default: break;
13075   case 'I':
13076   case 'J':
13077   case 'K':
13078   case 'L':
13079   case 'M':
13080   case 'N':
13081   case 'O':
13082   case 'P': {
13083     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13084     if (!CST) return; // Must be an immediate to match.
13085     SDLoc dl(Op);
13086     int64_t Value = CST->getSExtValue();
13087     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13088                          // numbers are printed as such.
13089     switch (Letter) {
13090     default: llvm_unreachable("Unknown constraint letter!");
13091     case 'I':  // "I" is a signed 16-bit constant.
13092       if (isInt<16>(Value))
13093         Result = DAG.getTargetConstant(Value, dl, TCVT);
13094       break;
13095     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13096       if (isShiftedUInt<16, 16>(Value))
13097         Result = DAG.getTargetConstant(Value, dl, TCVT);
13098       break;
13099     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13100       if (isShiftedInt<16, 16>(Value))
13101         Result = DAG.getTargetConstant(Value, dl, TCVT);
13102       break;
13103     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13104       if (isUInt<16>(Value))
13105         Result = DAG.getTargetConstant(Value, dl, TCVT);
13106       break;
13107     case 'M':  // "M" is a constant that is greater than 31.
13108       if (Value > 31)
13109         Result = DAG.getTargetConstant(Value, dl, TCVT);
13110       break;
13111     case 'N':  // "N" is a positive constant that is an exact power of two.
13112       if (Value > 0 && isPowerOf2_64(Value))
13113         Result = DAG.getTargetConstant(Value, dl, TCVT);
13114       break;
13115     case 'O':  // "O" is the constant zero.
13116       if (Value == 0)
13117         Result = DAG.getTargetConstant(Value, dl, TCVT);
13118       break;
13119     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13120       if (isInt<16>(-Value))
13121         Result = DAG.getTargetConstant(Value, dl, TCVT);
13122       break;
13123     }
13124     break;
13125   }
13126   }
13127 
13128   if (Result.getNode()) {
13129     Ops.push_back(Result);
13130     return;
13131   }
13132 
13133   // Handle standard constraint letters.
13134   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13135 }
13136 
13137 // isLegalAddressingMode - Return true if the addressing mode represented
13138 // by AM is legal for this target, for a load/store of the specified type.
13139 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13140                                               const AddrMode &AM, Type *Ty,
13141                                               unsigned AS, Instruction *I) const {
13142   // PPC does not allow r+i addressing modes for vectors!
13143   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13144     return false;
13145 
13146   // PPC allows a sign-extended 16-bit immediate field.
13147   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13148     return false;
13149 
13150   // No global is ever allowed as a base.
13151   if (AM.BaseGV)
13152     return false;
13153 
13154   // PPC only support r+r,
13155   switch (AM.Scale) {
13156   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13157     break;
13158   case 1:
13159     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13160       return false;
13161     // Otherwise we have r+r or r+i.
13162     break;
13163   case 2:
13164     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13165       return false;
13166     // Allow 2*r as r+r.
13167     break;
13168   default:
13169     // No other scales are supported.
13170     return false;
13171   }
13172 
13173   return true;
13174 }
13175 
13176 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13177                                            SelectionDAG &DAG) const {
13178   MachineFunction &MF = DAG.getMachineFunction();
13179   MachineFrameInfo &MFI = MF.getFrameInfo();
13180   MFI.setReturnAddressIsTaken(true);
13181 
13182   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13183     return SDValue();
13184 
13185   SDLoc dl(Op);
13186   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13187 
13188   // Make sure the function does not optimize away the store of the RA to
13189   // the stack.
13190   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13191   FuncInfo->setLRStoreRequired();
13192   bool isPPC64 = Subtarget.isPPC64();
13193   auto PtrVT = getPointerTy(MF.getDataLayout());
13194 
13195   if (Depth > 0) {
13196     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13197     SDValue Offset =
13198         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13199                         isPPC64 ? MVT::i64 : MVT::i32);
13200     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13201                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13202                        MachinePointerInfo());
13203   }
13204 
13205   // Just load the return address off the stack.
13206   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13207   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13208                      MachinePointerInfo());
13209 }
13210 
13211 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13212                                           SelectionDAG &DAG) const {
13213   SDLoc dl(Op);
13214   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13215 
13216   MachineFunction &MF = DAG.getMachineFunction();
13217   MachineFrameInfo &MFI = MF.getFrameInfo();
13218   MFI.setFrameAddressIsTaken(true);
13219 
13220   EVT PtrVT = getPointerTy(MF.getDataLayout());
13221   bool isPPC64 = PtrVT == MVT::i64;
13222 
13223   // Naked functions never have a frame pointer, and so we use r1. For all
13224   // other functions, this decision must be delayed until during PEI.
13225   unsigned FrameReg;
13226   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
13227     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13228   else
13229     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13230 
13231   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13232                                          PtrVT);
13233   while (Depth--)
13234     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13235                             FrameAddr, MachinePointerInfo());
13236   return FrameAddr;
13237 }
13238 
13239 // FIXME? Maybe this could be a TableGen attribute on some registers and
13240 // this table could be generated automatically from RegInfo.
13241 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13242                                               SelectionDAG &DAG) const {
13243   bool isPPC64 = Subtarget.isPPC64();
13244   bool isDarwinABI = Subtarget.isDarwinABI();
13245 
13246   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13247       (!isPPC64 && VT != MVT::i32))
13248     report_fatal_error("Invalid register global variable type");
13249 
13250   bool is64Bit = isPPC64 && VT == MVT::i64;
13251   unsigned Reg = StringSwitch<unsigned>(RegName)
13252                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13253                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13254                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13255                                   (is64Bit ? PPC::X13 : PPC::R13))
13256                    .Default(0);
13257 
13258   if (Reg)
13259     return Reg;
13260   report_fatal_error("Invalid register name global variable");
13261 }
13262 
13263 bool
13264 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13265   // The PowerPC target isn't yet aware of offsets.
13266   return false;
13267 }
13268 
13269 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13270                                            const CallInst &I,
13271                                            unsigned Intrinsic) const {
13272   switch (Intrinsic) {
13273   case Intrinsic::ppc_qpx_qvlfd:
13274   case Intrinsic::ppc_qpx_qvlfs:
13275   case Intrinsic::ppc_qpx_qvlfcd:
13276   case Intrinsic::ppc_qpx_qvlfcs:
13277   case Intrinsic::ppc_qpx_qvlfiwa:
13278   case Intrinsic::ppc_qpx_qvlfiwz:
13279   case Intrinsic::ppc_altivec_lvx:
13280   case Intrinsic::ppc_altivec_lvxl:
13281   case Intrinsic::ppc_altivec_lvebx:
13282   case Intrinsic::ppc_altivec_lvehx:
13283   case Intrinsic::ppc_altivec_lvewx:
13284   case Intrinsic::ppc_vsx_lxvd2x:
13285   case Intrinsic::ppc_vsx_lxvw4x: {
13286     EVT VT;
13287     switch (Intrinsic) {
13288     case Intrinsic::ppc_altivec_lvebx:
13289       VT = MVT::i8;
13290       break;
13291     case Intrinsic::ppc_altivec_lvehx:
13292       VT = MVT::i16;
13293       break;
13294     case Intrinsic::ppc_altivec_lvewx:
13295       VT = MVT::i32;
13296       break;
13297     case Intrinsic::ppc_vsx_lxvd2x:
13298       VT = MVT::v2f64;
13299       break;
13300     case Intrinsic::ppc_qpx_qvlfd:
13301       VT = MVT::v4f64;
13302       break;
13303     case Intrinsic::ppc_qpx_qvlfs:
13304       VT = MVT::v4f32;
13305       break;
13306     case Intrinsic::ppc_qpx_qvlfcd:
13307       VT = MVT::v2f64;
13308       break;
13309     case Intrinsic::ppc_qpx_qvlfcs:
13310       VT = MVT::v2f32;
13311       break;
13312     default:
13313       VT = MVT::v4i32;
13314       break;
13315     }
13316 
13317     Info.opc = ISD::INTRINSIC_W_CHAIN;
13318     Info.memVT = VT;
13319     Info.ptrVal = I.getArgOperand(0);
13320     Info.offset = -VT.getStoreSize()+1;
13321     Info.size = 2*VT.getStoreSize()-1;
13322     Info.align = 1;
13323     Info.vol = false;
13324     Info.readMem = true;
13325     Info.writeMem = false;
13326     return true;
13327   }
13328   case Intrinsic::ppc_qpx_qvlfda:
13329   case Intrinsic::ppc_qpx_qvlfsa:
13330   case Intrinsic::ppc_qpx_qvlfcda:
13331   case Intrinsic::ppc_qpx_qvlfcsa:
13332   case Intrinsic::ppc_qpx_qvlfiwaa:
13333   case Intrinsic::ppc_qpx_qvlfiwza: {
13334     EVT VT;
13335     switch (Intrinsic) {
13336     case Intrinsic::ppc_qpx_qvlfda:
13337       VT = MVT::v4f64;
13338       break;
13339     case Intrinsic::ppc_qpx_qvlfsa:
13340       VT = MVT::v4f32;
13341       break;
13342     case Intrinsic::ppc_qpx_qvlfcda:
13343       VT = MVT::v2f64;
13344       break;
13345     case Intrinsic::ppc_qpx_qvlfcsa:
13346       VT = MVT::v2f32;
13347       break;
13348     default:
13349       VT = MVT::v4i32;
13350       break;
13351     }
13352 
13353     Info.opc = ISD::INTRINSIC_W_CHAIN;
13354     Info.memVT = VT;
13355     Info.ptrVal = I.getArgOperand(0);
13356     Info.offset = 0;
13357     Info.size = VT.getStoreSize();
13358     Info.align = 1;
13359     Info.vol = false;
13360     Info.readMem = true;
13361     Info.writeMem = false;
13362     return true;
13363   }
13364   case Intrinsic::ppc_qpx_qvstfd:
13365   case Intrinsic::ppc_qpx_qvstfs:
13366   case Intrinsic::ppc_qpx_qvstfcd:
13367   case Intrinsic::ppc_qpx_qvstfcs:
13368   case Intrinsic::ppc_qpx_qvstfiw:
13369   case Intrinsic::ppc_altivec_stvx:
13370   case Intrinsic::ppc_altivec_stvxl:
13371   case Intrinsic::ppc_altivec_stvebx:
13372   case Intrinsic::ppc_altivec_stvehx:
13373   case Intrinsic::ppc_altivec_stvewx:
13374   case Intrinsic::ppc_vsx_stxvd2x:
13375   case Intrinsic::ppc_vsx_stxvw4x: {
13376     EVT VT;
13377     switch (Intrinsic) {
13378     case Intrinsic::ppc_altivec_stvebx:
13379       VT = MVT::i8;
13380       break;
13381     case Intrinsic::ppc_altivec_stvehx:
13382       VT = MVT::i16;
13383       break;
13384     case Intrinsic::ppc_altivec_stvewx:
13385       VT = MVT::i32;
13386       break;
13387     case Intrinsic::ppc_vsx_stxvd2x:
13388       VT = MVT::v2f64;
13389       break;
13390     case Intrinsic::ppc_qpx_qvstfd:
13391       VT = MVT::v4f64;
13392       break;
13393     case Intrinsic::ppc_qpx_qvstfs:
13394       VT = MVT::v4f32;
13395       break;
13396     case Intrinsic::ppc_qpx_qvstfcd:
13397       VT = MVT::v2f64;
13398       break;
13399     case Intrinsic::ppc_qpx_qvstfcs:
13400       VT = MVT::v2f32;
13401       break;
13402     default:
13403       VT = MVT::v4i32;
13404       break;
13405     }
13406 
13407     Info.opc = ISD::INTRINSIC_VOID;
13408     Info.memVT = VT;
13409     Info.ptrVal = I.getArgOperand(1);
13410     Info.offset = -VT.getStoreSize()+1;
13411     Info.size = 2*VT.getStoreSize()-1;
13412     Info.align = 1;
13413     Info.vol = false;
13414     Info.readMem = false;
13415     Info.writeMem = true;
13416     return true;
13417   }
13418   case Intrinsic::ppc_qpx_qvstfda:
13419   case Intrinsic::ppc_qpx_qvstfsa:
13420   case Intrinsic::ppc_qpx_qvstfcda:
13421   case Intrinsic::ppc_qpx_qvstfcsa:
13422   case Intrinsic::ppc_qpx_qvstfiwa: {
13423     EVT VT;
13424     switch (Intrinsic) {
13425     case Intrinsic::ppc_qpx_qvstfda:
13426       VT = MVT::v4f64;
13427       break;
13428     case Intrinsic::ppc_qpx_qvstfsa:
13429       VT = MVT::v4f32;
13430       break;
13431     case Intrinsic::ppc_qpx_qvstfcda:
13432       VT = MVT::v2f64;
13433       break;
13434     case Intrinsic::ppc_qpx_qvstfcsa:
13435       VT = MVT::v2f32;
13436       break;
13437     default:
13438       VT = MVT::v4i32;
13439       break;
13440     }
13441 
13442     Info.opc = ISD::INTRINSIC_VOID;
13443     Info.memVT = VT;
13444     Info.ptrVal = I.getArgOperand(1);
13445     Info.offset = 0;
13446     Info.size = VT.getStoreSize();
13447     Info.align = 1;
13448     Info.vol = false;
13449     Info.readMem = false;
13450     Info.writeMem = true;
13451     return true;
13452   }
13453   default:
13454     break;
13455   }
13456 
13457   return false;
13458 }
13459 
13460 /// getOptimalMemOpType - Returns the target specific optimal type for load
13461 /// and store operations as a result of memset, memcpy, and memmove
13462 /// lowering. If DstAlign is zero that means it's safe to destination
13463 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13464 /// means there isn't a need to check it against alignment requirement,
13465 /// probably because the source does not need to be loaded. If 'IsMemset' is
13466 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13467 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13468 /// source is constant so it does not need to be loaded.
13469 /// It returns EVT::Other if the type should be determined using generic
13470 /// target-independent logic.
13471 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13472                                            unsigned DstAlign, unsigned SrcAlign,
13473                                            bool IsMemset, bool ZeroMemset,
13474                                            bool MemcpyStrSrc,
13475                                            MachineFunction &MF) const {
13476   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13477     const Function *F = MF.getFunction();
13478     // When expanding a memset, require at least two QPX instructions to cover
13479     // the cost of loading the value to be stored from the constant pool.
13480     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13481        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13482         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
13483       return MVT::v4f64;
13484     }
13485 
13486     // We should use Altivec/VSX loads and stores when available. For unaligned
13487     // addresses, unaligned VSX loads are only fast starting with the P8.
13488     if (Subtarget.hasAltivec() && Size >= 16 &&
13489         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13490          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13491       return MVT::v4i32;
13492   }
13493 
13494   if (Subtarget.isPPC64()) {
13495     return MVT::i64;
13496   }
13497 
13498   return MVT::i32;
13499 }
13500 
13501 /// \brief Returns true if it is beneficial to convert a load of a constant
13502 /// to just the constant itself.
13503 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13504                                                           Type *Ty) const {
13505   assert(Ty->isIntegerTy());
13506 
13507   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13508   return !(BitSize == 0 || BitSize > 64);
13509 }
13510 
13511 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13512   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13513     return false;
13514   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13515   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13516   return NumBits1 == 64 && NumBits2 == 32;
13517 }
13518 
13519 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13520   if (!VT1.isInteger() || !VT2.isInteger())
13521     return false;
13522   unsigned NumBits1 = VT1.getSizeInBits();
13523   unsigned NumBits2 = VT2.getSizeInBits();
13524   return NumBits1 == 64 && NumBits2 == 32;
13525 }
13526 
13527 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13528   // Generally speaking, zexts are not free, but they are free when they can be
13529   // folded with other operations.
13530   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13531     EVT MemVT = LD->getMemoryVT();
13532     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13533          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13534         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13535          LD->getExtensionType() == ISD::ZEXTLOAD))
13536       return true;
13537   }
13538 
13539   // FIXME: Add other cases...
13540   //  - 32-bit shifts with a zext to i64
13541   //  - zext after ctlz, bswap, etc.
13542   //  - zext after and by a constant mask
13543 
13544   return TargetLowering::isZExtFree(Val, VT2);
13545 }
13546 
13547 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13548   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13549          "invalid fpext types");
13550   return true;
13551 }
13552 
13553 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13554   return isInt<16>(Imm) || isUInt<16>(Imm);
13555 }
13556 
13557 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13558   return isInt<16>(Imm) || isUInt<16>(Imm);
13559 }
13560 
13561 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13562                                                        unsigned,
13563                                                        unsigned,
13564                                                        bool *Fast) const {
13565   if (DisablePPCUnaligned)
13566     return false;
13567 
13568   // PowerPC supports unaligned memory access for simple non-vector types.
13569   // Although accessing unaligned addresses is not as efficient as accessing
13570   // aligned addresses, it is generally more efficient than manual expansion,
13571   // and generally only traps for software emulation when crossing page
13572   // boundaries.
13573 
13574   if (!VT.isSimple())
13575     return false;
13576 
13577   if (VT.getSimpleVT().isVector()) {
13578     if (Subtarget.hasVSX()) {
13579       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13580           VT != MVT::v4f32 && VT != MVT::v4i32)
13581         return false;
13582     } else {
13583       return false;
13584     }
13585   }
13586 
13587   if (VT == MVT::ppcf128)
13588     return false;
13589 
13590   if (Fast)
13591     *Fast = true;
13592 
13593   return true;
13594 }
13595 
13596 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13597   VT = VT.getScalarType();
13598 
13599   if (!VT.isSimple())
13600     return false;
13601 
13602   switch (VT.getSimpleVT().SimpleTy) {
13603   case MVT::f32:
13604   case MVT::f64:
13605     return true;
13606   default:
13607     break;
13608   }
13609 
13610   return false;
13611 }
13612 
13613 const MCPhysReg *
13614 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13615   // LR is a callee-save register, but we must treat it as clobbered by any call
13616   // site. Hence we include LR in the scratch registers, which are in turn added
13617   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13618   // to CTR, which is used by any indirect call.
13619   static const MCPhysReg ScratchRegs[] = {
13620     PPC::X12, PPC::LR8, PPC::CTR8, 0
13621   };
13622 
13623   return ScratchRegs;
13624 }
13625 
13626 unsigned PPCTargetLowering::getExceptionPointerRegister(
13627     const Constant *PersonalityFn) const {
13628   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13629 }
13630 
13631 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13632     const Constant *PersonalityFn) const {
13633   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13634 }
13635 
13636 bool
13637 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13638                      EVT VT , unsigned DefinedValues) const {
13639   if (VT == MVT::v2i64)
13640     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13641 
13642   if (Subtarget.hasVSX() || Subtarget.hasQPX())
13643     return true;
13644 
13645   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13646 }
13647 
13648 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13649   if (DisableILPPref || Subtarget.enableMachineScheduler())
13650     return TargetLowering::getSchedulingPreference(N);
13651 
13652   return Sched::ILP;
13653 }
13654 
13655 // Create a fast isel object.
13656 FastISel *
13657 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13658                                   const TargetLibraryInfo *LibInfo) const {
13659   return PPC::createFastISel(FuncInfo, LibInfo);
13660 }
13661 
13662 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13663   if (Subtarget.isDarwinABI()) return;
13664   if (!Subtarget.isPPC64()) return;
13665 
13666   // Update IsSplitCSR in PPCFunctionInfo
13667   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
13668   PFI->setIsSplitCSR(true);
13669 }
13670 
13671 void PPCTargetLowering::insertCopiesSplitCSR(
13672   MachineBasicBlock *Entry,
13673   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13674   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
13675   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13676   if (!IStart)
13677     return;
13678 
13679   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
13680   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13681   MachineBasicBlock::iterator MBBI = Entry->begin();
13682   for (const MCPhysReg *I = IStart; *I; ++I) {
13683     const TargetRegisterClass *RC = nullptr;
13684     if (PPC::G8RCRegClass.contains(*I))
13685       RC = &PPC::G8RCRegClass;
13686     else if (PPC::F8RCRegClass.contains(*I))
13687       RC = &PPC::F8RCRegClass;
13688     else if (PPC::CRRCRegClass.contains(*I))
13689       RC = &PPC::CRRCRegClass;
13690     else if (PPC::VRRCRegClass.contains(*I))
13691       RC = &PPC::VRRCRegClass;
13692     else
13693       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13694 
13695     unsigned NewVR = MRI->createVirtualRegister(RC);
13696     // Create copy from CSR to a virtual register.
13697     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13698     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13699     // nounwind. If we want to generalize this later, we may need to emit
13700     // CFI pseudo-instructions.
13701     assert(Entry->getParent()->getFunction()->hasFnAttribute(
13702              Attribute::NoUnwind) &&
13703            "Function should be nounwind in insertCopiesSplitCSR!");
13704     Entry->addLiveIn(*I);
13705     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13706       .addReg(*I);
13707 
13708     // Insert the copy-back instructions right before the terminator
13709     for (auto *Exit : Exits)
13710       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13711               TII->get(TargetOpcode::COPY), *I)
13712         .addReg(NewVR);
13713   }
13714 }
13715 
13716 // Override to enable LOAD_STACK_GUARD lowering on Linux.
13717 bool PPCTargetLowering::useLoadStackGuardNode() const {
13718   if (!Subtarget.isTargetLinux())
13719     return TargetLowering::useLoadStackGuardNode();
13720   return true;
13721 }
13722 
13723 // Override to disable global variable loading on Linux.
13724 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
13725   if (!Subtarget.isTargetLinux())
13726     return TargetLowering::insertSSPDeclarations(M);
13727 }
13728 
13729 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
13730   if (!VT.isSimple() || !Subtarget.hasVSX())
13731     return false;
13732 
13733   switch(VT.getSimpleVT().SimpleTy) {
13734   default:
13735     // For FP types that are currently not supported by PPC backend, return
13736     // false. Examples: f16, f80.
13737     return false;
13738   case MVT::f32:
13739   case MVT::f64:
13740   case MVT::ppcf128:
13741     return Imm.isPosZero();
13742   }
13743 }
13744 
13745 // For vector shift operation op, fold
13746 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
13747 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
13748                                   SelectionDAG &DAG) {
13749   SDValue N0 = N->getOperand(0);
13750   SDValue N1 = N->getOperand(1);
13751   EVT VT = N0.getValueType();
13752   unsigned OpSizeInBits = VT.getScalarSizeInBits();
13753   unsigned Opcode = N->getOpcode();
13754   unsigned TargetOpcode;
13755 
13756   switch (Opcode) {
13757   default:
13758     llvm_unreachable("Unexpected shift operation");
13759   case ISD::SHL:
13760     TargetOpcode = PPCISD::SHL;
13761     break;
13762   case ISD::SRL:
13763     TargetOpcode = PPCISD::SRL;
13764     break;
13765   case ISD::SRA:
13766     TargetOpcode = PPCISD::SRA;
13767     break;
13768   }
13769 
13770   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
13771       N1->getOpcode() == ISD::AND)
13772     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
13773       if (Mask->getZExtValue() == OpSizeInBits - 1)
13774         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
13775 
13776   return SDValue();
13777 }
13778 
13779 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
13780   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13781     return Value;
13782 
13783   return SDValue();
13784 }
13785 
13786 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
13787   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13788     return Value;
13789 
13790   return SDValue();
13791 }
13792 
13793 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
13794   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13795     return Value;
13796 
13797   return SDValue();
13798 }
13799