1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 STATISTIC(NumTailCalls, "Number of tail calls"); 125 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 128 129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 130 131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 132 133 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 134 135 // FIXME: Remove this once the bug has been fixed! 136 extern cl::opt<bool> ANDIGlueBug; 137 138 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 139 const PPCSubtarget &STI) 140 : TargetLowering(TM), Subtarget(STI) { 141 // Initialize map that relates the PPC addressing modes to the computed flags 142 // of a load/store instruction. The map is used to determine the optimal 143 // addressing mode when selecting load and stores. 144 initializeAddrModeMap(); 145 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 146 // arguments are at least 4/8 bytes aligned. 147 bool isPPC64 = Subtarget.isPPC64(); 148 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 149 150 // Set up the register classes. 151 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 152 if (!useSoftFloat()) { 153 if (hasSPE()) { 154 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 155 // EFPU2 APU only supports f32 156 if (!Subtarget.hasEFPU2()) 157 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 158 } else { 159 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 160 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 161 } 162 } 163 164 // Match BITREVERSE to customized fast code sequence in the td file. 165 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 166 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 167 168 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 169 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 170 171 // Custom lower inline assembly to check for special registers. 172 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 173 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 174 175 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 176 for (MVT VT : MVT::integer_valuetypes()) { 177 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 178 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 179 } 180 181 if (Subtarget.isISA3_0()) { 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 183 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 184 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 185 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 186 } else { 187 // No extending loads from f16 or HW conversions back and forth. 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 190 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 192 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 193 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 194 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 195 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 196 } 197 198 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 199 200 // PowerPC has pre-inc load and store's. 201 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 203 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 204 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 205 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 206 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 211 if (!Subtarget.hasSPE()) { 212 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 216 } 217 218 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 219 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 220 for (MVT VT : ScalarIntVTs) { 221 setOperationAction(ISD::ADDC, VT, Legal); 222 setOperationAction(ISD::ADDE, VT, Legal); 223 setOperationAction(ISD::SUBC, VT, Legal); 224 setOperationAction(ISD::SUBE, VT, Legal); 225 } 226 227 if (Subtarget.useCRBits()) { 228 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 229 230 if (isPPC64 || Subtarget.hasFPCVT()) { 231 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 232 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 233 isPPC64 ? MVT::i64 : MVT::i32); 234 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 235 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 236 isPPC64 ? MVT::i64 : MVT::i32); 237 238 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 239 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 240 isPPC64 ? MVT::i64 : MVT::i32); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 245 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 246 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 247 isPPC64 ? MVT::i64 : MVT::i32); 248 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 249 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 252 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 253 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 254 isPPC64 ? MVT::i64 : MVT::i32); 255 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 } else { 259 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 260 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 261 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 262 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 263 } 264 265 // PowerPC does not support direct load/store of condition registers. 266 setOperationAction(ISD::LOAD, MVT::i1, Custom); 267 setOperationAction(ISD::STORE, MVT::i1, Custom); 268 269 // FIXME: Remove this once the ANDI glue bug is fixed: 270 if (ANDIGlueBug) 271 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 272 273 for (MVT VT : MVT::integer_valuetypes()) { 274 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 275 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 276 setTruncStoreAction(VT, MVT::i1, Expand); 277 } 278 279 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 280 } 281 282 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 283 // PPC (the libcall is not available). 284 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 285 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 286 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 287 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 288 289 // We do not currently implement these libm ops for PowerPC. 290 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 291 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 292 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 293 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 294 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 295 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 296 297 // PowerPC has no SREM/UREM instructions unless we are on P9 298 // On P9 we may use a hardware instruction to compute the remainder. 299 // When the result of both the remainder and the division is required it is 300 // more efficient to compute the remainder from the result of the division 301 // rather than use the remainder instruction. The instructions are legalized 302 // directly because the DivRemPairsPass performs the transformation at the IR 303 // level. 304 if (Subtarget.isISA3_0()) { 305 setOperationAction(ISD::SREM, MVT::i32, Legal); 306 setOperationAction(ISD::UREM, MVT::i32, Legal); 307 setOperationAction(ISD::SREM, MVT::i64, Legal); 308 setOperationAction(ISD::UREM, MVT::i64, Legal); 309 } else { 310 setOperationAction(ISD::SREM, MVT::i32, Expand); 311 setOperationAction(ISD::UREM, MVT::i32, Expand); 312 setOperationAction(ISD::SREM, MVT::i64, Expand); 313 setOperationAction(ISD::UREM, MVT::i64, Expand); 314 } 315 316 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 317 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 318 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 319 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 320 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 321 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 322 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 323 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 324 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 325 326 // Handle constrained floating-point operations of scalar. 327 // TODO: Handle SPE specific operation. 328 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 329 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 330 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 331 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 332 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 333 334 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 335 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 336 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 337 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 338 339 if (!Subtarget.hasSPE()) { 340 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 342 } 343 344 if (Subtarget.hasVSX()) { 345 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasFSQRT()) { 350 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFPRND()) { 355 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 357 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 358 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 359 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 364 } 365 366 // We don't support sin/cos/sqrt/fmod/pow 367 setOperationAction(ISD::FSIN , MVT::f64, Expand); 368 setOperationAction(ISD::FCOS , MVT::f64, Expand); 369 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 370 setOperationAction(ISD::FREM , MVT::f64, Expand); 371 setOperationAction(ISD::FPOW , MVT::f64, Expand); 372 setOperationAction(ISD::FSIN , MVT::f32, Expand); 373 setOperationAction(ISD::FCOS , MVT::f32, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 375 setOperationAction(ISD::FREM , MVT::f32, Expand); 376 setOperationAction(ISD::FPOW , MVT::f32, Expand); 377 if (Subtarget.hasSPE()) { 378 setOperationAction(ISD::FMA , MVT::f64, Expand); 379 setOperationAction(ISD::FMA , MVT::f32, Expand); 380 } else { 381 setOperationAction(ISD::FMA , MVT::f64, Legal); 382 setOperationAction(ISD::FMA , MVT::f32, Legal); 383 } 384 385 if (Subtarget.hasSPE()) 386 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 387 388 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 389 390 // If we're enabling GP optimizations, use hardware square root 391 if (!Subtarget.hasFSQRT() && 392 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 393 Subtarget.hasFRE())) 394 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 395 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 398 Subtarget.hasFRES())) 399 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 400 401 if (Subtarget.hasFCPSGN()) { 402 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 403 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 404 } else { 405 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 406 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 407 } 408 409 if (Subtarget.hasFPRND()) { 410 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 411 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 412 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 413 setOperationAction(ISD::FROUND, MVT::f64, Legal); 414 415 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 418 setOperationAction(ISD::FROUND, MVT::f32, Legal); 419 } 420 421 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 422 // to speed up scalar BSWAP64. 423 // CTPOP or CTTZ were introduced in P8/P9 respectively 424 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 425 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 426 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 427 else 428 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 429 if (Subtarget.isISA3_0()) { 430 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 431 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 432 } else { 433 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 434 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 435 } 436 437 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 438 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 439 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 440 } else { 441 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 442 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 443 } 444 445 // PowerPC does not have ROTR 446 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 447 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 448 449 if (!Subtarget.useCRBits()) { 450 // PowerPC does not have Select 451 setOperationAction(ISD::SELECT, MVT::i32, Expand); 452 setOperationAction(ISD::SELECT, MVT::i64, Expand); 453 setOperationAction(ISD::SELECT, MVT::f32, Expand); 454 setOperationAction(ISD::SELECT, MVT::f64, Expand); 455 } 456 457 // PowerPC wants to turn select_cc of FP into fsel when possible. 458 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 459 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 460 461 // PowerPC wants to optimize integer setcc a bit 462 if (!Subtarget.useCRBits()) 463 setOperationAction(ISD::SETCC, MVT::i32, Custom); 464 465 if (Subtarget.hasFPU()) { 466 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 467 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 468 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 469 470 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 471 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 472 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 473 } 474 475 // PowerPC does not have BRCOND which requires SetCC 476 if (!Subtarget.useCRBits()) 477 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 478 479 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 480 481 if (Subtarget.hasSPE()) { 482 // SPE has built-in conversions 483 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 484 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 485 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 486 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 487 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 488 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 489 490 // SPE supports signaling compare of f32/f64. 491 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 492 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 493 } else { 494 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 495 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 496 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 497 498 // PowerPC does not have [U|S]INT_TO_FP 499 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 500 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 501 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 502 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 503 } 504 505 if (Subtarget.hasDirectMove() && isPPC64) { 506 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 507 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 508 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 509 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 510 if (TM.Options.UnsafeFPMath) { 511 setOperationAction(ISD::LRINT, MVT::f64, Legal); 512 setOperationAction(ISD::LRINT, MVT::f32, Legal); 513 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 514 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 515 setOperationAction(ISD::LROUND, MVT::f64, Legal); 516 setOperationAction(ISD::LROUND, MVT::f32, Legal); 517 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 518 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 519 } 520 } else { 521 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 522 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 523 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 524 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 525 } 526 527 // We cannot sextinreg(i1). Expand to shifts. 528 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 529 530 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 531 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 532 // support continuation, user-level threading, and etc.. As a result, no 533 // other SjLj exception interfaces are implemented and please don't build 534 // your own exception handling based on them. 535 // LLVM/Clang supports zero-cost DWARF exception handling. 536 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 537 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 538 539 // We want to legalize GlobalAddress and ConstantPool nodes into the 540 // appropriate instructions to materialize the address. 541 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 542 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 543 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 544 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 545 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 546 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 551 552 // TRAP is legal. 553 setOperationAction(ISD::TRAP, MVT::Other, Legal); 554 555 // TRAMPOLINE is custom lowered. 556 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 557 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 558 559 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 560 setOperationAction(ISD::VASTART , MVT::Other, Custom); 561 562 if (Subtarget.is64BitELFABI()) { 563 // VAARG always uses double-word chunks, so promote anything smaller. 564 setOperationAction(ISD::VAARG, MVT::i1, Promote); 565 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 566 setOperationAction(ISD::VAARG, MVT::i8, Promote); 567 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 568 setOperationAction(ISD::VAARG, MVT::i16, Promote); 569 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 570 setOperationAction(ISD::VAARG, MVT::i32, Promote); 571 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 572 setOperationAction(ISD::VAARG, MVT::Other, Expand); 573 } else if (Subtarget.is32BitELFABI()) { 574 // VAARG is custom lowered with the 32-bit SVR4 ABI. 575 setOperationAction(ISD::VAARG, MVT::Other, Custom); 576 setOperationAction(ISD::VAARG, MVT::i64, Custom); 577 } else 578 setOperationAction(ISD::VAARG, MVT::Other, Expand); 579 580 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 581 if (Subtarget.is32BitELFABI()) 582 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 583 else 584 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 585 586 // Use the default implementation. 587 setOperationAction(ISD::VAEND , MVT::Other, Expand); 588 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 589 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 590 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 591 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 592 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 593 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 594 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 595 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 596 597 // We want to custom lower some of our intrinsics. 598 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 599 600 // To handle counter-based loop conditions. 601 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 602 603 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 604 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 605 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 606 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 607 608 // Comparisons that require checking two conditions. 609 if (Subtarget.hasSPE()) { 610 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 611 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 612 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 613 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 614 } 615 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 616 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 617 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 619 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 620 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 621 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 622 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 623 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 624 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 625 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 626 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 627 628 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 629 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 630 631 if (Subtarget.has64BitSupport()) { 632 // They also have instructions for converting between i64 and fp. 633 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 634 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 635 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 636 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 637 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 638 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 639 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 640 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 641 // This is just the low 32 bits of a (signed) fp->i64 conversion. 642 // We cannot do this with Promote because i64 is not a legal type. 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 644 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 645 646 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 647 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 648 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 649 } 650 } else { 651 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 652 if (Subtarget.hasSPE()) { 653 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 654 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 655 } else { 656 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 657 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 658 } 659 } 660 661 // With the instructions enabled under FPCVT, we can do everything. 662 if (Subtarget.hasFPCVT()) { 663 if (Subtarget.has64BitSupport()) { 664 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 665 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 666 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 668 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 669 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 670 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 671 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 672 } 673 674 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 675 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 676 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 677 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 678 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 679 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 680 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 681 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 682 } 683 684 if (Subtarget.use64BitRegs()) { 685 // 64-bit PowerPC implementations can support i64 types directly 686 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 687 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 688 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 689 // 64-bit PowerPC wants to expand i128 shifts itself. 690 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 691 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 692 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 693 } else { 694 // 32-bit PowerPC wants to expand i64 shifts itself. 695 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 696 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 697 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 698 } 699 700 // PowerPC has better expansions for funnel shifts than the generic 701 // TargetLowering::expandFunnelShift. 702 if (Subtarget.has64BitSupport()) { 703 setOperationAction(ISD::FSHL, MVT::i64, Custom); 704 setOperationAction(ISD::FSHR, MVT::i64, Custom); 705 } 706 setOperationAction(ISD::FSHL, MVT::i32, Custom); 707 setOperationAction(ISD::FSHR, MVT::i32, Custom); 708 709 if (Subtarget.hasVSX()) { 710 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 711 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 712 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 713 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 714 } 715 716 if (Subtarget.hasAltivec()) { 717 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 718 setOperationAction(ISD::SADDSAT, VT, Legal); 719 setOperationAction(ISD::SSUBSAT, VT, Legal); 720 setOperationAction(ISD::UADDSAT, VT, Legal); 721 setOperationAction(ISD::USUBSAT, VT, Legal); 722 } 723 // First set operation action for all vector types to expand. Then we 724 // will selectively turn on ones that can be effectively codegen'd. 725 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 726 // add/sub are legal for all supported vector VT's. 727 setOperationAction(ISD::ADD, VT, Legal); 728 setOperationAction(ISD::SUB, VT, Legal); 729 730 // For v2i64, these are only valid with P8Vector. This is corrected after 731 // the loop. 732 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 733 setOperationAction(ISD::SMAX, VT, Legal); 734 setOperationAction(ISD::SMIN, VT, Legal); 735 setOperationAction(ISD::UMAX, VT, Legal); 736 setOperationAction(ISD::UMIN, VT, Legal); 737 } 738 else { 739 setOperationAction(ISD::SMAX, VT, Expand); 740 setOperationAction(ISD::SMIN, VT, Expand); 741 setOperationAction(ISD::UMAX, VT, Expand); 742 setOperationAction(ISD::UMIN, VT, Expand); 743 } 744 745 if (Subtarget.hasVSX()) { 746 setOperationAction(ISD::FMAXNUM, VT, Legal); 747 setOperationAction(ISD::FMINNUM, VT, Legal); 748 } 749 750 // Vector instructions introduced in P8 751 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 752 setOperationAction(ISD::CTPOP, VT, Legal); 753 setOperationAction(ISD::CTLZ, VT, Legal); 754 } 755 else { 756 setOperationAction(ISD::CTPOP, VT, Expand); 757 setOperationAction(ISD::CTLZ, VT, Expand); 758 } 759 760 // Vector instructions introduced in P9 761 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 762 setOperationAction(ISD::CTTZ, VT, Legal); 763 else 764 setOperationAction(ISD::CTTZ, VT, Expand); 765 766 // We promote all shuffles to v16i8. 767 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 768 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 769 770 // We promote all non-typed operations to v4i32. 771 setOperationAction(ISD::AND , VT, Promote); 772 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 773 setOperationAction(ISD::OR , VT, Promote); 774 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 775 setOperationAction(ISD::XOR , VT, Promote); 776 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 777 setOperationAction(ISD::LOAD , VT, Promote); 778 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 779 setOperationAction(ISD::SELECT, VT, Promote); 780 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 781 setOperationAction(ISD::VSELECT, VT, Legal); 782 setOperationAction(ISD::SELECT_CC, VT, Promote); 783 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 784 setOperationAction(ISD::STORE, VT, Promote); 785 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 786 787 // No other operations are legal. 788 setOperationAction(ISD::MUL , VT, Expand); 789 setOperationAction(ISD::SDIV, VT, Expand); 790 setOperationAction(ISD::SREM, VT, Expand); 791 setOperationAction(ISD::UDIV, VT, Expand); 792 setOperationAction(ISD::UREM, VT, Expand); 793 setOperationAction(ISD::FDIV, VT, Expand); 794 setOperationAction(ISD::FREM, VT, Expand); 795 setOperationAction(ISD::FNEG, VT, Expand); 796 setOperationAction(ISD::FSQRT, VT, Expand); 797 setOperationAction(ISD::FLOG, VT, Expand); 798 setOperationAction(ISD::FLOG10, VT, Expand); 799 setOperationAction(ISD::FLOG2, VT, Expand); 800 setOperationAction(ISD::FEXP, VT, Expand); 801 setOperationAction(ISD::FEXP2, VT, Expand); 802 setOperationAction(ISD::FSIN, VT, Expand); 803 setOperationAction(ISD::FCOS, VT, Expand); 804 setOperationAction(ISD::FABS, VT, Expand); 805 setOperationAction(ISD::FFLOOR, VT, Expand); 806 setOperationAction(ISD::FCEIL, VT, Expand); 807 setOperationAction(ISD::FTRUNC, VT, Expand); 808 setOperationAction(ISD::FRINT, VT, Expand); 809 setOperationAction(ISD::FNEARBYINT, VT, Expand); 810 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 811 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 812 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 813 setOperationAction(ISD::MULHU, VT, Expand); 814 setOperationAction(ISD::MULHS, VT, Expand); 815 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 816 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 817 setOperationAction(ISD::UDIVREM, VT, Expand); 818 setOperationAction(ISD::SDIVREM, VT, Expand); 819 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 820 setOperationAction(ISD::FPOW, VT, Expand); 821 setOperationAction(ISD::BSWAP, VT, Expand); 822 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 823 setOperationAction(ISD::ROTL, VT, Expand); 824 setOperationAction(ISD::ROTR, VT, Expand); 825 826 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 827 setTruncStoreAction(VT, InnerVT, Expand); 828 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 829 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 830 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 831 } 832 } 833 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 834 if (!Subtarget.hasP8Vector()) { 835 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 836 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 837 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 838 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 839 } 840 841 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 842 // with merges, splats, etc. 843 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 844 845 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 846 // are cheap, so handle them before they get expanded to scalar. 847 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 848 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 849 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 850 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 851 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 852 853 setOperationAction(ISD::AND , MVT::v4i32, Legal); 854 setOperationAction(ISD::OR , MVT::v4i32, Legal); 855 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 856 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 857 setOperationAction(ISD::SELECT, MVT::v4i32, 858 Subtarget.useCRBits() ? Legal : Expand); 859 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 860 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 861 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 862 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 863 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 864 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 865 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 866 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 867 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 868 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 869 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 870 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 871 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 872 873 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 874 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 875 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 876 if (Subtarget.hasAltivec()) 877 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 878 setOperationAction(ISD::ROTL, VT, Legal); 879 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 880 if (Subtarget.hasP8Altivec()) 881 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 882 883 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 884 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 885 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 886 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 887 888 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 889 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 890 891 if (Subtarget.hasVSX()) { 892 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 893 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 894 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 895 } 896 897 if (Subtarget.hasP8Altivec()) 898 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 899 else 900 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 901 902 if (Subtarget.isISA3_1()) { 903 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 904 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 905 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 906 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 907 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 908 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 909 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 910 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 911 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 912 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 913 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 914 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 915 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 916 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 917 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 918 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 919 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 920 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 921 } 922 923 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 924 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 925 926 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 927 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 928 929 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 930 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 931 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 932 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 933 934 // Altivec does not contain unordered floating-point compare instructions 935 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 936 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 937 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 938 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 939 940 if (Subtarget.hasVSX()) { 941 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 942 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 943 if (Subtarget.hasP8Vector()) { 944 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 945 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 946 } 947 if (Subtarget.hasDirectMove() && isPPC64) { 948 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 949 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 950 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 951 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 952 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 953 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 954 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 955 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 956 } 957 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 958 959 // The nearbyint variants are not allowed to raise the inexact exception 960 // so we can only code-gen them with unsafe math. 961 if (TM.Options.UnsafeFPMath) { 962 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 963 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 964 } 965 966 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 967 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 968 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 969 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 970 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 971 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 972 setOperationAction(ISD::FROUND, MVT::f64, Legal); 973 setOperationAction(ISD::FRINT, MVT::f64, Legal); 974 975 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 976 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 977 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 978 setOperationAction(ISD::FROUND, MVT::f32, Legal); 979 setOperationAction(ISD::FRINT, MVT::f32, Legal); 980 981 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 982 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 983 984 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 985 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 986 987 // Share the Altivec comparison restrictions. 988 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 989 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 990 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 991 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 992 993 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 994 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 995 996 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 997 998 if (Subtarget.hasP8Vector()) 999 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1000 1001 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1002 1003 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1004 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1005 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1006 1007 if (Subtarget.hasP8Altivec()) { 1008 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1009 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1010 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1011 1012 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1013 // SRL, but not for SRA because of the instructions available: 1014 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1015 // doing 1016 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1017 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1018 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1019 1020 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1021 } 1022 else { 1023 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1024 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1025 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1026 1027 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1028 1029 // VSX v2i64 only supports non-arithmetic operations. 1030 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1031 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1032 } 1033 1034 if (Subtarget.isISA3_1()) 1035 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1036 else 1037 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1038 1039 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1040 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1041 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1042 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1043 1044 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1045 1046 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1047 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1048 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1049 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1050 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1051 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1052 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1053 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1054 1055 // Custom handling for partial vectors of integers converted to 1056 // floating point. We already have optimal handling for v2i32 through 1057 // the DAG combine, so those aren't necessary. 1058 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1059 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1060 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1061 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1062 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1063 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1064 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1065 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1066 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1067 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1068 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1069 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1070 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1071 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1072 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1073 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1074 1075 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1076 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1077 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1078 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1079 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1080 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1081 1082 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1083 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1084 1085 // Handle constrained floating-point operations of vector. 1086 // The predictor is `hasVSX` because altivec instruction has 1087 // no exception but VSX vector instruction has. 1088 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1089 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1090 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1091 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1092 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1093 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1094 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1095 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1101 1102 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1103 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1104 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1105 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1106 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1107 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1108 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1109 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1115 1116 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1117 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1118 1119 for (MVT FPT : MVT::fp_valuetypes()) 1120 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1121 1122 // Expand the SELECT to SELECT_CC 1123 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1124 1125 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1126 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1127 1128 // No implementation for these ops for PowerPC. 1129 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1130 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1131 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1132 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1133 setOperationAction(ISD::FREM, MVT::f128, Expand); 1134 } 1135 1136 if (Subtarget.hasP8Altivec()) { 1137 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1138 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1139 } 1140 1141 if (Subtarget.hasP9Vector()) { 1142 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1143 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1144 1145 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1146 // SRL, but not for SRA because of the instructions available: 1147 // VS{RL} and VS{RL}O. 1148 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1149 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1150 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1151 1152 setOperationAction(ISD::FADD, MVT::f128, Legal); 1153 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1154 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1155 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1156 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1157 1158 setOperationAction(ISD::FMA, MVT::f128, Legal); 1159 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1160 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1161 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1162 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1163 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1164 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1165 1166 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1167 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1168 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1169 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1170 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1171 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1172 1173 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1174 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1175 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1176 1177 // Handle constrained floating-point operations of fp128 1178 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1179 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1180 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1181 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1182 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1183 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1184 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1185 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1186 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1187 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1191 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1192 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1193 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1194 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1195 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1196 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1197 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1198 } else if (Subtarget.hasVSX()) { 1199 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1200 setOperationAction(ISD::STORE, MVT::f128, Promote); 1201 1202 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1203 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1204 1205 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1206 // fp_to_uint and int_to_fp. 1207 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1208 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1209 1210 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1211 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1212 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1213 setOperationAction(ISD::FABS, MVT::f128, Expand); 1214 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1215 setOperationAction(ISD::FMA, MVT::f128, Expand); 1216 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1217 1218 // Expand the fp_extend if the target type is fp128. 1219 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1220 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1221 1222 // Expand the fp_round if the source type is fp128. 1223 for (MVT VT : {MVT::f32, MVT::f64}) { 1224 setOperationAction(ISD::FP_ROUND, VT, Custom); 1225 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1226 } 1227 1228 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1229 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1230 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1231 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1232 1233 // Lower following f128 select_cc pattern: 1234 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1235 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1236 1237 // We need to handle f128 SELECT_CC with integer result type. 1238 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1239 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1240 } 1241 1242 if (Subtarget.hasP9Altivec()) { 1243 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1244 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1245 1246 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1247 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1248 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1249 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1250 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1253 } 1254 1255 if (Subtarget.isISA3_1()) 1256 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1257 } 1258 1259 if (Subtarget.pairedVectorMemops()) { 1260 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1261 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1262 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1263 } 1264 if (Subtarget.hasMMA()) { 1265 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1266 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1267 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1268 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1269 } 1270 1271 if (Subtarget.has64BitSupport()) 1272 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1273 1274 if (Subtarget.isISA3_1()) 1275 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1276 1277 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1278 1279 if (!isPPC64) { 1280 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1281 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1282 } 1283 1284 setBooleanContents(ZeroOrOneBooleanContent); 1285 1286 if (Subtarget.hasAltivec()) { 1287 // Altivec instructions set fields to all zeros or all ones. 1288 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1289 } 1290 1291 if (!isPPC64) { 1292 // These libcalls are not available in 32-bit. 1293 setLibcallName(RTLIB::SHL_I128, nullptr); 1294 setLibcallName(RTLIB::SRL_I128, nullptr); 1295 setLibcallName(RTLIB::SRA_I128, nullptr); 1296 } 1297 1298 if (!isPPC64) 1299 setMaxAtomicSizeInBitsSupported(32); 1300 1301 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1302 1303 // We have target-specific dag combine patterns for the following nodes: 1304 setTargetDAGCombine(ISD::ADD); 1305 setTargetDAGCombine(ISD::SHL); 1306 setTargetDAGCombine(ISD::SRA); 1307 setTargetDAGCombine(ISD::SRL); 1308 setTargetDAGCombine(ISD::MUL); 1309 setTargetDAGCombine(ISD::FMA); 1310 setTargetDAGCombine(ISD::SINT_TO_FP); 1311 setTargetDAGCombine(ISD::BUILD_VECTOR); 1312 if (Subtarget.hasFPCVT()) 1313 setTargetDAGCombine(ISD::UINT_TO_FP); 1314 setTargetDAGCombine(ISD::LOAD); 1315 setTargetDAGCombine(ISD::STORE); 1316 setTargetDAGCombine(ISD::BR_CC); 1317 if (Subtarget.useCRBits()) 1318 setTargetDAGCombine(ISD::BRCOND); 1319 setTargetDAGCombine(ISD::BSWAP); 1320 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1321 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1322 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1323 1324 setTargetDAGCombine(ISD::SIGN_EXTEND); 1325 setTargetDAGCombine(ISD::ZERO_EXTEND); 1326 setTargetDAGCombine(ISD::ANY_EXTEND); 1327 1328 setTargetDAGCombine(ISD::TRUNCATE); 1329 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1330 1331 1332 if (Subtarget.useCRBits()) { 1333 setTargetDAGCombine(ISD::TRUNCATE); 1334 setTargetDAGCombine(ISD::SETCC); 1335 setTargetDAGCombine(ISD::SELECT_CC); 1336 } 1337 1338 if (Subtarget.hasP9Altivec()) { 1339 setTargetDAGCombine(ISD::ABS); 1340 setTargetDAGCombine(ISD::VSELECT); 1341 } 1342 1343 setLibcallName(RTLIB::LOG_F128, "logf128"); 1344 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1345 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1346 setLibcallName(RTLIB::EXP_F128, "expf128"); 1347 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1348 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1349 setLibcallName(RTLIB::COS_F128, "cosf128"); 1350 setLibcallName(RTLIB::POW_F128, "powf128"); 1351 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1352 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1353 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1354 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1355 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1356 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1357 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1358 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1359 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1360 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1361 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1362 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1363 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1364 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1365 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1366 1367 // With 32 condition bits, we don't need to sink (and duplicate) compares 1368 // aggressively in CodeGenPrep. 1369 if (Subtarget.useCRBits()) { 1370 setHasMultipleConditionRegisters(); 1371 setJumpIsExpensive(); 1372 } 1373 1374 setMinFunctionAlignment(Align(4)); 1375 1376 switch (Subtarget.getCPUDirective()) { 1377 default: break; 1378 case PPC::DIR_970: 1379 case PPC::DIR_A2: 1380 case PPC::DIR_E500: 1381 case PPC::DIR_E500mc: 1382 case PPC::DIR_E5500: 1383 case PPC::DIR_PWR4: 1384 case PPC::DIR_PWR5: 1385 case PPC::DIR_PWR5X: 1386 case PPC::DIR_PWR6: 1387 case PPC::DIR_PWR6X: 1388 case PPC::DIR_PWR7: 1389 case PPC::DIR_PWR8: 1390 case PPC::DIR_PWR9: 1391 case PPC::DIR_PWR10: 1392 case PPC::DIR_PWR_FUTURE: 1393 setPrefLoopAlignment(Align(16)); 1394 setPrefFunctionAlignment(Align(16)); 1395 break; 1396 } 1397 1398 if (Subtarget.enableMachineScheduler()) 1399 setSchedulingPreference(Sched::Source); 1400 else 1401 setSchedulingPreference(Sched::Hybrid); 1402 1403 computeRegisterProperties(STI.getRegisterInfo()); 1404 1405 // The Freescale cores do better with aggressive inlining of memcpy and 1406 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1407 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1408 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1409 MaxStoresPerMemset = 32; 1410 MaxStoresPerMemsetOptSize = 16; 1411 MaxStoresPerMemcpy = 32; 1412 MaxStoresPerMemcpyOptSize = 8; 1413 MaxStoresPerMemmove = 32; 1414 MaxStoresPerMemmoveOptSize = 8; 1415 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1416 // The A2 also benefits from (very) aggressive inlining of memcpy and 1417 // friends. The overhead of a the function call, even when warm, can be 1418 // over one hundred cycles. 1419 MaxStoresPerMemset = 128; 1420 MaxStoresPerMemcpy = 128; 1421 MaxStoresPerMemmove = 128; 1422 MaxLoadsPerMemcmp = 128; 1423 } else { 1424 MaxLoadsPerMemcmp = 8; 1425 MaxLoadsPerMemcmpOptSize = 4; 1426 } 1427 1428 IsStrictFPEnabled = true; 1429 1430 // Let the subtarget (CPU) decide if a predictable select is more expensive 1431 // than the corresponding branch. This information is used in CGP to decide 1432 // when to convert selects into branches. 1433 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1434 } 1435 1436 // *********************************** NOTE ************************************ 1437 // For selecting load and store instructions, the addressing modes are defined 1438 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1439 // patterns to match the load the store instructions. 1440 // 1441 // The TD definitions for the addressing modes correspond to their respective 1442 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1443 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1444 // address mode flags of a particular node. Afterwards, the computed address 1445 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1446 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1447 // accordingly, based on the preferred addressing mode. 1448 // 1449 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1450 // MemOpFlags contains all the possible flags that can be used to compute the 1451 // optimal addressing mode for load and store instructions. 1452 // AddrMode contains all the possible load and store addressing modes available 1453 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1454 // 1455 // When adding new load and store instructions, it is possible that new address 1456 // flags may need to be added into MemOpFlags, and a new addressing mode will 1457 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1458 // of the minimal and main distinguishing address flags for the new load/store 1459 // instructions) will need to be added into initializeAddrModeMap() below. 1460 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1461 // need to be updated to account for selecting the optimal addressing mode. 1462 // ***************************************************************************** 1463 /// Initialize the map that relates the different addressing modes of the load 1464 /// and store instructions to a set of flags. This ensures the load/store 1465 /// instruction is correctly matched during instruction selection. 1466 void PPCTargetLowering::initializeAddrModeMap() { 1467 AddrModesMap[PPC::AM_DForm] = { 1468 // LWZ, STW 1469 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1470 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1471 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1472 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1473 // LBZ, LHZ, STB, STH 1474 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1475 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1476 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1477 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1478 // LHA 1479 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1480 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1481 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1482 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1483 // LFS, LFD, STFS, STFD 1484 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1485 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1486 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1487 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1488 }; 1489 AddrModesMap[PPC::AM_DSForm] = { 1490 // LWA 1491 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1492 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1493 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1494 // LD, STD 1495 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1496 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1497 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1498 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1499 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1500 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1501 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1502 }; 1503 AddrModesMap[PPC::AM_DQForm] = { 1504 // LXV, STXV 1505 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1506 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1507 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1508 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1509 PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1510 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1511 }; 1512 } 1513 1514 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1515 /// the desired ByVal argument alignment. 1516 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1517 if (MaxAlign == MaxMaxAlign) 1518 return; 1519 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1520 if (MaxMaxAlign >= 32 && 1521 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1522 MaxAlign = Align(32); 1523 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1524 MaxAlign < 16) 1525 MaxAlign = Align(16); 1526 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1527 Align EltAlign; 1528 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1529 if (EltAlign > MaxAlign) 1530 MaxAlign = EltAlign; 1531 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1532 for (auto *EltTy : STy->elements()) { 1533 Align EltAlign; 1534 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1535 if (EltAlign > MaxAlign) 1536 MaxAlign = EltAlign; 1537 if (MaxAlign == MaxMaxAlign) 1538 break; 1539 } 1540 } 1541 } 1542 1543 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1544 /// function arguments in the caller parameter area. 1545 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1546 const DataLayout &DL) const { 1547 // 16byte and wider vectors are passed on 16byte boundary. 1548 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1549 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1550 if (Subtarget.hasAltivec()) 1551 getMaxByValAlign(Ty, Alignment, Align(16)); 1552 return Alignment.value(); 1553 } 1554 1555 bool PPCTargetLowering::useSoftFloat() const { 1556 return Subtarget.useSoftFloat(); 1557 } 1558 1559 bool PPCTargetLowering::hasSPE() const { 1560 return Subtarget.hasSPE(); 1561 } 1562 1563 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1564 return VT.isScalarInteger(); 1565 } 1566 1567 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1568 switch ((PPCISD::NodeType)Opcode) { 1569 case PPCISD::FIRST_NUMBER: break; 1570 case PPCISD::FSEL: return "PPCISD::FSEL"; 1571 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1572 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1573 case PPCISD::FCFID: return "PPCISD::FCFID"; 1574 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1575 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1576 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1577 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1578 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1579 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1580 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1581 case PPCISD::FP_TO_UINT_IN_VSR: 1582 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1583 case PPCISD::FP_TO_SINT_IN_VSR: 1584 return "PPCISD::FP_TO_SINT_IN_VSR"; 1585 case PPCISD::FRE: return "PPCISD::FRE"; 1586 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1587 case PPCISD::FTSQRT: 1588 return "PPCISD::FTSQRT"; 1589 case PPCISD::FSQRT: 1590 return "PPCISD::FSQRT"; 1591 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1592 case PPCISD::VPERM: return "PPCISD::VPERM"; 1593 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1594 case PPCISD::XXSPLTI_SP_TO_DP: 1595 return "PPCISD::XXSPLTI_SP_TO_DP"; 1596 case PPCISD::XXSPLTI32DX: 1597 return "PPCISD::XXSPLTI32DX"; 1598 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1599 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1600 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1601 case PPCISD::CMPB: return "PPCISD::CMPB"; 1602 case PPCISD::Hi: return "PPCISD::Hi"; 1603 case PPCISD::Lo: return "PPCISD::Lo"; 1604 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1605 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1606 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1607 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1608 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1609 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1610 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1611 case PPCISD::SRL: return "PPCISD::SRL"; 1612 case PPCISD::SRA: return "PPCISD::SRA"; 1613 case PPCISD::SHL: return "PPCISD::SHL"; 1614 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1615 case PPCISD::CALL: return "PPCISD::CALL"; 1616 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1617 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1618 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1619 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1620 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1621 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1622 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1623 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1624 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1625 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1626 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1627 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1628 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1629 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1630 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1631 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1632 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1633 case PPCISD::ANDI_rec_1_EQ_BIT: 1634 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1635 case PPCISD::ANDI_rec_1_GT_BIT: 1636 return "PPCISD::ANDI_rec_1_GT_BIT"; 1637 case PPCISD::VCMP: return "PPCISD::VCMP"; 1638 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1639 case PPCISD::LBRX: return "PPCISD::LBRX"; 1640 case PPCISD::STBRX: return "PPCISD::STBRX"; 1641 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1642 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1643 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1644 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1645 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1646 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1647 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1648 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1649 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1650 case PPCISD::ST_VSR_SCAL_INT: 1651 return "PPCISD::ST_VSR_SCAL_INT"; 1652 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1653 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1654 case PPCISD::BDZ: return "PPCISD::BDZ"; 1655 case PPCISD::MFFS: return "PPCISD::MFFS"; 1656 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1657 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1658 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1659 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1660 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1661 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1662 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1663 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1664 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1665 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1666 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1667 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1668 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1669 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1670 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1671 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1672 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1673 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1674 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1675 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1676 case PPCISD::PADDI_DTPREL: 1677 return "PPCISD::PADDI_DTPREL"; 1678 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1679 case PPCISD::SC: return "PPCISD::SC"; 1680 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1681 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1682 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1683 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1684 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1685 case PPCISD::VABSD: return "PPCISD::VABSD"; 1686 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1687 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1688 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1689 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1690 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1691 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1692 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1693 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1694 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1695 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1696 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1697 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1698 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1699 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1700 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1701 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1702 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1703 case PPCISD::STRICT_FADDRTZ: 1704 return "PPCISD::STRICT_FADDRTZ"; 1705 case PPCISD::STRICT_FCTIDZ: 1706 return "PPCISD::STRICT_FCTIDZ"; 1707 case PPCISD::STRICT_FCTIWZ: 1708 return "PPCISD::STRICT_FCTIWZ"; 1709 case PPCISD::STRICT_FCTIDUZ: 1710 return "PPCISD::STRICT_FCTIDUZ"; 1711 case PPCISD::STRICT_FCTIWUZ: 1712 return "PPCISD::STRICT_FCTIWUZ"; 1713 case PPCISD::STRICT_FCFID: 1714 return "PPCISD::STRICT_FCFID"; 1715 case PPCISD::STRICT_FCFIDU: 1716 return "PPCISD::STRICT_FCFIDU"; 1717 case PPCISD::STRICT_FCFIDS: 1718 return "PPCISD::STRICT_FCFIDS"; 1719 case PPCISD::STRICT_FCFIDUS: 1720 return "PPCISD::STRICT_FCFIDUS"; 1721 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1722 } 1723 return nullptr; 1724 } 1725 1726 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1727 EVT VT) const { 1728 if (!VT.isVector()) 1729 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1730 1731 return VT.changeVectorElementTypeToInteger(); 1732 } 1733 1734 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1735 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1736 return true; 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Node matching predicates, for use by the tblgen matching code. 1741 //===----------------------------------------------------------------------===// 1742 1743 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1744 static bool isFloatingPointZero(SDValue Op) { 1745 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1746 return CFP->getValueAPF().isZero(); 1747 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1748 // Maybe this has already been legalized into the constant pool? 1749 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1750 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1751 return CFP->getValueAPF().isZero(); 1752 } 1753 return false; 1754 } 1755 1756 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1757 /// true if Op is undef or if it matches the specified value. 1758 static bool isConstantOrUndef(int Op, int Val) { 1759 return Op < 0 || Op == Val; 1760 } 1761 1762 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1763 /// VPKUHUM instruction. 1764 /// The ShuffleKind distinguishes between big-endian operations with 1765 /// two different inputs (0), either-endian operations with two identical 1766 /// inputs (1), and little-endian operations with two different inputs (2). 1767 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1768 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1769 SelectionDAG &DAG) { 1770 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1771 if (ShuffleKind == 0) { 1772 if (IsLE) 1773 return false; 1774 for (unsigned i = 0; i != 16; ++i) 1775 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1776 return false; 1777 } else if (ShuffleKind == 2) { 1778 if (!IsLE) 1779 return false; 1780 for (unsigned i = 0; i != 16; ++i) 1781 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1782 return false; 1783 } else if (ShuffleKind == 1) { 1784 unsigned j = IsLE ? 0 : 1; 1785 for (unsigned i = 0; i != 8; ++i) 1786 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1787 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1788 return false; 1789 } 1790 return true; 1791 } 1792 1793 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1794 /// VPKUWUM instruction. 1795 /// The ShuffleKind distinguishes between big-endian operations with 1796 /// two different inputs (0), either-endian operations with two identical 1797 /// inputs (1), and little-endian operations with two different inputs (2). 1798 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1799 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1800 SelectionDAG &DAG) { 1801 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1802 if (ShuffleKind == 0) { 1803 if (IsLE) 1804 return false; 1805 for (unsigned i = 0; i != 16; i += 2) 1806 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1807 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1808 return false; 1809 } else if (ShuffleKind == 2) { 1810 if (!IsLE) 1811 return false; 1812 for (unsigned i = 0; i != 16; i += 2) 1813 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1814 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1815 return false; 1816 } else if (ShuffleKind == 1) { 1817 unsigned j = IsLE ? 0 : 2; 1818 for (unsigned i = 0; i != 8; i += 2) 1819 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1820 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1821 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1822 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1823 return false; 1824 } 1825 return true; 1826 } 1827 1828 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1829 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1830 /// current subtarget. 1831 /// 1832 /// The ShuffleKind distinguishes between big-endian operations with 1833 /// two different inputs (0), either-endian operations with two identical 1834 /// inputs (1), and little-endian operations with two different inputs (2). 1835 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1836 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1837 SelectionDAG &DAG) { 1838 const PPCSubtarget& Subtarget = 1839 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1840 if (!Subtarget.hasP8Vector()) 1841 return false; 1842 1843 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1844 if (ShuffleKind == 0) { 1845 if (IsLE) 1846 return false; 1847 for (unsigned i = 0; i != 16; i += 4) 1848 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1849 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1850 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1851 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1852 return false; 1853 } else if (ShuffleKind == 2) { 1854 if (!IsLE) 1855 return false; 1856 for (unsigned i = 0; i != 16; i += 4) 1857 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1858 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1859 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1860 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1861 return false; 1862 } else if (ShuffleKind == 1) { 1863 unsigned j = IsLE ? 0 : 4; 1864 for (unsigned i = 0; i != 8; i += 4) 1865 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1866 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1867 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1868 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1869 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1870 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1871 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1872 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1873 return false; 1874 } 1875 return true; 1876 } 1877 1878 /// isVMerge - Common function, used to match vmrg* shuffles. 1879 /// 1880 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1881 unsigned LHSStart, unsigned RHSStart) { 1882 if (N->getValueType(0) != MVT::v16i8) 1883 return false; 1884 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1885 "Unsupported merge size!"); 1886 1887 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1888 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1889 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1890 LHSStart+j+i*UnitSize) || 1891 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1892 RHSStart+j+i*UnitSize)) 1893 return false; 1894 } 1895 return true; 1896 } 1897 1898 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1899 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1900 /// The ShuffleKind distinguishes between big-endian merges with two 1901 /// different inputs (0), either-endian merges with two identical inputs (1), 1902 /// and little-endian merges with two different inputs (2). For the latter, 1903 /// the input operands are swapped (see PPCInstrAltivec.td). 1904 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1905 unsigned ShuffleKind, SelectionDAG &DAG) { 1906 if (DAG.getDataLayout().isLittleEndian()) { 1907 if (ShuffleKind == 1) // unary 1908 return isVMerge(N, UnitSize, 0, 0); 1909 else if (ShuffleKind == 2) // swapped 1910 return isVMerge(N, UnitSize, 0, 16); 1911 else 1912 return false; 1913 } else { 1914 if (ShuffleKind == 1) // unary 1915 return isVMerge(N, UnitSize, 8, 8); 1916 else if (ShuffleKind == 0) // normal 1917 return isVMerge(N, UnitSize, 8, 24); 1918 else 1919 return false; 1920 } 1921 } 1922 1923 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1924 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1925 /// The ShuffleKind distinguishes between big-endian merges with two 1926 /// different inputs (0), either-endian merges with two identical inputs (1), 1927 /// and little-endian merges with two different inputs (2). For the latter, 1928 /// the input operands are swapped (see PPCInstrAltivec.td). 1929 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1930 unsigned ShuffleKind, SelectionDAG &DAG) { 1931 if (DAG.getDataLayout().isLittleEndian()) { 1932 if (ShuffleKind == 1) // unary 1933 return isVMerge(N, UnitSize, 8, 8); 1934 else if (ShuffleKind == 2) // swapped 1935 return isVMerge(N, UnitSize, 8, 24); 1936 else 1937 return false; 1938 } else { 1939 if (ShuffleKind == 1) // unary 1940 return isVMerge(N, UnitSize, 0, 0); 1941 else if (ShuffleKind == 0) // normal 1942 return isVMerge(N, UnitSize, 0, 16); 1943 else 1944 return false; 1945 } 1946 } 1947 1948 /** 1949 * Common function used to match vmrgew and vmrgow shuffles 1950 * 1951 * The indexOffset determines whether to look for even or odd words in 1952 * the shuffle mask. This is based on the of the endianness of the target 1953 * machine. 1954 * - Little Endian: 1955 * - Use offset of 0 to check for odd elements 1956 * - Use offset of 4 to check for even elements 1957 * - Big Endian: 1958 * - Use offset of 0 to check for even elements 1959 * - Use offset of 4 to check for odd elements 1960 * A detailed description of the vector element ordering for little endian and 1961 * big endian can be found at 1962 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1963 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1964 * compiler differences mean to you 1965 * 1966 * The mask to the shuffle vector instruction specifies the indices of the 1967 * elements from the two input vectors to place in the result. The elements are 1968 * numbered in array-access order, starting with the first vector. These vectors 1969 * are always of type v16i8, thus each vector will contain 16 elements of size 1970 * 8. More info on the shuffle vector can be found in the 1971 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1972 * Language Reference. 1973 * 1974 * The RHSStartValue indicates whether the same input vectors are used (unary) 1975 * or two different input vectors are used, based on the following: 1976 * - If the instruction uses the same vector for both inputs, the range of the 1977 * indices will be 0 to 15. In this case, the RHSStart value passed should 1978 * be 0. 1979 * - If the instruction has two different vectors then the range of the 1980 * indices will be 0 to 31. In this case, the RHSStart value passed should 1981 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1982 * to 31 specify elements in the second vector). 1983 * 1984 * \param[in] N The shuffle vector SD Node to analyze 1985 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1986 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1987 * vector to the shuffle_vector instruction 1988 * \return true iff this shuffle vector represents an even or odd word merge 1989 */ 1990 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1991 unsigned RHSStartValue) { 1992 if (N->getValueType(0) != MVT::v16i8) 1993 return false; 1994 1995 for (unsigned i = 0; i < 2; ++i) 1996 for (unsigned j = 0; j < 4; ++j) 1997 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1998 i*RHSStartValue+j+IndexOffset) || 1999 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2000 i*RHSStartValue+j+IndexOffset+8)) 2001 return false; 2002 return true; 2003 } 2004 2005 /** 2006 * Determine if the specified shuffle mask is suitable for the vmrgew or 2007 * vmrgow instructions. 2008 * 2009 * \param[in] N The shuffle vector SD Node to analyze 2010 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2011 * \param[in] ShuffleKind Identify the type of merge: 2012 * - 0 = big-endian merge with two different inputs; 2013 * - 1 = either-endian merge with two identical inputs; 2014 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2015 * little-endian merges). 2016 * \param[in] DAG The current SelectionDAG 2017 * \return true iff this shuffle mask 2018 */ 2019 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2020 unsigned ShuffleKind, SelectionDAG &DAG) { 2021 if (DAG.getDataLayout().isLittleEndian()) { 2022 unsigned indexOffset = CheckEven ? 4 : 0; 2023 if (ShuffleKind == 1) // Unary 2024 return isVMerge(N, indexOffset, 0); 2025 else if (ShuffleKind == 2) // swapped 2026 return isVMerge(N, indexOffset, 16); 2027 else 2028 return false; 2029 } 2030 else { 2031 unsigned indexOffset = CheckEven ? 0 : 4; 2032 if (ShuffleKind == 1) // Unary 2033 return isVMerge(N, indexOffset, 0); 2034 else if (ShuffleKind == 0) // Normal 2035 return isVMerge(N, indexOffset, 16); 2036 else 2037 return false; 2038 } 2039 return false; 2040 } 2041 2042 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2043 /// amount, otherwise return -1. 2044 /// The ShuffleKind distinguishes between big-endian operations with two 2045 /// different inputs (0), either-endian operations with two identical inputs 2046 /// (1), and little-endian operations with two different inputs (2). For the 2047 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2048 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2049 SelectionDAG &DAG) { 2050 if (N->getValueType(0) != MVT::v16i8) 2051 return -1; 2052 2053 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2054 2055 // Find the first non-undef value in the shuffle mask. 2056 unsigned i; 2057 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2058 /*search*/; 2059 2060 if (i == 16) return -1; // all undef. 2061 2062 // Otherwise, check to see if the rest of the elements are consecutively 2063 // numbered from this value. 2064 unsigned ShiftAmt = SVOp->getMaskElt(i); 2065 if (ShiftAmt < i) return -1; 2066 2067 ShiftAmt -= i; 2068 bool isLE = DAG.getDataLayout().isLittleEndian(); 2069 2070 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2071 // Check the rest of the elements to see if they are consecutive. 2072 for (++i; i != 16; ++i) 2073 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2074 return -1; 2075 } else if (ShuffleKind == 1) { 2076 // Check the rest of the elements to see if they are consecutive. 2077 for (++i; i != 16; ++i) 2078 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2079 return -1; 2080 } else 2081 return -1; 2082 2083 if (isLE) 2084 ShiftAmt = 16 - ShiftAmt; 2085 2086 return ShiftAmt; 2087 } 2088 2089 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2090 /// specifies a splat of a single element that is suitable for input to 2091 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2092 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2093 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2094 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2095 2096 // The consecutive indices need to specify an element, not part of two 2097 // different elements. So abandon ship early if this isn't the case. 2098 if (N->getMaskElt(0) % EltSize != 0) 2099 return false; 2100 2101 // This is a splat operation if each element of the permute is the same, and 2102 // if the value doesn't reference the second vector. 2103 unsigned ElementBase = N->getMaskElt(0); 2104 2105 // FIXME: Handle UNDEF elements too! 2106 if (ElementBase >= 16) 2107 return false; 2108 2109 // Check that the indices are consecutive, in the case of a multi-byte element 2110 // splatted with a v16i8 mask. 2111 for (unsigned i = 1; i != EltSize; ++i) 2112 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2113 return false; 2114 2115 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2116 if (N->getMaskElt(i) < 0) continue; 2117 for (unsigned j = 0; j != EltSize; ++j) 2118 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2119 return false; 2120 } 2121 return true; 2122 } 2123 2124 /// Check that the mask is shuffling N byte elements. Within each N byte 2125 /// element of the mask, the indices could be either in increasing or 2126 /// decreasing order as long as they are consecutive. 2127 /// \param[in] N the shuffle vector SD Node to analyze 2128 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2129 /// Word/DoubleWord/QuadWord). 2130 /// \param[in] StepLen the delta indices number among the N byte element, if 2131 /// the mask is in increasing/decreasing order then it is 1/-1. 2132 /// \return true iff the mask is shuffling N byte elements. 2133 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2134 int StepLen) { 2135 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2136 "Unexpected element width."); 2137 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2138 2139 unsigned NumOfElem = 16 / Width; 2140 unsigned MaskVal[16]; // Width is never greater than 16 2141 for (unsigned i = 0; i < NumOfElem; ++i) { 2142 MaskVal[0] = N->getMaskElt(i * Width); 2143 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2144 return false; 2145 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2146 return false; 2147 } 2148 2149 for (unsigned int j = 1; j < Width; ++j) { 2150 MaskVal[j] = N->getMaskElt(i * Width + j); 2151 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2152 return false; 2153 } 2154 } 2155 } 2156 2157 return true; 2158 } 2159 2160 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2161 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2162 if (!isNByteElemShuffleMask(N, 4, 1)) 2163 return false; 2164 2165 // Now we look at mask elements 0,4,8,12 2166 unsigned M0 = N->getMaskElt(0) / 4; 2167 unsigned M1 = N->getMaskElt(4) / 4; 2168 unsigned M2 = N->getMaskElt(8) / 4; 2169 unsigned M3 = N->getMaskElt(12) / 4; 2170 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2171 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2172 2173 // Below, let H and L be arbitrary elements of the shuffle mask 2174 // where H is in the range [4,7] and L is in the range [0,3]. 2175 // H, 1, 2, 3 or L, 5, 6, 7 2176 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2177 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2178 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2179 InsertAtByte = IsLE ? 12 : 0; 2180 Swap = M0 < 4; 2181 return true; 2182 } 2183 // 0, H, 2, 3 or 4, L, 6, 7 2184 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2185 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2186 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2187 InsertAtByte = IsLE ? 8 : 4; 2188 Swap = M1 < 4; 2189 return true; 2190 } 2191 // 0, 1, H, 3 or 4, 5, L, 7 2192 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2193 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2194 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2195 InsertAtByte = IsLE ? 4 : 8; 2196 Swap = M2 < 4; 2197 return true; 2198 } 2199 // 0, 1, 2, H or 4, 5, 6, L 2200 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2201 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2202 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2203 InsertAtByte = IsLE ? 0 : 12; 2204 Swap = M3 < 4; 2205 return true; 2206 } 2207 2208 // If both vector operands for the shuffle are the same vector, the mask will 2209 // contain only elements from the first one and the second one will be undef. 2210 if (N->getOperand(1).isUndef()) { 2211 ShiftElts = 0; 2212 Swap = true; 2213 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2214 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2215 InsertAtByte = IsLE ? 12 : 0; 2216 return true; 2217 } 2218 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2219 InsertAtByte = IsLE ? 8 : 4; 2220 return true; 2221 } 2222 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2223 InsertAtByte = IsLE ? 4 : 8; 2224 return true; 2225 } 2226 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2227 InsertAtByte = IsLE ? 0 : 12; 2228 return true; 2229 } 2230 } 2231 2232 return false; 2233 } 2234 2235 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2236 bool &Swap, bool IsLE) { 2237 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2238 // Ensure each byte index of the word is consecutive. 2239 if (!isNByteElemShuffleMask(N, 4, 1)) 2240 return false; 2241 2242 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2243 unsigned M0 = N->getMaskElt(0) / 4; 2244 unsigned M1 = N->getMaskElt(4) / 4; 2245 unsigned M2 = N->getMaskElt(8) / 4; 2246 unsigned M3 = N->getMaskElt(12) / 4; 2247 2248 // If both vector operands for the shuffle are the same vector, the mask will 2249 // contain only elements from the first one and the second one will be undef. 2250 if (N->getOperand(1).isUndef()) { 2251 assert(M0 < 4 && "Indexing into an undef vector?"); 2252 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2253 return false; 2254 2255 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2256 Swap = false; 2257 return true; 2258 } 2259 2260 // Ensure each word index of the ShuffleVector Mask is consecutive. 2261 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2262 return false; 2263 2264 if (IsLE) { 2265 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2266 // Input vectors don't need to be swapped if the leading element 2267 // of the result is one of the 3 left elements of the second vector 2268 // (or if there is no shift to be done at all). 2269 Swap = false; 2270 ShiftElts = (8 - M0) % 8; 2271 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2272 // Input vectors need to be swapped if the leading element 2273 // of the result is one of the 3 left elements of the first vector 2274 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2275 Swap = true; 2276 ShiftElts = (4 - M0) % 4; 2277 } 2278 2279 return true; 2280 } else { // BE 2281 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2282 // Input vectors don't need to be swapped if the leading element 2283 // of the result is one of the 4 elements of the first vector. 2284 Swap = false; 2285 ShiftElts = M0; 2286 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2287 // Input vectors need to be swapped if the leading element 2288 // of the result is one of the 4 elements of the right vector. 2289 Swap = true; 2290 ShiftElts = M0 - 4; 2291 } 2292 2293 return true; 2294 } 2295 } 2296 2297 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2298 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2299 2300 if (!isNByteElemShuffleMask(N, Width, -1)) 2301 return false; 2302 2303 for (int i = 0; i < 16; i += Width) 2304 if (N->getMaskElt(i) != i + Width - 1) 2305 return false; 2306 2307 return true; 2308 } 2309 2310 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2311 return isXXBRShuffleMaskHelper(N, 2); 2312 } 2313 2314 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2315 return isXXBRShuffleMaskHelper(N, 4); 2316 } 2317 2318 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2319 return isXXBRShuffleMaskHelper(N, 8); 2320 } 2321 2322 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2323 return isXXBRShuffleMaskHelper(N, 16); 2324 } 2325 2326 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2327 /// if the inputs to the instruction should be swapped and set \p DM to the 2328 /// value for the immediate. 2329 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2330 /// AND element 0 of the result comes from the first input (LE) or second input 2331 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2332 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2333 /// mask. 2334 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2335 bool &Swap, bool IsLE) { 2336 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2337 2338 // Ensure each byte index of the double word is consecutive. 2339 if (!isNByteElemShuffleMask(N, 8, 1)) 2340 return false; 2341 2342 unsigned M0 = N->getMaskElt(0) / 8; 2343 unsigned M1 = N->getMaskElt(8) / 8; 2344 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2345 2346 // If both vector operands for the shuffle are the same vector, the mask will 2347 // contain only elements from the first one and the second one will be undef. 2348 if (N->getOperand(1).isUndef()) { 2349 if ((M0 | M1) < 2) { 2350 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2351 Swap = false; 2352 return true; 2353 } else 2354 return false; 2355 } 2356 2357 if (IsLE) { 2358 if (M0 > 1 && M1 < 2) { 2359 Swap = false; 2360 } else if (M0 < 2 && M1 > 1) { 2361 M0 = (M0 + 2) % 4; 2362 M1 = (M1 + 2) % 4; 2363 Swap = true; 2364 } else 2365 return false; 2366 2367 // Note: if control flow comes here that means Swap is already set above 2368 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2369 return true; 2370 } else { // BE 2371 if (M0 < 2 && M1 > 1) { 2372 Swap = false; 2373 } else if (M0 > 1 && M1 < 2) { 2374 M0 = (M0 + 2) % 4; 2375 M1 = (M1 + 2) % 4; 2376 Swap = true; 2377 } else 2378 return false; 2379 2380 // Note: if control flow comes here that means Swap is already set above 2381 DM = (M0 << 1) + (M1 & 1); 2382 return true; 2383 } 2384 } 2385 2386 2387 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2388 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2389 /// elements are counted from the left of the vector register). 2390 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2391 SelectionDAG &DAG) { 2392 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2393 assert(isSplatShuffleMask(SVOp, EltSize)); 2394 if (DAG.getDataLayout().isLittleEndian()) 2395 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2396 else 2397 return SVOp->getMaskElt(0) / EltSize; 2398 } 2399 2400 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2401 /// by using a vspltis[bhw] instruction of the specified element size, return 2402 /// the constant being splatted. The ByteSize field indicates the number of 2403 /// bytes of each element [124] -> [bhw]. 2404 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2405 SDValue OpVal(nullptr, 0); 2406 2407 // If ByteSize of the splat is bigger than the element size of the 2408 // build_vector, then we have a case where we are checking for a splat where 2409 // multiple elements of the buildvector are folded together into a single 2410 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2411 unsigned EltSize = 16/N->getNumOperands(); 2412 if (EltSize < ByteSize) { 2413 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2414 SDValue UniquedVals[4]; 2415 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2416 2417 // See if all of the elements in the buildvector agree across. 2418 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2419 if (N->getOperand(i).isUndef()) continue; 2420 // If the element isn't a constant, bail fully out. 2421 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2422 2423 if (!UniquedVals[i&(Multiple-1)].getNode()) 2424 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2425 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2426 return SDValue(); // no match. 2427 } 2428 2429 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2430 // either constant or undef values that are identical for each chunk. See 2431 // if these chunks can form into a larger vspltis*. 2432 2433 // Check to see if all of the leading entries are either 0 or -1. If 2434 // neither, then this won't fit into the immediate field. 2435 bool LeadingZero = true; 2436 bool LeadingOnes = true; 2437 for (unsigned i = 0; i != Multiple-1; ++i) { 2438 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2439 2440 LeadingZero &= isNullConstant(UniquedVals[i]); 2441 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2442 } 2443 // Finally, check the least significant entry. 2444 if (LeadingZero) { 2445 if (!UniquedVals[Multiple-1].getNode()) 2446 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2447 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2448 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2449 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2450 } 2451 if (LeadingOnes) { 2452 if (!UniquedVals[Multiple-1].getNode()) 2453 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2454 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2455 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2456 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2457 } 2458 2459 return SDValue(); 2460 } 2461 2462 // Check to see if this buildvec has a single non-undef value in its elements. 2463 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2464 if (N->getOperand(i).isUndef()) continue; 2465 if (!OpVal.getNode()) 2466 OpVal = N->getOperand(i); 2467 else if (OpVal != N->getOperand(i)) 2468 return SDValue(); 2469 } 2470 2471 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2472 2473 unsigned ValSizeInBytes = EltSize; 2474 uint64_t Value = 0; 2475 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2476 Value = CN->getZExtValue(); 2477 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2478 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2479 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2480 } 2481 2482 // If the splat value is larger than the element value, then we can never do 2483 // this splat. The only case that we could fit the replicated bits into our 2484 // immediate field for would be zero, and we prefer to use vxor for it. 2485 if (ValSizeInBytes < ByteSize) return SDValue(); 2486 2487 // If the element value is larger than the splat value, check if it consists 2488 // of a repeated bit pattern of size ByteSize. 2489 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2490 return SDValue(); 2491 2492 // Properly sign extend the value. 2493 int MaskVal = SignExtend32(Value, ByteSize * 8); 2494 2495 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2496 if (MaskVal == 0) return SDValue(); 2497 2498 // Finally, if this value fits in a 5 bit sext field, return it 2499 if (SignExtend32<5>(MaskVal) == MaskVal) 2500 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2501 return SDValue(); 2502 } 2503 2504 //===----------------------------------------------------------------------===// 2505 // Addressing Mode Selection 2506 //===----------------------------------------------------------------------===// 2507 2508 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2509 /// or 64-bit immediate, and if the value can be accurately represented as a 2510 /// sign extension from a 16-bit value. If so, this returns true and the 2511 /// immediate. 2512 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2513 if (!isa<ConstantSDNode>(N)) 2514 return false; 2515 2516 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2517 if (N->getValueType(0) == MVT::i32) 2518 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2519 else 2520 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2521 } 2522 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2523 return isIntS16Immediate(Op.getNode(), Imm); 2524 } 2525 2526 /// Used when computing address flags for selecting loads and stores. 2527 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2528 /// An OR of two provably disjoint values is equivalent to an ADD. 2529 /// Most PPC load/store instructions compute the effective address as a sum, 2530 /// so doing this conversion is useful. 2531 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2532 if (N.getOpcode() != ISD::OR) 2533 return false; 2534 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2535 if (!LHSKnown.Zero.getBoolValue()) 2536 return false; 2537 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2538 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2539 } 2540 2541 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2542 /// be represented as an indexed [r+r] operation. 2543 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2544 SDValue &Index, 2545 SelectionDAG &DAG) const { 2546 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2547 UI != E; ++UI) { 2548 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2549 if (Memop->getMemoryVT() == MVT::f64) { 2550 Base = N.getOperand(0); 2551 Index = N.getOperand(1); 2552 return true; 2553 } 2554 } 2555 } 2556 return false; 2557 } 2558 2559 /// isIntS34Immediate - This method tests if value of node given can be 2560 /// accurately represented as a sign extension from a 34-bit value. If so, 2561 /// this returns true and the immediate. 2562 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2563 if (!isa<ConstantSDNode>(N)) 2564 return false; 2565 2566 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2567 return isInt<34>(Imm); 2568 } 2569 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2570 return isIntS34Immediate(Op.getNode(), Imm); 2571 } 2572 2573 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2574 /// can be represented as an indexed [r+r] operation. Returns false if it 2575 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2576 /// non-zero and N can be represented by a base register plus a signed 16-bit 2577 /// displacement, make a more precise judgement by checking (displacement % \p 2578 /// EncodingAlignment). 2579 bool PPCTargetLowering::SelectAddressRegReg( 2580 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2581 MaybeAlign EncodingAlignment) const { 2582 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2583 // a [pc+imm]. 2584 if (SelectAddressPCRel(N, Base)) 2585 return false; 2586 2587 int16_t Imm = 0; 2588 if (N.getOpcode() == ISD::ADD) { 2589 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2590 // SPE load/store can only handle 8-bit offsets. 2591 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2592 return true; 2593 if (isIntS16Immediate(N.getOperand(1), Imm) && 2594 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2595 return false; // r+i 2596 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2597 return false; // r+i 2598 2599 Base = N.getOperand(0); 2600 Index = N.getOperand(1); 2601 return true; 2602 } else if (N.getOpcode() == ISD::OR) { 2603 if (isIntS16Immediate(N.getOperand(1), Imm) && 2604 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2605 return false; // r+i can fold it if we can. 2606 2607 // If this is an or of disjoint bitfields, we can codegen this as an add 2608 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2609 // disjoint. 2610 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2611 2612 if (LHSKnown.Zero.getBoolValue()) { 2613 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2614 // If all of the bits are known zero on the LHS or RHS, the add won't 2615 // carry. 2616 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2617 Base = N.getOperand(0); 2618 Index = N.getOperand(1); 2619 return true; 2620 } 2621 } 2622 } 2623 2624 return false; 2625 } 2626 2627 // If we happen to be doing an i64 load or store into a stack slot that has 2628 // less than a 4-byte alignment, then the frame-index elimination may need to 2629 // use an indexed load or store instruction (because the offset may not be a 2630 // multiple of 4). The extra register needed to hold the offset comes from the 2631 // register scavenger, and it is possible that the scavenger will need to use 2632 // an emergency spill slot. As a result, we need to make sure that a spill slot 2633 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2634 // stack slot. 2635 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2636 // FIXME: This does not handle the LWA case. 2637 if (VT != MVT::i64) 2638 return; 2639 2640 // NOTE: We'll exclude negative FIs here, which come from argument 2641 // lowering, because there are no known test cases triggering this problem 2642 // using packed structures (or similar). We can remove this exclusion if 2643 // we find such a test case. The reason why this is so test-case driven is 2644 // because this entire 'fixup' is only to prevent crashes (from the 2645 // register scavenger) on not-really-valid inputs. For example, if we have: 2646 // %a = alloca i1 2647 // %b = bitcast i1* %a to i64* 2648 // store i64* a, i64 b 2649 // then the store should really be marked as 'align 1', but is not. If it 2650 // were marked as 'align 1' then the indexed form would have been 2651 // instruction-selected initially, and the problem this 'fixup' is preventing 2652 // won't happen regardless. 2653 if (FrameIdx < 0) 2654 return; 2655 2656 MachineFunction &MF = DAG.getMachineFunction(); 2657 MachineFrameInfo &MFI = MF.getFrameInfo(); 2658 2659 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2660 return; 2661 2662 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2663 FuncInfo->setHasNonRISpills(); 2664 } 2665 2666 /// Returns true if the address N can be represented by a base register plus 2667 /// a signed 16-bit displacement [r+imm], and if it is not better 2668 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2669 /// displacements that are multiples of that value. 2670 bool PPCTargetLowering::SelectAddressRegImm( 2671 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2672 MaybeAlign EncodingAlignment) const { 2673 // FIXME dl should come from parent load or store, not from address 2674 SDLoc dl(N); 2675 2676 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2677 // a [pc+imm]. 2678 if (SelectAddressPCRel(N, Base)) 2679 return false; 2680 2681 // If this can be more profitably realized as r+r, fail. 2682 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2683 return false; 2684 2685 if (N.getOpcode() == ISD::ADD) { 2686 int16_t imm = 0; 2687 if (isIntS16Immediate(N.getOperand(1), imm) && 2688 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2689 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2690 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2691 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2692 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2693 } else { 2694 Base = N.getOperand(0); 2695 } 2696 return true; // [r+i] 2697 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2698 // Match LOAD (ADD (X, Lo(G))). 2699 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2700 && "Cannot handle constant offsets yet!"); 2701 Disp = N.getOperand(1).getOperand(0); // The global address. 2702 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2703 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2704 Disp.getOpcode() == ISD::TargetConstantPool || 2705 Disp.getOpcode() == ISD::TargetJumpTable); 2706 Base = N.getOperand(0); 2707 return true; // [&g+r] 2708 } 2709 } else if (N.getOpcode() == ISD::OR) { 2710 int16_t imm = 0; 2711 if (isIntS16Immediate(N.getOperand(1), imm) && 2712 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2713 // If this is an or of disjoint bitfields, we can codegen this as an add 2714 // (for better address arithmetic) if the LHS and RHS of the OR are 2715 // provably disjoint. 2716 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2717 2718 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2719 // If all of the bits are known zero on the LHS or RHS, the add won't 2720 // carry. 2721 if (FrameIndexSDNode *FI = 2722 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2723 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2724 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2725 } else { 2726 Base = N.getOperand(0); 2727 } 2728 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2729 return true; 2730 } 2731 } 2732 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2733 // Loading from a constant address. 2734 2735 // If this address fits entirely in a 16-bit sext immediate field, codegen 2736 // this as "d, 0" 2737 int16_t Imm; 2738 if (isIntS16Immediate(CN, Imm) && 2739 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2740 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2741 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2742 CN->getValueType(0)); 2743 return true; 2744 } 2745 2746 // Handle 32-bit sext immediates with LIS + addr mode. 2747 if ((CN->getValueType(0) == MVT::i32 || 2748 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2749 (!EncodingAlignment || 2750 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2751 int Addr = (int)CN->getZExtValue(); 2752 2753 // Otherwise, break this down into an LIS + disp. 2754 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2755 2756 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2757 MVT::i32); 2758 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2759 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2760 return true; 2761 } 2762 } 2763 2764 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2765 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2766 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2767 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2768 } else 2769 Base = N; 2770 return true; // [r+0] 2771 } 2772 2773 /// Similar to the 16-bit case but for instructions that take a 34-bit 2774 /// displacement field (prefixed loads/stores). 2775 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2776 SDValue &Base, 2777 SelectionDAG &DAG) const { 2778 // Only on 64-bit targets. 2779 if (N.getValueType() != MVT::i64) 2780 return false; 2781 2782 SDLoc dl(N); 2783 int64_t Imm = 0; 2784 2785 if (N.getOpcode() == ISD::ADD) { 2786 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2787 return false; 2788 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2789 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2790 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2791 else 2792 Base = N.getOperand(0); 2793 return true; 2794 } 2795 2796 if (N.getOpcode() == ISD::OR) { 2797 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2798 return false; 2799 // If this is an or of disjoint bitfields, we can codegen this as an add 2800 // (for better address arithmetic) if the LHS and RHS of the OR are 2801 // provably disjoint. 2802 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2803 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2804 return false; 2805 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2806 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2807 else 2808 Base = N.getOperand(0); 2809 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2810 return true; 2811 } 2812 2813 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2814 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2815 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2816 return true; 2817 } 2818 2819 return false; 2820 } 2821 2822 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2823 /// represented as an indexed [r+r] operation. 2824 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2825 SDValue &Index, 2826 SelectionDAG &DAG) const { 2827 // Check to see if we can easily represent this as an [r+r] address. This 2828 // will fail if it thinks that the address is more profitably represented as 2829 // reg+imm, e.g. where imm = 0. 2830 if (SelectAddressRegReg(N, Base, Index, DAG)) 2831 return true; 2832 2833 // If the address is the result of an add, we will utilize the fact that the 2834 // address calculation includes an implicit add. However, we can reduce 2835 // register pressure if we do not materialize a constant just for use as the 2836 // index register. We only get rid of the add if it is not an add of a 2837 // value and a 16-bit signed constant and both have a single use. 2838 int16_t imm = 0; 2839 if (N.getOpcode() == ISD::ADD && 2840 (!isIntS16Immediate(N.getOperand(1), imm) || 2841 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2842 Base = N.getOperand(0); 2843 Index = N.getOperand(1); 2844 return true; 2845 } 2846 2847 // Otherwise, do it the hard way, using R0 as the base register. 2848 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2849 N.getValueType()); 2850 Index = N; 2851 return true; 2852 } 2853 2854 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2855 Ty *PCRelCand = dyn_cast<Ty>(N); 2856 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2857 } 2858 2859 /// Returns true if this address is a PC Relative address. 2860 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2861 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2862 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2863 // This is a materialize PC Relative node. Always select this as PC Relative. 2864 Base = N; 2865 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2866 return true; 2867 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2868 isValidPCRelNode<GlobalAddressSDNode>(N) || 2869 isValidPCRelNode<JumpTableSDNode>(N) || 2870 isValidPCRelNode<BlockAddressSDNode>(N)) 2871 return true; 2872 return false; 2873 } 2874 2875 /// Returns true if we should use a direct load into vector instruction 2876 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2877 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2878 2879 // If there are any other uses other than scalar to vector, then we should 2880 // keep it as a scalar load -> direct move pattern to prevent multiple 2881 // loads. 2882 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2883 if (!LD) 2884 return false; 2885 2886 EVT MemVT = LD->getMemoryVT(); 2887 if (!MemVT.isSimple()) 2888 return false; 2889 switch(MemVT.getSimpleVT().SimpleTy) { 2890 case MVT::i64: 2891 break; 2892 case MVT::i32: 2893 if (!ST.hasP8Vector()) 2894 return false; 2895 break; 2896 case MVT::i16: 2897 case MVT::i8: 2898 if (!ST.hasP9Vector()) 2899 return false; 2900 break; 2901 default: 2902 return false; 2903 } 2904 2905 SDValue LoadedVal(N, 0); 2906 if (!LoadedVal.hasOneUse()) 2907 return false; 2908 2909 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2910 UI != UE; ++UI) 2911 if (UI.getUse().get().getResNo() == 0 && 2912 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2913 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2914 return false; 2915 2916 return true; 2917 } 2918 2919 /// getPreIndexedAddressParts - returns true by value, base pointer and 2920 /// offset pointer and addressing mode by reference if the node's address 2921 /// can be legally represented as pre-indexed load / store address. 2922 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2923 SDValue &Offset, 2924 ISD::MemIndexedMode &AM, 2925 SelectionDAG &DAG) const { 2926 if (DisablePPCPreinc) return false; 2927 2928 bool isLoad = true; 2929 SDValue Ptr; 2930 EVT VT; 2931 unsigned Alignment; 2932 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2933 Ptr = LD->getBasePtr(); 2934 VT = LD->getMemoryVT(); 2935 Alignment = LD->getAlignment(); 2936 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2937 Ptr = ST->getBasePtr(); 2938 VT = ST->getMemoryVT(); 2939 Alignment = ST->getAlignment(); 2940 isLoad = false; 2941 } else 2942 return false; 2943 2944 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2945 // instructions because we can fold these into a more efficient instruction 2946 // instead, (such as LXSD). 2947 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2948 return false; 2949 } 2950 2951 // PowerPC doesn't have preinc load/store instructions for vectors 2952 if (VT.isVector()) 2953 return false; 2954 2955 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2956 // Common code will reject creating a pre-inc form if the base pointer 2957 // is a frame index, or if N is a store and the base pointer is either 2958 // the same as or a predecessor of the value being stored. Check for 2959 // those situations here, and try with swapped Base/Offset instead. 2960 bool Swap = false; 2961 2962 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2963 Swap = true; 2964 else if (!isLoad) { 2965 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2966 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2967 Swap = true; 2968 } 2969 2970 if (Swap) 2971 std::swap(Base, Offset); 2972 2973 AM = ISD::PRE_INC; 2974 return true; 2975 } 2976 2977 // LDU/STU can only handle immediates that are a multiple of 4. 2978 if (VT != MVT::i64) { 2979 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2980 return false; 2981 } else { 2982 // LDU/STU need an address with at least 4-byte alignment. 2983 if (Alignment < 4) 2984 return false; 2985 2986 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2987 return false; 2988 } 2989 2990 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2991 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2992 // sext i32 to i64 when addr mode is r+i. 2993 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2994 LD->getExtensionType() == ISD::SEXTLOAD && 2995 isa<ConstantSDNode>(Offset)) 2996 return false; 2997 } 2998 2999 AM = ISD::PRE_INC; 3000 return true; 3001 } 3002 3003 //===----------------------------------------------------------------------===// 3004 // LowerOperation implementation 3005 //===----------------------------------------------------------------------===// 3006 3007 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3008 /// and LoOpFlags to the target MO flags. 3009 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3010 unsigned &HiOpFlags, unsigned &LoOpFlags, 3011 const GlobalValue *GV = nullptr) { 3012 HiOpFlags = PPCII::MO_HA; 3013 LoOpFlags = PPCII::MO_LO; 3014 3015 // Don't use the pic base if not in PIC relocation model. 3016 if (IsPIC) { 3017 HiOpFlags |= PPCII::MO_PIC_FLAG; 3018 LoOpFlags |= PPCII::MO_PIC_FLAG; 3019 } 3020 } 3021 3022 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3023 SelectionDAG &DAG) { 3024 SDLoc DL(HiPart); 3025 EVT PtrVT = HiPart.getValueType(); 3026 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3027 3028 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3029 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3030 3031 // With PIC, the first instruction is actually "GR+hi(&G)". 3032 if (isPIC) 3033 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3034 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3035 3036 // Generate non-pic code that has direct accesses to the constant pool. 3037 // The address of the global is just (hi(&g)+lo(&g)). 3038 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3039 } 3040 3041 static void setUsesTOCBasePtr(MachineFunction &MF) { 3042 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3043 FuncInfo->setUsesTOCBasePtr(); 3044 } 3045 3046 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3047 setUsesTOCBasePtr(DAG.getMachineFunction()); 3048 } 3049 3050 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3051 SDValue GA) const { 3052 const bool Is64Bit = Subtarget.isPPC64(); 3053 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3054 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3055 : Subtarget.isAIXABI() 3056 ? DAG.getRegister(PPC::R2, VT) 3057 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3058 SDValue Ops[] = { GA, Reg }; 3059 return DAG.getMemIntrinsicNode( 3060 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3061 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3062 MachineMemOperand::MOLoad); 3063 } 3064 3065 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3066 SelectionDAG &DAG) const { 3067 EVT PtrVT = Op.getValueType(); 3068 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3069 const Constant *C = CP->getConstVal(); 3070 3071 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3072 // The actual address of the GlobalValue is stored in the TOC. 3073 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3074 if (Subtarget.isUsingPCRelativeCalls()) { 3075 SDLoc DL(CP); 3076 EVT Ty = getPointerTy(DAG.getDataLayout()); 3077 SDValue ConstPool = DAG.getTargetConstantPool( 3078 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3079 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3080 } 3081 setUsesTOCBasePtr(DAG); 3082 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3083 return getTOCEntry(DAG, SDLoc(CP), GA); 3084 } 3085 3086 unsigned MOHiFlag, MOLoFlag; 3087 bool IsPIC = isPositionIndependent(); 3088 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3089 3090 if (IsPIC && Subtarget.isSVR4ABI()) { 3091 SDValue GA = 3092 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3093 return getTOCEntry(DAG, SDLoc(CP), GA); 3094 } 3095 3096 SDValue CPIHi = 3097 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3098 SDValue CPILo = 3099 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3100 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3101 } 3102 3103 // For 64-bit PowerPC, prefer the more compact relative encodings. 3104 // This trades 32 bits per jump table entry for one or two instructions 3105 // on the jump site. 3106 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3107 if (isJumpTableRelative()) 3108 return MachineJumpTableInfo::EK_LabelDifference32; 3109 3110 return TargetLowering::getJumpTableEncoding(); 3111 } 3112 3113 bool PPCTargetLowering::isJumpTableRelative() const { 3114 if (UseAbsoluteJumpTables) 3115 return false; 3116 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3117 return true; 3118 return TargetLowering::isJumpTableRelative(); 3119 } 3120 3121 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3122 SelectionDAG &DAG) const { 3123 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3124 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3125 3126 switch (getTargetMachine().getCodeModel()) { 3127 case CodeModel::Small: 3128 case CodeModel::Medium: 3129 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3130 default: 3131 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3132 getPointerTy(DAG.getDataLayout())); 3133 } 3134 } 3135 3136 const MCExpr * 3137 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3138 unsigned JTI, 3139 MCContext &Ctx) const { 3140 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3141 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3142 3143 switch (getTargetMachine().getCodeModel()) { 3144 case CodeModel::Small: 3145 case CodeModel::Medium: 3146 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3147 default: 3148 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3149 } 3150 } 3151 3152 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3153 EVT PtrVT = Op.getValueType(); 3154 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3155 3156 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3157 if (Subtarget.isUsingPCRelativeCalls()) { 3158 SDLoc DL(JT); 3159 EVT Ty = getPointerTy(DAG.getDataLayout()); 3160 SDValue GA = 3161 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3162 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3163 return MatAddr; 3164 } 3165 3166 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3167 // The actual address of the GlobalValue is stored in the TOC. 3168 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3169 setUsesTOCBasePtr(DAG); 3170 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3171 return getTOCEntry(DAG, SDLoc(JT), GA); 3172 } 3173 3174 unsigned MOHiFlag, MOLoFlag; 3175 bool IsPIC = isPositionIndependent(); 3176 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3177 3178 if (IsPIC && Subtarget.isSVR4ABI()) { 3179 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3180 PPCII::MO_PIC_FLAG); 3181 return getTOCEntry(DAG, SDLoc(GA), GA); 3182 } 3183 3184 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3185 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3186 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3187 } 3188 3189 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3190 SelectionDAG &DAG) const { 3191 EVT PtrVT = Op.getValueType(); 3192 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3193 const BlockAddress *BA = BASDN->getBlockAddress(); 3194 3195 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3196 if (Subtarget.isUsingPCRelativeCalls()) { 3197 SDLoc DL(BASDN); 3198 EVT Ty = getPointerTy(DAG.getDataLayout()); 3199 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3200 PPCII::MO_PCREL_FLAG); 3201 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3202 return MatAddr; 3203 } 3204 3205 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3206 // The actual BlockAddress is stored in the TOC. 3207 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3208 setUsesTOCBasePtr(DAG); 3209 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3210 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3211 } 3212 3213 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3214 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3215 return getTOCEntry( 3216 DAG, SDLoc(BASDN), 3217 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3218 3219 unsigned MOHiFlag, MOLoFlag; 3220 bool IsPIC = isPositionIndependent(); 3221 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3222 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3223 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3224 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3225 } 3226 3227 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3228 SelectionDAG &DAG) const { 3229 if (Subtarget.isAIXABI()) 3230 return LowerGlobalTLSAddressAIX(Op, DAG); 3231 3232 return LowerGlobalTLSAddressLinux(Op, DAG); 3233 } 3234 3235 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3236 SelectionDAG &DAG) const { 3237 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3238 3239 if (DAG.getTarget().useEmulatedTLS()) 3240 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3241 3242 SDLoc dl(GA); 3243 const GlobalValue *GV = GA->getGlobal(); 3244 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3245 3246 // The general-dynamic model is the only access model supported for now, so 3247 // all the GlobalTLSAddress nodes are lowered with this model. 3248 // We need to generate two TOC entries, one for the variable offset, one for 3249 // the region handle. The global address for the TOC entry of the region 3250 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3251 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3252 SDValue VariableOffsetTGA = 3253 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3254 SDValue RegionHandleTGA = 3255 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3256 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3257 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3258 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3259 RegionHandle); 3260 } 3261 3262 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3263 SelectionDAG &DAG) const { 3264 // FIXME: TLS addresses currently use medium model code sequences, 3265 // which is the most useful form. Eventually support for small and 3266 // large models could be added if users need it, at the cost of 3267 // additional complexity. 3268 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3269 if (DAG.getTarget().useEmulatedTLS()) 3270 return LowerToTLSEmulatedModel(GA, DAG); 3271 3272 SDLoc dl(GA); 3273 const GlobalValue *GV = GA->getGlobal(); 3274 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3275 bool is64bit = Subtarget.isPPC64(); 3276 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3277 PICLevel::Level picLevel = M->getPICLevel(); 3278 3279 const TargetMachine &TM = getTargetMachine(); 3280 TLSModel::Model Model = TM.getTLSModel(GV); 3281 3282 if (Model == TLSModel::LocalExec) { 3283 if (Subtarget.isUsingPCRelativeCalls()) { 3284 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3285 SDValue TGA = DAG.getTargetGlobalAddress( 3286 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3287 SDValue MatAddr = 3288 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3289 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3290 } 3291 3292 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3293 PPCII::MO_TPREL_HA); 3294 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3295 PPCII::MO_TPREL_LO); 3296 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3297 : DAG.getRegister(PPC::R2, MVT::i32); 3298 3299 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3300 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3301 } 3302 3303 if (Model == TLSModel::InitialExec) { 3304 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3305 SDValue TGA = DAG.getTargetGlobalAddress( 3306 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3307 SDValue TGATLS = DAG.getTargetGlobalAddress( 3308 GV, dl, PtrVT, 0, 3309 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3310 SDValue TPOffset; 3311 if (IsPCRel) { 3312 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3313 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3314 MachinePointerInfo()); 3315 } else { 3316 SDValue GOTPtr; 3317 if (is64bit) { 3318 setUsesTOCBasePtr(DAG); 3319 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3320 GOTPtr = 3321 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3322 } else { 3323 if (!TM.isPositionIndependent()) 3324 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3325 else if (picLevel == PICLevel::SmallPIC) 3326 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3327 else 3328 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3329 } 3330 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3331 } 3332 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3333 } 3334 3335 if (Model == TLSModel::GeneralDynamic) { 3336 if (Subtarget.isUsingPCRelativeCalls()) { 3337 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3338 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3339 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3340 } 3341 3342 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3343 SDValue GOTPtr; 3344 if (is64bit) { 3345 setUsesTOCBasePtr(DAG); 3346 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3347 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3348 GOTReg, TGA); 3349 } else { 3350 if (picLevel == PICLevel::SmallPIC) 3351 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3352 else 3353 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3354 } 3355 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3356 GOTPtr, TGA, TGA); 3357 } 3358 3359 if (Model == TLSModel::LocalDynamic) { 3360 if (Subtarget.isUsingPCRelativeCalls()) { 3361 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3362 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3363 SDValue MatPCRel = 3364 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3365 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3366 } 3367 3368 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3369 SDValue GOTPtr; 3370 if (is64bit) { 3371 setUsesTOCBasePtr(DAG); 3372 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3373 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3374 GOTReg, TGA); 3375 } else { 3376 if (picLevel == PICLevel::SmallPIC) 3377 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3378 else 3379 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3380 } 3381 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3382 PtrVT, GOTPtr, TGA, TGA); 3383 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3384 PtrVT, TLSAddr, TGA); 3385 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3386 } 3387 3388 llvm_unreachable("Unknown TLS model!"); 3389 } 3390 3391 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3392 SelectionDAG &DAG) const { 3393 EVT PtrVT = Op.getValueType(); 3394 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3395 SDLoc DL(GSDN); 3396 const GlobalValue *GV = GSDN->getGlobal(); 3397 3398 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3399 // The actual address of the GlobalValue is stored in the TOC. 3400 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3401 if (Subtarget.isUsingPCRelativeCalls()) { 3402 EVT Ty = getPointerTy(DAG.getDataLayout()); 3403 if (isAccessedAsGotIndirect(Op)) { 3404 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3405 PPCII::MO_PCREL_FLAG | 3406 PPCII::MO_GOT_FLAG); 3407 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3408 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3409 MachinePointerInfo()); 3410 return Load; 3411 } else { 3412 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3413 PPCII::MO_PCREL_FLAG); 3414 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3415 } 3416 } 3417 setUsesTOCBasePtr(DAG); 3418 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3419 return getTOCEntry(DAG, DL, GA); 3420 } 3421 3422 unsigned MOHiFlag, MOLoFlag; 3423 bool IsPIC = isPositionIndependent(); 3424 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3425 3426 if (IsPIC && Subtarget.isSVR4ABI()) { 3427 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3428 GSDN->getOffset(), 3429 PPCII::MO_PIC_FLAG); 3430 return getTOCEntry(DAG, DL, GA); 3431 } 3432 3433 SDValue GAHi = 3434 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3435 SDValue GALo = 3436 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3437 3438 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3439 } 3440 3441 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3442 bool IsStrict = Op->isStrictFPOpcode(); 3443 ISD::CondCode CC = 3444 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3445 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3446 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3447 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3448 EVT LHSVT = LHS.getValueType(); 3449 SDLoc dl(Op); 3450 3451 // Soften the setcc with libcall if it is fp128. 3452 if (LHSVT == MVT::f128) { 3453 assert(!Subtarget.hasP9Vector() && 3454 "SETCC for f128 is already legal under Power9!"); 3455 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3456 Op->getOpcode() == ISD::STRICT_FSETCCS); 3457 if (RHS.getNode()) 3458 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3459 DAG.getCondCode(CC)); 3460 if (IsStrict) 3461 return DAG.getMergeValues({LHS, Chain}, dl); 3462 return LHS; 3463 } 3464 3465 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3466 3467 if (Op.getValueType() == MVT::v2i64) { 3468 // When the operands themselves are v2i64 values, we need to do something 3469 // special because VSX has no underlying comparison operations for these. 3470 if (LHS.getValueType() == MVT::v2i64) { 3471 // Equality can be handled by casting to the legal type for Altivec 3472 // comparisons, everything else needs to be expanded. 3473 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3474 return DAG.getNode( 3475 ISD::BITCAST, dl, MVT::v2i64, 3476 DAG.getSetCC(dl, MVT::v4i32, 3477 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3478 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3479 } 3480 3481 return SDValue(); 3482 } 3483 3484 // We handle most of these in the usual way. 3485 return Op; 3486 } 3487 3488 // If we're comparing for equality to zero, expose the fact that this is 3489 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3490 // fold the new nodes. 3491 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3492 return V; 3493 3494 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3495 // Leave comparisons against 0 and -1 alone for now, since they're usually 3496 // optimized. FIXME: revisit this when we can custom lower all setcc 3497 // optimizations. 3498 if (C->isAllOnesValue() || C->isNullValue()) 3499 return SDValue(); 3500 } 3501 3502 // If we have an integer seteq/setne, turn it into a compare against zero 3503 // by xor'ing the rhs with the lhs, which is faster than setting a 3504 // condition register, reading it back out, and masking the correct bit. The 3505 // normal approach here uses sub to do this instead of xor. Using xor exposes 3506 // the result to other bit-twiddling opportunities. 3507 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3508 EVT VT = Op.getValueType(); 3509 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3510 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3511 } 3512 return SDValue(); 3513 } 3514 3515 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3516 SDNode *Node = Op.getNode(); 3517 EVT VT = Node->getValueType(0); 3518 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3519 SDValue InChain = Node->getOperand(0); 3520 SDValue VAListPtr = Node->getOperand(1); 3521 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3522 SDLoc dl(Node); 3523 3524 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3525 3526 // gpr_index 3527 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3528 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3529 InChain = GprIndex.getValue(1); 3530 3531 if (VT == MVT::i64) { 3532 // Check if GprIndex is even 3533 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3534 DAG.getConstant(1, dl, MVT::i32)); 3535 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3536 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3537 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3538 DAG.getConstant(1, dl, MVT::i32)); 3539 // Align GprIndex to be even if it isn't 3540 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3541 GprIndex); 3542 } 3543 3544 // fpr index is 1 byte after gpr 3545 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3546 DAG.getConstant(1, dl, MVT::i32)); 3547 3548 // fpr 3549 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3550 FprPtr, MachinePointerInfo(SV), MVT::i8); 3551 InChain = FprIndex.getValue(1); 3552 3553 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3554 DAG.getConstant(8, dl, MVT::i32)); 3555 3556 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3557 DAG.getConstant(4, dl, MVT::i32)); 3558 3559 // areas 3560 SDValue OverflowArea = 3561 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3562 InChain = OverflowArea.getValue(1); 3563 3564 SDValue RegSaveArea = 3565 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3566 InChain = RegSaveArea.getValue(1); 3567 3568 // select overflow_area if index > 8 3569 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3570 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3571 3572 // adjustment constant gpr_index * 4/8 3573 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3574 VT.isInteger() ? GprIndex : FprIndex, 3575 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3576 MVT::i32)); 3577 3578 // OurReg = RegSaveArea + RegConstant 3579 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3580 RegConstant); 3581 3582 // Floating types are 32 bytes into RegSaveArea 3583 if (VT.isFloatingPoint()) 3584 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3585 DAG.getConstant(32, dl, MVT::i32)); 3586 3587 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3588 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3589 VT.isInteger() ? GprIndex : FprIndex, 3590 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3591 MVT::i32)); 3592 3593 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3594 VT.isInteger() ? VAListPtr : FprPtr, 3595 MachinePointerInfo(SV), MVT::i8); 3596 3597 // determine if we should load from reg_save_area or overflow_area 3598 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3599 3600 // increase overflow_area by 4/8 if gpr/fpr > 8 3601 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3602 DAG.getConstant(VT.isInteger() ? 4 : 8, 3603 dl, MVT::i32)); 3604 3605 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3606 OverflowAreaPlusN); 3607 3608 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3609 MachinePointerInfo(), MVT::i32); 3610 3611 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3612 } 3613 3614 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3615 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3616 3617 // We have to copy the entire va_list struct: 3618 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3619 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3620 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3621 false, true, false, MachinePointerInfo(), 3622 MachinePointerInfo()); 3623 } 3624 3625 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3626 SelectionDAG &DAG) const { 3627 if (Subtarget.isAIXABI()) 3628 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3629 3630 return Op.getOperand(0); 3631 } 3632 3633 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3634 MachineFunction &MF = DAG.getMachineFunction(); 3635 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3636 3637 assert((Op.getOpcode() == ISD::INLINEASM || 3638 Op.getOpcode() == ISD::INLINEASM_BR) && 3639 "Expecting Inline ASM node."); 3640 3641 // If an LR store is already known to be required then there is not point in 3642 // checking this ASM as well. 3643 if (MFI.isLRStoreRequired()) 3644 return Op; 3645 3646 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3647 // type MVT::Glue. We want to ignore this last operand if that is the case. 3648 unsigned NumOps = Op.getNumOperands(); 3649 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3650 --NumOps; 3651 3652 // Check all operands that may contain the LR. 3653 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3654 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3655 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3656 ++i; // Skip the ID value. 3657 3658 switch (InlineAsm::getKind(Flags)) { 3659 default: 3660 llvm_unreachable("Bad flags!"); 3661 case InlineAsm::Kind_RegUse: 3662 case InlineAsm::Kind_Imm: 3663 case InlineAsm::Kind_Mem: 3664 i += NumVals; 3665 break; 3666 case InlineAsm::Kind_Clobber: 3667 case InlineAsm::Kind_RegDef: 3668 case InlineAsm::Kind_RegDefEarlyClobber: { 3669 for (; NumVals; --NumVals, ++i) { 3670 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3671 if (Reg != PPC::LR && Reg != PPC::LR8) 3672 continue; 3673 MFI.setLRStoreRequired(); 3674 return Op; 3675 } 3676 break; 3677 } 3678 } 3679 } 3680 3681 return Op; 3682 } 3683 3684 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3685 SelectionDAG &DAG) const { 3686 if (Subtarget.isAIXABI()) 3687 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3688 3689 SDValue Chain = Op.getOperand(0); 3690 SDValue Trmp = Op.getOperand(1); // trampoline 3691 SDValue FPtr = Op.getOperand(2); // nested function 3692 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3693 SDLoc dl(Op); 3694 3695 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3696 bool isPPC64 = (PtrVT == MVT::i64); 3697 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3698 3699 TargetLowering::ArgListTy Args; 3700 TargetLowering::ArgListEntry Entry; 3701 3702 Entry.Ty = IntPtrTy; 3703 Entry.Node = Trmp; Args.push_back(Entry); 3704 3705 // TrampSize == (isPPC64 ? 48 : 40); 3706 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3707 isPPC64 ? MVT::i64 : MVT::i32); 3708 Args.push_back(Entry); 3709 3710 Entry.Node = FPtr; Args.push_back(Entry); 3711 Entry.Node = Nest; Args.push_back(Entry); 3712 3713 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3714 TargetLowering::CallLoweringInfo CLI(DAG); 3715 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3716 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3717 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3718 3719 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3720 return CallResult.second; 3721 } 3722 3723 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3724 MachineFunction &MF = DAG.getMachineFunction(); 3725 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3726 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3727 3728 SDLoc dl(Op); 3729 3730 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3731 // vastart just stores the address of the VarArgsFrameIndex slot into the 3732 // memory location argument. 3733 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3734 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3735 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3736 MachinePointerInfo(SV)); 3737 } 3738 3739 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3740 // We suppose the given va_list is already allocated. 3741 // 3742 // typedef struct { 3743 // char gpr; /* index into the array of 8 GPRs 3744 // * stored in the register save area 3745 // * gpr=0 corresponds to r3, 3746 // * gpr=1 to r4, etc. 3747 // */ 3748 // char fpr; /* index into the array of 8 FPRs 3749 // * stored in the register save area 3750 // * fpr=0 corresponds to f1, 3751 // * fpr=1 to f2, etc. 3752 // */ 3753 // char *overflow_arg_area; 3754 // /* location on stack that holds 3755 // * the next overflow argument 3756 // */ 3757 // char *reg_save_area; 3758 // /* where r3:r10 and f1:f8 (if saved) 3759 // * are stored 3760 // */ 3761 // } va_list[1]; 3762 3763 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3764 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3765 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3766 PtrVT); 3767 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3768 PtrVT); 3769 3770 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3771 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3772 3773 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3774 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3775 3776 uint64_t FPROffset = 1; 3777 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3778 3779 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3780 3781 // Store first byte : number of int regs 3782 SDValue firstStore = 3783 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3784 MachinePointerInfo(SV), MVT::i8); 3785 uint64_t nextOffset = FPROffset; 3786 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3787 ConstFPROffset); 3788 3789 // Store second byte : number of float regs 3790 SDValue secondStore = 3791 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3792 MachinePointerInfo(SV, nextOffset), MVT::i8); 3793 nextOffset += StackOffset; 3794 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3795 3796 // Store second word : arguments given on stack 3797 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3798 MachinePointerInfo(SV, nextOffset)); 3799 nextOffset += FrameOffset; 3800 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3801 3802 // Store third word : arguments given in registers 3803 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3804 MachinePointerInfo(SV, nextOffset)); 3805 } 3806 3807 /// FPR - The set of FP registers that should be allocated for arguments 3808 /// on Darwin and AIX. 3809 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3810 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3811 PPC::F11, PPC::F12, PPC::F13}; 3812 3813 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3814 /// the stack. 3815 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3816 unsigned PtrByteSize) { 3817 unsigned ArgSize = ArgVT.getStoreSize(); 3818 if (Flags.isByVal()) 3819 ArgSize = Flags.getByValSize(); 3820 3821 // Round up to multiples of the pointer size, except for array members, 3822 // which are always packed. 3823 if (!Flags.isInConsecutiveRegs()) 3824 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3825 3826 return ArgSize; 3827 } 3828 3829 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3830 /// on the stack. 3831 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3832 ISD::ArgFlagsTy Flags, 3833 unsigned PtrByteSize) { 3834 Align Alignment(PtrByteSize); 3835 3836 // Altivec parameters are padded to a 16 byte boundary. 3837 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3838 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3839 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3840 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3841 Alignment = Align(16); 3842 3843 // ByVal parameters are aligned as requested. 3844 if (Flags.isByVal()) { 3845 auto BVAlign = Flags.getNonZeroByValAlign(); 3846 if (BVAlign > PtrByteSize) { 3847 if (BVAlign.value() % PtrByteSize != 0) 3848 llvm_unreachable( 3849 "ByVal alignment is not a multiple of the pointer size"); 3850 3851 Alignment = BVAlign; 3852 } 3853 } 3854 3855 // Array members are always packed to their original alignment. 3856 if (Flags.isInConsecutiveRegs()) { 3857 // If the array member was split into multiple registers, the first 3858 // needs to be aligned to the size of the full type. (Except for 3859 // ppcf128, which is only aligned as its f64 components.) 3860 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3861 Alignment = Align(OrigVT.getStoreSize()); 3862 else 3863 Alignment = Align(ArgVT.getStoreSize()); 3864 } 3865 3866 return Alignment; 3867 } 3868 3869 /// CalculateStackSlotUsed - Return whether this argument will use its 3870 /// stack slot (instead of being passed in registers). ArgOffset, 3871 /// AvailableFPRs, and AvailableVRs must hold the current argument 3872 /// position, and will be updated to account for this argument. 3873 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3874 unsigned PtrByteSize, unsigned LinkageSize, 3875 unsigned ParamAreaSize, unsigned &ArgOffset, 3876 unsigned &AvailableFPRs, 3877 unsigned &AvailableVRs) { 3878 bool UseMemory = false; 3879 3880 // Respect alignment of argument on the stack. 3881 Align Alignment = 3882 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3883 ArgOffset = alignTo(ArgOffset, Alignment); 3884 // If there's no space left in the argument save area, we must 3885 // use memory (this check also catches zero-sized arguments). 3886 if (ArgOffset >= LinkageSize + ParamAreaSize) 3887 UseMemory = true; 3888 3889 // Allocate argument on the stack. 3890 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3891 if (Flags.isInConsecutiveRegsLast()) 3892 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3893 // If we overran the argument save area, we must use memory 3894 // (this check catches arguments passed partially in memory) 3895 if (ArgOffset > LinkageSize + ParamAreaSize) 3896 UseMemory = true; 3897 3898 // However, if the argument is actually passed in an FPR or a VR, 3899 // we don't use memory after all. 3900 if (!Flags.isByVal()) { 3901 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3902 if (AvailableFPRs > 0) { 3903 --AvailableFPRs; 3904 return false; 3905 } 3906 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3907 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3908 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3909 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3910 if (AvailableVRs > 0) { 3911 --AvailableVRs; 3912 return false; 3913 } 3914 } 3915 3916 return UseMemory; 3917 } 3918 3919 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3920 /// ensure minimum alignment required for target. 3921 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3922 unsigned NumBytes) { 3923 return alignTo(NumBytes, Lowering->getStackAlign()); 3924 } 3925 3926 SDValue PPCTargetLowering::LowerFormalArguments( 3927 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3928 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3929 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3930 if (Subtarget.isAIXABI()) 3931 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3932 InVals); 3933 if (Subtarget.is64BitELFABI()) 3934 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3935 InVals); 3936 assert(Subtarget.is32BitELFABI()); 3937 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3938 InVals); 3939 } 3940 3941 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3942 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3943 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3944 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3945 3946 // 32-bit SVR4 ABI Stack Frame Layout: 3947 // +-----------------------------------+ 3948 // +--> | Back chain | 3949 // | +-----------------------------------+ 3950 // | | Floating-point register save area | 3951 // | +-----------------------------------+ 3952 // | | General register save area | 3953 // | +-----------------------------------+ 3954 // | | CR save word | 3955 // | +-----------------------------------+ 3956 // | | VRSAVE save word | 3957 // | +-----------------------------------+ 3958 // | | Alignment padding | 3959 // | +-----------------------------------+ 3960 // | | Vector register save area | 3961 // | +-----------------------------------+ 3962 // | | Local variable space | 3963 // | +-----------------------------------+ 3964 // | | Parameter list area | 3965 // | +-----------------------------------+ 3966 // | | LR save word | 3967 // | +-----------------------------------+ 3968 // SP--> +--- | Back chain | 3969 // +-----------------------------------+ 3970 // 3971 // Specifications: 3972 // System V Application Binary Interface PowerPC Processor Supplement 3973 // AltiVec Technology Programming Interface Manual 3974 3975 MachineFunction &MF = DAG.getMachineFunction(); 3976 MachineFrameInfo &MFI = MF.getFrameInfo(); 3977 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3978 3979 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3980 // Potential tail calls could cause overwriting of argument stack slots. 3981 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3982 (CallConv == CallingConv::Fast)); 3983 const Align PtrAlign(4); 3984 3985 // Assign locations to all of the incoming arguments. 3986 SmallVector<CCValAssign, 16> ArgLocs; 3987 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3988 *DAG.getContext()); 3989 3990 // Reserve space for the linkage area on the stack. 3991 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3992 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3993 if (useSoftFloat()) 3994 CCInfo.PreAnalyzeFormalArguments(Ins); 3995 3996 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3997 CCInfo.clearWasPPCF128(); 3998 3999 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4000 CCValAssign &VA = ArgLocs[i]; 4001 4002 // Arguments stored in registers. 4003 if (VA.isRegLoc()) { 4004 const TargetRegisterClass *RC; 4005 EVT ValVT = VA.getValVT(); 4006 4007 switch (ValVT.getSimpleVT().SimpleTy) { 4008 default: 4009 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4010 case MVT::i1: 4011 case MVT::i32: 4012 RC = &PPC::GPRCRegClass; 4013 break; 4014 case MVT::f32: 4015 if (Subtarget.hasP8Vector()) 4016 RC = &PPC::VSSRCRegClass; 4017 else if (Subtarget.hasSPE()) 4018 RC = &PPC::GPRCRegClass; 4019 else 4020 RC = &PPC::F4RCRegClass; 4021 break; 4022 case MVT::f64: 4023 if (Subtarget.hasVSX()) 4024 RC = &PPC::VSFRCRegClass; 4025 else if (Subtarget.hasSPE()) 4026 // SPE passes doubles in GPR pairs. 4027 RC = &PPC::GPRCRegClass; 4028 else 4029 RC = &PPC::F8RCRegClass; 4030 break; 4031 case MVT::v16i8: 4032 case MVT::v8i16: 4033 case MVT::v4i32: 4034 RC = &PPC::VRRCRegClass; 4035 break; 4036 case MVT::v4f32: 4037 RC = &PPC::VRRCRegClass; 4038 break; 4039 case MVT::v2f64: 4040 case MVT::v2i64: 4041 RC = &PPC::VRRCRegClass; 4042 break; 4043 } 4044 4045 SDValue ArgValue; 4046 // Transform the arguments stored in physical registers into 4047 // virtual ones. 4048 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4049 assert(i + 1 < e && "No second half of double precision argument"); 4050 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4051 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4052 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4053 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4054 if (!Subtarget.isLittleEndian()) 4055 std::swap (ArgValueLo, ArgValueHi); 4056 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4057 ArgValueHi); 4058 } else { 4059 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 4060 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4061 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4062 if (ValVT == MVT::i1) 4063 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4064 } 4065 4066 InVals.push_back(ArgValue); 4067 } else { 4068 // Argument stored in memory. 4069 assert(VA.isMemLoc()); 4070 4071 // Get the extended size of the argument type in stack 4072 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4073 // Get the actual size of the argument type 4074 unsigned ObjSize = VA.getValVT().getStoreSize(); 4075 unsigned ArgOffset = VA.getLocMemOffset(); 4076 // Stack objects in PPC32 are right justified. 4077 ArgOffset += ArgSize - ObjSize; 4078 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4079 4080 // Create load nodes to retrieve arguments from the stack. 4081 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4082 InVals.push_back( 4083 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4084 } 4085 } 4086 4087 // Assign locations to all of the incoming aggregate by value arguments. 4088 // Aggregates passed by value are stored in the local variable space of the 4089 // caller's stack frame, right above the parameter list area. 4090 SmallVector<CCValAssign, 16> ByValArgLocs; 4091 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4092 ByValArgLocs, *DAG.getContext()); 4093 4094 // Reserve stack space for the allocations in CCInfo. 4095 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4096 4097 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4098 4099 // Area that is at least reserved in the caller of this function. 4100 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4101 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4102 4103 // Set the size that is at least reserved in caller of this function. Tail 4104 // call optimized function's reserved stack space needs to be aligned so that 4105 // taking the difference between two stack areas will result in an aligned 4106 // stack. 4107 MinReservedArea = 4108 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4109 FuncInfo->setMinReservedArea(MinReservedArea); 4110 4111 SmallVector<SDValue, 8> MemOps; 4112 4113 // If the function takes variable number of arguments, make a frame index for 4114 // the start of the first vararg value... for expansion of llvm.va_start. 4115 if (isVarArg) { 4116 static const MCPhysReg GPArgRegs[] = { 4117 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4118 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4119 }; 4120 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4121 4122 static const MCPhysReg FPArgRegs[] = { 4123 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4124 PPC::F8 4125 }; 4126 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4127 4128 if (useSoftFloat() || hasSPE()) 4129 NumFPArgRegs = 0; 4130 4131 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4132 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4133 4134 // Make room for NumGPArgRegs and NumFPArgRegs. 4135 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4136 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4137 4138 FuncInfo->setVarArgsStackOffset( 4139 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4140 CCInfo.getNextStackOffset(), true)); 4141 4142 FuncInfo->setVarArgsFrameIndex( 4143 MFI.CreateStackObject(Depth, Align(8), false)); 4144 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4145 4146 // The fixed integer arguments of a variadic function are stored to the 4147 // VarArgsFrameIndex on the stack so that they may be loaded by 4148 // dereferencing the result of va_next. 4149 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4150 // Get an existing live-in vreg, or add a new one. 4151 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4152 if (!VReg) 4153 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4154 4155 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4156 SDValue Store = 4157 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4158 MemOps.push_back(Store); 4159 // Increment the address by four for the next argument to store 4160 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4161 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4162 } 4163 4164 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4165 // is set. 4166 // The double arguments are stored to the VarArgsFrameIndex 4167 // on the stack. 4168 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4169 // Get an existing live-in vreg, or add a new one. 4170 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4171 if (!VReg) 4172 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4173 4174 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4175 SDValue Store = 4176 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4177 MemOps.push_back(Store); 4178 // Increment the address by eight for the next argument to store 4179 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4180 PtrVT); 4181 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4182 } 4183 } 4184 4185 if (!MemOps.empty()) 4186 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4187 4188 return Chain; 4189 } 4190 4191 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4192 // value to MVT::i64 and then truncate to the correct register size. 4193 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4194 EVT ObjectVT, SelectionDAG &DAG, 4195 SDValue ArgVal, 4196 const SDLoc &dl) const { 4197 if (Flags.isSExt()) 4198 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4199 DAG.getValueType(ObjectVT)); 4200 else if (Flags.isZExt()) 4201 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4202 DAG.getValueType(ObjectVT)); 4203 4204 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4205 } 4206 4207 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4208 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4209 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4210 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4211 // TODO: add description of PPC stack frame format, or at least some docs. 4212 // 4213 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4214 bool isLittleEndian = Subtarget.isLittleEndian(); 4215 MachineFunction &MF = DAG.getMachineFunction(); 4216 MachineFrameInfo &MFI = MF.getFrameInfo(); 4217 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4218 4219 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4220 "fastcc not supported on varargs functions"); 4221 4222 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4223 // Potential tail calls could cause overwriting of argument stack slots. 4224 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4225 (CallConv == CallingConv::Fast)); 4226 unsigned PtrByteSize = 8; 4227 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4228 4229 static const MCPhysReg GPR[] = { 4230 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4231 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4232 }; 4233 static const MCPhysReg VR[] = { 4234 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4235 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4236 }; 4237 4238 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4239 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4240 const unsigned Num_VR_Regs = array_lengthof(VR); 4241 4242 // Do a first pass over the arguments to determine whether the ABI 4243 // guarantees that our caller has allocated the parameter save area 4244 // on its stack frame. In the ELFv1 ABI, this is always the case; 4245 // in the ELFv2 ABI, it is true if this is a vararg function or if 4246 // any parameter is located in a stack slot. 4247 4248 bool HasParameterArea = !isELFv2ABI || isVarArg; 4249 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4250 unsigned NumBytes = LinkageSize; 4251 unsigned AvailableFPRs = Num_FPR_Regs; 4252 unsigned AvailableVRs = Num_VR_Regs; 4253 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4254 if (Ins[i].Flags.isNest()) 4255 continue; 4256 4257 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4258 PtrByteSize, LinkageSize, ParamAreaSize, 4259 NumBytes, AvailableFPRs, AvailableVRs)) 4260 HasParameterArea = true; 4261 } 4262 4263 // Add DAG nodes to load the arguments or copy them out of registers. On 4264 // entry to a function on PPC, the arguments start after the linkage area, 4265 // although the first ones are often in registers. 4266 4267 unsigned ArgOffset = LinkageSize; 4268 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4269 SmallVector<SDValue, 8> MemOps; 4270 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4271 unsigned CurArgIdx = 0; 4272 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4273 SDValue ArgVal; 4274 bool needsLoad = false; 4275 EVT ObjectVT = Ins[ArgNo].VT; 4276 EVT OrigVT = Ins[ArgNo].ArgVT; 4277 unsigned ObjSize = ObjectVT.getStoreSize(); 4278 unsigned ArgSize = ObjSize; 4279 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4280 if (Ins[ArgNo].isOrigArg()) { 4281 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4282 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4283 } 4284 // We re-align the argument offset for each argument, except when using the 4285 // fast calling convention, when we need to make sure we do that only when 4286 // we'll actually use a stack slot. 4287 unsigned CurArgOffset; 4288 Align Alignment; 4289 auto ComputeArgOffset = [&]() { 4290 /* Respect alignment of argument on the stack. */ 4291 Alignment = 4292 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4293 ArgOffset = alignTo(ArgOffset, Alignment); 4294 CurArgOffset = ArgOffset; 4295 }; 4296 4297 if (CallConv != CallingConv::Fast) { 4298 ComputeArgOffset(); 4299 4300 /* Compute GPR index associated with argument offset. */ 4301 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4302 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4303 } 4304 4305 // FIXME the codegen can be much improved in some cases. 4306 // We do not have to keep everything in memory. 4307 if (Flags.isByVal()) { 4308 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4309 4310 if (CallConv == CallingConv::Fast) 4311 ComputeArgOffset(); 4312 4313 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4314 ObjSize = Flags.getByValSize(); 4315 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4316 // Empty aggregate parameters do not take up registers. Examples: 4317 // struct { } a; 4318 // union { } b; 4319 // int c[0]; 4320 // etc. However, we have to provide a place-holder in InVals, so 4321 // pretend we have an 8-byte item at the current address for that 4322 // purpose. 4323 if (!ObjSize) { 4324 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4325 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4326 InVals.push_back(FIN); 4327 continue; 4328 } 4329 4330 // Create a stack object covering all stack doublewords occupied 4331 // by the argument. If the argument is (fully or partially) on 4332 // the stack, or if the argument is fully in registers but the 4333 // caller has allocated the parameter save anyway, we can refer 4334 // directly to the caller's stack frame. Otherwise, create a 4335 // local copy in our own frame. 4336 int FI; 4337 if (HasParameterArea || 4338 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4339 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4340 else 4341 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4342 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4343 4344 // Handle aggregates smaller than 8 bytes. 4345 if (ObjSize < PtrByteSize) { 4346 // The value of the object is its address, which differs from the 4347 // address of the enclosing doubleword on big-endian systems. 4348 SDValue Arg = FIN; 4349 if (!isLittleEndian) { 4350 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4351 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4352 } 4353 InVals.push_back(Arg); 4354 4355 if (GPR_idx != Num_GPR_Regs) { 4356 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4357 FuncInfo->addLiveInAttr(VReg, Flags); 4358 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4359 SDValue Store; 4360 4361 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4362 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4363 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4364 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4365 MachinePointerInfo(&*FuncArg), ObjType); 4366 } else { 4367 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4368 // store the whole register as-is to the parameter save area 4369 // slot. 4370 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4371 MachinePointerInfo(&*FuncArg)); 4372 } 4373 4374 MemOps.push_back(Store); 4375 } 4376 // Whether we copied from a register or not, advance the offset 4377 // into the parameter save area by a full doubleword. 4378 ArgOffset += PtrByteSize; 4379 continue; 4380 } 4381 4382 // The value of the object is its address, which is the address of 4383 // its first stack doubleword. 4384 InVals.push_back(FIN); 4385 4386 // Store whatever pieces of the object are in registers to memory. 4387 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4388 if (GPR_idx == Num_GPR_Regs) 4389 break; 4390 4391 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4392 FuncInfo->addLiveInAttr(VReg, Flags); 4393 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4394 SDValue Addr = FIN; 4395 if (j) { 4396 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4397 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4398 } 4399 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4400 MachinePointerInfo(&*FuncArg, j)); 4401 MemOps.push_back(Store); 4402 ++GPR_idx; 4403 } 4404 ArgOffset += ArgSize; 4405 continue; 4406 } 4407 4408 switch (ObjectVT.getSimpleVT().SimpleTy) { 4409 default: llvm_unreachable("Unhandled argument type!"); 4410 case MVT::i1: 4411 case MVT::i32: 4412 case MVT::i64: 4413 if (Flags.isNest()) { 4414 // The 'nest' parameter, if any, is passed in R11. 4415 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4416 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4417 4418 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4419 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4420 4421 break; 4422 } 4423 4424 // These can be scalar arguments or elements of an integer array type 4425 // passed directly. Clang may use those instead of "byval" aggregate 4426 // types to avoid forcing arguments to memory unnecessarily. 4427 if (GPR_idx != Num_GPR_Regs) { 4428 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4429 FuncInfo->addLiveInAttr(VReg, Flags); 4430 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4431 4432 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4433 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4434 // value to MVT::i64 and then truncate to the correct register size. 4435 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4436 } else { 4437 if (CallConv == CallingConv::Fast) 4438 ComputeArgOffset(); 4439 4440 needsLoad = true; 4441 ArgSize = PtrByteSize; 4442 } 4443 if (CallConv != CallingConv::Fast || needsLoad) 4444 ArgOffset += 8; 4445 break; 4446 4447 case MVT::f32: 4448 case MVT::f64: 4449 // These can be scalar arguments or elements of a float array type 4450 // passed directly. The latter are used to implement ELFv2 homogenous 4451 // float aggregates. 4452 if (FPR_idx != Num_FPR_Regs) { 4453 unsigned VReg; 4454 4455 if (ObjectVT == MVT::f32) 4456 VReg = MF.addLiveIn(FPR[FPR_idx], 4457 Subtarget.hasP8Vector() 4458 ? &PPC::VSSRCRegClass 4459 : &PPC::F4RCRegClass); 4460 else 4461 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4462 ? &PPC::VSFRCRegClass 4463 : &PPC::F8RCRegClass); 4464 4465 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4466 ++FPR_idx; 4467 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4468 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4469 // once we support fp <-> gpr moves. 4470 4471 // This can only ever happen in the presence of f32 array types, 4472 // since otherwise we never run out of FPRs before running out 4473 // of GPRs. 4474 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4475 FuncInfo->addLiveInAttr(VReg, Flags); 4476 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4477 4478 if (ObjectVT == MVT::f32) { 4479 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4480 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4481 DAG.getConstant(32, dl, MVT::i32)); 4482 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4483 } 4484 4485 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4486 } else { 4487 if (CallConv == CallingConv::Fast) 4488 ComputeArgOffset(); 4489 4490 needsLoad = true; 4491 } 4492 4493 // When passing an array of floats, the array occupies consecutive 4494 // space in the argument area; only round up to the next doubleword 4495 // at the end of the array. Otherwise, each float takes 8 bytes. 4496 if (CallConv != CallingConv::Fast || needsLoad) { 4497 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4498 ArgOffset += ArgSize; 4499 if (Flags.isInConsecutiveRegsLast()) 4500 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4501 } 4502 break; 4503 case MVT::v4f32: 4504 case MVT::v4i32: 4505 case MVT::v8i16: 4506 case MVT::v16i8: 4507 case MVT::v2f64: 4508 case MVT::v2i64: 4509 case MVT::v1i128: 4510 case MVT::f128: 4511 // These can be scalar arguments or elements of a vector array type 4512 // passed directly. The latter are used to implement ELFv2 homogenous 4513 // vector aggregates. 4514 if (VR_idx != Num_VR_Regs) { 4515 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4516 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4517 ++VR_idx; 4518 } else { 4519 if (CallConv == CallingConv::Fast) 4520 ComputeArgOffset(); 4521 needsLoad = true; 4522 } 4523 if (CallConv != CallingConv::Fast || needsLoad) 4524 ArgOffset += 16; 4525 break; 4526 } 4527 4528 // We need to load the argument to a virtual register if we determined 4529 // above that we ran out of physical registers of the appropriate type. 4530 if (needsLoad) { 4531 if (ObjSize < ArgSize && !isLittleEndian) 4532 CurArgOffset += ArgSize - ObjSize; 4533 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4534 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4535 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4536 } 4537 4538 InVals.push_back(ArgVal); 4539 } 4540 4541 // Area that is at least reserved in the caller of this function. 4542 unsigned MinReservedArea; 4543 if (HasParameterArea) 4544 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4545 else 4546 MinReservedArea = LinkageSize; 4547 4548 // Set the size that is at least reserved in caller of this function. Tail 4549 // call optimized functions' reserved stack space needs to be aligned so that 4550 // taking the difference between two stack areas will result in an aligned 4551 // stack. 4552 MinReservedArea = 4553 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4554 FuncInfo->setMinReservedArea(MinReservedArea); 4555 4556 // If the function takes variable number of arguments, make a frame index for 4557 // the start of the first vararg value... for expansion of llvm.va_start. 4558 // On ELFv2ABI spec, it writes: 4559 // C programs that are intended to be *portable* across different compilers 4560 // and architectures must use the header file <stdarg.h> to deal with variable 4561 // argument lists. 4562 if (isVarArg && MFI.hasVAStart()) { 4563 int Depth = ArgOffset; 4564 4565 FuncInfo->setVarArgsFrameIndex( 4566 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4567 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4568 4569 // If this function is vararg, store any remaining integer argument regs 4570 // to their spots on the stack so that they may be loaded by dereferencing 4571 // the result of va_next. 4572 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4573 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4574 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4575 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4576 SDValue Store = 4577 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4578 MemOps.push_back(Store); 4579 // Increment the address by four for the next argument to store 4580 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4581 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4582 } 4583 } 4584 4585 if (!MemOps.empty()) 4586 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4587 4588 return Chain; 4589 } 4590 4591 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4592 /// adjusted to accommodate the arguments for the tailcall. 4593 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4594 unsigned ParamSize) { 4595 4596 if (!isTailCall) return 0; 4597 4598 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4599 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4600 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4601 // Remember only if the new adjustment is bigger. 4602 if (SPDiff < FI->getTailCallSPDelta()) 4603 FI->setTailCallSPDelta(SPDiff); 4604 4605 return SPDiff; 4606 } 4607 4608 static bool isFunctionGlobalAddress(SDValue Callee); 4609 4610 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4611 const TargetMachine &TM) { 4612 // It does not make sense to call callsShareTOCBase() with a caller that 4613 // is PC Relative since PC Relative callers do not have a TOC. 4614 #ifndef NDEBUG 4615 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4616 assert(!STICaller->isUsingPCRelativeCalls() && 4617 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4618 #endif 4619 4620 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4621 // don't have enough information to determine if the caller and callee share 4622 // the same TOC base, so we have to pessimistically assume they don't for 4623 // correctness. 4624 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4625 if (!G) 4626 return false; 4627 4628 const GlobalValue *GV = G->getGlobal(); 4629 4630 // If the callee is preemptable, then the static linker will use a plt-stub 4631 // which saves the toc to the stack, and needs a nop after the call 4632 // instruction to convert to a toc-restore. 4633 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4634 return false; 4635 4636 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4637 // We may need a TOC restore in the situation where the caller requires a 4638 // valid TOC but the callee is PC Relative and does not. 4639 const Function *F = dyn_cast<Function>(GV); 4640 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4641 4642 // If we have an Alias we can try to get the function from there. 4643 if (Alias) { 4644 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4645 F = dyn_cast<Function>(GlobalObj); 4646 } 4647 4648 // If we still have no valid function pointer we do not have enough 4649 // information to determine if the callee uses PC Relative calls so we must 4650 // assume that it does. 4651 if (!F) 4652 return false; 4653 4654 // If the callee uses PC Relative we cannot guarantee that the callee won't 4655 // clobber the TOC of the caller and so we must assume that the two 4656 // functions do not share a TOC base. 4657 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4658 if (STICallee->isUsingPCRelativeCalls()) 4659 return false; 4660 4661 // If the GV is not a strong definition then we need to assume it can be 4662 // replaced by another function at link time. The function that replaces 4663 // it may not share the same TOC as the caller since the callee may be 4664 // replaced by a PC Relative version of the same function. 4665 if (!GV->isStrongDefinitionForLinker()) 4666 return false; 4667 4668 // The medium and large code models are expected to provide a sufficiently 4669 // large TOC to provide all data addressing needs of a module with a 4670 // single TOC. 4671 if (CodeModel::Medium == TM.getCodeModel() || 4672 CodeModel::Large == TM.getCodeModel()) 4673 return true; 4674 4675 // Any explicitly-specified sections and section prefixes must also match. 4676 // Also, if we're using -ffunction-sections, then each function is always in 4677 // a different section (the same is true for COMDAT functions). 4678 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4679 GV->getSection() != Caller->getSection()) 4680 return false; 4681 if (const auto *F = dyn_cast<Function>(GV)) { 4682 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4683 return false; 4684 } 4685 4686 return true; 4687 } 4688 4689 static bool 4690 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4691 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4692 assert(Subtarget.is64BitELFABI()); 4693 4694 const unsigned PtrByteSize = 8; 4695 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4696 4697 static const MCPhysReg GPR[] = { 4698 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4699 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4700 }; 4701 static const MCPhysReg VR[] = { 4702 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4703 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4704 }; 4705 4706 const unsigned NumGPRs = array_lengthof(GPR); 4707 const unsigned NumFPRs = 13; 4708 const unsigned NumVRs = array_lengthof(VR); 4709 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4710 4711 unsigned NumBytes = LinkageSize; 4712 unsigned AvailableFPRs = NumFPRs; 4713 unsigned AvailableVRs = NumVRs; 4714 4715 for (const ISD::OutputArg& Param : Outs) { 4716 if (Param.Flags.isNest()) continue; 4717 4718 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4719 LinkageSize, ParamAreaSize, NumBytes, 4720 AvailableFPRs, AvailableVRs)) 4721 return true; 4722 } 4723 return false; 4724 } 4725 4726 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4727 if (CB.arg_size() != CallerFn->arg_size()) 4728 return false; 4729 4730 auto CalleeArgIter = CB.arg_begin(); 4731 auto CalleeArgEnd = CB.arg_end(); 4732 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4733 4734 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4735 const Value* CalleeArg = *CalleeArgIter; 4736 const Value* CallerArg = &(*CallerArgIter); 4737 if (CalleeArg == CallerArg) 4738 continue; 4739 4740 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4741 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4742 // } 4743 // 1st argument of callee is undef and has the same type as caller. 4744 if (CalleeArg->getType() == CallerArg->getType() && 4745 isa<UndefValue>(CalleeArg)) 4746 continue; 4747 4748 return false; 4749 } 4750 4751 return true; 4752 } 4753 4754 // Returns true if TCO is possible between the callers and callees 4755 // calling conventions. 4756 static bool 4757 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4758 CallingConv::ID CalleeCC) { 4759 // Tail calls are possible with fastcc and ccc. 4760 auto isTailCallableCC = [] (CallingConv::ID CC){ 4761 return CC == CallingConv::C || CC == CallingConv::Fast; 4762 }; 4763 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4764 return false; 4765 4766 // We can safely tail call both fastcc and ccc callees from a c calling 4767 // convention caller. If the caller is fastcc, we may have less stack space 4768 // than a non-fastcc caller with the same signature so disable tail-calls in 4769 // that case. 4770 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4771 } 4772 4773 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4774 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4775 const SmallVectorImpl<ISD::OutputArg> &Outs, 4776 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4777 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4778 4779 if (DisableSCO && !TailCallOpt) return false; 4780 4781 // Variadic argument functions are not supported. 4782 if (isVarArg) return false; 4783 4784 auto &Caller = DAG.getMachineFunction().getFunction(); 4785 // Check that the calling conventions are compatible for tco. 4786 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4787 return false; 4788 4789 // Caller contains any byval parameter is not supported. 4790 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4791 return false; 4792 4793 // Callee contains any byval parameter is not supported, too. 4794 // Note: This is a quick work around, because in some cases, e.g. 4795 // caller's stack size > callee's stack size, we are still able to apply 4796 // sibling call optimization. For example, gcc is able to do SCO for caller1 4797 // in the following example, but not for caller2. 4798 // struct test { 4799 // long int a; 4800 // char ary[56]; 4801 // } gTest; 4802 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4803 // b->a = v.a; 4804 // return 0; 4805 // } 4806 // void caller1(struct test a, struct test c, struct test *b) { 4807 // callee(gTest, b); } 4808 // void caller2(struct test *b) { callee(gTest, b); } 4809 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4810 return false; 4811 4812 // If callee and caller use different calling conventions, we cannot pass 4813 // parameters on stack since offsets for the parameter area may be different. 4814 if (Caller.getCallingConv() != CalleeCC && 4815 needStackSlotPassParameters(Subtarget, Outs)) 4816 return false; 4817 4818 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4819 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4820 // callee potentially have different TOC bases then we cannot tail call since 4821 // we need to restore the TOC pointer after the call. 4822 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4823 // We cannot guarantee this for indirect calls or calls to external functions. 4824 // When PC-Relative addressing is used, the concept of the TOC is no longer 4825 // applicable so this check is not required. 4826 // Check first for indirect calls. 4827 if (!Subtarget.isUsingPCRelativeCalls() && 4828 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4829 return false; 4830 4831 // Check if we share the TOC base. 4832 if (!Subtarget.isUsingPCRelativeCalls() && 4833 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4834 return false; 4835 4836 // TCO allows altering callee ABI, so we don't have to check further. 4837 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4838 return true; 4839 4840 if (DisableSCO) return false; 4841 4842 // If callee use the same argument list that caller is using, then we can 4843 // apply SCO on this case. If it is not, then we need to check if callee needs 4844 // stack for passing arguments. 4845 // PC Relative tail calls may not have a CallBase. 4846 // If there is no CallBase we cannot verify if we have the same argument 4847 // list so assume that we don't have the same argument list. 4848 if (CB && !hasSameArgumentList(&Caller, *CB) && 4849 needStackSlotPassParameters(Subtarget, Outs)) 4850 return false; 4851 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4852 return false; 4853 4854 return true; 4855 } 4856 4857 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4858 /// for tail call optimization. Targets which want to do tail call 4859 /// optimization should implement this function. 4860 bool 4861 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4862 CallingConv::ID CalleeCC, 4863 bool isVarArg, 4864 const SmallVectorImpl<ISD::InputArg> &Ins, 4865 SelectionDAG& DAG) const { 4866 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4867 return false; 4868 4869 // Variable argument functions are not supported. 4870 if (isVarArg) 4871 return false; 4872 4873 MachineFunction &MF = DAG.getMachineFunction(); 4874 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4875 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4876 // Functions containing by val parameters are not supported. 4877 for (unsigned i = 0; i != Ins.size(); i++) { 4878 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4879 if (Flags.isByVal()) return false; 4880 } 4881 4882 // Non-PIC/GOT tail calls are supported. 4883 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4884 return true; 4885 4886 // At the moment we can only do local tail calls (in same module, hidden 4887 // or protected) if we are generating PIC. 4888 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4889 return G->getGlobal()->hasHiddenVisibility() 4890 || G->getGlobal()->hasProtectedVisibility(); 4891 } 4892 4893 return false; 4894 } 4895 4896 /// isCallCompatibleAddress - Return the immediate to use if the specified 4897 /// 32-bit value is representable in the immediate field of a BxA instruction. 4898 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4899 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4900 if (!C) return nullptr; 4901 4902 int Addr = C->getZExtValue(); 4903 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4904 SignExtend32<26>(Addr) != Addr) 4905 return nullptr; // Top 6 bits have to be sext of immediate. 4906 4907 return DAG 4908 .getConstant( 4909 (int)C->getZExtValue() >> 2, SDLoc(Op), 4910 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4911 .getNode(); 4912 } 4913 4914 namespace { 4915 4916 struct TailCallArgumentInfo { 4917 SDValue Arg; 4918 SDValue FrameIdxOp; 4919 int FrameIdx = 0; 4920 4921 TailCallArgumentInfo() = default; 4922 }; 4923 4924 } // end anonymous namespace 4925 4926 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4927 static void StoreTailCallArgumentsToStackSlot( 4928 SelectionDAG &DAG, SDValue Chain, 4929 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4930 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4931 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4932 SDValue Arg = TailCallArgs[i].Arg; 4933 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4934 int FI = TailCallArgs[i].FrameIdx; 4935 // Store relative to framepointer. 4936 MemOpChains.push_back(DAG.getStore( 4937 Chain, dl, Arg, FIN, 4938 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4939 } 4940 } 4941 4942 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4943 /// the appropriate stack slot for the tail call optimized function call. 4944 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4945 SDValue OldRetAddr, SDValue OldFP, 4946 int SPDiff, const SDLoc &dl) { 4947 if (SPDiff) { 4948 // Calculate the new stack slot for the return address. 4949 MachineFunction &MF = DAG.getMachineFunction(); 4950 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4951 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4952 bool isPPC64 = Subtarget.isPPC64(); 4953 int SlotSize = isPPC64 ? 8 : 4; 4954 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4955 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4956 NewRetAddrLoc, true); 4957 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4958 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4959 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4960 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4961 } 4962 return Chain; 4963 } 4964 4965 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4966 /// the position of the argument. 4967 static void 4968 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4969 SDValue Arg, int SPDiff, unsigned ArgOffset, 4970 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4971 int Offset = ArgOffset + SPDiff; 4972 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4973 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4974 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4975 SDValue FIN = DAG.getFrameIndex(FI, VT); 4976 TailCallArgumentInfo Info; 4977 Info.Arg = Arg; 4978 Info.FrameIdxOp = FIN; 4979 Info.FrameIdx = FI; 4980 TailCallArguments.push_back(Info); 4981 } 4982 4983 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4984 /// stack slot. Returns the chain as result and the loaded frame pointers in 4985 /// LROpOut/FPOpout. Used when tail calling. 4986 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4987 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4988 SDValue &FPOpOut, const SDLoc &dl) const { 4989 if (SPDiff) { 4990 // Load the LR and FP stack slot for later adjusting. 4991 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4992 LROpOut = getReturnAddrFrameIndex(DAG); 4993 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4994 Chain = SDValue(LROpOut.getNode(), 1); 4995 } 4996 return Chain; 4997 } 4998 4999 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5000 /// by "Src" to address "Dst" of size "Size". Alignment information is 5001 /// specified by the specific parameter attribute. The copy will be passed as 5002 /// a byval function parameter. 5003 /// Sometimes what we are copying is the end of a larger object, the part that 5004 /// does not fit in registers. 5005 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5006 SDValue Chain, ISD::ArgFlagsTy Flags, 5007 SelectionDAG &DAG, const SDLoc &dl) { 5008 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5009 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5010 Flags.getNonZeroByValAlign(), false, false, false, 5011 MachinePointerInfo(), MachinePointerInfo()); 5012 } 5013 5014 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5015 /// tail calls. 5016 static void LowerMemOpCallTo( 5017 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5018 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5019 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5020 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5021 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5022 if (!isTailCall) { 5023 if (isVector) { 5024 SDValue StackPtr; 5025 if (isPPC64) 5026 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5027 else 5028 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5029 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5030 DAG.getConstant(ArgOffset, dl, PtrVT)); 5031 } 5032 MemOpChains.push_back( 5033 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5034 // Calculate and remember argument location. 5035 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5036 TailCallArguments); 5037 } 5038 5039 static void 5040 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5041 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5042 SDValue FPOp, 5043 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5044 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5045 // might overwrite each other in case of tail call optimization. 5046 SmallVector<SDValue, 8> MemOpChains2; 5047 // Do not flag preceding copytoreg stuff together with the following stuff. 5048 InFlag = SDValue(); 5049 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5050 MemOpChains2, dl); 5051 if (!MemOpChains2.empty()) 5052 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5053 5054 // Store the return address to the appropriate stack slot. 5055 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5056 5057 // Emit callseq_end just before tailcall node. 5058 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5059 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5060 InFlag = Chain.getValue(1); 5061 } 5062 5063 // Is this global address that of a function that can be called by name? (as 5064 // opposed to something that must hold a descriptor for an indirect call). 5065 static bool isFunctionGlobalAddress(SDValue Callee) { 5066 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5067 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5068 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5069 return false; 5070 5071 return G->getGlobal()->getValueType()->isFunctionTy(); 5072 } 5073 5074 return false; 5075 } 5076 5077 SDValue PPCTargetLowering::LowerCallResult( 5078 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5079 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5080 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5081 SmallVector<CCValAssign, 16> RVLocs; 5082 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5083 *DAG.getContext()); 5084 5085 CCRetInfo.AnalyzeCallResult( 5086 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5087 ? RetCC_PPC_Cold 5088 : RetCC_PPC); 5089 5090 // Copy all of the result registers out of their specified physreg. 5091 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5092 CCValAssign &VA = RVLocs[i]; 5093 assert(VA.isRegLoc() && "Can only return in registers!"); 5094 5095 SDValue Val; 5096 5097 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5098 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5099 InFlag); 5100 Chain = Lo.getValue(1); 5101 InFlag = Lo.getValue(2); 5102 VA = RVLocs[++i]; // skip ahead to next loc 5103 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5104 InFlag); 5105 Chain = Hi.getValue(1); 5106 InFlag = Hi.getValue(2); 5107 if (!Subtarget.isLittleEndian()) 5108 std::swap (Lo, Hi); 5109 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5110 } else { 5111 Val = DAG.getCopyFromReg(Chain, dl, 5112 VA.getLocReg(), VA.getLocVT(), InFlag); 5113 Chain = Val.getValue(1); 5114 InFlag = Val.getValue(2); 5115 } 5116 5117 switch (VA.getLocInfo()) { 5118 default: llvm_unreachable("Unknown loc info!"); 5119 case CCValAssign::Full: break; 5120 case CCValAssign::AExt: 5121 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5122 break; 5123 case CCValAssign::ZExt: 5124 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5125 DAG.getValueType(VA.getValVT())); 5126 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5127 break; 5128 case CCValAssign::SExt: 5129 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5130 DAG.getValueType(VA.getValVT())); 5131 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5132 break; 5133 } 5134 5135 InVals.push_back(Val); 5136 } 5137 5138 return Chain; 5139 } 5140 5141 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5142 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5143 // PatchPoint calls are not indirect. 5144 if (isPatchPoint) 5145 return false; 5146 5147 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5148 return false; 5149 5150 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5151 // becuase the immediate function pointer points to a descriptor instead of 5152 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5153 // pointer immediate points to the global entry point, while the BLA would 5154 // need to jump to the local entry point (see rL211174). 5155 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5156 isBLACompatibleAddress(Callee, DAG)) 5157 return false; 5158 5159 return true; 5160 } 5161 5162 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5163 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5164 return Subtarget.isAIXABI() || 5165 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5166 } 5167 5168 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5169 const Function &Caller, 5170 const SDValue &Callee, 5171 const PPCSubtarget &Subtarget, 5172 const TargetMachine &TM) { 5173 if (CFlags.IsTailCall) 5174 return PPCISD::TC_RETURN; 5175 5176 // This is a call through a function pointer. 5177 if (CFlags.IsIndirect) { 5178 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5179 // indirect calls. The save of the caller's TOC pointer to the stack will be 5180 // inserted into the DAG as part of call lowering. The restore of the TOC 5181 // pointer is modeled by using a pseudo instruction for the call opcode that 5182 // represents the 2 instruction sequence of an indirect branch and link, 5183 // immediately followed by a load of the TOC pointer from the the stack save 5184 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5185 // as it is not saved or used. 5186 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5187 : PPCISD::BCTRL; 5188 } 5189 5190 if (Subtarget.isUsingPCRelativeCalls()) { 5191 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5192 return PPCISD::CALL_NOTOC; 5193 } 5194 5195 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5196 // immediately following the call instruction if the caller and callee may 5197 // have different TOC bases. At link time if the linker determines the calls 5198 // may not share a TOC base, the call is redirected to a trampoline inserted 5199 // by the linker. The trampoline will (among other things) save the callers 5200 // TOC pointer at an ABI designated offset in the linkage area and the linker 5201 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5202 // into gpr2. 5203 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5204 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5205 : PPCISD::CALL_NOP; 5206 5207 return PPCISD::CALL; 5208 } 5209 5210 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5211 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5212 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5213 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5214 return SDValue(Dest, 0); 5215 5216 // Returns true if the callee is local, and false otherwise. 5217 auto isLocalCallee = [&]() { 5218 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5219 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5220 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5221 5222 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5223 !dyn_cast_or_null<GlobalIFunc>(GV); 5224 }; 5225 5226 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5227 // a static relocation model causes some versions of GNU LD (2.17.50, at 5228 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5229 // built with secure-PLT. 5230 bool UsePlt = 5231 Subtarget.is32BitELFABI() && !isLocalCallee() && 5232 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5233 5234 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5235 const TargetMachine &TM = Subtarget.getTargetMachine(); 5236 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5237 MCSymbolXCOFF *S = 5238 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5239 5240 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5241 return DAG.getMCSymbol(S, PtrVT); 5242 }; 5243 5244 if (isFunctionGlobalAddress(Callee)) { 5245 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5246 5247 if (Subtarget.isAIXABI()) { 5248 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5249 return getAIXFuncEntryPointSymbolSDNode(GV); 5250 } 5251 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5252 UsePlt ? PPCII::MO_PLT : 0); 5253 } 5254 5255 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5256 const char *SymName = S->getSymbol(); 5257 if (Subtarget.isAIXABI()) { 5258 // If there exists a user-declared function whose name is the same as the 5259 // ExternalSymbol's, then we pick up the user-declared version. 5260 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5261 if (const Function *F = 5262 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5263 return getAIXFuncEntryPointSymbolSDNode(F); 5264 5265 // On AIX, direct function calls reference the symbol for the function's 5266 // entry point, which is named by prepending a "." before the function's 5267 // C-linkage name. A Qualname is returned here because an external 5268 // function entry point is a csect with XTY_ER property. 5269 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5270 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5271 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5272 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5273 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5274 return Sec->getQualNameSymbol(); 5275 }; 5276 5277 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5278 } 5279 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5280 UsePlt ? PPCII::MO_PLT : 0); 5281 } 5282 5283 // No transformation needed. 5284 assert(Callee.getNode() && "What no callee?"); 5285 return Callee; 5286 } 5287 5288 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5289 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5290 "Expected a CALLSEQ_STARTSDNode."); 5291 5292 // The last operand is the chain, except when the node has glue. If the node 5293 // has glue, then the last operand is the glue, and the chain is the second 5294 // last operand. 5295 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5296 if (LastValue.getValueType() != MVT::Glue) 5297 return LastValue; 5298 5299 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5300 } 5301 5302 // Creates the node that moves a functions address into the count register 5303 // to prepare for an indirect call instruction. 5304 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5305 SDValue &Glue, SDValue &Chain, 5306 const SDLoc &dl) { 5307 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5308 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5309 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5310 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5311 // The glue is the second value produced. 5312 Glue = Chain.getValue(1); 5313 } 5314 5315 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5316 SDValue &Glue, SDValue &Chain, 5317 SDValue CallSeqStart, 5318 const CallBase *CB, const SDLoc &dl, 5319 bool hasNest, 5320 const PPCSubtarget &Subtarget) { 5321 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5322 // entry point, but to the function descriptor (the function entry point 5323 // address is part of the function descriptor though). 5324 // The function descriptor is a three doubleword structure with the 5325 // following fields: function entry point, TOC base address and 5326 // environment pointer. 5327 // Thus for a call through a function pointer, the following actions need 5328 // to be performed: 5329 // 1. Save the TOC of the caller in the TOC save area of its stack 5330 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5331 // 2. Load the address of the function entry point from the function 5332 // descriptor. 5333 // 3. Load the TOC of the callee from the function descriptor into r2. 5334 // 4. Load the environment pointer from the function descriptor into 5335 // r11. 5336 // 5. Branch to the function entry point address. 5337 // 6. On return of the callee, the TOC of the caller needs to be 5338 // restored (this is done in FinishCall()). 5339 // 5340 // The loads are scheduled at the beginning of the call sequence, and the 5341 // register copies are flagged together to ensure that no other 5342 // operations can be scheduled in between. E.g. without flagging the 5343 // copies together, a TOC access in the caller could be scheduled between 5344 // the assignment of the callee TOC and the branch to the callee, which leads 5345 // to incorrect code. 5346 5347 // Start by loading the function address from the descriptor. 5348 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5349 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5350 ? (MachineMemOperand::MODereferenceable | 5351 MachineMemOperand::MOInvariant) 5352 : MachineMemOperand::MONone; 5353 5354 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5355 5356 // Registers used in building the DAG. 5357 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5358 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5359 5360 // Offsets of descriptor members. 5361 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5362 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5363 5364 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5365 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5366 5367 // One load for the functions entry point address. 5368 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5369 Alignment, MMOFlags); 5370 5371 // One for loading the TOC anchor for the module that contains the called 5372 // function. 5373 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5374 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5375 SDValue TOCPtr = 5376 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5377 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5378 5379 // One for loading the environment pointer. 5380 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5381 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5382 SDValue LoadEnvPtr = 5383 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5384 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5385 5386 5387 // Then copy the newly loaded TOC anchor to the TOC pointer. 5388 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5389 Chain = TOCVal.getValue(0); 5390 Glue = TOCVal.getValue(1); 5391 5392 // If the function call has an explicit 'nest' parameter, it takes the 5393 // place of the environment pointer. 5394 assert((!hasNest || !Subtarget.isAIXABI()) && 5395 "Nest parameter is not supported on AIX."); 5396 if (!hasNest) { 5397 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5398 Chain = EnvVal.getValue(0); 5399 Glue = EnvVal.getValue(1); 5400 } 5401 5402 // The rest of the indirect call sequence is the same as the non-descriptor 5403 // DAG. 5404 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5405 } 5406 5407 static void 5408 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5409 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5410 SelectionDAG &DAG, 5411 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5412 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5413 const PPCSubtarget &Subtarget) { 5414 const bool IsPPC64 = Subtarget.isPPC64(); 5415 // MVT for a general purpose register. 5416 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5417 5418 // First operand is always the chain. 5419 Ops.push_back(Chain); 5420 5421 // If it's a direct call pass the callee as the second operand. 5422 if (!CFlags.IsIndirect) 5423 Ops.push_back(Callee); 5424 else { 5425 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5426 5427 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5428 // on the stack (this would have been done in `LowerCall_64SVR4` or 5429 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5430 // represents both the indirect branch and a load that restores the TOC 5431 // pointer from the linkage area. The operand for the TOC restore is an add 5432 // of the TOC save offset to the stack pointer. This must be the second 5433 // operand: after the chain input but before any other variadic arguments. 5434 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5435 // saved or used. 5436 if (isTOCSaveRestoreRequired(Subtarget)) { 5437 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5438 5439 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5440 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5441 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5442 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5443 Ops.push_back(AddTOC); 5444 } 5445 5446 // Add the register used for the environment pointer. 5447 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5448 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5449 RegVT)); 5450 5451 5452 // Add CTR register as callee so a bctr can be emitted later. 5453 if (CFlags.IsTailCall) 5454 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5455 } 5456 5457 // If this is a tail call add stack pointer delta. 5458 if (CFlags.IsTailCall) 5459 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5460 5461 // Add argument registers to the end of the list so that they are known live 5462 // into the call. 5463 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5464 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5465 RegsToPass[i].second.getValueType())); 5466 5467 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5468 // no way to mark dependencies as implicit here. 5469 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5470 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5471 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5472 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5473 5474 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5475 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5476 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5477 5478 // Add a register mask operand representing the call-preserved registers. 5479 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5480 const uint32_t *Mask = 5481 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5482 assert(Mask && "Missing call preserved mask for calling convention"); 5483 Ops.push_back(DAG.getRegisterMask(Mask)); 5484 5485 // If the glue is valid, it is the last operand. 5486 if (Glue.getNode()) 5487 Ops.push_back(Glue); 5488 } 5489 5490 SDValue PPCTargetLowering::FinishCall( 5491 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5492 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5493 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5494 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5495 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5496 5497 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5498 Subtarget.isAIXABI()) 5499 setUsesTOCBasePtr(DAG); 5500 5501 unsigned CallOpc = 5502 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5503 Subtarget, DAG.getTarget()); 5504 5505 if (!CFlags.IsIndirect) 5506 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5507 else if (Subtarget.usesFunctionDescriptors()) 5508 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5509 dl, CFlags.HasNest, Subtarget); 5510 else 5511 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5512 5513 // Build the operand list for the call instruction. 5514 SmallVector<SDValue, 8> Ops; 5515 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5516 SPDiff, Subtarget); 5517 5518 // Emit tail call. 5519 if (CFlags.IsTailCall) { 5520 // Indirect tail call when using PC Relative calls do not have the same 5521 // constraints. 5522 assert(((Callee.getOpcode() == ISD::Register && 5523 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5524 Callee.getOpcode() == ISD::TargetExternalSymbol || 5525 Callee.getOpcode() == ISD::TargetGlobalAddress || 5526 isa<ConstantSDNode>(Callee) || 5527 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5528 "Expecting a global address, external symbol, absolute value, " 5529 "register or an indirect tail call when PC Relative calls are " 5530 "used."); 5531 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5532 assert(CallOpc == PPCISD::TC_RETURN && 5533 "Unexpected call opcode for a tail call."); 5534 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5535 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5536 } 5537 5538 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5539 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5540 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5541 Glue = Chain.getValue(1); 5542 5543 // When performing tail call optimization the callee pops its arguments off 5544 // the stack. Account for this here so these bytes can be pushed back on in 5545 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5546 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5547 getTargetMachine().Options.GuaranteedTailCallOpt) 5548 ? NumBytes 5549 : 0; 5550 5551 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5552 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5553 Glue, dl); 5554 Glue = Chain.getValue(1); 5555 5556 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5557 DAG, InVals); 5558 } 5559 5560 SDValue 5561 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5562 SmallVectorImpl<SDValue> &InVals) const { 5563 SelectionDAG &DAG = CLI.DAG; 5564 SDLoc &dl = CLI.DL; 5565 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5566 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5567 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5568 SDValue Chain = CLI.Chain; 5569 SDValue Callee = CLI.Callee; 5570 bool &isTailCall = CLI.IsTailCall; 5571 CallingConv::ID CallConv = CLI.CallConv; 5572 bool isVarArg = CLI.IsVarArg; 5573 bool isPatchPoint = CLI.IsPatchPoint; 5574 const CallBase *CB = CLI.CB; 5575 5576 if (isTailCall) { 5577 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5578 isTailCall = false; 5579 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5580 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5581 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5582 else 5583 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5584 Ins, DAG); 5585 if (isTailCall) { 5586 ++NumTailCalls; 5587 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5588 ++NumSiblingCalls; 5589 5590 // PC Relative calls no longer guarantee that the callee is a Global 5591 // Address Node. The callee could be an indirect tail call in which 5592 // case the SDValue for the callee could be a load (to load the address 5593 // of a function pointer) or it may be a register copy (to move the 5594 // address of the callee from a function parameter into a virtual 5595 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5596 assert((Subtarget.isUsingPCRelativeCalls() || 5597 isa<GlobalAddressSDNode>(Callee)) && 5598 "Callee should be an llvm::Function object."); 5599 5600 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5601 << "\nTCO callee: "); 5602 LLVM_DEBUG(Callee.dump()); 5603 } 5604 } 5605 5606 if (!isTailCall && CB && CB->isMustTailCall()) 5607 report_fatal_error("failed to perform tail call elimination on a call " 5608 "site marked musttail"); 5609 5610 // When long calls (i.e. indirect calls) are always used, calls are always 5611 // made via function pointer. If we have a function name, first translate it 5612 // into a pointer. 5613 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5614 !isTailCall) 5615 Callee = LowerGlobalAddress(Callee, DAG); 5616 5617 CallFlags CFlags( 5618 CallConv, isTailCall, isVarArg, isPatchPoint, 5619 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5620 // hasNest 5621 Subtarget.is64BitELFABI() && 5622 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5623 CLI.NoMerge); 5624 5625 if (Subtarget.isAIXABI()) 5626 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5627 InVals, CB); 5628 5629 assert(Subtarget.isSVR4ABI()); 5630 if (Subtarget.isPPC64()) 5631 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5632 InVals, CB); 5633 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5634 InVals, CB); 5635 } 5636 5637 SDValue PPCTargetLowering::LowerCall_32SVR4( 5638 SDValue Chain, SDValue Callee, CallFlags CFlags, 5639 const SmallVectorImpl<ISD::OutputArg> &Outs, 5640 const SmallVectorImpl<SDValue> &OutVals, 5641 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5642 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5643 const CallBase *CB) const { 5644 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5645 // of the 32-bit SVR4 ABI stack frame layout. 5646 5647 const CallingConv::ID CallConv = CFlags.CallConv; 5648 const bool IsVarArg = CFlags.IsVarArg; 5649 const bool IsTailCall = CFlags.IsTailCall; 5650 5651 assert((CallConv == CallingConv::C || 5652 CallConv == CallingConv::Cold || 5653 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5654 5655 const Align PtrAlign(4); 5656 5657 MachineFunction &MF = DAG.getMachineFunction(); 5658 5659 // Mark this function as potentially containing a function that contains a 5660 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5661 // and restoring the callers stack pointer in this functions epilog. This is 5662 // done because by tail calling the called function might overwrite the value 5663 // in this function's (MF) stack pointer stack slot 0(SP). 5664 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5665 CallConv == CallingConv::Fast) 5666 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5667 5668 // Count how many bytes are to be pushed on the stack, including the linkage 5669 // area, parameter list area and the part of the local variable space which 5670 // contains copies of aggregates which are passed by value. 5671 5672 // Assign locations to all of the outgoing arguments. 5673 SmallVector<CCValAssign, 16> ArgLocs; 5674 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5675 5676 // Reserve space for the linkage area on the stack. 5677 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5678 PtrAlign); 5679 if (useSoftFloat()) 5680 CCInfo.PreAnalyzeCallOperands(Outs); 5681 5682 if (IsVarArg) { 5683 // Handle fixed and variable vector arguments differently. 5684 // Fixed vector arguments go into registers as long as registers are 5685 // available. Variable vector arguments always go into memory. 5686 unsigned NumArgs = Outs.size(); 5687 5688 for (unsigned i = 0; i != NumArgs; ++i) { 5689 MVT ArgVT = Outs[i].VT; 5690 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5691 bool Result; 5692 5693 if (Outs[i].IsFixed) { 5694 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5695 CCInfo); 5696 } else { 5697 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5698 ArgFlags, CCInfo); 5699 } 5700 5701 if (Result) { 5702 #ifndef NDEBUG 5703 errs() << "Call operand #" << i << " has unhandled type " 5704 << EVT(ArgVT).getEVTString() << "\n"; 5705 #endif 5706 llvm_unreachable(nullptr); 5707 } 5708 } 5709 } else { 5710 // All arguments are treated the same. 5711 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5712 } 5713 CCInfo.clearWasPPCF128(); 5714 5715 // Assign locations to all of the outgoing aggregate by value arguments. 5716 SmallVector<CCValAssign, 16> ByValArgLocs; 5717 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5718 5719 // Reserve stack space for the allocations in CCInfo. 5720 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5721 5722 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5723 5724 // Size of the linkage area, parameter list area and the part of the local 5725 // space variable where copies of aggregates which are passed by value are 5726 // stored. 5727 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5728 5729 // Calculate by how many bytes the stack has to be adjusted in case of tail 5730 // call optimization. 5731 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5732 5733 // Adjust the stack pointer for the new arguments... 5734 // These operations are automatically eliminated by the prolog/epilog pass 5735 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5736 SDValue CallSeqStart = Chain; 5737 5738 // Load the return address and frame pointer so it can be moved somewhere else 5739 // later. 5740 SDValue LROp, FPOp; 5741 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5742 5743 // Set up a copy of the stack pointer for use loading and storing any 5744 // arguments that may not fit in the registers available for argument 5745 // passing. 5746 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5747 5748 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5749 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5750 SmallVector<SDValue, 8> MemOpChains; 5751 5752 bool seenFloatArg = false; 5753 // Walk the register/memloc assignments, inserting copies/loads. 5754 // i - Tracks the index into the list of registers allocated for the call 5755 // RealArgIdx - Tracks the index into the list of actual function arguments 5756 // j - Tracks the index into the list of byval arguments 5757 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5758 i != e; 5759 ++i, ++RealArgIdx) { 5760 CCValAssign &VA = ArgLocs[i]; 5761 SDValue Arg = OutVals[RealArgIdx]; 5762 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5763 5764 if (Flags.isByVal()) { 5765 // Argument is an aggregate which is passed by value, thus we need to 5766 // create a copy of it in the local variable space of the current stack 5767 // frame (which is the stack frame of the caller) and pass the address of 5768 // this copy to the callee. 5769 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5770 CCValAssign &ByValVA = ByValArgLocs[j++]; 5771 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5772 5773 // Memory reserved in the local variable space of the callers stack frame. 5774 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5775 5776 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5777 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5778 StackPtr, PtrOff); 5779 5780 // Create a copy of the argument in the local area of the current 5781 // stack frame. 5782 SDValue MemcpyCall = 5783 CreateCopyOfByValArgument(Arg, PtrOff, 5784 CallSeqStart.getNode()->getOperand(0), 5785 Flags, DAG, dl); 5786 5787 // This must go outside the CALLSEQ_START..END. 5788 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5789 SDLoc(MemcpyCall)); 5790 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5791 NewCallSeqStart.getNode()); 5792 Chain = CallSeqStart = NewCallSeqStart; 5793 5794 // Pass the address of the aggregate copy on the stack either in a 5795 // physical register or in the parameter list area of the current stack 5796 // frame to the callee. 5797 Arg = PtrOff; 5798 } 5799 5800 // When useCRBits() is true, there can be i1 arguments. 5801 // It is because getRegisterType(MVT::i1) => MVT::i1, 5802 // and for other integer types getRegisterType() => MVT::i32. 5803 // Extend i1 and ensure callee will get i32. 5804 if (Arg.getValueType() == MVT::i1) 5805 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5806 dl, MVT::i32, Arg); 5807 5808 if (VA.isRegLoc()) { 5809 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5810 // Put argument in a physical register. 5811 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5812 bool IsLE = Subtarget.isLittleEndian(); 5813 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5814 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5815 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5816 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5817 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5818 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5819 SVal.getValue(0))); 5820 } else 5821 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5822 } else { 5823 // Put argument in the parameter list area of the current stack frame. 5824 assert(VA.isMemLoc()); 5825 unsigned LocMemOffset = VA.getLocMemOffset(); 5826 5827 if (!IsTailCall) { 5828 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5829 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5830 StackPtr, PtrOff); 5831 5832 MemOpChains.push_back( 5833 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5834 } else { 5835 // Calculate and remember argument location. 5836 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5837 TailCallArguments); 5838 } 5839 } 5840 } 5841 5842 if (!MemOpChains.empty()) 5843 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5844 5845 // Build a sequence of copy-to-reg nodes chained together with token chain 5846 // and flag operands which copy the outgoing args into the appropriate regs. 5847 SDValue InFlag; 5848 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5849 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5850 RegsToPass[i].second, InFlag); 5851 InFlag = Chain.getValue(1); 5852 } 5853 5854 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5855 // registers. 5856 if (IsVarArg) { 5857 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5858 SDValue Ops[] = { Chain, InFlag }; 5859 5860 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5861 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5862 5863 InFlag = Chain.getValue(1); 5864 } 5865 5866 if (IsTailCall) 5867 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5868 TailCallArguments); 5869 5870 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5871 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5872 } 5873 5874 // Copy an argument into memory, being careful to do this outside the 5875 // call sequence for the call to which the argument belongs. 5876 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5877 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5878 SelectionDAG &DAG, const SDLoc &dl) const { 5879 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5880 CallSeqStart.getNode()->getOperand(0), 5881 Flags, DAG, dl); 5882 // The MEMCPY must go outside the CALLSEQ_START..END. 5883 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5884 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5885 SDLoc(MemcpyCall)); 5886 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5887 NewCallSeqStart.getNode()); 5888 return NewCallSeqStart; 5889 } 5890 5891 SDValue PPCTargetLowering::LowerCall_64SVR4( 5892 SDValue Chain, SDValue Callee, CallFlags CFlags, 5893 const SmallVectorImpl<ISD::OutputArg> &Outs, 5894 const SmallVectorImpl<SDValue> &OutVals, 5895 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5896 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5897 const CallBase *CB) const { 5898 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5899 bool isLittleEndian = Subtarget.isLittleEndian(); 5900 unsigned NumOps = Outs.size(); 5901 bool IsSibCall = false; 5902 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5903 5904 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5905 unsigned PtrByteSize = 8; 5906 5907 MachineFunction &MF = DAG.getMachineFunction(); 5908 5909 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5910 IsSibCall = true; 5911 5912 // Mark this function as potentially containing a function that contains a 5913 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5914 // and restoring the callers stack pointer in this functions epilog. This is 5915 // done because by tail calling the called function might overwrite the value 5916 // in this function's (MF) stack pointer stack slot 0(SP). 5917 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5918 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5919 5920 assert(!(IsFastCall && CFlags.IsVarArg) && 5921 "fastcc not supported on varargs functions"); 5922 5923 // Count how many bytes are to be pushed on the stack, including the linkage 5924 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5925 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5926 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5927 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5928 unsigned NumBytes = LinkageSize; 5929 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5930 5931 static const MCPhysReg GPR[] = { 5932 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5933 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5934 }; 5935 static const MCPhysReg VR[] = { 5936 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5937 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5938 }; 5939 5940 const unsigned NumGPRs = array_lengthof(GPR); 5941 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5942 const unsigned NumVRs = array_lengthof(VR); 5943 5944 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5945 // can be passed to the callee in registers. 5946 // For the fast calling convention, there is another check below. 5947 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5948 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5949 if (!HasParameterArea) { 5950 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5951 unsigned AvailableFPRs = NumFPRs; 5952 unsigned AvailableVRs = NumVRs; 5953 unsigned NumBytesTmp = NumBytes; 5954 for (unsigned i = 0; i != NumOps; ++i) { 5955 if (Outs[i].Flags.isNest()) continue; 5956 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5957 PtrByteSize, LinkageSize, ParamAreaSize, 5958 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5959 HasParameterArea = true; 5960 } 5961 } 5962 5963 // When using the fast calling convention, we don't provide backing for 5964 // arguments that will be in registers. 5965 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5966 5967 // Avoid allocating parameter area for fastcc functions if all the arguments 5968 // can be passed in the registers. 5969 if (IsFastCall) 5970 HasParameterArea = false; 5971 5972 // Add up all the space actually used. 5973 for (unsigned i = 0; i != NumOps; ++i) { 5974 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5975 EVT ArgVT = Outs[i].VT; 5976 EVT OrigVT = Outs[i].ArgVT; 5977 5978 if (Flags.isNest()) 5979 continue; 5980 5981 if (IsFastCall) { 5982 if (Flags.isByVal()) { 5983 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5984 if (NumGPRsUsed > NumGPRs) 5985 HasParameterArea = true; 5986 } else { 5987 switch (ArgVT.getSimpleVT().SimpleTy) { 5988 default: llvm_unreachable("Unexpected ValueType for argument!"); 5989 case MVT::i1: 5990 case MVT::i32: 5991 case MVT::i64: 5992 if (++NumGPRsUsed <= NumGPRs) 5993 continue; 5994 break; 5995 case MVT::v4i32: 5996 case MVT::v8i16: 5997 case MVT::v16i8: 5998 case MVT::v2f64: 5999 case MVT::v2i64: 6000 case MVT::v1i128: 6001 case MVT::f128: 6002 if (++NumVRsUsed <= NumVRs) 6003 continue; 6004 break; 6005 case MVT::v4f32: 6006 if (++NumVRsUsed <= NumVRs) 6007 continue; 6008 break; 6009 case MVT::f32: 6010 case MVT::f64: 6011 if (++NumFPRsUsed <= NumFPRs) 6012 continue; 6013 break; 6014 } 6015 HasParameterArea = true; 6016 } 6017 } 6018 6019 /* Respect alignment of argument on the stack. */ 6020 auto Alignement = 6021 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6022 NumBytes = alignTo(NumBytes, Alignement); 6023 6024 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6025 if (Flags.isInConsecutiveRegsLast()) 6026 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6027 } 6028 6029 unsigned NumBytesActuallyUsed = NumBytes; 6030 6031 // In the old ELFv1 ABI, 6032 // the prolog code of the callee may store up to 8 GPR argument registers to 6033 // the stack, allowing va_start to index over them in memory if its varargs. 6034 // Because we cannot tell if this is needed on the caller side, we have to 6035 // conservatively assume that it is needed. As such, make sure we have at 6036 // least enough stack space for the caller to store the 8 GPRs. 6037 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6038 // really requires memory operands, e.g. a vararg function. 6039 if (HasParameterArea) 6040 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6041 else 6042 NumBytes = LinkageSize; 6043 6044 // Tail call needs the stack to be aligned. 6045 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6046 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6047 6048 int SPDiff = 0; 6049 6050 // Calculate by how many bytes the stack has to be adjusted in case of tail 6051 // call optimization. 6052 if (!IsSibCall) 6053 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6054 6055 // To protect arguments on the stack from being clobbered in a tail call, 6056 // force all the loads to happen before doing any other lowering. 6057 if (CFlags.IsTailCall) 6058 Chain = DAG.getStackArgumentTokenFactor(Chain); 6059 6060 // Adjust the stack pointer for the new arguments... 6061 // These operations are automatically eliminated by the prolog/epilog pass 6062 if (!IsSibCall) 6063 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6064 SDValue CallSeqStart = Chain; 6065 6066 // Load the return address and frame pointer so it can be move somewhere else 6067 // later. 6068 SDValue LROp, FPOp; 6069 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6070 6071 // Set up a copy of the stack pointer for use loading and storing any 6072 // arguments that may not fit in the registers available for argument 6073 // passing. 6074 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6075 6076 // Figure out which arguments are going to go in registers, and which in 6077 // memory. Also, if this is a vararg function, floating point operations 6078 // must be stored to our stack, and loaded into integer regs as well, if 6079 // any integer regs are available for argument passing. 6080 unsigned ArgOffset = LinkageSize; 6081 6082 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6083 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6084 6085 SmallVector<SDValue, 8> MemOpChains; 6086 for (unsigned i = 0; i != NumOps; ++i) { 6087 SDValue Arg = OutVals[i]; 6088 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6089 EVT ArgVT = Outs[i].VT; 6090 EVT OrigVT = Outs[i].ArgVT; 6091 6092 // PtrOff will be used to store the current argument to the stack if a 6093 // register cannot be found for it. 6094 SDValue PtrOff; 6095 6096 // We re-align the argument offset for each argument, except when using the 6097 // fast calling convention, when we need to make sure we do that only when 6098 // we'll actually use a stack slot. 6099 auto ComputePtrOff = [&]() { 6100 /* Respect alignment of argument on the stack. */ 6101 auto Alignment = 6102 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6103 ArgOffset = alignTo(ArgOffset, Alignment); 6104 6105 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6106 6107 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6108 }; 6109 6110 if (!IsFastCall) { 6111 ComputePtrOff(); 6112 6113 /* Compute GPR index associated with argument offset. */ 6114 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6115 GPR_idx = std::min(GPR_idx, NumGPRs); 6116 } 6117 6118 // Promote integers to 64-bit values. 6119 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6120 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6121 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6122 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6123 } 6124 6125 // FIXME memcpy is used way more than necessary. Correctness first. 6126 // Note: "by value" is code for passing a structure by value, not 6127 // basic types. 6128 if (Flags.isByVal()) { 6129 // Note: Size includes alignment padding, so 6130 // struct x { short a; char b; } 6131 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6132 // These are the proper values we need for right-justifying the 6133 // aggregate in a parameter register. 6134 unsigned Size = Flags.getByValSize(); 6135 6136 // An empty aggregate parameter takes up no storage and no 6137 // registers. 6138 if (Size == 0) 6139 continue; 6140 6141 if (IsFastCall) 6142 ComputePtrOff(); 6143 6144 // All aggregates smaller than 8 bytes must be passed right-justified. 6145 if (Size==1 || Size==2 || Size==4) { 6146 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6147 if (GPR_idx != NumGPRs) { 6148 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6149 MachinePointerInfo(), VT); 6150 MemOpChains.push_back(Load.getValue(1)); 6151 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6152 6153 ArgOffset += PtrByteSize; 6154 continue; 6155 } 6156 } 6157 6158 if (GPR_idx == NumGPRs && Size < 8) { 6159 SDValue AddPtr = PtrOff; 6160 if (!isLittleEndian) { 6161 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6162 PtrOff.getValueType()); 6163 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6164 } 6165 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6166 CallSeqStart, 6167 Flags, DAG, dl); 6168 ArgOffset += PtrByteSize; 6169 continue; 6170 } 6171 // Copy entire object into memory. There are cases where gcc-generated 6172 // code assumes it is there, even if it could be put entirely into 6173 // registers. (This is not what the doc says.) 6174 6175 // FIXME: The above statement is likely due to a misunderstanding of the 6176 // documents. All arguments must be copied into the parameter area BY 6177 // THE CALLEE in the event that the callee takes the address of any 6178 // formal argument. That has not yet been implemented. However, it is 6179 // reasonable to use the stack area as a staging area for the register 6180 // load. 6181 6182 // Skip this for small aggregates, as we will use the same slot for a 6183 // right-justified copy, below. 6184 if (Size >= 8) 6185 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6186 CallSeqStart, 6187 Flags, DAG, dl); 6188 6189 // When a register is available, pass a small aggregate right-justified. 6190 if (Size < 8 && GPR_idx != NumGPRs) { 6191 // The easiest way to get this right-justified in a register 6192 // is to copy the structure into the rightmost portion of a 6193 // local variable slot, then load the whole slot into the 6194 // register. 6195 // FIXME: The memcpy seems to produce pretty awful code for 6196 // small aggregates, particularly for packed ones. 6197 // FIXME: It would be preferable to use the slot in the 6198 // parameter save area instead of a new local variable. 6199 SDValue AddPtr = PtrOff; 6200 if (!isLittleEndian) { 6201 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6202 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6203 } 6204 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6205 CallSeqStart, 6206 Flags, DAG, dl); 6207 6208 // Load the slot into the register. 6209 SDValue Load = 6210 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6211 MemOpChains.push_back(Load.getValue(1)); 6212 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6213 6214 // Done with this argument. 6215 ArgOffset += PtrByteSize; 6216 continue; 6217 } 6218 6219 // For aggregates larger than PtrByteSize, copy the pieces of the 6220 // object that fit into registers from the parameter save area. 6221 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6222 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6223 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6224 if (GPR_idx != NumGPRs) { 6225 SDValue Load = 6226 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6227 MemOpChains.push_back(Load.getValue(1)); 6228 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6229 ArgOffset += PtrByteSize; 6230 } else { 6231 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6232 break; 6233 } 6234 } 6235 continue; 6236 } 6237 6238 switch (Arg.getSimpleValueType().SimpleTy) { 6239 default: llvm_unreachable("Unexpected ValueType for argument!"); 6240 case MVT::i1: 6241 case MVT::i32: 6242 case MVT::i64: 6243 if (Flags.isNest()) { 6244 // The 'nest' parameter, if any, is passed in R11. 6245 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6246 break; 6247 } 6248 6249 // These can be scalar arguments or elements of an integer array type 6250 // passed directly. Clang may use those instead of "byval" aggregate 6251 // types to avoid forcing arguments to memory unnecessarily. 6252 if (GPR_idx != NumGPRs) { 6253 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6254 } else { 6255 if (IsFastCall) 6256 ComputePtrOff(); 6257 6258 assert(HasParameterArea && 6259 "Parameter area must exist to pass an argument in memory."); 6260 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6261 true, CFlags.IsTailCall, false, MemOpChains, 6262 TailCallArguments, dl); 6263 if (IsFastCall) 6264 ArgOffset += PtrByteSize; 6265 } 6266 if (!IsFastCall) 6267 ArgOffset += PtrByteSize; 6268 break; 6269 case MVT::f32: 6270 case MVT::f64: { 6271 // These can be scalar arguments or elements of a float array type 6272 // passed directly. The latter are used to implement ELFv2 homogenous 6273 // float aggregates. 6274 6275 // Named arguments go into FPRs first, and once they overflow, the 6276 // remaining arguments go into GPRs and then the parameter save area. 6277 // Unnamed arguments for vararg functions always go to GPRs and 6278 // then the parameter save area. For now, put all arguments to vararg 6279 // routines always in both locations (FPR *and* GPR or stack slot). 6280 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6281 bool NeededLoad = false; 6282 6283 // First load the argument into the next available FPR. 6284 if (FPR_idx != NumFPRs) 6285 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6286 6287 // Next, load the argument into GPR or stack slot if needed. 6288 if (!NeedGPROrStack) 6289 ; 6290 else if (GPR_idx != NumGPRs && !IsFastCall) { 6291 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6292 // once we support fp <-> gpr moves. 6293 6294 // In the non-vararg case, this can only ever happen in the 6295 // presence of f32 array types, since otherwise we never run 6296 // out of FPRs before running out of GPRs. 6297 SDValue ArgVal; 6298 6299 // Double values are always passed in a single GPR. 6300 if (Arg.getValueType() != MVT::f32) { 6301 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6302 6303 // Non-array float values are extended and passed in a GPR. 6304 } else if (!Flags.isInConsecutiveRegs()) { 6305 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6306 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6307 6308 // If we have an array of floats, we collect every odd element 6309 // together with its predecessor into one GPR. 6310 } else if (ArgOffset % PtrByteSize != 0) { 6311 SDValue Lo, Hi; 6312 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6313 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6314 if (!isLittleEndian) 6315 std::swap(Lo, Hi); 6316 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6317 6318 // The final element, if even, goes into the first half of a GPR. 6319 } else if (Flags.isInConsecutiveRegsLast()) { 6320 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6321 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6322 if (!isLittleEndian) 6323 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6324 DAG.getConstant(32, dl, MVT::i32)); 6325 6326 // Non-final even elements are skipped; they will be handled 6327 // together the with subsequent argument on the next go-around. 6328 } else 6329 ArgVal = SDValue(); 6330 6331 if (ArgVal.getNode()) 6332 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6333 } else { 6334 if (IsFastCall) 6335 ComputePtrOff(); 6336 6337 // Single-precision floating-point values are mapped to the 6338 // second (rightmost) word of the stack doubleword. 6339 if (Arg.getValueType() == MVT::f32 && 6340 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6341 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6342 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6343 } 6344 6345 assert(HasParameterArea && 6346 "Parameter area must exist to pass an argument in memory."); 6347 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6348 true, CFlags.IsTailCall, false, MemOpChains, 6349 TailCallArguments, dl); 6350 6351 NeededLoad = true; 6352 } 6353 // When passing an array of floats, the array occupies consecutive 6354 // space in the argument area; only round up to the next doubleword 6355 // at the end of the array. Otherwise, each float takes 8 bytes. 6356 if (!IsFastCall || NeededLoad) { 6357 ArgOffset += (Arg.getValueType() == MVT::f32 && 6358 Flags.isInConsecutiveRegs()) ? 4 : 8; 6359 if (Flags.isInConsecutiveRegsLast()) 6360 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6361 } 6362 break; 6363 } 6364 case MVT::v4f32: 6365 case MVT::v4i32: 6366 case MVT::v8i16: 6367 case MVT::v16i8: 6368 case MVT::v2f64: 6369 case MVT::v2i64: 6370 case MVT::v1i128: 6371 case MVT::f128: 6372 // These can be scalar arguments or elements of a vector array type 6373 // passed directly. The latter are used to implement ELFv2 homogenous 6374 // vector aggregates. 6375 6376 // For a varargs call, named arguments go into VRs or on the stack as 6377 // usual; unnamed arguments always go to the stack or the corresponding 6378 // GPRs when within range. For now, we always put the value in both 6379 // locations (or even all three). 6380 if (CFlags.IsVarArg) { 6381 assert(HasParameterArea && 6382 "Parameter area must exist if we have a varargs call."); 6383 // We could elide this store in the case where the object fits 6384 // entirely in R registers. Maybe later. 6385 SDValue Store = 6386 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6387 MemOpChains.push_back(Store); 6388 if (VR_idx != NumVRs) { 6389 SDValue Load = 6390 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6391 MemOpChains.push_back(Load.getValue(1)); 6392 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6393 } 6394 ArgOffset += 16; 6395 for (unsigned i=0; i<16; i+=PtrByteSize) { 6396 if (GPR_idx == NumGPRs) 6397 break; 6398 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6399 DAG.getConstant(i, dl, PtrVT)); 6400 SDValue Load = 6401 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6402 MemOpChains.push_back(Load.getValue(1)); 6403 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6404 } 6405 break; 6406 } 6407 6408 // Non-varargs Altivec params go into VRs or on the stack. 6409 if (VR_idx != NumVRs) { 6410 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6411 } else { 6412 if (IsFastCall) 6413 ComputePtrOff(); 6414 6415 assert(HasParameterArea && 6416 "Parameter area must exist to pass an argument in memory."); 6417 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6418 true, CFlags.IsTailCall, true, MemOpChains, 6419 TailCallArguments, dl); 6420 if (IsFastCall) 6421 ArgOffset += 16; 6422 } 6423 6424 if (!IsFastCall) 6425 ArgOffset += 16; 6426 break; 6427 } 6428 } 6429 6430 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6431 "mismatch in size of parameter area"); 6432 (void)NumBytesActuallyUsed; 6433 6434 if (!MemOpChains.empty()) 6435 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6436 6437 // Check if this is an indirect call (MTCTR/BCTRL). 6438 // See prepareDescriptorIndirectCall and buildCallOperands for more 6439 // information about calls through function pointers in the 64-bit SVR4 ABI. 6440 if (CFlags.IsIndirect) { 6441 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6442 // caller in the TOC save area. 6443 if (isTOCSaveRestoreRequired(Subtarget)) { 6444 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6445 // Load r2 into a virtual register and store it to the TOC save area. 6446 setUsesTOCBasePtr(DAG); 6447 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6448 // TOC save area offset. 6449 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6450 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6451 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6452 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6453 MachinePointerInfo::getStack( 6454 DAG.getMachineFunction(), TOCSaveOffset)); 6455 } 6456 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6457 // This does not mean the MTCTR instruction must use R12; it's easier 6458 // to model this as an extra parameter, so do that. 6459 if (isELFv2ABI && !CFlags.IsPatchPoint) 6460 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6461 } 6462 6463 // Build a sequence of copy-to-reg nodes chained together with token chain 6464 // and flag operands which copy the outgoing args into the appropriate regs. 6465 SDValue InFlag; 6466 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6467 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6468 RegsToPass[i].second, InFlag); 6469 InFlag = Chain.getValue(1); 6470 } 6471 6472 if (CFlags.IsTailCall && !IsSibCall) 6473 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6474 TailCallArguments); 6475 6476 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6477 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6478 } 6479 6480 // Returns true when the shadow of a general purpose argument register 6481 // in the parameter save area is aligned to at least 'RequiredAlign'. 6482 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6483 assert(RequiredAlign.value() <= 16 && 6484 "Required alignment greater than stack alignment."); 6485 switch (Reg) { 6486 default: 6487 report_fatal_error("called on invalid register."); 6488 case PPC::R5: 6489 case PPC::R9: 6490 case PPC::X3: 6491 case PPC::X5: 6492 case PPC::X7: 6493 case PPC::X9: 6494 // These registers are 16 byte aligned which is the most strict aligment 6495 // we can support. 6496 return true; 6497 case PPC::R3: 6498 case PPC::R7: 6499 case PPC::X4: 6500 case PPC::X6: 6501 case PPC::X8: 6502 case PPC::X10: 6503 // The shadow of these registers in the PSA is 8 byte aligned. 6504 return RequiredAlign <= 8; 6505 case PPC::R4: 6506 case PPC::R6: 6507 case PPC::R8: 6508 case PPC::R10: 6509 return RequiredAlign <= 4; 6510 } 6511 } 6512 6513 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6514 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6515 CCState &S) { 6516 AIXCCState &State = static_cast<AIXCCState &>(S); 6517 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6518 State.getMachineFunction().getSubtarget()); 6519 const bool IsPPC64 = Subtarget.isPPC64(); 6520 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6521 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6522 6523 if (ValVT == MVT::f128) 6524 report_fatal_error("f128 is unimplemented on AIX."); 6525 6526 if (ArgFlags.isNest()) 6527 report_fatal_error("Nest arguments are unimplemented."); 6528 6529 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6530 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6531 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6532 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6533 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6534 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6535 6536 static const MCPhysReg VR[] = {// Vector registers. 6537 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6538 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6539 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6540 6541 if (ArgFlags.isByVal()) { 6542 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6543 report_fatal_error("Pass-by-value arguments with alignment greater than " 6544 "register width are not supported."); 6545 6546 const unsigned ByValSize = ArgFlags.getByValSize(); 6547 6548 // An empty aggregate parameter takes up no storage and no registers, 6549 // but needs a MemLoc for a stack slot for the formal arguments side. 6550 if (ByValSize == 0) { 6551 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6552 State.getNextStackOffset(), RegVT, 6553 LocInfo)); 6554 return false; 6555 } 6556 6557 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6558 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6559 for (const unsigned E = Offset + StackSize; Offset < E; 6560 Offset += PtrAlign.value()) { 6561 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6562 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6563 else { 6564 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6565 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6566 LocInfo)); 6567 break; 6568 } 6569 } 6570 return false; 6571 } 6572 6573 // Arguments always reserve parameter save area. 6574 switch (ValVT.SimpleTy) { 6575 default: 6576 report_fatal_error("Unhandled value type for argument."); 6577 case MVT::i64: 6578 // i64 arguments should have been split to i32 for PPC32. 6579 assert(IsPPC64 && "PPC32 should have split i64 values."); 6580 LLVM_FALLTHROUGH; 6581 case MVT::i1: 6582 case MVT::i32: { 6583 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6584 // AIX integer arguments are always passed in register width. 6585 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6586 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6587 : CCValAssign::LocInfo::ZExt; 6588 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6589 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6590 else 6591 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6592 6593 return false; 6594 } 6595 case MVT::f32: 6596 case MVT::f64: { 6597 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6598 const unsigned StoreSize = LocVT.getStoreSize(); 6599 // Floats are always 4-byte aligned in the PSA on AIX. 6600 // This includes f64 in 64-bit mode for ABI compatibility. 6601 const unsigned Offset = 6602 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6603 unsigned FReg = State.AllocateReg(FPR); 6604 if (FReg) 6605 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6606 6607 // Reserve and initialize GPRs or initialize the PSA as required. 6608 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6609 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6610 assert(FReg && "An FPR should be available when a GPR is reserved."); 6611 if (State.isVarArg()) { 6612 // Successfully reserved GPRs are only initialized for vararg calls. 6613 // Custom handling is required for: 6614 // f64 in PPC32 needs to be split into 2 GPRs. 6615 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6616 State.addLoc( 6617 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6618 } 6619 } else { 6620 // If there are insufficient GPRs, the PSA needs to be initialized. 6621 // Initialization occurs even if an FPR was initialized for 6622 // compatibility with the AIX XL compiler. The full memory for the 6623 // argument will be initialized even if a prior word is saved in GPR. 6624 // A custom memLoc is used when the argument also passes in FPR so 6625 // that the callee handling can skip over it easily. 6626 State.addLoc( 6627 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6628 LocInfo) 6629 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6630 break; 6631 } 6632 } 6633 6634 return false; 6635 } 6636 case MVT::v4f32: 6637 case MVT::v4i32: 6638 case MVT::v8i16: 6639 case MVT::v16i8: 6640 case MVT::v2i64: 6641 case MVT::v2f64: 6642 case MVT::v1i128: { 6643 const unsigned VecSize = 16; 6644 const Align VecAlign(VecSize); 6645 6646 if (!State.isVarArg()) { 6647 // If there are vector registers remaining we don't consume any stack 6648 // space. 6649 if (unsigned VReg = State.AllocateReg(VR)) { 6650 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6651 return false; 6652 } 6653 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6654 // might be allocated in the portion of the PSA that is shadowed by the 6655 // GPRs. 6656 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6657 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6658 return false; 6659 } 6660 6661 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6662 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6663 6664 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6665 // Burn any underaligned registers and their shadowed stack space until 6666 // we reach the required alignment. 6667 while (NextRegIndex != GPRs.size() && 6668 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6669 // Shadow allocate register and its stack shadow. 6670 unsigned Reg = State.AllocateReg(GPRs); 6671 State.AllocateStack(PtrSize, PtrAlign); 6672 assert(Reg && "Allocating register unexpectedly failed."); 6673 (void)Reg; 6674 NextRegIndex = State.getFirstUnallocated(GPRs); 6675 } 6676 6677 // Vectors that are passed as fixed arguments are handled differently. 6678 // They are passed in VRs if any are available (unlike arguments passed 6679 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6680 // functions) 6681 if (State.isFixed(ValNo)) { 6682 if (unsigned VReg = State.AllocateReg(VR)) { 6683 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6684 // Shadow allocate GPRs and stack space even though we pass in a VR. 6685 for (unsigned I = 0; I != VecSize; I += PtrSize) 6686 State.AllocateReg(GPRs); 6687 State.AllocateStack(VecSize, VecAlign); 6688 return false; 6689 } 6690 // No vector registers remain so pass on the stack. 6691 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6692 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6693 return false; 6694 } 6695 6696 // If all GPRS are consumed then we pass the argument fully on the stack. 6697 if (NextRegIndex == GPRs.size()) { 6698 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6699 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6700 return false; 6701 } 6702 6703 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6704 // half of the argument, and then need to pass the remaining half on the 6705 // stack. 6706 if (GPRs[NextRegIndex] == PPC::R9) { 6707 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6708 State.addLoc( 6709 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6710 6711 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6712 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6713 assert(FirstReg && SecondReg && 6714 "Allocating R9 or R10 unexpectedly failed."); 6715 State.addLoc( 6716 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6717 State.addLoc( 6718 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6719 return false; 6720 } 6721 6722 // We have enough GPRs to fully pass the vector argument, and we have 6723 // already consumed any underaligned registers. Start with the custom 6724 // MemLoc and then the custom RegLocs. 6725 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6726 State.addLoc( 6727 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6728 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6729 const unsigned Reg = State.AllocateReg(GPRs); 6730 assert(Reg && "Failed to allocated register for vararg vector argument"); 6731 State.addLoc( 6732 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6733 } 6734 return false; 6735 } 6736 } 6737 return true; 6738 } 6739 6740 // So far, this function is only used by LowerFormalArguments_AIX() 6741 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6742 bool IsPPC64, 6743 bool HasP8Vector, 6744 bool HasVSX) { 6745 assert((IsPPC64 || SVT != MVT::i64) && 6746 "i64 should have been split for 32-bit codegen."); 6747 6748 switch (SVT) { 6749 default: 6750 report_fatal_error("Unexpected value type for formal argument"); 6751 case MVT::i1: 6752 case MVT::i32: 6753 case MVT::i64: 6754 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6755 case MVT::f32: 6756 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6757 case MVT::f64: 6758 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6759 case MVT::v4f32: 6760 case MVT::v4i32: 6761 case MVT::v8i16: 6762 case MVT::v16i8: 6763 case MVT::v2i64: 6764 case MVT::v2f64: 6765 case MVT::v1i128: 6766 return &PPC::VRRCRegClass; 6767 } 6768 } 6769 6770 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6771 SelectionDAG &DAG, SDValue ArgValue, 6772 MVT LocVT, const SDLoc &dl) { 6773 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6774 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6775 6776 if (Flags.isSExt()) 6777 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6778 DAG.getValueType(ValVT)); 6779 else if (Flags.isZExt()) 6780 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6781 DAG.getValueType(ValVT)); 6782 6783 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6784 } 6785 6786 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6787 const unsigned LASize = FL->getLinkageSize(); 6788 6789 if (PPC::GPRCRegClass.contains(Reg)) { 6790 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6791 "Reg must be a valid argument register!"); 6792 return LASize + 4 * (Reg - PPC::R3); 6793 } 6794 6795 if (PPC::G8RCRegClass.contains(Reg)) { 6796 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6797 "Reg must be a valid argument register!"); 6798 return LASize + 8 * (Reg - PPC::X3); 6799 } 6800 6801 llvm_unreachable("Only general purpose registers expected."); 6802 } 6803 6804 // AIX ABI Stack Frame Layout: 6805 // 6806 // Low Memory +--------------------------------------------+ 6807 // SP +---> | Back chain | ---+ 6808 // | +--------------------------------------------+ | 6809 // | | Saved Condition Register | | 6810 // | +--------------------------------------------+ | 6811 // | | Saved Linkage Register | | 6812 // | +--------------------------------------------+ | Linkage Area 6813 // | | Reserved for compilers | | 6814 // | +--------------------------------------------+ | 6815 // | | Reserved for binders | | 6816 // | +--------------------------------------------+ | 6817 // | | Saved TOC pointer | ---+ 6818 // | +--------------------------------------------+ 6819 // | | Parameter save area | 6820 // | +--------------------------------------------+ 6821 // | | Alloca space | 6822 // | +--------------------------------------------+ 6823 // | | Local variable space | 6824 // | +--------------------------------------------+ 6825 // | | Float/int conversion temporary | 6826 // | +--------------------------------------------+ 6827 // | | Save area for AltiVec registers | 6828 // | +--------------------------------------------+ 6829 // | | AltiVec alignment padding | 6830 // | +--------------------------------------------+ 6831 // | | Save area for VRSAVE register | 6832 // | +--------------------------------------------+ 6833 // | | Save area for General Purpose registers | 6834 // | +--------------------------------------------+ 6835 // | | Save area for Floating Point registers | 6836 // | +--------------------------------------------+ 6837 // +---- | Back chain | 6838 // High Memory +--------------------------------------------+ 6839 // 6840 // Specifications: 6841 // AIX 7.2 Assembler Language Reference 6842 // Subroutine linkage convention 6843 6844 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6845 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6846 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6847 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6848 6849 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6850 CallConv == CallingConv::Fast) && 6851 "Unexpected calling convention!"); 6852 6853 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6854 report_fatal_error("Tail call support is unimplemented on AIX."); 6855 6856 if (useSoftFloat()) 6857 report_fatal_error("Soft float support is unimplemented on AIX."); 6858 6859 const PPCSubtarget &Subtarget = 6860 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6861 6862 const bool IsPPC64 = Subtarget.isPPC64(); 6863 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6864 6865 // Assign locations to all of the incoming arguments. 6866 SmallVector<CCValAssign, 16> ArgLocs; 6867 MachineFunction &MF = DAG.getMachineFunction(); 6868 MachineFrameInfo &MFI = MF.getFrameInfo(); 6869 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6870 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6871 6872 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6873 // Reserve space for the linkage area on the stack. 6874 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6875 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6876 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6877 6878 SmallVector<SDValue, 8> MemOps; 6879 6880 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6881 CCValAssign &VA = ArgLocs[I++]; 6882 MVT LocVT = VA.getLocVT(); 6883 MVT ValVT = VA.getValVT(); 6884 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6885 // For compatibility with the AIX XL compiler, the float args in the 6886 // parameter save area are initialized even if the argument is available 6887 // in register. The caller is required to initialize both the register 6888 // and memory, however, the callee can choose to expect it in either. 6889 // The memloc is dismissed here because the argument is retrieved from 6890 // the register. 6891 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6892 continue; 6893 6894 auto HandleMemLoc = [&]() { 6895 const unsigned LocSize = LocVT.getStoreSize(); 6896 const unsigned ValSize = ValVT.getStoreSize(); 6897 assert((ValSize <= LocSize) && 6898 "Object size is larger than size of MemLoc"); 6899 int CurArgOffset = VA.getLocMemOffset(); 6900 // Objects are right-justified because AIX is big-endian. 6901 if (LocSize > ValSize) 6902 CurArgOffset += LocSize - ValSize; 6903 // Potential tail calls could cause overwriting of argument stack slots. 6904 const bool IsImmutable = 6905 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6906 (CallConv == CallingConv::Fast)); 6907 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6908 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6909 SDValue ArgValue = 6910 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6911 InVals.push_back(ArgValue); 6912 }; 6913 6914 // Vector arguments to VaArg functions are passed both on the stack, and 6915 // in any available GPRs. Load the value from the stack and add the GPRs 6916 // as live ins. 6917 if (VA.isMemLoc() && VA.needsCustom()) { 6918 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6919 assert(isVarArg && "Only use custom memloc for vararg."); 6920 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6921 // matching custom RegLocs. 6922 const unsigned OriginalValNo = VA.getValNo(); 6923 (void)OriginalValNo; 6924 6925 auto HandleCustomVecRegLoc = [&]() { 6926 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6927 "Missing custom RegLoc."); 6928 VA = ArgLocs[I++]; 6929 assert(VA.getValVT().isVector() && 6930 "Unexpected Val type for custom RegLoc."); 6931 assert(VA.getValNo() == OriginalValNo && 6932 "ValNo mismatch between custom MemLoc and RegLoc."); 6933 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6934 MF.addLiveIn(VA.getLocReg(), 6935 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6936 Subtarget.hasVSX())); 6937 }; 6938 6939 HandleMemLoc(); 6940 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6941 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6942 // R10. 6943 HandleCustomVecRegLoc(); 6944 HandleCustomVecRegLoc(); 6945 6946 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6947 // we passed the vector in R5, R6, R7 and R8. 6948 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6949 assert(!IsPPC64 && 6950 "Only 2 custom RegLocs expected for 64-bit codegen."); 6951 HandleCustomVecRegLoc(); 6952 HandleCustomVecRegLoc(); 6953 } 6954 6955 continue; 6956 } 6957 6958 if (VA.isRegLoc()) { 6959 if (VA.getValVT().isScalarInteger()) 6960 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6961 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6962 switch (VA.getValVT().SimpleTy) { 6963 default: 6964 report_fatal_error("Unhandled value type for argument."); 6965 case MVT::f32: 6966 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 6967 break; 6968 case MVT::f64: 6969 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 6970 break; 6971 } 6972 } else if (VA.getValVT().isVector()) { 6973 switch (VA.getValVT().SimpleTy) { 6974 default: 6975 report_fatal_error("Unhandled value type for argument."); 6976 case MVT::v16i8: 6977 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 6978 break; 6979 case MVT::v8i16: 6980 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 6981 break; 6982 case MVT::v4i32: 6983 case MVT::v2i64: 6984 case MVT::v1i128: 6985 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 6986 break; 6987 case MVT::v4f32: 6988 case MVT::v2f64: 6989 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 6990 break; 6991 } 6992 } 6993 } 6994 6995 if (Flags.isByVal() && VA.isMemLoc()) { 6996 const unsigned Size = 6997 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 6998 PtrByteSize); 6999 const int FI = MF.getFrameInfo().CreateFixedObject( 7000 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7001 /* IsAliased */ true); 7002 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7003 InVals.push_back(FIN); 7004 7005 continue; 7006 } 7007 7008 if (Flags.isByVal()) { 7009 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7010 7011 const MCPhysReg ArgReg = VA.getLocReg(); 7012 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7013 7014 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7015 report_fatal_error("Over aligned byvals not supported yet."); 7016 7017 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7018 const int FI = MF.getFrameInfo().CreateFixedObject( 7019 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7020 /* IsAliased */ true); 7021 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7022 InVals.push_back(FIN); 7023 7024 // Add live ins for all the RegLocs for the same ByVal. 7025 const TargetRegisterClass *RegClass = 7026 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7027 7028 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7029 unsigned Offset) { 7030 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7031 // Since the callers side has left justified the aggregate in the 7032 // register, we can simply store the entire register into the stack 7033 // slot. 7034 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7035 // The store to the fixedstack object is needed becuase accessing a 7036 // field of the ByVal will use a gep and load. Ideally we will optimize 7037 // to extracting the value from the register directly, and elide the 7038 // stores when the arguments address is not taken, but that will need to 7039 // be future work. 7040 SDValue Store = DAG.getStore( 7041 CopyFrom.getValue(1), dl, CopyFrom, 7042 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7043 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7044 7045 MemOps.push_back(Store); 7046 }; 7047 7048 unsigned Offset = 0; 7049 HandleRegLoc(VA.getLocReg(), Offset); 7050 Offset += PtrByteSize; 7051 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7052 Offset += PtrByteSize) { 7053 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7054 "RegLocs should be for ByVal argument."); 7055 7056 const CCValAssign RL = ArgLocs[I++]; 7057 HandleRegLoc(RL.getLocReg(), Offset); 7058 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7059 } 7060 7061 if (Offset != StackSize) { 7062 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7063 "Expected MemLoc for remaining bytes."); 7064 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7065 // Consume the MemLoc.The InVal has already been emitted, so nothing 7066 // more needs to be done. 7067 ++I; 7068 } 7069 7070 continue; 7071 } 7072 7073 if (VA.isRegLoc() && !VA.needsCustom()) { 7074 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7075 Register VReg = 7076 MF.addLiveIn(VA.getLocReg(), 7077 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7078 Subtarget.hasVSX())); 7079 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7080 if (ValVT.isScalarInteger() && 7081 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7082 ArgValue = 7083 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7084 } 7085 InVals.push_back(ArgValue); 7086 continue; 7087 } 7088 if (VA.isMemLoc()) { 7089 HandleMemLoc(); 7090 continue; 7091 } 7092 } 7093 7094 // On AIX a minimum of 8 words is saved to the parameter save area. 7095 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7096 // Area that is at least reserved in the caller of this function. 7097 unsigned CallerReservedArea = 7098 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7099 7100 // Set the size that is at least reserved in caller of this function. Tail 7101 // call optimized function's reserved stack space needs to be aligned so 7102 // that taking the difference between two stack areas will result in an 7103 // aligned stack. 7104 CallerReservedArea = 7105 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7106 FuncInfo->setMinReservedArea(CallerReservedArea); 7107 7108 if (isVarArg) { 7109 FuncInfo->setVarArgsFrameIndex( 7110 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7111 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7112 7113 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7114 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7115 7116 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7117 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7118 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7119 7120 // The fixed integer arguments of a variadic function are stored to the 7121 // VarArgsFrameIndex on the stack so that they may be loaded by 7122 // dereferencing the result of va_next. 7123 for (unsigned GPRIndex = 7124 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7125 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7126 7127 const unsigned VReg = 7128 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7129 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7130 7131 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7132 SDValue Store = 7133 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7134 MemOps.push_back(Store); 7135 // Increment the address for the next argument to store. 7136 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7137 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7138 } 7139 } 7140 7141 if (!MemOps.empty()) 7142 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7143 7144 return Chain; 7145 } 7146 7147 SDValue PPCTargetLowering::LowerCall_AIX( 7148 SDValue Chain, SDValue Callee, CallFlags CFlags, 7149 const SmallVectorImpl<ISD::OutputArg> &Outs, 7150 const SmallVectorImpl<SDValue> &OutVals, 7151 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7152 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7153 const CallBase *CB) const { 7154 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7155 // AIX ABI stack frame layout. 7156 7157 assert((CFlags.CallConv == CallingConv::C || 7158 CFlags.CallConv == CallingConv::Cold || 7159 CFlags.CallConv == CallingConv::Fast) && 7160 "Unexpected calling convention!"); 7161 7162 if (CFlags.IsPatchPoint) 7163 report_fatal_error("This call type is unimplemented on AIX."); 7164 7165 const PPCSubtarget& Subtarget = 7166 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7167 7168 MachineFunction &MF = DAG.getMachineFunction(); 7169 SmallVector<CCValAssign, 16> ArgLocs; 7170 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7171 *DAG.getContext()); 7172 7173 // Reserve space for the linkage save area (LSA) on the stack. 7174 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7175 // [SP][CR][LR][2 x reserved][TOC]. 7176 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7177 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7178 const bool IsPPC64 = Subtarget.isPPC64(); 7179 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7180 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7181 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7182 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7183 7184 // The prolog code of the callee may store up to 8 GPR argument registers to 7185 // the stack, allowing va_start to index over them in memory if the callee 7186 // is variadic. 7187 // Because we cannot tell if this is needed on the caller side, we have to 7188 // conservatively assume that it is needed. As such, make sure we have at 7189 // least enough stack space for the caller to store the 8 GPRs. 7190 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7191 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7192 CCInfo.getNextStackOffset()); 7193 7194 // Adjust the stack pointer for the new arguments... 7195 // These operations are automatically eliminated by the prolog/epilog pass. 7196 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7197 SDValue CallSeqStart = Chain; 7198 7199 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7200 SmallVector<SDValue, 8> MemOpChains; 7201 7202 // Set up a copy of the stack pointer for loading and storing any 7203 // arguments that may not fit in the registers available for argument 7204 // passing. 7205 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7206 : DAG.getRegister(PPC::R1, MVT::i32); 7207 7208 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7209 const unsigned ValNo = ArgLocs[I].getValNo(); 7210 SDValue Arg = OutVals[ValNo]; 7211 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7212 7213 if (Flags.isByVal()) { 7214 const unsigned ByValSize = Flags.getByValSize(); 7215 7216 // Nothing to do for zero-sized ByVals on the caller side. 7217 if (!ByValSize) { 7218 ++I; 7219 continue; 7220 } 7221 7222 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7223 return DAG.getExtLoad( 7224 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7225 (LoadOffset != 0) 7226 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7227 : Arg, 7228 MachinePointerInfo(), VT); 7229 }; 7230 7231 unsigned LoadOffset = 0; 7232 7233 // Initialize registers, which are fully occupied by the by-val argument. 7234 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7235 SDValue Load = GetLoad(PtrVT, LoadOffset); 7236 MemOpChains.push_back(Load.getValue(1)); 7237 LoadOffset += PtrByteSize; 7238 const CCValAssign &ByValVA = ArgLocs[I++]; 7239 assert(ByValVA.getValNo() == ValNo && 7240 "Unexpected location for pass-by-value argument."); 7241 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7242 } 7243 7244 if (LoadOffset == ByValSize) 7245 continue; 7246 7247 // There must be one more loc to handle the remainder. 7248 assert(ArgLocs[I].getValNo() == ValNo && 7249 "Expected additional location for by-value argument."); 7250 7251 if (ArgLocs[I].isMemLoc()) { 7252 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7253 const CCValAssign &ByValVA = ArgLocs[I++]; 7254 ISD::ArgFlagsTy MemcpyFlags = Flags; 7255 // Only memcpy the bytes that don't pass in register. 7256 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7257 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7258 (LoadOffset != 0) 7259 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7260 : Arg, 7261 DAG.getObjectPtrOffset(dl, StackPtr, 7262 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7263 CallSeqStart, MemcpyFlags, DAG, dl); 7264 continue; 7265 } 7266 7267 // Initialize the final register residue. 7268 // Any residue that occupies the final by-val arg register must be 7269 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7270 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7271 // 2 and 1 byte loads. 7272 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7273 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7274 "Unexpected register residue for by-value argument."); 7275 SDValue ResidueVal; 7276 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7277 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7278 const MVT VT = 7279 N == 1 ? MVT::i8 7280 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7281 SDValue Load = GetLoad(VT, LoadOffset); 7282 MemOpChains.push_back(Load.getValue(1)); 7283 LoadOffset += N; 7284 Bytes += N; 7285 7286 // By-val arguments are passed left-justfied in register. 7287 // Every load here needs to be shifted, otherwise a full register load 7288 // should have been used. 7289 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7290 "Unexpected load emitted during handling of pass-by-value " 7291 "argument."); 7292 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7293 EVT ShiftAmountTy = 7294 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7295 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7296 SDValue ShiftedLoad = 7297 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7298 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7299 ShiftedLoad) 7300 : ShiftedLoad; 7301 } 7302 7303 const CCValAssign &ByValVA = ArgLocs[I++]; 7304 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7305 continue; 7306 } 7307 7308 CCValAssign &VA = ArgLocs[I++]; 7309 const MVT LocVT = VA.getLocVT(); 7310 const MVT ValVT = VA.getValVT(); 7311 7312 switch (VA.getLocInfo()) { 7313 default: 7314 report_fatal_error("Unexpected argument extension type."); 7315 case CCValAssign::Full: 7316 break; 7317 case CCValAssign::ZExt: 7318 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7319 break; 7320 case CCValAssign::SExt: 7321 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7322 break; 7323 } 7324 7325 if (VA.isRegLoc() && !VA.needsCustom()) { 7326 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7327 continue; 7328 } 7329 7330 // Vector arguments passed to VarArg functions need custom handling when 7331 // they are passed (at least partially) in GPRs. 7332 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7333 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7334 // Store value to its stack slot. 7335 SDValue PtrOff = 7336 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7337 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7338 SDValue Store = 7339 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7340 MemOpChains.push_back(Store); 7341 const unsigned OriginalValNo = VA.getValNo(); 7342 // Then load the GPRs from the stack 7343 unsigned LoadOffset = 0; 7344 auto HandleCustomVecRegLoc = [&]() { 7345 assert(I != E && "Unexpected end of CCvalAssigns."); 7346 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7347 "Expected custom RegLoc."); 7348 CCValAssign RegVA = ArgLocs[I++]; 7349 assert(RegVA.getValNo() == OriginalValNo && 7350 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7351 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7352 DAG.getConstant(LoadOffset, dl, PtrVT)); 7353 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7354 MemOpChains.push_back(Load.getValue(1)); 7355 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7356 LoadOffset += PtrByteSize; 7357 }; 7358 7359 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7360 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7361 // R10. 7362 HandleCustomVecRegLoc(); 7363 HandleCustomVecRegLoc(); 7364 7365 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7366 ArgLocs[I].getValNo() == OriginalValNo) { 7367 assert(!IsPPC64 && 7368 "Only 2 custom RegLocs expected for 64-bit codegen."); 7369 HandleCustomVecRegLoc(); 7370 HandleCustomVecRegLoc(); 7371 } 7372 7373 continue; 7374 } 7375 7376 if (VA.isMemLoc()) { 7377 SDValue PtrOff = 7378 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7379 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7380 MemOpChains.push_back( 7381 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7382 7383 continue; 7384 } 7385 7386 if (!ValVT.isFloatingPoint()) 7387 report_fatal_error( 7388 "Unexpected register handling for calling convention."); 7389 7390 // Custom handling is used for GPR initializations for vararg float 7391 // arguments. 7392 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7393 LocVT.isInteger() && 7394 "Custom register handling only expected for VarArg."); 7395 7396 SDValue ArgAsInt = 7397 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7398 7399 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7400 // f32 in 32-bit GPR 7401 // f64 in 64-bit GPR 7402 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7403 else if (Arg.getValueType().getFixedSizeInBits() < 7404 LocVT.getFixedSizeInBits()) 7405 // f32 in 64-bit GPR. 7406 RegsToPass.push_back(std::make_pair( 7407 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7408 else { 7409 // f64 in two 32-bit GPRs 7410 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7411 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7412 "Unexpected custom register for argument!"); 7413 CCValAssign &GPR1 = VA; 7414 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7415 DAG.getConstant(32, dl, MVT::i8)); 7416 RegsToPass.push_back(std::make_pair( 7417 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7418 7419 if (I != E) { 7420 // If only 1 GPR was available, there will only be one custom GPR and 7421 // the argument will also pass in memory. 7422 CCValAssign &PeekArg = ArgLocs[I]; 7423 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7424 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7425 CCValAssign &GPR2 = ArgLocs[I++]; 7426 RegsToPass.push_back(std::make_pair( 7427 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7428 } 7429 } 7430 } 7431 } 7432 7433 if (!MemOpChains.empty()) 7434 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7435 7436 // For indirect calls, we need to save the TOC base to the stack for 7437 // restoration after the call. 7438 if (CFlags.IsIndirect) { 7439 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7440 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7441 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7442 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7443 const unsigned TOCSaveOffset = 7444 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7445 7446 setUsesTOCBasePtr(DAG); 7447 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7448 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7449 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7450 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7451 Chain = DAG.getStore( 7452 Val.getValue(1), dl, Val, AddPtr, 7453 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7454 } 7455 7456 // Build a sequence of copy-to-reg nodes chained together with token chain 7457 // and flag operands which copy the outgoing args into the appropriate regs. 7458 SDValue InFlag; 7459 for (auto Reg : RegsToPass) { 7460 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7461 InFlag = Chain.getValue(1); 7462 } 7463 7464 const int SPDiff = 0; 7465 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7466 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7467 } 7468 7469 bool 7470 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7471 MachineFunction &MF, bool isVarArg, 7472 const SmallVectorImpl<ISD::OutputArg> &Outs, 7473 LLVMContext &Context) const { 7474 SmallVector<CCValAssign, 16> RVLocs; 7475 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7476 return CCInfo.CheckReturn( 7477 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7478 ? RetCC_PPC_Cold 7479 : RetCC_PPC); 7480 } 7481 7482 SDValue 7483 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7484 bool isVarArg, 7485 const SmallVectorImpl<ISD::OutputArg> &Outs, 7486 const SmallVectorImpl<SDValue> &OutVals, 7487 const SDLoc &dl, SelectionDAG &DAG) const { 7488 SmallVector<CCValAssign, 16> RVLocs; 7489 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7490 *DAG.getContext()); 7491 CCInfo.AnalyzeReturn(Outs, 7492 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7493 ? RetCC_PPC_Cold 7494 : RetCC_PPC); 7495 7496 SDValue Flag; 7497 SmallVector<SDValue, 4> RetOps(1, Chain); 7498 7499 // Copy the result values into the output registers. 7500 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7501 CCValAssign &VA = RVLocs[i]; 7502 assert(VA.isRegLoc() && "Can only return in registers!"); 7503 7504 SDValue Arg = OutVals[RealResIdx]; 7505 7506 switch (VA.getLocInfo()) { 7507 default: llvm_unreachable("Unknown loc info!"); 7508 case CCValAssign::Full: break; 7509 case CCValAssign::AExt: 7510 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7511 break; 7512 case CCValAssign::ZExt: 7513 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7514 break; 7515 case CCValAssign::SExt: 7516 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7517 break; 7518 } 7519 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7520 bool isLittleEndian = Subtarget.isLittleEndian(); 7521 // Legalize ret f64 -> ret 2 x i32. 7522 SDValue SVal = 7523 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7524 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7525 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7526 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7527 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7528 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7529 Flag = Chain.getValue(1); 7530 VA = RVLocs[++i]; // skip ahead to next loc 7531 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7532 } else 7533 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7534 Flag = Chain.getValue(1); 7535 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7536 } 7537 7538 RetOps[0] = Chain; // Update chain. 7539 7540 // Add the flag if we have it. 7541 if (Flag.getNode()) 7542 RetOps.push_back(Flag); 7543 7544 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7545 } 7546 7547 SDValue 7548 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7549 SelectionDAG &DAG) const { 7550 SDLoc dl(Op); 7551 7552 // Get the correct type for integers. 7553 EVT IntVT = Op.getValueType(); 7554 7555 // Get the inputs. 7556 SDValue Chain = Op.getOperand(0); 7557 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7558 // Build a DYNAREAOFFSET node. 7559 SDValue Ops[2] = {Chain, FPSIdx}; 7560 SDVTList VTs = DAG.getVTList(IntVT); 7561 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7562 } 7563 7564 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7565 SelectionDAG &DAG) const { 7566 // When we pop the dynamic allocation we need to restore the SP link. 7567 SDLoc dl(Op); 7568 7569 // Get the correct type for pointers. 7570 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7571 7572 // Construct the stack pointer operand. 7573 bool isPPC64 = Subtarget.isPPC64(); 7574 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7575 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7576 7577 // Get the operands for the STACKRESTORE. 7578 SDValue Chain = Op.getOperand(0); 7579 SDValue SaveSP = Op.getOperand(1); 7580 7581 // Load the old link SP. 7582 SDValue LoadLinkSP = 7583 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7584 7585 // Restore the stack pointer. 7586 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7587 7588 // Store the old link SP. 7589 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7590 } 7591 7592 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7593 MachineFunction &MF = DAG.getMachineFunction(); 7594 bool isPPC64 = Subtarget.isPPC64(); 7595 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7596 7597 // Get current frame pointer save index. The users of this index will be 7598 // primarily DYNALLOC instructions. 7599 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7600 int RASI = FI->getReturnAddrSaveIndex(); 7601 7602 // If the frame pointer save index hasn't been defined yet. 7603 if (!RASI) { 7604 // Find out what the fix offset of the frame pointer save area. 7605 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7606 // Allocate the frame index for frame pointer save area. 7607 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7608 // Save the result. 7609 FI->setReturnAddrSaveIndex(RASI); 7610 } 7611 return DAG.getFrameIndex(RASI, PtrVT); 7612 } 7613 7614 SDValue 7615 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7616 MachineFunction &MF = DAG.getMachineFunction(); 7617 bool isPPC64 = Subtarget.isPPC64(); 7618 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7619 7620 // Get current frame pointer save index. The users of this index will be 7621 // primarily DYNALLOC instructions. 7622 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7623 int FPSI = FI->getFramePointerSaveIndex(); 7624 7625 // If the frame pointer save index hasn't been defined yet. 7626 if (!FPSI) { 7627 // Find out what the fix offset of the frame pointer save area. 7628 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7629 // Allocate the frame index for frame pointer save area. 7630 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7631 // Save the result. 7632 FI->setFramePointerSaveIndex(FPSI); 7633 } 7634 return DAG.getFrameIndex(FPSI, PtrVT); 7635 } 7636 7637 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7638 SelectionDAG &DAG) const { 7639 MachineFunction &MF = DAG.getMachineFunction(); 7640 // Get the inputs. 7641 SDValue Chain = Op.getOperand(0); 7642 SDValue Size = Op.getOperand(1); 7643 SDLoc dl(Op); 7644 7645 // Get the correct type for pointers. 7646 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7647 // Negate the size. 7648 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7649 DAG.getConstant(0, dl, PtrVT), Size); 7650 // Construct a node for the frame pointer save index. 7651 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7652 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7653 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7654 if (hasInlineStackProbe(MF)) 7655 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7656 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7657 } 7658 7659 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7660 SelectionDAG &DAG) const { 7661 MachineFunction &MF = DAG.getMachineFunction(); 7662 7663 bool isPPC64 = Subtarget.isPPC64(); 7664 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7665 7666 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7667 return DAG.getFrameIndex(FI, PtrVT); 7668 } 7669 7670 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7671 SelectionDAG &DAG) const { 7672 SDLoc DL(Op); 7673 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7674 DAG.getVTList(MVT::i32, MVT::Other), 7675 Op.getOperand(0), Op.getOperand(1)); 7676 } 7677 7678 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7679 SelectionDAG &DAG) const { 7680 SDLoc DL(Op); 7681 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7682 Op.getOperand(0), Op.getOperand(1)); 7683 } 7684 7685 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7686 if (Op.getValueType().isVector()) 7687 return LowerVectorLoad(Op, DAG); 7688 7689 assert(Op.getValueType() == MVT::i1 && 7690 "Custom lowering only for i1 loads"); 7691 7692 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7693 7694 SDLoc dl(Op); 7695 LoadSDNode *LD = cast<LoadSDNode>(Op); 7696 7697 SDValue Chain = LD->getChain(); 7698 SDValue BasePtr = LD->getBasePtr(); 7699 MachineMemOperand *MMO = LD->getMemOperand(); 7700 7701 SDValue NewLD = 7702 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7703 BasePtr, MVT::i8, MMO); 7704 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7705 7706 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7707 return DAG.getMergeValues(Ops, dl); 7708 } 7709 7710 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7711 if (Op.getOperand(1).getValueType().isVector()) 7712 return LowerVectorStore(Op, DAG); 7713 7714 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7715 "Custom lowering only for i1 stores"); 7716 7717 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7718 7719 SDLoc dl(Op); 7720 StoreSDNode *ST = cast<StoreSDNode>(Op); 7721 7722 SDValue Chain = ST->getChain(); 7723 SDValue BasePtr = ST->getBasePtr(); 7724 SDValue Value = ST->getValue(); 7725 MachineMemOperand *MMO = ST->getMemOperand(); 7726 7727 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7728 Value); 7729 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7730 } 7731 7732 // FIXME: Remove this once the ANDI glue bug is fixed: 7733 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7734 assert(Op.getValueType() == MVT::i1 && 7735 "Custom lowering only for i1 results"); 7736 7737 SDLoc DL(Op); 7738 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7739 } 7740 7741 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7742 SelectionDAG &DAG) const { 7743 7744 // Implements a vector truncate that fits in a vector register as a shuffle. 7745 // We want to legalize vector truncates down to where the source fits in 7746 // a vector register (and target is therefore smaller than vector register 7747 // size). At that point legalization will try to custom lower the sub-legal 7748 // result and get here - where we can contain the truncate as a single target 7749 // operation. 7750 7751 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7752 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7753 // 7754 // We will implement it for big-endian ordering as this (where x denotes 7755 // undefined): 7756 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7757 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7758 // 7759 // The same operation in little-endian ordering will be: 7760 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7761 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7762 7763 EVT TrgVT = Op.getValueType(); 7764 assert(TrgVT.isVector() && "Vector type expected."); 7765 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7766 EVT EltVT = TrgVT.getVectorElementType(); 7767 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7768 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7769 !isPowerOf2_32(EltVT.getSizeInBits())) 7770 return SDValue(); 7771 7772 SDValue N1 = Op.getOperand(0); 7773 EVT SrcVT = N1.getValueType(); 7774 unsigned SrcSize = SrcVT.getSizeInBits(); 7775 if (SrcSize > 256 || 7776 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7777 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7778 return SDValue(); 7779 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7780 return SDValue(); 7781 7782 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7783 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7784 7785 SDLoc DL(Op); 7786 SDValue Op1, Op2; 7787 if (SrcSize == 256) { 7788 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7789 EVT SplitVT = 7790 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7791 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7792 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7793 DAG.getConstant(0, DL, VecIdxTy)); 7794 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7795 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7796 } 7797 else { 7798 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7799 Op2 = DAG.getUNDEF(WideVT); 7800 } 7801 7802 // First list the elements we want to keep. 7803 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7804 SmallVector<int, 16> ShuffV; 7805 if (Subtarget.isLittleEndian()) 7806 for (unsigned i = 0; i < TrgNumElts; ++i) 7807 ShuffV.push_back(i * SizeMult); 7808 else 7809 for (unsigned i = 1; i <= TrgNumElts; ++i) 7810 ShuffV.push_back(i * SizeMult - 1); 7811 7812 // Populate the remaining elements with undefs. 7813 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7814 // ShuffV.push_back(i + WideNumElts); 7815 ShuffV.push_back(WideNumElts + 1); 7816 7817 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7818 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7819 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7820 } 7821 7822 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7823 /// possible. 7824 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7825 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7826 EVT ResVT = Op.getValueType(); 7827 EVT CmpVT = Op.getOperand(0).getValueType(); 7828 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7829 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7830 SDLoc dl(Op); 7831 7832 // Without power9-vector, we don't have native instruction for f128 comparison. 7833 // Following transformation to libcall is needed for setcc: 7834 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7835 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7836 SDValue Z = DAG.getSetCC( 7837 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7838 LHS, RHS, CC); 7839 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7840 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7841 } 7842 7843 // Not FP, or using SPE? Not a fsel. 7844 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7845 Subtarget.hasSPE()) 7846 return Op; 7847 7848 SDNodeFlags Flags = Op.getNode()->getFlags(); 7849 7850 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7851 // presence of infinities. 7852 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7853 switch (CC) { 7854 default: 7855 break; 7856 case ISD::SETOGT: 7857 case ISD::SETGT: 7858 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7859 case ISD::SETOLT: 7860 case ISD::SETLT: 7861 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7862 } 7863 } 7864 7865 // We might be able to do better than this under some circumstances, but in 7866 // general, fsel-based lowering of select is a finite-math-only optimization. 7867 // For more information, see section F.3 of the 2.06 ISA specification. 7868 // With ISA 3.0 7869 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7870 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7871 return Op; 7872 7873 // If the RHS of the comparison is a 0.0, we don't need to do the 7874 // subtraction at all. 7875 SDValue Sel1; 7876 if (isFloatingPointZero(RHS)) 7877 switch (CC) { 7878 default: break; // SETUO etc aren't handled by fsel. 7879 case ISD::SETNE: 7880 std::swap(TV, FV); 7881 LLVM_FALLTHROUGH; 7882 case ISD::SETEQ: 7883 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7884 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7885 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7886 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7887 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7888 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7889 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7890 case ISD::SETULT: 7891 case ISD::SETLT: 7892 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7893 LLVM_FALLTHROUGH; 7894 case ISD::SETOGE: 7895 case ISD::SETGE: 7896 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7897 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7898 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7899 case ISD::SETUGT: 7900 case ISD::SETGT: 7901 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7902 LLVM_FALLTHROUGH; 7903 case ISD::SETOLE: 7904 case ISD::SETLE: 7905 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7906 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7907 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7908 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7909 } 7910 7911 SDValue Cmp; 7912 switch (CC) { 7913 default: break; // SETUO etc aren't handled by fsel. 7914 case ISD::SETNE: 7915 std::swap(TV, FV); 7916 LLVM_FALLTHROUGH; 7917 case ISD::SETEQ: 7918 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7919 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7920 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7921 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7922 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7923 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7924 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7925 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7926 case ISD::SETULT: 7927 case ISD::SETLT: 7928 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7929 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7930 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7931 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7932 case ISD::SETOGE: 7933 case ISD::SETGE: 7934 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7935 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7936 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7937 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7938 case ISD::SETUGT: 7939 case ISD::SETGT: 7940 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7941 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7942 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7943 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7944 case ISD::SETOLE: 7945 case ISD::SETLE: 7946 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7947 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7948 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7949 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7950 } 7951 return Op; 7952 } 7953 7954 static unsigned getPPCStrictOpcode(unsigned Opc) { 7955 switch (Opc) { 7956 default: 7957 llvm_unreachable("No strict version of this opcode!"); 7958 case PPCISD::FCTIDZ: 7959 return PPCISD::STRICT_FCTIDZ; 7960 case PPCISD::FCTIWZ: 7961 return PPCISD::STRICT_FCTIWZ; 7962 case PPCISD::FCTIDUZ: 7963 return PPCISD::STRICT_FCTIDUZ; 7964 case PPCISD::FCTIWUZ: 7965 return PPCISD::STRICT_FCTIWUZ; 7966 case PPCISD::FCFID: 7967 return PPCISD::STRICT_FCFID; 7968 case PPCISD::FCFIDU: 7969 return PPCISD::STRICT_FCFIDU; 7970 case PPCISD::FCFIDS: 7971 return PPCISD::STRICT_FCFIDS; 7972 case PPCISD::FCFIDUS: 7973 return PPCISD::STRICT_FCFIDUS; 7974 } 7975 } 7976 7977 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7978 const PPCSubtarget &Subtarget) { 7979 SDLoc dl(Op); 7980 bool IsStrict = Op->isStrictFPOpcode(); 7981 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7982 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7983 7984 // TODO: Any other flags to propagate? 7985 SDNodeFlags Flags; 7986 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7987 7988 // For strict nodes, source is the second operand. 7989 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7990 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7991 assert(Src.getValueType().isFloatingPoint()); 7992 if (Src.getValueType() == MVT::f32) { 7993 if (IsStrict) { 7994 Src = 7995 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7996 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7997 Chain = Src.getValue(1); 7998 } else 7999 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8000 } 8001 SDValue Conv; 8002 unsigned Opc = ISD::DELETED_NODE; 8003 switch (Op.getSimpleValueType().SimpleTy) { 8004 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8005 case MVT::i32: 8006 Opc = IsSigned ? PPCISD::FCTIWZ 8007 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8008 break; 8009 case MVT::i64: 8010 assert((IsSigned || Subtarget.hasFPCVT()) && 8011 "i64 FP_TO_UINT is supported only with FPCVT"); 8012 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8013 } 8014 if (IsStrict) { 8015 Opc = getPPCStrictOpcode(Opc); 8016 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8017 {Chain, Src}, Flags); 8018 } else { 8019 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8020 } 8021 return Conv; 8022 } 8023 8024 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8025 SelectionDAG &DAG, 8026 const SDLoc &dl) const { 8027 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8028 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8029 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8030 bool IsStrict = Op->isStrictFPOpcode(); 8031 8032 // Convert the FP value to an int value through memory. 8033 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8034 (IsSigned || Subtarget.hasFPCVT()); 8035 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8036 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8037 MachinePointerInfo MPI = 8038 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8039 8040 // Emit a store to the stack slot. 8041 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8042 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8043 if (i32Stack) { 8044 MachineFunction &MF = DAG.getMachineFunction(); 8045 Alignment = Align(4); 8046 MachineMemOperand *MMO = 8047 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8048 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8049 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8050 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8051 } else 8052 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8053 8054 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8055 // add in a bias on big endian. 8056 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8057 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8058 DAG.getConstant(4, dl, FIPtr.getValueType())); 8059 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8060 } 8061 8062 RLI.Chain = Chain; 8063 RLI.Ptr = FIPtr; 8064 RLI.MPI = MPI; 8065 RLI.Alignment = Alignment; 8066 } 8067 8068 /// Custom lowers floating point to integer conversions to use 8069 /// the direct move instructions available in ISA 2.07 to avoid the 8070 /// need for load/store combinations. 8071 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8072 SelectionDAG &DAG, 8073 const SDLoc &dl) const { 8074 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8075 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8076 if (Op->isStrictFPOpcode()) 8077 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8078 else 8079 return Mov; 8080 } 8081 8082 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8083 const SDLoc &dl) const { 8084 bool IsStrict = Op->isStrictFPOpcode(); 8085 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8086 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8087 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8088 EVT SrcVT = Src.getValueType(); 8089 EVT DstVT = Op.getValueType(); 8090 8091 // FP to INT conversions are legal for f128. 8092 if (SrcVT == MVT::f128) 8093 return Subtarget.hasP9Vector() ? Op : SDValue(); 8094 8095 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8096 // PPC (the libcall is not available). 8097 if (SrcVT == MVT::ppcf128) { 8098 if (DstVT == MVT::i32) { 8099 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8100 // set other fast-math flags to FP operations in both strict and 8101 // non-strict cases. (FP_TO_SINT, FSUB) 8102 SDNodeFlags Flags; 8103 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8104 8105 if (IsSigned) { 8106 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8107 DAG.getIntPtrConstant(0, dl)); 8108 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8109 DAG.getIntPtrConstant(1, dl)); 8110 8111 // Add the two halves of the long double in round-to-zero mode, and use 8112 // a smaller FP_TO_SINT. 8113 if (IsStrict) { 8114 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8115 DAG.getVTList(MVT::f64, MVT::Other), 8116 {Op.getOperand(0), Lo, Hi}, Flags); 8117 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8118 DAG.getVTList(MVT::i32, MVT::Other), 8119 {Res.getValue(1), Res}, Flags); 8120 } else { 8121 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8122 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8123 } 8124 } else { 8125 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8126 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8127 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8128 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8129 if (IsStrict) { 8130 // Sel = Src < 0x80000000 8131 // FltOfs = select Sel, 0.0, 0x80000000 8132 // IntOfs = select Sel, 0, 0x80000000 8133 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8134 SDValue Chain = Op.getOperand(0); 8135 EVT SetCCVT = 8136 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8137 EVT DstSetCCVT = 8138 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8139 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8140 Chain, true); 8141 Chain = Sel.getValue(1); 8142 8143 SDValue FltOfs = DAG.getSelect( 8144 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8145 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8146 8147 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8148 DAG.getVTList(SrcVT, MVT::Other), 8149 {Chain, Src, FltOfs}, Flags); 8150 Chain = Val.getValue(1); 8151 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8152 DAG.getVTList(DstVT, MVT::Other), 8153 {Chain, Val}, Flags); 8154 Chain = SInt.getValue(1); 8155 SDValue IntOfs = DAG.getSelect( 8156 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8157 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8158 return DAG.getMergeValues({Result, Chain}, dl); 8159 } else { 8160 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8161 // FIXME: generated code sucks. 8162 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8163 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8164 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8165 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8166 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8167 } 8168 } 8169 } 8170 8171 return SDValue(); 8172 } 8173 8174 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8175 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8176 8177 ReuseLoadInfo RLI; 8178 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8179 8180 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8181 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8182 } 8183 8184 // We're trying to insert a regular store, S, and then a load, L. If the 8185 // incoming value, O, is a load, we might just be able to have our load use the 8186 // address used by O. However, we don't know if anything else will store to 8187 // that address before we can load from it. To prevent this situation, we need 8188 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8189 // the same chain operand as O, we create a token factor from the chain results 8190 // of O and L, and we replace all uses of O's chain result with that token 8191 // factor (see spliceIntoChain below for this last part). 8192 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8193 ReuseLoadInfo &RLI, 8194 SelectionDAG &DAG, 8195 ISD::LoadExtType ET) const { 8196 // Conservatively skip reusing for constrained FP nodes. 8197 if (Op->isStrictFPOpcode()) 8198 return false; 8199 8200 SDLoc dl(Op); 8201 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8202 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8203 if (ET == ISD::NON_EXTLOAD && 8204 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8205 isOperationLegalOrCustom(Op.getOpcode(), 8206 Op.getOperand(0).getValueType())) { 8207 8208 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8209 return true; 8210 } 8211 8212 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8213 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8214 LD->isNonTemporal()) 8215 return false; 8216 if (LD->getMemoryVT() != MemVT) 8217 return false; 8218 8219 // If the result of the load is an illegal type, then we can't build a 8220 // valid chain for reuse since the legalised loads and token factor node that 8221 // ties the legalised loads together uses a different output chain then the 8222 // illegal load. 8223 if (!isTypeLegal(LD->getValueType(0))) 8224 return false; 8225 8226 RLI.Ptr = LD->getBasePtr(); 8227 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8228 assert(LD->getAddressingMode() == ISD::PRE_INC && 8229 "Non-pre-inc AM on PPC?"); 8230 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8231 LD->getOffset()); 8232 } 8233 8234 RLI.Chain = LD->getChain(); 8235 RLI.MPI = LD->getPointerInfo(); 8236 RLI.IsDereferenceable = LD->isDereferenceable(); 8237 RLI.IsInvariant = LD->isInvariant(); 8238 RLI.Alignment = LD->getAlign(); 8239 RLI.AAInfo = LD->getAAInfo(); 8240 RLI.Ranges = LD->getRanges(); 8241 8242 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8243 return true; 8244 } 8245 8246 // Given the head of the old chain, ResChain, insert a token factor containing 8247 // it and NewResChain, and make users of ResChain now be users of that token 8248 // factor. 8249 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8250 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8251 SDValue NewResChain, 8252 SelectionDAG &DAG) const { 8253 if (!ResChain) 8254 return; 8255 8256 SDLoc dl(NewResChain); 8257 8258 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8259 NewResChain, DAG.getUNDEF(MVT::Other)); 8260 assert(TF.getNode() != NewResChain.getNode() && 8261 "A new TF really is required here"); 8262 8263 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8264 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8265 } 8266 8267 /// Analyze profitability of direct move 8268 /// prefer float load to int load plus direct move 8269 /// when there is no integer use of int load 8270 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8271 SDNode *Origin = Op.getOperand(0).getNode(); 8272 if (Origin->getOpcode() != ISD::LOAD) 8273 return true; 8274 8275 // If there is no LXSIBZX/LXSIHZX, like Power8, 8276 // prefer direct move if the memory size is 1 or 2 bytes. 8277 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8278 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8279 return true; 8280 8281 for (SDNode::use_iterator UI = Origin->use_begin(), 8282 UE = Origin->use_end(); 8283 UI != UE; ++UI) { 8284 8285 // Only look at the users of the loaded value. 8286 if (UI.getUse().get().getResNo() != 0) 8287 continue; 8288 8289 if (UI->getOpcode() != ISD::SINT_TO_FP && 8290 UI->getOpcode() != ISD::UINT_TO_FP && 8291 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8292 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8293 return true; 8294 } 8295 8296 return false; 8297 } 8298 8299 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8300 const PPCSubtarget &Subtarget, 8301 SDValue Chain = SDValue()) { 8302 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8303 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8304 SDLoc dl(Op); 8305 8306 // TODO: Any other flags to propagate? 8307 SDNodeFlags Flags; 8308 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8309 8310 // If we have FCFIDS, then use it when converting to single-precision. 8311 // Otherwise, convert to double-precision and then round. 8312 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8313 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8314 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8315 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8316 if (Op->isStrictFPOpcode()) { 8317 if (!Chain) 8318 Chain = Op.getOperand(0); 8319 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8320 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8321 } else 8322 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8323 } 8324 8325 /// Custom lowers integer to floating point conversions to use 8326 /// the direct move instructions available in ISA 2.07 to avoid the 8327 /// need for load/store combinations. 8328 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8329 SelectionDAG &DAG, 8330 const SDLoc &dl) const { 8331 assert((Op.getValueType() == MVT::f32 || 8332 Op.getValueType() == MVT::f64) && 8333 "Invalid floating point type as target of conversion"); 8334 assert(Subtarget.hasFPCVT() && 8335 "Int to FP conversions with direct moves require FPCVT"); 8336 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8337 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8338 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8339 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8340 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8341 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8342 return convertIntToFP(Op, Mov, DAG, Subtarget); 8343 } 8344 8345 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8346 8347 EVT VecVT = Vec.getValueType(); 8348 assert(VecVT.isVector() && "Expected a vector type."); 8349 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8350 8351 EVT EltVT = VecVT.getVectorElementType(); 8352 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8353 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8354 8355 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8356 SmallVector<SDValue, 16> Ops(NumConcat); 8357 Ops[0] = Vec; 8358 SDValue UndefVec = DAG.getUNDEF(VecVT); 8359 for (unsigned i = 1; i < NumConcat; ++i) 8360 Ops[i] = UndefVec; 8361 8362 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8363 } 8364 8365 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8366 const SDLoc &dl) const { 8367 bool IsStrict = Op->isStrictFPOpcode(); 8368 unsigned Opc = Op.getOpcode(); 8369 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8370 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8371 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8372 "Unexpected conversion type"); 8373 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8374 "Supports conversions to v2f64/v4f32 only."); 8375 8376 // TODO: Any other flags to propagate? 8377 SDNodeFlags Flags; 8378 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8379 8380 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8381 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8382 8383 SDValue Wide = widenVec(DAG, Src, dl); 8384 EVT WideVT = Wide.getValueType(); 8385 unsigned WideNumElts = WideVT.getVectorNumElements(); 8386 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8387 8388 SmallVector<int, 16> ShuffV; 8389 for (unsigned i = 0; i < WideNumElts; ++i) 8390 ShuffV.push_back(i + WideNumElts); 8391 8392 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8393 int SaveElts = FourEltRes ? 4 : 2; 8394 if (Subtarget.isLittleEndian()) 8395 for (int i = 0; i < SaveElts; i++) 8396 ShuffV[i * Stride] = i; 8397 else 8398 for (int i = 1; i <= SaveElts; i++) 8399 ShuffV[i * Stride - 1] = i - 1; 8400 8401 SDValue ShuffleSrc2 = 8402 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8403 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8404 8405 SDValue Extend; 8406 if (SignedConv) { 8407 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8408 EVT ExtVT = Src.getValueType(); 8409 if (Subtarget.hasP9Altivec()) 8410 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8411 IntermediateVT.getVectorNumElements()); 8412 8413 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8414 DAG.getValueType(ExtVT)); 8415 } else 8416 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8417 8418 if (IsStrict) 8419 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8420 {Op.getOperand(0), Extend}, Flags); 8421 8422 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8423 } 8424 8425 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8426 SelectionDAG &DAG) const { 8427 SDLoc dl(Op); 8428 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8429 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8430 bool IsStrict = Op->isStrictFPOpcode(); 8431 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8432 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8433 8434 // TODO: Any other flags to propagate? 8435 SDNodeFlags Flags; 8436 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8437 8438 EVT InVT = Src.getValueType(); 8439 EVT OutVT = Op.getValueType(); 8440 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8441 isOperationCustom(Op.getOpcode(), InVT)) 8442 return LowerINT_TO_FPVector(Op, DAG, dl); 8443 8444 // Conversions to f128 are legal. 8445 if (Op.getValueType() == MVT::f128) 8446 return Subtarget.hasP9Vector() ? Op : SDValue(); 8447 8448 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8449 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8450 return SDValue(); 8451 8452 if (Src.getValueType() == MVT::i1) { 8453 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8454 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8455 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8456 if (IsStrict) 8457 return DAG.getMergeValues({Sel, Chain}, dl); 8458 else 8459 return Sel; 8460 } 8461 8462 // If we have direct moves, we can do all the conversion, skip the store/load 8463 // however, without FPCVT we can't do most conversions. 8464 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8465 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8466 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8467 8468 assert((IsSigned || Subtarget.hasFPCVT()) && 8469 "UINT_TO_FP is supported only with FPCVT"); 8470 8471 if (Src.getValueType() == MVT::i64) { 8472 SDValue SINT = Src; 8473 // When converting to single-precision, we actually need to convert 8474 // to double-precision first and then round to single-precision. 8475 // To avoid double-rounding effects during that operation, we have 8476 // to prepare the input operand. Bits that might be truncated when 8477 // converting to double-precision are replaced by a bit that won't 8478 // be lost at this stage, but is below the single-precision rounding 8479 // position. 8480 // 8481 // However, if -enable-unsafe-fp-math is in effect, accept double 8482 // rounding to avoid the extra overhead. 8483 if (Op.getValueType() == MVT::f32 && 8484 !Subtarget.hasFPCVT() && 8485 !DAG.getTarget().Options.UnsafeFPMath) { 8486 8487 // Twiddle input to make sure the low 11 bits are zero. (If this 8488 // is the case, we are guaranteed the value will fit into the 53 bit 8489 // mantissa of an IEEE double-precision value without rounding.) 8490 // If any of those low 11 bits were not zero originally, make sure 8491 // bit 12 (value 2048) is set instead, so that the final rounding 8492 // to single-precision gets the correct result. 8493 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8494 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8495 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8496 Round, DAG.getConstant(2047, dl, MVT::i64)); 8497 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8498 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8499 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8500 8501 // However, we cannot use that value unconditionally: if the magnitude 8502 // of the input value is small, the bit-twiddling we did above might 8503 // end up visibly changing the output. Fortunately, in that case, we 8504 // don't need to twiddle bits since the original input will convert 8505 // exactly to double-precision floating-point already. Therefore, 8506 // construct a conditional to use the original value if the top 11 8507 // bits are all sign-bit copies, and use the rounded value computed 8508 // above otherwise. 8509 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8510 SINT, DAG.getConstant(53, dl, MVT::i32)); 8511 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8512 Cond, DAG.getConstant(1, dl, MVT::i64)); 8513 Cond = DAG.getSetCC( 8514 dl, 8515 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8516 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8517 8518 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8519 } 8520 8521 ReuseLoadInfo RLI; 8522 SDValue Bits; 8523 8524 MachineFunction &MF = DAG.getMachineFunction(); 8525 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8526 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8527 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8528 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8529 } else if (Subtarget.hasLFIWAX() && 8530 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8531 MachineMemOperand *MMO = 8532 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8533 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8534 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8535 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8536 DAG.getVTList(MVT::f64, MVT::Other), 8537 Ops, MVT::i32, MMO); 8538 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8539 } else if (Subtarget.hasFPCVT() && 8540 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8541 MachineMemOperand *MMO = 8542 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8543 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8544 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8545 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8546 DAG.getVTList(MVT::f64, MVT::Other), 8547 Ops, MVT::i32, MMO); 8548 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8549 } else if (((Subtarget.hasLFIWAX() && 8550 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8551 (Subtarget.hasFPCVT() && 8552 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8553 SINT.getOperand(0).getValueType() == MVT::i32) { 8554 MachineFrameInfo &MFI = MF.getFrameInfo(); 8555 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8556 8557 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8558 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8559 8560 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8561 MachinePointerInfo::getFixedStack( 8562 DAG.getMachineFunction(), FrameIdx)); 8563 Chain = Store; 8564 8565 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8566 "Expected an i32 store"); 8567 8568 RLI.Ptr = FIdx; 8569 RLI.Chain = Chain; 8570 RLI.MPI = 8571 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8572 RLI.Alignment = Align(4); 8573 8574 MachineMemOperand *MMO = 8575 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8576 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8577 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8578 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8579 PPCISD::LFIWZX : PPCISD::LFIWAX, 8580 dl, DAG.getVTList(MVT::f64, MVT::Other), 8581 Ops, MVT::i32, MMO); 8582 Chain = Bits.getValue(1); 8583 } else 8584 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8585 8586 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8587 if (IsStrict) 8588 Chain = FP.getValue(1); 8589 8590 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8591 if (IsStrict) 8592 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8593 DAG.getVTList(MVT::f32, MVT::Other), 8594 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8595 else 8596 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8597 DAG.getIntPtrConstant(0, dl)); 8598 } 8599 return FP; 8600 } 8601 8602 assert(Src.getValueType() == MVT::i32 && 8603 "Unhandled INT_TO_FP type in custom expander!"); 8604 // Since we only generate this in 64-bit mode, we can take advantage of 8605 // 64-bit registers. In particular, sign extend the input value into the 8606 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8607 // then lfd it and fcfid it. 8608 MachineFunction &MF = DAG.getMachineFunction(); 8609 MachineFrameInfo &MFI = MF.getFrameInfo(); 8610 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8611 8612 SDValue Ld; 8613 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8614 ReuseLoadInfo RLI; 8615 bool ReusingLoad; 8616 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8617 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8618 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8619 8620 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8621 MachinePointerInfo::getFixedStack( 8622 DAG.getMachineFunction(), FrameIdx)); 8623 Chain = Store; 8624 8625 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8626 "Expected an i32 store"); 8627 8628 RLI.Ptr = FIdx; 8629 RLI.Chain = Chain; 8630 RLI.MPI = 8631 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8632 RLI.Alignment = Align(4); 8633 } 8634 8635 MachineMemOperand *MMO = 8636 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8637 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8638 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8639 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8640 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8641 MVT::i32, MMO); 8642 Chain = Ld.getValue(1); 8643 if (ReusingLoad) 8644 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8645 } else { 8646 assert(Subtarget.isPPC64() && 8647 "i32->FP without LFIWAX supported only on PPC64"); 8648 8649 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8650 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8651 8652 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8653 8654 // STD the extended value into the stack slot. 8655 SDValue Store = DAG.getStore( 8656 Chain, dl, Ext64, FIdx, 8657 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8658 Chain = Store; 8659 8660 // Load the value as a double. 8661 Ld = DAG.getLoad( 8662 MVT::f64, dl, Chain, FIdx, 8663 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8664 Chain = Ld.getValue(1); 8665 } 8666 8667 // FCFID it and return it. 8668 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8669 if (IsStrict) 8670 Chain = FP.getValue(1); 8671 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8672 if (IsStrict) 8673 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8674 DAG.getVTList(MVT::f32, MVT::Other), 8675 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8676 else 8677 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8678 DAG.getIntPtrConstant(0, dl)); 8679 } 8680 return FP; 8681 } 8682 8683 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8684 SelectionDAG &DAG) const { 8685 SDLoc dl(Op); 8686 /* 8687 The rounding mode is in bits 30:31 of FPSR, and has the following 8688 settings: 8689 00 Round to nearest 8690 01 Round to 0 8691 10 Round to +inf 8692 11 Round to -inf 8693 8694 FLT_ROUNDS, on the other hand, expects the following: 8695 -1 Undefined 8696 0 Round to 0 8697 1 Round to nearest 8698 2 Round to +inf 8699 3 Round to -inf 8700 8701 To perform the conversion, we do: 8702 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8703 */ 8704 8705 MachineFunction &MF = DAG.getMachineFunction(); 8706 EVT VT = Op.getValueType(); 8707 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8708 8709 // Save FP Control Word to register 8710 SDValue Chain = Op.getOperand(0); 8711 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8712 Chain = MFFS.getValue(1); 8713 8714 SDValue CWD; 8715 if (isTypeLegal(MVT::i64)) { 8716 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8717 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8718 } else { 8719 // Save FP register to stack slot 8720 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8721 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8722 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8723 8724 // Load FP Control Word from low 32 bits of stack slot. 8725 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8726 "Stack slot adjustment is valid only on big endian subtargets!"); 8727 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8728 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8729 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8730 Chain = CWD.getValue(1); 8731 } 8732 8733 // Transform as necessary 8734 SDValue CWD1 = 8735 DAG.getNode(ISD::AND, dl, MVT::i32, 8736 CWD, DAG.getConstant(3, dl, MVT::i32)); 8737 SDValue CWD2 = 8738 DAG.getNode(ISD::SRL, dl, MVT::i32, 8739 DAG.getNode(ISD::AND, dl, MVT::i32, 8740 DAG.getNode(ISD::XOR, dl, MVT::i32, 8741 CWD, DAG.getConstant(3, dl, MVT::i32)), 8742 DAG.getConstant(3, dl, MVT::i32)), 8743 DAG.getConstant(1, dl, MVT::i32)); 8744 8745 SDValue RetVal = 8746 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8747 8748 RetVal = 8749 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8750 dl, VT, RetVal); 8751 8752 return DAG.getMergeValues({RetVal, Chain}, dl); 8753 } 8754 8755 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8756 EVT VT = Op.getValueType(); 8757 unsigned BitWidth = VT.getSizeInBits(); 8758 SDLoc dl(Op); 8759 assert(Op.getNumOperands() == 3 && 8760 VT == Op.getOperand(1).getValueType() && 8761 "Unexpected SHL!"); 8762 8763 // Expand into a bunch of logical ops. Note that these ops 8764 // depend on the PPC behavior for oversized shift amounts. 8765 SDValue Lo = Op.getOperand(0); 8766 SDValue Hi = Op.getOperand(1); 8767 SDValue Amt = Op.getOperand(2); 8768 EVT AmtVT = Amt.getValueType(); 8769 8770 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8771 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8772 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8773 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8774 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8775 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8776 DAG.getConstant(-BitWidth, dl, AmtVT)); 8777 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8778 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8779 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8780 SDValue OutOps[] = { OutLo, OutHi }; 8781 return DAG.getMergeValues(OutOps, dl); 8782 } 8783 8784 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8785 EVT VT = Op.getValueType(); 8786 SDLoc dl(Op); 8787 unsigned BitWidth = VT.getSizeInBits(); 8788 assert(Op.getNumOperands() == 3 && 8789 VT == Op.getOperand(1).getValueType() && 8790 "Unexpected SRL!"); 8791 8792 // Expand into a bunch of logical ops. Note that these ops 8793 // depend on the PPC behavior for oversized shift amounts. 8794 SDValue Lo = Op.getOperand(0); 8795 SDValue Hi = Op.getOperand(1); 8796 SDValue Amt = Op.getOperand(2); 8797 EVT AmtVT = Amt.getValueType(); 8798 8799 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8800 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8801 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8802 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8803 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8804 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8805 DAG.getConstant(-BitWidth, dl, AmtVT)); 8806 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8807 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8808 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8809 SDValue OutOps[] = { OutLo, OutHi }; 8810 return DAG.getMergeValues(OutOps, dl); 8811 } 8812 8813 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8814 SDLoc dl(Op); 8815 EVT VT = Op.getValueType(); 8816 unsigned BitWidth = VT.getSizeInBits(); 8817 assert(Op.getNumOperands() == 3 && 8818 VT == Op.getOperand(1).getValueType() && 8819 "Unexpected SRA!"); 8820 8821 // Expand into a bunch of logical ops, followed by a select_cc. 8822 SDValue Lo = Op.getOperand(0); 8823 SDValue Hi = Op.getOperand(1); 8824 SDValue Amt = Op.getOperand(2); 8825 EVT AmtVT = Amt.getValueType(); 8826 8827 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8828 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8829 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8830 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8831 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8832 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8833 DAG.getConstant(-BitWidth, dl, AmtVT)); 8834 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8835 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8836 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8837 Tmp4, Tmp6, ISD::SETLE); 8838 SDValue OutOps[] = { OutLo, OutHi }; 8839 return DAG.getMergeValues(OutOps, dl); 8840 } 8841 8842 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8843 SelectionDAG &DAG) const { 8844 SDLoc dl(Op); 8845 EVT VT = Op.getValueType(); 8846 unsigned BitWidth = VT.getSizeInBits(); 8847 8848 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8849 SDValue X = Op.getOperand(0); 8850 SDValue Y = Op.getOperand(1); 8851 SDValue Z = Op.getOperand(2); 8852 EVT AmtVT = Z.getValueType(); 8853 8854 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8855 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8856 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8857 // on PowerPC shift by BW being well defined. 8858 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8859 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8860 SDValue SubZ = 8861 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8862 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8863 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8864 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8865 } 8866 8867 //===----------------------------------------------------------------------===// 8868 // Vector related lowering. 8869 // 8870 8871 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8872 /// element size of SplatSize. Cast the result to VT. 8873 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8874 SelectionDAG &DAG, const SDLoc &dl) { 8875 static const MVT VTys[] = { // canonical VT to use for each size. 8876 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8877 }; 8878 8879 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8880 8881 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8882 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8883 SplatSize = 1; 8884 Val = 0xFF; 8885 } 8886 8887 EVT CanonicalVT = VTys[SplatSize-1]; 8888 8889 // Build a canonical splat for this value. 8890 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8891 } 8892 8893 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8894 /// specified intrinsic ID. 8895 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8896 const SDLoc &dl, EVT DestVT = MVT::Other) { 8897 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8898 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8899 DAG.getConstant(IID, dl, MVT::i32), Op); 8900 } 8901 8902 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8903 /// specified intrinsic ID. 8904 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8905 SelectionDAG &DAG, const SDLoc &dl, 8906 EVT DestVT = MVT::Other) { 8907 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8908 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8909 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8910 } 8911 8912 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8913 /// specified intrinsic ID. 8914 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8915 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8916 EVT DestVT = MVT::Other) { 8917 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8918 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8919 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8920 } 8921 8922 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8923 /// amount. The result has the specified value type. 8924 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8925 SelectionDAG &DAG, const SDLoc &dl) { 8926 // Force LHS/RHS to be the right type. 8927 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8928 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8929 8930 int Ops[16]; 8931 for (unsigned i = 0; i != 16; ++i) 8932 Ops[i] = i + Amt; 8933 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8934 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8935 } 8936 8937 /// Do we have an efficient pattern in a .td file for this node? 8938 /// 8939 /// \param V - pointer to the BuildVectorSDNode being matched 8940 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8941 /// 8942 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8943 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8944 /// the opposite is true (expansion is beneficial) are: 8945 /// - The node builds a vector out of integers that are not 32 or 64-bits 8946 /// - The node builds a vector out of constants 8947 /// - The node is a "load-and-splat" 8948 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8949 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8950 bool HasDirectMove, 8951 bool HasP8Vector) { 8952 EVT VecVT = V->getValueType(0); 8953 bool RightType = VecVT == MVT::v2f64 || 8954 (HasP8Vector && VecVT == MVT::v4f32) || 8955 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8956 if (!RightType) 8957 return false; 8958 8959 bool IsSplat = true; 8960 bool IsLoad = false; 8961 SDValue Op0 = V->getOperand(0); 8962 8963 // This function is called in a block that confirms the node is not a constant 8964 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8965 // different constants. 8966 if (V->isConstant()) 8967 return false; 8968 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8969 if (V->getOperand(i).isUndef()) 8970 return false; 8971 // We want to expand nodes that represent load-and-splat even if the 8972 // loaded value is a floating point truncation or conversion to int. 8973 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8974 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8975 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8976 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8977 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8978 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8979 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8980 IsLoad = true; 8981 // If the operands are different or the input is not a load and has more 8982 // uses than just this BV node, then it isn't a splat. 8983 if (V->getOperand(i) != Op0 || 8984 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8985 IsSplat = false; 8986 } 8987 return !(IsSplat && IsLoad); 8988 } 8989 8990 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8991 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8992 8993 SDLoc dl(Op); 8994 SDValue Op0 = Op->getOperand(0); 8995 8996 if ((Op.getValueType() != MVT::f128) || 8997 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8998 (Op0.getOperand(0).getValueType() != MVT::i64) || 8999 (Op0.getOperand(1).getValueType() != MVT::i64)) 9000 return SDValue(); 9001 9002 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9003 Op0.getOperand(1)); 9004 } 9005 9006 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9007 const SDValue *InputLoad = &Op; 9008 if (InputLoad->getOpcode() == ISD::BITCAST) 9009 InputLoad = &InputLoad->getOperand(0); 9010 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9011 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9012 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9013 InputLoad = &InputLoad->getOperand(0); 9014 } 9015 if (InputLoad->getOpcode() != ISD::LOAD) 9016 return nullptr; 9017 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9018 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9019 } 9020 9021 // Convert the argument APFloat to a single precision APFloat if there is no 9022 // loss in information during the conversion to single precision APFloat and the 9023 // resulting number is not a denormal number. Return true if successful. 9024 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9025 APFloat APFloatToConvert = ArgAPFloat; 9026 bool LosesInfo = true; 9027 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9028 &LosesInfo); 9029 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9030 if (Success) 9031 ArgAPFloat = APFloatToConvert; 9032 return Success; 9033 } 9034 9035 // Bitcast the argument APInt to a double and convert it to a single precision 9036 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9037 // argument if there is no loss in information during the conversion from 9038 // double to single precision APFloat and the resulting number is not a denormal 9039 // number. Return true if successful. 9040 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9041 double DpValue = ArgAPInt.bitsToDouble(); 9042 APFloat APFloatDp(DpValue); 9043 bool Success = convertToNonDenormSingle(APFloatDp); 9044 if (Success) 9045 ArgAPInt = APFloatDp.bitcastToAPInt(); 9046 return Success; 9047 } 9048 9049 // Nondestructive check for convertTonNonDenormSingle. 9050 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9051 // Only convert if it loses info, since XXSPLTIDP should 9052 // handle the other case. 9053 APFloat APFloatToConvert = ArgAPFloat; 9054 bool LosesInfo = true; 9055 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9056 &LosesInfo); 9057 9058 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9059 } 9060 9061 // If this is a case we can't handle, return null and let the default 9062 // expansion code take care of it. If we CAN select this case, and if it 9063 // selects to a single instruction, return Op. Otherwise, if we can codegen 9064 // this case more efficiently than a constant pool load, lower it to the 9065 // sequence of ops that should be used. 9066 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9067 SelectionDAG &DAG) const { 9068 SDLoc dl(Op); 9069 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9070 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9071 9072 // Check if this is a splat of a constant value. 9073 APInt APSplatBits, APSplatUndef; 9074 unsigned SplatBitSize; 9075 bool HasAnyUndefs; 9076 bool BVNIsConstantSplat = 9077 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9078 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9079 9080 // If it is a splat of a double, check if we can shrink it to a 32 bit 9081 // non-denormal float which when converted back to double gives us the same 9082 // double. This is to exploit the XXSPLTIDP instruction. 9083 // If we lose precision, we use XXSPLTI32DX. 9084 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9085 Subtarget.hasPrefixInstrs()) { 9086 // Check the type first to short-circuit so we don't modify APSplatBits if 9087 // this block isn't executed. 9088 if ((Op->getValueType(0) == MVT::v2f64) && 9089 convertToNonDenormSingle(APSplatBits)) { 9090 SDValue SplatNode = DAG.getNode( 9091 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9092 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9093 return DAG.getBitcast(Op.getValueType(), SplatNode); 9094 } else { 9095 // We may lose precision, so we have to use XXSPLTI32DX. 9096 9097 uint32_t Hi = 9098 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9099 uint32_t Lo = 9100 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9101 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9102 9103 if (!Hi || !Lo) 9104 // If either load is 0, then we should generate XXLXOR to set to 0. 9105 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9106 9107 if (Hi) 9108 SplatNode = DAG.getNode( 9109 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9110 DAG.getTargetConstant(0, dl, MVT::i32), 9111 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9112 9113 if (Lo) 9114 SplatNode = 9115 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9116 DAG.getTargetConstant(1, dl, MVT::i32), 9117 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9118 9119 return DAG.getBitcast(Op.getValueType(), SplatNode); 9120 } 9121 } 9122 9123 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9124 9125 bool IsPermutedLoad = false; 9126 const SDValue *InputLoad = 9127 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9128 // Handle load-and-splat patterns as we have instructions that will do this 9129 // in one go. 9130 if (InputLoad && DAG.isSplatValue(Op, true)) { 9131 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9132 9133 // We have handling for 4 and 8 byte elements. 9134 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9135 9136 // Checking for a single use of this load, we have to check for vector 9137 // width (128 bits) / ElementSize uses (since each operand of the 9138 // BUILD_VECTOR is a separate use of the value. 9139 unsigned NumUsesOfInputLD = 128 / ElementSize; 9140 for (SDValue BVInOp : Op->ops()) 9141 if (BVInOp.isUndef()) 9142 NumUsesOfInputLD--; 9143 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9144 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9145 ((Subtarget.hasVSX() && ElementSize == 64) || 9146 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9147 SDValue Ops[] = { 9148 LD->getChain(), // Chain 9149 LD->getBasePtr(), // Ptr 9150 DAG.getValueType(Op.getValueType()) // VT 9151 }; 9152 SDValue LdSplt = DAG.getMemIntrinsicNode( 9153 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9154 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9155 // Replace all uses of the output chain of the original load with the 9156 // output chain of the new load. 9157 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9158 LdSplt.getValue(1)); 9159 return LdSplt; 9160 } 9161 } 9162 9163 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9164 // 32-bits can be lowered to VSX instructions under certain conditions. 9165 // Without VSX, there is no pattern more efficient than expanding the node. 9166 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9167 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9168 Subtarget.hasP8Vector())) 9169 return Op; 9170 return SDValue(); 9171 } 9172 9173 uint64_t SplatBits = APSplatBits.getZExtValue(); 9174 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9175 unsigned SplatSize = SplatBitSize / 8; 9176 9177 // First, handle single instruction cases. 9178 9179 // All zeros? 9180 if (SplatBits == 0) { 9181 // Canonicalize all zero vectors to be v4i32. 9182 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9183 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9184 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9185 } 9186 return Op; 9187 } 9188 9189 // We have XXSPLTIW for constant splats four bytes wide. 9190 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9191 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9192 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9193 // turned into a 4-byte splat of 0xABABABAB. 9194 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9195 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9196 Op.getValueType(), DAG, dl); 9197 9198 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9199 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9200 dl); 9201 9202 // We have XXSPLTIB for constant splats one byte wide. 9203 if (Subtarget.hasP9Vector() && SplatSize == 1) 9204 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9205 dl); 9206 9207 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9208 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9209 (32-SplatBitSize)); 9210 if (SextVal >= -16 && SextVal <= 15) 9211 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9212 dl); 9213 9214 // Two instruction sequences. 9215 9216 // If this value is in the range [-32,30] and is even, use: 9217 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9218 // If this value is in the range [17,31] and is odd, use: 9219 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9220 // If this value is in the range [-31,-17] and is odd, use: 9221 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9222 // Note the last two are three-instruction sequences. 9223 if (SextVal >= -32 && SextVal <= 31) { 9224 // To avoid having these optimizations undone by constant folding, 9225 // we convert to a pseudo that will be expanded later into one of 9226 // the above forms. 9227 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9228 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9229 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9230 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9231 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9232 if (VT == Op.getValueType()) 9233 return RetVal; 9234 else 9235 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9236 } 9237 9238 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9239 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9240 // for fneg/fabs. 9241 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9242 // Make -1 and vspltisw -1: 9243 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9244 9245 // Make the VSLW intrinsic, computing 0x8000_0000. 9246 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9247 OnesV, DAG, dl); 9248 9249 // xor by OnesV to invert it. 9250 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9251 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9252 } 9253 9254 // Check to see if this is a wide variety of vsplti*, binop self cases. 9255 static const signed char SplatCsts[] = { 9256 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9257 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9258 }; 9259 9260 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9261 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9262 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9263 int i = SplatCsts[idx]; 9264 9265 // Figure out what shift amount will be used by altivec if shifted by i in 9266 // this splat size. 9267 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9268 9269 // vsplti + shl self. 9270 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9271 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9272 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9273 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9274 Intrinsic::ppc_altivec_vslw 9275 }; 9276 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9277 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9278 } 9279 9280 // vsplti + srl self. 9281 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9282 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9283 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9284 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9285 Intrinsic::ppc_altivec_vsrw 9286 }; 9287 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9288 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9289 } 9290 9291 // vsplti + rol self. 9292 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9293 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9294 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9295 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9296 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9297 Intrinsic::ppc_altivec_vrlw 9298 }; 9299 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9300 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9301 } 9302 9303 // t = vsplti c, result = vsldoi t, t, 1 9304 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9305 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9306 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9307 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9308 } 9309 // t = vsplti c, result = vsldoi t, t, 2 9310 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9311 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9312 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9313 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9314 } 9315 // t = vsplti c, result = vsldoi t, t, 3 9316 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9317 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9318 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9319 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9320 } 9321 } 9322 9323 return SDValue(); 9324 } 9325 9326 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9327 /// the specified operations to build the shuffle. 9328 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9329 SDValue RHS, SelectionDAG &DAG, 9330 const SDLoc &dl) { 9331 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9332 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9333 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9334 9335 enum { 9336 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9337 OP_VMRGHW, 9338 OP_VMRGLW, 9339 OP_VSPLTISW0, 9340 OP_VSPLTISW1, 9341 OP_VSPLTISW2, 9342 OP_VSPLTISW3, 9343 OP_VSLDOI4, 9344 OP_VSLDOI8, 9345 OP_VSLDOI12 9346 }; 9347 9348 if (OpNum == OP_COPY) { 9349 if (LHSID == (1*9+2)*9+3) return LHS; 9350 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9351 return RHS; 9352 } 9353 9354 SDValue OpLHS, OpRHS; 9355 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9356 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9357 9358 int ShufIdxs[16]; 9359 switch (OpNum) { 9360 default: llvm_unreachable("Unknown i32 permute!"); 9361 case OP_VMRGHW: 9362 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9363 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9364 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9365 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9366 break; 9367 case OP_VMRGLW: 9368 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9369 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9370 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9371 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9372 break; 9373 case OP_VSPLTISW0: 9374 for (unsigned i = 0; i != 16; ++i) 9375 ShufIdxs[i] = (i&3)+0; 9376 break; 9377 case OP_VSPLTISW1: 9378 for (unsigned i = 0; i != 16; ++i) 9379 ShufIdxs[i] = (i&3)+4; 9380 break; 9381 case OP_VSPLTISW2: 9382 for (unsigned i = 0; i != 16; ++i) 9383 ShufIdxs[i] = (i&3)+8; 9384 break; 9385 case OP_VSPLTISW3: 9386 for (unsigned i = 0; i != 16; ++i) 9387 ShufIdxs[i] = (i&3)+12; 9388 break; 9389 case OP_VSLDOI4: 9390 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9391 case OP_VSLDOI8: 9392 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9393 case OP_VSLDOI12: 9394 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9395 } 9396 EVT VT = OpLHS.getValueType(); 9397 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9398 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9399 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9400 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9401 } 9402 9403 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9404 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9405 /// SDValue. 9406 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9407 SelectionDAG &DAG) const { 9408 const unsigned BytesInVector = 16; 9409 bool IsLE = Subtarget.isLittleEndian(); 9410 SDLoc dl(N); 9411 SDValue V1 = N->getOperand(0); 9412 SDValue V2 = N->getOperand(1); 9413 unsigned ShiftElts = 0, InsertAtByte = 0; 9414 bool Swap = false; 9415 9416 // Shifts required to get the byte we want at element 7. 9417 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9418 0, 15, 14, 13, 12, 11, 10, 9}; 9419 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9420 1, 2, 3, 4, 5, 6, 7, 8}; 9421 9422 ArrayRef<int> Mask = N->getMask(); 9423 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9424 9425 // For each mask element, find out if we're just inserting something 9426 // from V2 into V1 or vice versa. 9427 // Possible permutations inserting an element from V2 into V1: 9428 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9429 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9430 // ... 9431 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9432 // Inserting from V1 into V2 will be similar, except mask range will be 9433 // [16,31]. 9434 9435 bool FoundCandidate = false; 9436 // If both vector operands for the shuffle are the same vector, the mask 9437 // will contain only elements from the first one and the second one will be 9438 // undef. 9439 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9440 // Go through the mask of half-words to find an element that's being moved 9441 // from one vector to the other. 9442 for (unsigned i = 0; i < BytesInVector; ++i) { 9443 unsigned CurrentElement = Mask[i]; 9444 // If 2nd operand is undefined, we should only look for element 7 in the 9445 // Mask. 9446 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9447 continue; 9448 9449 bool OtherElementsInOrder = true; 9450 // Examine the other elements in the Mask to see if they're in original 9451 // order. 9452 for (unsigned j = 0; j < BytesInVector; ++j) { 9453 if (j == i) 9454 continue; 9455 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9456 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9457 // in which we always assume we're always picking from the 1st operand. 9458 int MaskOffset = 9459 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9460 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9461 OtherElementsInOrder = false; 9462 break; 9463 } 9464 } 9465 // If other elements are in original order, we record the number of shifts 9466 // we need to get the element we want into element 7. Also record which byte 9467 // in the vector we should insert into. 9468 if (OtherElementsInOrder) { 9469 // If 2nd operand is undefined, we assume no shifts and no swapping. 9470 if (V2.isUndef()) { 9471 ShiftElts = 0; 9472 Swap = false; 9473 } else { 9474 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9475 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9476 : BigEndianShifts[CurrentElement & 0xF]; 9477 Swap = CurrentElement < BytesInVector; 9478 } 9479 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9480 FoundCandidate = true; 9481 break; 9482 } 9483 } 9484 9485 if (!FoundCandidate) 9486 return SDValue(); 9487 9488 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9489 // optionally with VECSHL if shift is required. 9490 if (Swap) 9491 std::swap(V1, V2); 9492 if (V2.isUndef()) 9493 V2 = V1; 9494 if (ShiftElts) { 9495 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9496 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9497 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9498 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9499 } 9500 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9501 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9502 } 9503 9504 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9505 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9506 /// SDValue. 9507 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9508 SelectionDAG &DAG) const { 9509 const unsigned NumHalfWords = 8; 9510 const unsigned BytesInVector = NumHalfWords * 2; 9511 // Check that the shuffle is on half-words. 9512 if (!isNByteElemShuffleMask(N, 2, 1)) 9513 return SDValue(); 9514 9515 bool IsLE = Subtarget.isLittleEndian(); 9516 SDLoc dl(N); 9517 SDValue V1 = N->getOperand(0); 9518 SDValue V2 = N->getOperand(1); 9519 unsigned ShiftElts = 0, InsertAtByte = 0; 9520 bool Swap = false; 9521 9522 // Shifts required to get the half-word we want at element 3. 9523 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9524 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9525 9526 uint32_t Mask = 0; 9527 uint32_t OriginalOrderLow = 0x1234567; 9528 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9529 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9530 // 32-bit space, only need 4-bit nibbles per element. 9531 for (unsigned i = 0; i < NumHalfWords; ++i) { 9532 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9533 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9534 } 9535 9536 // For each mask element, find out if we're just inserting something 9537 // from V2 into V1 or vice versa. Possible permutations inserting an element 9538 // from V2 into V1: 9539 // X, 1, 2, 3, 4, 5, 6, 7 9540 // 0, X, 2, 3, 4, 5, 6, 7 9541 // 0, 1, X, 3, 4, 5, 6, 7 9542 // 0, 1, 2, X, 4, 5, 6, 7 9543 // 0, 1, 2, 3, X, 5, 6, 7 9544 // 0, 1, 2, 3, 4, X, 6, 7 9545 // 0, 1, 2, 3, 4, 5, X, 7 9546 // 0, 1, 2, 3, 4, 5, 6, X 9547 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9548 9549 bool FoundCandidate = false; 9550 // Go through the mask of half-words to find an element that's being moved 9551 // from one vector to the other. 9552 for (unsigned i = 0; i < NumHalfWords; ++i) { 9553 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9554 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9555 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9556 uint32_t TargetOrder = 0x0; 9557 9558 // If both vector operands for the shuffle are the same vector, the mask 9559 // will contain only elements from the first one and the second one will be 9560 // undef. 9561 if (V2.isUndef()) { 9562 ShiftElts = 0; 9563 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9564 TargetOrder = OriginalOrderLow; 9565 Swap = false; 9566 // Skip if not the correct element or mask of other elements don't equal 9567 // to our expected order. 9568 if (MaskOneElt == VINSERTHSrcElem && 9569 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9570 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9571 FoundCandidate = true; 9572 break; 9573 } 9574 } else { // If both operands are defined. 9575 // Target order is [8,15] if the current mask is between [0,7]. 9576 TargetOrder = 9577 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9578 // Skip if mask of other elements don't equal our expected order. 9579 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9580 // We only need the last 3 bits for the number of shifts. 9581 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9582 : BigEndianShifts[MaskOneElt & 0x7]; 9583 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9584 Swap = MaskOneElt < NumHalfWords; 9585 FoundCandidate = true; 9586 break; 9587 } 9588 } 9589 } 9590 9591 if (!FoundCandidate) 9592 return SDValue(); 9593 9594 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9595 // optionally with VECSHL if shift is required. 9596 if (Swap) 9597 std::swap(V1, V2); 9598 if (V2.isUndef()) 9599 V2 = V1; 9600 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9601 if (ShiftElts) { 9602 // Double ShiftElts because we're left shifting on v16i8 type. 9603 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9604 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9605 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9606 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9607 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9608 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9609 } 9610 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9611 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9612 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9613 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9614 } 9615 9616 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9617 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9618 /// return the default SDValue. 9619 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9620 SelectionDAG &DAG) const { 9621 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9622 // to v16i8. Peek through the bitcasts to get the actual operands. 9623 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9624 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9625 9626 auto ShuffleMask = SVN->getMask(); 9627 SDValue VecShuffle(SVN, 0); 9628 SDLoc DL(SVN); 9629 9630 // Check that we have a four byte shuffle. 9631 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9632 return SDValue(); 9633 9634 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9635 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9636 std::swap(LHS, RHS); 9637 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9638 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9639 } 9640 9641 // Ensure that the RHS is a vector of constants. 9642 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9643 if (!BVN) 9644 return SDValue(); 9645 9646 // Check if RHS is a splat of 4-bytes (or smaller). 9647 APInt APSplatValue, APSplatUndef; 9648 unsigned SplatBitSize; 9649 bool HasAnyUndefs; 9650 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9651 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9652 SplatBitSize > 32) 9653 return SDValue(); 9654 9655 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9656 // The instruction splats a constant C into two words of the source vector 9657 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9658 // Thus we check that the shuffle mask is the equivalent of 9659 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9660 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9661 // within each word are consecutive, so we only need to check the first byte. 9662 SDValue Index; 9663 bool IsLE = Subtarget.isLittleEndian(); 9664 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9665 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9666 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9667 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9668 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9669 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9670 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9671 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9672 else 9673 return SDValue(); 9674 9675 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9676 // for XXSPLTI32DX. 9677 unsigned SplatVal = APSplatValue.getZExtValue(); 9678 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9679 SplatVal |= (SplatVal << SplatBitSize); 9680 9681 SDValue SplatNode = DAG.getNode( 9682 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9683 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9684 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9685 } 9686 9687 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9688 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9689 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9690 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9691 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9692 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9693 assert(Op.getValueType() == MVT::v1i128 && 9694 "Only set v1i128 as custom, other type shouldn't reach here!"); 9695 SDLoc dl(Op); 9696 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9697 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9698 unsigned SHLAmt = N1.getConstantOperandVal(0); 9699 if (SHLAmt % 8 == 0) { 9700 SmallVector<int, 16> Mask(16, 0); 9701 std::iota(Mask.begin(), Mask.end(), 0); 9702 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9703 if (SDValue Shuffle = 9704 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9705 DAG.getUNDEF(MVT::v16i8), Mask)) 9706 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9707 } 9708 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9709 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9710 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9711 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9712 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9713 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9714 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9715 } 9716 9717 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9718 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9719 /// return the code it can be lowered into. Worst case, it can always be 9720 /// lowered into a vperm. 9721 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9722 SelectionDAG &DAG) const { 9723 SDLoc dl(Op); 9724 SDValue V1 = Op.getOperand(0); 9725 SDValue V2 = Op.getOperand(1); 9726 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9727 9728 // Any nodes that were combined in the target-independent combiner prior 9729 // to vector legalization will not be sent to the target combine. Try to 9730 // combine it here. 9731 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9732 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9733 return NewShuffle; 9734 Op = NewShuffle; 9735 SVOp = cast<ShuffleVectorSDNode>(Op); 9736 V1 = Op.getOperand(0); 9737 V2 = Op.getOperand(1); 9738 } 9739 EVT VT = Op.getValueType(); 9740 bool isLittleEndian = Subtarget.isLittleEndian(); 9741 9742 unsigned ShiftElts, InsertAtByte; 9743 bool Swap = false; 9744 9745 // If this is a load-and-splat, we can do that with a single instruction 9746 // in some cases. However if the load has multiple uses, we don't want to 9747 // combine it because that will just produce multiple loads. 9748 bool IsPermutedLoad = false; 9749 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9750 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9751 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9752 InputLoad->hasOneUse()) { 9753 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9754 int SplatIdx = 9755 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9756 9757 // The splat index for permuted loads will be in the left half of the vector 9758 // which is strictly wider than the loaded value by 8 bytes. So we need to 9759 // adjust the splat index to point to the correct address in memory. 9760 if (IsPermutedLoad) { 9761 assert((isLittleEndian || IsFourByte) && 9762 "Unexpected size for permuted load on big endian target"); 9763 SplatIdx += IsFourByte ? 2 : 1; 9764 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9765 "Splat of a value outside of the loaded memory"); 9766 } 9767 9768 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9769 // For 4-byte load-and-splat, we need Power9. 9770 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9771 uint64_t Offset = 0; 9772 if (IsFourByte) 9773 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9774 else 9775 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9776 9777 // If the width of the load is the same as the width of the splat, 9778 // loading with an offset would load the wrong memory. 9779 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9780 Offset = 0; 9781 9782 SDValue BasePtr = LD->getBasePtr(); 9783 if (Offset != 0) 9784 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9785 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9786 SDValue Ops[] = { 9787 LD->getChain(), // Chain 9788 BasePtr, // BasePtr 9789 DAG.getValueType(Op.getValueType()) // VT 9790 }; 9791 SDVTList VTL = 9792 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9793 SDValue LdSplt = 9794 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9795 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9796 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9797 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9798 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9799 return LdSplt; 9800 } 9801 } 9802 if (Subtarget.hasP9Vector() && 9803 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9804 isLittleEndian)) { 9805 if (Swap) 9806 std::swap(V1, V2); 9807 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9808 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9809 if (ShiftElts) { 9810 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9811 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9812 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9813 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9814 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9815 } 9816 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9817 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9818 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9819 } 9820 9821 if (Subtarget.hasPrefixInstrs()) { 9822 SDValue SplatInsertNode; 9823 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9824 return SplatInsertNode; 9825 } 9826 9827 if (Subtarget.hasP9Altivec()) { 9828 SDValue NewISDNode; 9829 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9830 return NewISDNode; 9831 9832 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9833 return NewISDNode; 9834 } 9835 9836 if (Subtarget.hasVSX() && 9837 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9838 if (Swap) 9839 std::swap(V1, V2); 9840 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9841 SDValue Conv2 = 9842 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9843 9844 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9845 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9846 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9847 } 9848 9849 if (Subtarget.hasVSX() && 9850 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9851 if (Swap) 9852 std::swap(V1, V2); 9853 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9854 SDValue Conv2 = 9855 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9856 9857 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9858 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9859 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9860 } 9861 9862 if (Subtarget.hasP9Vector()) { 9863 if (PPC::isXXBRHShuffleMask(SVOp)) { 9864 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9865 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9866 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9867 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9868 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9869 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9870 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9871 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9872 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9873 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9874 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9875 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9876 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9877 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9878 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9879 } 9880 } 9881 9882 if (Subtarget.hasVSX()) { 9883 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9884 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9885 9886 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9887 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9888 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9889 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9890 } 9891 9892 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9893 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9894 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9895 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9896 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9897 } 9898 } 9899 9900 // Cases that are handled by instructions that take permute immediates 9901 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9902 // selected by the instruction selector. 9903 if (V2.isUndef()) { 9904 if (PPC::isSplatShuffleMask(SVOp, 1) || 9905 PPC::isSplatShuffleMask(SVOp, 2) || 9906 PPC::isSplatShuffleMask(SVOp, 4) || 9907 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9908 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9909 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9910 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9911 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9912 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9913 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9914 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9915 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9916 (Subtarget.hasP8Altivec() && ( 9917 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9918 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9919 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9920 return Op; 9921 } 9922 } 9923 9924 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9925 // and produce a fixed permutation. If any of these match, do not lower to 9926 // VPERM. 9927 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9928 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9929 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9930 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9931 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9932 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9933 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9934 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9935 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9936 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9937 (Subtarget.hasP8Altivec() && ( 9938 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9939 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9940 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9941 return Op; 9942 9943 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9944 // perfect shuffle table to emit an optimal matching sequence. 9945 ArrayRef<int> PermMask = SVOp->getMask(); 9946 9947 unsigned PFIndexes[4]; 9948 bool isFourElementShuffle = true; 9949 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9950 unsigned EltNo = 8; // Start out undef. 9951 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9952 if (PermMask[i*4+j] < 0) 9953 continue; // Undef, ignore it. 9954 9955 unsigned ByteSource = PermMask[i*4+j]; 9956 if ((ByteSource & 3) != j) { 9957 isFourElementShuffle = false; 9958 break; 9959 } 9960 9961 if (EltNo == 8) { 9962 EltNo = ByteSource/4; 9963 } else if (EltNo != ByteSource/4) { 9964 isFourElementShuffle = false; 9965 break; 9966 } 9967 } 9968 PFIndexes[i] = EltNo; 9969 } 9970 9971 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9972 // perfect shuffle vector to determine if it is cost effective to do this as 9973 // discrete instructions, or whether we should use a vperm. 9974 // For now, we skip this for little endian until such time as we have a 9975 // little-endian perfect shuffle table. 9976 if (isFourElementShuffle && !isLittleEndian) { 9977 // Compute the index in the perfect shuffle table. 9978 unsigned PFTableIndex = 9979 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9980 9981 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9982 unsigned Cost = (PFEntry >> 30); 9983 9984 // Determining when to avoid vperm is tricky. Many things affect the cost 9985 // of vperm, particularly how many times the perm mask needs to be computed. 9986 // For example, if the perm mask can be hoisted out of a loop or is already 9987 // used (perhaps because there are multiple permutes with the same shuffle 9988 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9989 // the loop requires an extra register. 9990 // 9991 // As a compromise, we only emit discrete instructions if the shuffle can be 9992 // generated in 3 or fewer operations. When we have loop information 9993 // available, if this block is within a loop, we should avoid using vperm 9994 // for 3-operation perms and use a constant pool load instead. 9995 if (Cost < 3) 9996 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9997 } 9998 9999 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10000 // vector that will get spilled to the constant pool. 10001 if (V2.isUndef()) V2 = V1; 10002 10003 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10004 // that it is in input element units, not in bytes. Convert now. 10005 10006 // For little endian, the order of the input vectors is reversed, and 10007 // the permutation mask is complemented with respect to 31. This is 10008 // necessary to produce proper semantics with the big-endian-biased vperm 10009 // instruction. 10010 EVT EltVT = V1.getValueType().getVectorElementType(); 10011 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10012 10013 SmallVector<SDValue, 16> ResultMask; 10014 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10015 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10016 10017 for (unsigned j = 0; j != BytesPerElement; ++j) 10018 if (isLittleEndian) 10019 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10020 dl, MVT::i32)); 10021 else 10022 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10023 MVT::i32)); 10024 } 10025 10026 ShufflesHandledWithVPERM++; 10027 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10028 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10029 LLVM_DEBUG(SVOp->dump()); 10030 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10031 LLVM_DEBUG(VPermMask.dump()); 10032 10033 if (isLittleEndian) 10034 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10035 V2, V1, VPermMask); 10036 else 10037 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10038 V1, V2, VPermMask); 10039 } 10040 10041 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10042 /// vector comparison. If it is, return true and fill in Opc/isDot with 10043 /// information about the intrinsic. 10044 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10045 bool &isDot, const PPCSubtarget &Subtarget) { 10046 unsigned IntrinsicID = 10047 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10048 CompareOpc = -1; 10049 isDot = false; 10050 switch (IntrinsicID) { 10051 default: 10052 return false; 10053 // Comparison predicates. 10054 case Intrinsic::ppc_altivec_vcmpbfp_p: 10055 CompareOpc = 966; 10056 isDot = true; 10057 break; 10058 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10059 CompareOpc = 198; 10060 isDot = true; 10061 break; 10062 case Intrinsic::ppc_altivec_vcmpequb_p: 10063 CompareOpc = 6; 10064 isDot = true; 10065 break; 10066 case Intrinsic::ppc_altivec_vcmpequh_p: 10067 CompareOpc = 70; 10068 isDot = true; 10069 break; 10070 case Intrinsic::ppc_altivec_vcmpequw_p: 10071 CompareOpc = 134; 10072 isDot = true; 10073 break; 10074 case Intrinsic::ppc_altivec_vcmpequd_p: 10075 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10076 CompareOpc = 199; 10077 isDot = true; 10078 } else 10079 return false; 10080 break; 10081 case Intrinsic::ppc_altivec_vcmpneb_p: 10082 case Intrinsic::ppc_altivec_vcmpneh_p: 10083 case Intrinsic::ppc_altivec_vcmpnew_p: 10084 case Intrinsic::ppc_altivec_vcmpnezb_p: 10085 case Intrinsic::ppc_altivec_vcmpnezh_p: 10086 case Intrinsic::ppc_altivec_vcmpnezw_p: 10087 if (Subtarget.hasP9Altivec()) { 10088 switch (IntrinsicID) { 10089 default: 10090 llvm_unreachable("Unknown comparison intrinsic."); 10091 case Intrinsic::ppc_altivec_vcmpneb_p: 10092 CompareOpc = 7; 10093 break; 10094 case Intrinsic::ppc_altivec_vcmpneh_p: 10095 CompareOpc = 71; 10096 break; 10097 case Intrinsic::ppc_altivec_vcmpnew_p: 10098 CompareOpc = 135; 10099 break; 10100 case Intrinsic::ppc_altivec_vcmpnezb_p: 10101 CompareOpc = 263; 10102 break; 10103 case Intrinsic::ppc_altivec_vcmpnezh_p: 10104 CompareOpc = 327; 10105 break; 10106 case Intrinsic::ppc_altivec_vcmpnezw_p: 10107 CompareOpc = 391; 10108 break; 10109 } 10110 isDot = true; 10111 } else 10112 return false; 10113 break; 10114 case Intrinsic::ppc_altivec_vcmpgefp_p: 10115 CompareOpc = 454; 10116 isDot = true; 10117 break; 10118 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10119 CompareOpc = 710; 10120 isDot = true; 10121 break; 10122 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10123 CompareOpc = 774; 10124 isDot = true; 10125 break; 10126 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10127 CompareOpc = 838; 10128 isDot = true; 10129 break; 10130 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10131 CompareOpc = 902; 10132 isDot = true; 10133 break; 10134 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10135 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10136 CompareOpc = 967; 10137 isDot = true; 10138 } else 10139 return false; 10140 break; 10141 case Intrinsic::ppc_altivec_vcmpgtub_p: 10142 CompareOpc = 518; 10143 isDot = true; 10144 break; 10145 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10146 CompareOpc = 582; 10147 isDot = true; 10148 break; 10149 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10150 CompareOpc = 646; 10151 isDot = true; 10152 break; 10153 case Intrinsic::ppc_altivec_vcmpgtud_p: 10154 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10155 CompareOpc = 711; 10156 isDot = true; 10157 } else 10158 return false; 10159 break; 10160 10161 case Intrinsic::ppc_altivec_vcmpequq: 10162 case Intrinsic::ppc_altivec_vcmpgtsq: 10163 case Intrinsic::ppc_altivec_vcmpgtuq: 10164 if (!Subtarget.isISA3_1()) 10165 return false; 10166 switch (IntrinsicID) { 10167 default: 10168 llvm_unreachable("Unknown comparison intrinsic."); 10169 case Intrinsic::ppc_altivec_vcmpequq: 10170 CompareOpc = 455; 10171 break; 10172 case Intrinsic::ppc_altivec_vcmpgtsq: 10173 CompareOpc = 903; 10174 break; 10175 case Intrinsic::ppc_altivec_vcmpgtuq: 10176 CompareOpc = 647; 10177 break; 10178 } 10179 break; 10180 10181 // VSX predicate comparisons use the same infrastructure 10182 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10183 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10184 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10185 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10186 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10187 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10188 if (Subtarget.hasVSX()) { 10189 switch (IntrinsicID) { 10190 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10191 CompareOpc = 99; 10192 break; 10193 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10194 CompareOpc = 115; 10195 break; 10196 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10197 CompareOpc = 107; 10198 break; 10199 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10200 CompareOpc = 67; 10201 break; 10202 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10203 CompareOpc = 83; 10204 break; 10205 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10206 CompareOpc = 75; 10207 break; 10208 } 10209 isDot = true; 10210 } else 10211 return false; 10212 break; 10213 10214 // Normal Comparisons. 10215 case Intrinsic::ppc_altivec_vcmpbfp: 10216 CompareOpc = 966; 10217 break; 10218 case Intrinsic::ppc_altivec_vcmpeqfp: 10219 CompareOpc = 198; 10220 break; 10221 case Intrinsic::ppc_altivec_vcmpequb: 10222 CompareOpc = 6; 10223 break; 10224 case Intrinsic::ppc_altivec_vcmpequh: 10225 CompareOpc = 70; 10226 break; 10227 case Intrinsic::ppc_altivec_vcmpequw: 10228 CompareOpc = 134; 10229 break; 10230 case Intrinsic::ppc_altivec_vcmpequd: 10231 if (Subtarget.hasP8Altivec()) 10232 CompareOpc = 199; 10233 else 10234 return false; 10235 break; 10236 case Intrinsic::ppc_altivec_vcmpneb: 10237 case Intrinsic::ppc_altivec_vcmpneh: 10238 case Intrinsic::ppc_altivec_vcmpnew: 10239 case Intrinsic::ppc_altivec_vcmpnezb: 10240 case Intrinsic::ppc_altivec_vcmpnezh: 10241 case Intrinsic::ppc_altivec_vcmpnezw: 10242 if (Subtarget.hasP9Altivec()) 10243 switch (IntrinsicID) { 10244 default: 10245 llvm_unreachable("Unknown comparison intrinsic."); 10246 case Intrinsic::ppc_altivec_vcmpneb: 10247 CompareOpc = 7; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpneh: 10250 CompareOpc = 71; 10251 break; 10252 case Intrinsic::ppc_altivec_vcmpnew: 10253 CompareOpc = 135; 10254 break; 10255 case Intrinsic::ppc_altivec_vcmpnezb: 10256 CompareOpc = 263; 10257 break; 10258 case Intrinsic::ppc_altivec_vcmpnezh: 10259 CompareOpc = 327; 10260 break; 10261 case Intrinsic::ppc_altivec_vcmpnezw: 10262 CompareOpc = 391; 10263 break; 10264 } 10265 else 10266 return false; 10267 break; 10268 case Intrinsic::ppc_altivec_vcmpgefp: 10269 CompareOpc = 454; 10270 break; 10271 case Intrinsic::ppc_altivec_vcmpgtfp: 10272 CompareOpc = 710; 10273 break; 10274 case Intrinsic::ppc_altivec_vcmpgtsb: 10275 CompareOpc = 774; 10276 break; 10277 case Intrinsic::ppc_altivec_vcmpgtsh: 10278 CompareOpc = 838; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpgtsw: 10281 CompareOpc = 902; 10282 break; 10283 case Intrinsic::ppc_altivec_vcmpgtsd: 10284 if (Subtarget.hasP8Altivec()) 10285 CompareOpc = 967; 10286 else 10287 return false; 10288 break; 10289 case Intrinsic::ppc_altivec_vcmpgtub: 10290 CompareOpc = 518; 10291 break; 10292 case Intrinsic::ppc_altivec_vcmpgtuh: 10293 CompareOpc = 582; 10294 break; 10295 case Intrinsic::ppc_altivec_vcmpgtuw: 10296 CompareOpc = 646; 10297 break; 10298 case Intrinsic::ppc_altivec_vcmpgtud: 10299 if (Subtarget.hasP8Altivec()) 10300 CompareOpc = 711; 10301 else 10302 return false; 10303 break; 10304 case Intrinsic::ppc_altivec_vcmpequq_p: 10305 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10306 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10307 if (!Subtarget.isISA3_1()) 10308 return false; 10309 switch (IntrinsicID) { 10310 default: 10311 llvm_unreachable("Unknown comparison intrinsic."); 10312 case Intrinsic::ppc_altivec_vcmpequq_p: 10313 CompareOpc = 455; 10314 break; 10315 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10316 CompareOpc = 903; 10317 break; 10318 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10319 CompareOpc = 647; 10320 break; 10321 } 10322 isDot = true; 10323 break; 10324 } 10325 return true; 10326 } 10327 10328 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10329 /// lower, do it, otherwise return null. 10330 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10331 SelectionDAG &DAG) const { 10332 unsigned IntrinsicID = 10333 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10334 10335 SDLoc dl(Op); 10336 10337 switch (IntrinsicID) { 10338 case Intrinsic::thread_pointer: 10339 // Reads the thread pointer register, used for __builtin_thread_pointer. 10340 if (Subtarget.isPPC64()) 10341 return DAG.getRegister(PPC::X13, MVT::i64); 10342 return DAG.getRegister(PPC::R2, MVT::i32); 10343 10344 case Intrinsic::ppc_mma_disassemble_acc: 10345 case Intrinsic::ppc_vsx_disassemble_pair: { 10346 int NumVecs = 2; 10347 SDValue WideVec = Op.getOperand(1); 10348 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10349 NumVecs = 4; 10350 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10351 } 10352 SmallVector<SDValue, 4> RetOps; 10353 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10354 SDValue Extract = DAG.getNode( 10355 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10356 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10357 : VecNo, 10358 dl, getPointerTy(DAG.getDataLayout()))); 10359 RetOps.push_back(Extract); 10360 } 10361 return DAG.getMergeValues(RetOps, dl); 10362 } 10363 } 10364 10365 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10366 // opcode number of the comparison. 10367 int CompareOpc; 10368 bool isDot; 10369 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10370 return SDValue(); // Don't custom lower most intrinsics. 10371 10372 // If this is a non-dot comparison, make the VCMP node and we are done. 10373 if (!isDot) { 10374 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10375 Op.getOperand(1), Op.getOperand(2), 10376 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10377 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10378 } 10379 10380 // Create the PPCISD altivec 'dot' comparison node. 10381 SDValue Ops[] = { 10382 Op.getOperand(2), // LHS 10383 Op.getOperand(3), // RHS 10384 DAG.getConstant(CompareOpc, dl, MVT::i32) 10385 }; 10386 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10387 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10388 10389 // Now that we have the comparison, emit a copy from the CR to a GPR. 10390 // This is flagged to the above dot comparison. 10391 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10392 DAG.getRegister(PPC::CR6, MVT::i32), 10393 CompNode.getValue(1)); 10394 10395 // Unpack the result based on how the target uses it. 10396 unsigned BitNo; // Bit # of CR6. 10397 bool InvertBit; // Invert result? 10398 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10399 default: // Can't happen, don't crash on invalid number though. 10400 case 0: // Return the value of the EQ bit of CR6. 10401 BitNo = 0; InvertBit = false; 10402 break; 10403 case 1: // Return the inverted value of the EQ bit of CR6. 10404 BitNo = 0; InvertBit = true; 10405 break; 10406 case 2: // Return the value of the LT bit of CR6. 10407 BitNo = 2; InvertBit = false; 10408 break; 10409 case 3: // Return the inverted value of the LT bit of CR6. 10410 BitNo = 2; InvertBit = true; 10411 break; 10412 } 10413 10414 // Shift the bit into the low position. 10415 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10416 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10417 // Isolate the bit. 10418 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10419 DAG.getConstant(1, dl, MVT::i32)); 10420 10421 // If we are supposed to, toggle the bit. 10422 if (InvertBit) 10423 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10424 DAG.getConstant(1, dl, MVT::i32)); 10425 return Flags; 10426 } 10427 10428 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10429 SelectionDAG &DAG) const { 10430 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10431 // the beginning of the argument list. 10432 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10433 SDLoc DL(Op); 10434 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10435 case Intrinsic::ppc_cfence: { 10436 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10437 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10438 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10439 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10440 Op.getOperand(ArgStart + 1)), 10441 Op.getOperand(0)), 10442 0); 10443 } 10444 default: 10445 break; 10446 } 10447 return SDValue(); 10448 } 10449 10450 // Lower scalar BSWAP64 to xxbrd. 10451 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10452 SDLoc dl(Op); 10453 if (!Subtarget.isPPC64()) 10454 return Op; 10455 // MTVSRDD 10456 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10457 Op.getOperand(0)); 10458 // XXBRD 10459 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10460 // MFVSRD 10461 int VectorIndex = 0; 10462 if (Subtarget.isLittleEndian()) 10463 VectorIndex = 1; 10464 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10465 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10466 return Op; 10467 } 10468 10469 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10470 // compared to a value that is atomically loaded (atomic loads zero-extend). 10471 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10472 SelectionDAG &DAG) const { 10473 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10474 "Expecting an atomic compare-and-swap here."); 10475 SDLoc dl(Op); 10476 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10477 EVT MemVT = AtomicNode->getMemoryVT(); 10478 if (MemVT.getSizeInBits() >= 32) 10479 return Op; 10480 10481 SDValue CmpOp = Op.getOperand(2); 10482 // If this is already correctly zero-extended, leave it alone. 10483 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10484 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10485 return Op; 10486 10487 // Clear the high bits of the compare operand. 10488 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10489 SDValue NewCmpOp = 10490 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10491 DAG.getConstant(MaskVal, dl, MVT::i32)); 10492 10493 // Replace the existing compare operand with the properly zero-extended one. 10494 SmallVector<SDValue, 4> Ops; 10495 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10496 Ops.push_back(AtomicNode->getOperand(i)); 10497 Ops[2] = NewCmpOp; 10498 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10499 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10500 auto NodeTy = 10501 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10502 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10503 } 10504 10505 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10506 SelectionDAG &DAG) const { 10507 SDLoc dl(Op); 10508 // Create a stack slot that is 16-byte aligned. 10509 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10510 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10511 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10512 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10513 10514 // Store the input value into Value#0 of the stack slot. 10515 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10516 MachinePointerInfo()); 10517 // Load it out. 10518 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10519 } 10520 10521 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10522 SelectionDAG &DAG) const { 10523 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10524 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10525 10526 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10527 10528 EVT VT = Op.getValueType(); 10529 SDLoc dl(Op); 10530 SDValue V1 = Op.getOperand(0); 10531 SDValue V2 = Op.getOperand(1); 10532 SDValue V3 = Op.getOperand(2); 10533 10534 if (VT == MVT::v2f64 && C) 10535 return Op; 10536 10537 if (Subtarget.isISA3_1()) { 10538 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10539 return SDValue(); 10540 // On P10, we have legal lowering for constant and variable indices for 10541 // integer vectors. 10542 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10543 VT == MVT::v2i64) 10544 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10545 // For f32 and f64 vectors, we have legal lowering for variable indices. 10546 // For f32 we also have legal lowering when the element is loaded from 10547 // memory. 10548 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10549 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10550 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10551 return Op; 10552 } 10553 } 10554 10555 // Before P10, we have legal lowering for constant indices but not for 10556 // variable ones. 10557 if (!C) 10558 return SDValue(); 10559 10560 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10561 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10562 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10563 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10564 unsigned InsertAtElement = C->getZExtValue(); 10565 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10566 if (Subtarget.isLittleEndian()) { 10567 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10568 } 10569 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10570 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10571 } 10572 return Op; 10573 } 10574 10575 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10576 SelectionDAG &DAG) const { 10577 SDLoc dl(Op); 10578 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10579 SDValue LoadChain = LN->getChain(); 10580 SDValue BasePtr = LN->getBasePtr(); 10581 EVT VT = Op.getValueType(); 10582 10583 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10584 return Op; 10585 10586 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10587 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10588 // 2 or 4 vsx registers. 10589 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10590 "Type unsupported without MMA"); 10591 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10592 "Type unsupported without paired vector support"); 10593 Align Alignment = LN->getAlign(); 10594 SmallVector<SDValue, 4> Loads; 10595 SmallVector<SDValue, 4> LoadChains; 10596 unsigned NumVecs = VT.getSizeInBits() / 128; 10597 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10598 SDValue Load = 10599 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10600 LN->getPointerInfo().getWithOffset(Idx * 16), 10601 commonAlignment(Alignment, Idx * 16), 10602 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10603 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10604 DAG.getConstant(16, dl, BasePtr.getValueType())); 10605 Loads.push_back(Load); 10606 LoadChains.push_back(Load.getValue(1)); 10607 } 10608 if (Subtarget.isLittleEndian()) { 10609 std::reverse(Loads.begin(), Loads.end()); 10610 std::reverse(LoadChains.begin(), LoadChains.end()); 10611 } 10612 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10613 SDValue Value = 10614 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10615 dl, VT, Loads); 10616 SDValue RetOps[] = {Value, TF}; 10617 return DAG.getMergeValues(RetOps, dl); 10618 } 10619 10620 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10621 SelectionDAG &DAG) const { 10622 SDLoc dl(Op); 10623 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10624 SDValue StoreChain = SN->getChain(); 10625 SDValue BasePtr = SN->getBasePtr(); 10626 SDValue Value = SN->getValue(); 10627 EVT StoreVT = Value.getValueType(); 10628 10629 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10630 return Op; 10631 10632 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10633 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10634 // underlying registers individually. 10635 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10636 "Type unsupported without MMA"); 10637 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10638 "Type unsupported without paired vector support"); 10639 Align Alignment = SN->getAlign(); 10640 SmallVector<SDValue, 4> Stores; 10641 unsigned NumVecs = 2; 10642 if (StoreVT == MVT::v512i1) { 10643 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10644 NumVecs = 4; 10645 } 10646 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10647 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10648 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10649 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10650 SDValue Store = 10651 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10652 SN->getPointerInfo().getWithOffset(Idx * 16), 10653 commonAlignment(Alignment, Idx * 16), 10654 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10655 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10656 DAG.getConstant(16, dl, BasePtr.getValueType())); 10657 Stores.push_back(Store); 10658 } 10659 SDValue TF = DAG.getTokenFactor(dl, Stores); 10660 return TF; 10661 } 10662 10663 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10664 SDLoc dl(Op); 10665 if (Op.getValueType() == MVT::v4i32) { 10666 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10667 10668 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10669 // +16 as shift amt. 10670 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10671 SDValue RHSSwap = // = vrlw RHS, 16 10672 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10673 10674 // Shrinkify inputs to v8i16. 10675 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10676 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10677 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10678 10679 // Low parts multiplied together, generating 32-bit results (we ignore the 10680 // top parts). 10681 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10682 LHS, RHS, DAG, dl, MVT::v4i32); 10683 10684 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10685 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10686 // Shift the high parts up 16 bits. 10687 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10688 Neg16, DAG, dl); 10689 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10690 } else if (Op.getValueType() == MVT::v16i8) { 10691 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10692 bool isLittleEndian = Subtarget.isLittleEndian(); 10693 10694 // Multiply the even 8-bit parts, producing 16-bit sums. 10695 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10696 LHS, RHS, DAG, dl, MVT::v8i16); 10697 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10698 10699 // Multiply the odd 8-bit parts, producing 16-bit sums. 10700 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10701 LHS, RHS, DAG, dl, MVT::v8i16); 10702 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10703 10704 // Merge the results together. Because vmuleub and vmuloub are 10705 // instructions with a big-endian bias, we must reverse the 10706 // element numbering and reverse the meaning of "odd" and "even" 10707 // when generating little endian code. 10708 int Ops[16]; 10709 for (unsigned i = 0; i != 8; ++i) { 10710 if (isLittleEndian) { 10711 Ops[i*2 ] = 2*i; 10712 Ops[i*2+1] = 2*i+16; 10713 } else { 10714 Ops[i*2 ] = 2*i+1; 10715 Ops[i*2+1] = 2*i+1+16; 10716 } 10717 } 10718 if (isLittleEndian) 10719 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10720 else 10721 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10722 } else { 10723 llvm_unreachable("Unknown mul to lower!"); 10724 } 10725 } 10726 10727 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10728 bool IsStrict = Op->isStrictFPOpcode(); 10729 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10730 !Subtarget.hasP9Vector()) 10731 return SDValue(); 10732 10733 return Op; 10734 } 10735 10736 // Custom lowering for fpext vf32 to v2f64 10737 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10738 10739 assert(Op.getOpcode() == ISD::FP_EXTEND && 10740 "Should only be called for ISD::FP_EXTEND"); 10741 10742 // FIXME: handle extends from half precision float vectors on P9. 10743 // We only want to custom lower an extend from v2f32 to v2f64. 10744 if (Op.getValueType() != MVT::v2f64 || 10745 Op.getOperand(0).getValueType() != MVT::v2f32) 10746 return SDValue(); 10747 10748 SDLoc dl(Op); 10749 SDValue Op0 = Op.getOperand(0); 10750 10751 switch (Op0.getOpcode()) { 10752 default: 10753 return SDValue(); 10754 case ISD::EXTRACT_SUBVECTOR: { 10755 assert(Op0.getNumOperands() == 2 && 10756 isa<ConstantSDNode>(Op0->getOperand(1)) && 10757 "Node should have 2 operands with second one being a constant!"); 10758 10759 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10760 return SDValue(); 10761 10762 // Custom lower is only done for high or low doubleword. 10763 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10764 if (Idx % 2 != 0) 10765 return SDValue(); 10766 10767 // Since input is v4f32, at this point Idx is either 0 or 2. 10768 // Shift to get the doubleword position we want. 10769 int DWord = Idx >> 1; 10770 10771 // High and low word positions are different on little endian. 10772 if (Subtarget.isLittleEndian()) 10773 DWord ^= 0x1; 10774 10775 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10776 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10777 } 10778 case ISD::FADD: 10779 case ISD::FMUL: 10780 case ISD::FSUB: { 10781 SDValue NewLoad[2]; 10782 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10783 // Ensure both input are loads. 10784 SDValue LdOp = Op0.getOperand(i); 10785 if (LdOp.getOpcode() != ISD::LOAD) 10786 return SDValue(); 10787 // Generate new load node. 10788 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10789 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10790 NewLoad[i] = DAG.getMemIntrinsicNode( 10791 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10792 LD->getMemoryVT(), LD->getMemOperand()); 10793 } 10794 SDValue NewOp = 10795 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10796 NewLoad[1], Op0.getNode()->getFlags()); 10797 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10798 DAG.getConstant(0, dl, MVT::i32)); 10799 } 10800 case ISD::LOAD: { 10801 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10802 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10803 SDValue NewLd = DAG.getMemIntrinsicNode( 10804 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10805 LD->getMemoryVT(), LD->getMemOperand()); 10806 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10807 DAG.getConstant(0, dl, MVT::i32)); 10808 } 10809 } 10810 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10811 } 10812 10813 /// LowerOperation - Provide custom lowering hooks for some operations. 10814 /// 10815 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10816 switch (Op.getOpcode()) { 10817 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10818 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10819 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10820 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10821 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10822 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10823 case ISD::STRICT_FSETCC: 10824 case ISD::STRICT_FSETCCS: 10825 case ISD::SETCC: return LowerSETCC(Op, DAG); 10826 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10827 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10828 10829 case ISD::INLINEASM: 10830 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 10831 // Variable argument lowering. 10832 case ISD::VASTART: return LowerVASTART(Op, DAG); 10833 case ISD::VAARG: return LowerVAARG(Op, DAG); 10834 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10835 10836 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10837 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10838 case ISD::GET_DYNAMIC_AREA_OFFSET: 10839 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10840 10841 // Exception handling lowering. 10842 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10843 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10844 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10845 10846 case ISD::LOAD: return LowerLOAD(Op, DAG); 10847 case ISD::STORE: return LowerSTORE(Op, DAG); 10848 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10849 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10850 case ISD::STRICT_FP_TO_UINT: 10851 case ISD::STRICT_FP_TO_SINT: 10852 case ISD::FP_TO_UINT: 10853 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10854 case ISD::STRICT_UINT_TO_FP: 10855 case ISD::STRICT_SINT_TO_FP: 10856 case ISD::UINT_TO_FP: 10857 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10858 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10859 10860 // Lower 64-bit shifts. 10861 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10862 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10863 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10864 10865 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10866 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10867 10868 // Vector-related lowering. 10869 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10870 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10871 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10872 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10873 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10874 case ISD::MUL: return LowerMUL(Op, DAG); 10875 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10876 case ISD::STRICT_FP_ROUND: 10877 case ISD::FP_ROUND: 10878 return LowerFP_ROUND(Op, DAG); 10879 case ISD::ROTL: return LowerROTL(Op, DAG); 10880 10881 // For counter-based loop handling. 10882 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10883 10884 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10885 10886 // Frame & Return address. 10887 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10888 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10889 10890 case ISD::INTRINSIC_VOID: 10891 return LowerINTRINSIC_VOID(Op, DAG); 10892 case ISD::BSWAP: 10893 return LowerBSWAP(Op, DAG); 10894 case ISD::ATOMIC_CMP_SWAP: 10895 return LowerATOMIC_CMP_SWAP(Op, DAG); 10896 } 10897 } 10898 10899 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10900 SmallVectorImpl<SDValue>&Results, 10901 SelectionDAG &DAG) const { 10902 SDLoc dl(N); 10903 switch (N->getOpcode()) { 10904 default: 10905 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10906 case ISD::READCYCLECOUNTER: { 10907 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10908 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10909 10910 Results.push_back( 10911 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10912 Results.push_back(RTB.getValue(2)); 10913 break; 10914 } 10915 case ISD::INTRINSIC_W_CHAIN: { 10916 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10917 Intrinsic::loop_decrement) 10918 break; 10919 10920 assert(N->getValueType(0) == MVT::i1 && 10921 "Unexpected result type for CTR decrement intrinsic"); 10922 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10923 N->getValueType(0)); 10924 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10925 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10926 N->getOperand(1)); 10927 10928 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10929 Results.push_back(NewInt.getValue(1)); 10930 break; 10931 } 10932 case ISD::VAARG: { 10933 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10934 return; 10935 10936 EVT VT = N->getValueType(0); 10937 10938 if (VT == MVT::i64) { 10939 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10940 10941 Results.push_back(NewNode); 10942 Results.push_back(NewNode.getValue(1)); 10943 } 10944 return; 10945 } 10946 case ISD::STRICT_FP_TO_SINT: 10947 case ISD::STRICT_FP_TO_UINT: 10948 case ISD::FP_TO_SINT: 10949 case ISD::FP_TO_UINT: 10950 // LowerFP_TO_INT() can only handle f32 and f64. 10951 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10952 MVT::ppcf128) 10953 return; 10954 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10955 return; 10956 case ISD::TRUNCATE: { 10957 if (!N->getValueType(0).isVector()) 10958 return; 10959 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10960 if (Lowered) 10961 Results.push_back(Lowered); 10962 return; 10963 } 10964 case ISD::FSHL: 10965 case ISD::FSHR: 10966 // Don't handle funnel shifts here. 10967 return; 10968 case ISD::BITCAST: 10969 // Don't handle bitcast here. 10970 return; 10971 case ISD::FP_EXTEND: 10972 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10973 if (Lowered) 10974 Results.push_back(Lowered); 10975 return; 10976 } 10977 } 10978 10979 //===----------------------------------------------------------------------===// 10980 // Other Lowering Code 10981 //===----------------------------------------------------------------------===// 10982 10983 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 10984 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10985 Function *Func = Intrinsic::getDeclaration(M, Id); 10986 return Builder.CreateCall(Func, {}); 10987 } 10988 10989 // The mappings for emitLeading/TrailingFence is taken from 10990 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10991 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10992 Instruction *Inst, 10993 AtomicOrdering Ord) const { 10994 if (Ord == AtomicOrdering::SequentiallyConsistent) 10995 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10996 if (isReleaseOrStronger(Ord)) 10997 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10998 return nullptr; 10999 } 11000 11001 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11002 Instruction *Inst, 11003 AtomicOrdering Ord) const { 11004 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11005 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11006 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11007 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11008 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11009 return Builder.CreateCall( 11010 Intrinsic::getDeclaration( 11011 Builder.GetInsertBlock()->getParent()->getParent(), 11012 Intrinsic::ppc_cfence, {Inst->getType()}), 11013 {Inst}); 11014 // FIXME: Can use isync for rmw operation. 11015 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11016 } 11017 return nullptr; 11018 } 11019 11020 MachineBasicBlock * 11021 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11022 unsigned AtomicSize, 11023 unsigned BinOpcode, 11024 unsigned CmpOpcode, 11025 unsigned CmpPred) const { 11026 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11027 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11028 11029 auto LoadMnemonic = PPC::LDARX; 11030 auto StoreMnemonic = PPC::STDCX; 11031 switch (AtomicSize) { 11032 default: 11033 llvm_unreachable("Unexpected size of atomic entity"); 11034 case 1: 11035 LoadMnemonic = PPC::LBARX; 11036 StoreMnemonic = PPC::STBCX; 11037 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11038 break; 11039 case 2: 11040 LoadMnemonic = PPC::LHARX; 11041 StoreMnemonic = PPC::STHCX; 11042 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11043 break; 11044 case 4: 11045 LoadMnemonic = PPC::LWARX; 11046 StoreMnemonic = PPC::STWCX; 11047 break; 11048 case 8: 11049 LoadMnemonic = PPC::LDARX; 11050 StoreMnemonic = PPC::STDCX; 11051 break; 11052 } 11053 11054 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11055 MachineFunction *F = BB->getParent(); 11056 MachineFunction::iterator It = ++BB->getIterator(); 11057 11058 Register dest = MI.getOperand(0).getReg(); 11059 Register ptrA = MI.getOperand(1).getReg(); 11060 Register ptrB = MI.getOperand(2).getReg(); 11061 Register incr = MI.getOperand(3).getReg(); 11062 DebugLoc dl = MI.getDebugLoc(); 11063 11064 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11065 MachineBasicBlock *loop2MBB = 11066 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11067 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11068 F->insert(It, loopMBB); 11069 if (CmpOpcode) 11070 F->insert(It, loop2MBB); 11071 F->insert(It, exitMBB); 11072 exitMBB->splice(exitMBB->begin(), BB, 11073 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11074 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11075 11076 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11077 Register TmpReg = (!BinOpcode) ? incr : 11078 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11079 : &PPC::GPRCRegClass); 11080 11081 // thisMBB: 11082 // ... 11083 // fallthrough --> loopMBB 11084 BB->addSuccessor(loopMBB); 11085 11086 // loopMBB: 11087 // l[wd]arx dest, ptr 11088 // add r0, dest, incr 11089 // st[wd]cx. r0, ptr 11090 // bne- loopMBB 11091 // fallthrough --> exitMBB 11092 11093 // For max/min... 11094 // loopMBB: 11095 // l[wd]arx dest, ptr 11096 // cmpl?[wd] incr, dest 11097 // bgt exitMBB 11098 // loop2MBB: 11099 // st[wd]cx. dest, ptr 11100 // bne- loopMBB 11101 // fallthrough --> exitMBB 11102 11103 BB = loopMBB; 11104 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11105 .addReg(ptrA).addReg(ptrB); 11106 if (BinOpcode) 11107 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11108 if (CmpOpcode) { 11109 // Signed comparisons of byte or halfword values must be sign-extended. 11110 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11111 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11112 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11113 ExtReg).addReg(dest); 11114 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11115 .addReg(incr).addReg(ExtReg); 11116 } else 11117 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11118 .addReg(incr).addReg(dest); 11119 11120 BuildMI(BB, dl, TII->get(PPC::BCC)) 11121 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11122 BB->addSuccessor(loop2MBB); 11123 BB->addSuccessor(exitMBB); 11124 BB = loop2MBB; 11125 } 11126 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11127 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11128 BuildMI(BB, dl, TII->get(PPC::BCC)) 11129 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11130 BB->addSuccessor(loopMBB); 11131 BB->addSuccessor(exitMBB); 11132 11133 // exitMBB: 11134 // ... 11135 BB = exitMBB; 11136 return BB; 11137 } 11138 11139 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11140 switch(MI.getOpcode()) { 11141 default: 11142 return false; 11143 case PPC::COPY: 11144 return TII->isSignExtended(MI); 11145 case PPC::LHA: 11146 case PPC::LHA8: 11147 case PPC::LHAU: 11148 case PPC::LHAU8: 11149 case PPC::LHAUX: 11150 case PPC::LHAUX8: 11151 case PPC::LHAX: 11152 case PPC::LHAX8: 11153 case PPC::LWA: 11154 case PPC::LWAUX: 11155 case PPC::LWAX: 11156 case PPC::LWAX_32: 11157 case PPC::LWA_32: 11158 case PPC::PLHA: 11159 case PPC::PLHA8: 11160 case PPC::PLHA8pc: 11161 case PPC::PLHApc: 11162 case PPC::PLWA: 11163 case PPC::PLWA8: 11164 case PPC::PLWA8pc: 11165 case PPC::PLWApc: 11166 case PPC::EXTSB: 11167 case PPC::EXTSB8: 11168 case PPC::EXTSB8_32_64: 11169 case PPC::EXTSB8_rec: 11170 case PPC::EXTSB_rec: 11171 case PPC::EXTSH: 11172 case PPC::EXTSH8: 11173 case PPC::EXTSH8_32_64: 11174 case PPC::EXTSH8_rec: 11175 case PPC::EXTSH_rec: 11176 case PPC::EXTSW: 11177 case PPC::EXTSWSLI: 11178 case PPC::EXTSWSLI_32_64: 11179 case PPC::EXTSWSLI_32_64_rec: 11180 case PPC::EXTSWSLI_rec: 11181 case PPC::EXTSW_32: 11182 case PPC::EXTSW_32_64: 11183 case PPC::EXTSW_32_64_rec: 11184 case PPC::EXTSW_rec: 11185 case PPC::SRAW: 11186 case PPC::SRAWI: 11187 case PPC::SRAWI_rec: 11188 case PPC::SRAW_rec: 11189 return true; 11190 } 11191 return false; 11192 } 11193 11194 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11195 MachineInstr &MI, MachineBasicBlock *BB, 11196 bool is8bit, // operation 11197 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11198 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11199 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11200 11201 // If this is a signed comparison and the value being compared is not known 11202 // to be sign extended, sign extend it here. 11203 DebugLoc dl = MI.getDebugLoc(); 11204 MachineFunction *F = BB->getParent(); 11205 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11206 Register incr = MI.getOperand(3).getReg(); 11207 bool IsSignExtended = Register::isVirtualRegister(incr) && 11208 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11209 11210 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11211 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11212 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11213 .addReg(MI.getOperand(3).getReg()); 11214 MI.getOperand(3).setReg(ValueReg); 11215 } 11216 // If we support part-word atomic mnemonics, just use them 11217 if (Subtarget.hasPartwordAtomics()) 11218 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11219 CmpPred); 11220 11221 // In 64 bit mode we have to use 64 bits for addresses, even though the 11222 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11223 // registers without caring whether they're 32 or 64, but here we're 11224 // doing actual arithmetic on the addresses. 11225 bool is64bit = Subtarget.isPPC64(); 11226 bool isLittleEndian = Subtarget.isLittleEndian(); 11227 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11228 11229 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11230 MachineFunction::iterator It = ++BB->getIterator(); 11231 11232 Register dest = MI.getOperand(0).getReg(); 11233 Register ptrA = MI.getOperand(1).getReg(); 11234 Register ptrB = MI.getOperand(2).getReg(); 11235 11236 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11237 MachineBasicBlock *loop2MBB = 11238 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11239 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11240 F->insert(It, loopMBB); 11241 if (CmpOpcode) 11242 F->insert(It, loop2MBB); 11243 F->insert(It, exitMBB); 11244 exitMBB->splice(exitMBB->begin(), BB, 11245 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11246 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11247 11248 const TargetRegisterClass *RC = 11249 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11250 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11251 11252 Register PtrReg = RegInfo.createVirtualRegister(RC); 11253 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11254 Register ShiftReg = 11255 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11256 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11257 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11258 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11259 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11260 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11261 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11262 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11263 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11264 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11265 Register Ptr1Reg; 11266 Register TmpReg = 11267 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11268 11269 // thisMBB: 11270 // ... 11271 // fallthrough --> loopMBB 11272 BB->addSuccessor(loopMBB); 11273 11274 // The 4-byte load must be aligned, while a char or short may be 11275 // anywhere in the word. Hence all this nasty bookkeeping code. 11276 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11277 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11278 // xori shift, shift1, 24 [16] 11279 // rlwinm ptr, ptr1, 0, 0, 29 11280 // slw incr2, incr, shift 11281 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11282 // slw mask, mask2, shift 11283 // loopMBB: 11284 // lwarx tmpDest, ptr 11285 // add tmp, tmpDest, incr2 11286 // andc tmp2, tmpDest, mask 11287 // and tmp3, tmp, mask 11288 // or tmp4, tmp3, tmp2 11289 // stwcx. tmp4, ptr 11290 // bne- loopMBB 11291 // fallthrough --> exitMBB 11292 // srw SrwDest, tmpDest, shift 11293 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11294 if (ptrA != ZeroReg) { 11295 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11296 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11297 .addReg(ptrA) 11298 .addReg(ptrB); 11299 } else { 11300 Ptr1Reg = ptrB; 11301 } 11302 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11303 // mode. 11304 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11305 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11306 .addImm(3) 11307 .addImm(27) 11308 .addImm(is8bit ? 28 : 27); 11309 if (!isLittleEndian) 11310 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11311 .addReg(Shift1Reg) 11312 .addImm(is8bit ? 24 : 16); 11313 if (is64bit) 11314 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11315 .addReg(Ptr1Reg) 11316 .addImm(0) 11317 .addImm(61); 11318 else 11319 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11320 .addReg(Ptr1Reg) 11321 .addImm(0) 11322 .addImm(0) 11323 .addImm(29); 11324 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11325 if (is8bit) 11326 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11327 else { 11328 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11329 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11330 .addReg(Mask3Reg) 11331 .addImm(65535); 11332 } 11333 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11334 .addReg(Mask2Reg) 11335 .addReg(ShiftReg); 11336 11337 BB = loopMBB; 11338 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11339 .addReg(ZeroReg) 11340 .addReg(PtrReg); 11341 if (BinOpcode) 11342 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11343 .addReg(Incr2Reg) 11344 .addReg(TmpDestReg); 11345 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11346 .addReg(TmpDestReg) 11347 .addReg(MaskReg); 11348 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11349 if (CmpOpcode) { 11350 // For unsigned comparisons, we can directly compare the shifted values. 11351 // For signed comparisons we shift and sign extend. 11352 Register SReg = RegInfo.createVirtualRegister(GPRC); 11353 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11354 .addReg(TmpDestReg) 11355 .addReg(MaskReg); 11356 unsigned ValueReg = SReg; 11357 unsigned CmpReg = Incr2Reg; 11358 if (CmpOpcode == PPC::CMPW) { 11359 ValueReg = RegInfo.createVirtualRegister(GPRC); 11360 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11361 .addReg(SReg) 11362 .addReg(ShiftReg); 11363 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11364 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11365 .addReg(ValueReg); 11366 ValueReg = ValueSReg; 11367 CmpReg = incr; 11368 } 11369 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11370 .addReg(CmpReg) 11371 .addReg(ValueReg); 11372 BuildMI(BB, dl, TII->get(PPC::BCC)) 11373 .addImm(CmpPred) 11374 .addReg(PPC::CR0) 11375 .addMBB(exitMBB); 11376 BB->addSuccessor(loop2MBB); 11377 BB->addSuccessor(exitMBB); 11378 BB = loop2MBB; 11379 } 11380 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11381 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11382 .addReg(Tmp4Reg) 11383 .addReg(ZeroReg) 11384 .addReg(PtrReg); 11385 BuildMI(BB, dl, TII->get(PPC::BCC)) 11386 .addImm(PPC::PRED_NE) 11387 .addReg(PPC::CR0) 11388 .addMBB(loopMBB); 11389 BB->addSuccessor(loopMBB); 11390 BB->addSuccessor(exitMBB); 11391 11392 // exitMBB: 11393 // ... 11394 BB = exitMBB; 11395 // Since the shift amount is not a constant, we need to clear 11396 // the upper bits with a separate RLWINM. 11397 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11398 .addReg(SrwDestReg) 11399 .addImm(0) 11400 .addImm(is8bit ? 24 : 16) 11401 .addImm(31); 11402 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11403 .addReg(TmpDestReg) 11404 .addReg(ShiftReg); 11405 return BB; 11406 } 11407 11408 llvm::MachineBasicBlock * 11409 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11410 MachineBasicBlock *MBB) const { 11411 DebugLoc DL = MI.getDebugLoc(); 11412 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11413 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11414 11415 MachineFunction *MF = MBB->getParent(); 11416 MachineRegisterInfo &MRI = MF->getRegInfo(); 11417 11418 const BasicBlock *BB = MBB->getBasicBlock(); 11419 MachineFunction::iterator I = ++MBB->getIterator(); 11420 11421 Register DstReg = MI.getOperand(0).getReg(); 11422 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11423 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11424 Register mainDstReg = MRI.createVirtualRegister(RC); 11425 Register restoreDstReg = MRI.createVirtualRegister(RC); 11426 11427 MVT PVT = getPointerTy(MF->getDataLayout()); 11428 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11429 "Invalid Pointer Size!"); 11430 // For v = setjmp(buf), we generate 11431 // 11432 // thisMBB: 11433 // SjLjSetup mainMBB 11434 // bl mainMBB 11435 // v_restore = 1 11436 // b sinkMBB 11437 // 11438 // mainMBB: 11439 // buf[LabelOffset] = LR 11440 // v_main = 0 11441 // 11442 // sinkMBB: 11443 // v = phi(main, restore) 11444 // 11445 11446 MachineBasicBlock *thisMBB = MBB; 11447 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11448 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11449 MF->insert(I, mainMBB); 11450 MF->insert(I, sinkMBB); 11451 11452 MachineInstrBuilder MIB; 11453 11454 // Transfer the remainder of BB and its successor edges to sinkMBB. 11455 sinkMBB->splice(sinkMBB->begin(), MBB, 11456 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11457 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11458 11459 // Note that the structure of the jmp_buf used here is not compatible 11460 // with that used by libc, and is not designed to be. Specifically, it 11461 // stores only those 'reserved' registers that LLVM does not otherwise 11462 // understand how to spill. Also, by convention, by the time this 11463 // intrinsic is called, Clang has already stored the frame address in the 11464 // first slot of the buffer and stack address in the third. Following the 11465 // X86 target code, we'll store the jump address in the second slot. We also 11466 // need to save the TOC pointer (R2) to handle jumps between shared 11467 // libraries, and that will be stored in the fourth slot. The thread 11468 // identifier (R13) is not affected. 11469 11470 // thisMBB: 11471 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11472 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11473 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11474 11475 // Prepare IP either in reg. 11476 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11477 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11478 Register BufReg = MI.getOperand(1).getReg(); 11479 11480 if (Subtarget.is64BitELFABI()) { 11481 setUsesTOCBasePtr(*MBB->getParent()); 11482 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11483 .addReg(PPC::X2) 11484 .addImm(TOCOffset) 11485 .addReg(BufReg) 11486 .cloneMemRefs(MI); 11487 } 11488 11489 // Naked functions never have a base pointer, and so we use r1. For all 11490 // other functions, this decision must be delayed until during PEI. 11491 unsigned BaseReg; 11492 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11493 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11494 else 11495 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11496 11497 MIB = BuildMI(*thisMBB, MI, DL, 11498 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11499 .addReg(BaseReg) 11500 .addImm(BPOffset) 11501 .addReg(BufReg) 11502 .cloneMemRefs(MI); 11503 11504 // Setup 11505 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11506 MIB.addRegMask(TRI->getNoPreservedMask()); 11507 11508 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11509 11510 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11511 .addMBB(mainMBB); 11512 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11513 11514 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11515 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11516 11517 // mainMBB: 11518 // mainDstReg = 0 11519 MIB = 11520 BuildMI(mainMBB, DL, 11521 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11522 11523 // Store IP 11524 if (Subtarget.isPPC64()) { 11525 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11526 .addReg(LabelReg) 11527 .addImm(LabelOffset) 11528 .addReg(BufReg); 11529 } else { 11530 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11531 .addReg(LabelReg) 11532 .addImm(LabelOffset) 11533 .addReg(BufReg); 11534 } 11535 MIB.cloneMemRefs(MI); 11536 11537 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11538 mainMBB->addSuccessor(sinkMBB); 11539 11540 // sinkMBB: 11541 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11542 TII->get(PPC::PHI), DstReg) 11543 .addReg(mainDstReg).addMBB(mainMBB) 11544 .addReg(restoreDstReg).addMBB(thisMBB); 11545 11546 MI.eraseFromParent(); 11547 return sinkMBB; 11548 } 11549 11550 MachineBasicBlock * 11551 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11552 MachineBasicBlock *MBB) const { 11553 DebugLoc DL = MI.getDebugLoc(); 11554 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11555 11556 MachineFunction *MF = MBB->getParent(); 11557 MachineRegisterInfo &MRI = MF->getRegInfo(); 11558 11559 MVT PVT = getPointerTy(MF->getDataLayout()); 11560 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11561 "Invalid Pointer Size!"); 11562 11563 const TargetRegisterClass *RC = 11564 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11565 Register Tmp = MRI.createVirtualRegister(RC); 11566 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11567 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11568 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11569 unsigned BP = 11570 (PVT == MVT::i64) 11571 ? PPC::X30 11572 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11573 : PPC::R30); 11574 11575 MachineInstrBuilder MIB; 11576 11577 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11578 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11579 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11580 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11581 11582 Register BufReg = MI.getOperand(0).getReg(); 11583 11584 // Reload FP (the jumped-to function may not have had a 11585 // frame pointer, and if so, then its r31 will be restored 11586 // as necessary). 11587 if (PVT == MVT::i64) { 11588 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11589 .addImm(0) 11590 .addReg(BufReg); 11591 } else { 11592 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11593 .addImm(0) 11594 .addReg(BufReg); 11595 } 11596 MIB.cloneMemRefs(MI); 11597 11598 // Reload IP 11599 if (PVT == MVT::i64) { 11600 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11601 .addImm(LabelOffset) 11602 .addReg(BufReg); 11603 } else { 11604 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11605 .addImm(LabelOffset) 11606 .addReg(BufReg); 11607 } 11608 MIB.cloneMemRefs(MI); 11609 11610 // Reload SP 11611 if (PVT == MVT::i64) { 11612 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11613 .addImm(SPOffset) 11614 .addReg(BufReg); 11615 } else { 11616 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11617 .addImm(SPOffset) 11618 .addReg(BufReg); 11619 } 11620 MIB.cloneMemRefs(MI); 11621 11622 // Reload BP 11623 if (PVT == MVT::i64) { 11624 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11625 .addImm(BPOffset) 11626 .addReg(BufReg); 11627 } else { 11628 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11629 .addImm(BPOffset) 11630 .addReg(BufReg); 11631 } 11632 MIB.cloneMemRefs(MI); 11633 11634 // Reload TOC 11635 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11636 setUsesTOCBasePtr(*MBB->getParent()); 11637 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11638 .addImm(TOCOffset) 11639 .addReg(BufReg) 11640 .cloneMemRefs(MI); 11641 } 11642 11643 // Jump 11644 BuildMI(*MBB, MI, DL, 11645 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11646 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11647 11648 MI.eraseFromParent(); 11649 return MBB; 11650 } 11651 11652 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11653 // If the function specifically requests inline stack probes, emit them. 11654 if (MF.getFunction().hasFnAttribute("probe-stack")) 11655 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11656 "inline-asm"; 11657 return false; 11658 } 11659 11660 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11661 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11662 unsigned StackAlign = TFI->getStackAlignment(); 11663 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11664 "Unexpected stack alignment"); 11665 // The default stack probe size is 4096 if the function has no 11666 // stack-probe-size attribute. 11667 unsigned StackProbeSize = 4096; 11668 const Function &Fn = MF.getFunction(); 11669 if (Fn.hasFnAttribute("stack-probe-size")) 11670 Fn.getFnAttribute("stack-probe-size") 11671 .getValueAsString() 11672 .getAsInteger(0, StackProbeSize); 11673 // Round down to the stack alignment. 11674 StackProbeSize &= ~(StackAlign - 1); 11675 return StackProbeSize ? StackProbeSize : StackAlign; 11676 } 11677 11678 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11679 // into three phases. In the first phase, it uses pseudo instruction 11680 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11681 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11682 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11683 // MaxCallFrameSize so that it can calculate correct data area pointer. 11684 MachineBasicBlock * 11685 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11686 MachineBasicBlock *MBB) const { 11687 const bool isPPC64 = Subtarget.isPPC64(); 11688 MachineFunction *MF = MBB->getParent(); 11689 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11690 DebugLoc DL = MI.getDebugLoc(); 11691 const unsigned ProbeSize = getStackProbeSize(*MF); 11692 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11693 MachineRegisterInfo &MRI = MF->getRegInfo(); 11694 // The CFG of probing stack looks as 11695 // +-----+ 11696 // | MBB | 11697 // +--+--+ 11698 // | 11699 // +----v----+ 11700 // +--->+ TestMBB +---+ 11701 // | +----+----+ | 11702 // | | | 11703 // | +-----v----+ | 11704 // +---+ BlockMBB | | 11705 // +----------+ | 11706 // | 11707 // +---------+ | 11708 // | TailMBB +<--+ 11709 // +---------+ 11710 // In MBB, calculate previous frame pointer and final stack pointer. 11711 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11712 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11713 // TailMBB is spliced via \p MI. 11714 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11715 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11716 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11717 11718 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11719 MF->insert(MBBIter, TestMBB); 11720 MF->insert(MBBIter, BlockMBB); 11721 MF->insert(MBBIter, TailMBB); 11722 11723 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11724 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11725 11726 Register DstReg = MI.getOperand(0).getReg(); 11727 Register NegSizeReg = MI.getOperand(1).getReg(); 11728 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11729 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11730 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11731 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11732 11733 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11734 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11735 // NegSize. 11736 unsigned ProbeOpc; 11737 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11738 ProbeOpc = 11739 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11740 else 11741 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11742 // and NegSizeReg will be allocated in the same phyreg to avoid 11743 // redundant copy when NegSizeReg has only one use which is current MI and 11744 // will be replaced by PREPARE_PROBED_ALLOCA then. 11745 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11746 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11747 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11748 .addDef(ActualNegSizeReg) 11749 .addReg(NegSizeReg) 11750 .add(MI.getOperand(2)) 11751 .add(MI.getOperand(3)); 11752 11753 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11754 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11755 FinalStackPtr) 11756 .addReg(SPReg) 11757 .addReg(ActualNegSizeReg); 11758 11759 // Materialize a scratch register for update. 11760 int64_t NegProbeSize = -(int64_t)ProbeSize; 11761 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11762 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11763 if (!isInt<16>(NegProbeSize)) { 11764 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11765 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11766 .addImm(NegProbeSize >> 16); 11767 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11768 ScratchReg) 11769 .addReg(TempReg) 11770 .addImm(NegProbeSize & 0xFFFF); 11771 } else 11772 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11773 .addImm(NegProbeSize); 11774 11775 { 11776 // Probing leading residual part. 11777 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11778 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11779 .addReg(ActualNegSizeReg) 11780 .addReg(ScratchReg); 11781 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11782 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11783 .addReg(Div) 11784 .addReg(ScratchReg); 11785 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11786 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11787 .addReg(Mul) 11788 .addReg(ActualNegSizeReg); 11789 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11790 .addReg(FramePointer) 11791 .addReg(SPReg) 11792 .addReg(NegMod); 11793 } 11794 11795 { 11796 // Remaining part should be multiple of ProbeSize. 11797 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11798 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11799 .addReg(SPReg) 11800 .addReg(FinalStackPtr); 11801 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11802 .addImm(PPC::PRED_EQ) 11803 .addReg(CmpResult) 11804 .addMBB(TailMBB); 11805 TestMBB->addSuccessor(BlockMBB); 11806 TestMBB->addSuccessor(TailMBB); 11807 } 11808 11809 { 11810 // Touch the block. 11811 // |P...|P...|P... 11812 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11813 .addReg(FramePointer) 11814 .addReg(SPReg) 11815 .addReg(ScratchReg); 11816 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11817 BlockMBB->addSuccessor(TestMBB); 11818 } 11819 11820 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11821 // DYNAREAOFFSET pseudo instruction to get the future result. 11822 Register MaxCallFrameSizeReg = 11823 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11824 BuildMI(TailMBB, DL, 11825 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11826 MaxCallFrameSizeReg) 11827 .add(MI.getOperand(2)) 11828 .add(MI.getOperand(3)); 11829 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11830 .addReg(SPReg) 11831 .addReg(MaxCallFrameSizeReg); 11832 11833 // Splice instructions after MI to TailMBB. 11834 TailMBB->splice(TailMBB->end(), MBB, 11835 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11836 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11837 MBB->addSuccessor(TestMBB); 11838 11839 // Delete the pseudo instruction. 11840 MI.eraseFromParent(); 11841 11842 ++NumDynamicAllocaProbed; 11843 return TailMBB; 11844 } 11845 11846 MachineBasicBlock * 11847 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11848 MachineBasicBlock *BB) const { 11849 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11850 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11851 if (Subtarget.is64BitELFABI() && 11852 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11853 !Subtarget.isUsingPCRelativeCalls()) { 11854 // Call lowering should have added an r2 operand to indicate a dependence 11855 // on the TOC base pointer value. It can't however, because there is no 11856 // way to mark the dependence as implicit there, and so the stackmap code 11857 // will confuse it with a regular operand. Instead, add the dependence 11858 // here. 11859 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11860 } 11861 11862 return emitPatchPoint(MI, BB); 11863 } 11864 11865 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11866 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11867 return emitEHSjLjSetJmp(MI, BB); 11868 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11869 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11870 return emitEHSjLjLongJmp(MI, BB); 11871 } 11872 11873 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11874 11875 // To "insert" these instructions we actually have to insert their 11876 // control-flow patterns. 11877 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11878 MachineFunction::iterator It = ++BB->getIterator(); 11879 11880 MachineFunction *F = BB->getParent(); 11881 11882 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11883 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11884 MI.getOpcode() == PPC::SELECT_I8) { 11885 SmallVector<MachineOperand, 2> Cond; 11886 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11887 MI.getOpcode() == PPC::SELECT_CC_I8) 11888 Cond.push_back(MI.getOperand(4)); 11889 else 11890 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11891 Cond.push_back(MI.getOperand(1)); 11892 11893 DebugLoc dl = MI.getDebugLoc(); 11894 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11895 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11896 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11897 MI.getOpcode() == PPC::SELECT_CC_F8 || 11898 MI.getOpcode() == PPC::SELECT_CC_F16 || 11899 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11900 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11901 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11902 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11903 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11904 MI.getOpcode() == PPC::SELECT_CC_SPE || 11905 MI.getOpcode() == PPC::SELECT_F4 || 11906 MI.getOpcode() == PPC::SELECT_F8 || 11907 MI.getOpcode() == PPC::SELECT_F16 || 11908 MI.getOpcode() == PPC::SELECT_SPE || 11909 MI.getOpcode() == PPC::SELECT_SPE4 || 11910 MI.getOpcode() == PPC::SELECT_VRRC || 11911 MI.getOpcode() == PPC::SELECT_VSFRC || 11912 MI.getOpcode() == PPC::SELECT_VSSRC || 11913 MI.getOpcode() == PPC::SELECT_VSRC) { 11914 // The incoming instruction knows the destination vreg to set, the 11915 // condition code register to branch on, the true/false values to 11916 // select between, and a branch opcode to use. 11917 11918 // thisMBB: 11919 // ... 11920 // TrueVal = ... 11921 // cmpTY ccX, r1, r2 11922 // bCC copy1MBB 11923 // fallthrough --> copy0MBB 11924 MachineBasicBlock *thisMBB = BB; 11925 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11926 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11927 DebugLoc dl = MI.getDebugLoc(); 11928 F->insert(It, copy0MBB); 11929 F->insert(It, sinkMBB); 11930 11931 // Transfer the remainder of BB and its successor edges to sinkMBB. 11932 sinkMBB->splice(sinkMBB->begin(), BB, 11933 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11934 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11935 11936 // Next, add the true and fallthrough blocks as its successors. 11937 BB->addSuccessor(copy0MBB); 11938 BB->addSuccessor(sinkMBB); 11939 11940 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11941 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11942 MI.getOpcode() == PPC::SELECT_F16 || 11943 MI.getOpcode() == PPC::SELECT_SPE4 || 11944 MI.getOpcode() == PPC::SELECT_SPE || 11945 MI.getOpcode() == PPC::SELECT_VRRC || 11946 MI.getOpcode() == PPC::SELECT_VSFRC || 11947 MI.getOpcode() == PPC::SELECT_VSSRC || 11948 MI.getOpcode() == PPC::SELECT_VSRC) { 11949 BuildMI(BB, dl, TII->get(PPC::BC)) 11950 .addReg(MI.getOperand(1).getReg()) 11951 .addMBB(sinkMBB); 11952 } else { 11953 unsigned SelectPred = MI.getOperand(4).getImm(); 11954 BuildMI(BB, dl, TII->get(PPC::BCC)) 11955 .addImm(SelectPred) 11956 .addReg(MI.getOperand(1).getReg()) 11957 .addMBB(sinkMBB); 11958 } 11959 11960 // copy0MBB: 11961 // %FalseValue = ... 11962 // # fallthrough to sinkMBB 11963 BB = copy0MBB; 11964 11965 // Update machine-CFG edges 11966 BB->addSuccessor(sinkMBB); 11967 11968 // sinkMBB: 11969 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11970 // ... 11971 BB = sinkMBB; 11972 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11973 .addReg(MI.getOperand(3).getReg()) 11974 .addMBB(copy0MBB) 11975 .addReg(MI.getOperand(2).getReg()) 11976 .addMBB(thisMBB); 11977 } else if (MI.getOpcode() == PPC::ReadTB) { 11978 // To read the 64-bit time-base register on a 32-bit target, we read the 11979 // two halves. Should the counter have wrapped while it was being read, we 11980 // need to try again. 11981 // ... 11982 // readLoop: 11983 // mfspr Rx,TBU # load from TBU 11984 // mfspr Ry,TB # load from TB 11985 // mfspr Rz,TBU # load from TBU 11986 // cmpw crX,Rx,Rz # check if 'old'='new' 11987 // bne readLoop # branch if they're not equal 11988 // ... 11989 11990 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11991 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11992 DebugLoc dl = MI.getDebugLoc(); 11993 F->insert(It, readMBB); 11994 F->insert(It, sinkMBB); 11995 11996 // Transfer the remainder of BB and its successor edges to sinkMBB. 11997 sinkMBB->splice(sinkMBB->begin(), BB, 11998 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11999 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12000 12001 BB->addSuccessor(readMBB); 12002 BB = readMBB; 12003 12004 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12005 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12006 Register LoReg = MI.getOperand(0).getReg(); 12007 Register HiReg = MI.getOperand(1).getReg(); 12008 12009 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12010 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12011 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12012 12013 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12014 12015 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12016 .addReg(HiReg) 12017 .addReg(ReadAgainReg); 12018 BuildMI(BB, dl, TII->get(PPC::BCC)) 12019 .addImm(PPC::PRED_NE) 12020 .addReg(CmpReg) 12021 .addMBB(readMBB); 12022 12023 BB->addSuccessor(readMBB); 12024 BB->addSuccessor(sinkMBB); 12025 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12026 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12027 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12028 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12029 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12030 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12031 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12032 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12033 12034 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12035 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12036 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12037 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12038 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12039 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12040 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12041 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12042 12043 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12044 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12045 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12046 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12047 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12048 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12049 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12050 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12051 12052 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12053 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12054 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12055 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12056 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12057 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12058 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12059 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12060 12061 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12062 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12063 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12064 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12065 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12066 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12067 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12068 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12069 12070 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12071 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12072 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12073 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12074 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12075 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12076 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12077 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12078 12079 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12080 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12081 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12082 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12083 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12084 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12085 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12086 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12087 12088 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12089 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12090 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12091 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12092 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12093 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12094 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12095 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12096 12097 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12098 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12099 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12100 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12101 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12102 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12103 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12104 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12105 12106 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12107 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12108 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12109 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12110 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12111 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12112 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12113 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12114 12115 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12116 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12117 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12118 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12119 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12120 BB = EmitAtomicBinary(MI, BB, 4, 0); 12121 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12122 BB = EmitAtomicBinary(MI, BB, 8, 0); 12123 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12124 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12125 (Subtarget.hasPartwordAtomics() && 12126 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12127 (Subtarget.hasPartwordAtomics() && 12128 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12129 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12130 12131 auto LoadMnemonic = PPC::LDARX; 12132 auto StoreMnemonic = PPC::STDCX; 12133 switch (MI.getOpcode()) { 12134 default: 12135 llvm_unreachable("Compare and swap of unknown size"); 12136 case PPC::ATOMIC_CMP_SWAP_I8: 12137 LoadMnemonic = PPC::LBARX; 12138 StoreMnemonic = PPC::STBCX; 12139 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12140 break; 12141 case PPC::ATOMIC_CMP_SWAP_I16: 12142 LoadMnemonic = PPC::LHARX; 12143 StoreMnemonic = PPC::STHCX; 12144 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12145 break; 12146 case PPC::ATOMIC_CMP_SWAP_I32: 12147 LoadMnemonic = PPC::LWARX; 12148 StoreMnemonic = PPC::STWCX; 12149 break; 12150 case PPC::ATOMIC_CMP_SWAP_I64: 12151 LoadMnemonic = PPC::LDARX; 12152 StoreMnemonic = PPC::STDCX; 12153 break; 12154 } 12155 Register dest = MI.getOperand(0).getReg(); 12156 Register ptrA = MI.getOperand(1).getReg(); 12157 Register ptrB = MI.getOperand(2).getReg(); 12158 Register oldval = MI.getOperand(3).getReg(); 12159 Register newval = MI.getOperand(4).getReg(); 12160 DebugLoc dl = MI.getDebugLoc(); 12161 12162 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12163 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12164 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12165 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12166 F->insert(It, loop1MBB); 12167 F->insert(It, loop2MBB); 12168 F->insert(It, midMBB); 12169 F->insert(It, exitMBB); 12170 exitMBB->splice(exitMBB->begin(), BB, 12171 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12172 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12173 12174 // thisMBB: 12175 // ... 12176 // fallthrough --> loopMBB 12177 BB->addSuccessor(loop1MBB); 12178 12179 // loop1MBB: 12180 // l[bhwd]arx dest, ptr 12181 // cmp[wd] dest, oldval 12182 // bne- midMBB 12183 // loop2MBB: 12184 // st[bhwd]cx. newval, ptr 12185 // bne- loopMBB 12186 // b exitBB 12187 // midMBB: 12188 // st[bhwd]cx. dest, ptr 12189 // exitBB: 12190 BB = loop1MBB; 12191 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12192 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12193 .addReg(oldval) 12194 .addReg(dest); 12195 BuildMI(BB, dl, TII->get(PPC::BCC)) 12196 .addImm(PPC::PRED_NE) 12197 .addReg(PPC::CR0) 12198 .addMBB(midMBB); 12199 BB->addSuccessor(loop2MBB); 12200 BB->addSuccessor(midMBB); 12201 12202 BB = loop2MBB; 12203 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12204 .addReg(newval) 12205 .addReg(ptrA) 12206 .addReg(ptrB); 12207 BuildMI(BB, dl, TII->get(PPC::BCC)) 12208 .addImm(PPC::PRED_NE) 12209 .addReg(PPC::CR0) 12210 .addMBB(loop1MBB); 12211 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12212 BB->addSuccessor(loop1MBB); 12213 BB->addSuccessor(exitMBB); 12214 12215 BB = midMBB; 12216 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12217 .addReg(dest) 12218 .addReg(ptrA) 12219 .addReg(ptrB); 12220 BB->addSuccessor(exitMBB); 12221 12222 // exitMBB: 12223 // ... 12224 BB = exitMBB; 12225 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12226 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12227 // We must use 64-bit registers for addresses when targeting 64-bit, 12228 // since we're actually doing arithmetic on them. Other registers 12229 // can be 32-bit. 12230 bool is64bit = Subtarget.isPPC64(); 12231 bool isLittleEndian = Subtarget.isLittleEndian(); 12232 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12233 12234 Register dest = MI.getOperand(0).getReg(); 12235 Register ptrA = MI.getOperand(1).getReg(); 12236 Register ptrB = MI.getOperand(2).getReg(); 12237 Register oldval = MI.getOperand(3).getReg(); 12238 Register newval = MI.getOperand(4).getReg(); 12239 DebugLoc dl = MI.getDebugLoc(); 12240 12241 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12242 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12243 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12244 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12245 F->insert(It, loop1MBB); 12246 F->insert(It, loop2MBB); 12247 F->insert(It, midMBB); 12248 F->insert(It, exitMBB); 12249 exitMBB->splice(exitMBB->begin(), BB, 12250 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12251 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12252 12253 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12254 const TargetRegisterClass *RC = 12255 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12256 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12257 12258 Register PtrReg = RegInfo.createVirtualRegister(RC); 12259 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12260 Register ShiftReg = 12261 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12262 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12263 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12264 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12265 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12266 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12267 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12268 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12269 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12270 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12271 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12272 Register Ptr1Reg; 12273 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12274 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12275 // thisMBB: 12276 // ... 12277 // fallthrough --> loopMBB 12278 BB->addSuccessor(loop1MBB); 12279 12280 // The 4-byte load must be aligned, while a char or short may be 12281 // anywhere in the word. Hence all this nasty bookkeeping code. 12282 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12283 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12284 // xori shift, shift1, 24 [16] 12285 // rlwinm ptr, ptr1, 0, 0, 29 12286 // slw newval2, newval, shift 12287 // slw oldval2, oldval,shift 12288 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12289 // slw mask, mask2, shift 12290 // and newval3, newval2, mask 12291 // and oldval3, oldval2, mask 12292 // loop1MBB: 12293 // lwarx tmpDest, ptr 12294 // and tmp, tmpDest, mask 12295 // cmpw tmp, oldval3 12296 // bne- midMBB 12297 // loop2MBB: 12298 // andc tmp2, tmpDest, mask 12299 // or tmp4, tmp2, newval3 12300 // stwcx. tmp4, ptr 12301 // bne- loop1MBB 12302 // b exitBB 12303 // midMBB: 12304 // stwcx. tmpDest, ptr 12305 // exitBB: 12306 // srw dest, tmpDest, shift 12307 if (ptrA != ZeroReg) { 12308 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12309 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12310 .addReg(ptrA) 12311 .addReg(ptrB); 12312 } else { 12313 Ptr1Reg = ptrB; 12314 } 12315 12316 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12317 // mode. 12318 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12319 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12320 .addImm(3) 12321 .addImm(27) 12322 .addImm(is8bit ? 28 : 27); 12323 if (!isLittleEndian) 12324 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12325 .addReg(Shift1Reg) 12326 .addImm(is8bit ? 24 : 16); 12327 if (is64bit) 12328 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12329 .addReg(Ptr1Reg) 12330 .addImm(0) 12331 .addImm(61); 12332 else 12333 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12334 .addReg(Ptr1Reg) 12335 .addImm(0) 12336 .addImm(0) 12337 .addImm(29); 12338 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12339 .addReg(newval) 12340 .addReg(ShiftReg); 12341 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12342 .addReg(oldval) 12343 .addReg(ShiftReg); 12344 if (is8bit) 12345 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12346 else { 12347 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12348 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12349 .addReg(Mask3Reg) 12350 .addImm(65535); 12351 } 12352 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12353 .addReg(Mask2Reg) 12354 .addReg(ShiftReg); 12355 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12356 .addReg(NewVal2Reg) 12357 .addReg(MaskReg); 12358 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12359 .addReg(OldVal2Reg) 12360 .addReg(MaskReg); 12361 12362 BB = loop1MBB; 12363 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12364 .addReg(ZeroReg) 12365 .addReg(PtrReg); 12366 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12367 .addReg(TmpDestReg) 12368 .addReg(MaskReg); 12369 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12370 .addReg(TmpReg) 12371 .addReg(OldVal3Reg); 12372 BuildMI(BB, dl, TII->get(PPC::BCC)) 12373 .addImm(PPC::PRED_NE) 12374 .addReg(PPC::CR0) 12375 .addMBB(midMBB); 12376 BB->addSuccessor(loop2MBB); 12377 BB->addSuccessor(midMBB); 12378 12379 BB = loop2MBB; 12380 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12381 .addReg(TmpDestReg) 12382 .addReg(MaskReg); 12383 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12384 .addReg(Tmp2Reg) 12385 .addReg(NewVal3Reg); 12386 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12387 .addReg(Tmp4Reg) 12388 .addReg(ZeroReg) 12389 .addReg(PtrReg); 12390 BuildMI(BB, dl, TII->get(PPC::BCC)) 12391 .addImm(PPC::PRED_NE) 12392 .addReg(PPC::CR0) 12393 .addMBB(loop1MBB); 12394 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12395 BB->addSuccessor(loop1MBB); 12396 BB->addSuccessor(exitMBB); 12397 12398 BB = midMBB; 12399 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12400 .addReg(TmpDestReg) 12401 .addReg(ZeroReg) 12402 .addReg(PtrReg); 12403 BB->addSuccessor(exitMBB); 12404 12405 // exitMBB: 12406 // ... 12407 BB = exitMBB; 12408 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12409 .addReg(TmpReg) 12410 .addReg(ShiftReg); 12411 } else if (MI.getOpcode() == PPC::FADDrtz) { 12412 // This pseudo performs an FADD with rounding mode temporarily forced 12413 // to round-to-zero. We emit this via custom inserter since the FPSCR 12414 // is not modeled at the SelectionDAG level. 12415 Register Dest = MI.getOperand(0).getReg(); 12416 Register Src1 = MI.getOperand(1).getReg(); 12417 Register Src2 = MI.getOperand(2).getReg(); 12418 DebugLoc dl = MI.getDebugLoc(); 12419 12420 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12421 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12422 12423 // Save FPSCR value. 12424 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12425 12426 // Set rounding mode to round-to-zero. 12427 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12428 .addImm(31) 12429 .addReg(PPC::RM, RegState::ImplicitDefine); 12430 12431 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12432 .addImm(30) 12433 .addReg(PPC::RM, RegState::ImplicitDefine); 12434 12435 // Perform addition. 12436 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12437 .addReg(Src1) 12438 .addReg(Src2); 12439 if (MI.getFlag(MachineInstr::NoFPExcept)) 12440 MIB.setMIFlag(MachineInstr::NoFPExcept); 12441 12442 // Restore FPSCR value. 12443 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12444 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12445 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12446 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12447 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12448 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12449 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12450 ? PPC::ANDI8_rec 12451 : PPC::ANDI_rec; 12452 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12453 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12454 12455 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12456 Register Dest = RegInfo.createVirtualRegister( 12457 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12458 12459 DebugLoc Dl = MI.getDebugLoc(); 12460 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12461 .addReg(MI.getOperand(1).getReg()) 12462 .addImm(1); 12463 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12464 MI.getOperand(0).getReg()) 12465 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12466 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12467 DebugLoc Dl = MI.getDebugLoc(); 12468 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12469 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12470 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12471 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12472 MI.getOperand(0).getReg()) 12473 .addReg(CRReg); 12474 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12475 DebugLoc Dl = MI.getDebugLoc(); 12476 unsigned Imm = MI.getOperand(1).getImm(); 12477 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12478 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12479 MI.getOperand(0).getReg()) 12480 .addReg(PPC::CR0EQ); 12481 } else if (MI.getOpcode() == PPC::SETRNDi) { 12482 DebugLoc dl = MI.getDebugLoc(); 12483 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12484 12485 // Save FPSCR value. 12486 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12487 12488 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12489 // the following settings: 12490 // 00 Round to nearest 12491 // 01 Round to 0 12492 // 10 Round to +inf 12493 // 11 Round to -inf 12494 12495 // When the operand is immediate, using the two least significant bits of 12496 // the immediate to set the bits 62:63 of FPSCR. 12497 unsigned Mode = MI.getOperand(1).getImm(); 12498 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12499 .addImm(31) 12500 .addReg(PPC::RM, RegState::ImplicitDefine); 12501 12502 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12503 .addImm(30) 12504 .addReg(PPC::RM, RegState::ImplicitDefine); 12505 } else if (MI.getOpcode() == PPC::SETRND) { 12506 DebugLoc dl = MI.getDebugLoc(); 12507 12508 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12509 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12510 // If the target doesn't have DirectMove, we should use stack to do the 12511 // conversion, because the target doesn't have the instructions like mtvsrd 12512 // or mfvsrd to do this conversion directly. 12513 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12514 if (Subtarget.hasDirectMove()) { 12515 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12516 .addReg(SrcReg); 12517 } else { 12518 // Use stack to do the register copy. 12519 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12520 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12521 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12522 if (RC == &PPC::F8RCRegClass) { 12523 // Copy register from F8RCRegClass to G8RCRegclass. 12524 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12525 "Unsupported RegClass."); 12526 12527 StoreOp = PPC::STFD; 12528 LoadOp = PPC::LD; 12529 } else { 12530 // Copy register from G8RCRegClass to F8RCRegclass. 12531 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12532 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12533 "Unsupported RegClass."); 12534 } 12535 12536 MachineFrameInfo &MFI = F->getFrameInfo(); 12537 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12538 12539 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12540 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12541 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12542 MFI.getObjectAlign(FrameIdx)); 12543 12544 // Store the SrcReg into the stack. 12545 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12546 .addReg(SrcReg) 12547 .addImm(0) 12548 .addFrameIndex(FrameIdx) 12549 .addMemOperand(MMOStore); 12550 12551 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12552 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12553 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12554 MFI.getObjectAlign(FrameIdx)); 12555 12556 // Load from the stack where SrcReg is stored, and save to DestReg, 12557 // so we have done the RegClass conversion from RegClass::SrcReg to 12558 // RegClass::DestReg. 12559 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12560 .addImm(0) 12561 .addFrameIndex(FrameIdx) 12562 .addMemOperand(MMOLoad); 12563 } 12564 }; 12565 12566 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12567 12568 // Save FPSCR value. 12569 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12570 12571 // When the operand is gprc register, use two least significant bits of the 12572 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12573 // 12574 // copy OldFPSCRTmpReg, OldFPSCRReg 12575 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12576 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12577 // copy NewFPSCRReg, NewFPSCRTmpReg 12578 // mtfsf 255, NewFPSCRReg 12579 MachineOperand SrcOp = MI.getOperand(1); 12580 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12581 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12582 12583 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12584 12585 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12586 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12587 12588 // The first operand of INSERT_SUBREG should be a register which has 12589 // subregisters, we only care about its RegClass, so we should use an 12590 // IMPLICIT_DEF register. 12591 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12592 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12593 .addReg(ImDefReg) 12594 .add(SrcOp) 12595 .addImm(1); 12596 12597 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12598 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12599 .addReg(OldFPSCRTmpReg) 12600 .addReg(ExtSrcReg) 12601 .addImm(0) 12602 .addImm(62); 12603 12604 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12605 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12606 12607 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12608 // bits of FPSCR. 12609 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12610 .addImm(255) 12611 .addReg(NewFPSCRReg) 12612 .addImm(0) 12613 .addImm(0); 12614 } else if (MI.getOpcode() == PPC::SETFLM) { 12615 DebugLoc Dl = MI.getDebugLoc(); 12616 12617 // Result of setflm is previous FPSCR content, so we need to save it first. 12618 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12619 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12620 12621 // Put bits in 32:63 to FPSCR. 12622 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12623 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12624 .addImm(255) 12625 .addReg(NewFPSCRReg) 12626 .addImm(0) 12627 .addImm(0); 12628 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12629 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12630 return emitProbedAlloca(MI, BB); 12631 } else { 12632 llvm_unreachable("Unexpected instr type to insert"); 12633 } 12634 12635 MI.eraseFromParent(); // The pseudo instruction is gone now. 12636 return BB; 12637 } 12638 12639 //===----------------------------------------------------------------------===// 12640 // Target Optimization Hooks 12641 //===----------------------------------------------------------------------===// 12642 12643 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12644 // For the estimates, convergence is quadratic, so we essentially double the 12645 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12646 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12647 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12648 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12649 if (VT.getScalarType() == MVT::f64) 12650 RefinementSteps++; 12651 return RefinementSteps; 12652 } 12653 12654 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12655 const DenormalMode &Mode) const { 12656 // We only have VSX Vector Test for software Square Root. 12657 EVT VT = Op.getValueType(); 12658 if (!isTypeLegal(MVT::i1) || 12659 (VT != MVT::f64 && 12660 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12661 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12662 12663 SDLoc DL(Op); 12664 // The output register of FTSQRT is CR field. 12665 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12666 // ftsqrt BF,FRB 12667 // Let e_b be the unbiased exponent of the double-precision 12668 // floating-point operand in register FRB. 12669 // fe_flag is set to 1 if either of the following conditions occurs. 12670 // - The double-precision floating-point operand in register FRB is a zero, 12671 // a NaN, or an infinity, or a negative value. 12672 // - e_b is less than or equal to -970. 12673 // Otherwise fe_flag is set to 0. 12674 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12675 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12676 // exponent is less than -970) 12677 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12678 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12679 FTSQRT, SRIdxVal), 12680 0); 12681 } 12682 12683 SDValue 12684 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12685 SelectionDAG &DAG) const { 12686 // We only have VSX Vector Square Root. 12687 EVT VT = Op.getValueType(); 12688 if (VT != MVT::f64 && 12689 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12690 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12691 12692 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12693 } 12694 12695 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12696 int Enabled, int &RefinementSteps, 12697 bool &UseOneConstNR, 12698 bool Reciprocal) const { 12699 EVT VT = Operand.getValueType(); 12700 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12701 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12702 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12703 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12704 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12705 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12706 12707 // The Newton-Raphson computation with a single constant does not provide 12708 // enough accuracy on some CPUs. 12709 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12710 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12711 } 12712 return SDValue(); 12713 } 12714 12715 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12716 int Enabled, 12717 int &RefinementSteps) const { 12718 EVT VT = Operand.getValueType(); 12719 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12720 (VT == MVT::f64 && Subtarget.hasFRE()) || 12721 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12722 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12723 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12724 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12725 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12726 } 12727 return SDValue(); 12728 } 12729 12730 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12731 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12732 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12733 // enabled for division), this functionality is redundant with the default 12734 // combiner logic (once the division -> reciprocal/multiply transformation 12735 // has taken place). As a result, this matters more for older cores than for 12736 // newer ones. 12737 12738 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12739 // reciprocal if there are two or more FDIVs (for embedded cores with only 12740 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12741 switch (Subtarget.getCPUDirective()) { 12742 default: 12743 return 3; 12744 case PPC::DIR_440: 12745 case PPC::DIR_A2: 12746 case PPC::DIR_E500: 12747 case PPC::DIR_E500mc: 12748 case PPC::DIR_E5500: 12749 return 2; 12750 } 12751 } 12752 12753 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12754 // collapsed, and so we need to look through chains of them. 12755 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12756 int64_t& Offset, SelectionDAG &DAG) { 12757 if (DAG.isBaseWithConstantOffset(Loc)) { 12758 Base = Loc.getOperand(0); 12759 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12760 12761 // The base might itself be a base plus an offset, and if so, accumulate 12762 // that as well. 12763 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12764 } 12765 } 12766 12767 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12768 unsigned Bytes, int Dist, 12769 SelectionDAG &DAG) { 12770 if (VT.getSizeInBits() / 8 != Bytes) 12771 return false; 12772 12773 SDValue BaseLoc = Base->getBasePtr(); 12774 if (Loc.getOpcode() == ISD::FrameIndex) { 12775 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12776 return false; 12777 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12778 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12779 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12780 int FS = MFI.getObjectSize(FI); 12781 int BFS = MFI.getObjectSize(BFI); 12782 if (FS != BFS || FS != (int)Bytes) return false; 12783 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12784 } 12785 12786 SDValue Base1 = Loc, Base2 = BaseLoc; 12787 int64_t Offset1 = 0, Offset2 = 0; 12788 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12789 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12790 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12791 return true; 12792 12793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12794 const GlobalValue *GV1 = nullptr; 12795 const GlobalValue *GV2 = nullptr; 12796 Offset1 = 0; 12797 Offset2 = 0; 12798 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12799 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12800 if (isGA1 && isGA2 && GV1 == GV2) 12801 return Offset1 == (Offset2 + Dist*Bytes); 12802 return false; 12803 } 12804 12805 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12806 // not enforce equality of the chain operands. 12807 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12808 unsigned Bytes, int Dist, 12809 SelectionDAG &DAG) { 12810 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12811 EVT VT = LS->getMemoryVT(); 12812 SDValue Loc = LS->getBasePtr(); 12813 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12814 } 12815 12816 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12817 EVT VT; 12818 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12819 default: return false; 12820 case Intrinsic::ppc_altivec_lvx: 12821 case Intrinsic::ppc_altivec_lvxl: 12822 case Intrinsic::ppc_vsx_lxvw4x: 12823 case Intrinsic::ppc_vsx_lxvw4x_be: 12824 VT = MVT::v4i32; 12825 break; 12826 case Intrinsic::ppc_vsx_lxvd2x: 12827 case Intrinsic::ppc_vsx_lxvd2x_be: 12828 VT = MVT::v2f64; 12829 break; 12830 case Intrinsic::ppc_altivec_lvebx: 12831 VT = MVT::i8; 12832 break; 12833 case Intrinsic::ppc_altivec_lvehx: 12834 VT = MVT::i16; 12835 break; 12836 case Intrinsic::ppc_altivec_lvewx: 12837 VT = MVT::i32; 12838 break; 12839 } 12840 12841 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12842 } 12843 12844 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12845 EVT VT; 12846 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12847 default: return false; 12848 case Intrinsic::ppc_altivec_stvx: 12849 case Intrinsic::ppc_altivec_stvxl: 12850 case Intrinsic::ppc_vsx_stxvw4x: 12851 VT = MVT::v4i32; 12852 break; 12853 case Intrinsic::ppc_vsx_stxvd2x: 12854 VT = MVT::v2f64; 12855 break; 12856 case Intrinsic::ppc_vsx_stxvw4x_be: 12857 VT = MVT::v4i32; 12858 break; 12859 case Intrinsic::ppc_vsx_stxvd2x_be: 12860 VT = MVT::v2f64; 12861 break; 12862 case Intrinsic::ppc_altivec_stvebx: 12863 VT = MVT::i8; 12864 break; 12865 case Intrinsic::ppc_altivec_stvehx: 12866 VT = MVT::i16; 12867 break; 12868 case Intrinsic::ppc_altivec_stvewx: 12869 VT = MVT::i32; 12870 break; 12871 } 12872 12873 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12874 } 12875 12876 return false; 12877 } 12878 12879 // Return true is there is a nearyby consecutive load to the one provided 12880 // (regardless of alignment). We search up and down the chain, looking though 12881 // token factors and other loads (but nothing else). As a result, a true result 12882 // indicates that it is safe to create a new consecutive load adjacent to the 12883 // load provided. 12884 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12885 SDValue Chain = LD->getChain(); 12886 EVT VT = LD->getMemoryVT(); 12887 12888 SmallSet<SDNode *, 16> LoadRoots; 12889 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12890 SmallSet<SDNode *, 16> Visited; 12891 12892 // First, search up the chain, branching to follow all token-factor operands. 12893 // If we find a consecutive load, then we're done, otherwise, record all 12894 // nodes just above the top-level loads and token factors. 12895 while (!Queue.empty()) { 12896 SDNode *ChainNext = Queue.pop_back_val(); 12897 if (!Visited.insert(ChainNext).second) 12898 continue; 12899 12900 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12901 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12902 return true; 12903 12904 if (!Visited.count(ChainLD->getChain().getNode())) 12905 Queue.push_back(ChainLD->getChain().getNode()); 12906 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12907 for (const SDUse &O : ChainNext->ops()) 12908 if (!Visited.count(O.getNode())) 12909 Queue.push_back(O.getNode()); 12910 } else 12911 LoadRoots.insert(ChainNext); 12912 } 12913 12914 // Second, search down the chain, starting from the top-level nodes recorded 12915 // in the first phase. These top-level nodes are the nodes just above all 12916 // loads and token factors. Starting with their uses, recursively look though 12917 // all loads (just the chain uses) and token factors to find a consecutive 12918 // load. 12919 Visited.clear(); 12920 Queue.clear(); 12921 12922 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12923 IE = LoadRoots.end(); I != IE; ++I) { 12924 Queue.push_back(*I); 12925 12926 while (!Queue.empty()) { 12927 SDNode *LoadRoot = Queue.pop_back_val(); 12928 if (!Visited.insert(LoadRoot).second) 12929 continue; 12930 12931 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12932 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12933 return true; 12934 12935 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12936 UE = LoadRoot->use_end(); UI != UE; ++UI) 12937 if (((isa<MemSDNode>(*UI) && 12938 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12939 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12940 Queue.push_back(*UI); 12941 } 12942 } 12943 12944 return false; 12945 } 12946 12947 /// This function is called when we have proved that a SETCC node can be replaced 12948 /// by subtraction (and other supporting instructions) so that the result of 12949 /// comparison is kept in a GPR instead of CR. This function is purely for 12950 /// codegen purposes and has some flags to guide the codegen process. 12951 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12952 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12953 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12954 12955 // Zero extend the operands to the largest legal integer. Originally, they 12956 // must be of a strictly smaller size. 12957 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12958 DAG.getConstant(Size, DL, MVT::i32)); 12959 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12960 DAG.getConstant(Size, DL, MVT::i32)); 12961 12962 // Swap if needed. Depends on the condition code. 12963 if (Swap) 12964 std::swap(Op0, Op1); 12965 12966 // Subtract extended integers. 12967 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12968 12969 // Move the sign bit to the least significant position and zero out the rest. 12970 // Now the least significant bit carries the result of original comparison. 12971 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12972 DAG.getConstant(Size - 1, DL, MVT::i32)); 12973 auto Final = Shifted; 12974 12975 // Complement the result if needed. Based on the condition code. 12976 if (Complement) 12977 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12978 DAG.getConstant(1, DL, MVT::i64)); 12979 12980 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12981 } 12982 12983 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12984 DAGCombinerInfo &DCI) const { 12985 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12986 12987 SelectionDAG &DAG = DCI.DAG; 12988 SDLoc DL(N); 12989 12990 // Size of integers being compared has a critical role in the following 12991 // analysis, so we prefer to do this when all types are legal. 12992 if (!DCI.isAfterLegalizeDAG()) 12993 return SDValue(); 12994 12995 // If all users of SETCC extend its value to a legal integer type 12996 // then we replace SETCC with a subtraction 12997 for (SDNode::use_iterator UI = N->use_begin(), 12998 UE = N->use_end(); UI != UE; ++UI) { 12999 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13000 return SDValue(); 13001 } 13002 13003 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13004 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13005 13006 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13007 13008 if (OpSize < Size) { 13009 switch (CC) { 13010 default: break; 13011 case ISD::SETULT: 13012 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13013 case ISD::SETULE: 13014 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13015 case ISD::SETUGT: 13016 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13017 case ISD::SETUGE: 13018 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13019 } 13020 } 13021 13022 return SDValue(); 13023 } 13024 13025 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13026 DAGCombinerInfo &DCI) const { 13027 SelectionDAG &DAG = DCI.DAG; 13028 SDLoc dl(N); 13029 13030 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13031 // If we're tracking CR bits, we need to be careful that we don't have: 13032 // trunc(binary-ops(zext(x), zext(y))) 13033 // or 13034 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13035 // such that we're unnecessarily moving things into GPRs when it would be 13036 // better to keep them in CR bits. 13037 13038 // Note that trunc here can be an actual i1 trunc, or can be the effective 13039 // truncation that comes from a setcc or select_cc. 13040 if (N->getOpcode() == ISD::TRUNCATE && 13041 N->getValueType(0) != MVT::i1) 13042 return SDValue(); 13043 13044 if (N->getOperand(0).getValueType() != MVT::i32 && 13045 N->getOperand(0).getValueType() != MVT::i64) 13046 return SDValue(); 13047 13048 if (N->getOpcode() == ISD::SETCC || 13049 N->getOpcode() == ISD::SELECT_CC) { 13050 // If we're looking at a comparison, then we need to make sure that the 13051 // high bits (all except for the first) don't matter the result. 13052 ISD::CondCode CC = 13053 cast<CondCodeSDNode>(N->getOperand( 13054 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13055 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13056 13057 if (ISD::isSignedIntSetCC(CC)) { 13058 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13059 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13060 return SDValue(); 13061 } else if (ISD::isUnsignedIntSetCC(CC)) { 13062 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13063 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13064 !DAG.MaskedValueIsZero(N->getOperand(1), 13065 APInt::getHighBitsSet(OpBits, OpBits-1))) 13066 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13067 : SDValue()); 13068 } else { 13069 // This is neither a signed nor an unsigned comparison, just make sure 13070 // that the high bits are equal. 13071 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13072 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13073 13074 // We don't really care about what is known about the first bit (if 13075 // anything), so pretend that it is known zero for both to ensure they can 13076 // be compared as constants. 13077 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13078 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13079 13080 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13081 Op1Known.getConstant() != Op2Known.getConstant()) 13082 return SDValue(); 13083 } 13084 } 13085 13086 // We now know that the higher-order bits are irrelevant, we just need to 13087 // make sure that all of the intermediate operations are bit operations, and 13088 // all inputs are extensions. 13089 if (N->getOperand(0).getOpcode() != ISD::AND && 13090 N->getOperand(0).getOpcode() != ISD::OR && 13091 N->getOperand(0).getOpcode() != ISD::XOR && 13092 N->getOperand(0).getOpcode() != ISD::SELECT && 13093 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13094 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13095 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13096 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13097 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13098 return SDValue(); 13099 13100 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13101 N->getOperand(1).getOpcode() != ISD::AND && 13102 N->getOperand(1).getOpcode() != ISD::OR && 13103 N->getOperand(1).getOpcode() != ISD::XOR && 13104 N->getOperand(1).getOpcode() != ISD::SELECT && 13105 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13106 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13107 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13108 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13109 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13110 return SDValue(); 13111 13112 SmallVector<SDValue, 4> Inputs; 13113 SmallVector<SDValue, 8> BinOps, PromOps; 13114 SmallPtrSet<SDNode *, 16> Visited; 13115 13116 for (unsigned i = 0; i < 2; ++i) { 13117 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13118 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13119 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13120 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13121 isa<ConstantSDNode>(N->getOperand(i))) 13122 Inputs.push_back(N->getOperand(i)); 13123 else 13124 BinOps.push_back(N->getOperand(i)); 13125 13126 if (N->getOpcode() == ISD::TRUNCATE) 13127 break; 13128 } 13129 13130 // Visit all inputs, collect all binary operations (and, or, xor and 13131 // select) that are all fed by extensions. 13132 while (!BinOps.empty()) { 13133 SDValue BinOp = BinOps.pop_back_val(); 13134 13135 if (!Visited.insert(BinOp.getNode()).second) 13136 continue; 13137 13138 PromOps.push_back(BinOp); 13139 13140 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13141 // The condition of the select is not promoted. 13142 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13143 continue; 13144 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13145 continue; 13146 13147 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13148 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13149 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13150 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13151 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13152 Inputs.push_back(BinOp.getOperand(i)); 13153 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13154 BinOp.getOperand(i).getOpcode() == ISD::OR || 13155 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13156 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13157 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13158 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13159 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13160 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13161 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13162 BinOps.push_back(BinOp.getOperand(i)); 13163 } else { 13164 // We have an input that is not an extension or another binary 13165 // operation; we'll abort this transformation. 13166 return SDValue(); 13167 } 13168 } 13169 } 13170 13171 // Make sure that this is a self-contained cluster of operations (which 13172 // is not quite the same thing as saying that everything has only one 13173 // use). 13174 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13175 if (isa<ConstantSDNode>(Inputs[i])) 13176 continue; 13177 13178 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13179 UE = Inputs[i].getNode()->use_end(); 13180 UI != UE; ++UI) { 13181 SDNode *User = *UI; 13182 if (User != N && !Visited.count(User)) 13183 return SDValue(); 13184 13185 // Make sure that we're not going to promote the non-output-value 13186 // operand(s) or SELECT or SELECT_CC. 13187 // FIXME: Although we could sometimes handle this, and it does occur in 13188 // practice that one of the condition inputs to the select is also one of 13189 // the outputs, we currently can't deal with this. 13190 if (User->getOpcode() == ISD::SELECT) { 13191 if (User->getOperand(0) == Inputs[i]) 13192 return SDValue(); 13193 } else if (User->getOpcode() == ISD::SELECT_CC) { 13194 if (User->getOperand(0) == Inputs[i] || 13195 User->getOperand(1) == Inputs[i]) 13196 return SDValue(); 13197 } 13198 } 13199 } 13200 13201 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13202 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13203 UE = PromOps[i].getNode()->use_end(); 13204 UI != UE; ++UI) { 13205 SDNode *User = *UI; 13206 if (User != N && !Visited.count(User)) 13207 return SDValue(); 13208 13209 // Make sure that we're not going to promote the non-output-value 13210 // operand(s) or SELECT or SELECT_CC. 13211 // FIXME: Although we could sometimes handle this, and it does occur in 13212 // practice that one of the condition inputs to the select is also one of 13213 // the outputs, we currently can't deal with this. 13214 if (User->getOpcode() == ISD::SELECT) { 13215 if (User->getOperand(0) == PromOps[i]) 13216 return SDValue(); 13217 } else if (User->getOpcode() == ISD::SELECT_CC) { 13218 if (User->getOperand(0) == PromOps[i] || 13219 User->getOperand(1) == PromOps[i]) 13220 return SDValue(); 13221 } 13222 } 13223 } 13224 13225 // Replace all inputs with the extension operand. 13226 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13227 // Constants may have users outside the cluster of to-be-promoted nodes, 13228 // and so we need to replace those as we do the promotions. 13229 if (isa<ConstantSDNode>(Inputs[i])) 13230 continue; 13231 else 13232 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13233 } 13234 13235 std::list<HandleSDNode> PromOpHandles; 13236 for (auto &PromOp : PromOps) 13237 PromOpHandles.emplace_back(PromOp); 13238 13239 // Replace all operations (these are all the same, but have a different 13240 // (i1) return type). DAG.getNode will validate that the types of 13241 // a binary operator match, so go through the list in reverse so that 13242 // we've likely promoted both operands first. Any intermediate truncations or 13243 // extensions disappear. 13244 while (!PromOpHandles.empty()) { 13245 SDValue PromOp = PromOpHandles.back().getValue(); 13246 PromOpHandles.pop_back(); 13247 13248 if (PromOp.getOpcode() == ISD::TRUNCATE || 13249 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13250 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13251 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13252 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13253 PromOp.getOperand(0).getValueType() != MVT::i1) { 13254 // The operand is not yet ready (see comment below). 13255 PromOpHandles.emplace_front(PromOp); 13256 continue; 13257 } 13258 13259 SDValue RepValue = PromOp.getOperand(0); 13260 if (isa<ConstantSDNode>(RepValue)) 13261 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13262 13263 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13264 continue; 13265 } 13266 13267 unsigned C; 13268 switch (PromOp.getOpcode()) { 13269 default: C = 0; break; 13270 case ISD::SELECT: C = 1; break; 13271 case ISD::SELECT_CC: C = 2; break; 13272 } 13273 13274 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13275 PromOp.getOperand(C).getValueType() != MVT::i1) || 13276 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13277 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13278 // The to-be-promoted operands of this node have not yet been 13279 // promoted (this should be rare because we're going through the 13280 // list backward, but if one of the operands has several users in 13281 // this cluster of to-be-promoted nodes, it is possible). 13282 PromOpHandles.emplace_front(PromOp); 13283 continue; 13284 } 13285 13286 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13287 PromOp.getNode()->op_end()); 13288 13289 // If there are any constant inputs, make sure they're replaced now. 13290 for (unsigned i = 0; i < 2; ++i) 13291 if (isa<ConstantSDNode>(Ops[C+i])) 13292 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13293 13294 DAG.ReplaceAllUsesOfValueWith(PromOp, 13295 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13296 } 13297 13298 // Now we're left with the initial truncation itself. 13299 if (N->getOpcode() == ISD::TRUNCATE) 13300 return N->getOperand(0); 13301 13302 // Otherwise, this is a comparison. The operands to be compared have just 13303 // changed type (to i1), but everything else is the same. 13304 return SDValue(N, 0); 13305 } 13306 13307 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13308 DAGCombinerInfo &DCI) const { 13309 SelectionDAG &DAG = DCI.DAG; 13310 SDLoc dl(N); 13311 13312 // If we're tracking CR bits, we need to be careful that we don't have: 13313 // zext(binary-ops(trunc(x), trunc(y))) 13314 // or 13315 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13316 // such that we're unnecessarily moving things into CR bits that can more 13317 // efficiently stay in GPRs. Note that if we're not certain that the high 13318 // bits are set as required by the final extension, we still may need to do 13319 // some masking to get the proper behavior. 13320 13321 // This same functionality is important on PPC64 when dealing with 13322 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13323 // the return values of functions. Because it is so similar, it is handled 13324 // here as well. 13325 13326 if (N->getValueType(0) != MVT::i32 && 13327 N->getValueType(0) != MVT::i64) 13328 return SDValue(); 13329 13330 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13331 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13332 return SDValue(); 13333 13334 if (N->getOperand(0).getOpcode() != ISD::AND && 13335 N->getOperand(0).getOpcode() != ISD::OR && 13336 N->getOperand(0).getOpcode() != ISD::XOR && 13337 N->getOperand(0).getOpcode() != ISD::SELECT && 13338 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13339 return SDValue(); 13340 13341 SmallVector<SDValue, 4> Inputs; 13342 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13343 SmallPtrSet<SDNode *, 16> Visited; 13344 13345 // Visit all inputs, collect all binary operations (and, or, xor and 13346 // select) that are all fed by truncations. 13347 while (!BinOps.empty()) { 13348 SDValue BinOp = BinOps.pop_back_val(); 13349 13350 if (!Visited.insert(BinOp.getNode()).second) 13351 continue; 13352 13353 PromOps.push_back(BinOp); 13354 13355 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13356 // The condition of the select is not promoted. 13357 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13358 continue; 13359 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13360 continue; 13361 13362 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13363 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13364 Inputs.push_back(BinOp.getOperand(i)); 13365 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13366 BinOp.getOperand(i).getOpcode() == ISD::OR || 13367 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13368 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13369 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13370 BinOps.push_back(BinOp.getOperand(i)); 13371 } else { 13372 // We have an input that is not a truncation or another binary 13373 // operation; we'll abort this transformation. 13374 return SDValue(); 13375 } 13376 } 13377 } 13378 13379 // The operands of a select that must be truncated when the select is 13380 // promoted because the operand is actually part of the to-be-promoted set. 13381 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13382 13383 // Make sure that this is a self-contained cluster of operations (which 13384 // is not quite the same thing as saying that everything has only one 13385 // use). 13386 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13387 if (isa<ConstantSDNode>(Inputs[i])) 13388 continue; 13389 13390 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13391 UE = Inputs[i].getNode()->use_end(); 13392 UI != UE; ++UI) { 13393 SDNode *User = *UI; 13394 if (User != N && !Visited.count(User)) 13395 return SDValue(); 13396 13397 // If we're going to promote the non-output-value operand(s) or SELECT or 13398 // SELECT_CC, record them for truncation. 13399 if (User->getOpcode() == ISD::SELECT) { 13400 if (User->getOperand(0) == Inputs[i]) 13401 SelectTruncOp[0].insert(std::make_pair(User, 13402 User->getOperand(0).getValueType())); 13403 } else if (User->getOpcode() == ISD::SELECT_CC) { 13404 if (User->getOperand(0) == Inputs[i]) 13405 SelectTruncOp[0].insert(std::make_pair(User, 13406 User->getOperand(0).getValueType())); 13407 if (User->getOperand(1) == Inputs[i]) 13408 SelectTruncOp[1].insert(std::make_pair(User, 13409 User->getOperand(1).getValueType())); 13410 } 13411 } 13412 } 13413 13414 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13415 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13416 UE = PromOps[i].getNode()->use_end(); 13417 UI != UE; ++UI) { 13418 SDNode *User = *UI; 13419 if (User != N && !Visited.count(User)) 13420 return SDValue(); 13421 13422 // If we're going to promote the non-output-value operand(s) or SELECT or 13423 // SELECT_CC, record them for truncation. 13424 if (User->getOpcode() == ISD::SELECT) { 13425 if (User->getOperand(0) == PromOps[i]) 13426 SelectTruncOp[0].insert(std::make_pair(User, 13427 User->getOperand(0).getValueType())); 13428 } else if (User->getOpcode() == ISD::SELECT_CC) { 13429 if (User->getOperand(0) == PromOps[i]) 13430 SelectTruncOp[0].insert(std::make_pair(User, 13431 User->getOperand(0).getValueType())); 13432 if (User->getOperand(1) == PromOps[i]) 13433 SelectTruncOp[1].insert(std::make_pair(User, 13434 User->getOperand(1).getValueType())); 13435 } 13436 } 13437 } 13438 13439 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13440 bool ReallyNeedsExt = false; 13441 if (N->getOpcode() != ISD::ANY_EXTEND) { 13442 // If all of the inputs are not already sign/zero extended, then 13443 // we'll still need to do that at the end. 13444 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13445 if (isa<ConstantSDNode>(Inputs[i])) 13446 continue; 13447 13448 unsigned OpBits = 13449 Inputs[i].getOperand(0).getValueSizeInBits(); 13450 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13451 13452 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13453 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13454 APInt::getHighBitsSet(OpBits, 13455 OpBits-PromBits))) || 13456 (N->getOpcode() == ISD::SIGN_EXTEND && 13457 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13458 (OpBits-(PromBits-1)))) { 13459 ReallyNeedsExt = true; 13460 break; 13461 } 13462 } 13463 } 13464 13465 // Replace all inputs, either with the truncation operand, or a 13466 // truncation or extension to the final output type. 13467 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13468 // Constant inputs need to be replaced with the to-be-promoted nodes that 13469 // use them because they might have users outside of the cluster of 13470 // promoted nodes. 13471 if (isa<ConstantSDNode>(Inputs[i])) 13472 continue; 13473 13474 SDValue InSrc = Inputs[i].getOperand(0); 13475 if (Inputs[i].getValueType() == N->getValueType(0)) 13476 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13477 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13478 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13479 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13480 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13481 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13482 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13483 else 13484 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13485 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13486 } 13487 13488 std::list<HandleSDNode> PromOpHandles; 13489 for (auto &PromOp : PromOps) 13490 PromOpHandles.emplace_back(PromOp); 13491 13492 // Replace all operations (these are all the same, but have a different 13493 // (promoted) return type). DAG.getNode will validate that the types of 13494 // a binary operator match, so go through the list in reverse so that 13495 // we've likely promoted both operands first. 13496 while (!PromOpHandles.empty()) { 13497 SDValue PromOp = PromOpHandles.back().getValue(); 13498 PromOpHandles.pop_back(); 13499 13500 unsigned C; 13501 switch (PromOp.getOpcode()) { 13502 default: C = 0; break; 13503 case ISD::SELECT: C = 1; break; 13504 case ISD::SELECT_CC: C = 2; break; 13505 } 13506 13507 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13508 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13509 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13510 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13511 // The to-be-promoted operands of this node have not yet been 13512 // promoted (this should be rare because we're going through the 13513 // list backward, but if one of the operands has several users in 13514 // this cluster of to-be-promoted nodes, it is possible). 13515 PromOpHandles.emplace_front(PromOp); 13516 continue; 13517 } 13518 13519 // For SELECT and SELECT_CC nodes, we do a similar check for any 13520 // to-be-promoted comparison inputs. 13521 if (PromOp.getOpcode() == ISD::SELECT || 13522 PromOp.getOpcode() == ISD::SELECT_CC) { 13523 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13524 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13525 (SelectTruncOp[1].count(PromOp.getNode()) && 13526 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13527 PromOpHandles.emplace_front(PromOp); 13528 continue; 13529 } 13530 } 13531 13532 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13533 PromOp.getNode()->op_end()); 13534 13535 // If this node has constant inputs, then they'll need to be promoted here. 13536 for (unsigned i = 0; i < 2; ++i) { 13537 if (!isa<ConstantSDNode>(Ops[C+i])) 13538 continue; 13539 if (Ops[C+i].getValueType() == N->getValueType(0)) 13540 continue; 13541 13542 if (N->getOpcode() == ISD::SIGN_EXTEND) 13543 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13544 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13545 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13546 else 13547 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13548 } 13549 13550 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13551 // truncate them again to the original value type. 13552 if (PromOp.getOpcode() == ISD::SELECT || 13553 PromOp.getOpcode() == ISD::SELECT_CC) { 13554 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13555 if (SI0 != SelectTruncOp[0].end()) 13556 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13557 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13558 if (SI1 != SelectTruncOp[1].end()) 13559 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13560 } 13561 13562 DAG.ReplaceAllUsesOfValueWith(PromOp, 13563 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13564 } 13565 13566 // Now we're left with the initial extension itself. 13567 if (!ReallyNeedsExt) 13568 return N->getOperand(0); 13569 13570 // To zero extend, just mask off everything except for the first bit (in the 13571 // i1 case). 13572 if (N->getOpcode() == ISD::ZERO_EXTEND) 13573 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13574 DAG.getConstant(APInt::getLowBitsSet( 13575 N->getValueSizeInBits(0), PromBits), 13576 dl, N->getValueType(0))); 13577 13578 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13579 "Invalid extension type"); 13580 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13581 SDValue ShiftCst = 13582 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13583 return DAG.getNode( 13584 ISD::SRA, dl, N->getValueType(0), 13585 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13586 ShiftCst); 13587 } 13588 13589 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13590 DAGCombinerInfo &DCI) const { 13591 assert(N->getOpcode() == ISD::SETCC && 13592 "Should be called with a SETCC node"); 13593 13594 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13595 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13596 SDValue LHS = N->getOperand(0); 13597 SDValue RHS = N->getOperand(1); 13598 13599 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13600 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13601 LHS.hasOneUse()) 13602 std::swap(LHS, RHS); 13603 13604 // x == 0-y --> x+y == 0 13605 // x != 0-y --> x+y != 0 13606 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13607 RHS.hasOneUse()) { 13608 SDLoc DL(N); 13609 SelectionDAG &DAG = DCI.DAG; 13610 EVT VT = N->getValueType(0); 13611 EVT OpVT = LHS.getValueType(); 13612 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13613 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13614 } 13615 } 13616 13617 return DAGCombineTruncBoolExt(N, DCI); 13618 } 13619 13620 // Is this an extending load from an f32 to an f64? 13621 static bool isFPExtLoad(SDValue Op) { 13622 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13623 return LD->getExtensionType() == ISD::EXTLOAD && 13624 Op.getValueType() == MVT::f64; 13625 return false; 13626 } 13627 13628 /// Reduces the number of fp-to-int conversion when building a vector. 13629 /// 13630 /// If this vector is built out of floating to integer conversions, 13631 /// transform it to a vector built out of floating point values followed by a 13632 /// single floating to integer conversion of the vector. 13633 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13634 /// becomes (fptosi (build_vector ($A, $B, ...))) 13635 SDValue PPCTargetLowering:: 13636 combineElementTruncationToVectorTruncation(SDNode *N, 13637 DAGCombinerInfo &DCI) const { 13638 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13639 "Should be called with a BUILD_VECTOR node"); 13640 13641 SelectionDAG &DAG = DCI.DAG; 13642 SDLoc dl(N); 13643 13644 SDValue FirstInput = N->getOperand(0); 13645 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13646 "The input operand must be an fp-to-int conversion."); 13647 13648 // This combine happens after legalization so the fp_to_[su]i nodes are 13649 // already converted to PPCSISD nodes. 13650 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13651 if (FirstConversion == PPCISD::FCTIDZ || 13652 FirstConversion == PPCISD::FCTIDUZ || 13653 FirstConversion == PPCISD::FCTIWZ || 13654 FirstConversion == PPCISD::FCTIWUZ) { 13655 bool IsSplat = true; 13656 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13657 FirstConversion == PPCISD::FCTIWUZ; 13658 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13659 SmallVector<SDValue, 4> Ops; 13660 EVT TargetVT = N->getValueType(0); 13661 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13662 SDValue NextOp = N->getOperand(i); 13663 if (NextOp.getOpcode() != PPCISD::MFVSR) 13664 return SDValue(); 13665 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13666 if (NextConversion != FirstConversion) 13667 return SDValue(); 13668 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13669 // This is not valid if the input was originally double precision. It is 13670 // also not profitable to do unless this is an extending load in which 13671 // case doing this combine will allow us to combine consecutive loads. 13672 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13673 return SDValue(); 13674 if (N->getOperand(i) != FirstInput) 13675 IsSplat = false; 13676 } 13677 13678 // If this is a splat, we leave it as-is since there will be only a single 13679 // fp-to-int conversion followed by a splat of the integer. This is better 13680 // for 32-bit and smaller ints and neutral for 64-bit ints. 13681 if (IsSplat) 13682 return SDValue(); 13683 13684 // Now that we know we have the right type of node, get its operands 13685 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13686 SDValue In = N->getOperand(i).getOperand(0); 13687 if (Is32Bit) { 13688 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13689 // here, we know that all inputs are extending loads so this is safe). 13690 if (In.isUndef()) 13691 Ops.push_back(DAG.getUNDEF(SrcVT)); 13692 else { 13693 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13694 MVT::f32, In.getOperand(0), 13695 DAG.getIntPtrConstant(1, dl)); 13696 Ops.push_back(Trunc); 13697 } 13698 } else 13699 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13700 } 13701 13702 unsigned Opcode; 13703 if (FirstConversion == PPCISD::FCTIDZ || 13704 FirstConversion == PPCISD::FCTIWZ) 13705 Opcode = ISD::FP_TO_SINT; 13706 else 13707 Opcode = ISD::FP_TO_UINT; 13708 13709 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13710 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13711 return DAG.getNode(Opcode, dl, TargetVT, BV); 13712 } 13713 return SDValue(); 13714 } 13715 13716 /// Reduce the number of loads when building a vector. 13717 /// 13718 /// Building a vector out of multiple loads can be converted to a load 13719 /// of the vector type if the loads are consecutive. If the loads are 13720 /// consecutive but in descending order, a shuffle is added at the end 13721 /// to reorder the vector. 13722 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13723 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13724 "Should be called with a BUILD_VECTOR node"); 13725 13726 SDLoc dl(N); 13727 13728 // Return early for non byte-sized type, as they can't be consecutive. 13729 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13730 return SDValue(); 13731 13732 bool InputsAreConsecutiveLoads = true; 13733 bool InputsAreReverseConsecutive = true; 13734 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13735 SDValue FirstInput = N->getOperand(0); 13736 bool IsRoundOfExtLoad = false; 13737 13738 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13739 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13740 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13741 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13742 } 13743 // Not a build vector of (possibly fp_rounded) loads. 13744 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13745 N->getNumOperands() == 1) 13746 return SDValue(); 13747 13748 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13749 // If any inputs are fp_round(extload), they all must be. 13750 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13751 return SDValue(); 13752 13753 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13754 N->getOperand(i); 13755 if (NextInput.getOpcode() != ISD::LOAD) 13756 return SDValue(); 13757 13758 SDValue PreviousInput = 13759 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13760 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13761 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13762 13763 // If any inputs are fp_round(extload), they all must be. 13764 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13765 return SDValue(); 13766 13767 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13768 InputsAreConsecutiveLoads = false; 13769 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13770 InputsAreReverseConsecutive = false; 13771 13772 // Exit early if the loads are neither consecutive nor reverse consecutive. 13773 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13774 return SDValue(); 13775 } 13776 13777 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13778 "The loads cannot be both consecutive and reverse consecutive."); 13779 13780 SDValue FirstLoadOp = 13781 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13782 SDValue LastLoadOp = 13783 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13784 N->getOperand(N->getNumOperands()-1); 13785 13786 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13787 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13788 if (InputsAreConsecutiveLoads) { 13789 assert(LD1 && "Input needs to be a LoadSDNode."); 13790 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13791 LD1->getBasePtr(), LD1->getPointerInfo(), 13792 LD1->getAlignment()); 13793 } 13794 if (InputsAreReverseConsecutive) { 13795 assert(LDL && "Input needs to be a LoadSDNode."); 13796 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13797 LDL->getBasePtr(), LDL->getPointerInfo(), 13798 LDL->getAlignment()); 13799 SmallVector<int, 16> Ops; 13800 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13801 Ops.push_back(i); 13802 13803 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13804 DAG.getUNDEF(N->getValueType(0)), Ops); 13805 } 13806 return SDValue(); 13807 } 13808 13809 // This function adds the required vector_shuffle needed to get 13810 // the elements of the vector extract in the correct position 13811 // as specified by the CorrectElems encoding. 13812 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13813 SDValue Input, uint64_t Elems, 13814 uint64_t CorrectElems) { 13815 SDLoc dl(N); 13816 13817 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13818 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13819 13820 // Knowing the element indices being extracted from the original 13821 // vector and the order in which they're being inserted, just put 13822 // them at element indices required for the instruction. 13823 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13824 if (DAG.getDataLayout().isLittleEndian()) 13825 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13826 else 13827 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13828 CorrectElems = CorrectElems >> 8; 13829 Elems = Elems >> 8; 13830 } 13831 13832 SDValue Shuffle = 13833 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13834 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13835 13836 EVT VT = N->getValueType(0); 13837 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13838 13839 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13840 Input.getValueType().getVectorElementType(), 13841 VT.getVectorNumElements()); 13842 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13843 DAG.getValueType(ExtVT)); 13844 } 13845 13846 // Look for build vector patterns where input operands come from sign 13847 // extended vector_extract elements of specific indices. If the correct indices 13848 // aren't used, add a vector shuffle to fix up the indices and create 13849 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13850 // during instruction selection. 13851 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13852 // This array encodes the indices that the vector sign extend instructions 13853 // extract from when extending from one type to another for both BE and LE. 13854 // The right nibble of each byte corresponds to the LE incides. 13855 // and the left nibble of each byte corresponds to the BE incides. 13856 // For example: 0x3074B8FC byte->word 13857 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13858 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13859 // For example: 0x000070F8 byte->double word 13860 // For LE: the allowed indices are: 0x0,0x8 13861 // For BE: the allowed indices are: 0x7,0xF 13862 uint64_t TargetElems[] = { 13863 0x3074B8FC, // b->w 13864 0x000070F8, // b->d 13865 0x10325476, // h->w 13866 0x00003074, // h->d 13867 0x00001032, // w->d 13868 }; 13869 13870 uint64_t Elems = 0; 13871 int Index; 13872 SDValue Input; 13873 13874 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13875 if (!Op) 13876 return false; 13877 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13878 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13879 return false; 13880 13881 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13882 // of the right width. 13883 SDValue Extract = Op.getOperand(0); 13884 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13885 Extract = Extract.getOperand(0); 13886 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13887 return false; 13888 13889 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13890 if (!ExtOp) 13891 return false; 13892 13893 Index = ExtOp->getZExtValue(); 13894 if (Input && Input != Extract.getOperand(0)) 13895 return false; 13896 13897 if (!Input) 13898 Input = Extract.getOperand(0); 13899 13900 Elems = Elems << 8; 13901 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13902 Elems |= Index; 13903 13904 return true; 13905 }; 13906 13907 // If the build vector operands aren't sign extended vector extracts, 13908 // of the same input vector, then return. 13909 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13910 if (!isSExtOfVecExtract(N->getOperand(i))) { 13911 return SDValue(); 13912 } 13913 } 13914 13915 // If the vector extract indicies are not correct, add the appropriate 13916 // vector_shuffle. 13917 int TgtElemArrayIdx; 13918 int InputSize = Input.getValueType().getScalarSizeInBits(); 13919 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13920 if (InputSize + OutputSize == 40) 13921 TgtElemArrayIdx = 0; 13922 else if (InputSize + OutputSize == 72) 13923 TgtElemArrayIdx = 1; 13924 else if (InputSize + OutputSize == 48) 13925 TgtElemArrayIdx = 2; 13926 else if (InputSize + OutputSize == 80) 13927 TgtElemArrayIdx = 3; 13928 else if (InputSize + OutputSize == 96) 13929 TgtElemArrayIdx = 4; 13930 else 13931 return SDValue(); 13932 13933 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13934 CorrectElems = DAG.getDataLayout().isLittleEndian() 13935 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13936 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13937 if (Elems != CorrectElems) { 13938 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13939 } 13940 13941 // Regular lowering will catch cases where a shuffle is not needed. 13942 return SDValue(); 13943 } 13944 13945 // Look for the pattern of a load from a narrow width to i128, feeding 13946 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13947 // (LXVRZX). This node represents a zero extending load that will be matched 13948 // to the Load VSX Vector Rightmost instructions. 13949 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13950 SDLoc DL(N); 13951 13952 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13953 if (N->getValueType(0) != MVT::v1i128) 13954 return SDValue(); 13955 13956 SDValue Operand = N->getOperand(0); 13957 // Proceed with the transformation if the operand to the BUILD_VECTOR 13958 // is a load instruction. 13959 if (Operand.getOpcode() != ISD::LOAD) 13960 return SDValue(); 13961 13962 auto *LD = cast<LoadSDNode>(Operand); 13963 EVT MemoryType = LD->getMemoryVT(); 13964 13965 // This transformation is only valid if the we are loading either a byte, 13966 // halfword, word, or doubleword. 13967 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13968 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13969 13970 // Ensure that the load from the narrow width is being zero extended to i128. 13971 if (!ValidLDType || 13972 (LD->getExtensionType() != ISD::ZEXTLOAD && 13973 LD->getExtensionType() != ISD::EXTLOAD)) 13974 return SDValue(); 13975 13976 SDValue LoadOps[] = { 13977 LD->getChain(), LD->getBasePtr(), 13978 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13979 13980 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13981 DAG.getVTList(MVT::v1i128, MVT::Other), 13982 LoadOps, MemoryType, LD->getMemOperand()); 13983 } 13984 13985 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13986 DAGCombinerInfo &DCI) const { 13987 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13988 "Should be called with a BUILD_VECTOR node"); 13989 13990 SelectionDAG &DAG = DCI.DAG; 13991 SDLoc dl(N); 13992 13993 if (!Subtarget.hasVSX()) 13994 return SDValue(); 13995 13996 // The target independent DAG combiner will leave a build_vector of 13997 // float-to-int conversions intact. We can generate MUCH better code for 13998 // a float-to-int conversion of a vector of floats. 13999 SDValue FirstInput = N->getOperand(0); 14000 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14001 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14002 if (Reduced) 14003 return Reduced; 14004 } 14005 14006 // If we're building a vector out of consecutive loads, just load that 14007 // vector type. 14008 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14009 if (Reduced) 14010 return Reduced; 14011 14012 // If we're building a vector out of extended elements from another vector 14013 // we have P9 vector integer extend instructions. The code assumes legal 14014 // input types (i.e. it can't handle things like v4i16) so do not run before 14015 // legalization. 14016 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14017 Reduced = combineBVOfVecSExt(N, DAG); 14018 if (Reduced) 14019 return Reduced; 14020 } 14021 14022 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14023 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14024 // is a load from <valid narrow width> to i128. 14025 if (Subtarget.isISA3_1()) { 14026 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14027 if (BVOfZLoad) 14028 return BVOfZLoad; 14029 } 14030 14031 if (N->getValueType(0) != MVT::v2f64) 14032 return SDValue(); 14033 14034 // Looking for: 14035 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14036 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14037 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14038 return SDValue(); 14039 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14040 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14041 return SDValue(); 14042 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14043 return SDValue(); 14044 14045 SDValue Ext1 = FirstInput.getOperand(0); 14046 SDValue Ext2 = N->getOperand(1).getOperand(0); 14047 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14048 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14049 return SDValue(); 14050 14051 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14052 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14053 if (!Ext1Op || !Ext2Op) 14054 return SDValue(); 14055 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14056 Ext1.getOperand(0) != Ext2.getOperand(0)) 14057 return SDValue(); 14058 14059 int FirstElem = Ext1Op->getZExtValue(); 14060 int SecondElem = Ext2Op->getZExtValue(); 14061 int SubvecIdx; 14062 if (FirstElem == 0 && SecondElem == 1) 14063 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14064 else if (FirstElem == 2 && SecondElem == 3) 14065 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14066 else 14067 return SDValue(); 14068 14069 SDValue SrcVec = Ext1.getOperand(0); 14070 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14071 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14072 return DAG.getNode(NodeType, dl, MVT::v2f64, 14073 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14074 } 14075 14076 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14077 DAGCombinerInfo &DCI) const { 14078 assert((N->getOpcode() == ISD::SINT_TO_FP || 14079 N->getOpcode() == ISD::UINT_TO_FP) && 14080 "Need an int -> FP conversion node here"); 14081 14082 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14083 return SDValue(); 14084 14085 SelectionDAG &DAG = DCI.DAG; 14086 SDLoc dl(N); 14087 SDValue Op(N, 0); 14088 14089 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14090 // from the hardware. 14091 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14092 return SDValue(); 14093 if (!Op.getOperand(0).getValueType().isSimple()) 14094 return SDValue(); 14095 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14096 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14097 return SDValue(); 14098 14099 SDValue FirstOperand(Op.getOperand(0)); 14100 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14101 (FirstOperand.getValueType() == MVT::i8 || 14102 FirstOperand.getValueType() == MVT::i16); 14103 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14104 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14105 bool DstDouble = Op.getValueType() == MVT::f64; 14106 unsigned ConvOp = Signed ? 14107 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14108 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14109 SDValue WidthConst = 14110 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14111 dl, false); 14112 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14113 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14114 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14115 DAG.getVTList(MVT::f64, MVT::Other), 14116 Ops, MVT::i8, LDN->getMemOperand()); 14117 14118 // For signed conversion, we need to sign-extend the value in the VSR 14119 if (Signed) { 14120 SDValue ExtOps[] = { Ld, WidthConst }; 14121 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14122 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14123 } else 14124 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14125 } 14126 14127 14128 // For i32 intermediate values, unfortunately, the conversion functions 14129 // leave the upper 32 bits of the value are undefined. Within the set of 14130 // scalar instructions, we have no method for zero- or sign-extending the 14131 // value. Thus, we cannot handle i32 intermediate values here. 14132 if (Op.getOperand(0).getValueType() == MVT::i32) 14133 return SDValue(); 14134 14135 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14136 "UINT_TO_FP is supported only with FPCVT"); 14137 14138 // If we have FCFIDS, then use it when converting to single-precision. 14139 // Otherwise, convert to double-precision and then round. 14140 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14141 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14142 : PPCISD::FCFIDS) 14143 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14144 : PPCISD::FCFID); 14145 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14146 ? MVT::f32 14147 : MVT::f64; 14148 14149 // If we're converting from a float, to an int, and back to a float again, 14150 // then we don't need the store/load pair at all. 14151 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14152 Subtarget.hasFPCVT()) || 14153 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14154 SDValue Src = Op.getOperand(0).getOperand(0); 14155 if (Src.getValueType() == MVT::f32) { 14156 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14157 DCI.AddToWorklist(Src.getNode()); 14158 } else if (Src.getValueType() != MVT::f64) { 14159 // Make sure that we don't pick up a ppc_fp128 source value. 14160 return SDValue(); 14161 } 14162 14163 unsigned FCTOp = 14164 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14165 PPCISD::FCTIDUZ; 14166 14167 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14168 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14169 14170 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14171 FP = DAG.getNode(ISD::FP_ROUND, dl, 14172 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14173 DCI.AddToWorklist(FP.getNode()); 14174 } 14175 14176 return FP; 14177 } 14178 14179 return SDValue(); 14180 } 14181 14182 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14183 // builtins) into loads with swaps. 14184 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14185 DAGCombinerInfo &DCI) const { 14186 SelectionDAG &DAG = DCI.DAG; 14187 SDLoc dl(N); 14188 SDValue Chain; 14189 SDValue Base; 14190 MachineMemOperand *MMO; 14191 14192 switch (N->getOpcode()) { 14193 default: 14194 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14195 case ISD::LOAD: { 14196 LoadSDNode *LD = cast<LoadSDNode>(N); 14197 Chain = LD->getChain(); 14198 Base = LD->getBasePtr(); 14199 MMO = LD->getMemOperand(); 14200 // If the MMO suggests this isn't a load of a full vector, leave 14201 // things alone. For a built-in, we have to make the change for 14202 // correctness, so if there is a size problem that will be a bug. 14203 if (MMO->getSize() < 16) 14204 return SDValue(); 14205 break; 14206 } 14207 case ISD::INTRINSIC_W_CHAIN: { 14208 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14209 Chain = Intrin->getChain(); 14210 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14211 // us what we want. Get operand 2 instead. 14212 Base = Intrin->getOperand(2); 14213 MMO = Intrin->getMemOperand(); 14214 break; 14215 } 14216 } 14217 14218 MVT VecTy = N->getValueType(0).getSimpleVT(); 14219 14220 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14221 // aligned and the type is a vector with elements up to 4 bytes 14222 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14223 VecTy.getScalarSizeInBits() <= 32) { 14224 return SDValue(); 14225 } 14226 14227 SDValue LoadOps[] = { Chain, Base }; 14228 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14229 DAG.getVTList(MVT::v2f64, MVT::Other), 14230 LoadOps, MVT::v2f64, MMO); 14231 14232 DCI.AddToWorklist(Load.getNode()); 14233 Chain = Load.getValue(1); 14234 SDValue Swap = DAG.getNode( 14235 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14236 DCI.AddToWorklist(Swap.getNode()); 14237 14238 // Add a bitcast if the resulting load type doesn't match v2f64. 14239 if (VecTy != MVT::v2f64) { 14240 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14241 DCI.AddToWorklist(N.getNode()); 14242 // Package {bitcast value, swap's chain} to match Load's shape. 14243 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14244 N, Swap.getValue(1)); 14245 } 14246 14247 return Swap; 14248 } 14249 14250 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14251 // builtins) into stores with swaps. 14252 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14253 DAGCombinerInfo &DCI) const { 14254 SelectionDAG &DAG = DCI.DAG; 14255 SDLoc dl(N); 14256 SDValue Chain; 14257 SDValue Base; 14258 unsigned SrcOpnd; 14259 MachineMemOperand *MMO; 14260 14261 switch (N->getOpcode()) { 14262 default: 14263 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14264 case ISD::STORE: { 14265 StoreSDNode *ST = cast<StoreSDNode>(N); 14266 Chain = ST->getChain(); 14267 Base = ST->getBasePtr(); 14268 MMO = ST->getMemOperand(); 14269 SrcOpnd = 1; 14270 // If the MMO suggests this isn't a store of a full vector, leave 14271 // things alone. For a built-in, we have to make the change for 14272 // correctness, so if there is a size problem that will be a bug. 14273 if (MMO->getSize() < 16) 14274 return SDValue(); 14275 break; 14276 } 14277 case ISD::INTRINSIC_VOID: { 14278 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14279 Chain = Intrin->getChain(); 14280 // Intrin->getBasePtr() oddly does not get what we want. 14281 Base = Intrin->getOperand(3); 14282 MMO = Intrin->getMemOperand(); 14283 SrcOpnd = 2; 14284 break; 14285 } 14286 } 14287 14288 SDValue Src = N->getOperand(SrcOpnd); 14289 MVT VecTy = Src.getValueType().getSimpleVT(); 14290 14291 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14292 // aligned and the type is a vector with elements up to 4 bytes 14293 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14294 VecTy.getScalarSizeInBits() <= 32) { 14295 return SDValue(); 14296 } 14297 14298 // All stores are done as v2f64 and possible bit cast. 14299 if (VecTy != MVT::v2f64) { 14300 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14301 DCI.AddToWorklist(Src.getNode()); 14302 } 14303 14304 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14305 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14306 DCI.AddToWorklist(Swap.getNode()); 14307 Chain = Swap.getValue(1); 14308 SDValue StoreOps[] = { Chain, Swap, Base }; 14309 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14310 DAG.getVTList(MVT::Other), 14311 StoreOps, VecTy, MMO); 14312 DCI.AddToWorklist(Store.getNode()); 14313 return Store; 14314 } 14315 14316 // Handle DAG combine for STORE (FP_TO_INT F). 14317 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14318 DAGCombinerInfo &DCI) const { 14319 14320 SelectionDAG &DAG = DCI.DAG; 14321 SDLoc dl(N); 14322 unsigned Opcode = N->getOperand(1).getOpcode(); 14323 14324 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14325 && "Not a FP_TO_INT Instruction!"); 14326 14327 SDValue Val = N->getOperand(1).getOperand(0); 14328 EVT Op1VT = N->getOperand(1).getValueType(); 14329 EVT ResVT = Val.getValueType(); 14330 14331 if (!isTypeLegal(ResVT)) 14332 return SDValue(); 14333 14334 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14335 bool ValidTypeForStoreFltAsInt = 14336 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14337 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14338 14339 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14340 return SDValue(); 14341 14342 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14343 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14344 return SDValue(); 14345 14346 // Extend f32 values to f64 14347 if (ResVT.getScalarSizeInBits() == 32) { 14348 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14349 DCI.AddToWorklist(Val.getNode()); 14350 } 14351 14352 // Set signed or unsigned conversion opcode. 14353 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14354 PPCISD::FP_TO_SINT_IN_VSR : 14355 PPCISD::FP_TO_UINT_IN_VSR; 14356 14357 Val = DAG.getNode(ConvOpcode, 14358 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14359 DCI.AddToWorklist(Val.getNode()); 14360 14361 // Set number of bytes being converted. 14362 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14363 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14364 DAG.getIntPtrConstant(ByteSize, dl, false), 14365 DAG.getValueType(Op1VT) }; 14366 14367 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14368 DAG.getVTList(MVT::Other), Ops, 14369 cast<StoreSDNode>(N)->getMemoryVT(), 14370 cast<StoreSDNode>(N)->getMemOperand()); 14371 14372 DCI.AddToWorklist(Val.getNode()); 14373 return Val; 14374 } 14375 14376 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14377 // Check that the source of the element keeps flipping 14378 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14379 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14380 for (int i = 1, e = Mask.size(); i < e; i++) { 14381 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14382 return false; 14383 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14384 return false; 14385 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14386 } 14387 return true; 14388 } 14389 14390 static bool isSplatBV(SDValue Op) { 14391 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14392 return false; 14393 SDValue FirstOp; 14394 14395 // Find first non-undef input. 14396 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14397 FirstOp = Op.getOperand(i); 14398 if (!FirstOp.isUndef()) 14399 break; 14400 } 14401 14402 // All inputs are undef or the same as the first non-undef input. 14403 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14404 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14405 return false; 14406 return true; 14407 } 14408 14409 static SDValue isScalarToVec(SDValue Op) { 14410 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14411 return Op; 14412 if (Op.getOpcode() != ISD::BITCAST) 14413 return SDValue(); 14414 Op = Op.getOperand(0); 14415 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14416 return Op; 14417 return SDValue(); 14418 } 14419 14420 // Fix up the shuffle mask to account for the fact that the result of 14421 // scalar_to_vector is not in lane zero. This just takes all values in 14422 // the ranges specified by the min/max indices and adds the number of 14423 // elements required to ensure each element comes from the respective 14424 // position in the valid lane. 14425 // On little endian, that's just the corresponding element in the other 14426 // half of the vector. On big endian, it is in the same half but right 14427 // justified rather than left justified in that half. 14428 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14429 int LHSMaxIdx, int RHSMinIdx, 14430 int RHSMaxIdx, int HalfVec, 14431 unsigned ValidLaneWidth, 14432 const PPCSubtarget &Subtarget) { 14433 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14434 int Idx = ShuffV[i]; 14435 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14436 ShuffV[i] += 14437 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14438 } 14439 } 14440 14441 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14442 // the original is: 14443 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14444 // In such a case, just change the shuffle mask to extract the element 14445 // from the permuted index. 14446 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14447 const PPCSubtarget &Subtarget) { 14448 SDLoc dl(OrigSToV); 14449 EVT VT = OrigSToV.getValueType(); 14450 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14451 "Expecting a SCALAR_TO_VECTOR here"); 14452 SDValue Input = OrigSToV.getOperand(0); 14453 14454 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14455 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14456 SDValue OrigVector = Input.getOperand(0); 14457 14458 // Can't handle non-const element indices or different vector types 14459 // for the input to the extract and the output of the scalar_to_vector. 14460 if (Idx && VT == OrigVector.getValueType()) { 14461 unsigned NumElts = VT.getVectorNumElements(); 14462 assert( 14463 NumElts > 1 && 14464 "Cannot produce a permuted scalar_to_vector for one element vector"); 14465 SmallVector<int, 16> NewMask(NumElts, -1); 14466 unsigned ResultInElt = NumElts / 2; 14467 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14468 NewMask[ResultInElt] = Idx->getZExtValue(); 14469 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14470 } 14471 } 14472 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14473 OrigSToV.getOperand(0)); 14474 } 14475 14476 // On little endian subtargets, combine shuffles such as: 14477 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14478 // into: 14479 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14480 // because the latter can be matched to a single instruction merge. 14481 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14482 // to put the value into element zero. Adjust the shuffle mask so that the 14483 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14484 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14485 // nodes with elements smaller than doubleword because all the ways 14486 // of getting scalar data into a vector register put the value in the 14487 // rightmost element of the left half of the vector. 14488 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14489 SelectionDAG &DAG) const { 14490 SDValue LHS = SVN->getOperand(0); 14491 SDValue RHS = SVN->getOperand(1); 14492 auto Mask = SVN->getMask(); 14493 int NumElts = LHS.getValueType().getVectorNumElements(); 14494 SDValue Res(SVN, 0); 14495 SDLoc dl(SVN); 14496 bool IsLittleEndian = Subtarget.isLittleEndian(); 14497 14498 // On big endian targets this is only useful for subtargets with direct moves. 14499 // On little endian targets it would be useful for all subtargets with VSX. 14500 // However adding special handling for LE subtargets without direct moves 14501 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14502 // which includes direct moves. 14503 if (!Subtarget.hasDirectMove()) 14504 return Res; 14505 14506 // If this is not a shuffle of a shuffle and the first element comes from 14507 // the second vector, canonicalize to the commuted form. This will make it 14508 // more likely to match one of the single instruction patterns. 14509 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14510 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14511 std::swap(LHS, RHS); 14512 Res = DAG.getCommutedVectorShuffle(*SVN); 14513 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14514 } 14515 14516 // Adjust the shuffle mask if either input vector comes from a 14517 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14518 // form (to prevent the need for a swap). 14519 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14520 SDValue SToVLHS = isScalarToVec(LHS); 14521 SDValue SToVRHS = isScalarToVec(RHS); 14522 if (SToVLHS || SToVRHS) { 14523 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14524 : SToVRHS.getValueType().getVectorNumElements(); 14525 int NumEltsOut = ShuffV.size(); 14526 // The width of the "valid lane" (i.e. the lane that contains the value that 14527 // is vectorized) needs to be expressed in terms of the number of elements 14528 // of the shuffle. It is thereby the ratio of the values before and after 14529 // any bitcast. 14530 unsigned ValidLaneWidth = 14531 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14532 LHS.getValueType().getScalarSizeInBits() 14533 : SToVRHS.getValueType().getScalarSizeInBits() / 14534 RHS.getValueType().getScalarSizeInBits(); 14535 14536 // Initially assume that neither input is permuted. These will be adjusted 14537 // accordingly if either input is. 14538 int LHSMaxIdx = -1; 14539 int RHSMinIdx = -1; 14540 int RHSMaxIdx = -1; 14541 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14542 14543 // Get the permuted scalar to vector nodes for the source(s) that come from 14544 // ISD::SCALAR_TO_VECTOR. 14545 // On big endian systems, this only makes sense for element sizes smaller 14546 // than 64 bits since for 64-bit elements, all instructions already put 14547 // the value into element zero. Since scalar size of LHS and RHS may differ 14548 // after isScalarToVec, this should be checked using their own sizes. 14549 if (SToVLHS) { 14550 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14551 return Res; 14552 // Set up the values for the shuffle vector fixup. 14553 LHSMaxIdx = NumEltsOut / NumEltsIn; 14554 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14555 if (SToVLHS.getValueType() != LHS.getValueType()) 14556 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14557 LHS = SToVLHS; 14558 } 14559 if (SToVRHS) { 14560 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14561 return Res; 14562 RHSMinIdx = NumEltsOut; 14563 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14564 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14565 if (SToVRHS.getValueType() != RHS.getValueType()) 14566 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14567 RHS = SToVRHS; 14568 } 14569 14570 // Fix up the shuffle mask to reflect where the desired element actually is. 14571 // The minimum and maximum indices that correspond to element zero for both 14572 // the LHS and RHS are computed and will control which shuffle mask entries 14573 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14574 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14575 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14576 HalfVec, ValidLaneWidth, Subtarget); 14577 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14578 14579 // We may have simplified away the shuffle. We won't be able to do anything 14580 // further with it here. 14581 if (!isa<ShuffleVectorSDNode>(Res)) 14582 return Res; 14583 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14584 } 14585 14586 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14587 // The common case after we commuted the shuffle is that the RHS is a splat 14588 // and we have elements coming in from the splat at indices that are not 14589 // conducive to using a merge. 14590 // Example: 14591 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14592 if (!isSplatBV(TheSplat)) 14593 return Res; 14594 14595 // We are looking for a mask such that all even elements are from 14596 // one vector and all odd elements from the other. 14597 if (!isAlternatingShuffMask(Mask, NumElts)) 14598 return Res; 14599 14600 // Adjust the mask so we are pulling in the same index from the splat 14601 // as the index from the interesting vector in consecutive elements. 14602 if (IsLittleEndian) { 14603 // Example (even elements from first vector): 14604 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14605 if (Mask[0] < NumElts) 14606 for (int i = 1, e = Mask.size(); i < e; i += 2) 14607 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14608 // Example (odd elements from first vector): 14609 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14610 else 14611 for (int i = 0, e = Mask.size(); i < e; i += 2) 14612 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14613 } else { 14614 // Example (even elements from first vector): 14615 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14616 if (Mask[0] < NumElts) 14617 for (int i = 0, e = Mask.size(); i < e; i += 2) 14618 ShuffV[i] = ShuffV[i + 1] - NumElts; 14619 // Example (odd elements from first vector): 14620 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14621 else 14622 for (int i = 1, e = Mask.size(); i < e; i += 2) 14623 ShuffV[i] = ShuffV[i - 1] - NumElts; 14624 } 14625 14626 // If the RHS has undefs, we need to remove them since we may have created 14627 // a shuffle that adds those instead of the splat value. 14628 SDValue SplatVal = 14629 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14630 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14631 14632 if (IsLittleEndian) 14633 RHS = TheSplat; 14634 else 14635 LHS = TheSplat; 14636 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14637 } 14638 14639 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14640 LSBaseSDNode *LSBase, 14641 DAGCombinerInfo &DCI) const { 14642 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14643 "Not a reverse memop pattern!"); 14644 14645 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14646 auto Mask = SVN->getMask(); 14647 int i = 0; 14648 auto I = Mask.rbegin(); 14649 auto E = Mask.rend(); 14650 14651 for (; I != E; ++I) { 14652 if (*I != i) 14653 return false; 14654 i++; 14655 } 14656 return true; 14657 }; 14658 14659 SelectionDAG &DAG = DCI.DAG; 14660 EVT VT = SVN->getValueType(0); 14661 14662 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14663 return SDValue(); 14664 14665 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14666 // See comment in PPCVSXSwapRemoval.cpp. 14667 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14668 if (!Subtarget.hasP9Vector()) 14669 return SDValue(); 14670 14671 if(!IsElementReverse(SVN)) 14672 return SDValue(); 14673 14674 if (LSBase->getOpcode() == ISD::LOAD) { 14675 // If the load return value 0 has more than one user except the 14676 // shufflevector instruction, it is not profitable to replace the 14677 // shufflevector with a reverse load. 14678 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14679 UI != UE; ++UI) 14680 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14681 return SDValue(); 14682 14683 SDLoc dl(LSBase); 14684 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14685 return DAG.getMemIntrinsicNode( 14686 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14687 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14688 } 14689 14690 if (LSBase->getOpcode() == ISD::STORE) { 14691 // If there are other uses of the shuffle, the swap cannot be avoided. 14692 // Forcing the use of an X-Form (since swapped stores only have 14693 // X-Forms) without removing the swap is unprofitable. 14694 if (!SVN->hasOneUse()) 14695 return SDValue(); 14696 14697 SDLoc dl(LSBase); 14698 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14699 LSBase->getBasePtr()}; 14700 return DAG.getMemIntrinsicNode( 14701 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14702 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14703 } 14704 14705 llvm_unreachable("Expected a load or store node here"); 14706 } 14707 14708 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14709 DAGCombinerInfo &DCI) const { 14710 SelectionDAG &DAG = DCI.DAG; 14711 SDLoc dl(N); 14712 switch (N->getOpcode()) { 14713 default: break; 14714 case ISD::ADD: 14715 return combineADD(N, DCI); 14716 case ISD::SHL: 14717 return combineSHL(N, DCI); 14718 case ISD::SRA: 14719 return combineSRA(N, DCI); 14720 case ISD::SRL: 14721 return combineSRL(N, DCI); 14722 case ISD::MUL: 14723 return combineMUL(N, DCI); 14724 case ISD::FMA: 14725 case PPCISD::FNMSUB: 14726 return combineFMALike(N, DCI); 14727 case PPCISD::SHL: 14728 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14729 return N->getOperand(0); 14730 break; 14731 case PPCISD::SRL: 14732 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14733 return N->getOperand(0); 14734 break; 14735 case PPCISD::SRA: 14736 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14737 if (C->isNullValue() || // 0 >>s V -> 0. 14738 C->isAllOnesValue()) // -1 >>s V -> -1. 14739 return N->getOperand(0); 14740 } 14741 break; 14742 case ISD::SIGN_EXTEND: 14743 case ISD::ZERO_EXTEND: 14744 case ISD::ANY_EXTEND: 14745 return DAGCombineExtBoolTrunc(N, DCI); 14746 case ISD::TRUNCATE: 14747 return combineTRUNCATE(N, DCI); 14748 case ISD::SETCC: 14749 if (SDValue CSCC = combineSetCC(N, DCI)) 14750 return CSCC; 14751 LLVM_FALLTHROUGH; 14752 case ISD::SELECT_CC: 14753 return DAGCombineTruncBoolExt(N, DCI); 14754 case ISD::SINT_TO_FP: 14755 case ISD::UINT_TO_FP: 14756 return combineFPToIntToFP(N, DCI); 14757 case ISD::VECTOR_SHUFFLE: 14758 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14759 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14760 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14761 } 14762 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14763 case ISD::STORE: { 14764 14765 EVT Op1VT = N->getOperand(1).getValueType(); 14766 unsigned Opcode = N->getOperand(1).getOpcode(); 14767 14768 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14769 SDValue Val= combineStoreFPToInt(N, DCI); 14770 if (Val) 14771 return Val; 14772 } 14773 14774 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14775 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14776 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14777 if (Val) 14778 return Val; 14779 } 14780 14781 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14782 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14783 N->getOperand(1).getNode()->hasOneUse() && 14784 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14785 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14786 14787 // STBRX can only handle simple types and it makes no sense to store less 14788 // two bytes in byte-reversed order. 14789 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14790 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14791 break; 14792 14793 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14794 // Do an any-extend to 32-bits if this is a half-word input. 14795 if (BSwapOp.getValueType() == MVT::i16) 14796 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14797 14798 // If the type of BSWAP operand is wider than stored memory width 14799 // it need to be shifted to the right side before STBRX. 14800 if (Op1VT.bitsGT(mVT)) { 14801 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14802 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14803 DAG.getConstant(Shift, dl, MVT::i32)); 14804 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14805 if (Op1VT == MVT::i64) 14806 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14807 } 14808 14809 SDValue Ops[] = { 14810 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14811 }; 14812 return 14813 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14814 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14815 cast<StoreSDNode>(N)->getMemOperand()); 14816 } 14817 14818 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14819 // So it can increase the chance of CSE constant construction. 14820 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14821 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14822 // Need to sign-extended to 64-bits to handle negative values. 14823 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14824 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14825 MemVT.getSizeInBits()); 14826 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14827 14828 // DAG.getTruncStore() can't be used here because it doesn't accept 14829 // the general (base + offset) addressing mode. 14830 // So we use UpdateNodeOperands and setTruncatingStore instead. 14831 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14832 N->getOperand(3)); 14833 cast<StoreSDNode>(N)->setTruncatingStore(true); 14834 return SDValue(N, 0); 14835 } 14836 14837 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14838 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14839 if (Op1VT.isSimple()) { 14840 MVT StoreVT = Op1VT.getSimpleVT(); 14841 if (Subtarget.needsSwapsForVSXMemOps() && 14842 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14843 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14844 return expandVSXStoreForLE(N, DCI); 14845 } 14846 break; 14847 } 14848 case ISD::LOAD: { 14849 LoadSDNode *LD = cast<LoadSDNode>(N); 14850 EVT VT = LD->getValueType(0); 14851 14852 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14853 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14854 if (VT.isSimple()) { 14855 MVT LoadVT = VT.getSimpleVT(); 14856 if (Subtarget.needsSwapsForVSXMemOps() && 14857 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14858 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14859 return expandVSXLoadForLE(N, DCI); 14860 } 14861 14862 // We sometimes end up with a 64-bit integer load, from which we extract 14863 // two single-precision floating-point numbers. This happens with 14864 // std::complex<float>, and other similar structures, because of the way we 14865 // canonicalize structure copies. However, if we lack direct moves, 14866 // then the final bitcasts from the extracted integer values to the 14867 // floating-point numbers turn into store/load pairs. Even with direct moves, 14868 // just loading the two floating-point numbers is likely better. 14869 auto ReplaceTwoFloatLoad = [&]() { 14870 if (VT != MVT::i64) 14871 return false; 14872 14873 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14874 LD->isVolatile()) 14875 return false; 14876 14877 // We're looking for a sequence like this: 14878 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14879 // t16: i64 = srl t13, Constant:i32<32> 14880 // t17: i32 = truncate t16 14881 // t18: f32 = bitcast t17 14882 // t19: i32 = truncate t13 14883 // t20: f32 = bitcast t19 14884 14885 if (!LD->hasNUsesOfValue(2, 0)) 14886 return false; 14887 14888 auto UI = LD->use_begin(); 14889 while (UI.getUse().getResNo() != 0) ++UI; 14890 SDNode *Trunc = *UI++; 14891 while (UI.getUse().getResNo() != 0) ++UI; 14892 SDNode *RightShift = *UI; 14893 if (Trunc->getOpcode() != ISD::TRUNCATE) 14894 std::swap(Trunc, RightShift); 14895 14896 if (Trunc->getOpcode() != ISD::TRUNCATE || 14897 Trunc->getValueType(0) != MVT::i32 || 14898 !Trunc->hasOneUse()) 14899 return false; 14900 if (RightShift->getOpcode() != ISD::SRL || 14901 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14902 RightShift->getConstantOperandVal(1) != 32 || 14903 !RightShift->hasOneUse()) 14904 return false; 14905 14906 SDNode *Trunc2 = *RightShift->use_begin(); 14907 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14908 Trunc2->getValueType(0) != MVT::i32 || 14909 !Trunc2->hasOneUse()) 14910 return false; 14911 14912 SDNode *Bitcast = *Trunc->use_begin(); 14913 SDNode *Bitcast2 = *Trunc2->use_begin(); 14914 14915 if (Bitcast->getOpcode() != ISD::BITCAST || 14916 Bitcast->getValueType(0) != MVT::f32) 14917 return false; 14918 if (Bitcast2->getOpcode() != ISD::BITCAST || 14919 Bitcast2->getValueType(0) != MVT::f32) 14920 return false; 14921 14922 if (Subtarget.isLittleEndian()) 14923 std::swap(Bitcast, Bitcast2); 14924 14925 // Bitcast has the second float (in memory-layout order) and Bitcast2 14926 // has the first one. 14927 14928 SDValue BasePtr = LD->getBasePtr(); 14929 if (LD->isIndexed()) { 14930 assert(LD->getAddressingMode() == ISD::PRE_INC && 14931 "Non-pre-inc AM on PPC?"); 14932 BasePtr = 14933 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14934 LD->getOffset()); 14935 } 14936 14937 auto MMOFlags = 14938 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14939 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14940 LD->getPointerInfo(), LD->getAlignment(), 14941 MMOFlags, LD->getAAInfo()); 14942 SDValue AddPtr = 14943 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14944 BasePtr, DAG.getIntPtrConstant(4, dl)); 14945 SDValue FloatLoad2 = DAG.getLoad( 14946 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14947 LD->getPointerInfo().getWithOffset(4), 14948 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14949 14950 if (LD->isIndexed()) { 14951 // Note that DAGCombine should re-form any pre-increment load(s) from 14952 // what is produced here if that makes sense. 14953 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14954 } 14955 14956 DCI.CombineTo(Bitcast2, FloatLoad); 14957 DCI.CombineTo(Bitcast, FloatLoad2); 14958 14959 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14960 SDValue(FloatLoad2.getNode(), 1)); 14961 return true; 14962 }; 14963 14964 if (ReplaceTwoFloatLoad()) 14965 return SDValue(N, 0); 14966 14967 EVT MemVT = LD->getMemoryVT(); 14968 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14969 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14970 if (LD->isUnindexed() && VT.isVector() && 14971 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14972 // P8 and later hardware should just use LOAD. 14973 !Subtarget.hasP8Vector() && 14974 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14975 VT == MVT::v4f32))) && 14976 LD->getAlign() < ABIAlignment) { 14977 // This is a type-legal unaligned Altivec load. 14978 SDValue Chain = LD->getChain(); 14979 SDValue Ptr = LD->getBasePtr(); 14980 bool isLittleEndian = Subtarget.isLittleEndian(); 14981 14982 // This implements the loading of unaligned vectors as described in 14983 // the venerable Apple Velocity Engine overview. Specifically: 14984 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14985 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14986 // 14987 // The general idea is to expand a sequence of one or more unaligned 14988 // loads into an alignment-based permutation-control instruction (lvsl 14989 // or lvsr), a series of regular vector loads (which always truncate 14990 // their input address to an aligned address), and a series of 14991 // permutations. The results of these permutations are the requested 14992 // loaded values. The trick is that the last "extra" load is not taken 14993 // from the address you might suspect (sizeof(vector) bytes after the 14994 // last requested load), but rather sizeof(vector) - 1 bytes after the 14995 // last requested vector. The point of this is to avoid a page fault if 14996 // the base address happened to be aligned. This works because if the 14997 // base address is aligned, then adding less than a full vector length 14998 // will cause the last vector in the sequence to be (re)loaded. 14999 // Otherwise, the next vector will be fetched as you might suspect was 15000 // necessary. 15001 15002 // We might be able to reuse the permutation generation from 15003 // a different base address offset from this one by an aligned amount. 15004 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15005 // optimization later. 15006 Intrinsic::ID Intr, IntrLD, IntrPerm; 15007 MVT PermCntlTy, PermTy, LDTy; 15008 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15009 : Intrinsic::ppc_altivec_lvsl; 15010 IntrLD = Intrinsic::ppc_altivec_lvx; 15011 IntrPerm = Intrinsic::ppc_altivec_vperm; 15012 PermCntlTy = MVT::v16i8; 15013 PermTy = MVT::v4i32; 15014 LDTy = MVT::v4i32; 15015 15016 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15017 15018 // Create the new MMO for the new base load. It is like the original MMO, 15019 // but represents an area in memory almost twice the vector size centered 15020 // on the original address. If the address is unaligned, we might start 15021 // reading up to (sizeof(vector)-1) bytes below the address of the 15022 // original unaligned load. 15023 MachineFunction &MF = DAG.getMachineFunction(); 15024 MachineMemOperand *BaseMMO = 15025 MF.getMachineMemOperand(LD->getMemOperand(), 15026 -(long)MemVT.getStoreSize()+1, 15027 2*MemVT.getStoreSize()-1); 15028 15029 // Create the new base load. 15030 SDValue LDXIntID = 15031 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15032 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15033 SDValue BaseLoad = 15034 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15035 DAG.getVTList(PermTy, MVT::Other), 15036 BaseLoadOps, LDTy, BaseMMO); 15037 15038 // Note that the value of IncOffset (which is provided to the next 15039 // load's pointer info offset value, and thus used to calculate the 15040 // alignment), and the value of IncValue (which is actually used to 15041 // increment the pointer value) are different! This is because we 15042 // require the next load to appear to be aligned, even though it 15043 // is actually offset from the base pointer by a lesser amount. 15044 int IncOffset = VT.getSizeInBits() / 8; 15045 int IncValue = IncOffset; 15046 15047 // Walk (both up and down) the chain looking for another load at the real 15048 // (aligned) offset (the alignment of the other load does not matter in 15049 // this case). If found, then do not use the offset reduction trick, as 15050 // that will prevent the loads from being later combined (as they would 15051 // otherwise be duplicates). 15052 if (!findConsecutiveLoad(LD, DAG)) 15053 --IncValue; 15054 15055 SDValue Increment = 15056 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15057 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15058 15059 MachineMemOperand *ExtraMMO = 15060 MF.getMachineMemOperand(LD->getMemOperand(), 15061 1, 2*MemVT.getStoreSize()-1); 15062 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15063 SDValue ExtraLoad = 15064 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15065 DAG.getVTList(PermTy, MVT::Other), 15066 ExtraLoadOps, LDTy, ExtraMMO); 15067 15068 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15069 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15070 15071 // Because vperm has a big-endian bias, we must reverse the order 15072 // of the input vectors and complement the permute control vector 15073 // when generating little endian code. We have already handled the 15074 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15075 // and ExtraLoad here. 15076 SDValue Perm; 15077 if (isLittleEndian) 15078 Perm = BuildIntrinsicOp(IntrPerm, 15079 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15080 else 15081 Perm = BuildIntrinsicOp(IntrPerm, 15082 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15083 15084 if (VT != PermTy) 15085 Perm = Subtarget.hasAltivec() 15086 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15087 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15088 DAG.getTargetConstant(1, dl, MVT::i64)); 15089 // second argument is 1 because this rounding 15090 // is always exact. 15091 15092 // The output of the permutation is our loaded result, the TokenFactor is 15093 // our new chain. 15094 DCI.CombineTo(N, Perm, TF); 15095 return SDValue(N, 0); 15096 } 15097 } 15098 break; 15099 case ISD::INTRINSIC_WO_CHAIN: { 15100 bool isLittleEndian = Subtarget.isLittleEndian(); 15101 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15102 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15103 : Intrinsic::ppc_altivec_lvsl); 15104 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15105 SDValue Add = N->getOperand(1); 15106 15107 int Bits = 4 /* 16 byte alignment */; 15108 15109 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15110 APInt::getAllOnesValue(Bits /* alignment */) 15111 .zext(Add.getScalarValueSizeInBits()))) { 15112 SDNode *BasePtr = Add->getOperand(0).getNode(); 15113 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15114 UE = BasePtr->use_end(); 15115 UI != UE; ++UI) { 15116 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15117 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15118 IID) { 15119 // We've found another LVSL/LVSR, and this address is an aligned 15120 // multiple of that one. The results will be the same, so use the 15121 // one we've just found instead. 15122 15123 return SDValue(*UI, 0); 15124 } 15125 } 15126 } 15127 15128 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15129 SDNode *BasePtr = Add->getOperand(0).getNode(); 15130 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15131 UE = BasePtr->use_end(); UI != UE; ++UI) { 15132 if (UI->getOpcode() == ISD::ADD && 15133 isa<ConstantSDNode>(UI->getOperand(1)) && 15134 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15135 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15136 (1ULL << Bits) == 0) { 15137 SDNode *OtherAdd = *UI; 15138 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15139 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15140 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15141 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15142 return SDValue(*VI, 0); 15143 } 15144 } 15145 } 15146 } 15147 } 15148 } 15149 15150 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15151 // Expose the vabsduw/h/b opportunity for down stream 15152 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15153 (IID == Intrinsic::ppc_altivec_vmaxsw || 15154 IID == Intrinsic::ppc_altivec_vmaxsh || 15155 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15156 SDValue V1 = N->getOperand(1); 15157 SDValue V2 = N->getOperand(2); 15158 if ((V1.getSimpleValueType() == MVT::v4i32 || 15159 V1.getSimpleValueType() == MVT::v8i16 || 15160 V1.getSimpleValueType() == MVT::v16i8) && 15161 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15162 // (0-a, a) 15163 if (V1.getOpcode() == ISD::SUB && 15164 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15165 V1.getOperand(1) == V2) { 15166 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15167 } 15168 // (a, 0-a) 15169 if (V2.getOpcode() == ISD::SUB && 15170 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15171 V2.getOperand(1) == V1) { 15172 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15173 } 15174 // (x-y, y-x) 15175 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15176 V1.getOperand(0) == V2.getOperand(1) && 15177 V1.getOperand(1) == V2.getOperand(0)) { 15178 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15179 } 15180 } 15181 } 15182 } 15183 15184 break; 15185 case ISD::INTRINSIC_W_CHAIN: 15186 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15187 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15188 if (Subtarget.needsSwapsForVSXMemOps()) { 15189 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15190 default: 15191 break; 15192 case Intrinsic::ppc_vsx_lxvw4x: 15193 case Intrinsic::ppc_vsx_lxvd2x: 15194 return expandVSXLoadForLE(N, DCI); 15195 } 15196 } 15197 break; 15198 case ISD::INTRINSIC_VOID: 15199 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15200 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15201 if (Subtarget.needsSwapsForVSXMemOps()) { 15202 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15203 default: 15204 break; 15205 case Intrinsic::ppc_vsx_stxvw4x: 15206 case Intrinsic::ppc_vsx_stxvd2x: 15207 return expandVSXStoreForLE(N, DCI); 15208 } 15209 } 15210 break; 15211 case ISD::BSWAP: { 15212 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15213 // For subtargets without LDBRX, we can still do better than the default 15214 // expansion even for 64-bit BSWAP (LOAD). 15215 bool Is64BitBswapOn64BitTgt = 15216 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15217 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15218 N->getOperand(0).hasOneUse(); 15219 if (IsSingleUseNormalLd && 15220 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15221 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15222 SDValue Load = N->getOperand(0); 15223 LoadSDNode *LD = cast<LoadSDNode>(Load); 15224 // Create the byte-swapping load. 15225 SDValue Ops[] = { 15226 LD->getChain(), // Chain 15227 LD->getBasePtr(), // Ptr 15228 DAG.getValueType(N->getValueType(0)) // VT 15229 }; 15230 SDValue BSLoad = 15231 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15232 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15233 MVT::i64 : MVT::i32, MVT::Other), 15234 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15235 15236 // If this is an i16 load, insert the truncate. 15237 SDValue ResVal = BSLoad; 15238 if (N->getValueType(0) == MVT::i16) 15239 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15240 15241 // First, combine the bswap away. This makes the value produced by the 15242 // load dead. 15243 DCI.CombineTo(N, ResVal); 15244 15245 // Next, combine the load away, we give it a bogus result value but a real 15246 // chain result. The result value is dead because the bswap is dead. 15247 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15248 15249 // Return N so it doesn't get rechecked! 15250 return SDValue(N, 0); 15251 } 15252 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15253 // before legalization so that the BUILD_PAIR is handled correctly. 15254 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15255 !IsSingleUseNormalLd) 15256 return SDValue(); 15257 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15258 15259 // Can't split volatile or atomic loads. 15260 if (!LD->isSimple()) 15261 return SDValue(); 15262 SDValue BasePtr = LD->getBasePtr(); 15263 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15264 LD->getPointerInfo(), LD->getAlignment()); 15265 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15266 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15267 DAG.getIntPtrConstant(4, dl)); 15268 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15269 LD->getMemOperand(), 4, 4); 15270 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15271 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15272 SDValue Res; 15273 if (Subtarget.isLittleEndian()) 15274 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15275 else 15276 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15277 SDValue TF = 15278 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15279 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15280 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15281 return Res; 15282 } 15283 case PPCISD::VCMP: 15284 // If a VCMP_rec node already exists with exactly the same operands as this 15285 // node, use its result instead of this node (VCMP_rec computes both a CR6 15286 // and a normal output). 15287 // 15288 if (!N->getOperand(0).hasOneUse() && 15289 !N->getOperand(1).hasOneUse() && 15290 !N->getOperand(2).hasOneUse()) { 15291 15292 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15293 SDNode *VCMPrecNode = nullptr; 15294 15295 SDNode *LHSN = N->getOperand(0).getNode(); 15296 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15297 UI != E; ++UI) 15298 if (UI->getOpcode() == PPCISD::VCMP_rec && 15299 UI->getOperand(1) == N->getOperand(1) && 15300 UI->getOperand(2) == N->getOperand(2) && 15301 UI->getOperand(0) == N->getOperand(0)) { 15302 VCMPrecNode = *UI; 15303 break; 15304 } 15305 15306 // If there is no VCMP_rec node, or if the flag value has a single use, 15307 // don't transform this. 15308 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15309 break; 15310 15311 // Look at the (necessarily single) use of the flag value. If it has a 15312 // chain, this transformation is more complex. Note that multiple things 15313 // could use the value result, which we should ignore. 15314 SDNode *FlagUser = nullptr; 15315 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15316 FlagUser == nullptr; ++UI) { 15317 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15318 SDNode *User = *UI; 15319 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15320 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15321 FlagUser = User; 15322 break; 15323 } 15324 } 15325 } 15326 15327 // If the user is a MFOCRF instruction, we know this is safe. 15328 // Otherwise we give up for right now. 15329 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15330 return SDValue(VCMPrecNode, 0); 15331 } 15332 break; 15333 case ISD::BRCOND: { 15334 SDValue Cond = N->getOperand(1); 15335 SDValue Target = N->getOperand(2); 15336 15337 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15338 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15339 Intrinsic::loop_decrement) { 15340 15341 // We now need to make the intrinsic dead (it cannot be instruction 15342 // selected). 15343 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15344 assert(Cond.getNode()->hasOneUse() && 15345 "Counter decrement has more than one use"); 15346 15347 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15348 N->getOperand(0), Target); 15349 } 15350 } 15351 break; 15352 case ISD::BR_CC: { 15353 // If this is a branch on an altivec predicate comparison, lower this so 15354 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15355 // lowering is done pre-legalize, because the legalizer lowers the predicate 15356 // compare down to code that is difficult to reassemble. 15357 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15358 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15359 15360 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15361 // value. If so, pass-through the AND to get to the intrinsic. 15362 if (LHS.getOpcode() == ISD::AND && 15363 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15364 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15365 Intrinsic::loop_decrement && 15366 isa<ConstantSDNode>(LHS.getOperand(1)) && 15367 !isNullConstant(LHS.getOperand(1))) 15368 LHS = LHS.getOperand(0); 15369 15370 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15371 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15372 Intrinsic::loop_decrement && 15373 isa<ConstantSDNode>(RHS)) { 15374 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15375 "Counter decrement comparison is not EQ or NE"); 15376 15377 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15378 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15379 (CC == ISD::SETNE && !Val); 15380 15381 // We now need to make the intrinsic dead (it cannot be instruction 15382 // selected). 15383 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15384 assert(LHS.getNode()->hasOneUse() && 15385 "Counter decrement has more than one use"); 15386 15387 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15388 N->getOperand(0), N->getOperand(4)); 15389 } 15390 15391 int CompareOpc; 15392 bool isDot; 15393 15394 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15395 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15396 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15397 assert(isDot && "Can't compare against a vector result!"); 15398 15399 // If this is a comparison against something other than 0/1, then we know 15400 // that the condition is never/always true. 15401 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15402 if (Val != 0 && Val != 1) { 15403 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15404 return N->getOperand(0); 15405 // Always !=, turn it into an unconditional branch. 15406 return DAG.getNode(ISD::BR, dl, MVT::Other, 15407 N->getOperand(0), N->getOperand(4)); 15408 } 15409 15410 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15411 15412 // Create the PPCISD altivec 'dot' comparison node. 15413 SDValue Ops[] = { 15414 LHS.getOperand(2), // LHS of compare 15415 LHS.getOperand(3), // RHS of compare 15416 DAG.getConstant(CompareOpc, dl, MVT::i32) 15417 }; 15418 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15419 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15420 15421 // Unpack the result based on how the target uses it. 15422 PPC::Predicate CompOpc; 15423 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15424 default: // Can't happen, don't crash on invalid number though. 15425 case 0: // Branch on the value of the EQ bit of CR6. 15426 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15427 break; 15428 case 1: // Branch on the inverted value of the EQ bit of CR6. 15429 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15430 break; 15431 case 2: // Branch on the value of the LT bit of CR6. 15432 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15433 break; 15434 case 3: // Branch on the inverted value of the LT bit of CR6. 15435 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15436 break; 15437 } 15438 15439 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15440 DAG.getConstant(CompOpc, dl, MVT::i32), 15441 DAG.getRegister(PPC::CR6, MVT::i32), 15442 N->getOperand(4), CompNode.getValue(1)); 15443 } 15444 break; 15445 } 15446 case ISD::BUILD_VECTOR: 15447 return DAGCombineBuildVector(N, DCI); 15448 case ISD::ABS: 15449 return combineABS(N, DCI); 15450 case ISD::VSELECT: 15451 return combineVSelect(N, DCI); 15452 } 15453 15454 return SDValue(); 15455 } 15456 15457 SDValue 15458 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15459 SelectionDAG &DAG, 15460 SmallVectorImpl<SDNode *> &Created) const { 15461 // fold (sdiv X, pow2) 15462 EVT VT = N->getValueType(0); 15463 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15464 return SDValue(); 15465 if ((VT != MVT::i32 && VT != MVT::i64) || 15466 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15467 return SDValue(); 15468 15469 SDLoc DL(N); 15470 SDValue N0 = N->getOperand(0); 15471 15472 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15473 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15474 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15475 15476 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15477 Created.push_back(Op.getNode()); 15478 15479 if (IsNegPow2) { 15480 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15481 Created.push_back(Op.getNode()); 15482 } 15483 15484 return Op; 15485 } 15486 15487 //===----------------------------------------------------------------------===// 15488 // Inline Assembly Support 15489 //===----------------------------------------------------------------------===// 15490 15491 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15492 KnownBits &Known, 15493 const APInt &DemandedElts, 15494 const SelectionDAG &DAG, 15495 unsigned Depth) const { 15496 Known.resetAll(); 15497 switch (Op.getOpcode()) { 15498 default: break; 15499 case PPCISD::LBRX: { 15500 // lhbrx is known to have the top bits cleared out. 15501 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15502 Known.Zero = 0xFFFF0000; 15503 break; 15504 } 15505 case ISD::INTRINSIC_WO_CHAIN: { 15506 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15507 default: break; 15508 case Intrinsic::ppc_altivec_vcmpbfp_p: 15509 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15510 case Intrinsic::ppc_altivec_vcmpequb_p: 15511 case Intrinsic::ppc_altivec_vcmpequh_p: 15512 case Intrinsic::ppc_altivec_vcmpequw_p: 15513 case Intrinsic::ppc_altivec_vcmpequd_p: 15514 case Intrinsic::ppc_altivec_vcmpequq_p: 15515 case Intrinsic::ppc_altivec_vcmpgefp_p: 15516 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15517 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15518 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15519 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15520 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15521 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15522 case Intrinsic::ppc_altivec_vcmpgtub_p: 15523 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15524 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15525 case Intrinsic::ppc_altivec_vcmpgtud_p: 15526 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15527 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15528 break; 15529 } 15530 } 15531 } 15532 } 15533 15534 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15535 switch (Subtarget.getCPUDirective()) { 15536 default: break; 15537 case PPC::DIR_970: 15538 case PPC::DIR_PWR4: 15539 case PPC::DIR_PWR5: 15540 case PPC::DIR_PWR5X: 15541 case PPC::DIR_PWR6: 15542 case PPC::DIR_PWR6X: 15543 case PPC::DIR_PWR7: 15544 case PPC::DIR_PWR8: 15545 case PPC::DIR_PWR9: 15546 case PPC::DIR_PWR10: 15547 case PPC::DIR_PWR_FUTURE: { 15548 if (!ML) 15549 break; 15550 15551 if (!DisableInnermostLoopAlign32) { 15552 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15553 // so that we can decrease cache misses and branch-prediction misses. 15554 // Actual alignment of the loop will depend on the hotness check and other 15555 // logic in alignBlocks. 15556 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15557 return Align(32); 15558 } 15559 15560 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15561 15562 // For small loops (between 5 and 8 instructions), align to a 32-byte 15563 // boundary so that the entire loop fits in one instruction-cache line. 15564 uint64_t LoopSize = 0; 15565 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15566 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15567 LoopSize += TII->getInstSizeInBytes(*J); 15568 if (LoopSize > 32) 15569 break; 15570 } 15571 15572 if (LoopSize > 16 && LoopSize <= 32) 15573 return Align(32); 15574 15575 break; 15576 } 15577 } 15578 15579 return TargetLowering::getPrefLoopAlignment(ML); 15580 } 15581 15582 /// getConstraintType - Given a constraint, return the type of 15583 /// constraint it is for this target. 15584 PPCTargetLowering::ConstraintType 15585 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15586 if (Constraint.size() == 1) { 15587 switch (Constraint[0]) { 15588 default: break; 15589 case 'b': 15590 case 'r': 15591 case 'f': 15592 case 'd': 15593 case 'v': 15594 case 'y': 15595 return C_RegisterClass; 15596 case 'Z': 15597 // FIXME: While Z does indicate a memory constraint, it specifically 15598 // indicates an r+r address (used in conjunction with the 'y' modifier 15599 // in the replacement string). Currently, we're forcing the base 15600 // register to be r0 in the asm printer (which is interpreted as zero) 15601 // and forming the complete address in the second register. This is 15602 // suboptimal. 15603 return C_Memory; 15604 } 15605 } else if (Constraint == "wc") { // individual CR bits. 15606 return C_RegisterClass; 15607 } else if (Constraint == "wa" || Constraint == "wd" || 15608 Constraint == "wf" || Constraint == "ws" || 15609 Constraint == "wi" || Constraint == "ww") { 15610 return C_RegisterClass; // VSX registers. 15611 } 15612 return TargetLowering::getConstraintType(Constraint); 15613 } 15614 15615 /// Examine constraint type and operand type and determine a weight value. 15616 /// This object must already have been set up with the operand type 15617 /// and the current alternative constraint selected. 15618 TargetLowering::ConstraintWeight 15619 PPCTargetLowering::getSingleConstraintMatchWeight( 15620 AsmOperandInfo &info, const char *constraint) const { 15621 ConstraintWeight weight = CW_Invalid; 15622 Value *CallOperandVal = info.CallOperandVal; 15623 // If we don't have a value, we can't do a match, 15624 // but allow it at the lowest weight. 15625 if (!CallOperandVal) 15626 return CW_Default; 15627 Type *type = CallOperandVal->getType(); 15628 15629 // Look at the constraint type. 15630 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15631 return CW_Register; // an individual CR bit. 15632 else if ((StringRef(constraint) == "wa" || 15633 StringRef(constraint) == "wd" || 15634 StringRef(constraint) == "wf") && 15635 type->isVectorTy()) 15636 return CW_Register; 15637 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15638 return CW_Register; // just hold 64-bit integers data. 15639 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15640 return CW_Register; 15641 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15642 return CW_Register; 15643 15644 switch (*constraint) { 15645 default: 15646 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15647 break; 15648 case 'b': 15649 if (type->isIntegerTy()) 15650 weight = CW_Register; 15651 break; 15652 case 'f': 15653 if (type->isFloatTy()) 15654 weight = CW_Register; 15655 break; 15656 case 'd': 15657 if (type->isDoubleTy()) 15658 weight = CW_Register; 15659 break; 15660 case 'v': 15661 if (type->isVectorTy()) 15662 weight = CW_Register; 15663 break; 15664 case 'y': 15665 weight = CW_Register; 15666 break; 15667 case 'Z': 15668 weight = CW_Memory; 15669 break; 15670 } 15671 return weight; 15672 } 15673 15674 std::pair<unsigned, const TargetRegisterClass *> 15675 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15676 StringRef Constraint, 15677 MVT VT) const { 15678 if (Constraint.size() == 1) { 15679 // GCC RS6000 Constraint Letters 15680 switch (Constraint[0]) { 15681 case 'b': // R1-R31 15682 if (VT == MVT::i64 && Subtarget.isPPC64()) 15683 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15684 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15685 case 'r': // R0-R31 15686 if (VT == MVT::i64 && Subtarget.isPPC64()) 15687 return std::make_pair(0U, &PPC::G8RCRegClass); 15688 return std::make_pair(0U, &PPC::GPRCRegClass); 15689 // 'd' and 'f' constraints are both defined to be "the floating point 15690 // registers", where one is for 32-bit and the other for 64-bit. We don't 15691 // really care overly much here so just give them all the same reg classes. 15692 case 'd': 15693 case 'f': 15694 if (Subtarget.hasSPE()) { 15695 if (VT == MVT::f32 || VT == MVT::i32) 15696 return std::make_pair(0U, &PPC::GPRCRegClass); 15697 if (VT == MVT::f64 || VT == MVT::i64) 15698 return std::make_pair(0U, &PPC::SPERCRegClass); 15699 } else { 15700 if (VT == MVT::f32 || VT == MVT::i32) 15701 return std::make_pair(0U, &PPC::F4RCRegClass); 15702 if (VT == MVT::f64 || VT == MVT::i64) 15703 return std::make_pair(0U, &PPC::F8RCRegClass); 15704 } 15705 break; 15706 case 'v': 15707 if (Subtarget.hasAltivec()) 15708 return std::make_pair(0U, &PPC::VRRCRegClass); 15709 break; 15710 case 'y': // crrc 15711 return std::make_pair(0U, &PPC::CRRCRegClass); 15712 } 15713 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15714 // An individual CR bit. 15715 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15716 } else if ((Constraint == "wa" || Constraint == "wd" || 15717 Constraint == "wf" || Constraint == "wi") && 15718 Subtarget.hasVSX()) { 15719 // A VSX register for either a scalar (FP) or vector. There is no 15720 // support for single precision scalars on subtargets prior to Power8. 15721 if (VT.isVector()) 15722 return std::make_pair(0U, &PPC::VSRCRegClass); 15723 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15724 return std::make_pair(0U, &PPC::VSSRCRegClass); 15725 return std::make_pair(0U, &PPC::VSFRCRegClass); 15726 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15727 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15728 return std::make_pair(0U, &PPC::VSSRCRegClass); 15729 else 15730 return std::make_pair(0U, &PPC::VSFRCRegClass); 15731 } else if (Constraint == "lr") { 15732 if (VT == MVT::i64) 15733 return std::make_pair(0U, &PPC::LR8RCRegClass); 15734 else 15735 return std::make_pair(0U, &PPC::LRRCRegClass); 15736 } 15737 15738 // Handle special cases of physical registers that are not properly handled 15739 // by the base class. 15740 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15741 // If we name a VSX register, we can't defer to the base class because it 15742 // will not recognize the correct register (their names will be VSL{0-31} 15743 // and V{0-31} so they won't match). So we match them here. 15744 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15745 int VSNum = atoi(Constraint.data() + 3); 15746 assert(VSNum >= 0 && VSNum <= 63 && 15747 "Attempted to access a vsr out of range"); 15748 if (VSNum < 32) 15749 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15750 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15751 } 15752 15753 // For float registers, we can't defer to the base class as it will match 15754 // the SPILLTOVSRRC class. 15755 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15756 int RegNum = atoi(Constraint.data() + 2); 15757 if (RegNum > 31 || RegNum < 0) 15758 report_fatal_error("Invalid floating point register number"); 15759 if (VT == MVT::f32 || VT == MVT::i32) 15760 return Subtarget.hasSPE() 15761 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15762 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15763 if (VT == MVT::f64 || VT == MVT::i64) 15764 return Subtarget.hasSPE() 15765 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15766 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15767 } 15768 } 15769 15770 std::pair<unsigned, const TargetRegisterClass *> R = 15771 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15772 15773 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15774 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15775 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15776 // register. 15777 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15778 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15779 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15780 PPC::GPRCRegClass.contains(R.first)) 15781 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15782 PPC::sub_32, &PPC::G8RCRegClass), 15783 &PPC::G8RCRegClass); 15784 15785 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15786 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 15787 R.first = PPC::CR0; 15788 R.second = &PPC::CRRCRegClass; 15789 } 15790 // FIXME: This warning should ideally be emitted in the front end. 15791 const auto &TM = getTargetMachine(); 15792 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15793 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15794 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15795 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15796 errs() << "warning: vector registers 20 to 32 are reserved in the " 15797 "default AIX AltiVec ABI and cannot be used\n"; 15798 } 15799 15800 return R; 15801 } 15802 15803 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15804 /// vector. If it is invalid, don't add anything to Ops. 15805 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15806 std::string &Constraint, 15807 std::vector<SDValue>&Ops, 15808 SelectionDAG &DAG) const { 15809 SDValue Result; 15810 15811 // Only support length 1 constraints. 15812 if (Constraint.length() > 1) return; 15813 15814 char Letter = Constraint[0]; 15815 switch (Letter) { 15816 default: break; 15817 case 'I': 15818 case 'J': 15819 case 'K': 15820 case 'L': 15821 case 'M': 15822 case 'N': 15823 case 'O': 15824 case 'P': { 15825 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15826 if (!CST) return; // Must be an immediate to match. 15827 SDLoc dl(Op); 15828 int64_t Value = CST->getSExtValue(); 15829 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15830 // numbers are printed as such. 15831 switch (Letter) { 15832 default: llvm_unreachable("Unknown constraint letter!"); 15833 case 'I': // "I" is a signed 16-bit constant. 15834 if (isInt<16>(Value)) 15835 Result = DAG.getTargetConstant(Value, dl, TCVT); 15836 break; 15837 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15838 if (isShiftedUInt<16, 16>(Value)) 15839 Result = DAG.getTargetConstant(Value, dl, TCVT); 15840 break; 15841 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15842 if (isShiftedInt<16, 16>(Value)) 15843 Result = DAG.getTargetConstant(Value, dl, TCVT); 15844 break; 15845 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15846 if (isUInt<16>(Value)) 15847 Result = DAG.getTargetConstant(Value, dl, TCVT); 15848 break; 15849 case 'M': // "M" is a constant that is greater than 31. 15850 if (Value > 31) 15851 Result = DAG.getTargetConstant(Value, dl, TCVT); 15852 break; 15853 case 'N': // "N" is a positive constant that is an exact power of two. 15854 if (Value > 0 && isPowerOf2_64(Value)) 15855 Result = DAG.getTargetConstant(Value, dl, TCVT); 15856 break; 15857 case 'O': // "O" is the constant zero. 15858 if (Value == 0) 15859 Result = DAG.getTargetConstant(Value, dl, TCVT); 15860 break; 15861 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15862 if (isInt<16>(-Value)) 15863 Result = DAG.getTargetConstant(Value, dl, TCVT); 15864 break; 15865 } 15866 break; 15867 } 15868 } 15869 15870 if (Result.getNode()) { 15871 Ops.push_back(Result); 15872 return; 15873 } 15874 15875 // Handle standard constraint letters. 15876 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15877 } 15878 15879 // isLegalAddressingMode - Return true if the addressing mode represented 15880 // by AM is legal for this target, for a load/store of the specified type. 15881 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15882 const AddrMode &AM, Type *Ty, 15883 unsigned AS, 15884 Instruction *I) const { 15885 // Vector type r+i form is supported since power9 as DQ form. We don't check 15886 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15887 // imm form is preferred and the offset can be adjusted to use imm form later 15888 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15889 // max offset to check legal addressing mode, we should be a little aggressive 15890 // to contain other offsets for that LSRUse. 15891 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15892 return false; 15893 15894 // PPC allows a sign-extended 16-bit immediate field. 15895 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15896 return false; 15897 15898 // No global is ever allowed as a base. 15899 if (AM.BaseGV) 15900 return false; 15901 15902 // PPC only support r+r, 15903 switch (AM.Scale) { 15904 case 0: // "r+i" or just "i", depending on HasBaseReg. 15905 break; 15906 case 1: 15907 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15908 return false; 15909 // Otherwise we have r+r or r+i. 15910 break; 15911 case 2: 15912 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15913 return false; 15914 // Allow 2*r as r+r. 15915 break; 15916 default: 15917 // No other scales are supported. 15918 return false; 15919 } 15920 15921 return true; 15922 } 15923 15924 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15925 SelectionDAG &DAG) const { 15926 MachineFunction &MF = DAG.getMachineFunction(); 15927 MachineFrameInfo &MFI = MF.getFrameInfo(); 15928 MFI.setReturnAddressIsTaken(true); 15929 15930 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15931 return SDValue(); 15932 15933 SDLoc dl(Op); 15934 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15935 15936 // Make sure the function does not optimize away the store of the RA to 15937 // the stack. 15938 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15939 FuncInfo->setLRStoreRequired(); 15940 bool isPPC64 = Subtarget.isPPC64(); 15941 auto PtrVT = getPointerTy(MF.getDataLayout()); 15942 15943 if (Depth > 0) { 15944 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15945 SDValue Offset = 15946 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15947 isPPC64 ? MVT::i64 : MVT::i32); 15948 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15949 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15950 MachinePointerInfo()); 15951 } 15952 15953 // Just load the return address off the stack. 15954 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15955 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15956 MachinePointerInfo()); 15957 } 15958 15959 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15960 SelectionDAG &DAG) const { 15961 SDLoc dl(Op); 15962 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15963 15964 MachineFunction &MF = DAG.getMachineFunction(); 15965 MachineFrameInfo &MFI = MF.getFrameInfo(); 15966 MFI.setFrameAddressIsTaken(true); 15967 15968 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15969 bool isPPC64 = PtrVT == MVT::i64; 15970 15971 // Naked functions never have a frame pointer, and so we use r1. For all 15972 // other functions, this decision must be delayed until during PEI. 15973 unsigned FrameReg; 15974 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15975 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15976 else 15977 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15978 15979 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15980 PtrVT); 15981 while (Depth--) 15982 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15983 FrameAddr, MachinePointerInfo()); 15984 return FrameAddr; 15985 } 15986 15987 // FIXME? Maybe this could be a TableGen attribute on some registers and 15988 // this table could be generated automatically from RegInfo. 15989 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15990 const MachineFunction &MF) const { 15991 bool isPPC64 = Subtarget.isPPC64(); 15992 15993 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15994 if (!is64Bit && VT != LLT::scalar(32)) 15995 report_fatal_error("Invalid register global variable type"); 15996 15997 Register Reg = StringSwitch<Register>(RegName) 15998 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15999 .Case("r2", isPPC64 ? Register() : PPC::R2) 16000 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16001 .Default(Register()); 16002 16003 if (Reg) 16004 return Reg; 16005 report_fatal_error("Invalid register name global variable"); 16006 } 16007 16008 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16009 // 32-bit SVR4 ABI access everything as got-indirect. 16010 if (Subtarget.is32BitELFABI()) 16011 return true; 16012 16013 // AIX accesses everything indirectly through the TOC, which is similar to 16014 // the GOT. 16015 if (Subtarget.isAIXABI()) 16016 return true; 16017 16018 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16019 // If it is small or large code model, module locals are accessed 16020 // indirectly by loading their address from .toc/.got. 16021 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16022 return true; 16023 16024 // JumpTable and BlockAddress are accessed as got-indirect. 16025 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16026 return true; 16027 16028 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16029 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16030 16031 return false; 16032 } 16033 16034 bool 16035 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16036 // The PowerPC target isn't yet aware of offsets. 16037 return false; 16038 } 16039 16040 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16041 const CallInst &I, 16042 MachineFunction &MF, 16043 unsigned Intrinsic) const { 16044 switch (Intrinsic) { 16045 case Intrinsic::ppc_altivec_lvx: 16046 case Intrinsic::ppc_altivec_lvxl: 16047 case Intrinsic::ppc_altivec_lvebx: 16048 case Intrinsic::ppc_altivec_lvehx: 16049 case Intrinsic::ppc_altivec_lvewx: 16050 case Intrinsic::ppc_vsx_lxvd2x: 16051 case Intrinsic::ppc_vsx_lxvw4x: 16052 case Intrinsic::ppc_vsx_lxvd2x_be: 16053 case Intrinsic::ppc_vsx_lxvw4x_be: 16054 case Intrinsic::ppc_vsx_lxvl: 16055 case Intrinsic::ppc_vsx_lxvll: { 16056 EVT VT; 16057 switch (Intrinsic) { 16058 case Intrinsic::ppc_altivec_lvebx: 16059 VT = MVT::i8; 16060 break; 16061 case Intrinsic::ppc_altivec_lvehx: 16062 VT = MVT::i16; 16063 break; 16064 case Intrinsic::ppc_altivec_lvewx: 16065 VT = MVT::i32; 16066 break; 16067 case Intrinsic::ppc_vsx_lxvd2x: 16068 case Intrinsic::ppc_vsx_lxvd2x_be: 16069 VT = MVT::v2f64; 16070 break; 16071 default: 16072 VT = MVT::v4i32; 16073 break; 16074 } 16075 16076 Info.opc = ISD::INTRINSIC_W_CHAIN; 16077 Info.memVT = VT; 16078 Info.ptrVal = I.getArgOperand(0); 16079 Info.offset = -VT.getStoreSize()+1; 16080 Info.size = 2*VT.getStoreSize()-1; 16081 Info.align = Align(1); 16082 Info.flags = MachineMemOperand::MOLoad; 16083 return true; 16084 } 16085 case Intrinsic::ppc_altivec_stvx: 16086 case Intrinsic::ppc_altivec_stvxl: 16087 case Intrinsic::ppc_altivec_stvebx: 16088 case Intrinsic::ppc_altivec_stvehx: 16089 case Intrinsic::ppc_altivec_stvewx: 16090 case Intrinsic::ppc_vsx_stxvd2x: 16091 case Intrinsic::ppc_vsx_stxvw4x: 16092 case Intrinsic::ppc_vsx_stxvd2x_be: 16093 case Intrinsic::ppc_vsx_stxvw4x_be: 16094 case Intrinsic::ppc_vsx_stxvl: 16095 case Intrinsic::ppc_vsx_stxvll: { 16096 EVT VT; 16097 switch (Intrinsic) { 16098 case Intrinsic::ppc_altivec_stvebx: 16099 VT = MVT::i8; 16100 break; 16101 case Intrinsic::ppc_altivec_stvehx: 16102 VT = MVT::i16; 16103 break; 16104 case Intrinsic::ppc_altivec_stvewx: 16105 VT = MVT::i32; 16106 break; 16107 case Intrinsic::ppc_vsx_stxvd2x: 16108 case Intrinsic::ppc_vsx_stxvd2x_be: 16109 VT = MVT::v2f64; 16110 break; 16111 default: 16112 VT = MVT::v4i32; 16113 break; 16114 } 16115 16116 Info.opc = ISD::INTRINSIC_VOID; 16117 Info.memVT = VT; 16118 Info.ptrVal = I.getArgOperand(1); 16119 Info.offset = -VT.getStoreSize()+1; 16120 Info.size = 2*VT.getStoreSize()-1; 16121 Info.align = Align(1); 16122 Info.flags = MachineMemOperand::MOStore; 16123 return true; 16124 } 16125 default: 16126 break; 16127 } 16128 16129 return false; 16130 } 16131 16132 /// It returns EVT::Other if the type should be determined using generic 16133 /// target-independent logic. 16134 EVT PPCTargetLowering::getOptimalMemOpType( 16135 const MemOp &Op, const AttributeList &FuncAttributes) const { 16136 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16137 // We should use Altivec/VSX loads and stores when available. For unaligned 16138 // addresses, unaligned VSX loads are only fast starting with the P8. 16139 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16140 (Op.isAligned(Align(16)) || 16141 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16142 return MVT::v4i32; 16143 } 16144 16145 if (Subtarget.isPPC64()) { 16146 return MVT::i64; 16147 } 16148 16149 return MVT::i32; 16150 } 16151 16152 /// Returns true if it is beneficial to convert a load of a constant 16153 /// to just the constant itself. 16154 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16155 Type *Ty) const { 16156 assert(Ty->isIntegerTy()); 16157 16158 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16159 return !(BitSize == 0 || BitSize > 64); 16160 } 16161 16162 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16163 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16164 return false; 16165 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16166 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16167 return NumBits1 == 64 && NumBits2 == 32; 16168 } 16169 16170 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16171 if (!VT1.isInteger() || !VT2.isInteger()) 16172 return false; 16173 unsigned NumBits1 = VT1.getSizeInBits(); 16174 unsigned NumBits2 = VT2.getSizeInBits(); 16175 return NumBits1 == 64 && NumBits2 == 32; 16176 } 16177 16178 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16179 // Generally speaking, zexts are not free, but they are free when they can be 16180 // folded with other operations. 16181 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16182 EVT MemVT = LD->getMemoryVT(); 16183 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16184 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16185 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16186 LD->getExtensionType() == ISD::ZEXTLOAD)) 16187 return true; 16188 } 16189 16190 // FIXME: Add other cases... 16191 // - 32-bit shifts with a zext to i64 16192 // - zext after ctlz, bswap, etc. 16193 // - zext after and by a constant mask 16194 16195 return TargetLowering::isZExtFree(Val, VT2); 16196 } 16197 16198 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16199 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16200 "invalid fpext types"); 16201 // Extending to float128 is not free. 16202 if (DestVT == MVT::f128) 16203 return false; 16204 return true; 16205 } 16206 16207 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16208 return isInt<16>(Imm) || isUInt<16>(Imm); 16209 } 16210 16211 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16212 return isInt<16>(Imm) || isUInt<16>(Imm); 16213 } 16214 16215 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16216 MachineMemOperand::Flags, 16217 bool *Fast) const { 16218 if (DisablePPCUnaligned) 16219 return false; 16220 16221 // PowerPC supports unaligned memory access for simple non-vector types. 16222 // Although accessing unaligned addresses is not as efficient as accessing 16223 // aligned addresses, it is generally more efficient than manual expansion, 16224 // and generally only traps for software emulation when crossing page 16225 // boundaries. 16226 16227 if (!VT.isSimple()) 16228 return false; 16229 16230 if (VT.isFloatingPoint() && !VT.isVector() && 16231 !Subtarget.allowsUnalignedFPAccess()) 16232 return false; 16233 16234 if (VT.getSimpleVT().isVector()) { 16235 if (Subtarget.hasVSX()) { 16236 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16237 VT != MVT::v4f32 && VT != MVT::v4i32) 16238 return false; 16239 } else { 16240 return false; 16241 } 16242 } 16243 16244 if (VT == MVT::ppcf128) 16245 return false; 16246 16247 if (Fast) 16248 *Fast = true; 16249 16250 return true; 16251 } 16252 16253 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16254 SDValue C) const { 16255 // Check integral scalar types. 16256 if (!VT.isScalarInteger()) 16257 return false; 16258 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16259 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16260 return false; 16261 // This transformation will generate >= 2 operations. But the following 16262 // cases will generate <= 2 instructions during ISEL. So exclude them. 16263 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16264 // HW instruction, ie. MULLI 16265 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16266 // instruction is needed than case 1, ie. MULLI and RLDICR 16267 int64_t Imm = ConstNode->getSExtValue(); 16268 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16269 Imm >>= Shift; 16270 if (isInt<16>(Imm)) 16271 return false; 16272 uint64_t UImm = static_cast<uint64_t>(Imm); 16273 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16274 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16275 return true; 16276 } 16277 return false; 16278 } 16279 16280 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16281 EVT VT) const { 16282 return isFMAFasterThanFMulAndFAdd( 16283 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16284 } 16285 16286 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16287 Type *Ty) const { 16288 switch (Ty->getScalarType()->getTypeID()) { 16289 case Type::FloatTyID: 16290 case Type::DoubleTyID: 16291 return true; 16292 case Type::FP128TyID: 16293 return Subtarget.hasP9Vector(); 16294 default: 16295 return false; 16296 } 16297 } 16298 16299 // FIXME: add more patterns which are not profitable to hoist. 16300 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16301 if (!I->hasOneUse()) 16302 return true; 16303 16304 Instruction *User = I->user_back(); 16305 assert(User && "A single use instruction with no uses."); 16306 16307 switch (I->getOpcode()) { 16308 case Instruction::FMul: { 16309 // Don't break FMA, PowerPC prefers FMA. 16310 if (User->getOpcode() != Instruction::FSub && 16311 User->getOpcode() != Instruction::FAdd) 16312 return true; 16313 16314 const TargetOptions &Options = getTargetMachine().Options; 16315 const Function *F = I->getFunction(); 16316 const DataLayout &DL = F->getParent()->getDataLayout(); 16317 Type *Ty = User->getOperand(0)->getType(); 16318 16319 return !( 16320 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16321 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16322 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16323 } 16324 case Instruction::Load: { 16325 // Don't break "store (load float*)" pattern, this pattern will be combined 16326 // to "store (load int32)" in later InstCombine pass. See function 16327 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16328 // cycles than loading a 32 bit integer. 16329 LoadInst *LI = cast<LoadInst>(I); 16330 // For the loads that combineLoadToOperationType does nothing, like 16331 // ordered load, it should be profitable to hoist them. 16332 // For swifterror load, it can only be used for pointer to pointer type, so 16333 // later type check should get rid of this case. 16334 if (!LI->isUnordered()) 16335 return true; 16336 16337 if (User->getOpcode() != Instruction::Store) 16338 return true; 16339 16340 if (I->getType()->getTypeID() != Type::FloatTyID) 16341 return true; 16342 16343 return false; 16344 } 16345 default: 16346 return true; 16347 } 16348 return true; 16349 } 16350 16351 const MCPhysReg * 16352 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16353 // LR is a callee-save register, but we must treat it as clobbered by any call 16354 // site. Hence we include LR in the scratch registers, which are in turn added 16355 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16356 // to CTR, which is used by any indirect call. 16357 static const MCPhysReg ScratchRegs[] = { 16358 PPC::X12, PPC::LR8, PPC::CTR8, 0 16359 }; 16360 16361 return ScratchRegs; 16362 } 16363 16364 Register PPCTargetLowering::getExceptionPointerRegister( 16365 const Constant *PersonalityFn) const { 16366 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16367 } 16368 16369 Register PPCTargetLowering::getExceptionSelectorRegister( 16370 const Constant *PersonalityFn) const { 16371 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16372 } 16373 16374 bool 16375 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16376 EVT VT , unsigned DefinedValues) const { 16377 if (VT == MVT::v2i64) 16378 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16379 16380 if (Subtarget.hasVSX()) 16381 return true; 16382 16383 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16384 } 16385 16386 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16387 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16388 return TargetLowering::getSchedulingPreference(N); 16389 16390 return Sched::ILP; 16391 } 16392 16393 // Create a fast isel object. 16394 FastISel * 16395 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16396 const TargetLibraryInfo *LibInfo) const { 16397 return PPC::createFastISel(FuncInfo, LibInfo); 16398 } 16399 16400 // 'Inverted' means the FMA opcode after negating one multiplicand. 16401 // For example, (fma -a b c) = (fnmsub a b c) 16402 static unsigned invertFMAOpcode(unsigned Opc) { 16403 switch (Opc) { 16404 default: 16405 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16406 case ISD::FMA: 16407 return PPCISD::FNMSUB; 16408 case PPCISD::FNMSUB: 16409 return ISD::FMA; 16410 } 16411 } 16412 16413 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16414 bool LegalOps, bool OptForSize, 16415 NegatibleCost &Cost, 16416 unsigned Depth) const { 16417 if (Depth > SelectionDAG::MaxRecursionDepth) 16418 return SDValue(); 16419 16420 unsigned Opc = Op.getOpcode(); 16421 EVT VT = Op.getValueType(); 16422 SDNodeFlags Flags = Op.getNode()->getFlags(); 16423 16424 switch (Opc) { 16425 case PPCISD::FNMSUB: 16426 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16427 break; 16428 16429 const TargetOptions &Options = getTargetMachine().Options; 16430 SDValue N0 = Op.getOperand(0); 16431 SDValue N1 = Op.getOperand(1); 16432 SDValue N2 = Op.getOperand(2); 16433 SDLoc Loc(Op); 16434 16435 NegatibleCost N2Cost = NegatibleCost::Expensive; 16436 SDValue NegN2 = 16437 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16438 16439 if (!NegN2) 16440 return SDValue(); 16441 16442 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16443 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16444 // These transformations may change sign of zeroes. For example, 16445 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16446 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16447 // Try and choose the cheaper one to negate. 16448 NegatibleCost N0Cost = NegatibleCost::Expensive; 16449 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16450 N0Cost, Depth + 1); 16451 16452 NegatibleCost N1Cost = NegatibleCost::Expensive; 16453 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16454 N1Cost, Depth + 1); 16455 16456 if (NegN0 && N0Cost <= N1Cost) { 16457 Cost = std::min(N0Cost, N2Cost); 16458 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16459 } else if (NegN1) { 16460 Cost = std::min(N1Cost, N2Cost); 16461 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16462 } 16463 } 16464 16465 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16466 if (isOperationLegal(ISD::FMA, VT)) { 16467 Cost = N2Cost; 16468 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16469 } 16470 16471 break; 16472 } 16473 16474 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16475 Cost, Depth); 16476 } 16477 16478 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16479 bool PPCTargetLowering::useLoadStackGuardNode() const { 16480 if (!Subtarget.isTargetLinux()) 16481 return TargetLowering::useLoadStackGuardNode(); 16482 return true; 16483 } 16484 16485 // Override to disable global variable loading on Linux and insert AIX canary 16486 // word declaration. 16487 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16488 if (Subtarget.isAIXABI()) { 16489 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16490 Type::getInt8PtrTy(M.getContext())); 16491 return; 16492 } 16493 if (!Subtarget.isTargetLinux()) 16494 return TargetLowering::insertSSPDeclarations(M); 16495 } 16496 16497 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16498 if (Subtarget.isAIXABI()) 16499 return M.getGlobalVariable(AIXSSPCanaryWordName); 16500 return TargetLowering::getSDagStackGuard(M); 16501 } 16502 16503 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16504 bool ForCodeSize) const { 16505 if (!VT.isSimple() || !Subtarget.hasVSX()) 16506 return false; 16507 16508 switch(VT.getSimpleVT().SimpleTy) { 16509 default: 16510 // For FP types that are currently not supported by PPC backend, return 16511 // false. Examples: f16, f80. 16512 return false; 16513 case MVT::f32: 16514 case MVT::f64: 16515 if (Subtarget.hasPrefixInstrs()) { 16516 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16517 return true; 16518 } 16519 LLVM_FALLTHROUGH; 16520 case MVT::ppcf128: 16521 return Imm.isPosZero(); 16522 } 16523 } 16524 16525 // For vector shift operation op, fold 16526 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16527 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16528 SelectionDAG &DAG) { 16529 SDValue N0 = N->getOperand(0); 16530 SDValue N1 = N->getOperand(1); 16531 EVT VT = N0.getValueType(); 16532 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16533 unsigned Opcode = N->getOpcode(); 16534 unsigned TargetOpcode; 16535 16536 switch (Opcode) { 16537 default: 16538 llvm_unreachable("Unexpected shift operation"); 16539 case ISD::SHL: 16540 TargetOpcode = PPCISD::SHL; 16541 break; 16542 case ISD::SRL: 16543 TargetOpcode = PPCISD::SRL; 16544 break; 16545 case ISD::SRA: 16546 TargetOpcode = PPCISD::SRA; 16547 break; 16548 } 16549 16550 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16551 N1->getOpcode() == ISD::AND) 16552 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16553 if (Mask->getZExtValue() == OpSizeInBits - 1) 16554 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16555 16556 return SDValue(); 16557 } 16558 16559 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16560 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16561 return Value; 16562 16563 SDValue N0 = N->getOperand(0); 16564 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16565 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16566 N0.getOpcode() != ISD::SIGN_EXTEND || 16567 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16568 N->getValueType(0) != MVT::i64) 16569 return SDValue(); 16570 16571 // We can't save an operation here if the value is already extended, and 16572 // the existing shift is easier to combine. 16573 SDValue ExtsSrc = N0.getOperand(0); 16574 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16575 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16576 return SDValue(); 16577 16578 SDLoc DL(N0); 16579 SDValue ShiftBy = SDValue(CN1, 0); 16580 // We want the shift amount to be i32 on the extswli, but the shift could 16581 // have an i64. 16582 if (ShiftBy.getValueType() == MVT::i64) 16583 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16584 16585 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16586 ShiftBy); 16587 } 16588 16589 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16590 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16591 return Value; 16592 16593 return SDValue(); 16594 } 16595 16596 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16597 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16598 return Value; 16599 16600 return SDValue(); 16601 } 16602 16603 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16604 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16605 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16606 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16607 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16608 const PPCSubtarget &Subtarget) { 16609 if (!Subtarget.isPPC64()) 16610 return SDValue(); 16611 16612 SDValue LHS = N->getOperand(0); 16613 SDValue RHS = N->getOperand(1); 16614 16615 auto isZextOfCompareWithConstant = [](SDValue Op) { 16616 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16617 Op.getValueType() != MVT::i64) 16618 return false; 16619 16620 SDValue Cmp = Op.getOperand(0); 16621 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16622 Cmp.getOperand(0).getValueType() != MVT::i64) 16623 return false; 16624 16625 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16626 int64_t NegConstant = 0 - Constant->getSExtValue(); 16627 // Due to the limitations of the addi instruction, 16628 // -C is required to be [-32768, 32767]. 16629 return isInt<16>(NegConstant); 16630 } 16631 16632 return false; 16633 }; 16634 16635 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16636 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16637 16638 // If there is a pattern, canonicalize a zext operand to the RHS. 16639 if (LHSHasPattern && !RHSHasPattern) 16640 std::swap(LHS, RHS); 16641 else if (!LHSHasPattern && !RHSHasPattern) 16642 return SDValue(); 16643 16644 SDLoc DL(N); 16645 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16646 SDValue Cmp = RHS.getOperand(0); 16647 SDValue Z = Cmp.getOperand(0); 16648 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16649 int64_t NegConstant = 0 - Constant->getSExtValue(); 16650 16651 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16652 default: break; 16653 case ISD::SETNE: { 16654 // when C == 0 16655 // --> addze X, (addic Z, -1).carry 16656 // / 16657 // add X, (zext(setne Z, C))-- 16658 // \ when -32768 <= -C <= 32767 && C != 0 16659 // --> addze X, (addic (addi Z, -C), -1).carry 16660 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16661 DAG.getConstant(NegConstant, DL, MVT::i64)); 16662 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16663 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16664 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16665 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16666 SDValue(Addc.getNode(), 1)); 16667 } 16668 case ISD::SETEQ: { 16669 // when C == 0 16670 // --> addze X, (subfic Z, 0).carry 16671 // / 16672 // add X, (zext(sete Z, C))-- 16673 // \ when -32768 <= -C <= 32767 && C != 0 16674 // --> addze X, (subfic (addi Z, -C), 0).carry 16675 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16676 DAG.getConstant(NegConstant, DL, MVT::i64)); 16677 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16678 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16679 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16680 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16681 SDValue(Subc.getNode(), 1)); 16682 } 16683 } 16684 16685 return SDValue(); 16686 } 16687 16688 // Transform 16689 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16690 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16691 // In this case both C1 and C2 must be known constants. 16692 // C1+C2 must fit into a 34 bit signed integer. 16693 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16694 const PPCSubtarget &Subtarget) { 16695 if (!Subtarget.isUsingPCRelativeCalls()) 16696 return SDValue(); 16697 16698 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16699 // If we find that node try to cast the Global Address and the Constant. 16700 SDValue LHS = N->getOperand(0); 16701 SDValue RHS = N->getOperand(1); 16702 16703 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16704 std::swap(LHS, RHS); 16705 16706 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16707 return SDValue(); 16708 16709 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16710 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16711 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16712 16713 // Check that both casts succeeded. 16714 if (!GSDN || !ConstNode) 16715 return SDValue(); 16716 16717 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16718 SDLoc DL(GSDN); 16719 16720 // The signed int offset needs to fit in 34 bits. 16721 if (!isInt<34>(NewOffset)) 16722 return SDValue(); 16723 16724 // The new global address is a copy of the old global address except 16725 // that it has the updated Offset. 16726 SDValue GA = 16727 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16728 NewOffset, GSDN->getTargetFlags()); 16729 SDValue MatPCRel = 16730 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16731 return MatPCRel; 16732 } 16733 16734 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16735 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16736 return Value; 16737 16738 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16739 return Value; 16740 16741 return SDValue(); 16742 } 16743 16744 // Detect TRUNCATE operations on bitcasts of float128 values. 16745 // What we are looking for here is the situtation where we extract a subset 16746 // of bits from a 128 bit float. 16747 // This can be of two forms: 16748 // 1) BITCAST of f128 feeding TRUNCATE 16749 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16750 // The reason this is required is because we do not have a legal i128 type 16751 // and so we want to prevent having to store the f128 and then reload part 16752 // of it. 16753 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16754 DAGCombinerInfo &DCI) const { 16755 // If we are using CRBits then try that first. 16756 if (Subtarget.useCRBits()) { 16757 // Check if CRBits did anything and return that if it did. 16758 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16759 return CRTruncValue; 16760 } 16761 16762 SDLoc dl(N); 16763 SDValue Op0 = N->getOperand(0); 16764 16765 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16766 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16767 EVT VT = N->getValueType(0); 16768 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16769 return SDValue(); 16770 SDValue Sub = Op0.getOperand(0); 16771 if (Sub.getOpcode() == ISD::SUB) { 16772 SDValue SubOp0 = Sub.getOperand(0); 16773 SDValue SubOp1 = Sub.getOperand(1); 16774 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16775 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16776 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16777 SubOp1.getOperand(0), 16778 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16779 } 16780 } 16781 } 16782 16783 // Looking for a truncate of i128 to i64. 16784 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16785 return SDValue(); 16786 16787 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16788 16789 // SRL feeding TRUNCATE. 16790 if (Op0.getOpcode() == ISD::SRL) { 16791 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16792 // The right shift has to be by 64 bits. 16793 if (!ConstNode || ConstNode->getZExtValue() != 64) 16794 return SDValue(); 16795 16796 // Switch the element number to extract. 16797 EltToExtract = EltToExtract ? 0 : 1; 16798 // Update Op0 past the SRL. 16799 Op0 = Op0.getOperand(0); 16800 } 16801 16802 // BITCAST feeding a TRUNCATE possibly via SRL. 16803 if (Op0.getOpcode() == ISD::BITCAST && 16804 Op0.getValueType() == MVT::i128 && 16805 Op0.getOperand(0).getValueType() == MVT::f128) { 16806 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16807 return DCI.DAG.getNode( 16808 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16809 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16810 } 16811 return SDValue(); 16812 } 16813 16814 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16815 SelectionDAG &DAG = DCI.DAG; 16816 16817 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16818 if (!ConstOpOrElement) 16819 return SDValue(); 16820 16821 // An imul is usually smaller than the alternative sequence for legal type. 16822 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16823 isOperationLegal(ISD::MUL, N->getValueType(0))) 16824 return SDValue(); 16825 16826 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16827 switch (this->Subtarget.getCPUDirective()) { 16828 default: 16829 // TODO: enhance the condition for subtarget before pwr8 16830 return false; 16831 case PPC::DIR_PWR8: 16832 // type mul add shl 16833 // scalar 4 1 1 16834 // vector 7 2 2 16835 return true; 16836 case PPC::DIR_PWR9: 16837 case PPC::DIR_PWR10: 16838 case PPC::DIR_PWR_FUTURE: 16839 // type mul add shl 16840 // scalar 5 2 2 16841 // vector 7 2 2 16842 16843 // The cycle RATIO of related operations are showed as a table above. 16844 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16845 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16846 // are 4, it is always profitable; but for 3 instrs patterns 16847 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16848 // So we should only do it for vector type. 16849 return IsAddOne && IsNeg ? VT.isVector() : true; 16850 } 16851 }; 16852 16853 EVT VT = N->getValueType(0); 16854 SDLoc DL(N); 16855 16856 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16857 bool IsNeg = MulAmt.isNegative(); 16858 APInt MulAmtAbs = MulAmt.abs(); 16859 16860 if ((MulAmtAbs - 1).isPowerOf2()) { 16861 // (mul x, 2^N + 1) => (add (shl x, N), x) 16862 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16863 16864 if (!IsProfitable(IsNeg, true, VT)) 16865 return SDValue(); 16866 16867 SDValue Op0 = N->getOperand(0); 16868 SDValue Op1 = 16869 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16870 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16871 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16872 16873 if (!IsNeg) 16874 return Res; 16875 16876 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16877 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16878 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16879 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16880 16881 if (!IsProfitable(IsNeg, false, VT)) 16882 return SDValue(); 16883 16884 SDValue Op0 = N->getOperand(0); 16885 SDValue Op1 = 16886 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16887 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16888 16889 if (!IsNeg) 16890 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16891 else 16892 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16893 16894 } else { 16895 return SDValue(); 16896 } 16897 } 16898 16899 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16900 // in combiner since we need to check SD flags and other subtarget features. 16901 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16902 DAGCombinerInfo &DCI) const { 16903 SDValue N0 = N->getOperand(0); 16904 SDValue N1 = N->getOperand(1); 16905 SDValue N2 = N->getOperand(2); 16906 SDNodeFlags Flags = N->getFlags(); 16907 EVT VT = N->getValueType(0); 16908 SelectionDAG &DAG = DCI.DAG; 16909 const TargetOptions &Options = getTargetMachine().Options; 16910 unsigned Opc = N->getOpcode(); 16911 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16912 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16913 SDLoc Loc(N); 16914 16915 if (!isOperationLegal(ISD::FMA, VT)) 16916 return SDValue(); 16917 16918 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16919 // since (fnmsub a b c)=-0 while c-ab=+0. 16920 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16921 return SDValue(); 16922 16923 // (fma (fneg a) b c) => (fnmsub a b c) 16924 // (fnmsub (fneg a) b c) => (fma a b c) 16925 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16926 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16927 16928 // (fma a (fneg b) c) => (fnmsub a b c) 16929 // (fnmsub a (fneg b) c) => (fma a b c) 16930 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16931 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16932 16933 return SDValue(); 16934 } 16935 16936 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16937 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16938 if (!Subtarget.is64BitELFABI()) 16939 return false; 16940 16941 // If not a tail call then no need to proceed. 16942 if (!CI->isTailCall()) 16943 return false; 16944 16945 // If sibling calls have been disabled and tail-calls aren't guaranteed 16946 // there is no reason to duplicate. 16947 auto &TM = getTargetMachine(); 16948 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16949 return false; 16950 16951 // Can't tail call a function called indirectly, or if it has variadic args. 16952 const Function *Callee = CI->getCalledFunction(); 16953 if (!Callee || Callee->isVarArg()) 16954 return false; 16955 16956 // Make sure the callee and caller calling conventions are eligible for tco. 16957 const Function *Caller = CI->getParent()->getParent(); 16958 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16959 CI->getCallingConv())) 16960 return false; 16961 16962 // If the function is local then we have a good chance at tail-calling it 16963 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16964 } 16965 16966 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16967 if (!Subtarget.hasVSX()) 16968 return false; 16969 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16970 return true; 16971 return VT == MVT::f32 || VT == MVT::f64 || 16972 VT == MVT::v4f32 || VT == MVT::v2f64; 16973 } 16974 16975 bool PPCTargetLowering:: 16976 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16977 const Value *Mask = AndI.getOperand(1); 16978 // If the mask is suitable for andi. or andis. we should sink the and. 16979 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16980 // Can't handle constants wider than 64-bits. 16981 if (CI->getBitWidth() > 64) 16982 return false; 16983 int64_t ConstVal = CI->getZExtValue(); 16984 return isUInt<16>(ConstVal) || 16985 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16986 } 16987 16988 // For non-constant masks, we can always use the record-form and. 16989 return true; 16990 } 16991 16992 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16993 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16994 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16995 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16996 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16997 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16998 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16999 assert(Subtarget.hasP9Altivec() && 17000 "Only combine this when P9 altivec supported!"); 17001 EVT VT = N->getValueType(0); 17002 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17003 return SDValue(); 17004 17005 SelectionDAG &DAG = DCI.DAG; 17006 SDLoc dl(N); 17007 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17008 // Even for signed integers, if it's known to be positive (as signed 17009 // integer) due to zero-extended inputs. 17010 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17011 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17012 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17013 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17014 (SubOpcd1 == ISD::ZERO_EXTEND || 17015 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17016 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17017 N->getOperand(0)->getOperand(0), 17018 N->getOperand(0)->getOperand(1), 17019 DAG.getTargetConstant(0, dl, MVT::i32)); 17020 } 17021 17022 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17023 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17024 N->getOperand(0).hasOneUse()) { 17025 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17026 N->getOperand(0)->getOperand(0), 17027 N->getOperand(0)->getOperand(1), 17028 DAG.getTargetConstant(1, dl, MVT::i32)); 17029 } 17030 } 17031 17032 return SDValue(); 17033 } 17034 17035 // For type v4i32/v8ii16/v16i8, transform 17036 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17037 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17038 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17039 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17040 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17041 DAGCombinerInfo &DCI) const { 17042 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17043 assert(Subtarget.hasP9Altivec() && 17044 "Only combine this when P9 altivec supported!"); 17045 17046 SelectionDAG &DAG = DCI.DAG; 17047 SDLoc dl(N); 17048 SDValue Cond = N->getOperand(0); 17049 SDValue TrueOpnd = N->getOperand(1); 17050 SDValue FalseOpnd = N->getOperand(2); 17051 EVT VT = N->getOperand(1).getValueType(); 17052 17053 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17054 FalseOpnd.getOpcode() != ISD::SUB) 17055 return SDValue(); 17056 17057 // ABSD only available for type v4i32/v8i16/v16i8 17058 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17059 return SDValue(); 17060 17061 // At least to save one more dependent computation 17062 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17063 return SDValue(); 17064 17065 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17066 17067 // Can only handle unsigned comparison here 17068 switch (CC) { 17069 default: 17070 return SDValue(); 17071 case ISD::SETUGT: 17072 case ISD::SETUGE: 17073 break; 17074 case ISD::SETULT: 17075 case ISD::SETULE: 17076 std::swap(TrueOpnd, FalseOpnd); 17077 break; 17078 } 17079 17080 SDValue CmpOpnd1 = Cond.getOperand(0); 17081 SDValue CmpOpnd2 = Cond.getOperand(1); 17082 17083 // SETCC CmpOpnd1 CmpOpnd2 cond 17084 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17085 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17086 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17087 TrueOpnd.getOperand(1) == CmpOpnd2 && 17088 FalseOpnd.getOperand(0) == CmpOpnd2 && 17089 FalseOpnd.getOperand(1) == CmpOpnd1) { 17090 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17091 CmpOpnd1, CmpOpnd2, 17092 DAG.getTargetConstant(0, dl, MVT::i32)); 17093 } 17094 17095 return SDValue(); 17096 } 17097 17098 /// getAddrModeForFlags - Based on the set of address flags, select the most 17099 /// optimal instruction format to match by. 17100 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17101 // This is not a node we should be handling here. 17102 if (Flags == PPC::MOF_None) 17103 return PPC::AM_None; 17104 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17105 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17106 if ((Flags & FlagSet) == FlagSet) 17107 return PPC::AM_DForm; 17108 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17109 if ((Flags & FlagSet) == FlagSet) 17110 return PPC::AM_DSForm; 17111 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17112 if ((Flags & FlagSet) == FlagSet) 17113 return PPC::AM_DQForm; 17114 // If no other forms are selected, return an X-Form as it is the most 17115 // general addressing mode. 17116 return PPC::AM_XForm; 17117 } 17118 17119 /// Set alignment flags based on whether or not the Frame Index is aligned. 17120 /// Utilized when computing flags for address computation when selecting 17121 /// load and store instructions. 17122 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17123 SelectionDAG &DAG) { 17124 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17125 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17126 if (!FI) 17127 return; 17128 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17129 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17130 // If this is (add $FI, $S16Imm), the alignment flags are already set 17131 // based on the immediate. We just need to clear the alignment flags 17132 // if the FI alignment is weaker. 17133 if ((FrameIndexAlign % 4) != 0) 17134 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17135 if ((FrameIndexAlign % 16) != 0) 17136 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17137 // If the address is a plain FrameIndex, set alignment flags based on 17138 // FI alignment. 17139 if (!IsAdd) { 17140 if ((FrameIndexAlign % 4) == 0) 17141 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17142 if ((FrameIndexAlign % 16) == 0) 17143 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17144 } 17145 } 17146 17147 /// Given a node, compute flags that are used for address computation when 17148 /// selecting load and store instructions. The flags computed are stored in 17149 /// FlagSet. This function takes into account whether the node is a constant, 17150 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17151 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17152 SelectionDAG &DAG) { 17153 // Set the alignment flags for the node depending on if the node is 17154 // 4-byte or 16-byte aligned. 17155 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17156 if ((Imm & 0x3) == 0) 17157 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17158 if ((Imm & 0xf) == 0) 17159 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17160 }; 17161 17162 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17163 // All 32-bit constants can be computed as LIS + Disp. 17164 const APInt &ConstImm = CN->getAPIntValue(); 17165 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17166 FlagSet |= PPC::MOF_AddrIsSImm32; 17167 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17168 setAlignFlagsForFI(N, FlagSet, DAG); 17169 } 17170 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17171 FlagSet |= PPC::MOF_RPlusSImm34; 17172 else // Let constant materialization handle large constants. 17173 FlagSet |= PPC::MOF_NotAddNorCst; 17174 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17175 // This address can be represented as an addition of: 17176 // - Register + Imm16 (possibly a multiple of 4/16) 17177 // - Register + Imm34 17178 // - Register + PPCISD::Lo 17179 // - Register + Register 17180 // In any case, we won't have to match this as Base + Zero. 17181 SDValue RHS = N.getOperand(1); 17182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17183 const APInt &ConstImm = CN->getAPIntValue(); 17184 if (ConstImm.isSignedIntN(16)) { 17185 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17186 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17187 setAlignFlagsForFI(N, FlagSet, DAG); 17188 } 17189 if (ConstImm.isSignedIntN(34)) 17190 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17191 else 17192 FlagSet |= PPC::MOF_RPlusR; // Register. 17193 } else if (RHS.getOpcode() == PPCISD::Lo && 17194 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17195 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17196 else 17197 FlagSet |= PPC::MOF_RPlusR; 17198 } else { // The address computation is not a constant or an addition. 17199 setAlignFlagsForFI(N, FlagSet, DAG); 17200 FlagSet |= PPC::MOF_NotAddNorCst; 17201 } 17202 } 17203 17204 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17205 /// the address flags of the load/store instruction that is to be matched. 17206 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17207 SelectionDAG &DAG) const { 17208 unsigned FlagSet = PPC::MOF_None; 17209 17210 // Compute subtarget flags. 17211 if (!Subtarget.hasP9Vector()) 17212 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17213 else { 17214 FlagSet |= PPC::MOF_SubtargetP9; 17215 if (Subtarget.hasPrefixInstrs()) 17216 FlagSet |= PPC::MOF_SubtargetP10; 17217 } 17218 if (Subtarget.hasSPE()) 17219 FlagSet |= PPC::MOF_SubtargetSPE; 17220 17221 // Mark this as something we don't want to handle here if it is atomic 17222 // or pre-increment instruction. 17223 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17224 if (LSB->isIndexed()) 17225 return PPC::MOF_None; 17226 17227 // Compute in-memory type flags. This is based on if there are scalars, 17228 // floats or vectors. 17229 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17230 assert(MN && "Parent should be a MemSDNode!"); 17231 EVT MemVT = MN->getMemoryVT(); 17232 unsigned Size = MemVT.getSizeInBits(); 17233 if (MemVT.isScalarInteger()) { 17234 assert(Size <= 64 && "Not expecting scalar integers larger than 8 bytes!"); 17235 if (Size < 32) 17236 FlagSet |= PPC::MOF_SubWordInt; 17237 else if (Size == 32) 17238 FlagSet |= PPC::MOF_WordInt; 17239 else 17240 FlagSet |= PPC::MOF_DoubleWordInt; 17241 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17242 if (Size == 128) 17243 FlagSet |= PPC::MOF_Vector; 17244 else if (Size == 256) 17245 FlagSet |= PPC::MOF_Vector256; 17246 else 17247 llvm_unreachable("Not expecting illegal vectors!"); 17248 } else { // Floating point type: can be scalar, f128 or vector types. 17249 if (Size == 32 || Size == 64) 17250 FlagSet |= PPC::MOF_ScalarFloat; 17251 else if (MemVT == MVT::f128 || MemVT.isVector()) 17252 FlagSet |= PPC::MOF_Vector; 17253 else 17254 llvm_unreachable("Not expecting illegal scalar floats!"); 17255 } 17256 17257 // Compute flags for address computation. 17258 computeFlagsForAddressComputation(N, FlagSet, DAG); 17259 17260 // Compute type extension flags. 17261 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17262 switch (LN->getExtensionType()) { 17263 case ISD::SEXTLOAD: 17264 FlagSet |= PPC::MOF_SExt; 17265 break; 17266 case ISD::EXTLOAD: 17267 case ISD::ZEXTLOAD: 17268 FlagSet |= PPC::MOF_ZExt; 17269 break; 17270 case ISD::NON_EXTLOAD: 17271 FlagSet |= PPC::MOF_NoExt; 17272 break; 17273 } 17274 } else 17275 FlagSet |= PPC::MOF_NoExt; 17276 17277 // For integers, no extension is the same as zero extension. 17278 // We set the extension mode to zero extension so we don't have 17279 // to add separate entries in AddrModesMap for loads and stores. 17280 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17281 FlagSet |= PPC::MOF_ZExt; 17282 FlagSet &= ~PPC::MOF_NoExt; 17283 } 17284 17285 // If we don't have prefixed instructions, 34-bit constants should be 17286 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17287 bool IsNonP1034BitConst = 17288 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17289 FlagSet) == PPC::MOF_RPlusSImm34; 17290 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17291 IsNonP1034BitConst) 17292 FlagSet |= PPC::MOF_NotAddNorCst; 17293 17294 return FlagSet; 17295 } 17296 17297 /// SelectForceXFormMode - Given the specified address, force it to be 17298 /// represented as an indexed [r+r] operation (an XForm instruction). 17299 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17300 SDValue &Base, 17301 SelectionDAG &DAG) const { 17302 17303 PPC::AddrMode Mode = PPC::AM_XForm; 17304 int16_t ForceXFormImm = 0; 17305 if (provablyDisjointOr(DAG, N) && 17306 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17307 Disp = N.getOperand(0); 17308 Base = N.getOperand(1); 17309 return Mode; 17310 } 17311 17312 // If the address is the result of an add, we will utilize the fact that the 17313 // address calculation includes an implicit add. However, we can reduce 17314 // register pressure if we do not materialize a constant just for use as the 17315 // index register. We only get rid of the add if it is not an add of a 17316 // value and a 16-bit signed constant and both have a single use. 17317 if (N.getOpcode() == ISD::ADD && 17318 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17319 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17320 Disp = N.getOperand(0); 17321 Base = N.getOperand(1); 17322 return Mode; 17323 } 17324 17325 // Otherwise, use R0 as the base register. 17326 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17327 N.getValueType()); 17328 Base = N; 17329 17330 return Mode; 17331 } 17332 17333 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17334 /// compute the address flags of the node, get the optimal address mode based 17335 /// on the flags, and set the Base and Disp based on the address mode. 17336 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17337 SDValue N, SDValue &Disp, 17338 SDValue &Base, 17339 SelectionDAG &DAG, 17340 MaybeAlign Align) const { 17341 SDLoc DL(Parent); 17342 17343 // Compute the address flags. 17344 unsigned Flags = computeMOFlags(Parent, N, DAG); 17345 17346 // Get the optimal address mode based on the Flags. 17347 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17348 17349 // Set Base and Disp accordingly depending on the address mode. 17350 switch (Mode) { 17351 case PPC::AM_DForm: 17352 case PPC::AM_DSForm: 17353 case PPC::AM_DQForm: { 17354 // This is a register plus a 16-bit immediate. The base will be the 17355 // register and the displacement will be the immediate unless it 17356 // isn't sufficiently aligned. 17357 if (Flags & PPC::MOF_RPlusSImm16) { 17358 SDValue Op0 = N.getOperand(0); 17359 SDValue Op1 = N.getOperand(1); 17360 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17361 if (!Align || isAligned(*Align, Imm)) { 17362 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17363 Base = Op0; 17364 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17365 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17366 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17367 } 17368 break; 17369 } 17370 } 17371 // This is a register plus the @lo relocation. The base is the register 17372 // and the displacement is the global address. 17373 else if (Flags & PPC::MOF_RPlusLo) { 17374 Disp = N.getOperand(1).getOperand(0); // The global address. 17375 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17376 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17377 Disp.getOpcode() == ISD::TargetConstantPool || 17378 Disp.getOpcode() == ISD::TargetJumpTable); 17379 Base = N.getOperand(0); 17380 break; 17381 } 17382 // This is a constant address at most 32 bits. The base will be 17383 // zero or load-immediate-shifted and the displacement will be 17384 // the low 16 bits of the address. 17385 else if (Flags & PPC::MOF_AddrIsSImm32) { 17386 auto *CN = cast<ConstantSDNode>(N); 17387 EVT CNType = CN->getValueType(0); 17388 uint64_t CNImm = CN->getZExtValue(); 17389 // If this address fits entirely in a 16-bit sext immediate field, codegen 17390 // this as "d, 0". 17391 int16_t Imm; 17392 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17393 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17394 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17395 CNType); 17396 break; 17397 } 17398 // Handle 32-bit sext immediate with LIS + Addr mode. 17399 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17400 (!Align || isAligned(*Align, CNImm))) { 17401 int32_t Addr = (int32_t)CNImm; 17402 // Otherwise, break this down into LIS + Disp. 17403 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17404 Base = 17405 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17406 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17407 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17408 break; 17409 } 17410 } 17411 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17412 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17413 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17414 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17415 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17416 } else 17417 Base = N; 17418 break; 17419 } 17420 case PPC::AM_None: 17421 break; 17422 default: { // By default, X-Form is always available to be selected. 17423 // When a frame index is not aligned, we also match by XForm. 17424 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17425 Base = FI ? N : N.getOperand(1); 17426 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17427 N.getValueType()) 17428 : N.getOperand(0); 17429 break; 17430 } 17431 } 17432 return Mode; 17433 } 17434 17435 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17436 bool Return, 17437 bool IsVarArg) const { 17438 switch (CC) { 17439 case CallingConv::Cold: 17440 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17441 default: 17442 return CC_PPC64_ELF_FIS; 17443 } 17444 } 17445