1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCExpr.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Support/AtomicOrdering.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CodeGen.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/Format.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
115 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
116 
117 STATISTIC(NumTailCalls, "Number of tail calls");
118 STATISTIC(NumSiblingCalls, "Number of sibling calls");
119 
120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
121 
122 // FIXME: Remove this once the bug has been fixed!
123 extern cl::opt<bool> ANDIGlueBug;
124 
125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
126                                      const PPCSubtarget &STI)
127     : TargetLowering(TM), Subtarget(STI) {
128   // Use _setjmp/_longjmp instead of setjmp/longjmp.
129   setUseUnderscoreSetJmp(true);
130   setUseUnderscoreLongJmp(true);
131 
132   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
133   // arguments are at least 4/8 bytes aligned.
134   bool isPPC64 = Subtarget.isPPC64();
135   setMinStackArgumentAlignment(isPPC64 ? 8:4);
136 
137   // Set up the register classes.
138   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
139   if (!useSoftFloat()) {
140     if (hasSPE()) {
141       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
142       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
143     } else {
144       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
145       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
146     }
147   }
148 
149   // Match BITREVERSE to customized fast code sequence in the td file.
150   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
151   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
152 
153   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
154   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
155 
156   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
157   for (MVT VT : MVT::integer_valuetypes()) {
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
160   }
161 
162   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
163 
164   // PowerPC has pre-inc load and store's.
165   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
170   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
175   if (!Subtarget.hasSPE()) {
176     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
178     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
180   }
181 
182   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
183   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
184   for (MVT VT : ScalarIntVTs) {
185     setOperationAction(ISD::ADDC, VT, Legal);
186     setOperationAction(ISD::ADDE, VT, Legal);
187     setOperationAction(ISD::SUBC, VT, Legal);
188     setOperationAction(ISD::SUBE, VT, Legal);
189   }
190 
191   if (Subtarget.useCRBits()) {
192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193 
194     if (isPPC64 || Subtarget.hasFPCVT()) {
195       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
196       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
197                          isPPC64 ? MVT::i64 : MVT::i32);
198       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
199       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
200                         isPPC64 ? MVT::i64 : MVT::i32);
201     } else {
202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
203       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
204     }
205 
206     // PowerPC does not support direct load/store of condition registers.
207     setOperationAction(ISD::LOAD, MVT::i1, Custom);
208     setOperationAction(ISD::STORE, MVT::i1, Custom);
209 
210     // FIXME: Remove this once the ANDI glue bug is fixed:
211     if (ANDIGlueBug)
212       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
213 
214     for (MVT VT : MVT::integer_valuetypes()) {
215       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
216       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
217       setTruncStoreAction(VT, MVT::i1, Expand);
218     }
219 
220     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
221   }
222 
223   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
224   // PPC (the libcall is not available).
225   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
226   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
227 
228   // We do not currently implement these libm ops for PowerPC.
229   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
230   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
231   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
232   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
233   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
234   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
235 
236   // PowerPC has no SREM/UREM instructions unless we are on P9
237   // On P9 we may use a hardware instruction to compute the remainder.
238   // The instructions are not legalized directly because in the cases where the
239   // result of both the remainder and the division is required it is more
240   // efficient to compute the remainder from the result of the division rather
241   // than use the remainder instruction.
242   if (Subtarget.isISA3_0()) {
243     setOperationAction(ISD::SREM, MVT::i32, Custom);
244     setOperationAction(ISD::UREM, MVT::i32, Custom);
245     setOperationAction(ISD::SREM, MVT::i64, Custom);
246     setOperationAction(ISD::UREM, MVT::i64, Custom);
247   } else {
248     setOperationAction(ISD::SREM, MVT::i32, Expand);
249     setOperationAction(ISD::UREM, MVT::i32, Expand);
250     setOperationAction(ISD::SREM, MVT::i64, Expand);
251     setOperationAction(ISD::UREM, MVT::i64, Expand);
252   }
253 
254   if (Subtarget.hasP9Vector()) {
255     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
256     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
257     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
258   }
259 
260   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
261   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
262   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
263   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
265   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
266   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
269 
270   // We don't support sin/cos/sqrt/fmod/pow
271   setOperationAction(ISD::FSIN , MVT::f64, Expand);
272   setOperationAction(ISD::FCOS , MVT::f64, Expand);
273   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
274   setOperationAction(ISD::FREM , MVT::f64, Expand);
275   setOperationAction(ISD::FPOW , MVT::f64, Expand);
276   setOperationAction(ISD::FSIN , MVT::f32, Expand);
277   setOperationAction(ISD::FCOS , MVT::f32, Expand);
278   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
279   setOperationAction(ISD::FREM , MVT::f32, Expand);
280   setOperationAction(ISD::FPOW , MVT::f32, Expand);
281   if (Subtarget.hasSPE()) {
282     setOperationAction(ISD::FMA  , MVT::f64, Expand);
283     setOperationAction(ISD::FMA  , MVT::f32, Expand);
284   } else {
285     setOperationAction(ISD::FMA  , MVT::f64, Legal);
286     setOperationAction(ISD::FMA  , MVT::f32, Legal);
287   }
288 
289   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
290 
291   // If we're enabling GP optimizations, use hardware square root
292   if (!Subtarget.hasFSQRT() &&
293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
294         Subtarget.hasFRE()))
295     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
296 
297   if (!Subtarget.hasFSQRT() &&
298       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
299         Subtarget.hasFRES()))
300     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
301 
302   if (Subtarget.hasFCPSGN()) {
303     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
304     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
305   } else {
306     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
307     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
308   }
309 
310   if (Subtarget.hasFPRND()) {
311     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
312     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
313     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
314     setOperationAction(ISD::FROUND, MVT::f64, Legal);
315 
316     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
317     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
318     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
319     setOperationAction(ISD::FROUND, MVT::f32, Legal);
320   }
321 
322   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
323   // to speed up scalar BSWAP64.
324   // CTPOP or CTTZ were introduced in P8/P9 respectively
325   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
326   if (Subtarget.isISA3_0()) {
327     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
328     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
329     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
330   } else {
331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
333     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
334   }
335 
336   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
337     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
338     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
339   } else {
340     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
341     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
342   }
343 
344   // PowerPC does not have ROTR
345   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
346   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
347 
348   if (!Subtarget.useCRBits()) {
349     // PowerPC does not have Select
350     setOperationAction(ISD::SELECT, MVT::i32, Expand);
351     setOperationAction(ISD::SELECT, MVT::i64, Expand);
352     setOperationAction(ISD::SELECT, MVT::f32, Expand);
353     setOperationAction(ISD::SELECT, MVT::f64, Expand);
354   }
355 
356   // PowerPC wants to turn select_cc of FP into fsel when possible.
357   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
358   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
359 
360   // PowerPC wants to optimize integer setcc a bit
361   if (!Subtarget.useCRBits())
362     setOperationAction(ISD::SETCC, MVT::i32, Custom);
363 
364   // PowerPC does not have BRCOND which requires SetCC
365   if (!Subtarget.useCRBits())
366     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
367 
368   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
369 
370   if (Subtarget.hasSPE()) {
371     // SPE has built-in conversions
372     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
373     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
374     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
375   } else {
376     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
377     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
378 
379     // PowerPC does not have [U|S]INT_TO_FP
380     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
381     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
382   }
383 
384   if (Subtarget.hasDirectMove() && isPPC64) {
385     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
386     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
387     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
388     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
389   } else {
390     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
391     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
392     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
393     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
394   }
395 
396   // We cannot sextinreg(i1).  Expand to shifts.
397   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
398 
399   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
400   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
401   // support continuation, user-level threading, and etc.. As a result, no
402   // other SjLj exception interfaces are implemented and please don't build
403   // your own exception handling based on them.
404   // LLVM/Clang supports zero-cost DWARF exception handling.
405   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
406   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
407 
408   // We want to legalize GlobalAddress and ConstantPool nodes into the
409   // appropriate instructions to materialize the address.
410   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
411   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
412   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
413   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
414   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
415   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
416   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
417   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
418   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
419   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
420 
421   // TRAP is legal.
422   setOperationAction(ISD::TRAP, MVT::Other, Legal);
423 
424   // TRAMPOLINE is custom lowered.
425   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
426   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
427 
428   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
429   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
430 
431   if (Subtarget.isSVR4ABI()) {
432     if (isPPC64) {
433       // VAARG always uses double-word chunks, so promote anything smaller.
434       setOperationAction(ISD::VAARG, MVT::i1, Promote);
435       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
436       setOperationAction(ISD::VAARG, MVT::i8, Promote);
437       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
438       setOperationAction(ISD::VAARG, MVT::i16, Promote);
439       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
440       setOperationAction(ISD::VAARG, MVT::i32, Promote);
441       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
442       setOperationAction(ISD::VAARG, MVT::Other, Expand);
443     } else {
444       // VAARG is custom lowered with the 32-bit SVR4 ABI.
445       setOperationAction(ISD::VAARG, MVT::Other, Custom);
446       setOperationAction(ISD::VAARG, MVT::i64, Custom);
447     }
448   } else
449     setOperationAction(ISD::VAARG, MVT::Other, Expand);
450 
451   if (Subtarget.isSVR4ABI() && !isPPC64)
452     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
453     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
454   else
455     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
456 
457   // Use the default implementation.
458   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
459   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
460   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
461   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
462   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
463   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
464   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
465   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
466   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
467 
468   // We want to custom lower some of our intrinsics.
469   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
470 
471   // To handle counter-based loop conditions.
472   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
473 
474   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
475   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
476   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
477   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
478 
479   // Comparisons that require checking two conditions.
480   if (Subtarget.hasSPE()) {
481     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
482     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
483     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
484     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
485   }
486   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
487   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
488   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
489   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
490   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
491   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
492   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
493   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
494   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
495   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
496   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
497   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
498 
499   if (Subtarget.has64BitSupport()) {
500     // They also have instructions for converting between i64 and fp.
501     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
502     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
503     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
504     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
505     // This is just the low 32 bits of a (signed) fp->i64 conversion.
506     // We cannot do this with Promote because i64 is not a legal type.
507     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
508 
509     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
510       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
511   } else {
512     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
513     if (Subtarget.hasSPE())
514       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
515     else
516       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
517   }
518 
519   // With the instructions enabled under FPCVT, we can do everything.
520   if (Subtarget.hasFPCVT()) {
521     if (Subtarget.has64BitSupport()) {
522       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
523       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
524       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
525       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
526     }
527 
528     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
529     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
530     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
531     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
532   }
533 
534   if (Subtarget.use64BitRegs()) {
535     // 64-bit PowerPC implementations can support i64 types directly
536     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
537     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
538     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
539     // 64-bit PowerPC wants to expand i128 shifts itself.
540     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
541     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
542     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
543   } else {
544     // 32-bit PowerPC wants to expand i64 shifts itself.
545     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
546     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
547     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
548   }
549 
550   if (Subtarget.hasAltivec()) {
551     // First set operation action for all vector types to expand. Then we
552     // will selectively turn on ones that can be effectively codegen'd.
553     for (MVT VT : MVT::vector_valuetypes()) {
554       // add/sub are legal for all supported vector VT's.
555       setOperationAction(ISD::ADD, VT, Legal);
556       setOperationAction(ISD::SUB, VT, Legal);
557 
558       // Vector instructions introduced in P8
559       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
560         setOperationAction(ISD::CTPOP, VT, Legal);
561         setOperationAction(ISD::CTLZ, VT, Legal);
562       }
563       else {
564         setOperationAction(ISD::CTPOP, VT, Expand);
565         setOperationAction(ISD::CTLZ, VT, Expand);
566       }
567 
568       // Vector instructions introduced in P9
569       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
570         setOperationAction(ISD::CTTZ, VT, Legal);
571       else
572         setOperationAction(ISD::CTTZ, VT, Expand);
573 
574       // We promote all shuffles to v16i8.
575       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
576       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
577 
578       // We promote all non-typed operations to v4i32.
579       setOperationAction(ISD::AND   , VT, Promote);
580       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
581       setOperationAction(ISD::OR    , VT, Promote);
582       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
583       setOperationAction(ISD::XOR   , VT, Promote);
584       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
585       setOperationAction(ISD::LOAD  , VT, Promote);
586       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
587       setOperationAction(ISD::SELECT, VT, Promote);
588       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
589       setOperationAction(ISD::SELECT_CC, VT, Promote);
590       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
591       setOperationAction(ISD::STORE, VT, Promote);
592       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
593 
594       // No other operations are legal.
595       setOperationAction(ISD::MUL , VT, Expand);
596       setOperationAction(ISD::SDIV, VT, Expand);
597       setOperationAction(ISD::SREM, VT, Expand);
598       setOperationAction(ISD::UDIV, VT, Expand);
599       setOperationAction(ISD::UREM, VT, Expand);
600       setOperationAction(ISD::FDIV, VT, Expand);
601       setOperationAction(ISD::FREM, VT, Expand);
602       setOperationAction(ISD::FNEG, VT, Expand);
603       setOperationAction(ISD::FSQRT, VT, Expand);
604       setOperationAction(ISD::FLOG, VT, Expand);
605       setOperationAction(ISD::FLOG10, VT, Expand);
606       setOperationAction(ISD::FLOG2, VT, Expand);
607       setOperationAction(ISD::FEXP, VT, Expand);
608       setOperationAction(ISD::FEXP2, VT, Expand);
609       setOperationAction(ISD::FSIN, VT, Expand);
610       setOperationAction(ISD::FCOS, VT, Expand);
611       setOperationAction(ISD::FABS, VT, Expand);
612       setOperationAction(ISD::FFLOOR, VT, Expand);
613       setOperationAction(ISD::FCEIL,  VT, Expand);
614       setOperationAction(ISD::FTRUNC, VT, Expand);
615       setOperationAction(ISD::FRINT,  VT, Expand);
616       setOperationAction(ISD::FNEARBYINT, VT, Expand);
617       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
618       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
619       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
620       setOperationAction(ISD::MULHU, VT, Expand);
621       setOperationAction(ISD::MULHS, VT, Expand);
622       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
623       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
624       setOperationAction(ISD::UDIVREM, VT, Expand);
625       setOperationAction(ISD::SDIVREM, VT, Expand);
626       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
627       setOperationAction(ISD::FPOW, VT, Expand);
628       setOperationAction(ISD::BSWAP, VT, Expand);
629       setOperationAction(ISD::VSELECT, VT, Expand);
630       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
631       setOperationAction(ISD::ROTL, VT, Expand);
632       setOperationAction(ISD::ROTR, VT, Expand);
633 
634       for (MVT InnerVT : MVT::vector_valuetypes()) {
635         setTruncStoreAction(VT, InnerVT, Expand);
636         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
637         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
638         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
639       }
640     }
641 
642     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
643     // with merges, splats, etc.
644     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
645 
646     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
647     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
648     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
649     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
650     setOperationAction(ISD::SELECT, MVT::v4i32,
651                        Subtarget.useCRBits() ? Legal : Expand);
652     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
653     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
654     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
655     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
656     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
657     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
658     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
659     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
660     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
661 
662     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
663     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
664     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
665     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
666 
667     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
668     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
669 
670     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
671       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
672       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
673     }
674 
675     if (Subtarget.hasP8Altivec())
676       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
677     else
678       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
679 
680     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
681     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
682 
683     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
684     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
685 
686     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
687     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
688     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
689     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
690 
691     // Altivec does not contain unordered floating-point compare instructions
692     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
693     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
694     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
695     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
696 
697     if (Subtarget.hasVSX()) {
698       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
699       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
700       if (Subtarget.hasP8Vector()) {
701         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
702         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
703       }
704       if (Subtarget.hasDirectMove() && isPPC64) {
705         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
706         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
707         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
708         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
709         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
710         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
711         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
712         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
713       }
714       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
715 
716       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
717       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
718       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
719       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
720       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
721 
722       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
723 
724       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
725       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
726 
727       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
728       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
729 
730       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
731       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
732       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
733       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
734       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
735 
736       // Share the Altivec comparison restrictions.
737       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
738       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
739       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
740       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
741 
742       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
743       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
744 
745       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
746 
747       if (Subtarget.hasP8Vector())
748         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
749 
750       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
751 
752       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
753       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
754       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
755 
756       if (Subtarget.hasP8Altivec()) {
757         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
758         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
759         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
760 
761         // 128 bit shifts can be accomplished via 3 instructions for SHL and
762         // SRL, but not for SRA because of the instructions available:
763         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
764         // doing
765         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
766         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
767         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
768 
769         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
770       }
771       else {
772         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
773         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
774         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
775 
776         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
777 
778         // VSX v2i64 only supports non-arithmetic operations.
779         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
780         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
781       }
782 
783       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
784       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
785       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
786       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
787 
788       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
789 
790       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
791       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
792       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
793       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
794 
795       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
796       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
797 
798       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
799       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
800       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
801       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
802 
803       if (Subtarget.hasDirectMove())
804         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
805       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
806 
807       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
808     }
809 
810     if (Subtarget.hasP8Altivec()) {
811       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
812       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
813     }
814 
815     if (Subtarget.hasP9Vector()) {
816       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
817       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
818 
819       // 128 bit shifts can be accomplished via 3 instructions for SHL and
820       // SRL, but not for SRA because of the instructions available:
821       // VS{RL} and VS{RL}O.
822       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
823       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
824       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
825 
826       if (EnableQuadPrecision) {
827         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
828         setOperationAction(ISD::FADD, MVT::f128, Legal);
829         setOperationAction(ISD::FSUB, MVT::f128, Legal);
830         setOperationAction(ISD::FDIV, MVT::f128, Legal);
831         setOperationAction(ISD::FMUL, MVT::f128, Legal);
832         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
833         // No extending loads to f128 on PPC.
834         for (MVT FPT : MVT::fp_valuetypes())
835           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
836         setOperationAction(ISD::FMA, MVT::f128, Legal);
837         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
838         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
839         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
840         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
841         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
842         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
843 
844         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
845         setOperationAction(ISD::FRINT, MVT::f128, Legal);
846         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
847         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
848         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
849         setOperationAction(ISD::FROUND, MVT::f128, Legal);
850 
851         setOperationAction(ISD::SELECT, MVT::f128, Expand);
852         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
853         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
854         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
855         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
856         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
857         // No implementation for these ops for PowerPC.
858         setOperationAction(ISD::FSIN , MVT::f128, Expand);
859         setOperationAction(ISD::FCOS , MVT::f128, Expand);
860         setOperationAction(ISD::FPOW, MVT::f128, Expand);
861         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
862         setOperationAction(ISD::FREM, MVT::f128, Expand);
863       }
864 
865     }
866 
867     if (Subtarget.hasP9Altivec()) {
868       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
869       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
870     }
871   }
872 
873   if (Subtarget.hasQPX()) {
874     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
875     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
876     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
877     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
878 
879     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
880     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
881 
882     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
883     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
884 
885     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
886     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
887 
888     if (!Subtarget.useCRBits())
889       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
890     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
891 
892     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
893     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
894     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
895     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
896     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
897     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
898     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
899 
900     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
901     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
902 
903     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
904     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
905     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
906 
907     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
908     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
909     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
910     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
911     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
912     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
913     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
914     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
915     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
916     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
917 
918     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
919     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
920 
921     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
922     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
923 
924     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
925 
926     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
927     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
928     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
929     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
930 
931     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
932     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
933 
934     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
935     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
936 
937     if (!Subtarget.useCRBits())
938       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
939     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
940 
941     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
942     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
943     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
944     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
945     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
946     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
947     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
948 
949     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
950     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
951 
952     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
953     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
954     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
955     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
956     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
957     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
958     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
959     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
960     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
961     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
962 
963     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
964     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
965 
966     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
967     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
968 
969     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
970 
971     setOperationAction(ISD::AND , MVT::v4i1, Legal);
972     setOperationAction(ISD::OR , MVT::v4i1, Legal);
973     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
974 
975     if (!Subtarget.useCRBits())
976       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
977     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
978 
979     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
980     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
981 
982     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
983     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
984     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
985     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
986     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
987     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
988     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
989 
990     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
991     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
992 
993     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
994 
995     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
996     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
997     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
998     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
999 
1000     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1001     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1002     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1003     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1004 
1005     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1006     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1007 
1008     // These need to set FE_INEXACT, and so cannot be vectorized here.
1009     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1010     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1011 
1012     if (TM.Options.UnsafeFPMath) {
1013       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1014       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1015 
1016       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1017       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1018     } else {
1019       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1020       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1021 
1022       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1023       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1024     }
1025   }
1026 
1027   if (Subtarget.has64BitSupport())
1028     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1029 
1030   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1031 
1032   if (!isPPC64) {
1033     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1034     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1035   }
1036 
1037   setBooleanContents(ZeroOrOneBooleanContent);
1038 
1039   if (Subtarget.hasAltivec()) {
1040     // Altivec instructions set fields to all zeros or all ones.
1041     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1042   }
1043 
1044   if (!isPPC64) {
1045     // These libcalls are not available in 32-bit.
1046     setLibcallName(RTLIB::SHL_I128, nullptr);
1047     setLibcallName(RTLIB::SRL_I128, nullptr);
1048     setLibcallName(RTLIB::SRA_I128, nullptr);
1049   }
1050 
1051   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1052 
1053   // We have target-specific dag combine patterns for the following nodes:
1054   setTargetDAGCombine(ISD::ADD);
1055   setTargetDAGCombine(ISD::SHL);
1056   setTargetDAGCombine(ISD::SRA);
1057   setTargetDAGCombine(ISD::SRL);
1058   setTargetDAGCombine(ISD::SINT_TO_FP);
1059   setTargetDAGCombine(ISD::BUILD_VECTOR);
1060   if (Subtarget.hasFPCVT())
1061     setTargetDAGCombine(ISD::UINT_TO_FP);
1062   setTargetDAGCombine(ISD::LOAD);
1063   setTargetDAGCombine(ISD::STORE);
1064   setTargetDAGCombine(ISD::BR_CC);
1065   if (Subtarget.useCRBits())
1066     setTargetDAGCombine(ISD::BRCOND);
1067   setTargetDAGCombine(ISD::BSWAP);
1068   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1069   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1070   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1071 
1072   setTargetDAGCombine(ISD::SIGN_EXTEND);
1073   setTargetDAGCombine(ISD::ZERO_EXTEND);
1074   setTargetDAGCombine(ISD::ANY_EXTEND);
1075 
1076   setTargetDAGCombine(ISD::TRUNCATE);
1077 
1078   if (Subtarget.useCRBits()) {
1079     setTargetDAGCombine(ISD::TRUNCATE);
1080     setTargetDAGCombine(ISD::SETCC);
1081     setTargetDAGCombine(ISD::SELECT_CC);
1082   }
1083 
1084   // Use reciprocal estimates.
1085   if (TM.Options.UnsafeFPMath) {
1086     setTargetDAGCombine(ISD::FDIV);
1087     setTargetDAGCombine(ISD::FSQRT);
1088   }
1089 
1090   // Darwin long double math library functions have $LDBL128 appended.
1091   if (Subtarget.isDarwin()) {
1092     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1093     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1094     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1095     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1096     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1097     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1098     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1099     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1100     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1101     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1102   }
1103 
1104   if (EnableQuadPrecision) {
1105     setLibcallName(RTLIB::LOG_F128, "logf128");
1106     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1107     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1108     setLibcallName(RTLIB::EXP_F128, "expf128");
1109     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1110     setLibcallName(RTLIB::SIN_F128, "sinf128");
1111     setLibcallName(RTLIB::COS_F128, "cosf128");
1112     setLibcallName(RTLIB::POW_F128, "powf128");
1113     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1114     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1115     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1116     setLibcallName(RTLIB::REM_F128, "fmodf128");
1117   }
1118 
1119   // With 32 condition bits, we don't need to sink (and duplicate) compares
1120   // aggressively in CodeGenPrep.
1121   if (Subtarget.useCRBits()) {
1122     setHasMultipleConditionRegisters();
1123     setJumpIsExpensive();
1124   }
1125 
1126   setMinFunctionAlignment(2);
1127   if (Subtarget.isDarwin())
1128     setPrefFunctionAlignment(4);
1129 
1130   switch (Subtarget.getDarwinDirective()) {
1131   default: break;
1132   case PPC::DIR_970:
1133   case PPC::DIR_A2:
1134   case PPC::DIR_E500:
1135   case PPC::DIR_E500mc:
1136   case PPC::DIR_E5500:
1137   case PPC::DIR_PWR4:
1138   case PPC::DIR_PWR5:
1139   case PPC::DIR_PWR5X:
1140   case PPC::DIR_PWR6:
1141   case PPC::DIR_PWR6X:
1142   case PPC::DIR_PWR7:
1143   case PPC::DIR_PWR8:
1144   case PPC::DIR_PWR9:
1145     setPrefFunctionAlignment(4);
1146     setPrefLoopAlignment(4);
1147     break;
1148   }
1149 
1150   if (Subtarget.enableMachineScheduler())
1151     setSchedulingPreference(Sched::Source);
1152   else
1153     setSchedulingPreference(Sched::Hybrid);
1154 
1155   computeRegisterProperties(STI.getRegisterInfo());
1156 
1157   // The Freescale cores do better with aggressive inlining of memcpy and
1158   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1159   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1160       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1161     MaxStoresPerMemset = 32;
1162     MaxStoresPerMemsetOptSize = 16;
1163     MaxStoresPerMemcpy = 32;
1164     MaxStoresPerMemcpyOptSize = 8;
1165     MaxStoresPerMemmove = 32;
1166     MaxStoresPerMemmoveOptSize = 8;
1167   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1168     // The A2 also benefits from (very) aggressive inlining of memcpy and
1169     // friends. The overhead of a the function call, even when warm, can be
1170     // over one hundred cycles.
1171     MaxStoresPerMemset = 128;
1172     MaxStoresPerMemcpy = 128;
1173     MaxStoresPerMemmove = 128;
1174     MaxLoadsPerMemcmp = 128;
1175   } else {
1176     MaxLoadsPerMemcmp = 8;
1177     MaxLoadsPerMemcmpOptSize = 4;
1178   }
1179 }
1180 
1181 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1182 /// the desired ByVal argument alignment.
1183 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1184                              unsigned MaxMaxAlign) {
1185   if (MaxAlign == MaxMaxAlign)
1186     return;
1187   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1188     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1189       MaxAlign = 32;
1190     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1191       MaxAlign = 16;
1192   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1193     unsigned EltAlign = 0;
1194     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1195     if (EltAlign > MaxAlign)
1196       MaxAlign = EltAlign;
1197   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1198     for (auto *EltTy : STy->elements()) {
1199       unsigned EltAlign = 0;
1200       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1201       if (EltAlign > MaxAlign)
1202         MaxAlign = EltAlign;
1203       if (MaxAlign == MaxMaxAlign)
1204         break;
1205     }
1206   }
1207 }
1208 
1209 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1210 /// function arguments in the caller parameter area.
1211 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1212                                                   const DataLayout &DL) const {
1213   // Darwin passes everything on 4 byte boundary.
1214   if (Subtarget.isDarwin())
1215     return 4;
1216 
1217   // 16byte and wider vectors are passed on 16byte boundary.
1218   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1219   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1220   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1221     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1222   return Align;
1223 }
1224 
1225 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1226                                                           CallingConv:: ID CC,
1227                                                           EVT VT) const {
1228   if (Subtarget.hasSPE() && VT == MVT::f64)
1229     return 2;
1230   return PPCTargetLowering::getNumRegisters(Context, VT);
1231 }
1232 
1233 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1234                                                      CallingConv:: ID CC,
1235                                                      EVT VT) const {
1236   if (Subtarget.hasSPE() && VT == MVT::f64)
1237     return MVT::i32;
1238   return PPCTargetLowering::getRegisterType(Context, VT);
1239 }
1240 
1241 bool PPCTargetLowering::useSoftFloat() const {
1242   return Subtarget.useSoftFloat();
1243 }
1244 
1245 bool PPCTargetLowering::hasSPE() const {
1246   return Subtarget.hasSPE();
1247 }
1248 
1249 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1250   switch ((PPCISD::NodeType)Opcode) {
1251   case PPCISD::FIRST_NUMBER:    break;
1252   case PPCISD::FSEL:            return "PPCISD::FSEL";
1253   case PPCISD::FCFID:           return "PPCISD::FCFID";
1254   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1255   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1256   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1257   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1258   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1259   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1260   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1261   case PPCISD::FP_TO_UINT_IN_VSR:
1262                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1263   case PPCISD::FP_TO_SINT_IN_VSR:
1264                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1265   case PPCISD::FRE:             return "PPCISD::FRE";
1266   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1267   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1268   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1269   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1270   case PPCISD::VPERM:           return "PPCISD::VPERM";
1271   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1272   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1273   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1274   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1275   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1276   case PPCISD::CMPB:            return "PPCISD::CMPB";
1277   case PPCISD::Hi:              return "PPCISD::Hi";
1278   case PPCISD::Lo:              return "PPCISD::Lo";
1279   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1280   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1281   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1282   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1283   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1284   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1285   case PPCISD::SRL:             return "PPCISD::SRL";
1286   case PPCISD::SRA:             return "PPCISD::SRA";
1287   case PPCISD::SHL:             return "PPCISD::SHL";
1288   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1289   case PPCISD::CALL:            return "PPCISD::CALL";
1290   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1291   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1292   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1293   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1294   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1295   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1296   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1297   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1298   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1299   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1300   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1301   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1302   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1303   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1304   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1305   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1306   case PPCISD::VCMP:            return "PPCISD::VCMP";
1307   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1308   case PPCISD::LBRX:            return "PPCISD::LBRX";
1309   case PPCISD::STBRX:           return "PPCISD::STBRX";
1310   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1311   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1312   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1313   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1314   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1315   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1316   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1317   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1318   case PPCISD::ST_VSR_SCAL_INT:
1319                                 return "PPCISD::ST_VSR_SCAL_INT";
1320   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1321   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1322   case PPCISD::BDZ:             return "PPCISD::BDZ";
1323   case PPCISD::MFFS:            return "PPCISD::MFFS";
1324   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1325   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1326   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1327   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1328   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1329   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1330   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1331   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1332   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1333   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1334   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1335   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1336   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1337   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1338   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1339   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1340   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1341   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1342   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1343   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1344   case PPCISD::SC:              return "PPCISD::SC";
1345   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1346   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1347   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1348   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1349   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1350   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1351   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1352   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1353   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1354   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1355   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1356   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1357   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1358   }
1359   return nullptr;
1360 }
1361 
1362 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1363                                           EVT VT) const {
1364   if (!VT.isVector())
1365     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1366 
1367   if (Subtarget.hasQPX())
1368     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1369 
1370   return VT.changeVectorElementTypeToInteger();
1371 }
1372 
1373 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1374   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1375   return true;
1376 }
1377 
1378 //===----------------------------------------------------------------------===//
1379 // Node matching predicates, for use by the tblgen matching code.
1380 //===----------------------------------------------------------------------===//
1381 
1382 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1383 static bool isFloatingPointZero(SDValue Op) {
1384   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1385     return CFP->getValueAPF().isZero();
1386   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1387     // Maybe this has already been legalized into the constant pool?
1388     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1389       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1390         return CFP->getValueAPF().isZero();
1391   }
1392   return false;
1393 }
1394 
1395 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1396 /// true if Op is undef or if it matches the specified value.
1397 static bool isConstantOrUndef(int Op, int Val) {
1398   return Op < 0 || Op == Val;
1399 }
1400 
1401 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1402 /// VPKUHUM instruction.
1403 /// The ShuffleKind distinguishes between big-endian operations with
1404 /// two different inputs (0), either-endian operations with two identical
1405 /// inputs (1), and little-endian operations with two different inputs (2).
1406 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1407 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1408                                SelectionDAG &DAG) {
1409   bool IsLE = DAG.getDataLayout().isLittleEndian();
1410   if (ShuffleKind == 0) {
1411     if (IsLE)
1412       return false;
1413     for (unsigned i = 0; i != 16; ++i)
1414       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1415         return false;
1416   } else if (ShuffleKind == 2) {
1417     if (!IsLE)
1418       return false;
1419     for (unsigned i = 0; i != 16; ++i)
1420       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1421         return false;
1422   } else if (ShuffleKind == 1) {
1423     unsigned j = IsLE ? 0 : 1;
1424     for (unsigned i = 0; i != 8; ++i)
1425       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1426           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1427         return false;
1428   }
1429   return true;
1430 }
1431 
1432 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1433 /// VPKUWUM instruction.
1434 /// The ShuffleKind distinguishes between big-endian operations with
1435 /// two different inputs (0), either-endian operations with two identical
1436 /// inputs (1), and little-endian operations with two different inputs (2).
1437 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1438 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1439                                SelectionDAG &DAG) {
1440   bool IsLE = DAG.getDataLayout().isLittleEndian();
1441   if (ShuffleKind == 0) {
1442     if (IsLE)
1443       return false;
1444     for (unsigned i = 0; i != 16; i += 2)
1445       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1446           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1447         return false;
1448   } else if (ShuffleKind == 2) {
1449     if (!IsLE)
1450       return false;
1451     for (unsigned i = 0; i != 16; i += 2)
1452       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1453           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1454         return false;
1455   } else if (ShuffleKind == 1) {
1456     unsigned j = IsLE ? 0 : 2;
1457     for (unsigned i = 0; i != 8; i += 2)
1458       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1459           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1460           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1461           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1462         return false;
1463   }
1464   return true;
1465 }
1466 
1467 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1468 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1469 /// current subtarget.
1470 ///
1471 /// The ShuffleKind distinguishes between big-endian operations with
1472 /// two different inputs (0), either-endian operations with two identical
1473 /// inputs (1), and little-endian operations with two different inputs (2).
1474 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1475 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1476                                SelectionDAG &DAG) {
1477   const PPCSubtarget& Subtarget =
1478     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1479   if (!Subtarget.hasP8Vector())
1480     return false;
1481 
1482   bool IsLE = DAG.getDataLayout().isLittleEndian();
1483   if (ShuffleKind == 0) {
1484     if (IsLE)
1485       return false;
1486     for (unsigned i = 0; i != 16; i += 4)
1487       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1488           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1489           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1490           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1491         return false;
1492   } else if (ShuffleKind == 2) {
1493     if (!IsLE)
1494       return false;
1495     for (unsigned i = 0; i != 16; i += 4)
1496       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1497           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1498           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1499           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1500         return false;
1501   } else if (ShuffleKind == 1) {
1502     unsigned j = IsLE ? 0 : 4;
1503     for (unsigned i = 0; i != 8; i += 4)
1504       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1505           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1506           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1507           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1508           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1509           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1510           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1511           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1512         return false;
1513   }
1514   return true;
1515 }
1516 
1517 /// isVMerge - Common function, used to match vmrg* shuffles.
1518 ///
1519 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1520                      unsigned LHSStart, unsigned RHSStart) {
1521   if (N->getValueType(0) != MVT::v16i8)
1522     return false;
1523   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1524          "Unsupported merge size!");
1525 
1526   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1527     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1528       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1529                              LHSStart+j+i*UnitSize) ||
1530           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1531                              RHSStart+j+i*UnitSize))
1532         return false;
1533     }
1534   return true;
1535 }
1536 
1537 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1538 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1539 /// The ShuffleKind distinguishes between big-endian merges with two
1540 /// different inputs (0), either-endian merges with two identical inputs (1),
1541 /// and little-endian merges with two different inputs (2).  For the latter,
1542 /// the input operands are swapped (see PPCInstrAltivec.td).
1543 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1544                              unsigned ShuffleKind, SelectionDAG &DAG) {
1545   if (DAG.getDataLayout().isLittleEndian()) {
1546     if (ShuffleKind == 1) // unary
1547       return isVMerge(N, UnitSize, 0, 0);
1548     else if (ShuffleKind == 2) // swapped
1549       return isVMerge(N, UnitSize, 0, 16);
1550     else
1551       return false;
1552   } else {
1553     if (ShuffleKind == 1) // unary
1554       return isVMerge(N, UnitSize, 8, 8);
1555     else if (ShuffleKind == 0) // normal
1556       return isVMerge(N, UnitSize, 8, 24);
1557     else
1558       return false;
1559   }
1560 }
1561 
1562 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1563 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1564 /// The ShuffleKind distinguishes between big-endian merges with two
1565 /// different inputs (0), either-endian merges with two identical inputs (1),
1566 /// and little-endian merges with two different inputs (2).  For the latter,
1567 /// the input operands are swapped (see PPCInstrAltivec.td).
1568 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1569                              unsigned ShuffleKind, SelectionDAG &DAG) {
1570   if (DAG.getDataLayout().isLittleEndian()) {
1571     if (ShuffleKind == 1) // unary
1572       return isVMerge(N, UnitSize, 8, 8);
1573     else if (ShuffleKind == 2) // swapped
1574       return isVMerge(N, UnitSize, 8, 24);
1575     else
1576       return false;
1577   } else {
1578     if (ShuffleKind == 1) // unary
1579       return isVMerge(N, UnitSize, 0, 0);
1580     else if (ShuffleKind == 0) // normal
1581       return isVMerge(N, UnitSize, 0, 16);
1582     else
1583       return false;
1584   }
1585 }
1586 
1587 /**
1588  * Common function used to match vmrgew and vmrgow shuffles
1589  *
1590  * The indexOffset determines whether to look for even or odd words in
1591  * the shuffle mask. This is based on the of the endianness of the target
1592  * machine.
1593  *   - Little Endian:
1594  *     - Use offset of 0 to check for odd elements
1595  *     - Use offset of 4 to check for even elements
1596  *   - Big Endian:
1597  *     - Use offset of 0 to check for even elements
1598  *     - Use offset of 4 to check for odd elements
1599  * A detailed description of the vector element ordering for little endian and
1600  * big endian can be found at
1601  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1602  * Targeting your applications - what little endian and big endian IBM XL C/C++
1603  * compiler differences mean to you
1604  *
1605  * The mask to the shuffle vector instruction specifies the indices of the
1606  * elements from the two input vectors to place in the result. The elements are
1607  * numbered in array-access order, starting with the first vector. These vectors
1608  * are always of type v16i8, thus each vector will contain 16 elements of size
1609  * 8. More info on the shuffle vector can be found in the
1610  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1611  * Language Reference.
1612  *
1613  * The RHSStartValue indicates whether the same input vectors are used (unary)
1614  * or two different input vectors are used, based on the following:
1615  *   - If the instruction uses the same vector for both inputs, the range of the
1616  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1617  *     be 0.
1618  *   - If the instruction has two different vectors then the range of the
1619  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1620  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1621  *     to 31 specify elements in the second vector).
1622  *
1623  * \param[in] N The shuffle vector SD Node to analyze
1624  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1625  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1626  * vector to the shuffle_vector instruction
1627  * \return true iff this shuffle vector represents an even or odd word merge
1628  */
1629 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1630                      unsigned RHSStartValue) {
1631   if (N->getValueType(0) != MVT::v16i8)
1632     return false;
1633 
1634   for (unsigned i = 0; i < 2; ++i)
1635     for (unsigned j = 0; j < 4; ++j)
1636       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1637                              i*RHSStartValue+j+IndexOffset) ||
1638           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1639                              i*RHSStartValue+j+IndexOffset+8))
1640         return false;
1641   return true;
1642 }
1643 
1644 /**
1645  * Determine if the specified shuffle mask is suitable for the vmrgew or
1646  * vmrgow instructions.
1647  *
1648  * \param[in] N The shuffle vector SD Node to analyze
1649  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1650  * \param[in] ShuffleKind Identify the type of merge:
1651  *   - 0 = big-endian merge with two different inputs;
1652  *   - 1 = either-endian merge with two identical inputs;
1653  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1654  *     little-endian merges).
1655  * \param[in] DAG The current SelectionDAG
1656  * \return true iff this shuffle mask
1657  */
1658 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1659                               unsigned ShuffleKind, SelectionDAG &DAG) {
1660   if (DAG.getDataLayout().isLittleEndian()) {
1661     unsigned indexOffset = CheckEven ? 4 : 0;
1662     if (ShuffleKind == 1) // Unary
1663       return isVMerge(N, indexOffset, 0);
1664     else if (ShuffleKind == 2) // swapped
1665       return isVMerge(N, indexOffset, 16);
1666     else
1667       return false;
1668   }
1669   else {
1670     unsigned indexOffset = CheckEven ? 0 : 4;
1671     if (ShuffleKind == 1) // Unary
1672       return isVMerge(N, indexOffset, 0);
1673     else if (ShuffleKind == 0) // Normal
1674       return isVMerge(N, indexOffset, 16);
1675     else
1676       return false;
1677   }
1678   return false;
1679 }
1680 
1681 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1682 /// amount, otherwise return -1.
1683 /// The ShuffleKind distinguishes between big-endian operations with two
1684 /// different inputs (0), either-endian operations with two identical inputs
1685 /// (1), and little-endian operations with two different inputs (2).  For the
1686 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1687 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1688                              SelectionDAG &DAG) {
1689   if (N->getValueType(0) != MVT::v16i8)
1690     return -1;
1691 
1692   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1693 
1694   // Find the first non-undef value in the shuffle mask.
1695   unsigned i;
1696   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1697     /*search*/;
1698 
1699   if (i == 16) return -1;  // all undef.
1700 
1701   // Otherwise, check to see if the rest of the elements are consecutively
1702   // numbered from this value.
1703   unsigned ShiftAmt = SVOp->getMaskElt(i);
1704   if (ShiftAmt < i) return -1;
1705 
1706   ShiftAmt -= i;
1707   bool isLE = DAG.getDataLayout().isLittleEndian();
1708 
1709   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1710     // Check the rest of the elements to see if they are consecutive.
1711     for (++i; i != 16; ++i)
1712       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1713         return -1;
1714   } else if (ShuffleKind == 1) {
1715     // Check the rest of the elements to see if they are consecutive.
1716     for (++i; i != 16; ++i)
1717       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1718         return -1;
1719   } else
1720     return -1;
1721 
1722   if (isLE)
1723     ShiftAmt = 16 - ShiftAmt;
1724 
1725   return ShiftAmt;
1726 }
1727 
1728 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1729 /// specifies a splat of a single element that is suitable for input to
1730 /// VSPLTB/VSPLTH/VSPLTW.
1731 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1732   assert(N->getValueType(0) == MVT::v16i8 &&
1733          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1734 
1735   // The consecutive indices need to specify an element, not part of two
1736   // different elements.  So abandon ship early if this isn't the case.
1737   if (N->getMaskElt(0) % EltSize != 0)
1738     return false;
1739 
1740   // This is a splat operation if each element of the permute is the same, and
1741   // if the value doesn't reference the second vector.
1742   unsigned ElementBase = N->getMaskElt(0);
1743 
1744   // FIXME: Handle UNDEF elements too!
1745   if (ElementBase >= 16)
1746     return false;
1747 
1748   // Check that the indices are consecutive, in the case of a multi-byte element
1749   // splatted with a v16i8 mask.
1750   for (unsigned i = 1; i != EltSize; ++i)
1751     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1752       return false;
1753 
1754   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1755     if (N->getMaskElt(i) < 0) continue;
1756     for (unsigned j = 0; j != EltSize; ++j)
1757       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1758         return false;
1759   }
1760   return true;
1761 }
1762 
1763 /// Check that the mask is shuffling N byte elements. Within each N byte
1764 /// element of the mask, the indices could be either in increasing or
1765 /// decreasing order as long as they are consecutive.
1766 /// \param[in] N the shuffle vector SD Node to analyze
1767 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1768 /// Word/DoubleWord/QuadWord).
1769 /// \param[in] StepLen the delta indices number among the N byte element, if
1770 /// the mask is in increasing/decreasing order then it is 1/-1.
1771 /// \return true iff the mask is shuffling N byte elements.
1772 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1773                                    int StepLen) {
1774   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1775          "Unexpected element width.");
1776   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1777 
1778   unsigned NumOfElem = 16 / Width;
1779   unsigned MaskVal[16]; //  Width is never greater than 16
1780   for (unsigned i = 0; i < NumOfElem; ++i) {
1781     MaskVal[0] = N->getMaskElt(i * Width);
1782     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1783       return false;
1784     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1785       return false;
1786     }
1787 
1788     for (unsigned int j = 1; j < Width; ++j) {
1789       MaskVal[j] = N->getMaskElt(i * Width + j);
1790       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1791         return false;
1792       }
1793     }
1794   }
1795 
1796   return true;
1797 }
1798 
1799 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1800                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1801   if (!isNByteElemShuffleMask(N, 4, 1))
1802     return false;
1803 
1804   // Now we look at mask elements 0,4,8,12
1805   unsigned M0 = N->getMaskElt(0) / 4;
1806   unsigned M1 = N->getMaskElt(4) / 4;
1807   unsigned M2 = N->getMaskElt(8) / 4;
1808   unsigned M3 = N->getMaskElt(12) / 4;
1809   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1810   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1811 
1812   // Below, let H and L be arbitrary elements of the shuffle mask
1813   // where H is in the range [4,7] and L is in the range [0,3].
1814   // H, 1, 2, 3 or L, 5, 6, 7
1815   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1816       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1817     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1818     InsertAtByte = IsLE ? 12 : 0;
1819     Swap = M0 < 4;
1820     return true;
1821   }
1822   // 0, H, 2, 3 or 4, L, 6, 7
1823   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1824       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1825     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1826     InsertAtByte = IsLE ? 8 : 4;
1827     Swap = M1 < 4;
1828     return true;
1829   }
1830   // 0, 1, H, 3 or 4, 5, L, 7
1831   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1832       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1833     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1834     InsertAtByte = IsLE ? 4 : 8;
1835     Swap = M2 < 4;
1836     return true;
1837   }
1838   // 0, 1, 2, H or 4, 5, 6, L
1839   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1840       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1841     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1842     InsertAtByte = IsLE ? 0 : 12;
1843     Swap = M3 < 4;
1844     return true;
1845   }
1846 
1847   // If both vector operands for the shuffle are the same vector, the mask will
1848   // contain only elements from the first one and the second one will be undef.
1849   if (N->getOperand(1).isUndef()) {
1850     ShiftElts = 0;
1851     Swap = true;
1852     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1853     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1854       InsertAtByte = IsLE ? 12 : 0;
1855       return true;
1856     }
1857     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1858       InsertAtByte = IsLE ? 8 : 4;
1859       return true;
1860     }
1861     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1862       InsertAtByte = IsLE ? 4 : 8;
1863       return true;
1864     }
1865     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1866       InsertAtByte = IsLE ? 0 : 12;
1867       return true;
1868     }
1869   }
1870 
1871   return false;
1872 }
1873 
1874 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1875                                bool &Swap, bool IsLE) {
1876   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1877   // Ensure each byte index of the word is consecutive.
1878   if (!isNByteElemShuffleMask(N, 4, 1))
1879     return false;
1880 
1881   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1882   unsigned M0 = N->getMaskElt(0) / 4;
1883   unsigned M1 = N->getMaskElt(4) / 4;
1884   unsigned M2 = N->getMaskElt(8) / 4;
1885   unsigned M3 = N->getMaskElt(12) / 4;
1886 
1887   // If both vector operands for the shuffle are the same vector, the mask will
1888   // contain only elements from the first one and the second one will be undef.
1889   if (N->getOperand(1).isUndef()) {
1890     assert(M0 < 4 && "Indexing into an undef vector?");
1891     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1892       return false;
1893 
1894     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1895     Swap = false;
1896     return true;
1897   }
1898 
1899   // Ensure each word index of the ShuffleVector Mask is consecutive.
1900   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1901     return false;
1902 
1903   if (IsLE) {
1904     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1905       // Input vectors don't need to be swapped if the leading element
1906       // of the result is one of the 3 left elements of the second vector
1907       // (or if there is no shift to be done at all).
1908       Swap = false;
1909       ShiftElts = (8 - M0) % 8;
1910     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1911       // Input vectors need to be swapped if the leading element
1912       // of the result is one of the 3 left elements of the first vector
1913       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1914       Swap = true;
1915       ShiftElts = (4 - M0) % 4;
1916     }
1917 
1918     return true;
1919   } else {                                          // BE
1920     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1921       // Input vectors don't need to be swapped if the leading element
1922       // of the result is one of the 4 elements of the first vector.
1923       Swap = false;
1924       ShiftElts = M0;
1925     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1926       // Input vectors need to be swapped if the leading element
1927       // of the result is one of the 4 elements of the right vector.
1928       Swap = true;
1929       ShiftElts = M0 - 4;
1930     }
1931 
1932     return true;
1933   }
1934 }
1935 
1936 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1937   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1938 
1939   if (!isNByteElemShuffleMask(N, Width, -1))
1940     return false;
1941 
1942   for (int i = 0; i < 16; i += Width)
1943     if (N->getMaskElt(i) != i + Width - 1)
1944       return false;
1945 
1946   return true;
1947 }
1948 
1949 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1950   return isXXBRShuffleMaskHelper(N, 2);
1951 }
1952 
1953 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1954   return isXXBRShuffleMaskHelper(N, 4);
1955 }
1956 
1957 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1958   return isXXBRShuffleMaskHelper(N, 8);
1959 }
1960 
1961 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1962   return isXXBRShuffleMaskHelper(N, 16);
1963 }
1964 
1965 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1966 /// if the inputs to the instruction should be swapped and set \p DM to the
1967 /// value for the immediate.
1968 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1969 /// AND element 0 of the result comes from the first input (LE) or second input
1970 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1971 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1972 /// mask.
1973 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1974                                bool &Swap, bool IsLE) {
1975   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1976 
1977   // Ensure each byte index of the double word is consecutive.
1978   if (!isNByteElemShuffleMask(N, 8, 1))
1979     return false;
1980 
1981   unsigned M0 = N->getMaskElt(0) / 8;
1982   unsigned M1 = N->getMaskElt(8) / 8;
1983   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1984 
1985   // If both vector operands for the shuffle are the same vector, the mask will
1986   // contain only elements from the first one and the second one will be undef.
1987   if (N->getOperand(1).isUndef()) {
1988     if ((M0 | M1) < 2) {
1989       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1990       Swap = false;
1991       return true;
1992     } else
1993       return false;
1994   }
1995 
1996   if (IsLE) {
1997     if (M0 > 1 && M1 < 2) {
1998       Swap = false;
1999     } else if (M0 < 2 && M1 > 1) {
2000       M0 = (M0 + 2) % 4;
2001       M1 = (M1 + 2) % 4;
2002       Swap = true;
2003     } else
2004       return false;
2005 
2006     // Note: if control flow comes here that means Swap is already set above
2007     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2008     return true;
2009   } else { // BE
2010     if (M0 < 2 && M1 > 1) {
2011       Swap = false;
2012     } else if (M0 > 1 && M1 < 2) {
2013       M0 = (M0 + 2) % 4;
2014       M1 = (M1 + 2) % 4;
2015       Swap = true;
2016     } else
2017       return false;
2018 
2019     // Note: if control flow comes here that means Swap is already set above
2020     DM = (M0 << 1) + (M1 & 1);
2021     return true;
2022   }
2023 }
2024 
2025 
2026 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2027 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2028 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2029                                 SelectionDAG &DAG) {
2030   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2031   assert(isSplatShuffleMask(SVOp, EltSize));
2032   if (DAG.getDataLayout().isLittleEndian())
2033     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2034   else
2035     return SVOp->getMaskElt(0) / EltSize;
2036 }
2037 
2038 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2039 /// by using a vspltis[bhw] instruction of the specified element size, return
2040 /// the constant being splatted.  The ByteSize field indicates the number of
2041 /// bytes of each element [124] -> [bhw].
2042 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2043   SDValue OpVal(nullptr, 0);
2044 
2045   // If ByteSize of the splat is bigger than the element size of the
2046   // build_vector, then we have a case where we are checking for a splat where
2047   // multiple elements of the buildvector are folded together into a single
2048   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2049   unsigned EltSize = 16/N->getNumOperands();
2050   if (EltSize < ByteSize) {
2051     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2052     SDValue UniquedVals[4];
2053     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2054 
2055     // See if all of the elements in the buildvector agree across.
2056     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2057       if (N->getOperand(i).isUndef()) continue;
2058       // If the element isn't a constant, bail fully out.
2059       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2060 
2061       if (!UniquedVals[i&(Multiple-1)].getNode())
2062         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2063       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2064         return SDValue();  // no match.
2065     }
2066 
2067     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2068     // either constant or undef values that are identical for each chunk.  See
2069     // if these chunks can form into a larger vspltis*.
2070 
2071     // Check to see if all of the leading entries are either 0 or -1.  If
2072     // neither, then this won't fit into the immediate field.
2073     bool LeadingZero = true;
2074     bool LeadingOnes = true;
2075     for (unsigned i = 0; i != Multiple-1; ++i) {
2076       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2077 
2078       LeadingZero &= isNullConstant(UniquedVals[i]);
2079       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2080     }
2081     // Finally, check the least significant entry.
2082     if (LeadingZero) {
2083       if (!UniquedVals[Multiple-1].getNode())
2084         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2085       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2086       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2087         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2088     }
2089     if (LeadingOnes) {
2090       if (!UniquedVals[Multiple-1].getNode())
2091         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2092       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2093       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2094         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2095     }
2096 
2097     return SDValue();
2098   }
2099 
2100   // Check to see if this buildvec has a single non-undef value in its elements.
2101   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2102     if (N->getOperand(i).isUndef()) continue;
2103     if (!OpVal.getNode())
2104       OpVal = N->getOperand(i);
2105     else if (OpVal != N->getOperand(i))
2106       return SDValue();
2107   }
2108 
2109   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2110 
2111   unsigned ValSizeInBytes = EltSize;
2112   uint64_t Value = 0;
2113   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2114     Value = CN->getZExtValue();
2115   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2116     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2117     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2118   }
2119 
2120   // If the splat value is larger than the element value, then we can never do
2121   // this splat.  The only case that we could fit the replicated bits into our
2122   // immediate field for would be zero, and we prefer to use vxor for it.
2123   if (ValSizeInBytes < ByteSize) return SDValue();
2124 
2125   // If the element value is larger than the splat value, check if it consists
2126   // of a repeated bit pattern of size ByteSize.
2127   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2128     return SDValue();
2129 
2130   // Properly sign extend the value.
2131   int MaskVal = SignExtend32(Value, ByteSize * 8);
2132 
2133   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2134   if (MaskVal == 0) return SDValue();
2135 
2136   // Finally, if this value fits in a 5 bit sext field, return it
2137   if (SignExtend32<5>(MaskVal) == MaskVal)
2138     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2139   return SDValue();
2140 }
2141 
2142 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2143 /// amount, otherwise return -1.
2144 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2145   EVT VT = N->getValueType(0);
2146   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2147     return -1;
2148 
2149   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2150 
2151   // Find the first non-undef value in the shuffle mask.
2152   unsigned i;
2153   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2154     /*search*/;
2155 
2156   if (i == 4) return -1;  // all undef.
2157 
2158   // Otherwise, check to see if the rest of the elements are consecutively
2159   // numbered from this value.
2160   unsigned ShiftAmt = SVOp->getMaskElt(i);
2161   if (ShiftAmt < i) return -1;
2162   ShiftAmt -= i;
2163 
2164   // Check the rest of the elements to see if they are consecutive.
2165   for (++i; i != 4; ++i)
2166     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2167       return -1;
2168 
2169   return ShiftAmt;
2170 }
2171 
2172 //===----------------------------------------------------------------------===//
2173 //  Addressing Mode Selection
2174 //===----------------------------------------------------------------------===//
2175 
2176 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2177 /// or 64-bit immediate, and if the value can be accurately represented as a
2178 /// sign extension from a 16-bit value.  If so, this returns true and the
2179 /// immediate.
2180 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2181   if (!isa<ConstantSDNode>(N))
2182     return false;
2183 
2184   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2185   if (N->getValueType(0) == MVT::i32)
2186     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2187   else
2188     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2189 }
2190 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2191   return isIntS16Immediate(Op.getNode(), Imm);
2192 }
2193 
2194 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2195 /// can be represented as an indexed [r+r] operation.  Returns false if it
2196 /// can be more efficiently represented with [r+imm].
2197 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2198                                             SDValue &Index,
2199                                             SelectionDAG &DAG) const {
2200   int16_t imm = 0;
2201   if (N.getOpcode() == ISD::ADD) {
2202     if (isIntS16Immediate(N.getOperand(1), imm))
2203       return false;    // r+i
2204     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2205       return false;    // r+i
2206 
2207     Base = N.getOperand(0);
2208     Index = N.getOperand(1);
2209     return true;
2210   } else if (N.getOpcode() == ISD::OR) {
2211     if (isIntS16Immediate(N.getOperand(1), imm))
2212       return false;    // r+i can fold it if we can.
2213 
2214     // If this is an or of disjoint bitfields, we can codegen this as an add
2215     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2216     // disjoint.
2217     KnownBits LHSKnown, RHSKnown;
2218     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2219 
2220     if (LHSKnown.Zero.getBoolValue()) {
2221       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2222       // If all of the bits are known zero on the LHS or RHS, the add won't
2223       // carry.
2224       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2225         Base = N.getOperand(0);
2226         Index = N.getOperand(1);
2227         return true;
2228       }
2229     }
2230   }
2231 
2232   return false;
2233 }
2234 
2235 // If we happen to be doing an i64 load or store into a stack slot that has
2236 // less than a 4-byte alignment, then the frame-index elimination may need to
2237 // use an indexed load or store instruction (because the offset may not be a
2238 // multiple of 4). The extra register needed to hold the offset comes from the
2239 // register scavenger, and it is possible that the scavenger will need to use
2240 // an emergency spill slot. As a result, we need to make sure that a spill slot
2241 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2242 // stack slot.
2243 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2244   // FIXME: This does not handle the LWA case.
2245   if (VT != MVT::i64)
2246     return;
2247 
2248   // NOTE: We'll exclude negative FIs here, which come from argument
2249   // lowering, because there are no known test cases triggering this problem
2250   // using packed structures (or similar). We can remove this exclusion if
2251   // we find such a test case. The reason why this is so test-case driven is
2252   // because this entire 'fixup' is only to prevent crashes (from the
2253   // register scavenger) on not-really-valid inputs. For example, if we have:
2254   //   %a = alloca i1
2255   //   %b = bitcast i1* %a to i64*
2256   //   store i64* a, i64 b
2257   // then the store should really be marked as 'align 1', but is not. If it
2258   // were marked as 'align 1' then the indexed form would have been
2259   // instruction-selected initially, and the problem this 'fixup' is preventing
2260   // won't happen regardless.
2261   if (FrameIdx < 0)
2262     return;
2263 
2264   MachineFunction &MF = DAG.getMachineFunction();
2265   MachineFrameInfo &MFI = MF.getFrameInfo();
2266 
2267   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2268   if (Align >= 4)
2269     return;
2270 
2271   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2272   FuncInfo->setHasNonRISpills();
2273 }
2274 
2275 /// Returns true if the address N can be represented by a base register plus
2276 /// a signed 16-bit displacement [r+imm], and if it is not better
2277 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2278 /// displacements that are multiples of that value.
2279 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2280                                             SDValue &Base,
2281                                             SelectionDAG &DAG,
2282                                             unsigned Alignment) const {
2283   // FIXME dl should come from parent load or store, not from address
2284   SDLoc dl(N);
2285   // If this can be more profitably realized as r+r, fail.
2286   if (SelectAddressRegReg(N, Disp, Base, DAG))
2287     return false;
2288 
2289   if (N.getOpcode() == ISD::ADD) {
2290     int16_t imm = 0;
2291     if (isIntS16Immediate(N.getOperand(1), imm) &&
2292         (!Alignment || (imm % Alignment) == 0)) {
2293       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2294       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2295         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2296         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2297       } else {
2298         Base = N.getOperand(0);
2299       }
2300       return true; // [r+i]
2301     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2302       // Match LOAD (ADD (X, Lo(G))).
2303       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2304              && "Cannot handle constant offsets yet!");
2305       Disp = N.getOperand(1).getOperand(0);  // The global address.
2306       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2307              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2308              Disp.getOpcode() == ISD::TargetConstantPool ||
2309              Disp.getOpcode() == ISD::TargetJumpTable);
2310       Base = N.getOperand(0);
2311       return true;  // [&g+r]
2312     }
2313   } else if (N.getOpcode() == ISD::OR) {
2314     int16_t imm = 0;
2315     if (isIntS16Immediate(N.getOperand(1), imm) &&
2316         (!Alignment || (imm % Alignment) == 0)) {
2317       // If this is an or of disjoint bitfields, we can codegen this as an add
2318       // (for better address arithmetic) if the LHS and RHS of the OR are
2319       // provably disjoint.
2320       KnownBits LHSKnown;
2321       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2322 
2323       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2324         // If all of the bits are known zero on the LHS or RHS, the add won't
2325         // carry.
2326         if (FrameIndexSDNode *FI =
2327               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2328           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2329           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2330         } else {
2331           Base = N.getOperand(0);
2332         }
2333         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2334         return true;
2335       }
2336     }
2337   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2338     // Loading from a constant address.
2339 
2340     // If this address fits entirely in a 16-bit sext immediate field, codegen
2341     // this as "d, 0"
2342     int16_t Imm;
2343     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2344       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2345       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2346                              CN->getValueType(0));
2347       return true;
2348     }
2349 
2350     // Handle 32-bit sext immediates with LIS + addr mode.
2351     if ((CN->getValueType(0) == MVT::i32 ||
2352          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2353         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2354       int Addr = (int)CN->getZExtValue();
2355 
2356       // Otherwise, break this down into an LIS + disp.
2357       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2358 
2359       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2360                                    MVT::i32);
2361       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2362       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2363       return true;
2364     }
2365   }
2366 
2367   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2368   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2369     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2370     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2371   } else
2372     Base = N;
2373   return true;      // [r+0]
2374 }
2375 
2376 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2377 /// represented as an indexed [r+r] operation.
2378 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2379                                                 SDValue &Index,
2380                                                 SelectionDAG &DAG) const {
2381   // Check to see if we can easily represent this as an [r+r] address.  This
2382   // will fail if it thinks that the address is more profitably represented as
2383   // reg+imm, e.g. where imm = 0.
2384   if (SelectAddressRegReg(N, Base, Index, DAG))
2385     return true;
2386 
2387   // If the address is the result of an add, we will utilize the fact that the
2388   // address calculation includes an implicit add.  However, we can reduce
2389   // register pressure if we do not materialize a constant just for use as the
2390   // index register.  We only get rid of the add if it is not an add of a
2391   // value and a 16-bit signed constant and both have a single use.
2392   int16_t imm = 0;
2393   if (N.getOpcode() == ISD::ADD &&
2394       (!isIntS16Immediate(N.getOperand(1), imm) ||
2395        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2396     Base = N.getOperand(0);
2397     Index = N.getOperand(1);
2398     return true;
2399   }
2400 
2401   // Otherwise, do it the hard way, using R0 as the base register.
2402   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2403                          N.getValueType());
2404   Index = N;
2405   return true;
2406 }
2407 
2408 /// Returns true if we should use a direct load into vector instruction
2409 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2410 static bool usePartialVectorLoads(SDNode *N) {
2411   if (!N->hasOneUse())
2412     return false;
2413 
2414   // If there are any other uses other than scalar to vector, then we should
2415   // keep it as a scalar load -> direct move pattern to prevent multiple
2416   // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
2417   // efficiently, but no update equivalent.
2418   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2419     EVT MemVT = LD->getMemoryVT();
2420     if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
2421       SDNode *User = *(LD->use_begin());
2422       if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
2423         return true;
2424     }
2425   }
2426 
2427   return false;
2428 }
2429 
2430 /// getPreIndexedAddressParts - returns true by value, base pointer and
2431 /// offset pointer and addressing mode by reference if the node's address
2432 /// can be legally represented as pre-indexed load / store address.
2433 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2434                                                   SDValue &Offset,
2435                                                   ISD::MemIndexedMode &AM,
2436                                                   SelectionDAG &DAG) const {
2437   if (DisablePPCPreinc) return false;
2438 
2439   bool isLoad = true;
2440   SDValue Ptr;
2441   EVT VT;
2442   unsigned Alignment;
2443   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2444     Ptr = LD->getBasePtr();
2445     VT = LD->getMemoryVT();
2446     Alignment = LD->getAlignment();
2447   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2448     Ptr = ST->getBasePtr();
2449     VT  = ST->getMemoryVT();
2450     Alignment = ST->getAlignment();
2451     isLoad = false;
2452   } else
2453     return false;
2454 
2455   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2456   // instructions because we can fold these into a more efficient instruction
2457   // instead, (such as LXSD).
2458   if (isLoad && usePartialVectorLoads(N)) {
2459     return false;
2460   }
2461 
2462   // PowerPC doesn't have preinc load/store instructions for vectors (except
2463   // for QPX, which does have preinc r+r forms).
2464   if (VT.isVector()) {
2465     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2466       return false;
2467     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2468       AM = ISD::PRE_INC;
2469       return true;
2470     }
2471   }
2472 
2473   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2474     // Common code will reject creating a pre-inc form if the base pointer
2475     // is a frame index, or if N is a store and the base pointer is either
2476     // the same as or a predecessor of the value being stored.  Check for
2477     // those situations here, and try with swapped Base/Offset instead.
2478     bool Swap = false;
2479 
2480     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2481       Swap = true;
2482     else if (!isLoad) {
2483       SDValue Val = cast<StoreSDNode>(N)->getValue();
2484       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2485         Swap = true;
2486     }
2487 
2488     if (Swap)
2489       std::swap(Base, Offset);
2490 
2491     AM = ISD::PRE_INC;
2492     return true;
2493   }
2494 
2495   // LDU/STU can only handle immediates that are a multiple of 4.
2496   if (VT != MVT::i64) {
2497     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2498       return false;
2499   } else {
2500     // LDU/STU need an address with at least 4-byte alignment.
2501     if (Alignment < 4)
2502       return false;
2503 
2504     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2505       return false;
2506   }
2507 
2508   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2509     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2510     // sext i32 to i64 when addr mode is r+i.
2511     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2512         LD->getExtensionType() == ISD::SEXTLOAD &&
2513         isa<ConstantSDNode>(Offset))
2514       return false;
2515   }
2516 
2517   AM = ISD::PRE_INC;
2518   return true;
2519 }
2520 
2521 //===----------------------------------------------------------------------===//
2522 //  LowerOperation implementation
2523 //===----------------------------------------------------------------------===//
2524 
2525 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2526 /// and LoOpFlags to the target MO flags.
2527 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2528                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2529                                const GlobalValue *GV = nullptr) {
2530   HiOpFlags = PPCII::MO_HA;
2531   LoOpFlags = PPCII::MO_LO;
2532 
2533   // Don't use the pic base if not in PIC relocation model.
2534   if (IsPIC) {
2535     HiOpFlags |= PPCII::MO_PIC_FLAG;
2536     LoOpFlags |= PPCII::MO_PIC_FLAG;
2537   }
2538 
2539   // If this is a reference to a global value that requires a non-lazy-ptr, make
2540   // sure that instruction lowering adds it.
2541   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2542     HiOpFlags |= PPCII::MO_NLP_FLAG;
2543     LoOpFlags |= PPCII::MO_NLP_FLAG;
2544 
2545     if (GV->hasHiddenVisibility()) {
2546       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2547       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2548     }
2549   }
2550 }
2551 
2552 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2553                              SelectionDAG &DAG) {
2554   SDLoc DL(HiPart);
2555   EVT PtrVT = HiPart.getValueType();
2556   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2557 
2558   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2559   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2560 
2561   // With PIC, the first instruction is actually "GR+hi(&G)".
2562   if (isPIC)
2563     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2564                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2565 
2566   // Generate non-pic code that has direct accesses to the constant pool.
2567   // The address of the global is just (hi(&g)+lo(&g)).
2568   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2569 }
2570 
2571 static void setUsesTOCBasePtr(MachineFunction &MF) {
2572   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2573   FuncInfo->setUsesTOCBasePtr();
2574 }
2575 
2576 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2577   setUsesTOCBasePtr(DAG.getMachineFunction());
2578 }
2579 
2580 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2581                            SDValue GA) {
2582   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2583   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2584                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2585 
2586   SDValue Ops[] = { GA, Reg };
2587   return DAG.getMemIntrinsicNode(
2588       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2589       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2590       MachineMemOperand::MOLoad);
2591 }
2592 
2593 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2594                                              SelectionDAG &DAG) const {
2595   EVT PtrVT = Op.getValueType();
2596   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2597   const Constant *C = CP->getConstVal();
2598 
2599   // 64-bit SVR4 ABI code is always position-independent.
2600   // The actual address of the GlobalValue is stored in the TOC.
2601   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2602     setUsesTOCBasePtr(DAG);
2603     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2604     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2605   }
2606 
2607   unsigned MOHiFlag, MOLoFlag;
2608   bool IsPIC = isPositionIndependent();
2609   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2610 
2611   if (IsPIC && Subtarget.isSVR4ABI()) {
2612     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2613                                            PPCII::MO_PIC_FLAG);
2614     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2615   }
2616 
2617   SDValue CPIHi =
2618     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2619   SDValue CPILo =
2620     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2621   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2622 }
2623 
2624 // For 64-bit PowerPC, prefer the more compact relative encodings.
2625 // This trades 32 bits per jump table entry for one or two instructions
2626 // on the jump site.
2627 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2628   if (isJumpTableRelative())
2629     return MachineJumpTableInfo::EK_LabelDifference32;
2630 
2631   return TargetLowering::getJumpTableEncoding();
2632 }
2633 
2634 bool PPCTargetLowering::isJumpTableRelative() const {
2635   if (Subtarget.isPPC64())
2636     return true;
2637   return TargetLowering::isJumpTableRelative();
2638 }
2639 
2640 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2641                                                     SelectionDAG &DAG) const {
2642   if (!Subtarget.isPPC64())
2643     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2644 
2645   switch (getTargetMachine().getCodeModel()) {
2646   case CodeModel::Small:
2647   case CodeModel::Medium:
2648     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2649   default:
2650     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2651                        getPointerTy(DAG.getDataLayout()));
2652   }
2653 }
2654 
2655 const MCExpr *
2656 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2657                                                 unsigned JTI,
2658                                                 MCContext &Ctx) const {
2659   if (!Subtarget.isPPC64())
2660     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2661 
2662   switch (getTargetMachine().getCodeModel()) {
2663   case CodeModel::Small:
2664   case CodeModel::Medium:
2665     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2666   default:
2667     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2668   }
2669 }
2670 
2671 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2672   EVT PtrVT = Op.getValueType();
2673   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2674 
2675   // 64-bit SVR4 ABI code is always position-independent.
2676   // The actual address of the GlobalValue is stored in the TOC.
2677   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2678     setUsesTOCBasePtr(DAG);
2679     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2680     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2681   }
2682 
2683   unsigned MOHiFlag, MOLoFlag;
2684   bool IsPIC = isPositionIndependent();
2685   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2686 
2687   if (IsPIC && Subtarget.isSVR4ABI()) {
2688     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2689                                         PPCII::MO_PIC_FLAG);
2690     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2691   }
2692 
2693   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2694   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2695   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2696 }
2697 
2698 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2699                                              SelectionDAG &DAG) const {
2700   EVT PtrVT = Op.getValueType();
2701   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2702   const BlockAddress *BA = BASDN->getBlockAddress();
2703 
2704   // 64-bit SVR4 ABI code is always position-independent.
2705   // The actual BlockAddress is stored in the TOC.
2706   if (Subtarget.isSVR4ABI() &&
2707       (Subtarget.isPPC64() || isPositionIndependent())) {
2708     if (Subtarget.isPPC64())
2709       setUsesTOCBasePtr(DAG);
2710     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2711     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2712   }
2713 
2714   unsigned MOHiFlag, MOLoFlag;
2715   bool IsPIC = isPositionIndependent();
2716   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2717   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2718   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2719   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2720 }
2721 
2722 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2723                                               SelectionDAG &DAG) const {
2724   // FIXME: TLS addresses currently use medium model code sequences,
2725   // which is the most useful form.  Eventually support for small and
2726   // large models could be added if users need it, at the cost of
2727   // additional complexity.
2728   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2729   if (DAG.getTarget().useEmulatedTLS())
2730     return LowerToTLSEmulatedModel(GA, DAG);
2731 
2732   SDLoc dl(GA);
2733   const GlobalValue *GV = GA->getGlobal();
2734   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2735   bool is64bit = Subtarget.isPPC64();
2736   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2737   PICLevel::Level picLevel = M->getPICLevel();
2738 
2739   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2740 
2741   if (Model == TLSModel::LocalExec) {
2742     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2743                                                PPCII::MO_TPREL_HA);
2744     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2745                                                PPCII::MO_TPREL_LO);
2746     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2747                              : DAG.getRegister(PPC::R2, MVT::i32);
2748 
2749     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2750     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2751   }
2752 
2753   if (Model == TLSModel::InitialExec) {
2754     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2755     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2756                                                 PPCII::MO_TLS);
2757     SDValue GOTPtr;
2758     if (is64bit) {
2759       setUsesTOCBasePtr(DAG);
2760       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2761       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2762                            PtrVT, GOTReg, TGA);
2763     } else
2764       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2765     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2766                                    PtrVT, TGA, GOTPtr);
2767     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2768   }
2769 
2770   if (Model == TLSModel::GeneralDynamic) {
2771     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2772     SDValue GOTPtr;
2773     if (is64bit) {
2774       setUsesTOCBasePtr(DAG);
2775       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2776       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2777                                    GOTReg, TGA);
2778     } else {
2779       if (picLevel == PICLevel::SmallPIC)
2780         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2781       else
2782         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2783     }
2784     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2785                        GOTPtr, TGA, TGA);
2786   }
2787 
2788   if (Model == TLSModel::LocalDynamic) {
2789     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2790     SDValue GOTPtr;
2791     if (is64bit) {
2792       setUsesTOCBasePtr(DAG);
2793       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2794       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2795                            GOTReg, TGA);
2796     } else {
2797       if (picLevel == PICLevel::SmallPIC)
2798         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2799       else
2800         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2801     }
2802     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2803                                   PtrVT, GOTPtr, TGA, TGA);
2804     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2805                                       PtrVT, TLSAddr, TGA);
2806     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2807   }
2808 
2809   llvm_unreachable("Unknown TLS model!");
2810 }
2811 
2812 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2813                                               SelectionDAG &DAG) const {
2814   EVT PtrVT = Op.getValueType();
2815   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2816   SDLoc DL(GSDN);
2817   const GlobalValue *GV = GSDN->getGlobal();
2818 
2819   // 64-bit SVR4 ABI code is always position-independent.
2820   // The actual address of the GlobalValue is stored in the TOC.
2821   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2822     setUsesTOCBasePtr(DAG);
2823     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2824     return getTOCEntry(DAG, DL, true, GA);
2825   }
2826 
2827   unsigned MOHiFlag, MOLoFlag;
2828   bool IsPIC = isPositionIndependent();
2829   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2830 
2831   if (IsPIC && Subtarget.isSVR4ABI()) {
2832     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2833                                             GSDN->getOffset(),
2834                                             PPCII::MO_PIC_FLAG);
2835     return getTOCEntry(DAG, DL, false, GA);
2836   }
2837 
2838   SDValue GAHi =
2839     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2840   SDValue GALo =
2841     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2842 
2843   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2844 
2845   // If the global reference is actually to a non-lazy-pointer, we have to do an
2846   // extra load to get the address of the global.
2847   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2848     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2849   return Ptr;
2850 }
2851 
2852 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2853   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2854   SDLoc dl(Op);
2855 
2856   if (Op.getValueType() == MVT::v2i64) {
2857     // When the operands themselves are v2i64 values, we need to do something
2858     // special because VSX has no underlying comparison operations for these.
2859     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2860       // Equality can be handled by casting to the legal type for Altivec
2861       // comparisons, everything else needs to be expanded.
2862       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2863         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2864                  DAG.getSetCC(dl, MVT::v4i32,
2865                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2866                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2867                    CC));
2868       }
2869 
2870       return SDValue();
2871     }
2872 
2873     // We handle most of these in the usual way.
2874     return Op;
2875   }
2876 
2877   // If we're comparing for equality to zero, expose the fact that this is
2878   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2879   // fold the new nodes.
2880   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2881     return V;
2882 
2883   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2884     // Leave comparisons against 0 and -1 alone for now, since they're usually
2885     // optimized.  FIXME: revisit this when we can custom lower all setcc
2886     // optimizations.
2887     if (C->isAllOnesValue() || C->isNullValue())
2888       return SDValue();
2889   }
2890 
2891   // If we have an integer seteq/setne, turn it into a compare against zero
2892   // by xor'ing the rhs with the lhs, which is faster than setting a
2893   // condition register, reading it back out, and masking the correct bit.  The
2894   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2895   // the result to other bit-twiddling opportunities.
2896   EVT LHSVT = Op.getOperand(0).getValueType();
2897   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2898     EVT VT = Op.getValueType();
2899     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2900                                 Op.getOperand(1));
2901     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2902   }
2903   return SDValue();
2904 }
2905 
2906 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2907   SDNode *Node = Op.getNode();
2908   EVT VT = Node->getValueType(0);
2909   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2910   SDValue InChain = Node->getOperand(0);
2911   SDValue VAListPtr = Node->getOperand(1);
2912   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2913   SDLoc dl(Node);
2914 
2915   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2916 
2917   // gpr_index
2918   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2919                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2920   InChain = GprIndex.getValue(1);
2921 
2922   if (VT == MVT::i64) {
2923     // Check if GprIndex is even
2924     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2925                                  DAG.getConstant(1, dl, MVT::i32));
2926     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2927                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2928     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2929                                           DAG.getConstant(1, dl, MVT::i32));
2930     // Align GprIndex to be even if it isn't
2931     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2932                            GprIndex);
2933   }
2934 
2935   // fpr index is 1 byte after gpr
2936   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2937                                DAG.getConstant(1, dl, MVT::i32));
2938 
2939   // fpr
2940   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2941                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2942   InChain = FprIndex.getValue(1);
2943 
2944   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2945                                        DAG.getConstant(8, dl, MVT::i32));
2946 
2947   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2948                                         DAG.getConstant(4, dl, MVT::i32));
2949 
2950   // areas
2951   SDValue OverflowArea =
2952       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2953   InChain = OverflowArea.getValue(1);
2954 
2955   SDValue RegSaveArea =
2956       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2957   InChain = RegSaveArea.getValue(1);
2958 
2959   // select overflow_area if index > 8
2960   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2961                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2962 
2963   // adjustment constant gpr_index * 4/8
2964   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2965                                     VT.isInteger() ? GprIndex : FprIndex,
2966                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2967                                                     MVT::i32));
2968 
2969   // OurReg = RegSaveArea + RegConstant
2970   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2971                                RegConstant);
2972 
2973   // Floating types are 32 bytes into RegSaveArea
2974   if (VT.isFloatingPoint())
2975     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2976                          DAG.getConstant(32, dl, MVT::i32));
2977 
2978   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2979   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2980                                    VT.isInteger() ? GprIndex : FprIndex,
2981                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2982                                                    MVT::i32));
2983 
2984   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2985                               VT.isInteger() ? VAListPtr : FprPtr,
2986                               MachinePointerInfo(SV), MVT::i8);
2987 
2988   // determine if we should load from reg_save_area or overflow_area
2989   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2990 
2991   // increase overflow_area by 4/8 if gpr/fpr > 8
2992   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2993                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2994                                           dl, MVT::i32));
2995 
2996   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2997                              OverflowAreaPlusN);
2998 
2999   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3000                               MachinePointerInfo(), MVT::i32);
3001 
3002   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3003 }
3004 
3005 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3006   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3007 
3008   // We have to copy the entire va_list struct:
3009   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3010   return DAG.getMemcpy(Op.getOperand(0), Op,
3011                        Op.getOperand(1), Op.getOperand(2),
3012                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3013                        false, MachinePointerInfo(), MachinePointerInfo());
3014 }
3015 
3016 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3017                                                   SelectionDAG &DAG) const {
3018   return Op.getOperand(0);
3019 }
3020 
3021 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3022                                                 SelectionDAG &DAG) const {
3023   SDValue Chain = Op.getOperand(0);
3024   SDValue Trmp = Op.getOperand(1); // trampoline
3025   SDValue FPtr = Op.getOperand(2); // nested function
3026   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3027   SDLoc dl(Op);
3028 
3029   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3030   bool isPPC64 = (PtrVT == MVT::i64);
3031   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3032 
3033   TargetLowering::ArgListTy Args;
3034   TargetLowering::ArgListEntry Entry;
3035 
3036   Entry.Ty = IntPtrTy;
3037   Entry.Node = Trmp; Args.push_back(Entry);
3038 
3039   // TrampSize == (isPPC64 ? 48 : 40);
3040   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3041                                isPPC64 ? MVT::i64 : MVT::i32);
3042   Args.push_back(Entry);
3043 
3044   Entry.Node = FPtr; Args.push_back(Entry);
3045   Entry.Node = Nest; Args.push_back(Entry);
3046 
3047   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3048   TargetLowering::CallLoweringInfo CLI(DAG);
3049   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3050       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3051       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3052 
3053   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3054   return CallResult.second;
3055 }
3056 
3057 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3058   MachineFunction &MF = DAG.getMachineFunction();
3059   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3060   EVT PtrVT = getPointerTy(MF.getDataLayout());
3061 
3062   SDLoc dl(Op);
3063 
3064   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3065     // vastart just stores the address of the VarArgsFrameIndex slot into the
3066     // memory location argument.
3067     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3068     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3069     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3070                         MachinePointerInfo(SV));
3071   }
3072 
3073   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3074   // We suppose the given va_list is already allocated.
3075   //
3076   // typedef struct {
3077   //  char gpr;     /* index into the array of 8 GPRs
3078   //                 * stored in the register save area
3079   //                 * gpr=0 corresponds to r3,
3080   //                 * gpr=1 to r4, etc.
3081   //                 */
3082   //  char fpr;     /* index into the array of 8 FPRs
3083   //                 * stored in the register save area
3084   //                 * fpr=0 corresponds to f1,
3085   //                 * fpr=1 to f2, etc.
3086   //                 */
3087   //  char *overflow_arg_area;
3088   //                /* location on stack that holds
3089   //                 * the next overflow argument
3090   //                 */
3091   //  char *reg_save_area;
3092   //               /* where r3:r10 and f1:f8 (if saved)
3093   //                * are stored
3094   //                */
3095   // } va_list[1];
3096 
3097   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3098   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3099   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3100                                             PtrVT);
3101   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3102                                  PtrVT);
3103 
3104   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3105   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3106 
3107   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3108   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3109 
3110   uint64_t FPROffset = 1;
3111   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3112 
3113   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3114 
3115   // Store first byte : number of int regs
3116   SDValue firstStore =
3117       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3118                         MachinePointerInfo(SV), MVT::i8);
3119   uint64_t nextOffset = FPROffset;
3120   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3121                                   ConstFPROffset);
3122 
3123   // Store second byte : number of float regs
3124   SDValue secondStore =
3125       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3126                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3127   nextOffset += StackOffset;
3128   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3129 
3130   // Store second word : arguments given on stack
3131   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3132                                     MachinePointerInfo(SV, nextOffset));
3133   nextOffset += FrameOffset;
3134   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3135 
3136   // Store third word : arguments given in registers
3137   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3138                       MachinePointerInfo(SV, nextOffset));
3139 }
3140 
3141 #include "PPCGenCallingConv.inc"
3142 
3143 // Function whose sole purpose is to kill compiler warnings
3144 // stemming from unused functions included from PPCGenCallingConv.inc.
3145 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
3146   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
3147 }
3148 
3149 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
3150                                       CCValAssign::LocInfo &LocInfo,
3151                                       ISD::ArgFlagsTy &ArgFlags,
3152                                       CCState &State) {
3153   return true;
3154 }
3155 
3156 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3157                                              MVT &LocVT,
3158                                              CCValAssign::LocInfo &LocInfo,
3159                                              ISD::ArgFlagsTy &ArgFlags,
3160                                              CCState &State) {
3161   static const MCPhysReg ArgRegs[] = {
3162     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3163     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3164   };
3165   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3166 
3167   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3168 
3169   // Skip one register if the first unallocated register has an even register
3170   // number and there are still argument registers available which have not been
3171   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3172   // need to skip a register if RegNum is odd.
3173   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3174     State.AllocateReg(ArgRegs[RegNum]);
3175   }
3176 
3177   // Always return false here, as this function only makes sure that the first
3178   // unallocated register has an odd register number and does not actually
3179   // allocate a register for the current argument.
3180   return false;
3181 }
3182 
3183 bool
3184 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3185                                                   MVT &LocVT,
3186                                                   CCValAssign::LocInfo &LocInfo,
3187                                                   ISD::ArgFlagsTy &ArgFlags,
3188                                                   CCState &State) {
3189   static const MCPhysReg ArgRegs[] = {
3190     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3191     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3192   };
3193   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3194 
3195   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3196   int RegsLeft = NumArgRegs - RegNum;
3197 
3198   // Skip if there is not enough registers left for long double type (4 gpr regs
3199   // in soft float mode) and put long double argument on the stack.
3200   if (RegNum != NumArgRegs && RegsLeft < 4) {
3201     for (int i = 0; i < RegsLeft; i++) {
3202       State.AllocateReg(ArgRegs[RegNum + i]);
3203     }
3204   }
3205 
3206   return false;
3207 }
3208 
3209 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3210                                                MVT &LocVT,
3211                                                CCValAssign::LocInfo &LocInfo,
3212                                                ISD::ArgFlagsTy &ArgFlags,
3213                                                CCState &State) {
3214   static const MCPhysReg ArgRegs[] = {
3215     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3216     PPC::F8
3217   };
3218 
3219   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3220 
3221   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3222 
3223   // If there is only one Floating-point register left we need to put both f64
3224   // values of a split ppc_fp128 value on the stack.
3225   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3226     State.AllocateReg(ArgRegs[RegNum]);
3227   }
3228 
3229   // Always return false here, as this function only makes sure that the two f64
3230   // values a ppc_fp128 value is split into are both passed in registers or both
3231   // passed on the stack and does not actually allocate a register for the
3232   // current argument.
3233   return false;
3234 }
3235 
3236 /// FPR - The set of FP registers that should be allocated for arguments,
3237 /// on Darwin.
3238 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3239                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3240                                 PPC::F11, PPC::F12, PPC::F13};
3241 
3242 /// QFPR - The set of QPX registers that should be allocated for arguments.
3243 static const MCPhysReg QFPR[] = {
3244     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3245     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3246 
3247 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3248 /// the stack.
3249 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3250                                        unsigned PtrByteSize) {
3251   unsigned ArgSize = ArgVT.getStoreSize();
3252   if (Flags.isByVal())
3253     ArgSize = Flags.getByValSize();
3254 
3255   // Round up to multiples of the pointer size, except for array members,
3256   // which are always packed.
3257   if (!Flags.isInConsecutiveRegs())
3258     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3259 
3260   return ArgSize;
3261 }
3262 
3263 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3264 /// on the stack.
3265 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3266                                             ISD::ArgFlagsTy Flags,
3267                                             unsigned PtrByteSize) {
3268   unsigned Align = PtrByteSize;
3269 
3270   // Altivec parameters are padded to a 16 byte boundary.
3271   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3272       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3273       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3274       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3275     Align = 16;
3276   // QPX vector types stored in double-precision are padded to a 32 byte
3277   // boundary.
3278   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3279     Align = 32;
3280 
3281   // ByVal parameters are aligned as requested.
3282   if (Flags.isByVal()) {
3283     unsigned BVAlign = Flags.getByValAlign();
3284     if (BVAlign > PtrByteSize) {
3285       if (BVAlign % PtrByteSize != 0)
3286           llvm_unreachable(
3287             "ByVal alignment is not a multiple of the pointer size");
3288 
3289       Align = BVAlign;
3290     }
3291   }
3292 
3293   // Array members are always packed to their original alignment.
3294   if (Flags.isInConsecutiveRegs()) {
3295     // If the array member was split into multiple registers, the first
3296     // needs to be aligned to the size of the full type.  (Except for
3297     // ppcf128, which is only aligned as its f64 components.)
3298     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3299       Align = OrigVT.getStoreSize();
3300     else
3301       Align = ArgVT.getStoreSize();
3302   }
3303 
3304   return Align;
3305 }
3306 
3307 /// CalculateStackSlotUsed - Return whether this argument will use its
3308 /// stack slot (instead of being passed in registers).  ArgOffset,
3309 /// AvailableFPRs, and AvailableVRs must hold the current argument
3310 /// position, and will be updated to account for this argument.
3311 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3312                                    ISD::ArgFlagsTy Flags,
3313                                    unsigned PtrByteSize,
3314                                    unsigned LinkageSize,
3315                                    unsigned ParamAreaSize,
3316                                    unsigned &ArgOffset,
3317                                    unsigned &AvailableFPRs,
3318                                    unsigned &AvailableVRs, bool HasQPX) {
3319   bool UseMemory = false;
3320 
3321   // Respect alignment of argument on the stack.
3322   unsigned Align =
3323     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3324   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3325   // If there's no space left in the argument save area, we must
3326   // use memory (this check also catches zero-sized arguments).
3327   if (ArgOffset >= LinkageSize + ParamAreaSize)
3328     UseMemory = true;
3329 
3330   // Allocate argument on the stack.
3331   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3332   if (Flags.isInConsecutiveRegsLast())
3333     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3334   // If we overran the argument save area, we must use memory
3335   // (this check catches arguments passed partially in memory)
3336   if (ArgOffset > LinkageSize + ParamAreaSize)
3337     UseMemory = true;
3338 
3339   // However, if the argument is actually passed in an FPR or a VR,
3340   // we don't use memory after all.
3341   if (!Flags.isByVal()) {
3342     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3343         // QPX registers overlap with the scalar FP registers.
3344         (HasQPX && (ArgVT == MVT::v4f32 ||
3345                     ArgVT == MVT::v4f64 ||
3346                     ArgVT == MVT::v4i1)))
3347       if (AvailableFPRs > 0) {
3348         --AvailableFPRs;
3349         return false;
3350       }
3351     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3352         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3353         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3354         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3355       if (AvailableVRs > 0) {
3356         --AvailableVRs;
3357         return false;
3358       }
3359   }
3360 
3361   return UseMemory;
3362 }
3363 
3364 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3365 /// ensure minimum alignment required for target.
3366 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3367                                      unsigned NumBytes) {
3368   unsigned TargetAlign = Lowering->getStackAlignment();
3369   unsigned AlignMask = TargetAlign - 1;
3370   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3371   return NumBytes;
3372 }
3373 
3374 SDValue PPCTargetLowering::LowerFormalArguments(
3375     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3376     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3377     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3378   if (Subtarget.isSVR4ABI()) {
3379     if (Subtarget.isPPC64())
3380       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3381                                          dl, DAG, InVals);
3382     else
3383       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3384                                          dl, DAG, InVals);
3385   } else {
3386     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3387                                        dl, DAG, InVals);
3388   }
3389 }
3390 
3391 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3392     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3393     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3394     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3395 
3396   // 32-bit SVR4 ABI Stack Frame Layout:
3397   //              +-----------------------------------+
3398   //        +-->  |            Back chain             |
3399   //        |     +-----------------------------------+
3400   //        |     | Floating-point register save area |
3401   //        |     +-----------------------------------+
3402   //        |     |    General register save area     |
3403   //        |     +-----------------------------------+
3404   //        |     |          CR save word             |
3405   //        |     +-----------------------------------+
3406   //        |     |         VRSAVE save word          |
3407   //        |     +-----------------------------------+
3408   //        |     |         Alignment padding         |
3409   //        |     +-----------------------------------+
3410   //        |     |     Vector register save area     |
3411   //        |     +-----------------------------------+
3412   //        |     |       Local variable space        |
3413   //        |     +-----------------------------------+
3414   //        |     |        Parameter list area        |
3415   //        |     +-----------------------------------+
3416   //        |     |           LR save word            |
3417   //        |     +-----------------------------------+
3418   // SP-->  +---  |            Back chain             |
3419   //              +-----------------------------------+
3420   //
3421   // Specifications:
3422   //   System V Application Binary Interface PowerPC Processor Supplement
3423   //   AltiVec Technology Programming Interface Manual
3424 
3425   MachineFunction &MF = DAG.getMachineFunction();
3426   MachineFrameInfo &MFI = MF.getFrameInfo();
3427   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3428 
3429   EVT PtrVT = getPointerTy(MF.getDataLayout());
3430   // Potential tail calls could cause overwriting of argument stack slots.
3431   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3432                        (CallConv == CallingConv::Fast));
3433   unsigned PtrByteSize = 4;
3434 
3435   // Assign locations to all of the incoming arguments.
3436   SmallVector<CCValAssign, 16> ArgLocs;
3437   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3438                  *DAG.getContext());
3439 
3440   // Reserve space for the linkage area on the stack.
3441   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3442   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3443   if (useSoftFloat() || hasSPE())
3444     CCInfo.PreAnalyzeFormalArguments(Ins);
3445 
3446   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3447   CCInfo.clearWasPPCF128();
3448 
3449   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3450     CCValAssign &VA = ArgLocs[i];
3451 
3452     // Arguments stored in registers.
3453     if (VA.isRegLoc()) {
3454       const TargetRegisterClass *RC;
3455       EVT ValVT = VA.getValVT();
3456 
3457       switch (ValVT.getSimpleVT().SimpleTy) {
3458         default:
3459           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3460         case MVT::i1:
3461         case MVT::i32:
3462           RC = &PPC::GPRCRegClass;
3463           break;
3464         case MVT::f32:
3465           if (Subtarget.hasP8Vector())
3466             RC = &PPC::VSSRCRegClass;
3467           else if (Subtarget.hasSPE())
3468             RC = &PPC::SPE4RCRegClass;
3469           else
3470             RC = &PPC::F4RCRegClass;
3471           break;
3472         case MVT::f64:
3473           if (Subtarget.hasVSX())
3474             RC = &PPC::VSFRCRegClass;
3475           else if (Subtarget.hasSPE())
3476             RC = &PPC::SPERCRegClass;
3477           else
3478             RC = &PPC::F8RCRegClass;
3479           break;
3480         case MVT::v16i8:
3481         case MVT::v8i16:
3482         case MVT::v4i32:
3483           RC = &PPC::VRRCRegClass;
3484           break;
3485         case MVT::v4f32:
3486           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3487           break;
3488         case MVT::v2f64:
3489         case MVT::v2i64:
3490           RC = &PPC::VRRCRegClass;
3491           break;
3492         case MVT::v4f64:
3493           RC = &PPC::QFRCRegClass;
3494           break;
3495         case MVT::v4i1:
3496           RC = &PPC::QBRCRegClass;
3497           break;
3498       }
3499 
3500       // Transform the arguments stored in physical registers into virtual ones.
3501       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3502       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3503                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3504 
3505       if (ValVT == MVT::i1)
3506         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3507 
3508       InVals.push_back(ArgValue);
3509     } else {
3510       // Argument stored in memory.
3511       assert(VA.isMemLoc());
3512 
3513       // Get the extended size of the argument type in stack
3514       unsigned ArgSize = VA.getLocVT().getStoreSize();
3515       // Get the actual size of the argument type
3516       unsigned ObjSize = VA.getValVT().getStoreSize();
3517       unsigned ArgOffset = VA.getLocMemOffset();
3518       // Stack objects in PPC32 are right justified.
3519       ArgOffset += ArgSize - ObjSize;
3520       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3521 
3522       // Create load nodes to retrieve arguments from the stack.
3523       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3524       InVals.push_back(
3525           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3526     }
3527   }
3528 
3529   // Assign locations to all of the incoming aggregate by value arguments.
3530   // Aggregates passed by value are stored in the local variable space of the
3531   // caller's stack frame, right above the parameter list area.
3532   SmallVector<CCValAssign, 16> ByValArgLocs;
3533   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3534                       ByValArgLocs, *DAG.getContext());
3535 
3536   // Reserve stack space for the allocations in CCInfo.
3537   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3538 
3539   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3540 
3541   // Area that is at least reserved in the caller of this function.
3542   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3543   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3544 
3545   // Set the size that is at least reserved in caller of this function.  Tail
3546   // call optimized function's reserved stack space needs to be aligned so that
3547   // taking the difference between two stack areas will result in an aligned
3548   // stack.
3549   MinReservedArea =
3550       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3551   FuncInfo->setMinReservedArea(MinReservedArea);
3552 
3553   SmallVector<SDValue, 8> MemOps;
3554 
3555   // If the function takes variable number of arguments, make a frame index for
3556   // the start of the first vararg value... for expansion of llvm.va_start.
3557   if (isVarArg) {
3558     static const MCPhysReg GPArgRegs[] = {
3559       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3560       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3561     };
3562     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3563 
3564     static const MCPhysReg FPArgRegs[] = {
3565       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3566       PPC::F8
3567     };
3568     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3569 
3570     if (useSoftFloat() || hasSPE())
3571        NumFPArgRegs = 0;
3572 
3573     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3574     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3575 
3576     // Make room for NumGPArgRegs and NumFPArgRegs.
3577     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3578                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3579 
3580     FuncInfo->setVarArgsStackOffset(
3581       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3582                             CCInfo.getNextStackOffset(), true));
3583 
3584     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3585     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3586 
3587     // The fixed integer arguments of a variadic function are stored to the
3588     // VarArgsFrameIndex on the stack so that they may be loaded by
3589     // dereferencing the result of va_next.
3590     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3591       // Get an existing live-in vreg, or add a new one.
3592       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3593       if (!VReg)
3594         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3595 
3596       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3597       SDValue Store =
3598           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3599       MemOps.push_back(Store);
3600       // Increment the address by four for the next argument to store
3601       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3602       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3603     }
3604 
3605     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3606     // is set.
3607     // The double arguments are stored to the VarArgsFrameIndex
3608     // on the stack.
3609     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3610       // Get an existing live-in vreg, or add a new one.
3611       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3612       if (!VReg)
3613         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3614 
3615       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3616       SDValue Store =
3617           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3618       MemOps.push_back(Store);
3619       // Increment the address by eight for the next argument to store
3620       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3621                                          PtrVT);
3622       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3623     }
3624   }
3625 
3626   if (!MemOps.empty())
3627     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3628 
3629   return Chain;
3630 }
3631 
3632 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3633 // value to MVT::i64 and then truncate to the correct register size.
3634 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3635                                              EVT ObjectVT, SelectionDAG &DAG,
3636                                              SDValue ArgVal,
3637                                              const SDLoc &dl) const {
3638   if (Flags.isSExt())
3639     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3640                          DAG.getValueType(ObjectVT));
3641   else if (Flags.isZExt())
3642     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3643                          DAG.getValueType(ObjectVT));
3644 
3645   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3646 }
3647 
3648 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3649     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3650     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3651     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3652   // TODO: add description of PPC stack frame format, or at least some docs.
3653   //
3654   bool isELFv2ABI = Subtarget.isELFv2ABI();
3655   bool isLittleEndian = Subtarget.isLittleEndian();
3656   MachineFunction &MF = DAG.getMachineFunction();
3657   MachineFrameInfo &MFI = MF.getFrameInfo();
3658   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3659 
3660   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3661          "fastcc not supported on varargs functions");
3662 
3663   EVT PtrVT = getPointerTy(MF.getDataLayout());
3664   // Potential tail calls could cause overwriting of argument stack slots.
3665   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3666                        (CallConv == CallingConv::Fast));
3667   unsigned PtrByteSize = 8;
3668   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3669 
3670   static const MCPhysReg GPR[] = {
3671     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3672     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3673   };
3674   static const MCPhysReg VR[] = {
3675     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3676     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3677   };
3678 
3679   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3680   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3681   const unsigned Num_VR_Regs  = array_lengthof(VR);
3682   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3683 
3684   // Do a first pass over the arguments to determine whether the ABI
3685   // guarantees that our caller has allocated the parameter save area
3686   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3687   // in the ELFv2 ABI, it is true if this is a vararg function or if
3688   // any parameter is located in a stack slot.
3689 
3690   bool HasParameterArea = !isELFv2ABI || isVarArg;
3691   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3692   unsigned NumBytes = LinkageSize;
3693   unsigned AvailableFPRs = Num_FPR_Regs;
3694   unsigned AvailableVRs = Num_VR_Regs;
3695   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3696     if (Ins[i].Flags.isNest())
3697       continue;
3698 
3699     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3700                                PtrByteSize, LinkageSize, ParamAreaSize,
3701                                NumBytes, AvailableFPRs, AvailableVRs,
3702                                Subtarget.hasQPX()))
3703       HasParameterArea = true;
3704   }
3705 
3706   // Add DAG nodes to load the arguments or copy them out of registers.  On
3707   // entry to a function on PPC, the arguments start after the linkage area,
3708   // although the first ones are often in registers.
3709 
3710   unsigned ArgOffset = LinkageSize;
3711   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3712   unsigned &QFPR_idx = FPR_idx;
3713   SmallVector<SDValue, 8> MemOps;
3714   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3715   unsigned CurArgIdx = 0;
3716   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3717     SDValue ArgVal;
3718     bool needsLoad = false;
3719     EVT ObjectVT = Ins[ArgNo].VT;
3720     EVT OrigVT = Ins[ArgNo].ArgVT;
3721     unsigned ObjSize = ObjectVT.getStoreSize();
3722     unsigned ArgSize = ObjSize;
3723     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3724     if (Ins[ArgNo].isOrigArg()) {
3725       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3726       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3727     }
3728     // We re-align the argument offset for each argument, except when using the
3729     // fast calling convention, when we need to make sure we do that only when
3730     // we'll actually use a stack slot.
3731     unsigned CurArgOffset, Align;
3732     auto ComputeArgOffset = [&]() {
3733       /* Respect alignment of argument on the stack.  */
3734       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3735       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3736       CurArgOffset = ArgOffset;
3737     };
3738 
3739     if (CallConv != CallingConv::Fast) {
3740       ComputeArgOffset();
3741 
3742       /* Compute GPR index associated with argument offset.  */
3743       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3744       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3745     }
3746 
3747     // FIXME the codegen can be much improved in some cases.
3748     // We do not have to keep everything in memory.
3749     if (Flags.isByVal()) {
3750       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3751 
3752       if (CallConv == CallingConv::Fast)
3753         ComputeArgOffset();
3754 
3755       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3756       ObjSize = Flags.getByValSize();
3757       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3758       // Empty aggregate parameters do not take up registers.  Examples:
3759       //   struct { } a;
3760       //   union  { } b;
3761       //   int c[0];
3762       // etc.  However, we have to provide a place-holder in InVals, so
3763       // pretend we have an 8-byte item at the current address for that
3764       // purpose.
3765       if (!ObjSize) {
3766         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3767         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3768         InVals.push_back(FIN);
3769         continue;
3770       }
3771 
3772       // Create a stack object covering all stack doublewords occupied
3773       // by the argument.  If the argument is (fully or partially) on
3774       // the stack, or if the argument is fully in registers but the
3775       // caller has allocated the parameter save anyway, we can refer
3776       // directly to the caller's stack frame.  Otherwise, create a
3777       // local copy in our own frame.
3778       int FI;
3779       if (HasParameterArea ||
3780           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3781         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3782       else
3783         FI = MFI.CreateStackObject(ArgSize, Align, false);
3784       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3785 
3786       // Handle aggregates smaller than 8 bytes.
3787       if (ObjSize < PtrByteSize) {
3788         // The value of the object is its address, which differs from the
3789         // address of the enclosing doubleword on big-endian systems.
3790         SDValue Arg = FIN;
3791         if (!isLittleEndian) {
3792           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3793           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3794         }
3795         InVals.push_back(Arg);
3796 
3797         if (GPR_idx != Num_GPR_Regs) {
3798           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3799           FuncInfo->addLiveInAttr(VReg, Flags);
3800           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3801           SDValue Store;
3802 
3803           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3804             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3805                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3806             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3807                                       MachinePointerInfo(&*FuncArg), ObjType);
3808           } else {
3809             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3810             // store the whole register as-is to the parameter save area
3811             // slot.
3812             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3813                                  MachinePointerInfo(&*FuncArg));
3814           }
3815 
3816           MemOps.push_back(Store);
3817         }
3818         // Whether we copied from a register or not, advance the offset
3819         // into the parameter save area by a full doubleword.
3820         ArgOffset += PtrByteSize;
3821         continue;
3822       }
3823 
3824       // The value of the object is its address, which is the address of
3825       // its first stack doubleword.
3826       InVals.push_back(FIN);
3827 
3828       // Store whatever pieces of the object are in registers to memory.
3829       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3830         if (GPR_idx == Num_GPR_Regs)
3831           break;
3832 
3833         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3834         FuncInfo->addLiveInAttr(VReg, Flags);
3835         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3836         SDValue Addr = FIN;
3837         if (j) {
3838           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3839           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3840         }
3841         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3842                                      MachinePointerInfo(&*FuncArg, j));
3843         MemOps.push_back(Store);
3844         ++GPR_idx;
3845       }
3846       ArgOffset += ArgSize;
3847       continue;
3848     }
3849 
3850     switch (ObjectVT.getSimpleVT().SimpleTy) {
3851     default: llvm_unreachable("Unhandled argument type!");
3852     case MVT::i1:
3853     case MVT::i32:
3854     case MVT::i64:
3855       if (Flags.isNest()) {
3856         // The 'nest' parameter, if any, is passed in R11.
3857         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3858         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3859 
3860         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3861           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3862 
3863         break;
3864       }
3865 
3866       // These can be scalar arguments or elements of an integer array type
3867       // passed directly.  Clang may use those instead of "byval" aggregate
3868       // types to avoid forcing arguments to memory unnecessarily.
3869       if (GPR_idx != Num_GPR_Regs) {
3870         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3871         FuncInfo->addLiveInAttr(VReg, Flags);
3872         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3873 
3874         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3875           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3876           // value to MVT::i64 and then truncate to the correct register size.
3877           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3878       } else {
3879         if (CallConv == CallingConv::Fast)
3880           ComputeArgOffset();
3881 
3882         needsLoad = true;
3883         ArgSize = PtrByteSize;
3884       }
3885       if (CallConv != CallingConv::Fast || needsLoad)
3886         ArgOffset += 8;
3887       break;
3888 
3889     case MVT::f32:
3890     case MVT::f64:
3891       // These can be scalar arguments or elements of a float array type
3892       // passed directly.  The latter are used to implement ELFv2 homogenous
3893       // float aggregates.
3894       if (FPR_idx != Num_FPR_Regs) {
3895         unsigned VReg;
3896 
3897         if (ObjectVT == MVT::f32)
3898           VReg = MF.addLiveIn(FPR[FPR_idx],
3899                               Subtarget.hasP8Vector()
3900                                   ? &PPC::VSSRCRegClass
3901                                   : &PPC::F4RCRegClass);
3902         else
3903           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3904                                                 ? &PPC::VSFRCRegClass
3905                                                 : &PPC::F8RCRegClass);
3906 
3907         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3908         ++FPR_idx;
3909       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3910         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3911         // once we support fp <-> gpr moves.
3912 
3913         // This can only ever happen in the presence of f32 array types,
3914         // since otherwise we never run out of FPRs before running out
3915         // of GPRs.
3916         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3917         FuncInfo->addLiveInAttr(VReg, Flags);
3918         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3919 
3920         if (ObjectVT == MVT::f32) {
3921           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3922             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3923                                  DAG.getConstant(32, dl, MVT::i32));
3924           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3925         }
3926 
3927         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3928       } else {
3929         if (CallConv == CallingConv::Fast)
3930           ComputeArgOffset();
3931 
3932         needsLoad = true;
3933       }
3934 
3935       // When passing an array of floats, the array occupies consecutive
3936       // space in the argument area; only round up to the next doubleword
3937       // at the end of the array.  Otherwise, each float takes 8 bytes.
3938       if (CallConv != CallingConv::Fast || needsLoad) {
3939         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3940         ArgOffset += ArgSize;
3941         if (Flags.isInConsecutiveRegsLast())
3942           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3943       }
3944       break;
3945     case MVT::v4f32:
3946     case MVT::v4i32:
3947     case MVT::v8i16:
3948     case MVT::v16i8:
3949     case MVT::v2f64:
3950     case MVT::v2i64:
3951     case MVT::v1i128:
3952     case MVT::f128:
3953       if (!Subtarget.hasQPX()) {
3954         // These can be scalar arguments or elements of a vector array type
3955         // passed directly.  The latter are used to implement ELFv2 homogenous
3956         // vector aggregates.
3957         if (VR_idx != Num_VR_Regs) {
3958           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3959           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3960           ++VR_idx;
3961         } else {
3962           if (CallConv == CallingConv::Fast)
3963             ComputeArgOffset();
3964           needsLoad = true;
3965         }
3966         if (CallConv != CallingConv::Fast || needsLoad)
3967           ArgOffset += 16;
3968         break;
3969       } // not QPX
3970 
3971       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3972              "Invalid QPX parameter type");
3973       LLVM_FALLTHROUGH;
3974 
3975     case MVT::v4f64:
3976     case MVT::v4i1:
3977       // QPX vectors are treated like their scalar floating-point subregisters
3978       // (except that they're larger).
3979       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3980       if (QFPR_idx != Num_QFPR_Regs) {
3981         const TargetRegisterClass *RC;
3982         switch (ObjectVT.getSimpleVT().SimpleTy) {
3983         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3984         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3985         default:         RC = &PPC::QBRCRegClass; break;
3986         }
3987 
3988         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3989         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3990         ++QFPR_idx;
3991       } else {
3992         if (CallConv == CallingConv::Fast)
3993           ComputeArgOffset();
3994         needsLoad = true;
3995       }
3996       if (CallConv != CallingConv::Fast || needsLoad)
3997         ArgOffset += Sz;
3998       break;
3999     }
4000 
4001     // We need to load the argument to a virtual register if we determined
4002     // above that we ran out of physical registers of the appropriate type.
4003     if (needsLoad) {
4004       if (ObjSize < ArgSize && !isLittleEndian)
4005         CurArgOffset += ArgSize - ObjSize;
4006       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4007       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4008       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4009     }
4010 
4011     InVals.push_back(ArgVal);
4012   }
4013 
4014   // Area that is at least reserved in the caller of this function.
4015   unsigned MinReservedArea;
4016   if (HasParameterArea)
4017     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4018   else
4019     MinReservedArea = LinkageSize;
4020 
4021   // Set the size that is at least reserved in caller of this function.  Tail
4022   // call optimized functions' reserved stack space needs to be aligned so that
4023   // taking the difference between two stack areas will result in an aligned
4024   // stack.
4025   MinReservedArea =
4026       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4027   FuncInfo->setMinReservedArea(MinReservedArea);
4028 
4029   // If the function takes variable number of arguments, make a frame index for
4030   // the start of the first vararg value... for expansion of llvm.va_start.
4031   if (isVarArg) {
4032     int Depth = ArgOffset;
4033 
4034     FuncInfo->setVarArgsFrameIndex(
4035       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4036     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4037 
4038     // If this function is vararg, store any remaining integer argument regs
4039     // to their spots on the stack so that they may be loaded by dereferencing
4040     // the result of va_next.
4041     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4042          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4043       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4044       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4045       SDValue Store =
4046           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4047       MemOps.push_back(Store);
4048       // Increment the address by four for the next argument to store
4049       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4050       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4051     }
4052   }
4053 
4054   if (!MemOps.empty())
4055     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4056 
4057   return Chain;
4058 }
4059 
4060 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4061     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4062     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4063     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4064   // TODO: add description of PPC stack frame format, or at least some docs.
4065   //
4066   MachineFunction &MF = DAG.getMachineFunction();
4067   MachineFrameInfo &MFI = MF.getFrameInfo();
4068   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4069 
4070   EVT PtrVT = getPointerTy(MF.getDataLayout());
4071   bool isPPC64 = PtrVT == MVT::i64;
4072   // Potential tail calls could cause overwriting of argument stack slots.
4073   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4074                        (CallConv == CallingConv::Fast));
4075   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4076   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4077   unsigned ArgOffset = LinkageSize;
4078   // Area that is at least reserved in caller of this function.
4079   unsigned MinReservedArea = ArgOffset;
4080 
4081   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4082     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4083     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4084   };
4085   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4086     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4087     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4088   };
4089   static const MCPhysReg VR[] = {
4090     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4091     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4092   };
4093 
4094   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4095   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4096   const unsigned Num_VR_Regs  = array_lengthof( VR);
4097 
4098   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4099 
4100   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4101 
4102   // In 32-bit non-varargs functions, the stack space for vectors is after the
4103   // stack space for non-vectors.  We do not use this space unless we have
4104   // too many vectors to fit in registers, something that only occurs in
4105   // constructed examples:), but we have to walk the arglist to figure
4106   // that out...for the pathological case, compute VecArgOffset as the
4107   // start of the vector parameter area.  Computing VecArgOffset is the
4108   // entire point of the following loop.
4109   unsigned VecArgOffset = ArgOffset;
4110   if (!isVarArg && !isPPC64) {
4111     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4112          ++ArgNo) {
4113       EVT ObjectVT = Ins[ArgNo].VT;
4114       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4115 
4116       if (Flags.isByVal()) {
4117         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4118         unsigned ObjSize = Flags.getByValSize();
4119         unsigned ArgSize =
4120                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4121         VecArgOffset += ArgSize;
4122         continue;
4123       }
4124 
4125       switch(ObjectVT.getSimpleVT().SimpleTy) {
4126       default: llvm_unreachable("Unhandled argument type!");
4127       case MVT::i1:
4128       case MVT::i32:
4129       case MVT::f32:
4130         VecArgOffset += 4;
4131         break;
4132       case MVT::i64:  // PPC64
4133       case MVT::f64:
4134         // FIXME: We are guaranteed to be !isPPC64 at this point.
4135         // Does MVT::i64 apply?
4136         VecArgOffset += 8;
4137         break;
4138       case MVT::v4f32:
4139       case MVT::v4i32:
4140       case MVT::v8i16:
4141       case MVT::v16i8:
4142         // Nothing to do, we're only looking at Nonvector args here.
4143         break;
4144       }
4145     }
4146   }
4147   // We've found where the vector parameter area in memory is.  Skip the
4148   // first 12 parameters; these don't use that memory.
4149   VecArgOffset = ((VecArgOffset+15)/16)*16;
4150   VecArgOffset += 12*16;
4151 
4152   // Add DAG nodes to load the arguments or copy them out of registers.  On
4153   // entry to a function on PPC, the arguments start after the linkage area,
4154   // although the first ones are often in registers.
4155 
4156   SmallVector<SDValue, 8> MemOps;
4157   unsigned nAltivecParamsAtEnd = 0;
4158   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4159   unsigned CurArgIdx = 0;
4160   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4161     SDValue ArgVal;
4162     bool needsLoad = false;
4163     EVT ObjectVT = Ins[ArgNo].VT;
4164     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4165     unsigned ArgSize = ObjSize;
4166     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4167     if (Ins[ArgNo].isOrigArg()) {
4168       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4169       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4170     }
4171     unsigned CurArgOffset = ArgOffset;
4172 
4173     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4174     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4175         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4176       if (isVarArg || isPPC64) {
4177         MinReservedArea = ((MinReservedArea+15)/16)*16;
4178         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4179                                                   Flags,
4180                                                   PtrByteSize);
4181       } else  nAltivecParamsAtEnd++;
4182     } else
4183       // Calculate min reserved area.
4184       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4185                                                 Flags,
4186                                                 PtrByteSize);
4187 
4188     // FIXME the codegen can be much improved in some cases.
4189     // We do not have to keep everything in memory.
4190     if (Flags.isByVal()) {
4191       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4192 
4193       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4194       ObjSize = Flags.getByValSize();
4195       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4196       // Objects of size 1 and 2 are right justified, everything else is
4197       // left justified.  This means the memory address is adjusted forwards.
4198       if (ObjSize==1 || ObjSize==2) {
4199         CurArgOffset = CurArgOffset + (4 - ObjSize);
4200       }
4201       // The value of the object is its address.
4202       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4203       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4204       InVals.push_back(FIN);
4205       if (ObjSize==1 || ObjSize==2) {
4206         if (GPR_idx != Num_GPR_Regs) {
4207           unsigned VReg;
4208           if (isPPC64)
4209             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4210           else
4211             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4212           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4213           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4214           SDValue Store =
4215               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4216                                 MachinePointerInfo(&*FuncArg), ObjType);
4217           MemOps.push_back(Store);
4218           ++GPR_idx;
4219         }
4220 
4221         ArgOffset += PtrByteSize;
4222 
4223         continue;
4224       }
4225       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4226         // Store whatever pieces of the object are in registers
4227         // to memory.  ArgOffset will be the address of the beginning
4228         // of the object.
4229         if (GPR_idx != Num_GPR_Regs) {
4230           unsigned VReg;
4231           if (isPPC64)
4232             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4233           else
4234             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4235           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4236           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4237           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4238           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4239                                        MachinePointerInfo(&*FuncArg, j));
4240           MemOps.push_back(Store);
4241           ++GPR_idx;
4242           ArgOffset += PtrByteSize;
4243         } else {
4244           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4245           break;
4246         }
4247       }
4248       continue;
4249     }
4250 
4251     switch (ObjectVT.getSimpleVT().SimpleTy) {
4252     default: llvm_unreachable("Unhandled argument type!");
4253     case MVT::i1:
4254     case MVT::i32:
4255       if (!isPPC64) {
4256         if (GPR_idx != Num_GPR_Regs) {
4257           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4258           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4259 
4260           if (ObjectVT == MVT::i1)
4261             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4262 
4263           ++GPR_idx;
4264         } else {
4265           needsLoad = true;
4266           ArgSize = PtrByteSize;
4267         }
4268         // All int arguments reserve stack space in the Darwin ABI.
4269         ArgOffset += PtrByteSize;
4270         break;
4271       }
4272       LLVM_FALLTHROUGH;
4273     case MVT::i64:  // PPC64
4274       if (GPR_idx != Num_GPR_Regs) {
4275         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4276         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4277 
4278         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4279           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4280           // value to MVT::i64 and then truncate to the correct register size.
4281           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4282 
4283         ++GPR_idx;
4284       } else {
4285         needsLoad = true;
4286         ArgSize = PtrByteSize;
4287       }
4288       // All int arguments reserve stack space in the Darwin ABI.
4289       ArgOffset += 8;
4290       break;
4291 
4292     case MVT::f32:
4293     case MVT::f64:
4294       // Every 4 bytes of argument space consumes one of the GPRs available for
4295       // argument passing.
4296       if (GPR_idx != Num_GPR_Regs) {
4297         ++GPR_idx;
4298         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4299           ++GPR_idx;
4300       }
4301       if (FPR_idx != Num_FPR_Regs) {
4302         unsigned VReg;
4303 
4304         if (ObjectVT == MVT::f32)
4305           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4306         else
4307           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4308 
4309         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4310         ++FPR_idx;
4311       } else {
4312         needsLoad = true;
4313       }
4314 
4315       // All FP arguments reserve stack space in the Darwin ABI.
4316       ArgOffset += isPPC64 ? 8 : ObjSize;
4317       break;
4318     case MVT::v4f32:
4319     case MVT::v4i32:
4320     case MVT::v8i16:
4321     case MVT::v16i8:
4322       // Note that vector arguments in registers don't reserve stack space,
4323       // except in varargs functions.
4324       if (VR_idx != Num_VR_Regs) {
4325         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4326         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4327         if (isVarArg) {
4328           while ((ArgOffset % 16) != 0) {
4329             ArgOffset += PtrByteSize;
4330             if (GPR_idx != Num_GPR_Regs)
4331               GPR_idx++;
4332           }
4333           ArgOffset += 16;
4334           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4335         }
4336         ++VR_idx;
4337       } else {
4338         if (!isVarArg && !isPPC64) {
4339           // Vectors go after all the nonvectors.
4340           CurArgOffset = VecArgOffset;
4341           VecArgOffset += 16;
4342         } else {
4343           // Vectors are aligned.
4344           ArgOffset = ((ArgOffset+15)/16)*16;
4345           CurArgOffset = ArgOffset;
4346           ArgOffset += 16;
4347         }
4348         needsLoad = true;
4349       }
4350       break;
4351     }
4352 
4353     // We need to load the argument to a virtual register if we determined above
4354     // that we ran out of physical registers of the appropriate type.
4355     if (needsLoad) {
4356       int FI = MFI.CreateFixedObject(ObjSize,
4357                                      CurArgOffset + (ArgSize - ObjSize),
4358                                      isImmutable);
4359       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4360       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4361     }
4362 
4363     InVals.push_back(ArgVal);
4364   }
4365 
4366   // Allow for Altivec parameters at the end, if needed.
4367   if (nAltivecParamsAtEnd) {
4368     MinReservedArea = ((MinReservedArea+15)/16)*16;
4369     MinReservedArea += 16*nAltivecParamsAtEnd;
4370   }
4371 
4372   // Area that is at least reserved in the caller of this function.
4373   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4374 
4375   // Set the size that is at least reserved in caller of this function.  Tail
4376   // call optimized functions' reserved stack space needs to be aligned so that
4377   // taking the difference between two stack areas will result in an aligned
4378   // stack.
4379   MinReservedArea =
4380       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4381   FuncInfo->setMinReservedArea(MinReservedArea);
4382 
4383   // If the function takes variable number of arguments, make a frame index for
4384   // the start of the first vararg value... for expansion of llvm.va_start.
4385   if (isVarArg) {
4386     int Depth = ArgOffset;
4387 
4388     FuncInfo->setVarArgsFrameIndex(
4389       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4390                             Depth, true));
4391     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4392 
4393     // If this function is vararg, store any remaining integer argument regs
4394     // to their spots on the stack so that they may be loaded by dereferencing
4395     // the result of va_next.
4396     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4397       unsigned VReg;
4398 
4399       if (isPPC64)
4400         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4401       else
4402         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4403 
4404       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4405       SDValue Store =
4406           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4407       MemOps.push_back(Store);
4408       // Increment the address by four for the next argument to store
4409       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4410       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4411     }
4412   }
4413 
4414   if (!MemOps.empty())
4415     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4416 
4417   return Chain;
4418 }
4419 
4420 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4421 /// adjusted to accommodate the arguments for the tailcall.
4422 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4423                                    unsigned ParamSize) {
4424 
4425   if (!isTailCall) return 0;
4426 
4427   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4428   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4429   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4430   // Remember only if the new adjustment is bigger.
4431   if (SPDiff < FI->getTailCallSPDelta())
4432     FI->setTailCallSPDelta(SPDiff);
4433 
4434   return SPDiff;
4435 }
4436 
4437 static bool isFunctionGlobalAddress(SDValue Callee);
4438 
4439 static bool
4440 callsShareTOCBase(const Function *Caller, SDValue Callee,
4441                     const TargetMachine &TM) {
4442   // If !G, Callee can be an external symbol.
4443   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4444   if (!G)
4445     return false;
4446 
4447   // The medium and large code models are expected to provide a sufficiently
4448   // large TOC to provide all data addressing needs of a module with a
4449   // single TOC. Since each module will be addressed with a single TOC then we
4450   // only need to check that caller and callee don't cross dso boundaries.
4451   if (CodeModel::Medium == TM.getCodeModel() ||
4452       CodeModel::Large == TM.getCodeModel())
4453     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4454 
4455   // Otherwise we need to ensure callee and caller are in the same section,
4456   // since the linker may allocate multiple TOCs, and we don't know which
4457   // sections will belong to the same TOC base.
4458 
4459   const GlobalValue *GV = G->getGlobal();
4460   if (!GV->isStrongDefinitionForLinker())
4461     return false;
4462 
4463   // Any explicitly-specified sections and section prefixes must also match.
4464   // Also, if we're using -ffunction-sections, then each function is always in
4465   // a different section (the same is true for COMDAT functions).
4466   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4467       GV->getSection() != Caller->getSection())
4468     return false;
4469   if (const auto *F = dyn_cast<Function>(GV)) {
4470     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4471       return false;
4472   }
4473 
4474   // If the callee might be interposed, then we can't assume the ultimate call
4475   // target will be in the same section. Even in cases where we can assume that
4476   // interposition won't happen, in any case where the linker might insert a
4477   // stub to allow for interposition, we must generate code as though
4478   // interposition might occur. To understand why this matters, consider a
4479   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4480   // in the same section, but a is in a different module (i.e. has a different
4481   // TOC base pointer). If the linker allows for interposition between b and c,
4482   // then it will generate a stub for the call edge between b and c which will
4483   // save the TOC pointer into the designated stack slot allocated by b. If we
4484   // return true here, and therefore allow a tail call between b and c, that
4485   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4486   // pointer into the stack slot allocated by a (where the a -> b stub saved
4487   // a's TOC base pointer). If we're not considering a tail call, but rather,
4488   // whether a nop is needed after the call instruction in b, because the linker
4489   // will insert a stub, it might complain about a missing nop if we omit it
4490   // (although many don't complain in this case).
4491   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4492     return false;
4493 
4494   return true;
4495 }
4496 
4497 static bool
4498 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4499                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4500   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4501 
4502   const unsigned PtrByteSize = 8;
4503   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4504 
4505   static const MCPhysReg GPR[] = {
4506     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4507     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4508   };
4509   static const MCPhysReg VR[] = {
4510     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4511     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4512   };
4513 
4514   const unsigned NumGPRs = array_lengthof(GPR);
4515   const unsigned NumFPRs = 13;
4516   const unsigned NumVRs = array_lengthof(VR);
4517   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4518 
4519   unsigned NumBytes = LinkageSize;
4520   unsigned AvailableFPRs = NumFPRs;
4521   unsigned AvailableVRs = NumVRs;
4522 
4523   for (const ISD::OutputArg& Param : Outs) {
4524     if (Param.Flags.isNest()) continue;
4525 
4526     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4527                                PtrByteSize, LinkageSize, ParamAreaSize,
4528                                NumBytes, AvailableFPRs, AvailableVRs,
4529                                Subtarget.hasQPX()))
4530       return true;
4531   }
4532   return false;
4533 }
4534 
4535 static bool
4536 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4537   if (CS.arg_size() != CallerFn->arg_size())
4538     return false;
4539 
4540   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4541   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4542   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4543 
4544   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4545     const Value* CalleeArg = *CalleeArgIter;
4546     const Value* CallerArg = &(*CallerArgIter);
4547     if (CalleeArg == CallerArg)
4548       continue;
4549 
4550     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4551     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4552     //      }
4553     // 1st argument of callee is undef and has the same type as caller.
4554     if (CalleeArg->getType() == CallerArg->getType() &&
4555         isa<UndefValue>(CalleeArg))
4556       continue;
4557 
4558     return false;
4559   }
4560 
4561   return true;
4562 }
4563 
4564 // Returns true if TCO is possible between the callers and callees
4565 // calling conventions.
4566 static bool
4567 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4568                                     CallingConv::ID CalleeCC) {
4569   // Tail calls are possible with fastcc and ccc.
4570   auto isTailCallableCC  = [] (CallingConv::ID CC){
4571       return  CC == CallingConv::C || CC == CallingConv::Fast;
4572   };
4573   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4574     return false;
4575 
4576   // We can safely tail call both fastcc and ccc callees from a c calling
4577   // convention caller. If the caller is fastcc, we may have less stack space
4578   // than a non-fastcc caller with the same signature so disable tail-calls in
4579   // that case.
4580   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4581 }
4582 
4583 bool
4584 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4585                                     SDValue Callee,
4586                                     CallingConv::ID CalleeCC,
4587                                     ImmutableCallSite CS,
4588                                     bool isVarArg,
4589                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4590                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4591                                     SelectionDAG& DAG) const {
4592   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4593 
4594   if (DisableSCO && !TailCallOpt) return false;
4595 
4596   // Variadic argument functions are not supported.
4597   if (isVarArg) return false;
4598 
4599   auto &Caller = DAG.getMachineFunction().getFunction();
4600   // Check that the calling conventions are compatible for tco.
4601   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4602     return false;
4603 
4604   // Caller contains any byval parameter is not supported.
4605   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4606     return false;
4607 
4608   // Callee contains any byval parameter is not supported, too.
4609   // Note: This is a quick work around, because in some cases, e.g.
4610   // caller's stack size > callee's stack size, we are still able to apply
4611   // sibling call optimization. For example, gcc is able to do SCO for caller1
4612   // in the following example, but not for caller2.
4613   //   struct test {
4614   //     long int a;
4615   //     char ary[56];
4616   //   } gTest;
4617   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4618   //     b->a = v.a;
4619   //     return 0;
4620   //   }
4621   //   void caller1(struct test a, struct test c, struct test *b) {
4622   //     callee(gTest, b); }
4623   //   void caller2(struct test *b) { callee(gTest, b); }
4624   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4625     return false;
4626 
4627   // If callee and caller use different calling conventions, we cannot pass
4628   // parameters on stack since offsets for the parameter area may be different.
4629   if (Caller.getCallingConv() != CalleeCC &&
4630       needStackSlotPassParameters(Subtarget, Outs))
4631     return false;
4632 
4633   // No TCO/SCO on indirect call because Caller have to restore its TOC
4634   if (!isFunctionGlobalAddress(Callee) &&
4635       !isa<ExternalSymbolSDNode>(Callee))
4636     return false;
4637 
4638   // If the caller and callee potentially have different TOC bases then we
4639   // cannot tail call since we need to restore the TOC pointer after the call.
4640   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4641   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4642     return false;
4643 
4644   // TCO allows altering callee ABI, so we don't have to check further.
4645   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4646     return true;
4647 
4648   if (DisableSCO) return false;
4649 
4650   // If callee use the same argument list that caller is using, then we can
4651   // apply SCO on this case. If it is not, then we need to check if callee needs
4652   // stack for passing arguments.
4653   if (!hasSameArgumentList(&Caller, CS) &&
4654       needStackSlotPassParameters(Subtarget, Outs)) {
4655     return false;
4656   }
4657 
4658   return true;
4659 }
4660 
4661 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4662 /// for tail call optimization. Targets which want to do tail call
4663 /// optimization should implement this function.
4664 bool
4665 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4666                                                      CallingConv::ID CalleeCC,
4667                                                      bool isVarArg,
4668                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4669                                                      SelectionDAG& DAG) const {
4670   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4671     return false;
4672 
4673   // Variable argument functions are not supported.
4674   if (isVarArg)
4675     return false;
4676 
4677   MachineFunction &MF = DAG.getMachineFunction();
4678   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4679   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4680     // Functions containing by val parameters are not supported.
4681     for (unsigned i = 0; i != Ins.size(); i++) {
4682        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4683        if (Flags.isByVal()) return false;
4684     }
4685 
4686     // Non-PIC/GOT tail calls are supported.
4687     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4688       return true;
4689 
4690     // At the moment we can only do local tail calls (in same module, hidden
4691     // or protected) if we are generating PIC.
4692     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4693       return G->getGlobal()->hasHiddenVisibility()
4694           || G->getGlobal()->hasProtectedVisibility();
4695   }
4696 
4697   return false;
4698 }
4699 
4700 /// isCallCompatibleAddress - Return the immediate to use if the specified
4701 /// 32-bit value is representable in the immediate field of a BxA instruction.
4702 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4703   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4704   if (!C) return nullptr;
4705 
4706   int Addr = C->getZExtValue();
4707   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4708       SignExtend32<26>(Addr) != Addr)
4709     return nullptr;  // Top 6 bits have to be sext of immediate.
4710 
4711   return DAG
4712       .getConstant(
4713           (int)C->getZExtValue() >> 2, SDLoc(Op),
4714           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4715       .getNode();
4716 }
4717 
4718 namespace {
4719 
4720 struct TailCallArgumentInfo {
4721   SDValue Arg;
4722   SDValue FrameIdxOp;
4723   int FrameIdx = 0;
4724 
4725   TailCallArgumentInfo() = default;
4726 };
4727 
4728 } // end anonymous namespace
4729 
4730 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4731 static void StoreTailCallArgumentsToStackSlot(
4732     SelectionDAG &DAG, SDValue Chain,
4733     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4734     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4735   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4736     SDValue Arg = TailCallArgs[i].Arg;
4737     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4738     int FI = TailCallArgs[i].FrameIdx;
4739     // Store relative to framepointer.
4740     MemOpChains.push_back(DAG.getStore(
4741         Chain, dl, Arg, FIN,
4742         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4743   }
4744 }
4745 
4746 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4747 /// the appropriate stack slot for the tail call optimized function call.
4748 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4749                                              SDValue OldRetAddr, SDValue OldFP,
4750                                              int SPDiff, const SDLoc &dl) {
4751   if (SPDiff) {
4752     // Calculate the new stack slot for the return address.
4753     MachineFunction &MF = DAG.getMachineFunction();
4754     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4755     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4756     bool isPPC64 = Subtarget.isPPC64();
4757     int SlotSize = isPPC64 ? 8 : 4;
4758     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4759     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4760                                                          NewRetAddrLoc, true);
4761     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4762     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4763     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4764                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4765 
4766     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4767     // slot as the FP is never overwritten.
4768     if (Subtarget.isDarwinABI()) {
4769       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4770       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4771                                                          true);
4772       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4773       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4774                            MachinePointerInfo::getFixedStack(
4775                                DAG.getMachineFunction(), NewFPIdx));
4776     }
4777   }
4778   return Chain;
4779 }
4780 
4781 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4782 /// the position of the argument.
4783 static void
4784 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4785                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4786                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4787   int Offset = ArgOffset + SPDiff;
4788   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4789   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4790   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4791   SDValue FIN = DAG.getFrameIndex(FI, VT);
4792   TailCallArgumentInfo Info;
4793   Info.Arg = Arg;
4794   Info.FrameIdxOp = FIN;
4795   Info.FrameIdx = FI;
4796   TailCallArguments.push_back(Info);
4797 }
4798 
4799 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4800 /// stack slot. Returns the chain as result and the loaded frame pointers in
4801 /// LROpOut/FPOpout. Used when tail calling.
4802 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4803     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4804     SDValue &FPOpOut, const SDLoc &dl) const {
4805   if (SPDiff) {
4806     // Load the LR and FP stack slot for later adjusting.
4807     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4808     LROpOut = getReturnAddrFrameIndex(DAG);
4809     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4810     Chain = SDValue(LROpOut.getNode(), 1);
4811 
4812     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4813     // slot as the FP is never overwritten.
4814     if (Subtarget.isDarwinABI()) {
4815       FPOpOut = getFramePointerFrameIndex(DAG);
4816       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4817       Chain = SDValue(FPOpOut.getNode(), 1);
4818     }
4819   }
4820   return Chain;
4821 }
4822 
4823 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4824 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4825 /// specified by the specific parameter attribute. The copy will be passed as
4826 /// a byval function parameter.
4827 /// Sometimes what we are copying is the end of a larger object, the part that
4828 /// does not fit in registers.
4829 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4830                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4831                                          SelectionDAG &DAG, const SDLoc &dl) {
4832   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4833   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4834                        false, false, false, MachinePointerInfo(),
4835                        MachinePointerInfo());
4836 }
4837 
4838 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4839 /// tail calls.
4840 static void LowerMemOpCallTo(
4841     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4842     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4843     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4844     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4845   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4846   if (!isTailCall) {
4847     if (isVector) {
4848       SDValue StackPtr;
4849       if (isPPC64)
4850         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4851       else
4852         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4853       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4854                            DAG.getConstant(ArgOffset, dl, PtrVT));
4855     }
4856     MemOpChains.push_back(
4857         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4858     // Calculate and remember argument location.
4859   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4860                                   TailCallArguments);
4861 }
4862 
4863 static void
4864 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4865                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4866                 SDValue FPOp,
4867                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4868   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4869   // might overwrite each other in case of tail call optimization.
4870   SmallVector<SDValue, 8> MemOpChains2;
4871   // Do not flag preceding copytoreg stuff together with the following stuff.
4872   InFlag = SDValue();
4873   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4874                                     MemOpChains2, dl);
4875   if (!MemOpChains2.empty())
4876     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4877 
4878   // Store the return address to the appropriate stack slot.
4879   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4880 
4881   // Emit callseq_end just before tailcall node.
4882   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4883                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4884   InFlag = Chain.getValue(1);
4885 }
4886 
4887 // Is this global address that of a function that can be called by name? (as
4888 // opposed to something that must hold a descriptor for an indirect call).
4889 static bool isFunctionGlobalAddress(SDValue Callee) {
4890   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4891     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4892         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4893       return false;
4894 
4895     return G->getGlobal()->getValueType()->isFunctionTy();
4896   }
4897 
4898   return false;
4899 }
4900 
4901 static unsigned
4902 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4903             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4904             bool isPatchPoint, bool hasNest,
4905             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4906             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4907             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4908   bool isPPC64 = Subtarget.isPPC64();
4909   bool isSVR4ABI = Subtarget.isSVR4ABI();
4910   bool isELFv2ABI = Subtarget.isELFv2ABI();
4911 
4912   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4913   NodeTys.push_back(MVT::Other);   // Returns a chain
4914   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4915 
4916   unsigned CallOpc = PPCISD::CALL;
4917 
4918   bool needIndirectCall = true;
4919   if (!isSVR4ABI || !isPPC64)
4920     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4921       // If this is an absolute destination address, use the munged value.
4922       Callee = SDValue(Dest, 0);
4923       needIndirectCall = false;
4924     }
4925 
4926   // PC-relative references to external symbols should go through $stub, unless
4927   // we're building with the leopard linker or later, which automatically
4928   // synthesizes these stubs.
4929   const TargetMachine &TM = DAG.getTarget();
4930   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4931   const GlobalValue *GV = nullptr;
4932   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4933     GV = G->getGlobal();
4934   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4935   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4936 
4937   if (isFunctionGlobalAddress(Callee)) {
4938     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4939     // A call to a TLS address is actually an indirect call to a
4940     // thread-specific pointer.
4941     unsigned OpFlags = 0;
4942     if (UsePlt)
4943       OpFlags = PPCII::MO_PLT;
4944 
4945     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4946     // every direct call is) turn it into a TargetGlobalAddress /
4947     // TargetExternalSymbol node so that legalize doesn't hack it.
4948     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4949                                         Callee.getValueType(), 0, OpFlags);
4950     needIndirectCall = false;
4951   }
4952 
4953   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4954     unsigned char OpFlags = 0;
4955 
4956     if (UsePlt)
4957       OpFlags = PPCII::MO_PLT;
4958 
4959     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4960                                          OpFlags);
4961     needIndirectCall = false;
4962   }
4963 
4964   if (isPatchPoint) {
4965     // We'll form an invalid direct call when lowering a patchpoint; the full
4966     // sequence for an indirect call is complicated, and many of the
4967     // instructions introduced might have side effects (and, thus, can't be
4968     // removed later). The call itself will be removed as soon as the
4969     // argument/return lowering is complete, so the fact that it has the wrong
4970     // kind of operands should not really matter.
4971     needIndirectCall = false;
4972   }
4973 
4974   if (needIndirectCall) {
4975     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4976     // to do the call, we can't use PPCISD::CALL.
4977     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4978 
4979     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4980       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4981       // entry point, but to the function descriptor (the function entry point
4982       // address is part of the function descriptor though).
4983       // The function descriptor is a three doubleword structure with the
4984       // following fields: function entry point, TOC base address and
4985       // environment pointer.
4986       // Thus for a call through a function pointer, the following actions need
4987       // to be performed:
4988       //   1. Save the TOC of the caller in the TOC save area of its stack
4989       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4990       //   2. Load the address of the function entry point from the function
4991       //      descriptor.
4992       //   3. Load the TOC of the callee from the function descriptor into r2.
4993       //   4. Load the environment pointer from the function descriptor into
4994       //      r11.
4995       //   5. Branch to the function entry point address.
4996       //   6. On return of the callee, the TOC of the caller needs to be
4997       //      restored (this is done in FinishCall()).
4998       //
4999       // The loads are scheduled at the beginning of the call sequence, and the
5000       // register copies are flagged together to ensure that no other
5001       // operations can be scheduled in between. E.g. without flagging the
5002       // copies together, a TOC access in the caller could be scheduled between
5003       // the assignment of the callee TOC and the branch to the callee, which
5004       // results in the TOC access going through the TOC of the callee instead
5005       // of going through the TOC of the caller, which leads to incorrect code.
5006 
5007       // Load the address of the function entry point from the function
5008       // descriptor.
5009       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
5010       if (LDChain.getValueType() == MVT::Glue)
5011         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
5012 
5013       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5014                           ? (MachineMemOperand::MODereferenceable |
5015                              MachineMemOperand::MOInvariant)
5016                           : MachineMemOperand::MONone;
5017 
5018       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5019       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
5020                                         /* Alignment = */ 8, MMOFlags);
5021 
5022       // Load environment pointer into r11.
5023       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
5024       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
5025       SDValue LoadEnvPtr =
5026           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
5027                       /* Alignment = */ 8, MMOFlags);
5028 
5029       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
5030       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
5031       SDValue TOCPtr =
5032           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
5033                       /* Alignment = */ 8, MMOFlags);
5034 
5035       setUsesTOCBasePtr(DAG);
5036       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5037                                         InFlag);
5038       Chain = TOCVal.getValue(0);
5039       InFlag = TOCVal.getValue(1);
5040 
5041       // If the function call has an explicit 'nest' parameter, it takes the
5042       // place of the environment pointer.
5043       if (!hasNest) {
5044         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5045                                           InFlag);
5046 
5047         Chain = EnvVal.getValue(0);
5048         InFlag = EnvVal.getValue(1);
5049       }
5050 
5051       MTCTROps[0] = Chain;
5052       MTCTROps[1] = LoadFuncPtr;
5053       MTCTROps[2] = InFlag;
5054     }
5055 
5056     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5057                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5058     InFlag = Chain.getValue(1);
5059 
5060     NodeTys.clear();
5061     NodeTys.push_back(MVT::Other);
5062     NodeTys.push_back(MVT::Glue);
5063     Ops.push_back(Chain);
5064     CallOpc = PPCISD::BCTRL;
5065     Callee.setNode(nullptr);
5066     // Add use of X11 (holding environment pointer)
5067     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5068       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5069     // Add CTR register as callee so a bctr can be emitted later.
5070     if (isTailCall)
5071       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5072   }
5073 
5074   // If this is a direct call, pass the chain and the callee.
5075   if (Callee.getNode()) {
5076     Ops.push_back(Chain);
5077     Ops.push_back(Callee);
5078   }
5079   // If this is a tail call add stack pointer delta.
5080   if (isTailCall)
5081     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5082 
5083   // Add argument registers to the end of the list so that they are known live
5084   // into the call.
5085   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5086     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5087                                   RegsToPass[i].second.getValueType()));
5088 
5089   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5090   // into the call.
5091   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
5092     setUsesTOCBasePtr(DAG);
5093     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5094   }
5095 
5096   return CallOpc;
5097 }
5098 
5099 SDValue PPCTargetLowering::LowerCallResult(
5100     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5101     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5102     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5103   SmallVector<CCValAssign, 16> RVLocs;
5104   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5105                     *DAG.getContext());
5106 
5107   CCRetInfo.AnalyzeCallResult(
5108       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5109                ? RetCC_PPC_Cold
5110                : RetCC_PPC);
5111 
5112   // Copy all of the result registers out of their specified physreg.
5113   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5114     CCValAssign &VA = RVLocs[i];
5115     assert(VA.isRegLoc() && "Can only return in registers!");
5116 
5117     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5118                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5119     Chain = Val.getValue(1);
5120     InFlag = Val.getValue(2);
5121 
5122     switch (VA.getLocInfo()) {
5123     default: llvm_unreachable("Unknown loc info!");
5124     case CCValAssign::Full: break;
5125     case CCValAssign::AExt:
5126       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5127       break;
5128     case CCValAssign::ZExt:
5129       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5130                         DAG.getValueType(VA.getValVT()));
5131       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5132       break;
5133     case CCValAssign::SExt:
5134       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5135                         DAG.getValueType(VA.getValVT()));
5136       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5137       break;
5138     }
5139 
5140     InVals.push_back(Val);
5141   }
5142 
5143   return Chain;
5144 }
5145 
5146 SDValue PPCTargetLowering::FinishCall(
5147     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5148     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5149     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5150     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5151     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5152     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5153   std::vector<EVT> NodeTys;
5154   SmallVector<SDValue, 8> Ops;
5155   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5156                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5157                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5158 
5159   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5160   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5161     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5162 
5163   // When performing tail call optimization the callee pops its arguments off
5164   // the stack. Account for this here so these bytes can be pushed back on in
5165   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5166   int BytesCalleePops =
5167     (CallConv == CallingConv::Fast &&
5168      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5169 
5170   // Add a register mask operand representing the call-preserved registers.
5171   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5172   const uint32_t *Mask =
5173       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5174   assert(Mask && "Missing call preserved mask for calling convention");
5175   Ops.push_back(DAG.getRegisterMask(Mask));
5176 
5177   if (InFlag.getNode())
5178     Ops.push_back(InFlag);
5179 
5180   // Emit tail call.
5181   if (isTailCall) {
5182     assert(((Callee.getOpcode() == ISD::Register &&
5183              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5184             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5185             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5186             isa<ConstantSDNode>(Callee)) &&
5187     "Expecting an global address, external symbol, absolute value or register");
5188 
5189     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5190     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5191   }
5192 
5193   // Add a NOP immediately after the branch instruction when using the 64-bit
5194   // SVR4 ABI. At link time, if caller and callee are in a different module and
5195   // thus have a different TOC, the call will be replaced with a call to a stub
5196   // function which saves the current TOC, loads the TOC of the callee and
5197   // branches to the callee. The NOP will be replaced with a load instruction
5198   // which restores the TOC of the caller from the TOC save slot of the current
5199   // stack frame. If caller and callee belong to the same module (and have the
5200   // same TOC), the NOP will remain unchanged.
5201 
5202   MachineFunction &MF = DAG.getMachineFunction();
5203   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5204       !isPatchPoint) {
5205     if (CallOpc == PPCISD::BCTRL) {
5206       // This is a call through a function pointer.
5207       // Restore the caller TOC from the save area into R2.
5208       // See PrepareCall() for more information about calls through function
5209       // pointers in the 64-bit SVR4 ABI.
5210       // We are using a target-specific load with r2 hard coded, because the
5211       // result of a target-independent load would never go directly into r2,
5212       // since r2 is a reserved register (which prevents the register allocator
5213       // from allocating it), resulting in an additional register being
5214       // allocated and an unnecessary move instruction being generated.
5215       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5216 
5217       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5218       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5219       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5220       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5221       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5222 
5223       // The address needs to go after the chain input but before the flag (or
5224       // any other variadic arguments).
5225       Ops.insert(std::next(Ops.begin()), AddTOC);
5226     } else if (CallOpc == PPCISD::CALL &&
5227       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5228       // Otherwise insert NOP for non-local calls.
5229       CallOpc = PPCISD::CALL_NOP;
5230     }
5231   }
5232 
5233   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5234   InFlag = Chain.getValue(1);
5235 
5236   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5237                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5238                              InFlag, dl);
5239   if (!Ins.empty())
5240     InFlag = Chain.getValue(1);
5241 
5242   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5243                          Ins, dl, DAG, InVals);
5244 }
5245 
5246 SDValue
5247 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5248                              SmallVectorImpl<SDValue> &InVals) const {
5249   SelectionDAG &DAG                     = CLI.DAG;
5250   SDLoc &dl                             = CLI.DL;
5251   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5252   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5253   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5254   SDValue Chain                         = CLI.Chain;
5255   SDValue Callee                        = CLI.Callee;
5256   bool &isTailCall                      = CLI.IsTailCall;
5257   CallingConv::ID CallConv              = CLI.CallConv;
5258   bool isVarArg                         = CLI.IsVarArg;
5259   bool isPatchPoint                     = CLI.IsPatchPoint;
5260   ImmutableCallSite CS                  = CLI.CS;
5261 
5262   if (isTailCall) {
5263     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5264       isTailCall = false;
5265     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5266       isTailCall =
5267         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5268                                                  isVarArg, Outs, Ins, DAG);
5269     else
5270       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5271                                                      Ins, DAG);
5272     if (isTailCall) {
5273       ++NumTailCalls;
5274       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5275         ++NumSiblingCalls;
5276 
5277       assert(isa<GlobalAddressSDNode>(Callee) &&
5278              "Callee should be an llvm::Function object.");
5279       LLVM_DEBUG(
5280           const GlobalValue *GV =
5281               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5282           const unsigned Width =
5283               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5284           dbgs() << "TCO caller: "
5285                  << left_justify(DAG.getMachineFunction().getName(), Width)
5286                  << ", callee linkage: " << GV->getVisibility() << ", "
5287                  << GV->getLinkage() << "\n");
5288     }
5289   }
5290 
5291   if (!isTailCall && CS && CS.isMustTailCall())
5292     report_fatal_error("failed to perform tail call elimination on a call "
5293                        "site marked musttail");
5294 
5295   // When long calls (i.e. indirect calls) are always used, calls are always
5296   // made via function pointer. If we have a function name, first translate it
5297   // into a pointer.
5298   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5299       !isTailCall)
5300     Callee = LowerGlobalAddress(Callee, DAG);
5301 
5302   if (Subtarget.isSVR4ABI()) {
5303     if (Subtarget.isPPC64())
5304       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5305                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5306                               dl, DAG, InVals, CS);
5307     else
5308       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5309                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5310                               dl, DAG, InVals, CS);
5311   }
5312 
5313   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5314                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5315                           dl, DAG, InVals, CS);
5316 }
5317 
5318 SDValue PPCTargetLowering::LowerCall_32SVR4(
5319     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5320     bool isTailCall, bool isPatchPoint,
5321     const SmallVectorImpl<ISD::OutputArg> &Outs,
5322     const SmallVectorImpl<SDValue> &OutVals,
5323     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5324     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5325     ImmutableCallSite CS) const {
5326   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5327   // of the 32-bit SVR4 ABI stack frame layout.
5328 
5329   assert((CallConv == CallingConv::C ||
5330           CallConv == CallingConv::Cold ||
5331           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5332 
5333   unsigned PtrByteSize = 4;
5334 
5335   MachineFunction &MF = DAG.getMachineFunction();
5336 
5337   // Mark this function as potentially containing a function that contains a
5338   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5339   // and restoring the callers stack pointer in this functions epilog. This is
5340   // done because by tail calling the called function might overwrite the value
5341   // in this function's (MF) stack pointer stack slot 0(SP).
5342   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5343       CallConv == CallingConv::Fast)
5344     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5345 
5346   // Count how many bytes are to be pushed on the stack, including the linkage
5347   // area, parameter list area and the part of the local variable space which
5348   // contains copies of aggregates which are passed by value.
5349 
5350   // Assign locations to all of the outgoing arguments.
5351   SmallVector<CCValAssign, 16> ArgLocs;
5352   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5353 
5354   // Reserve space for the linkage area on the stack.
5355   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5356                        PtrByteSize);
5357   if (useSoftFloat())
5358     CCInfo.PreAnalyzeCallOperands(Outs);
5359 
5360   if (isVarArg) {
5361     // Handle fixed and variable vector arguments differently.
5362     // Fixed vector arguments go into registers as long as registers are
5363     // available. Variable vector arguments always go into memory.
5364     unsigned NumArgs = Outs.size();
5365 
5366     for (unsigned i = 0; i != NumArgs; ++i) {
5367       MVT ArgVT = Outs[i].VT;
5368       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5369       bool Result;
5370 
5371       if (Outs[i].IsFixed) {
5372         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5373                                CCInfo);
5374       } else {
5375         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5376                                       ArgFlags, CCInfo);
5377       }
5378 
5379       if (Result) {
5380 #ifndef NDEBUG
5381         errs() << "Call operand #" << i << " has unhandled type "
5382              << EVT(ArgVT).getEVTString() << "\n";
5383 #endif
5384         llvm_unreachable(nullptr);
5385       }
5386     }
5387   } else {
5388     // All arguments are treated the same.
5389     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5390   }
5391   CCInfo.clearWasPPCF128();
5392 
5393   // Assign locations to all of the outgoing aggregate by value arguments.
5394   SmallVector<CCValAssign, 16> ByValArgLocs;
5395   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5396 
5397   // Reserve stack space for the allocations in CCInfo.
5398   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5399 
5400   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5401 
5402   // Size of the linkage area, parameter list area and the part of the local
5403   // space variable where copies of aggregates which are passed by value are
5404   // stored.
5405   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5406 
5407   // Calculate by how many bytes the stack has to be adjusted in case of tail
5408   // call optimization.
5409   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5410 
5411   // Adjust the stack pointer for the new arguments...
5412   // These operations are automatically eliminated by the prolog/epilog pass
5413   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5414   SDValue CallSeqStart = Chain;
5415 
5416   // Load the return address and frame pointer so it can be moved somewhere else
5417   // later.
5418   SDValue LROp, FPOp;
5419   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5420 
5421   // Set up a copy of the stack pointer for use loading and storing any
5422   // arguments that may not fit in the registers available for argument
5423   // passing.
5424   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5425 
5426   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5427   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5428   SmallVector<SDValue, 8> MemOpChains;
5429 
5430   bool seenFloatArg = false;
5431   // Walk the register/memloc assignments, inserting copies/loads.
5432   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5433        i != e;
5434        ++i) {
5435     CCValAssign &VA = ArgLocs[i];
5436     SDValue Arg = OutVals[i];
5437     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5438 
5439     if (Flags.isByVal()) {
5440       // Argument is an aggregate which is passed by value, thus we need to
5441       // create a copy of it in the local variable space of the current stack
5442       // frame (which is the stack frame of the caller) and pass the address of
5443       // this copy to the callee.
5444       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5445       CCValAssign &ByValVA = ByValArgLocs[j++];
5446       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5447 
5448       // Memory reserved in the local variable space of the callers stack frame.
5449       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5450 
5451       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5452       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5453                            StackPtr, PtrOff);
5454 
5455       // Create a copy of the argument in the local area of the current
5456       // stack frame.
5457       SDValue MemcpyCall =
5458         CreateCopyOfByValArgument(Arg, PtrOff,
5459                                   CallSeqStart.getNode()->getOperand(0),
5460                                   Flags, DAG, dl);
5461 
5462       // This must go outside the CALLSEQ_START..END.
5463       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5464                                                      SDLoc(MemcpyCall));
5465       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5466                              NewCallSeqStart.getNode());
5467       Chain = CallSeqStart = NewCallSeqStart;
5468 
5469       // Pass the address of the aggregate copy on the stack either in a
5470       // physical register or in the parameter list area of the current stack
5471       // frame to the callee.
5472       Arg = PtrOff;
5473     }
5474 
5475     // When useCRBits() is true, there can be i1 arguments.
5476     // It is because getRegisterType(MVT::i1) => MVT::i1,
5477     // and for other integer types getRegisterType() => MVT::i32.
5478     // Extend i1 and ensure callee will get i32.
5479     if (Arg.getValueType() == MVT::i1)
5480       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5481                         dl, MVT::i32, Arg);
5482 
5483     if (VA.isRegLoc()) {
5484       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5485       // Put argument in a physical register.
5486       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5487     } else {
5488       // Put argument in the parameter list area of the current stack frame.
5489       assert(VA.isMemLoc());
5490       unsigned LocMemOffset = VA.getLocMemOffset();
5491 
5492       if (!isTailCall) {
5493         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5494         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5495                              StackPtr, PtrOff);
5496 
5497         MemOpChains.push_back(
5498             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5499       } else {
5500         // Calculate and remember argument location.
5501         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5502                                  TailCallArguments);
5503       }
5504     }
5505   }
5506 
5507   if (!MemOpChains.empty())
5508     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5509 
5510   // Build a sequence of copy-to-reg nodes chained together with token chain
5511   // and flag operands which copy the outgoing args into the appropriate regs.
5512   SDValue InFlag;
5513   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5514     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5515                              RegsToPass[i].second, InFlag);
5516     InFlag = Chain.getValue(1);
5517   }
5518 
5519   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5520   // registers.
5521   if (isVarArg) {
5522     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5523     SDValue Ops[] = { Chain, InFlag };
5524 
5525     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5526                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5527 
5528     InFlag = Chain.getValue(1);
5529   }
5530 
5531   if (isTailCall)
5532     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5533                     TailCallArguments);
5534 
5535   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5536                     /* unused except on PPC64 ELFv1 */ false, DAG,
5537                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5538                     NumBytes, Ins, InVals, CS);
5539 }
5540 
5541 // Copy an argument into memory, being careful to do this outside the
5542 // call sequence for the call to which the argument belongs.
5543 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5544     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5545     SelectionDAG &DAG, const SDLoc &dl) const {
5546   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5547                         CallSeqStart.getNode()->getOperand(0),
5548                         Flags, DAG, dl);
5549   // The MEMCPY must go outside the CALLSEQ_START..END.
5550   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5551   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5552                                                  SDLoc(MemcpyCall));
5553   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5554                          NewCallSeqStart.getNode());
5555   return NewCallSeqStart;
5556 }
5557 
5558 SDValue PPCTargetLowering::LowerCall_64SVR4(
5559     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5560     bool isTailCall, bool isPatchPoint,
5561     const SmallVectorImpl<ISD::OutputArg> &Outs,
5562     const SmallVectorImpl<SDValue> &OutVals,
5563     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5564     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5565     ImmutableCallSite CS) const {
5566   bool isELFv2ABI = Subtarget.isELFv2ABI();
5567   bool isLittleEndian = Subtarget.isLittleEndian();
5568   unsigned NumOps = Outs.size();
5569   bool hasNest = false;
5570   bool IsSibCall = false;
5571 
5572   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5573   unsigned PtrByteSize = 8;
5574 
5575   MachineFunction &MF = DAG.getMachineFunction();
5576 
5577   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5578     IsSibCall = true;
5579 
5580   // Mark this function as potentially containing a function that contains a
5581   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5582   // and restoring the callers stack pointer in this functions epilog. This is
5583   // done because by tail calling the called function might overwrite the value
5584   // in this function's (MF) stack pointer stack slot 0(SP).
5585   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5586       CallConv == CallingConv::Fast)
5587     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5588 
5589   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5590          "fastcc not supported on varargs functions");
5591 
5592   // Count how many bytes are to be pushed on the stack, including the linkage
5593   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5594   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5595   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5596   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5597   unsigned NumBytes = LinkageSize;
5598   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5599   unsigned &QFPR_idx = FPR_idx;
5600 
5601   static const MCPhysReg GPR[] = {
5602     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5603     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5604   };
5605   static const MCPhysReg VR[] = {
5606     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5607     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5608   };
5609 
5610   const unsigned NumGPRs = array_lengthof(GPR);
5611   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5612   const unsigned NumVRs  = array_lengthof(VR);
5613   const unsigned NumQFPRs = NumFPRs;
5614 
5615   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5616   // can be passed to the callee in registers.
5617   // For the fast calling convention, there is another check below.
5618   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5619   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5620   if (!HasParameterArea) {
5621     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5622     unsigned AvailableFPRs = NumFPRs;
5623     unsigned AvailableVRs = NumVRs;
5624     unsigned NumBytesTmp = NumBytes;
5625     for (unsigned i = 0; i != NumOps; ++i) {
5626       if (Outs[i].Flags.isNest()) continue;
5627       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5628                                 PtrByteSize, LinkageSize, ParamAreaSize,
5629                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5630                                 Subtarget.hasQPX()))
5631         HasParameterArea = true;
5632     }
5633   }
5634 
5635   // When using the fast calling convention, we don't provide backing for
5636   // arguments that will be in registers.
5637   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5638 
5639   // Avoid allocating parameter area for fastcc functions if all the arguments
5640   // can be passed in the registers.
5641   if (CallConv == CallingConv::Fast)
5642     HasParameterArea = false;
5643 
5644   // Add up all the space actually used.
5645   for (unsigned i = 0; i != NumOps; ++i) {
5646     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5647     EVT ArgVT = Outs[i].VT;
5648     EVT OrigVT = Outs[i].ArgVT;
5649 
5650     if (Flags.isNest())
5651       continue;
5652 
5653     if (CallConv == CallingConv::Fast) {
5654       if (Flags.isByVal()) {
5655         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5656         if (NumGPRsUsed > NumGPRs)
5657           HasParameterArea = true;
5658       } else {
5659         switch (ArgVT.getSimpleVT().SimpleTy) {
5660         default: llvm_unreachable("Unexpected ValueType for argument!");
5661         case MVT::i1:
5662         case MVT::i32:
5663         case MVT::i64:
5664           if (++NumGPRsUsed <= NumGPRs)
5665             continue;
5666           break;
5667         case MVT::v4i32:
5668         case MVT::v8i16:
5669         case MVT::v16i8:
5670         case MVT::v2f64:
5671         case MVT::v2i64:
5672         case MVT::v1i128:
5673         case MVT::f128:
5674           if (++NumVRsUsed <= NumVRs)
5675             continue;
5676           break;
5677         case MVT::v4f32:
5678           // When using QPX, this is handled like a FP register, otherwise, it
5679           // is an Altivec register.
5680           if (Subtarget.hasQPX()) {
5681             if (++NumFPRsUsed <= NumFPRs)
5682               continue;
5683           } else {
5684             if (++NumVRsUsed <= NumVRs)
5685               continue;
5686           }
5687           break;
5688         case MVT::f32:
5689         case MVT::f64:
5690         case MVT::v4f64: // QPX
5691         case MVT::v4i1:  // QPX
5692           if (++NumFPRsUsed <= NumFPRs)
5693             continue;
5694           break;
5695         }
5696         HasParameterArea = true;
5697       }
5698     }
5699 
5700     /* Respect alignment of argument on the stack.  */
5701     unsigned Align =
5702       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5703     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5704 
5705     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5706     if (Flags.isInConsecutiveRegsLast())
5707       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5708   }
5709 
5710   unsigned NumBytesActuallyUsed = NumBytes;
5711 
5712   // In the old ELFv1 ABI,
5713   // the prolog code of the callee may store up to 8 GPR argument registers to
5714   // the stack, allowing va_start to index over them in memory if its varargs.
5715   // Because we cannot tell if this is needed on the caller side, we have to
5716   // conservatively assume that it is needed.  As such, make sure we have at
5717   // least enough stack space for the caller to store the 8 GPRs.
5718   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5719   // really requires memory operands, e.g. a vararg function.
5720   if (HasParameterArea)
5721     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5722   else
5723     NumBytes = LinkageSize;
5724 
5725   // Tail call needs the stack to be aligned.
5726   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5727       CallConv == CallingConv::Fast)
5728     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5729 
5730   int SPDiff = 0;
5731 
5732   // Calculate by how many bytes the stack has to be adjusted in case of tail
5733   // call optimization.
5734   if (!IsSibCall)
5735     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5736 
5737   // To protect arguments on the stack from being clobbered in a tail call,
5738   // force all the loads to happen before doing any other lowering.
5739   if (isTailCall)
5740     Chain = DAG.getStackArgumentTokenFactor(Chain);
5741 
5742   // Adjust the stack pointer for the new arguments...
5743   // These operations are automatically eliminated by the prolog/epilog pass
5744   if (!IsSibCall)
5745     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5746   SDValue CallSeqStart = Chain;
5747 
5748   // Load the return address and frame pointer so it can be move somewhere else
5749   // later.
5750   SDValue LROp, FPOp;
5751   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5752 
5753   // Set up a copy of the stack pointer for use loading and storing any
5754   // arguments that may not fit in the registers available for argument
5755   // passing.
5756   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5757 
5758   // Figure out which arguments are going to go in registers, and which in
5759   // memory.  Also, if this is a vararg function, floating point operations
5760   // must be stored to our stack, and loaded into integer regs as well, if
5761   // any integer regs are available for argument passing.
5762   unsigned ArgOffset = LinkageSize;
5763 
5764   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5765   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5766 
5767   SmallVector<SDValue, 8> MemOpChains;
5768   for (unsigned i = 0; i != NumOps; ++i) {
5769     SDValue Arg = OutVals[i];
5770     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5771     EVT ArgVT = Outs[i].VT;
5772     EVT OrigVT = Outs[i].ArgVT;
5773 
5774     // PtrOff will be used to store the current argument to the stack if a
5775     // register cannot be found for it.
5776     SDValue PtrOff;
5777 
5778     // We re-align the argument offset for each argument, except when using the
5779     // fast calling convention, when we need to make sure we do that only when
5780     // we'll actually use a stack slot.
5781     auto ComputePtrOff = [&]() {
5782       /* Respect alignment of argument on the stack.  */
5783       unsigned Align =
5784         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5785       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5786 
5787       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5788 
5789       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5790     };
5791 
5792     if (CallConv != CallingConv::Fast) {
5793       ComputePtrOff();
5794 
5795       /* Compute GPR index associated with argument offset.  */
5796       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5797       GPR_idx = std::min(GPR_idx, NumGPRs);
5798     }
5799 
5800     // Promote integers to 64-bit values.
5801     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5802       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5803       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5804       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5805     }
5806 
5807     // FIXME memcpy is used way more than necessary.  Correctness first.
5808     // Note: "by value" is code for passing a structure by value, not
5809     // basic types.
5810     if (Flags.isByVal()) {
5811       // Note: Size includes alignment padding, so
5812       //   struct x { short a; char b; }
5813       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5814       // These are the proper values we need for right-justifying the
5815       // aggregate in a parameter register.
5816       unsigned Size = Flags.getByValSize();
5817 
5818       // An empty aggregate parameter takes up no storage and no
5819       // registers.
5820       if (Size == 0)
5821         continue;
5822 
5823       if (CallConv == CallingConv::Fast)
5824         ComputePtrOff();
5825 
5826       // All aggregates smaller than 8 bytes must be passed right-justified.
5827       if (Size==1 || Size==2 || Size==4) {
5828         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5829         if (GPR_idx != NumGPRs) {
5830           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5831                                         MachinePointerInfo(), VT);
5832           MemOpChains.push_back(Load.getValue(1));
5833           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5834 
5835           ArgOffset += PtrByteSize;
5836           continue;
5837         }
5838       }
5839 
5840       if (GPR_idx == NumGPRs && Size < 8) {
5841         SDValue AddPtr = PtrOff;
5842         if (!isLittleEndian) {
5843           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5844                                           PtrOff.getValueType());
5845           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5846         }
5847         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5848                                                           CallSeqStart,
5849                                                           Flags, DAG, dl);
5850         ArgOffset += PtrByteSize;
5851         continue;
5852       }
5853       // Copy entire object into memory.  There are cases where gcc-generated
5854       // code assumes it is there, even if it could be put entirely into
5855       // registers.  (This is not what the doc says.)
5856 
5857       // FIXME: The above statement is likely due to a misunderstanding of the
5858       // documents.  All arguments must be copied into the parameter area BY
5859       // THE CALLEE in the event that the callee takes the address of any
5860       // formal argument.  That has not yet been implemented.  However, it is
5861       // reasonable to use the stack area as a staging area for the register
5862       // load.
5863 
5864       // Skip this for small aggregates, as we will use the same slot for a
5865       // right-justified copy, below.
5866       if (Size >= 8)
5867         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5868                                                           CallSeqStart,
5869                                                           Flags, DAG, dl);
5870 
5871       // When a register is available, pass a small aggregate right-justified.
5872       if (Size < 8 && GPR_idx != NumGPRs) {
5873         // The easiest way to get this right-justified in a register
5874         // is to copy the structure into the rightmost portion of a
5875         // local variable slot, then load the whole slot into the
5876         // register.
5877         // FIXME: The memcpy seems to produce pretty awful code for
5878         // small aggregates, particularly for packed ones.
5879         // FIXME: It would be preferable to use the slot in the
5880         // parameter save area instead of a new local variable.
5881         SDValue AddPtr = PtrOff;
5882         if (!isLittleEndian) {
5883           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5884           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5885         }
5886         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5887                                                           CallSeqStart,
5888                                                           Flags, DAG, dl);
5889 
5890         // Load the slot into the register.
5891         SDValue Load =
5892             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5893         MemOpChains.push_back(Load.getValue(1));
5894         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5895 
5896         // Done with this argument.
5897         ArgOffset += PtrByteSize;
5898         continue;
5899       }
5900 
5901       // For aggregates larger than PtrByteSize, copy the pieces of the
5902       // object that fit into registers from the parameter save area.
5903       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5904         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5905         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5906         if (GPR_idx != NumGPRs) {
5907           SDValue Load =
5908               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5909           MemOpChains.push_back(Load.getValue(1));
5910           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5911           ArgOffset += PtrByteSize;
5912         } else {
5913           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5914           break;
5915         }
5916       }
5917       continue;
5918     }
5919 
5920     switch (Arg.getSimpleValueType().SimpleTy) {
5921     default: llvm_unreachable("Unexpected ValueType for argument!");
5922     case MVT::i1:
5923     case MVT::i32:
5924     case MVT::i64:
5925       if (Flags.isNest()) {
5926         // The 'nest' parameter, if any, is passed in R11.
5927         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5928         hasNest = true;
5929         break;
5930       }
5931 
5932       // These can be scalar arguments or elements of an integer array type
5933       // passed directly.  Clang may use those instead of "byval" aggregate
5934       // types to avoid forcing arguments to memory unnecessarily.
5935       if (GPR_idx != NumGPRs) {
5936         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5937       } else {
5938         if (CallConv == CallingConv::Fast)
5939           ComputePtrOff();
5940 
5941         assert(HasParameterArea &&
5942                "Parameter area must exist to pass an argument in memory.");
5943         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5944                          true, isTailCall, false, MemOpChains,
5945                          TailCallArguments, dl);
5946         if (CallConv == CallingConv::Fast)
5947           ArgOffset += PtrByteSize;
5948       }
5949       if (CallConv != CallingConv::Fast)
5950         ArgOffset += PtrByteSize;
5951       break;
5952     case MVT::f32:
5953     case MVT::f64: {
5954       // These can be scalar arguments or elements of a float array type
5955       // passed directly.  The latter are used to implement ELFv2 homogenous
5956       // float aggregates.
5957 
5958       // Named arguments go into FPRs first, and once they overflow, the
5959       // remaining arguments go into GPRs and then the parameter save area.
5960       // Unnamed arguments for vararg functions always go to GPRs and
5961       // then the parameter save area.  For now, put all arguments to vararg
5962       // routines always in both locations (FPR *and* GPR or stack slot).
5963       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5964       bool NeededLoad = false;
5965 
5966       // First load the argument into the next available FPR.
5967       if (FPR_idx != NumFPRs)
5968         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5969 
5970       // Next, load the argument into GPR or stack slot if needed.
5971       if (!NeedGPROrStack)
5972         ;
5973       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5974         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5975         // once we support fp <-> gpr moves.
5976 
5977         // In the non-vararg case, this can only ever happen in the
5978         // presence of f32 array types, since otherwise we never run
5979         // out of FPRs before running out of GPRs.
5980         SDValue ArgVal;
5981 
5982         // Double values are always passed in a single GPR.
5983         if (Arg.getValueType() != MVT::f32) {
5984           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5985 
5986         // Non-array float values are extended and passed in a GPR.
5987         } else if (!Flags.isInConsecutiveRegs()) {
5988           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5989           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5990 
5991         // If we have an array of floats, we collect every odd element
5992         // together with its predecessor into one GPR.
5993         } else if (ArgOffset % PtrByteSize != 0) {
5994           SDValue Lo, Hi;
5995           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5996           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5997           if (!isLittleEndian)
5998             std::swap(Lo, Hi);
5999           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6000 
6001         // The final element, if even, goes into the first half of a GPR.
6002         } else if (Flags.isInConsecutiveRegsLast()) {
6003           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6004           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6005           if (!isLittleEndian)
6006             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6007                                  DAG.getConstant(32, dl, MVT::i32));
6008 
6009         // Non-final even elements are skipped; they will be handled
6010         // together the with subsequent argument on the next go-around.
6011         } else
6012           ArgVal = SDValue();
6013 
6014         if (ArgVal.getNode())
6015           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6016       } else {
6017         if (CallConv == CallingConv::Fast)
6018           ComputePtrOff();
6019 
6020         // Single-precision floating-point values are mapped to the
6021         // second (rightmost) word of the stack doubleword.
6022         if (Arg.getValueType() == MVT::f32 &&
6023             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6024           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6025           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6026         }
6027 
6028         assert(HasParameterArea &&
6029                "Parameter area must exist to pass an argument in memory.");
6030         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6031                          true, isTailCall, false, MemOpChains,
6032                          TailCallArguments, dl);
6033 
6034         NeededLoad = true;
6035       }
6036       // When passing an array of floats, the array occupies consecutive
6037       // space in the argument area; only round up to the next doubleword
6038       // at the end of the array.  Otherwise, each float takes 8 bytes.
6039       if (CallConv != CallingConv::Fast || NeededLoad) {
6040         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6041                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6042         if (Flags.isInConsecutiveRegsLast())
6043           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6044       }
6045       break;
6046     }
6047     case MVT::v4f32:
6048     case MVT::v4i32:
6049     case MVT::v8i16:
6050     case MVT::v16i8:
6051     case MVT::v2f64:
6052     case MVT::v2i64:
6053     case MVT::v1i128:
6054     case MVT::f128:
6055       if (!Subtarget.hasQPX()) {
6056       // These can be scalar arguments or elements of a vector array type
6057       // passed directly.  The latter are used to implement ELFv2 homogenous
6058       // vector aggregates.
6059 
6060       // For a varargs call, named arguments go into VRs or on the stack as
6061       // usual; unnamed arguments always go to the stack or the corresponding
6062       // GPRs when within range.  For now, we always put the value in both
6063       // locations (or even all three).
6064       if (isVarArg) {
6065         assert(HasParameterArea &&
6066                "Parameter area must exist if we have a varargs call.");
6067         // We could elide this store in the case where the object fits
6068         // entirely in R registers.  Maybe later.
6069         SDValue Store =
6070             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6071         MemOpChains.push_back(Store);
6072         if (VR_idx != NumVRs) {
6073           SDValue Load =
6074               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6075           MemOpChains.push_back(Load.getValue(1));
6076           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6077         }
6078         ArgOffset += 16;
6079         for (unsigned i=0; i<16; i+=PtrByteSize) {
6080           if (GPR_idx == NumGPRs)
6081             break;
6082           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6083                                    DAG.getConstant(i, dl, PtrVT));
6084           SDValue Load =
6085               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6086           MemOpChains.push_back(Load.getValue(1));
6087           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6088         }
6089         break;
6090       }
6091 
6092       // Non-varargs Altivec params go into VRs or on the stack.
6093       if (VR_idx != NumVRs) {
6094         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6095       } else {
6096         if (CallConv == CallingConv::Fast)
6097           ComputePtrOff();
6098 
6099         assert(HasParameterArea &&
6100                "Parameter area must exist to pass an argument in memory.");
6101         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6102                          true, isTailCall, true, MemOpChains,
6103                          TailCallArguments, dl);
6104         if (CallConv == CallingConv::Fast)
6105           ArgOffset += 16;
6106       }
6107 
6108       if (CallConv != CallingConv::Fast)
6109         ArgOffset += 16;
6110       break;
6111       } // not QPX
6112 
6113       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6114              "Invalid QPX parameter type");
6115 
6116       LLVM_FALLTHROUGH;
6117     case MVT::v4f64:
6118     case MVT::v4i1: {
6119       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6120       if (isVarArg) {
6121         assert(HasParameterArea &&
6122                "Parameter area must exist if we have a varargs call.");
6123         // We could elide this store in the case where the object fits
6124         // entirely in R registers.  Maybe later.
6125         SDValue Store =
6126             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6127         MemOpChains.push_back(Store);
6128         if (QFPR_idx != NumQFPRs) {
6129           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6130                                      PtrOff, MachinePointerInfo());
6131           MemOpChains.push_back(Load.getValue(1));
6132           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6133         }
6134         ArgOffset += (IsF32 ? 16 : 32);
6135         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6136           if (GPR_idx == NumGPRs)
6137             break;
6138           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6139                                    DAG.getConstant(i, dl, PtrVT));
6140           SDValue Load =
6141               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6142           MemOpChains.push_back(Load.getValue(1));
6143           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6144         }
6145         break;
6146       }
6147 
6148       // Non-varargs QPX params go into registers or on the stack.
6149       if (QFPR_idx != NumQFPRs) {
6150         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6151       } else {
6152         if (CallConv == CallingConv::Fast)
6153           ComputePtrOff();
6154 
6155         assert(HasParameterArea &&
6156                "Parameter area must exist to pass an argument in memory.");
6157         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6158                          true, isTailCall, true, MemOpChains,
6159                          TailCallArguments, dl);
6160         if (CallConv == CallingConv::Fast)
6161           ArgOffset += (IsF32 ? 16 : 32);
6162       }
6163 
6164       if (CallConv != CallingConv::Fast)
6165         ArgOffset += (IsF32 ? 16 : 32);
6166       break;
6167       }
6168     }
6169   }
6170 
6171   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6172          "mismatch in size of parameter area");
6173   (void)NumBytesActuallyUsed;
6174 
6175   if (!MemOpChains.empty())
6176     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6177 
6178   // Check if this is an indirect call (MTCTR/BCTRL).
6179   // See PrepareCall() for more information about calls through function
6180   // pointers in the 64-bit SVR4 ABI.
6181   if (!isTailCall && !isPatchPoint &&
6182       !isFunctionGlobalAddress(Callee) &&
6183       !isa<ExternalSymbolSDNode>(Callee)) {
6184     // Load r2 into a virtual register and store it to the TOC save area.
6185     setUsesTOCBasePtr(DAG);
6186     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6187     // TOC save area offset.
6188     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6189     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6190     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6191     Chain = DAG.getStore(
6192         Val.getValue(1), dl, Val, AddPtr,
6193         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6194     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6195     // This does not mean the MTCTR instruction must use R12; it's easier
6196     // to model this as an extra parameter, so do that.
6197     if (isELFv2ABI && !isPatchPoint)
6198       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6199   }
6200 
6201   // Build a sequence of copy-to-reg nodes chained together with token chain
6202   // and flag operands which copy the outgoing args into the appropriate regs.
6203   SDValue InFlag;
6204   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6205     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6206                              RegsToPass[i].second, InFlag);
6207     InFlag = Chain.getValue(1);
6208   }
6209 
6210   if (isTailCall && !IsSibCall)
6211     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6212                     TailCallArguments);
6213 
6214   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6215                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6216                     SPDiff, NumBytes, Ins, InVals, CS);
6217 }
6218 
6219 SDValue PPCTargetLowering::LowerCall_Darwin(
6220     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6221     bool isTailCall, bool isPatchPoint,
6222     const SmallVectorImpl<ISD::OutputArg> &Outs,
6223     const SmallVectorImpl<SDValue> &OutVals,
6224     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6225     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6226     ImmutableCallSite CS) const {
6227   unsigned NumOps = Outs.size();
6228 
6229   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6230   bool isPPC64 = PtrVT == MVT::i64;
6231   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6232 
6233   MachineFunction &MF = DAG.getMachineFunction();
6234 
6235   // Mark this function as potentially containing a function that contains a
6236   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6237   // and restoring the callers stack pointer in this functions epilog. This is
6238   // done because by tail calling the called function might overwrite the value
6239   // in this function's (MF) stack pointer stack slot 0(SP).
6240   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6241       CallConv == CallingConv::Fast)
6242     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6243 
6244   // Count how many bytes are to be pushed on the stack, including the linkage
6245   // area, and parameter passing area.  We start with 24/48 bytes, which is
6246   // prereserved space for [SP][CR][LR][3 x unused].
6247   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6248   unsigned NumBytes = LinkageSize;
6249 
6250   // Add up all the space actually used.
6251   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6252   // they all go in registers, but we must reserve stack space for them for
6253   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6254   // assigned stack space in order, with padding so Altivec parameters are
6255   // 16-byte aligned.
6256   unsigned nAltivecParamsAtEnd = 0;
6257   for (unsigned i = 0; i != NumOps; ++i) {
6258     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6259     EVT ArgVT = Outs[i].VT;
6260     // Varargs Altivec parameters are padded to a 16 byte boundary.
6261     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6262         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6263         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6264       if (!isVarArg && !isPPC64) {
6265         // Non-varargs Altivec parameters go after all the non-Altivec
6266         // parameters; handle those later so we know how much padding we need.
6267         nAltivecParamsAtEnd++;
6268         continue;
6269       }
6270       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6271       NumBytes = ((NumBytes+15)/16)*16;
6272     }
6273     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6274   }
6275 
6276   // Allow for Altivec parameters at the end, if needed.
6277   if (nAltivecParamsAtEnd) {
6278     NumBytes = ((NumBytes+15)/16)*16;
6279     NumBytes += 16*nAltivecParamsAtEnd;
6280   }
6281 
6282   // The prolog code of the callee may store up to 8 GPR argument registers to
6283   // the stack, allowing va_start to index over them in memory if its varargs.
6284   // Because we cannot tell if this is needed on the caller side, we have to
6285   // conservatively assume that it is needed.  As such, make sure we have at
6286   // least enough stack space for the caller to store the 8 GPRs.
6287   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6288 
6289   // Tail call needs the stack to be aligned.
6290   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6291       CallConv == CallingConv::Fast)
6292     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6293 
6294   // Calculate by how many bytes the stack has to be adjusted in case of tail
6295   // call optimization.
6296   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6297 
6298   // To protect arguments on the stack from being clobbered in a tail call,
6299   // force all the loads to happen before doing any other lowering.
6300   if (isTailCall)
6301     Chain = DAG.getStackArgumentTokenFactor(Chain);
6302 
6303   // Adjust the stack pointer for the new arguments...
6304   // These operations are automatically eliminated by the prolog/epilog pass
6305   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6306   SDValue CallSeqStart = Chain;
6307 
6308   // Load the return address and frame pointer so it can be move somewhere else
6309   // later.
6310   SDValue LROp, FPOp;
6311   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6312 
6313   // Set up a copy of the stack pointer for use loading and storing any
6314   // arguments that may not fit in the registers available for argument
6315   // passing.
6316   SDValue StackPtr;
6317   if (isPPC64)
6318     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6319   else
6320     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6321 
6322   // Figure out which arguments are going to go in registers, and which in
6323   // memory.  Also, if this is a vararg function, floating point operations
6324   // must be stored to our stack, and loaded into integer regs as well, if
6325   // any integer regs are available for argument passing.
6326   unsigned ArgOffset = LinkageSize;
6327   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6328 
6329   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6330     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6331     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6332   };
6333   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6334     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6335     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6336   };
6337   static const MCPhysReg VR[] = {
6338     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6339     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6340   };
6341   const unsigned NumGPRs = array_lengthof(GPR_32);
6342   const unsigned NumFPRs = 13;
6343   const unsigned NumVRs  = array_lengthof(VR);
6344 
6345   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6346 
6347   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6348   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6349 
6350   SmallVector<SDValue, 8> MemOpChains;
6351   for (unsigned i = 0; i != NumOps; ++i) {
6352     SDValue Arg = OutVals[i];
6353     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6354 
6355     // PtrOff will be used to store the current argument to the stack if a
6356     // register cannot be found for it.
6357     SDValue PtrOff;
6358 
6359     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6360 
6361     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6362 
6363     // On PPC64, promote integers to 64-bit values.
6364     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6365       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6366       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6367       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6368     }
6369 
6370     // FIXME memcpy is used way more than necessary.  Correctness first.
6371     // Note: "by value" is code for passing a structure by value, not
6372     // basic types.
6373     if (Flags.isByVal()) {
6374       unsigned Size = Flags.getByValSize();
6375       // Very small objects are passed right-justified.  Everything else is
6376       // passed left-justified.
6377       if (Size==1 || Size==2) {
6378         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6379         if (GPR_idx != NumGPRs) {
6380           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6381                                         MachinePointerInfo(), VT);
6382           MemOpChains.push_back(Load.getValue(1));
6383           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6384 
6385           ArgOffset += PtrByteSize;
6386         } else {
6387           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6388                                           PtrOff.getValueType());
6389           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6390           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6391                                                             CallSeqStart,
6392                                                             Flags, DAG, dl);
6393           ArgOffset += PtrByteSize;
6394         }
6395         continue;
6396       }
6397       // Copy entire object into memory.  There are cases where gcc-generated
6398       // code assumes it is there, even if it could be put entirely into
6399       // registers.  (This is not what the doc says.)
6400       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6401                                                         CallSeqStart,
6402                                                         Flags, DAG, dl);
6403 
6404       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6405       // copy the pieces of the object that fit into registers from the
6406       // parameter save area.
6407       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6408         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6409         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6410         if (GPR_idx != NumGPRs) {
6411           SDValue Load =
6412               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6413           MemOpChains.push_back(Load.getValue(1));
6414           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6415           ArgOffset += PtrByteSize;
6416         } else {
6417           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6418           break;
6419         }
6420       }
6421       continue;
6422     }
6423 
6424     switch (Arg.getSimpleValueType().SimpleTy) {
6425     default: llvm_unreachable("Unexpected ValueType for argument!");
6426     case MVT::i1:
6427     case MVT::i32:
6428     case MVT::i64:
6429       if (GPR_idx != NumGPRs) {
6430         if (Arg.getValueType() == MVT::i1)
6431           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6432 
6433         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6434       } else {
6435         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6436                          isPPC64, isTailCall, false, MemOpChains,
6437                          TailCallArguments, dl);
6438       }
6439       ArgOffset += PtrByteSize;
6440       break;
6441     case MVT::f32:
6442     case MVT::f64:
6443       if (FPR_idx != NumFPRs) {
6444         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6445 
6446         if (isVarArg) {
6447           SDValue Store =
6448               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6449           MemOpChains.push_back(Store);
6450 
6451           // Float varargs are always shadowed in available integer registers
6452           if (GPR_idx != NumGPRs) {
6453             SDValue Load =
6454                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6455             MemOpChains.push_back(Load.getValue(1));
6456             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6457           }
6458           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6459             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6460             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6461             SDValue Load =
6462                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6463             MemOpChains.push_back(Load.getValue(1));
6464             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6465           }
6466         } else {
6467           // If we have any FPRs remaining, we may also have GPRs remaining.
6468           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6469           // GPRs.
6470           if (GPR_idx != NumGPRs)
6471             ++GPR_idx;
6472           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6473               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6474             ++GPR_idx;
6475         }
6476       } else
6477         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6478                          isPPC64, isTailCall, false, MemOpChains,
6479                          TailCallArguments, dl);
6480       if (isPPC64)
6481         ArgOffset += 8;
6482       else
6483         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6484       break;
6485     case MVT::v4f32:
6486     case MVT::v4i32:
6487     case MVT::v8i16:
6488     case MVT::v16i8:
6489       if (isVarArg) {
6490         // These go aligned on the stack, or in the corresponding R registers
6491         // when within range.  The Darwin PPC ABI doc claims they also go in
6492         // V registers; in fact gcc does this only for arguments that are
6493         // prototyped, not for those that match the ...  We do it for all
6494         // arguments, seems to work.
6495         while (ArgOffset % 16 !=0) {
6496           ArgOffset += PtrByteSize;
6497           if (GPR_idx != NumGPRs)
6498             GPR_idx++;
6499         }
6500         // We could elide this store in the case where the object fits
6501         // entirely in R registers.  Maybe later.
6502         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6503                              DAG.getConstant(ArgOffset, dl, PtrVT));
6504         SDValue Store =
6505             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6506         MemOpChains.push_back(Store);
6507         if (VR_idx != NumVRs) {
6508           SDValue Load =
6509               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6510           MemOpChains.push_back(Load.getValue(1));
6511           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6512         }
6513         ArgOffset += 16;
6514         for (unsigned i=0; i<16; i+=PtrByteSize) {
6515           if (GPR_idx == NumGPRs)
6516             break;
6517           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6518                                    DAG.getConstant(i, dl, PtrVT));
6519           SDValue Load =
6520               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6521           MemOpChains.push_back(Load.getValue(1));
6522           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6523         }
6524         break;
6525       }
6526 
6527       // Non-varargs Altivec params generally go in registers, but have
6528       // stack space allocated at the end.
6529       if (VR_idx != NumVRs) {
6530         // Doesn't have GPR space allocated.
6531         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6532       } else if (nAltivecParamsAtEnd==0) {
6533         // We are emitting Altivec params in order.
6534         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6535                          isPPC64, isTailCall, true, MemOpChains,
6536                          TailCallArguments, dl);
6537         ArgOffset += 16;
6538       }
6539       break;
6540     }
6541   }
6542   // If all Altivec parameters fit in registers, as they usually do,
6543   // they get stack space following the non-Altivec parameters.  We
6544   // don't track this here because nobody below needs it.
6545   // If there are more Altivec parameters than fit in registers emit
6546   // the stores here.
6547   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6548     unsigned j = 0;
6549     // Offset is aligned; skip 1st 12 params which go in V registers.
6550     ArgOffset = ((ArgOffset+15)/16)*16;
6551     ArgOffset += 12*16;
6552     for (unsigned i = 0; i != NumOps; ++i) {
6553       SDValue Arg = OutVals[i];
6554       EVT ArgType = Outs[i].VT;
6555       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6556           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6557         if (++j > NumVRs) {
6558           SDValue PtrOff;
6559           // We are emitting Altivec params in order.
6560           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6561                            isPPC64, isTailCall, true, MemOpChains,
6562                            TailCallArguments, dl);
6563           ArgOffset += 16;
6564         }
6565       }
6566     }
6567   }
6568 
6569   if (!MemOpChains.empty())
6570     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6571 
6572   // On Darwin, R12 must contain the address of an indirect callee.  This does
6573   // not mean the MTCTR instruction must use R12; it's easier to model this as
6574   // an extra parameter, so do that.
6575   if (!isTailCall &&
6576       !isFunctionGlobalAddress(Callee) &&
6577       !isa<ExternalSymbolSDNode>(Callee) &&
6578       !isBLACompatibleAddress(Callee, DAG))
6579     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6580                                                    PPC::R12), Callee));
6581 
6582   // Build a sequence of copy-to-reg nodes chained together with token chain
6583   // and flag operands which copy the outgoing args into the appropriate regs.
6584   SDValue InFlag;
6585   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6586     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6587                              RegsToPass[i].second, InFlag);
6588     InFlag = Chain.getValue(1);
6589   }
6590 
6591   if (isTailCall)
6592     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6593                     TailCallArguments);
6594 
6595   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6596                     /* unused except on PPC64 ELFv1 */ false, DAG,
6597                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6598                     NumBytes, Ins, InVals, CS);
6599 }
6600 
6601 bool
6602 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6603                                   MachineFunction &MF, bool isVarArg,
6604                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6605                                   LLVMContext &Context) const {
6606   SmallVector<CCValAssign, 16> RVLocs;
6607   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6608   return CCInfo.CheckReturn(
6609       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6610                 ? RetCC_PPC_Cold
6611                 : RetCC_PPC);
6612 }
6613 
6614 SDValue
6615 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6616                                bool isVarArg,
6617                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6618                                const SmallVectorImpl<SDValue> &OutVals,
6619                                const SDLoc &dl, SelectionDAG &DAG) const {
6620   SmallVector<CCValAssign, 16> RVLocs;
6621   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6622                  *DAG.getContext());
6623   CCInfo.AnalyzeReturn(Outs,
6624                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6625                            ? RetCC_PPC_Cold
6626                            : RetCC_PPC);
6627 
6628   SDValue Flag;
6629   SmallVector<SDValue, 4> RetOps(1, Chain);
6630 
6631   // Copy the result values into the output registers.
6632   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6633     CCValAssign &VA = RVLocs[i];
6634     assert(VA.isRegLoc() && "Can only return in registers!");
6635 
6636     SDValue Arg = OutVals[i];
6637 
6638     switch (VA.getLocInfo()) {
6639     default: llvm_unreachable("Unknown loc info!");
6640     case CCValAssign::Full: break;
6641     case CCValAssign::AExt:
6642       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6643       break;
6644     case CCValAssign::ZExt:
6645       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6646       break;
6647     case CCValAssign::SExt:
6648       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6649       break;
6650     }
6651 
6652     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6653     Flag = Chain.getValue(1);
6654     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6655   }
6656 
6657   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6658   const MCPhysReg *I =
6659     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6660   if (I) {
6661     for (; *I; ++I) {
6662 
6663       if (PPC::G8RCRegClass.contains(*I))
6664         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6665       else if (PPC::F8RCRegClass.contains(*I))
6666         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6667       else if (PPC::CRRCRegClass.contains(*I))
6668         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6669       else if (PPC::VRRCRegClass.contains(*I))
6670         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6671       else
6672         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6673     }
6674   }
6675 
6676   RetOps[0] = Chain;  // Update chain.
6677 
6678   // Add the flag if we have it.
6679   if (Flag.getNode())
6680     RetOps.push_back(Flag);
6681 
6682   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6683 }
6684 
6685 SDValue
6686 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6687                                                 SelectionDAG &DAG) const {
6688   SDLoc dl(Op);
6689 
6690   // Get the correct type for integers.
6691   EVT IntVT = Op.getValueType();
6692 
6693   // Get the inputs.
6694   SDValue Chain = Op.getOperand(0);
6695   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6696   // Build a DYNAREAOFFSET node.
6697   SDValue Ops[2] = {Chain, FPSIdx};
6698   SDVTList VTs = DAG.getVTList(IntVT);
6699   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6700 }
6701 
6702 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6703                                              SelectionDAG &DAG) const {
6704   // When we pop the dynamic allocation we need to restore the SP link.
6705   SDLoc dl(Op);
6706 
6707   // Get the correct type for pointers.
6708   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6709 
6710   // Construct the stack pointer operand.
6711   bool isPPC64 = Subtarget.isPPC64();
6712   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6713   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6714 
6715   // Get the operands for the STACKRESTORE.
6716   SDValue Chain = Op.getOperand(0);
6717   SDValue SaveSP = Op.getOperand(1);
6718 
6719   // Load the old link SP.
6720   SDValue LoadLinkSP =
6721       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6722 
6723   // Restore the stack pointer.
6724   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6725 
6726   // Store the old link SP.
6727   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6728 }
6729 
6730 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6731   MachineFunction &MF = DAG.getMachineFunction();
6732   bool isPPC64 = Subtarget.isPPC64();
6733   EVT PtrVT = getPointerTy(MF.getDataLayout());
6734 
6735   // Get current frame pointer save index.  The users of this index will be
6736   // primarily DYNALLOC instructions.
6737   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6738   int RASI = FI->getReturnAddrSaveIndex();
6739 
6740   // If the frame pointer save index hasn't been defined yet.
6741   if (!RASI) {
6742     // Find out what the fix offset of the frame pointer save area.
6743     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6744     // Allocate the frame index for frame pointer save area.
6745     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6746     // Save the result.
6747     FI->setReturnAddrSaveIndex(RASI);
6748   }
6749   return DAG.getFrameIndex(RASI, PtrVT);
6750 }
6751 
6752 SDValue
6753 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6754   MachineFunction &MF = DAG.getMachineFunction();
6755   bool isPPC64 = Subtarget.isPPC64();
6756   EVT PtrVT = getPointerTy(MF.getDataLayout());
6757 
6758   // Get current frame pointer save index.  The users of this index will be
6759   // primarily DYNALLOC instructions.
6760   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6761   int FPSI = FI->getFramePointerSaveIndex();
6762 
6763   // If the frame pointer save index hasn't been defined yet.
6764   if (!FPSI) {
6765     // Find out what the fix offset of the frame pointer save area.
6766     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6767     // Allocate the frame index for frame pointer save area.
6768     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6769     // Save the result.
6770     FI->setFramePointerSaveIndex(FPSI);
6771   }
6772   return DAG.getFrameIndex(FPSI, PtrVT);
6773 }
6774 
6775 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6776                                                    SelectionDAG &DAG) const {
6777   // Get the inputs.
6778   SDValue Chain = Op.getOperand(0);
6779   SDValue Size  = Op.getOperand(1);
6780   SDLoc dl(Op);
6781 
6782   // Get the correct type for pointers.
6783   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6784   // Negate the size.
6785   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6786                                 DAG.getConstant(0, dl, PtrVT), Size);
6787   // Construct a node for the frame pointer save index.
6788   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6789   // Build a DYNALLOC node.
6790   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6791   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6792   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6793 }
6794 
6795 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6796                                                      SelectionDAG &DAG) const {
6797   MachineFunction &MF = DAG.getMachineFunction();
6798 
6799   bool isPPC64 = Subtarget.isPPC64();
6800   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6801 
6802   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6803   return DAG.getFrameIndex(FI, PtrVT);
6804 }
6805 
6806 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6807                                                SelectionDAG &DAG) const {
6808   SDLoc DL(Op);
6809   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6810                      DAG.getVTList(MVT::i32, MVT::Other),
6811                      Op.getOperand(0), Op.getOperand(1));
6812 }
6813 
6814 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6815                                                 SelectionDAG &DAG) const {
6816   SDLoc DL(Op);
6817   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6818                      Op.getOperand(0), Op.getOperand(1));
6819 }
6820 
6821 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6822   if (Op.getValueType().isVector())
6823     return LowerVectorLoad(Op, DAG);
6824 
6825   assert(Op.getValueType() == MVT::i1 &&
6826          "Custom lowering only for i1 loads");
6827 
6828   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6829 
6830   SDLoc dl(Op);
6831   LoadSDNode *LD = cast<LoadSDNode>(Op);
6832 
6833   SDValue Chain = LD->getChain();
6834   SDValue BasePtr = LD->getBasePtr();
6835   MachineMemOperand *MMO = LD->getMemOperand();
6836 
6837   SDValue NewLD =
6838       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6839                      BasePtr, MVT::i8, MMO);
6840   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6841 
6842   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6843   return DAG.getMergeValues(Ops, dl);
6844 }
6845 
6846 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6847   if (Op.getOperand(1).getValueType().isVector())
6848     return LowerVectorStore(Op, DAG);
6849 
6850   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6851          "Custom lowering only for i1 stores");
6852 
6853   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6854 
6855   SDLoc dl(Op);
6856   StoreSDNode *ST = cast<StoreSDNode>(Op);
6857 
6858   SDValue Chain = ST->getChain();
6859   SDValue BasePtr = ST->getBasePtr();
6860   SDValue Value = ST->getValue();
6861   MachineMemOperand *MMO = ST->getMemOperand();
6862 
6863   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6864                       Value);
6865   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6866 }
6867 
6868 // FIXME: Remove this once the ANDI glue bug is fixed:
6869 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6870   assert(Op.getValueType() == MVT::i1 &&
6871          "Custom lowering only for i1 results");
6872 
6873   SDLoc DL(Op);
6874   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6875                      Op.getOperand(0));
6876 }
6877 
6878 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6879 /// possible.
6880 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6881   // Not FP? Not a fsel.
6882   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6883       !Op.getOperand(2).getValueType().isFloatingPoint())
6884     return Op;
6885 
6886   // We might be able to do better than this under some circumstances, but in
6887   // general, fsel-based lowering of select is a finite-math-only optimization.
6888   // For more information, see section F.3 of the 2.06 ISA specification.
6889   if (!DAG.getTarget().Options.NoInfsFPMath ||
6890       !DAG.getTarget().Options.NoNaNsFPMath)
6891     return Op;
6892   // TODO: Propagate flags from the select rather than global settings.
6893   SDNodeFlags Flags;
6894   Flags.setNoInfs(true);
6895   Flags.setNoNaNs(true);
6896 
6897   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6898 
6899   EVT ResVT = Op.getValueType();
6900   EVT CmpVT = Op.getOperand(0).getValueType();
6901   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6902   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6903   SDLoc dl(Op);
6904 
6905   // If the RHS of the comparison is a 0.0, we don't need to do the
6906   // subtraction at all.
6907   SDValue Sel1;
6908   if (isFloatingPointZero(RHS))
6909     switch (CC) {
6910     default: break;       // SETUO etc aren't handled by fsel.
6911     case ISD::SETNE:
6912       std::swap(TV, FV);
6913       LLVM_FALLTHROUGH;
6914     case ISD::SETEQ:
6915       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6916         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6917       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6918       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6919         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6920       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6921                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6922     case ISD::SETULT:
6923     case ISD::SETLT:
6924       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6925       LLVM_FALLTHROUGH;
6926     case ISD::SETOGE:
6927     case ISD::SETGE:
6928       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6929         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6930       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6931     case ISD::SETUGT:
6932     case ISD::SETGT:
6933       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6934       LLVM_FALLTHROUGH;
6935     case ISD::SETOLE:
6936     case ISD::SETLE:
6937       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6938         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6939       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6940                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6941     }
6942 
6943   SDValue Cmp;
6944   switch (CC) {
6945   default: break;       // SETUO etc aren't handled by fsel.
6946   case ISD::SETNE:
6947     std::swap(TV, FV);
6948     LLVM_FALLTHROUGH;
6949   case ISD::SETEQ:
6950     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6951     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6952       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6953     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6954     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6955       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6956     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6957                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6958   case ISD::SETULT:
6959   case ISD::SETLT:
6960     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6961     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6962       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6963     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6964   case ISD::SETOGE:
6965   case ISD::SETGE:
6966     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6967     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6968       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6969     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6970   case ISD::SETUGT:
6971   case ISD::SETGT:
6972     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6973     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6974       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6975     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6976   case ISD::SETOLE:
6977   case ISD::SETLE:
6978     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6979     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6980       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6981     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6982   }
6983   return Op;
6984 }
6985 
6986 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6987                                                SelectionDAG &DAG,
6988                                                const SDLoc &dl) const {
6989   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6990   SDValue Src = Op.getOperand(0);
6991   if (Src.getValueType() == MVT::f32)
6992     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6993 
6994   SDValue Tmp;
6995   switch (Op.getSimpleValueType().SimpleTy) {
6996   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6997   case MVT::i32:
6998     Tmp = DAG.getNode(
6999         Op.getOpcode() == ISD::FP_TO_SINT
7000             ? PPCISD::FCTIWZ
7001             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7002         dl, MVT::f64, Src);
7003     break;
7004   case MVT::i64:
7005     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7006            "i64 FP_TO_UINT is supported only with FPCVT");
7007     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7008                                                         PPCISD::FCTIDUZ,
7009                       dl, MVT::f64, Src);
7010     break;
7011   }
7012 
7013   // Convert the FP value to an int value through memory.
7014   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7015     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7016   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7017   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7018   MachinePointerInfo MPI =
7019       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7020 
7021   // Emit a store to the stack slot.
7022   SDValue Chain;
7023   if (i32Stack) {
7024     MachineFunction &MF = DAG.getMachineFunction();
7025     MachineMemOperand *MMO =
7026       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7027     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7028     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7029               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7030   } else
7031     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7032 
7033   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7034   // add in a bias on big endian.
7035   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7036     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7037                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7038     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7039   }
7040 
7041   RLI.Chain = Chain;
7042   RLI.Ptr = FIPtr;
7043   RLI.MPI = MPI;
7044 }
7045 
7046 /// Custom lowers floating point to integer conversions to use
7047 /// the direct move instructions available in ISA 2.07 to avoid the
7048 /// need for load/store combinations.
7049 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7050                                                     SelectionDAG &DAG,
7051                                                     const SDLoc &dl) const {
7052   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7053   SDValue Src = Op.getOperand(0);
7054 
7055   if (Src.getValueType() == MVT::f32)
7056     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7057 
7058   SDValue Tmp;
7059   switch (Op.getSimpleValueType().SimpleTy) {
7060   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7061   case MVT::i32:
7062     Tmp = DAG.getNode(
7063         Op.getOpcode() == ISD::FP_TO_SINT
7064             ? PPCISD::FCTIWZ
7065             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7066         dl, MVT::f64, Src);
7067     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7068     break;
7069   case MVT::i64:
7070     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7071            "i64 FP_TO_UINT is supported only with FPCVT");
7072     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7073                                                         PPCISD::FCTIDUZ,
7074                       dl, MVT::f64, Src);
7075     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7076     break;
7077   }
7078   return Tmp;
7079 }
7080 
7081 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7082                                           const SDLoc &dl) const {
7083 
7084   // FP to INT conversions are legal for f128.
7085   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7086     return Op;
7087 
7088   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7089   // PPC (the libcall is not available).
7090   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7091     if (Op.getValueType() == MVT::i32) {
7092       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7093         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7094                                  MVT::f64, Op.getOperand(0),
7095                                  DAG.getIntPtrConstant(0, dl));
7096         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7097                                  MVT::f64, Op.getOperand(0),
7098                                  DAG.getIntPtrConstant(1, dl));
7099 
7100         // Add the two halves of the long double in round-to-zero mode.
7101         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7102 
7103         // Now use a smaller FP_TO_SINT.
7104         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7105       }
7106       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7107         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7108         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7109         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7110         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7111         // FIXME: generated code sucks.
7112         // TODO: Are there fast-math-flags to propagate to this FSUB?
7113         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7114                                    Op.getOperand(0), Tmp);
7115         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7116         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7117                            DAG.getConstant(0x80000000, dl, MVT::i32));
7118         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7119                                     Op.getOperand(0));
7120         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7121                                ISD::SETGE);
7122       }
7123     }
7124 
7125     return SDValue();
7126   }
7127 
7128   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7129     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7130 
7131   ReuseLoadInfo RLI;
7132   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7133 
7134   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7135                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7136 }
7137 
7138 // We're trying to insert a regular store, S, and then a load, L. If the
7139 // incoming value, O, is a load, we might just be able to have our load use the
7140 // address used by O. However, we don't know if anything else will store to
7141 // that address before we can load from it. To prevent this situation, we need
7142 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7143 // the same chain operand as O, we create a token factor from the chain results
7144 // of O and L, and we replace all uses of O's chain result with that token
7145 // factor (see spliceIntoChain below for this last part).
7146 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7147                                             ReuseLoadInfo &RLI,
7148                                             SelectionDAG &DAG,
7149                                             ISD::LoadExtType ET) const {
7150   SDLoc dl(Op);
7151   if (ET == ISD::NON_EXTLOAD &&
7152       (Op.getOpcode() == ISD::FP_TO_UINT ||
7153        Op.getOpcode() == ISD::FP_TO_SINT) &&
7154       isOperationLegalOrCustom(Op.getOpcode(),
7155                                Op.getOperand(0).getValueType())) {
7156 
7157     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7158     return true;
7159   }
7160 
7161   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7162   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7163       LD->isNonTemporal())
7164     return false;
7165   if (LD->getMemoryVT() != MemVT)
7166     return false;
7167 
7168   RLI.Ptr = LD->getBasePtr();
7169   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7170     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7171            "Non-pre-inc AM on PPC?");
7172     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7173                           LD->getOffset());
7174   }
7175 
7176   RLI.Chain = LD->getChain();
7177   RLI.MPI = LD->getPointerInfo();
7178   RLI.IsDereferenceable = LD->isDereferenceable();
7179   RLI.IsInvariant = LD->isInvariant();
7180   RLI.Alignment = LD->getAlignment();
7181   RLI.AAInfo = LD->getAAInfo();
7182   RLI.Ranges = LD->getRanges();
7183 
7184   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7185   return true;
7186 }
7187 
7188 // Given the head of the old chain, ResChain, insert a token factor containing
7189 // it and NewResChain, and make users of ResChain now be users of that token
7190 // factor.
7191 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7192 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7193                                         SDValue NewResChain,
7194                                         SelectionDAG &DAG) const {
7195   if (!ResChain)
7196     return;
7197 
7198   SDLoc dl(NewResChain);
7199 
7200   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7201                            NewResChain, DAG.getUNDEF(MVT::Other));
7202   assert(TF.getNode() != NewResChain.getNode() &&
7203          "A new TF really is required here");
7204 
7205   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7206   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7207 }
7208 
7209 /// Analyze profitability of direct move
7210 /// prefer float load to int load plus direct move
7211 /// when there is no integer use of int load
7212 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7213   SDNode *Origin = Op.getOperand(0).getNode();
7214   if (Origin->getOpcode() != ISD::LOAD)
7215     return true;
7216 
7217   // If there is no LXSIBZX/LXSIHZX, like Power8,
7218   // prefer direct move if the memory size is 1 or 2 bytes.
7219   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7220   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7221     return true;
7222 
7223   for (SDNode::use_iterator UI = Origin->use_begin(),
7224                             UE = Origin->use_end();
7225        UI != UE; ++UI) {
7226 
7227     // Only look at the users of the loaded value.
7228     if (UI.getUse().get().getResNo() != 0)
7229       continue;
7230 
7231     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7232         UI->getOpcode() != ISD::UINT_TO_FP)
7233       return true;
7234   }
7235 
7236   return false;
7237 }
7238 
7239 /// Custom lowers integer to floating point conversions to use
7240 /// the direct move instructions available in ISA 2.07 to avoid the
7241 /// need for load/store combinations.
7242 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7243                                                     SelectionDAG &DAG,
7244                                                     const SDLoc &dl) const {
7245   assert((Op.getValueType() == MVT::f32 ||
7246           Op.getValueType() == MVT::f64) &&
7247          "Invalid floating point type as target of conversion");
7248   assert(Subtarget.hasFPCVT() &&
7249          "Int to FP conversions with direct moves require FPCVT");
7250   SDValue FP;
7251   SDValue Src = Op.getOperand(0);
7252   bool SinglePrec = Op.getValueType() == MVT::f32;
7253   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7254   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7255   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7256                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7257 
7258   if (WordInt) {
7259     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7260                      dl, MVT::f64, Src);
7261     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7262   }
7263   else {
7264     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7265     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7266   }
7267 
7268   return FP;
7269 }
7270 
7271 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7272 
7273   EVT VecVT = Vec.getValueType();
7274   assert(VecVT.isVector() && "Expected a vector type.");
7275   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7276 
7277   EVT EltVT = VecVT.getVectorElementType();
7278   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7279   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7280 
7281   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7282   SmallVector<SDValue, 16> Ops(NumConcat);
7283   Ops[0] = Vec;
7284   SDValue UndefVec = DAG.getUNDEF(VecVT);
7285   for (unsigned i = 1; i < NumConcat; ++i)
7286     Ops[i] = UndefVec;
7287 
7288   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7289 }
7290 
7291 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op,
7292                                                 SelectionDAG &DAG,
7293                                                 const SDLoc &dl) const {
7294 
7295   unsigned Opc = Op.getOpcode();
7296   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7297          "Unexpected conversion type");
7298   assert(Op.getValueType() == MVT::v2f64 && "Supports v2f64 only.");
7299 
7300   // CPU's prior to P9 don't have a way to sign-extend in vectors.
7301   bool SignedConv = Opc == ISD::SINT_TO_FP;
7302   if (SignedConv && !Subtarget.hasP9Altivec())
7303     return SDValue();
7304 
7305   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7306   EVT WideVT = Wide.getValueType();
7307   unsigned WideNumElts = WideVT.getVectorNumElements();
7308 
7309   SmallVector<int, 16> ShuffV;
7310   for (unsigned i = 0; i < WideNumElts; ++i)
7311     ShuffV.push_back(i + WideNumElts);
7312 
7313   if (Subtarget.isLittleEndian()) {
7314     ShuffV[0] = 0;
7315     ShuffV[WideNumElts / 2] = 1;
7316   }
7317   else {
7318     ShuffV[WideNumElts / 2 - 1] = 0;
7319     ShuffV[WideNumElts - 1] = 1;
7320   }
7321 
7322   SDValue ShuffleSrc2 = SignedConv ? DAG.getUNDEF(WideVT) :
7323                                      DAG.getConstant(0, dl, WideVT);
7324   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7325   unsigned ExtendOp = SignedConv ? (unsigned) PPCISD::SExtVElems :
7326                                    (unsigned) ISD::BITCAST;
7327   SDValue Extend = DAG.getNode(ExtendOp, dl, MVT::v2i64, Arrange);
7328 
7329   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7330 }
7331 
7332 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7333                                           SelectionDAG &DAG) const {
7334   SDLoc dl(Op);
7335 
7336   if (Op.getValueType() == MVT::v2f64 &&
7337       Op.getOperand(0).getValueType() == MVT::v2i16)
7338     return LowerINT_TO_FPVector(Op, DAG, dl);
7339 
7340   // Conversions to f128 are legal.
7341   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7342     return Op;
7343 
7344   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7345     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7346       return SDValue();
7347 
7348     SDValue Value = Op.getOperand(0);
7349     // The values are now known to be -1 (false) or 1 (true). To convert this
7350     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7351     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7352     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7353 
7354     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7355 
7356     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7357 
7358     if (Op.getValueType() != MVT::v4f64)
7359       Value = DAG.getNode(ISD::FP_ROUND, dl,
7360                           Op.getValueType(), Value,
7361                           DAG.getIntPtrConstant(1, dl));
7362     return Value;
7363   }
7364 
7365   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7366   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7367     return SDValue();
7368 
7369   if (Op.getOperand(0).getValueType() == MVT::i1)
7370     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7371                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7372                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7373 
7374   // If we have direct moves, we can do all the conversion, skip the store/load
7375   // however, without FPCVT we can't do most conversions.
7376   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7377       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7378     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7379 
7380   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7381          "UINT_TO_FP is supported only with FPCVT");
7382 
7383   // If we have FCFIDS, then use it when converting to single-precision.
7384   // Otherwise, convert to double-precision and then round.
7385   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7386                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7387                                                             : PPCISD::FCFIDS)
7388                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7389                                                             : PPCISD::FCFID);
7390   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7391                   ? MVT::f32
7392                   : MVT::f64;
7393 
7394   if (Op.getOperand(0).getValueType() == MVT::i64) {
7395     SDValue SINT = Op.getOperand(0);
7396     // When converting to single-precision, we actually need to convert
7397     // to double-precision first and then round to single-precision.
7398     // To avoid double-rounding effects during that operation, we have
7399     // to prepare the input operand.  Bits that might be truncated when
7400     // converting to double-precision are replaced by a bit that won't
7401     // be lost at this stage, but is below the single-precision rounding
7402     // position.
7403     //
7404     // However, if -enable-unsafe-fp-math is in effect, accept double
7405     // rounding to avoid the extra overhead.
7406     if (Op.getValueType() == MVT::f32 &&
7407         !Subtarget.hasFPCVT() &&
7408         !DAG.getTarget().Options.UnsafeFPMath) {
7409 
7410       // Twiddle input to make sure the low 11 bits are zero.  (If this
7411       // is the case, we are guaranteed the value will fit into the 53 bit
7412       // mantissa of an IEEE double-precision value without rounding.)
7413       // If any of those low 11 bits were not zero originally, make sure
7414       // bit 12 (value 2048) is set instead, so that the final rounding
7415       // to single-precision gets the correct result.
7416       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7417                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7418       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7419                           Round, DAG.getConstant(2047, dl, MVT::i64));
7420       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7421       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7422                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7423 
7424       // However, we cannot use that value unconditionally: if the magnitude
7425       // of the input value is small, the bit-twiddling we did above might
7426       // end up visibly changing the output.  Fortunately, in that case, we
7427       // don't need to twiddle bits since the original input will convert
7428       // exactly to double-precision floating-point already.  Therefore,
7429       // construct a conditional to use the original value if the top 11
7430       // bits are all sign-bit copies, and use the rounded value computed
7431       // above otherwise.
7432       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7433                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7434       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7435                          Cond, DAG.getConstant(1, dl, MVT::i64));
7436       Cond = DAG.getSetCC(dl, MVT::i32,
7437                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7438 
7439       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7440     }
7441 
7442     ReuseLoadInfo RLI;
7443     SDValue Bits;
7444 
7445     MachineFunction &MF = DAG.getMachineFunction();
7446     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7447       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7448                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7449       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7450     } else if (Subtarget.hasLFIWAX() &&
7451                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7452       MachineMemOperand *MMO =
7453         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7454                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7455       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7456       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7457                                      DAG.getVTList(MVT::f64, MVT::Other),
7458                                      Ops, MVT::i32, MMO);
7459       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7460     } else if (Subtarget.hasFPCVT() &&
7461                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7462       MachineMemOperand *MMO =
7463         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7464                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7465       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7466       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7467                                      DAG.getVTList(MVT::f64, MVT::Other),
7468                                      Ops, MVT::i32, MMO);
7469       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7470     } else if (((Subtarget.hasLFIWAX() &&
7471                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7472                 (Subtarget.hasFPCVT() &&
7473                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7474                SINT.getOperand(0).getValueType() == MVT::i32) {
7475       MachineFrameInfo &MFI = MF.getFrameInfo();
7476       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7477 
7478       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7479       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7480 
7481       SDValue Store =
7482           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7483                        MachinePointerInfo::getFixedStack(
7484                            DAG.getMachineFunction(), FrameIdx));
7485 
7486       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7487              "Expected an i32 store");
7488 
7489       RLI.Ptr = FIdx;
7490       RLI.Chain = Store;
7491       RLI.MPI =
7492           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7493       RLI.Alignment = 4;
7494 
7495       MachineMemOperand *MMO =
7496         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7497                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7498       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7499       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7500                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7501                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7502                                      Ops, MVT::i32, MMO);
7503     } else
7504       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7505 
7506     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7507 
7508     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7509       FP = DAG.getNode(ISD::FP_ROUND, dl,
7510                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7511     return FP;
7512   }
7513 
7514   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7515          "Unhandled INT_TO_FP type in custom expander!");
7516   // Since we only generate this in 64-bit mode, we can take advantage of
7517   // 64-bit registers.  In particular, sign extend the input value into the
7518   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7519   // then lfd it and fcfid it.
7520   MachineFunction &MF = DAG.getMachineFunction();
7521   MachineFrameInfo &MFI = MF.getFrameInfo();
7522   EVT PtrVT = getPointerTy(MF.getDataLayout());
7523 
7524   SDValue Ld;
7525   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7526     ReuseLoadInfo RLI;
7527     bool ReusingLoad;
7528     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7529                                             DAG))) {
7530       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7531       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7532 
7533       SDValue Store =
7534           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7535                        MachinePointerInfo::getFixedStack(
7536                            DAG.getMachineFunction(), FrameIdx));
7537 
7538       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7539              "Expected an i32 store");
7540 
7541       RLI.Ptr = FIdx;
7542       RLI.Chain = Store;
7543       RLI.MPI =
7544           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7545       RLI.Alignment = 4;
7546     }
7547 
7548     MachineMemOperand *MMO =
7549       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7550                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7551     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7552     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7553                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7554                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7555                                  Ops, MVT::i32, MMO);
7556     if (ReusingLoad)
7557       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7558   } else {
7559     assert(Subtarget.isPPC64() &&
7560            "i32->FP without LFIWAX supported only on PPC64");
7561 
7562     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7563     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7564 
7565     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7566                                 Op.getOperand(0));
7567 
7568     // STD the extended value into the stack slot.
7569     SDValue Store = DAG.getStore(
7570         DAG.getEntryNode(), dl, Ext64, FIdx,
7571         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7572 
7573     // Load the value as a double.
7574     Ld = DAG.getLoad(
7575         MVT::f64, dl, Store, FIdx,
7576         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7577   }
7578 
7579   // FCFID it and return it.
7580   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7581   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7582     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7583                      DAG.getIntPtrConstant(0, dl));
7584   return FP;
7585 }
7586 
7587 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7588                                             SelectionDAG &DAG) const {
7589   SDLoc dl(Op);
7590   /*
7591    The rounding mode is in bits 30:31 of FPSR, and has the following
7592    settings:
7593      00 Round to nearest
7594      01 Round to 0
7595      10 Round to +inf
7596      11 Round to -inf
7597 
7598   FLT_ROUNDS, on the other hand, expects the following:
7599     -1 Undefined
7600      0 Round to 0
7601      1 Round to nearest
7602      2 Round to +inf
7603      3 Round to -inf
7604 
7605   To perform the conversion, we do:
7606     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7607   */
7608 
7609   MachineFunction &MF = DAG.getMachineFunction();
7610   EVT VT = Op.getValueType();
7611   EVT PtrVT = getPointerTy(MF.getDataLayout());
7612 
7613   // Save FP Control Word to register
7614   EVT NodeTys[] = {
7615     MVT::f64,    // return register
7616     MVT::Glue    // unused in this context
7617   };
7618   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7619 
7620   // Save FP register to stack slot
7621   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7622   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7623   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7624                                MachinePointerInfo());
7625 
7626   // Load FP Control Word from low 32 bits of stack slot.
7627   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7628   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7629   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7630 
7631   // Transform as necessary
7632   SDValue CWD1 =
7633     DAG.getNode(ISD::AND, dl, MVT::i32,
7634                 CWD, DAG.getConstant(3, dl, MVT::i32));
7635   SDValue CWD2 =
7636     DAG.getNode(ISD::SRL, dl, MVT::i32,
7637                 DAG.getNode(ISD::AND, dl, MVT::i32,
7638                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7639                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7640                             DAG.getConstant(3, dl, MVT::i32)),
7641                 DAG.getConstant(1, dl, MVT::i32));
7642 
7643   SDValue RetVal =
7644     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7645 
7646   return DAG.getNode((VT.getSizeInBits() < 16 ?
7647                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7648 }
7649 
7650 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7651   EVT VT = Op.getValueType();
7652   unsigned BitWidth = VT.getSizeInBits();
7653   SDLoc dl(Op);
7654   assert(Op.getNumOperands() == 3 &&
7655          VT == Op.getOperand(1).getValueType() &&
7656          "Unexpected SHL!");
7657 
7658   // Expand into a bunch of logical ops.  Note that these ops
7659   // depend on the PPC behavior for oversized shift amounts.
7660   SDValue Lo = Op.getOperand(0);
7661   SDValue Hi = Op.getOperand(1);
7662   SDValue Amt = Op.getOperand(2);
7663   EVT AmtVT = Amt.getValueType();
7664 
7665   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7666                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7667   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7668   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7669   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7670   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7671                              DAG.getConstant(-BitWidth, dl, AmtVT));
7672   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7673   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7674   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7675   SDValue OutOps[] = { OutLo, OutHi };
7676   return DAG.getMergeValues(OutOps, dl);
7677 }
7678 
7679 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7680   EVT VT = Op.getValueType();
7681   SDLoc dl(Op);
7682   unsigned BitWidth = VT.getSizeInBits();
7683   assert(Op.getNumOperands() == 3 &&
7684          VT == Op.getOperand(1).getValueType() &&
7685          "Unexpected SRL!");
7686 
7687   // Expand into a bunch of logical ops.  Note that these ops
7688   // depend on the PPC behavior for oversized shift amounts.
7689   SDValue Lo = Op.getOperand(0);
7690   SDValue Hi = Op.getOperand(1);
7691   SDValue Amt = Op.getOperand(2);
7692   EVT AmtVT = Amt.getValueType();
7693 
7694   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7695                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7696   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7697   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7698   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7699   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7700                              DAG.getConstant(-BitWidth, dl, AmtVT));
7701   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7702   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7703   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7704   SDValue OutOps[] = { OutLo, OutHi };
7705   return DAG.getMergeValues(OutOps, dl);
7706 }
7707 
7708 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7709   SDLoc dl(Op);
7710   EVT VT = Op.getValueType();
7711   unsigned BitWidth = VT.getSizeInBits();
7712   assert(Op.getNumOperands() == 3 &&
7713          VT == Op.getOperand(1).getValueType() &&
7714          "Unexpected SRA!");
7715 
7716   // Expand into a bunch of logical ops, followed by a select_cc.
7717   SDValue Lo = Op.getOperand(0);
7718   SDValue Hi = Op.getOperand(1);
7719   SDValue Amt = Op.getOperand(2);
7720   EVT AmtVT = Amt.getValueType();
7721 
7722   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7723                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7724   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7725   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7726   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7727   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7728                              DAG.getConstant(-BitWidth, dl, AmtVT));
7729   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7730   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7731   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7732                                   Tmp4, Tmp6, ISD::SETLE);
7733   SDValue OutOps[] = { OutLo, OutHi };
7734   return DAG.getMergeValues(OutOps, dl);
7735 }
7736 
7737 //===----------------------------------------------------------------------===//
7738 // Vector related lowering.
7739 //
7740 
7741 /// BuildSplatI - Build a canonical splati of Val with an element size of
7742 /// SplatSize.  Cast the result to VT.
7743 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7744                            SelectionDAG &DAG, const SDLoc &dl) {
7745   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7746 
7747   static const MVT VTys[] = { // canonical VT to use for each size.
7748     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7749   };
7750 
7751   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7752 
7753   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7754   if (Val == -1)
7755     SplatSize = 1;
7756 
7757   EVT CanonicalVT = VTys[SplatSize-1];
7758 
7759   // Build a canonical splat for this value.
7760   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7761 }
7762 
7763 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7764 /// specified intrinsic ID.
7765 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7766                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7767   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7768   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7769                      DAG.getConstant(IID, dl, MVT::i32), Op);
7770 }
7771 
7772 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7773 /// specified intrinsic ID.
7774 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7775                                 SelectionDAG &DAG, const SDLoc &dl,
7776                                 EVT DestVT = MVT::Other) {
7777   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7778   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7779                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7780 }
7781 
7782 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7783 /// specified intrinsic ID.
7784 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7785                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7786                                 EVT DestVT = MVT::Other) {
7787   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7788   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7789                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7790 }
7791 
7792 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7793 /// amount.  The result has the specified value type.
7794 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7795                            SelectionDAG &DAG, const SDLoc &dl) {
7796   // Force LHS/RHS to be the right type.
7797   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7798   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7799 
7800   int Ops[16];
7801   for (unsigned i = 0; i != 16; ++i)
7802     Ops[i] = i + Amt;
7803   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7804   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7805 }
7806 
7807 /// Do we have an efficient pattern in a .td file for this node?
7808 ///
7809 /// \param V - pointer to the BuildVectorSDNode being matched
7810 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7811 ///
7812 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7813 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7814 /// the opposite is true (expansion is beneficial) are:
7815 /// - The node builds a vector out of integers that are not 32 or 64-bits
7816 /// - The node builds a vector out of constants
7817 /// - The node is a "load-and-splat"
7818 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7819 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7820                                             bool HasDirectMove,
7821                                             bool HasP8Vector) {
7822   EVT VecVT = V->getValueType(0);
7823   bool RightType = VecVT == MVT::v2f64 ||
7824     (HasP8Vector && VecVT == MVT::v4f32) ||
7825     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7826   if (!RightType)
7827     return false;
7828 
7829   bool IsSplat = true;
7830   bool IsLoad = false;
7831   SDValue Op0 = V->getOperand(0);
7832 
7833   // This function is called in a block that confirms the node is not a constant
7834   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7835   // different constants.
7836   if (V->isConstant())
7837     return false;
7838   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7839     if (V->getOperand(i).isUndef())
7840       return false;
7841     // We want to expand nodes that represent load-and-splat even if the
7842     // loaded value is a floating point truncation or conversion to int.
7843     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7844         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7845          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7846         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7847          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7848         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7849          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7850       IsLoad = true;
7851     // If the operands are different or the input is not a load and has more
7852     // uses than just this BV node, then it isn't a splat.
7853     if (V->getOperand(i) != Op0 ||
7854         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7855       IsSplat = false;
7856   }
7857   return !(IsSplat && IsLoad);
7858 }
7859 
7860 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7861 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7862 
7863   SDLoc dl(Op);
7864   SDValue Op0 = Op->getOperand(0);
7865 
7866   if (!EnableQuadPrecision ||
7867       (Op.getValueType() != MVT::f128 ) ||
7868       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7869       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7870       (Op0.getOperand(1).getValueType() != MVT::i64))
7871     return SDValue();
7872 
7873   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7874                      Op0.getOperand(1));
7875 }
7876 
7877 // If this is a case we can't handle, return null and let the default
7878 // expansion code take care of it.  If we CAN select this case, and if it
7879 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7880 // this case more efficiently than a constant pool load, lower it to the
7881 // sequence of ops that should be used.
7882 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7883                                              SelectionDAG &DAG) const {
7884   SDLoc dl(Op);
7885   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7886   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7887 
7888   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7889     // We first build an i32 vector, load it into a QPX register,
7890     // then convert it to a floating-point vector and compare it
7891     // to a zero vector to get the boolean result.
7892     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7893     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7894     MachinePointerInfo PtrInfo =
7895         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7896     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7897     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7898 
7899     assert(BVN->getNumOperands() == 4 &&
7900       "BUILD_VECTOR for v4i1 does not have 4 operands");
7901 
7902     bool IsConst = true;
7903     for (unsigned i = 0; i < 4; ++i) {
7904       if (BVN->getOperand(i).isUndef()) continue;
7905       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7906         IsConst = false;
7907         break;
7908       }
7909     }
7910 
7911     if (IsConst) {
7912       Constant *One =
7913         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7914       Constant *NegOne =
7915         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7916 
7917       Constant *CV[4];
7918       for (unsigned i = 0; i < 4; ++i) {
7919         if (BVN->getOperand(i).isUndef())
7920           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7921         else if (isNullConstant(BVN->getOperand(i)))
7922           CV[i] = NegOne;
7923         else
7924           CV[i] = One;
7925       }
7926 
7927       Constant *CP = ConstantVector::get(CV);
7928       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7929                                           16 /* alignment */);
7930 
7931       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7932       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7933       return DAG.getMemIntrinsicNode(
7934           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7935           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7936     }
7937 
7938     SmallVector<SDValue, 4> Stores;
7939     for (unsigned i = 0; i < 4; ++i) {
7940       if (BVN->getOperand(i).isUndef()) continue;
7941 
7942       unsigned Offset = 4*i;
7943       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7944       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7945 
7946       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7947       if (StoreSize > 4) {
7948         Stores.push_back(
7949             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7950                               PtrInfo.getWithOffset(Offset), MVT::i32));
7951       } else {
7952         SDValue StoreValue = BVN->getOperand(i);
7953         if (StoreSize < 4)
7954           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7955 
7956         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7957                                       PtrInfo.getWithOffset(Offset)));
7958       }
7959     }
7960 
7961     SDValue StoreChain;
7962     if (!Stores.empty())
7963       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7964     else
7965       StoreChain = DAG.getEntryNode();
7966 
7967     // Now load from v4i32 into the QPX register; this will extend it to
7968     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7969     // is typed as v4f64 because the QPX register integer states are not
7970     // explicitly represented.
7971 
7972     SDValue Ops[] = {StoreChain,
7973                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7974                      FIdx};
7975     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7976 
7977     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7978       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7979     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7980       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7981       LoadedVect);
7982 
7983     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7984 
7985     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7986   }
7987 
7988   // All other QPX vectors are handled by generic code.
7989   if (Subtarget.hasQPX())
7990     return SDValue();
7991 
7992   // Check if this is a splat of a constant value.
7993   APInt APSplatBits, APSplatUndef;
7994   unsigned SplatBitSize;
7995   bool HasAnyUndefs;
7996   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7997                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7998       SplatBitSize > 32) {
7999     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8000     // lowered to VSX instructions under certain conditions.
8001     // Without VSX, there is no pattern more efficient than expanding the node.
8002     if (Subtarget.hasVSX() &&
8003         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8004                                         Subtarget.hasP8Vector()))
8005       return Op;
8006     return SDValue();
8007   }
8008 
8009   unsigned SplatBits = APSplatBits.getZExtValue();
8010   unsigned SplatUndef = APSplatUndef.getZExtValue();
8011   unsigned SplatSize = SplatBitSize / 8;
8012 
8013   // First, handle single instruction cases.
8014 
8015   // All zeros?
8016   if (SplatBits == 0) {
8017     // Canonicalize all zero vectors to be v4i32.
8018     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8019       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8020       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8021     }
8022     return Op;
8023   }
8024 
8025   // We have XXSPLTIB for constant splats one byte wide
8026   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8027     // This is a splat of 1-byte elements with some elements potentially undef.
8028     // Rather than trying to match undef in the SDAG patterns, ensure that all
8029     // elements are the same constant.
8030     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8031       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8032                                                        dl, MVT::i32));
8033       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8034       if (Op.getValueType() != MVT::v16i8)
8035         return DAG.getBitcast(Op.getValueType(), NewBV);
8036       return NewBV;
8037     }
8038 
8039     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8040     // detect that constant splats like v8i16: 0xABAB are really just splats
8041     // of a 1-byte constant. In this case, we need to convert the node to a
8042     // splat of v16i8 and a bitcast.
8043     if (Op.getValueType() != MVT::v16i8)
8044       return DAG.getBitcast(Op.getValueType(),
8045                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8046 
8047     return Op;
8048   }
8049 
8050   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8051   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8052                     (32-SplatBitSize));
8053   if (SextVal >= -16 && SextVal <= 15)
8054     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8055 
8056   // Two instruction sequences.
8057 
8058   // If this value is in the range [-32,30] and is even, use:
8059   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8060   // If this value is in the range [17,31] and is odd, use:
8061   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8062   // If this value is in the range [-31,-17] and is odd, use:
8063   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8064   // Note the last two are three-instruction sequences.
8065   if (SextVal >= -32 && SextVal <= 31) {
8066     // To avoid having these optimizations undone by constant folding,
8067     // we convert to a pseudo that will be expanded later into one of
8068     // the above forms.
8069     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8070     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8071               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8072     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8073     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8074     if (VT == Op.getValueType())
8075       return RetVal;
8076     else
8077       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8078   }
8079 
8080   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8081   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8082   // for fneg/fabs.
8083   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8084     // Make -1 and vspltisw -1:
8085     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8086 
8087     // Make the VSLW intrinsic, computing 0x8000_0000.
8088     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8089                                    OnesV, DAG, dl);
8090 
8091     // xor by OnesV to invert it.
8092     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8093     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8094   }
8095 
8096   // Check to see if this is a wide variety of vsplti*, binop self cases.
8097   static const signed char SplatCsts[] = {
8098     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8099     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8100   };
8101 
8102   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8103     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8104     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8105     int i = SplatCsts[idx];
8106 
8107     // Figure out what shift amount will be used by altivec if shifted by i in
8108     // this splat size.
8109     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8110 
8111     // vsplti + shl self.
8112     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8113       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8114       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8115         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8116         Intrinsic::ppc_altivec_vslw
8117       };
8118       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8119       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8120     }
8121 
8122     // vsplti + srl self.
8123     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8124       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8125       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8126         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8127         Intrinsic::ppc_altivec_vsrw
8128       };
8129       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8130       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8131     }
8132 
8133     // vsplti + sra self.
8134     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8135       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8136       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8137         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8138         Intrinsic::ppc_altivec_vsraw
8139       };
8140       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8141       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8142     }
8143 
8144     // vsplti + rol self.
8145     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8146                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8147       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8148       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8149         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8150         Intrinsic::ppc_altivec_vrlw
8151       };
8152       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8153       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8154     }
8155 
8156     // t = vsplti c, result = vsldoi t, t, 1
8157     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8158       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8159       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8160       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8161     }
8162     // t = vsplti c, result = vsldoi t, t, 2
8163     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8164       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8165       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8166       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8167     }
8168     // t = vsplti c, result = vsldoi t, t, 3
8169     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8170       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8171       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8172       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8173     }
8174   }
8175 
8176   return SDValue();
8177 }
8178 
8179 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8180 /// the specified operations to build the shuffle.
8181 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8182                                       SDValue RHS, SelectionDAG &DAG,
8183                                       const SDLoc &dl) {
8184   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8185   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8186   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8187 
8188   enum {
8189     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8190     OP_VMRGHW,
8191     OP_VMRGLW,
8192     OP_VSPLTISW0,
8193     OP_VSPLTISW1,
8194     OP_VSPLTISW2,
8195     OP_VSPLTISW3,
8196     OP_VSLDOI4,
8197     OP_VSLDOI8,
8198     OP_VSLDOI12
8199   };
8200 
8201   if (OpNum == OP_COPY) {
8202     if (LHSID == (1*9+2)*9+3) return LHS;
8203     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8204     return RHS;
8205   }
8206 
8207   SDValue OpLHS, OpRHS;
8208   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8209   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8210 
8211   int ShufIdxs[16];
8212   switch (OpNum) {
8213   default: llvm_unreachable("Unknown i32 permute!");
8214   case OP_VMRGHW:
8215     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8216     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8217     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8218     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8219     break;
8220   case OP_VMRGLW:
8221     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8222     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8223     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8224     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8225     break;
8226   case OP_VSPLTISW0:
8227     for (unsigned i = 0; i != 16; ++i)
8228       ShufIdxs[i] = (i&3)+0;
8229     break;
8230   case OP_VSPLTISW1:
8231     for (unsigned i = 0; i != 16; ++i)
8232       ShufIdxs[i] = (i&3)+4;
8233     break;
8234   case OP_VSPLTISW2:
8235     for (unsigned i = 0; i != 16; ++i)
8236       ShufIdxs[i] = (i&3)+8;
8237     break;
8238   case OP_VSPLTISW3:
8239     for (unsigned i = 0; i != 16; ++i)
8240       ShufIdxs[i] = (i&3)+12;
8241     break;
8242   case OP_VSLDOI4:
8243     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8244   case OP_VSLDOI8:
8245     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8246   case OP_VSLDOI12:
8247     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8248   }
8249   EVT VT = OpLHS.getValueType();
8250   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8251   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8252   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8253   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8254 }
8255 
8256 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8257 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8258 /// SDValue.
8259 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8260                                            SelectionDAG &DAG) const {
8261   const unsigned BytesInVector = 16;
8262   bool IsLE = Subtarget.isLittleEndian();
8263   SDLoc dl(N);
8264   SDValue V1 = N->getOperand(0);
8265   SDValue V2 = N->getOperand(1);
8266   unsigned ShiftElts = 0, InsertAtByte = 0;
8267   bool Swap = false;
8268 
8269   // Shifts required to get the byte we want at element 7.
8270   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8271                                    0, 15, 14, 13, 12, 11, 10, 9};
8272   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8273                                 1, 2,  3,  4,  5,  6,  7,  8};
8274 
8275   ArrayRef<int> Mask = N->getMask();
8276   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8277 
8278   // For each mask element, find out if we're just inserting something
8279   // from V2 into V1 or vice versa.
8280   // Possible permutations inserting an element from V2 into V1:
8281   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8282   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8283   //   ...
8284   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8285   // Inserting from V1 into V2 will be similar, except mask range will be
8286   // [16,31].
8287 
8288   bool FoundCandidate = false;
8289   // If both vector operands for the shuffle are the same vector, the mask
8290   // will contain only elements from the first one and the second one will be
8291   // undef.
8292   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8293   // Go through the mask of half-words to find an element that's being moved
8294   // from one vector to the other.
8295   for (unsigned i = 0; i < BytesInVector; ++i) {
8296     unsigned CurrentElement = Mask[i];
8297     // If 2nd operand is undefined, we should only look for element 7 in the
8298     // Mask.
8299     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8300       continue;
8301 
8302     bool OtherElementsInOrder = true;
8303     // Examine the other elements in the Mask to see if they're in original
8304     // order.
8305     for (unsigned j = 0; j < BytesInVector; ++j) {
8306       if (j == i)
8307         continue;
8308       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8309       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8310       // in which we always assume we're always picking from the 1st operand.
8311       int MaskOffset =
8312           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8313       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8314         OtherElementsInOrder = false;
8315         break;
8316       }
8317     }
8318     // If other elements are in original order, we record the number of shifts
8319     // we need to get the element we want into element 7. Also record which byte
8320     // in the vector we should insert into.
8321     if (OtherElementsInOrder) {
8322       // If 2nd operand is undefined, we assume no shifts and no swapping.
8323       if (V2.isUndef()) {
8324         ShiftElts = 0;
8325         Swap = false;
8326       } else {
8327         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8328         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8329                          : BigEndianShifts[CurrentElement & 0xF];
8330         Swap = CurrentElement < BytesInVector;
8331       }
8332       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8333       FoundCandidate = true;
8334       break;
8335     }
8336   }
8337 
8338   if (!FoundCandidate)
8339     return SDValue();
8340 
8341   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8342   // optionally with VECSHL if shift is required.
8343   if (Swap)
8344     std::swap(V1, V2);
8345   if (V2.isUndef())
8346     V2 = V1;
8347   if (ShiftElts) {
8348     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8349                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8350     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8351                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8352   }
8353   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8354                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8355 }
8356 
8357 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8358 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8359 /// SDValue.
8360 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8361                                            SelectionDAG &DAG) const {
8362   const unsigned NumHalfWords = 8;
8363   const unsigned BytesInVector = NumHalfWords * 2;
8364   // Check that the shuffle is on half-words.
8365   if (!isNByteElemShuffleMask(N, 2, 1))
8366     return SDValue();
8367 
8368   bool IsLE = Subtarget.isLittleEndian();
8369   SDLoc dl(N);
8370   SDValue V1 = N->getOperand(0);
8371   SDValue V2 = N->getOperand(1);
8372   unsigned ShiftElts = 0, InsertAtByte = 0;
8373   bool Swap = false;
8374 
8375   // Shifts required to get the half-word we want at element 3.
8376   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8377   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8378 
8379   uint32_t Mask = 0;
8380   uint32_t OriginalOrderLow = 0x1234567;
8381   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8382   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8383   // 32-bit space, only need 4-bit nibbles per element.
8384   for (unsigned i = 0; i < NumHalfWords; ++i) {
8385     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8386     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8387   }
8388 
8389   // For each mask element, find out if we're just inserting something
8390   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8391   // from V2 into V1:
8392   //   X, 1, 2, 3, 4, 5, 6, 7
8393   //   0, X, 2, 3, 4, 5, 6, 7
8394   //   0, 1, X, 3, 4, 5, 6, 7
8395   //   0, 1, 2, X, 4, 5, 6, 7
8396   //   0, 1, 2, 3, X, 5, 6, 7
8397   //   0, 1, 2, 3, 4, X, 6, 7
8398   //   0, 1, 2, 3, 4, 5, X, 7
8399   //   0, 1, 2, 3, 4, 5, 6, X
8400   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8401 
8402   bool FoundCandidate = false;
8403   // Go through the mask of half-words to find an element that's being moved
8404   // from one vector to the other.
8405   for (unsigned i = 0; i < NumHalfWords; ++i) {
8406     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8407     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8408     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8409     uint32_t TargetOrder = 0x0;
8410 
8411     // If both vector operands for the shuffle are the same vector, the mask
8412     // will contain only elements from the first one and the second one will be
8413     // undef.
8414     if (V2.isUndef()) {
8415       ShiftElts = 0;
8416       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8417       TargetOrder = OriginalOrderLow;
8418       Swap = false;
8419       // Skip if not the correct element or mask of other elements don't equal
8420       // to our expected order.
8421       if (MaskOneElt == VINSERTHSrcElem &&
8422           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8423         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8424         FoundCandidate = true;
8425         break;
8426       }
8427     } else { // If both operands are defined.
8428       // Target order is [8,15] if the current mask is between [0,7].
8429       TargetOrder =
8430           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8431       // Skip if mask of other elements don't equal our expected order.
8432       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8433         // We only need the last 3 bits for the number of shifts.
8434         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8435                          : BigEndianShifts[MaskOneElt & 0x7];
8436         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8437         Swap = MaskOneElt < NumHalfWords;
8438         FoundCandidate = true;
8439         break;
8440       }
8441     }
8442   }
8443 
8444   if (!FoundCandidate)
8445     return SDValue();
8446 
8447   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8448   // optionally with VECSHL if shift is required.
8449   if (Swap)
8450     std::swap(V1, V2);
8451   if (V2.isUndef())
8452     V2 = V1;
8453   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8454   if (ShiftElts) {
8455     // Double ShiftElts because we're left shifting on v16i8 type.
8456     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8457                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8458     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8459     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8460                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8461     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8462   }
8463   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8464   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8465                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8466   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8467 }
8468 
8469 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8470 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8471 /// return the code it can be lowered into.  Worst case, it can always be
8472 /// lowered into a vperm.
8473 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8474                                                SelectionDAG &DAG) const {
8475   SDLoc dl(Op);
8476   SDValue V1 = Op.getOperand(0);
8477   SDValue V2 = Op.getOperand(1);
8478   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8479   EVT VT = Op.getValueType();
8480   bool isLittleEndian = Subtarget.isLittleEndian();
8481 
8482   unsigned ShiftElts, InsertAtByte;
8483   bool Swap = false;
8484   if (Subtarget.hasP9Vector() &&
8485       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8486                            isLittleEndian)) {
8487     if (Swap)
8488       std::swap(V1, V2);
8489     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8490     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8491     if (ShiftElts) {
8492       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8493                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8494       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8495                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8496       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8497     }
8498     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8499                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8500     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8501   }
8502 
8503   if (Subtarget.hasP9Altivec()) {
8504     SDValue NewISDNode;
8505     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8506       return NewISDNode;
8507 
8508     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8509       return NewISDNode;
8510   }
8511 
8512   if (Subtarget.hasVSX() &&
8513       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8514     if (Swap)
8515       std::swap(V1, V2);
8516     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8517     SDValue Conv2 =
8518         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8519 
8520     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8521                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8522     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8523   }
8524 
8525   if (Subtarget.hasVSX() &&
8526     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8527     if (Swap)
8528       std::swap(V1, V2);
8529     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8530     SDValue Conv2 =
8531         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8532 
8533     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8534                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8535     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8536   }
8537 
8538   if (Subtarget.hasP9Vector()) {
8539      if (PPC::isXXBRHShuffleMask(SVOp)) {
8540       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8541       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8542       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8543     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8544       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8545       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8546       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8547     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8548       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8549       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8550       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8551     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8552       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8553       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8554       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8555     }
8556   }
8557 
8558   if (Subtarget.hasVSX()) {
8559     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8560       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8561 
8562       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8563       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8564                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8565       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8566     }
8567 
8568     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8569     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8570       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8571       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8572       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8573     }
8574   }
8575 
8576   if (Subtarget.hasQPX()) {
8577     if (VT.getVectorNumElements() != 4)
8578       return SDValue();
8579 
8580     if (V2.isUndef()) V2 = V1;
8581 
8582     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8583     if (AlignIdx != -1) {
8584       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8585                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8586     } else if (SVOp->isSplat()) {
8587       int SplatIdx = SVOp->getSplatIndex();
8588       if (SplatIdx >= 4) {
8589         std::swap(V1, V2);
8590         SplatIdx -= 4;
8591       }
8592 
8593       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8594                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8595     }
8596 
8597     // Lower this into a qvgpci/qvfperm pair.
8598 
8599     // Compute the qvgpci literal
8600     unsigned idx = 0;
8601     for (unsigned i = 0; i < 4; ++i) {
8602       int m = SVOp->getMaskElt(i);
8603       unsigned mm = m >= 0 ? (unsigned) m : i;
8604       idx |= mm << (3-i)*3;
8605     }
8606 
8607     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8608                              DAG.getConstant(idx, dl, MVT::i32));
8609     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8610   }
8611 
8612   // Cases that are handled by instructions that take permute immediates
8613   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8614   // selected by the instruction selector.
8615   if (V2.isUndef()) {
8616     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8617         PPC::isSplatShuffleMask(SVOp, 2) ||
8618         PPC::isSplatShuffleMask(SVOp, 4) ||
8619         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8620         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8621         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8622         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8623         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8624         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8625         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8626         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8627         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8628         (Subtarget.hasP8Altivec() && (
8629          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8630          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8631          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8632       return Op;
8633     }
8634   }
8635 
8636   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8637   // and produce a fixed permutation.  If any of these match, do not lower to
8638   // VPERM.
8639   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8640   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8641       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8642       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8643       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8644       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8645       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8646       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8647       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8648       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8649       (Subtarget.hasP8Altivec() && (
8650        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8651        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8652        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8653     return Op;
8654 
8655   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8656   // perfect shuffle table to emit an optimal matching sequence.
8657   ArrayRef<int> PermMask = SVOp->getMask();
8658 
8659   unsigned PFIndexes[4];
8660   bool isFourElementShuffle = true;
8661   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8662     unsigned EltNo = 8;   // Start out undef.
8663     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8664       if (PermMask[i*4+j] < 0)
8665         continue;   // Undef, ignore it.
8666 
8667       unsigned ByteSource = PermMask[i*4+j];
8668       if ((ByteSource & 3) != j) {
8669         isFourElementShuffle = false;
8670         break;
8671       }
8672 
8673       if (EltNo == 8) {
8674         EltNo = ByteSource/4;
8675       } else if (EltNo != ByteSource/4) {
8676         isFourElementShuffle = false;
8677         break;
8678       }
8679     }
8680     PFIndexes[i] = EltNo;
8681   }
8682 
8683   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8684   // perfect shuffle vector to determine if it is cost effective to do this as
8685   // discrete instructions, or whether we should use a vperm.
8686   // For now, we skip this for little endian until such time as we have a
8687   // little-endian perfect shuffle table.
8688   if (isFourElementShuffle && !isLittleEndian) {
8689     // Compute the index in the perfect shuffle table.
8690     unsigned PFTableIndex =
8691       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8692 
8693     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8694     unsigned Cost  = (PFEntry >> 30);
8695 
8696     // Determining when to avoid vperm is tricky.  Many things affect the cost
8697     // of vperm, particularly how many times the perm mask needs to be computed.
8698     // For example, if the perm mask can be hoisted out of a loop or is already
8699     // used (perhaps because there are multiple permutes with the same shuffle
8700     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8701     // the loop requires an extra register.
8702     //
8703     // As a compromise, we only emit discrete instructions if the shuffle can be
8704     // generated in 3 or fewer operations.  When we have loop information
8705     // available, if this block is within a loop, we should avoid using vperm
8706     // for 3-operation perms and use a constant pool load instead.
8707     if (Cost < 3)
8708       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8709   }
8710 
8711   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8712   // vector that will get spilled to the constant pool.
8713   if (V2.isUndef()) V2 = V1;
8714 
8715   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8716   // that it is in input element units, not in bytes.  Convert now.
8717 
8718   // For little endian, the order of the input vectors is reversed, and
8719   // the permutation mask is complemented with respect to 31.  This is
8720   // necessary to produce proper semantics with the big-endian-biased vperm
8721   // instruction.
8722   EVT EltVT = V1.getValueType().getVectorElementType();
8723   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8724 
8725   SmallVector<SDValue, 16> ResultMask;
8726   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8727     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8728 
8729     for (unsigned j = 0; j != BytesPerElement; ++j)
8730       if (isLittleEndian)
8731         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8732                                              dl, MVT::i32));
8733       else
8734         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8735                                              MVT::i32));
8736   }
8737 
8738   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8739   if (isLittleEndian)
8740     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8741                        V2, V1, VPermMask);
8742   else
8743     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8744                        V1, V2, VPermMask);
8745 }
8746 
8747 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8748 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8749 /// information about the intrinsic.
8750 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8751                                  bool &isDot, const PPCSubtarget &Subtarget) {
8752   unsigned IntrinsicID =
8753       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8754   CompareOpc = -1;
8755   isDot = false;
8756   switch (IntrinsicID) {
8757   default:
8758     return false;
8759   // Comparison predicates.
8760   case Intrinsic::ppc_altivec_vcmpbfp_p:
8761     CompareOpc = 966;
8762     isDot = true;
8763     break;
8764   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8765     CompareOpc = 198;
8766     isDot = true;
8767     break;
8768   case Intrinsic::ppc_altivec_vcmpequb_p:
8769     CompareOpc = 6;
8770     isDot = true;
8771     break;
8772   case Intrinsic::ppc_altivec_vcmpequh_p:
8773     CompareOpc = 70;
8774     isDot = true;
8775     break;
8776   case Intrinsic::ppc_altivec_vcmpequw_p:
8777     CompareOpc = 134;
8778     isDot = true;
8779     break;
8780   case Intrinsic::ppc_altivec_vcmpequd_p:
8781     if (Subtarget.hasP8Altivec()) {
8782       CompareOpc = 199;
8783       isDot = true;
8784     } else
8785       return false;
8786     break;
8787   case Intrinsic::ppc_altivec_vcmpneb_p:
8788   case Intrinsic::ppc_altivec_vcmpneh_p:
8789   case Intrinsic::ppc_altivec_vcmpnew_p:
8790   case Intrinsic::ppc_altivec_vcmpnezb_p:
8791   case Intrinsic::ppc_altivec_vcmpnezh_p:
8792   case Intrinsic::ppc_altivec_vcmpnezw_p:
8793     if (Subtarget.hasP9Altivec()) {
8794       switch (IntrinsicID) {
8795       default:
8796         llvm_unreachable("Unknown comparison intrinsic.");
8797       case Intrinsic::ppc_altivec_vcmpneb_p:
8798         CompareOpc = 7;
8799         break;
8800       case Intrinsic::ppc_altivec_vcmpneh_p:
8801         CompareOpc = 71;
8802         break;
8803       case Intrinsic::ppc_altivec_vcmpnew_p:
8804         CompareOpc = 135;
8805         break;
8806       case Intrinsic::ppc_altivec_vcmpnezb_p:
8807         CompareOpc = 263;
8808         break;
8809       case Intrinsic::ppc_altivec_vcmpnezh_p:
8810         CompareOpc = 327;
8811         break;
8812       case Intrinsic::ppc_altivec_vcmpnezw_p:
8813         CompareOpc = 391;
8814         break;
8815       }
8816       isDot = true;
8817     } else
8818       return false;
8819     break;
8820   case Intrinsic::ppc_altivec_vcmpgefp_p:
8821     CompareOpc = 454;
8822     isDot = true;
8823     break;
8824   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8825     CompareOpc = 710;
8826     isDot = true;
8827     break;
8828   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8829     CompareOpc = 774;
8830     isDot = true;
8831     break;
8832   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8833     CompareOpc = 838;
8834     isDot = true;
8835     break;
8836   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8837     CompareOpc = 902;
8838     isDot = true;
8839     break;
8840   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8841     if (Subtarget.hasP8Altivec()) {
8842       CompareOpc = 967;
8843       isDot = true;
8844     } else
8845       return false;
8846     break;
8847   case Intrinsic::ppc_altivec_vcmpgtub_p:
8848     CompareOpc = 518;
8849     isDot = true;
8850     break;
8851   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8852     CompareOpc = 582;
8853     isDot = true;
8854     break;
8855   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8856     CompareOpc = 646;
8857     isDot = true;
8858     break;
8859   case Intrinsic::ppc_altivec_vcmpgtud_p:
8860     if (Subtarget.hasP8Altivec()) {
8861       CompareOpc = 711;
8862       isDot = true;
8863     } else
8864       return false;
8865     break;
8866 
8867   // VSX predicate comparisons use the same infrastructure
8868   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8869   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8870   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8871   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8872   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8873   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8874     if (Subtarget.hasVSX()) {
8875       switch (IntrinsicID) {
8876       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8877         CompareOpc = 99;
8878         break;
8879       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8880         CompareOpc = 115;
8881         break;
8882       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8883         CompareOpc = 107;
8884         break;
8885       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8886         CompareOpc = 67;
8887         break;
8888       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8889         CompareOpc = 83;
8890         break;
8891       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8892         CompareOpc = 75;
8893         break;
8894       }
8895       isDot = true;
8896     } else
8897       return false;
8898     break;
8899 
8900   // Normal Comparisons.
8901   case Intrinsic::ppc_altivec_vcmpbfp:
8902     CompareOpc = 966;
8903     break;
8904   case Intrinsic::ppc_altivec_vcmpeqfp:
8905     CompareOpc = 198;
8906     break;
8907   case Intrinsic::ppc_altivec_vcmpequb:
8908     CompareOpc = 6;
8909     break;
8910   case Intrinsic::ppc_altivec_vcmpequh:
8911     CompareOpc = 70;
8912     break;
8913   case Intrinsic::ppc_altivec_vcmpequw:
8914     CompareOpc = 134;
8915     break;
8916   case Intrinsic::ppc_altivec_vcmpequd:
8917     if (Subtarget.hasP8Altivec())
8918       CompareOpc = 199;
8919     else
8920       return false;
8921     break;
8922   case Intrinsic::ppc_altivec_vcmpneb:
8923   case Intrinsic::ppc_altivec_vcmpneh:
8924   case Intrinsic::ppc_altivec_vcmpnew:
8925   case Intrinsic::ppc_altivec_vcmpnezb:
8926   case Intrinsic::ppc_altivec_vcmpnezh:
8927   case Intrinsic::ppc_altivec_vcmpnezw:
8928     if (Subtarget.hasP9Altivec())
8929       switch (IntrinsicID) {
8930       default:
8931         llvm_unreachable("Unknown comparison intrinsic.");
8932       case Intrinsic::ppc_altivec_vcmpneb:
8933         CompareOpc = 7;
8934         break;
8935       case Intrinsic::ppc_altivec_vcmpneh:
8936         CompareOpc = 71;
8937         break;
8938       case Intrinsic::ppc_altivec_vcmpnew:
8939         CompareOpc = 135;
8940         break;
8941       case Intrinsic::ppc_altivec_vcmpnezb:
8942         CompareOpc = 263;
8943         break;
8944       case Intrinsic::ppc_altivec_vcmpnezh:
8945         CompareOpc = 327;
8946         break;
8947       case Intrinsic::ppc_altivec_vcmpnezw:
8948         CompareOpc = 391;
8949         break;
8950       }
8951     else
8952       return false;
8953     break;
8954   case Intrinsic::ppc_altivec_vcmpgefp:
8955     CompareOpc = 454;
8956     break;
8957   case Intrinsic::ppc_altivec_vcmpgtfp:
8958     CompareOpc = 710;
8959     break;
8960   case Intrinsic::ppc_altivec_vcmpgtsb:
8961     CompareOpc = 774;
8962     break;
8963   case Intrinsic::ppc_altivec_vcmpgtsh:
8964     CompareOpc = 838;
8965     break;
8966   case Intrinsic::ppc_altivec_vcmpgtsw:
8967     CompareOpc = 902;
8968     break;
8969   case Intrinsic::ppc_altivec_vcmpgtsd:
8970     if (Subtarget.hasP8Altivec())
8971       CompareOpc = 967;
8972     else
8973       return false;
8974     break;
8975   case Intrinsic::ppc_altivec_vcmpgtub:
8976     CompareOpc = 518;
8977     break;
8978   case Intrinsic::ppc_altivec_vcmpgtuh:
8979     CompareOpc = 582;
8980     break;
8981   case Intrinsic::ppc_altivec_vcmpgtuw:
8982     CompareOpc = 646;
8983     break;
8984   case Intrinsic::ppc_altivec_vcmpgtud:
8985     if (Subtarget.hasP8Altivec())
8986       CompareOpc = 711;
8987     else
8988       return false;
8989     break;
8990   }
8991   return true;
8992 }
8993 
8994 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8995 /// lower, do it, otherwise return null.
8996 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8997                                                    SelectionDAG &DAG) const {
8998   unsigned IntrinsicID =
8999     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9000 
9001   SDLoc dl(Op);
9002 
9003   if (IntrinsicID == Intrinsic::thread_pointer) {
9004     // Reads the thread pointer register, used for __builtin_thread_pointer.
9005     if (Subtarget.isPPC64())
9006       return DAG.getRegister(PPC::X13, MVT::i64);
9007     return DAG.getRegister(PPC::R2, MVT::i32);
9008   }
9009 
9010   // We are looking for absolute values here.
9011   // The idea is to try to fit one of two patterns:
9012   //  max (a, (0-a))  OR  max ((0-a), a)
9013   if (Subtarget.hasP9Vector() &&
9014       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
9015        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
9016        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
9017     SDValue V1 = Op.getOperand(1);
9018     SDValue V2 = Op.getOperand(2);
9019     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
9020         (V1.getSimpleValueType() == MVT::v4i32 ||
9021          V1.getSimpleValueType() == MVT::v8i16 ||
9022          V1.getSimpleValueType() == MVT::v16i8)) {
9023       if ( V1.getOpcode() == ISD::SUB &&
9024            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
9025            V1.getOperand(1) == V2 ) {
9026         // Generate the abs instruction with the operands
9027         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
9028       }
9029 
9030       if ( V2.getOpcode() == ISD::SUB &&
9031            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
9032            V2.getOperand(1) == V1 ) {
9033         // Generate the abs instruction with the operands
9034         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
9035       }
9036     }
9037   }
9038 
9039   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9040   // opcode number of the comparison.
9041   int CompareOpc;
9042   bool isDot;
9043   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9044     return SDValue();    // Don't custom lower most intrinsics.
9045 
9046   // If this is a non-dot comparison, make the VCMP node and we are done.
9047   if (!isDot) {
9048     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9049                               Op.getOperand(1), Op.getOperand(2),
9050                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9051     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9052   }
9053 
9054   // Create the PPCISD altivec 'dot' comparison node.
9055   SDValue Ops[] = {
9056     Op.getOperand(2),  // LHS
9057     Op.getOperand(3),  // RHS
9058     DAG.getConstant(CompareOpc, dl, MVT::i32)
9059   };
9060   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9061   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9062 
9063   // Now that we have the comparison, emit a copy from the CR to a GPR.
9064   // This is flagged to the above dot comparison.
9065   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9066                                 DAG.getRegister(PPC::CR6, MVT::i32),
9067                                 CompNode.getValue(1));
9068 
9069   // Unpack the result based on how the target uses it.
9070   unsigned BitNo;   // Bit # of CR6.
9071   bool InvertBit;   // Invert result?
9072   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9073   default:  // Can't happen, don't crash on invalid number though.
9074   case 0:   // Return the value of the EQ bit of CR6.
9075     BitNo = 0; InvertBit = false;
9076     break;
9077   case 1:   // Return the inverted value of the EQ bit of CR6.
9078     BitNo = 0; InvertBit = true;
9079     break;
9080   case 2:   // Return the value of the LT bit of CR6.
9081     BitNo = 2; InvertBit = false;
9082     break;
9083   case 3:   // Return the inverted value of the LT bit of CR6.
9084     BitNo = 2; InvertBit = true;
9085     break;
9086   }
9087 
9088   // Shift the bit into the low position.
9089   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9090                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9091   // Isolate the bit.
9092   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9093                       DAG.getConstant(1, dl, MVT::i32));
9094 
9095   // If we are supposed to, toggle the bit.
9096   if (InvertBit)
9097     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9098                         DAG.getConstant(1, dl, MVT::i32));
9099   return Flags;
9100 }
9101 
9102 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9103                                                SelectionDAG &DAG) const {
9104   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9105   // the beginning of the argument list.
9106   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9107   SDLoc DL(Op);
9108   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9109   case Intrinsic::ppc_cfence: {
9110     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9111     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9112     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9113                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9114                                                   Op.getOperand(ArgStart + 1)),
9115                                       Op.getOperand(0)),
9116                    0);
9117   }
9118   default:
9119     break;
9120   }
9121   return SDValue();
9122 }
9123 
9124 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9125   // Check for a DIV with the same operands as this REM.
9126   for (auto UI : Op.getOperand(1)->uses()) {
9127     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9128         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9129       if (UI->getOperand(0) == Op.getOperand(0) &&
9130           UI->getOperand(1) == Op.getOperand(1))
9131         return SDValue();
9132   }
9133   return Op;
9134 }
9135 
9136 // Lower scalar BSWAP64 to xxbrd.
9137 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9138   SDLoc dl(Op);
9139   // MTVSRDD
9140   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9141                    Op.getOperand(0));
9142   // XXBRD
9143   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9144   // MFVSRD
9145   int VectorIndex = 0;
9146   if (Subtarget.isLittleEndian())
9147     VectorIndex = 1;
9148   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9149                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9150   return Op;
9151 }
9152 
9153 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9154 // compared to a value that is atomically loaded (atomic loads zero-extend).
9155 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9156                                                 SelectionDAG &DAG) const {
9157   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9158          "Expecting an atomic compare-and-swap here.");
9159   SDLoc dl(Op);
9160   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9161   EVT MemVT = AtomicNode->getMemoryVT();
9162   if (MemVT.getSizeInBits() >= 32)
9163     return Op;
9164 
9165   SDValue CmpOp = Op.getOperand(2);
9166   // If this is already correctly zero-extended, leave it alone.
9167   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9168   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9169     return Op;
9170 
9171   // Clear the high bits of the compare operand.
9172   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9173   SDValue NewCmpOp =
9174     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9175                 DAG.getConstant(MaskVal, dl, MVT::i32));
9176 
9177   // Replace the existing compare operand with the properly zero-extended one.
9178   SmallVector<SDValue, 4> Ops;
9179   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9180     Ops.push_back(AtomicNode->getOperand(i));
9181   Ops[2] = NewCmpOp;
9182   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9183   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9184   auto NodeTy =
9185     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9186   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9187 }
9188 
9189 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9190                                                  SelectionDAG &DAG) const {
9191   SDLoc dl(Op);
9192   // Create a stack slot that is 16-byte aligned.
9193   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9194   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9195   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9196   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9197 
9198   // Store the input value into Value#0 of the stack slot.
9199   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9200                                MachinePointerInfo());
9201   // Load it out.
9202   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9203 }
9204 
9205 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9206                                                   SelectionDAG &DAG) const {
9207   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9208          "Should only be called for ISD::INSERT_VECTOR_ELT");
9209 
9210   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9211   // We have legal lowering for constant indices but not for variable ones.
9212   if (!C)
9213     return SDValue();
9214 
9215   EVT VT = Op.getValueType();
9216   SDLoc dl(Op);
9217   SDValue V1 = Op.getOperand(0);
9218   SDValue V2 = Op.getOperand(1);
9219   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9220   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9221     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9222     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9223     unsigned InsertAtElement = C->getZExtValue();
9224     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9225     if (Subtarget.isLittleEndian()) {
9226       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9227     }
9228     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9229                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9230   }
9231   return Op;
9232 }
9233 
9234 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9235                                                    SelectionDAG &DAG) const {
9236   SDLoc dl(Op);
9237   SDNode *N = Op.getNode();
9238 
9239   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9240          "Unknown extract_vector_elt type");
9241 
9242   SDValue Value = N->getOperand(0);
9243 
9244   // The first part of this is like the store lowering except that we don't
9245   // need to track the chain.
9246 
9247   // The values are now known to be -1 (false) or 1 (true). To convert this
9248   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9249   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9250   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9251 
9252   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9253   // understand how to form the extending load.
9254   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9255 
9256   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9257 
9258   // Now convert to an integer and store.
9259   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9260     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9261     Value);
9262 
9263   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9264   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9265   MachinePointerInfo PtrInfo =
9266       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9267   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9268   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9269 
9270   SDValue StoreChain = DAG.getEntryNode();
9271   SDValue Ops[] = {StoreChain,
9272                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9273                    Value, FIdx};
9274   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9275 
9276   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9277     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9278 
9279   // Extract the value requested.
9280   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9281   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9282   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9283 
9284   SDValue IntVal =
9285       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9286 
9287   if (!Subtarget.useCRBits())
9288     return IntVal;
9289 
9290   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9291 }
9292 
9293 /// Lowering for QPX v4i1 loads
9294 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9295                                            SelectionDAG &DAG) const {
9296   SDLoc dl(Op);
9297   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9298   SDValue LoadChain = LN->getChain();
9299   SDValue BasePtr = LN->getBasePtr();
9300 
9301   if (Op.getValueType() == MVT::v4f64 ||
9302       Op.getValueType() == MVT::v4f32) {
9303     EVT MemVT = LN->getMemoryVT();
9304     unsigned Alignment = LN->getAlignment();
9305 
9306     // If this load is properly aligned, then it is legal.
9307     if (Alignment >= MemVT.getStoreSize())
9308       return Op;
9309 
9310     EVT ScalarVT = Op.getValueType().getScalarType(),
9311         ScalarMemVT = MemVT.getScalarType();
9312     unsigned Stride = ScalarMemVT.getStoreSize();
9313 
9314     SDValue Vals[4], LoadChains[4];
9315     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9316       SDValue Load;
9317       if (ScalarVT != ScalarMemVT)
9318         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9319                               BasePtr,
9320                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9321                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9322                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9323       else
9324         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9325                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9326                            MinAlign(Alignment, Idx * Stride),
9327                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9328 
9329       if (Idx == 0 && LN->isIndexed()) {
9330         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9331                "Unknown addressing mode on vector load");
9332         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9333                                   LN->getAddressingMode());
9334       }
9335 
9336       Vals[Idx] = Load;
9337       LoadChains[Idx] = Load.getValue(1);
9338 
9339       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9340                             DAG.getConstant(Stride, dl,
9341                                             BasePtr.getValueType()));
9342     }
9343 
9344     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9345     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9346 
9347     if (LN->isIndexed()) {
9348       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9349       return DAG.getMergeValues(RetOps, dl);
9350     }
9351 
9352     SDValue RetOps[] = { Value, TF };
9353     return DAG.getMergeValues(RetOps, dl);
9354   }
9355 
9356   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9357   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9358 
9359   // To lower v4i1 from a byte array, we load the byte elements of the
9360   // vector and then reuse the BUILD_VECTOR logic.
9361 
9362   SDValue VectElmts[4], VectElmtChains[4];
9363   for (unsigned i = 0; i < 4; ++i) {
9364     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9365     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9366 
9367     VectElmts[i] = DAG.getExtLoad(
9368         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9369         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9370         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9371     VectElmtChains[i] = VectElmts[i].getValue(1);
9372   }
9373 
9374   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9375   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9376 
9377   SDValue RVals[] = { Value, LoadChain };
9378   return DAG.getMergeValues(RVals, dl);
9379 }
9380 
9381 /// Lowering for QPX v4i1 stores
9382 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9383                                             SelectionDAG &DAG) const {
9384   SDLoc dl(Op);
9385   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9386   SDValue StoreChain = SN->getChain();
9387   SDValue BasePtr = SN->getBasePtr();
9388   SDValue Value = SN->getValue();
9389 
9390   if (Value.getValueType() == MVT::v4f64 ||
9391       Value.getValueType() == MVT::v4f32) {
9392     EVT MemVT = SN->getMemoryVT();
9393     unsigned Alignment = SN->getAlignment();
9394 
9395     // If this store is properly aligned, then it is legal.
9396     if (Alignment >= MemVT.getStoreSize())
9397       return Op;
9398 
9399     EVT ScalarVT = Value.getValueType().getScalarType(),
9400         ScalarMemVT = MemVT.getScalarType();
9401     unsigned Stride = ScalarMemVT.getStoreSize();
9402 
9403     SDValue Stores[4];
9404     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9405       SDValue Ex = DAG.getNode(
9406           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9407           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9408       SDValue Store;
9409       if (ScalarVT != ScalarMemVT)
9410         Store =
9411             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9412                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9413                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9414                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9415       else
9416         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9417                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9418                              MinAlign(Alignment, Idx * Stride),
9419                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9420 
9421       if (Idx == 0 && SN->isIndexed()) {
9422         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9423                "Unknown addressing mode on vector store");
9424         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9425                                     SN->getAddressingMode());
9426       }
9427 
9428       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9429                             DAG.getConstant(Stride, dl,
9430                                             BasePtr.getValueType()));
9431       Stores[Idx] = Store;
9432     }
9433 
9434     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9435 
9436     if (SN->isIndexed()) {
9437       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9438       return DAG.getMergeValues(RetOps, dl);
9439     }
9440 
9441     return TF;
9442   }
9443 
9444   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9445   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9446 
9447   // The values are now known to be -1 (false) or 1 (true). To convert this
9448   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9449   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9450   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9451 
9452   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9453   // understand how to form the extending load.
9454   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9455 
9456   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9457 
9458   // Now convert to an integer and store.
9459   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9460     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9461     Value);
9462 
9463   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9464   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9465   MachinePointerInfo PtrInfo =
9466       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9467   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9468   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9469 
9470   SDValue Ops[] = {StoreChain,
9471                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9472                    Value, FIdx};
9473   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9474 
9475   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9476     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9477 
9478   // Move data into the byte array.
9479   SDValue Loads[4], LoadChains[4];
9480   for (unsigned i = 0; i < 4; ++i) {
9481     unsigned Offset = 4*i;
9482     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9483     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9484 
9485     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9486                            PtrInfo.getWithOffset(Offset));
9487     LoadChains[i] = Loads[i].getValue(1);
9488   }
9489 
9490   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9491 
9492   SDValue Stores[4];
9493   for (unsigned i = 0; i < 4; ++i) {
9494     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9495     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9496 
9497     Stores[i] = DAG.getTruncStore(
9498         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9499         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9500         SN->getAAInfo());
9501   }
9502 
9503   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9504 
9505   return StoreChain;
9506 }
9507 
9508 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9509   SDLoc dl(Op);
9510   if (Op.getValueType() == MVT::v4i32) {
9511     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9512 
9513     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9514     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9515 
9516     SDValue RHSSwap =   // = vrlw RHS, 16
9517       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9518 
9519     // Shrinkify inputs to v8i16.
9520     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9521     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9522     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9523 
9524     // Low parts multiplied together, generating 32-bit results (we ignore the
9525     // top parts).
9526     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9527                                         LHS, RHS, DAG, dl, MVT::v4i32);
9528 
9529     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9530                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9531     // Shift the high parts up 16 bits.
9532     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9533                               Neg16, DAG, dl);
9534     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9535   } else if (Op.getValueType() == MVT::v8i16) {
9536     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9537 
9538     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9539 
9540     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9541                             LHS, RHS, Zero, DAG, dl);
9542   } else if (Op.getValueType() == MVT::v16i8) {
9543     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9544     bool isLittleEndian = Subtarget.isLittleEndian();
9545 
9546     // Multiply the even 8-bit parts, producing 16-bit sums.
9547     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9548                                            LHS, RHS, DAG, dl, MVT::v8i16);
9549     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9550 
9551     // Multiply the odd 8-bit parts, producing 16-bit sums.
9552     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9553                                           LHS, RHS, DAG, dl, MVT::v8i16);
9554     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9555 
9556     // Merge the results together.  Because vmuleub and vmuloub are
9557     // instructions with a big-endian bias, we must reverse the
9558     // element numbering and reverse the meaning of "odd" and "even"
9559     // when generating little endian code.
9560     int Ops[16];
9561     for (unsigned i = 0; i != 8; ++i) {
9562       if (isLittleEndian) {
9563         Ops[i*2  ] = 2*i;
9564         Ops[i*2+1] = 2*i+16;
9565       } else {
9566         Ops[i*2  ] = 2*i+1;
9567         Ops[i*2+1] = 2*i+1+16;
9568       }
9569     }
9570     if (isLittleEndian)
9571       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9572     else
9573       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9574   } else {
9575     llvm_unreachable("Unknown mul to lower!");
9576   }
9577 }
9578 
9579 /// LowerOperation - Provide custom lowering hooks for some operations.
9580 ///
9581 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9582   switch (Op.getOpcode()) {
9583   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9584   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9585   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9586   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9587   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9588   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9589   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9590   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9591   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9592 
9593   // Variable argument lowering.
9594   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9595   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9596   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9597 
9598   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9599   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9600   case ISD::GET_DYNAMIC_AREA_OFFSET:
9601     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9602 
9603   // Exception handling lowering.
9604   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9605   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9606   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9607 
9608   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9609   case ISD::STORE:              return LowerSTORE(Op, DAG);
9610   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9611   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9612   case ISD::FP_TO_UINT:
9613   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9614   case ISD::UINT_TO_FP:
9615   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9616   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9617 
9618   // Lower 64-bit shifts.
9619   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9620   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9621   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9622 
9623   // Vector-related lowering.
9624   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9625   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9626   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9627   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9628   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9629   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9630   case ISD::MUL:                return LowerMUL(Op, DAG);
9631 
9632   // For counter-based loop handling.
9633   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9634 
9635   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9636 
9637   // Frame & Return address.
9638   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9639   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9640 
9641   case ISD::INTRINSIC_VOID:
9642     return LowerINTRINSIC_VOID(Op, DAG);
9643   case ISD::SREM:
9644   case ISD::UREM:
9645     return LowerREM(Op, DAG);
9646   case ISD::BSWAP:
9647     return LowerBSWAP(Op, DAG);
9648   case ISD::ATOMIC_CMP_SWAP:
9649     return LowerATOMIC_CMP_SWAP(Op, DAG);
9650   }
9651 }
9652 
9653 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9654                                            SmallVectorImpl<SDValue>&Results,
9655                                            SelectionDAG &DAG) const {
9656   SDLoc dl(N);
9657   switch (N->getOpcode()) {
9658   default:
9659     llvm_unreachable("Do not know how to custom type legalize this operation!");
9660   case ISD::READCYCLECOUNTER: {
9661     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9662     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9663 
9664     Results.push_back(RTB);
9665     Results.push_back(RTB.getValue(1));
9666     Results.push_back(RTB.getValue(2));
9667     break;
9668   }
9669   case ISD::INTRINSIC_W_CHAIN: {
9670     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9671         Intrinsic::ppc_is_decremented_ctr_nonzero)
9672       break;
9673 
9674     assert(N->getValueType(0) == MVT::i1 &&
9675            "Unexpected result type for CTR decrement intrinsic");
9676     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9677                                  N->getValueType(0));
9678     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9679     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9680                                  N->getOperand(1));
9681 
9682     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9683     Results.push_back(NewInt.getValue(1));
9684     break;
9685   }
9686   case ISD::VAARG: {
9687     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9688       return;
9689 
9690     EVT VT = N->getValueType(0);
9691 
9692     if (VT == MVT::i64) {
9693       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9694 
9695       Results.push_back(NewNode);
9696       Results.push_back(NewNode.getValue(1));
9697     }
9698     return;
9699   }
9700   case ISD::FP_TO_SINT:
9701   case ISD::FP_TO_UINT:
9702     // LowerFP_TO_INT() can only handle f32 and f64.
9703     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9704       return;
9705     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9706     return;
9707   case ISD::BITCAST:
9708     // Don't handle bitcast here.
9709     return;
9710   }
9711 }
9712 
9713 //===----------------------------------------------------------------------===//
9714 //  Other Lowering Code
9715 //===----------------------------------------------------------------------===//
9716 
9717 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9718   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9719   Function *Func = Intrinsic::getDeclaration(M, Id);
9720   return Builder.CreateCall(Func, {});
9721 }
9722 
9723 // The mappings for emitLeading/TrailingFence is taken from
9724 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9725 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9726                                                  Instruction *Inst,
9727                                                  AtomicOrdering Ord) const {
9728   if (Ord == AtomicOrdering::SequentiallyConsistent)
9729     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9730   if (isReleaseOrStronger(Ord))
9731     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9732   return nullptr;
9733 }
9734 
9735 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9736                                                   Instruction *Inst,
9737                                                   AtomicOrdering Ord) const {
9738   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9739     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9740     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9741     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9742     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9743       return Builder.CreateCall(
9744           Intrinsic::getDeclaration(
9745               Builder.GetInsertBlock()->getParent()->getParent(),
9746               Intrinsic::ppc_cfence, {Inst->getType()}),
9747           {Inst});
9748     // FIXME: Can use isync for rmw operation.
9749     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9750   }
9751   return nullptr;
9752 }
9753 
9754 MachineBasicBlock *
9755 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9756                                     unsigned AtomicSize,
9757                                     unsigned BinOpcode,
9758                                     unsigned CmpOpcode,
9759                                     unsigned CmpPred) const {
9760   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9761   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9762 
9763   auto LoadMnemonic = PPC::LDARX;
9764   auto StoreMnemonic = PPC::STDCX;
9765   switch (AtomicSize) {
9766   default:
9767     llvm_unreachable("Unexpected size of atomic entity");
9768   case 1:
9769     LoadMnemonic = PPC::LBARX;
9770     StoreMnemonic = PPC::STBCX;
9771     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9772     break;
9773   case 2:
9774     LoadMnemonic = PPC::LHARX;
9775     StoreMnemonic = PPC::STHCX;
9776     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9777     break;
9778   case 4:
9779     LoadMnemonic = PPC::LWARX;
9780     StoreMnemonic = PPC::STWCX;
9781     break;
9782   case 8:
9783     LoadMnemonic = PPC::LDARX;
9784     StoreMnemonic = PPC::STDCX;
9785     break;
9786   }
9787 
9788   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9789   MachineFunction *F = BB->getParent();
9790   MachineFunction::iterator It = ++BB->getIterator();
9791 
9792   unsigned dest = MI.getOperand(0).getReg();
9793   unsigned ptrA = MI.getOperand(1).getReg();
9794   unsigned ptrB = MI.getOperand(2).getReg();
9795   unsigned incr = MI.getOperand(3).getReg();
9796   DebugLoc dl = MI.getDebugLoc();
9797 
9798   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9799   MachineBasicBlock *loop2MBB =
9800     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9801   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9802   F->insert(It, loopMBB);
9803   if (CmpOpcode)
9804     F->insert(It, loop2MBB);
9805   F->insert(It, exitMBB);
9806   exitMBB->splice(exitMBB->begin(), BB,
9807                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9808   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9809 
9810   MachineRegisterInfo &RegInfo = F->getRegInfo();
9811   unsigned TmpReg = (!BinOpcode) ? incr :
9812     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9813                                            : &PPC::GPRCRegClass);
9814 
9815   //  thisMBB:
9816   //   ...
9817   //   fallthrough --> loopMBB
9818   BB->addSuccessor(loopMBB);
9819 
9820   //  loopMBB:
9821   //   l[wd]arx dest, ptr
9822   //   add r0, dest, incr
9823   //   st[wd]cx. r0, ptr
9824   //   bne- loopMBB
9825   //   fallthrough --> exitMBB
9826 
9827   // For max/min...
9828   //  loopMBB:
9829   //   l[wd]arx dest, ptr
9830   //   cmpl?[wd] incr, dest
9831   //   bgt exitMBB
9832   //  loop2MBB:
9833   //   st[wd]cx. dest, ptr
9834   //   bne- loopMBB
9835   //   fallthrough --> exitMBB
9836 
9837   BB = loopMBB;
9838   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9839     .addReg(ptrA).addReg(ptrB);
9840   if (BinOpcode)
9841     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9842   if (CmpOpcode) {
9843     // Signed comparisons of byte or halfword values must be sign-extended.
9844     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9845       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9846       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9847               ExtReg).addReg(dest);
9848       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9849         .addReg(incr).addReg(ExtReg);
9850     } else
9851       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9852         .addReg(incr).addReg(dest);
9853 
9854     BuildMI(BB, dl, TII->get(PPC::BCC))
9855       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9856     BB->addSuccessor(loop2MBB);
9857     BB->addSuccessor(exitMBB);
9858     BB = loop2MBB;
9859   }
9860   BuildMI(BB, dl, TII->get(StoreMnemonic))
9861     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9862   BuildMI(BB, dl, TII->get(PPC::BCC))
9863     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9864   BB->addSuccessor(loopMBB);
9865   BB->addSuccessor(exitMBB);
9866 
9867   //  exitMBB:
9868   //   ...
9869   BB = exitMBB;
9870   return BB;
9871 }
9872 
9873 MachineBasicBlock *
9874 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9875                                             MachineBasicBlock *BB,
9876                                             bool is8bit, // operation
9877                                             unsigned BinOpcode,
9878                                             unsigned CmpOpcode,
9879                                             unsigned CmpPred) const {
9880   // If we support part-word atomic mnemonics, just use them
9881   if (Subtarget.hasPartwordAtomics())
9882     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9883                             CmpOpcode, CmpPred);
9884 
9885   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9886   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9887   // In 64 bit mode we have to use 64 bits for addresses, even though the
9888   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9889   // registers without caring whether they're 32 or 64, but here we're
9890   // doing actual arithmetic on the addresses.
9891   bool is64bit = Subtarget.isPPC64();
9892   bool isLittleEndian = Subtarget.isLittleEndian();
9893   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9894 
9895   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9896   MachineFunction *F = BB->getParent();
9897   MachineFunction::iterator It = ++BB->getIterator();
9898 
9899   unsigned dest = MI.getOperand(0).getReg();
9900   unsigned ptrA = MI.getOperand(1).getReg();
9901   unsigned ptrB = MI.getOperand(2).getReg();
9902   unsigned incr = MI.getOperand(3).getReg();
9903   DebugLoc dl = MI.getDebugLoc();
9904 
9905   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9906   MachineBasicBlock *loop2MBB =
9907     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9908   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9909   F->insert(It, loopMBB);
9910   if (CmpOpcode)
9911     F->insert(It, loop2MBB);
9912   F->insert(It, exitMBB);
9913   exitMBB->splice(exitMBB->begin(), BB,
9914                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9915   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9916 
9917   MachineRegisterInfo &RegInfo = F->getRegInfo();
9918   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9919                                           : &PPC::GPRCRegClass;
9920   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9921   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9922   unsigned ShiftReg =
9923     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9924   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9925   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9926   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9927   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9928   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9929   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9930   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9931   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9932   unsigned Ptr1Reg;
9933   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9934 
9935   //  thisMBB:
9936   //   ...
9937   //   fallthrough --> loopMBB
9938   BB->addSuccessor(loopMBB);
9939 
9940   // The 4-byte load must be aligned, while a char or short may be
9941   // anywhere in the word.  Hence all this nasty bookkeeping code.
9942   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9943   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9944   //   xori shift, shift1, 24 [16]
9945   //   rlwinm ptr, ptr1, 0, 0, 29
9946   //   slw incr2, incr, shift
9947   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9948   //   slw mask, mask2, shift
9949   //  loopMBB:
9950   //   lwarx tmpDest, ptr
9951   //   add tmp, tmpDest, incr2
9952   //   andc tmp2, tmpDest, mask
9953   //   and tmp3, tmp, mask
9954   //   or tmp4, tmp3, tmp2
9955   //   stwcx. tmp4, ptr
9956   //   bne- loopMBB
9957   //   fallthrough --> exitMBB
9958   //   srw dest, tmpDest, shift
9959   if (ptrA != ZeroReg) {
9960     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9961     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9962       .addReg(ptrA).addReg(ptrB);
9963   } else {
9964     Ptr1Reg = ptrB;
9965   }
9966   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9967       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9968   if (!isLittleEndian)
9969     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9970         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9971   if (is64bit)
9972     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9973       .addReg(Ptr1Reg).addImm(0).addImm(61);
9974   else
9975     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9976       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9977   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9978       .addReg(incr).addReg(ShiftReg);
9979   if (is8bit)
9980     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9981   else {
9982     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9983     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9984   }
9985   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9986       .addReg(Mask2Reg).addReg(ShiftReg);
9987 
9988   BB = loopMBB;
9989   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9990     .addReg(ZeroReg).addReg(PtrReg);
9991   if (BinOpcode)
9992     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9993       .addReg(Incr2Reg).addReg(TmpDestReg);
9994   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9995     .addReg(TmpDestReg).addReg(MaskReg);
9996   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9997     .addReg(TmpReg).addReg(MaskReg);
9998   if (CmpOpcode) {
9999     // For unsigned comparisons, we can directly compare the shifted values.
10000     // For signed comparisons we shift and sign extend.
10001     unsigned SReg = RegInfo.createVirtualRegister(RC);
10002     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
10003       .addReg(TmpDestReg).addReg(MaskReg);
10004     unsigned ValueReg = SReg;
10005     unsigned CmpReg = Incr2Reg;
10006     if (CmpOpcode == PPC::CMPW) {
10007       ValueReg = RegInfo.createVirtualRegister(RC);
10008       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10009         .addReg(SReg).addReg(ShiftReg);
10010       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
10011       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10012         .addReg(ValueReg);
10013       ValueReg = ValueSReg;
10014       CmpReg = incr;
10015     }
10016     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10017       .addReg(CmpReg).addReg(ValueReg);
10018     BuildMI(BB, dl, TII->get(PPC::BCC))
10019       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10020     BB->addSuccessor(loop2MBB);
10021     BB->addSuccessor(exitMBB);
10022     BB = loop2MBB;
10023   }
10024   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
10025     .addReg(Tmp3Reg).addReg(Tmp2Reg);
10026   BuildMI(BB, dl, TII->get(PPC::STWCX))
10027     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
10028   BuildMI(BB, dl, TII->get(PPC::BCC))
10029     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10030   BB->addSuccessor(loopMBB);
10031   BB->addSuccessor(exitMBB);
10032 
10033   //  exitMBB:
10034   //   ...
10035   BB = exitMBB;
10036   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
10037     .addReg(ShiftReg);
10038   return BB;
10039 }
10040 
10041 llvm::MachineBasicBlock *
10042 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10043                                     MachineBasicBlock *MBB) const {
10044   DebugLoc DL = MI.getDebugLoc();
10045   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10046   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10047 
10048   MachineFunction *MF = MBB->getParent();
10049   MachineRegisterInfo &MRI = MF->getRegInfo();
10050 
10051   const BasicBlock *BB = MBB->getBasicBlock();
10052   MachineFunction::iterator I = ++MBB->getIterator();
10053 
10054   unsigned DstReg = MI.getOperand(0).getReg();
10055   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10056   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10057   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10058   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10059 
10060   MVT PVT = getPointerTy(MF->getDataLayout());
10061   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10062          "Invalid Pointer Size!");
10063   // For v = setjmp(buf), we generate
10064   //
10065   // thisMBB:
10066   //  SjLjSetup mainMBB
10067   //  bl mainMBB
10068   //  v_restore = 1
10069   //  b sinkMBB
10070   //
10071   // mainMBB:
10072   //  buf[LabelOffset] = LR
10073   //  v_main = 0
10074   //
10075   // sinkMBB:
10076   //  v = phi(main, restore)
10077   //
10078 
10079   MachineBasicBlock *thisMBB = MBB;
10080   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10081   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10082   MF->insert(I, mainMBB);
10083   MF->insert(I, sinkMBB);
10084 
10085   MachineInstrBuilder MIB;
10086 
10087   // Transfer the remainder of BB and its successor edges to sinkMBB.
10088   sinkMBB->splice(sinkMBB->begin(), MBB,
10089                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10090   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10091 
10092   // Note that the structure of the jmp_buf used here is not compatible
10093   // with that used by libc, and is not designed to be. Specifically, it
10094   // stores only those 'reserved' registers that LLVM does not otherwise
10095   // understand how to spill. Also, by convention, by the time this
10096   // intrinsic is called, Clang has already stored the frame address in the
10097   // first slot of the buffer and stack address in the third. Following the
10098   // X86 target code, we'll store the jump address in the second slot. We also
10099   // need to save the TOC pointer (R2) to handle jumps between shared
10100   // libraries, and that will be stored in the fourth slot. The thread
10101   // identifier (R13) is not affected.
10102 
10103   // thisMBB:
10104   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10105   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10106   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10107 
10108   // Prepare IP either in reg.
10109   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10110   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10111   unsigned BufReg = MI.getOperand(1).getReg();
10112 
10113   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10114     setUsesTOCBasePtr(*MBB->getParent());
10115     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10116               .addReg(PPC::X2)
10117               .addImm(TOCOffset)
10118               .addReg(BufReg)
10119               .cloneMemRefs(MI);
10120   }
10121 
10122   // Naked functions never have a base pointer, and so we use r1. For all
10123   // other functions, this decision must be delayed until during PEI.
10124   unsigned BaseReg;
10125   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10126     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10127   else
10128     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10129 
10130   MIB = BuildMI(*thisMBB, MI, DL,
10131                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10132             .addReg(BaseReg)
10133             .addImm(BPOffset)
10134             .addReg(BufReg)
10135             .cloneMemRefs(MI);
10136 
10137   // Setup
10138   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10139   MIB.addRegMask(TRI->getNoPreservedMask());
10140 
10141   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10142 
10143   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10144           .addMBB(mainMBB);
10145   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10146 
10147   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10148   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10149 
10150   // mainMBB:
10151   //  mainDstReg = 0
10152   MIB =
10153       BuildMI(mainMBB, DL,
10154               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10155 
10156   // Store IP
10157   if (Subtarget.isPPC64()) {
10158     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10159             .addReg(LabelReg)
10160             .addImm(LabelOffset)
10161             .addReg(BufReg);
10162   } else {
10163     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10164             .addReg(LabelReg)
10165             .addImm(LabelOffset)
10166             .addReg(BufReg);
10167   }
10168   MIB.cloneMemRefs(MI);
10169 
10170   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10171   mainMBB->addSuccessor(sinkMBB);
10172 
10173   // sinkMBB:
10174   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10175           TII->get(PPC::PHI), DstReg)
10176     .addReg(mainDstReg).addMBB(mainMBB)
10177     .addReg(restoreDstReg).addMBB(thisMBB);
10178 
10179   MI.eraseFromParent();
10180   return sinkMBB;
10181 }
10182 
10183 MachineBasicBlock *
10184 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10185                                      MachineBasicBlock *MBB) const {
10186   DebugLoc DL = MI.getDebugLoc();
10187   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10188 
10189   MachineFunction *MF = MBB->getParent();
10190   MachineRegisterInfo &MRI = MF->getRegInfo();
10191 
10192   MVT PVT = getPointerTy(MF->getDataLayout());
10193   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10194          "Invalid Pointer Size!");
10195 
10196   const TargetRegisterClass *RC =
10197     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10198   unsigned Tmp = MRI.createVirtualRegister(RC);
10199   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10200   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10201   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10202   unsigned BP =
10203       (PVT == MVT::i64)
10204           ? PPC::X30
10205           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10206                                                               : PPC::R30);
10207 
10208   MachineInstrBuilder MIB;
10209 
10210   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10211   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10212   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10213   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10214 
10215   unsigned BufReg = MI.getOperand(0).getReg();
10216 
10217   // Reload FP (the jumped-to function may not have had a
10218   // frame pointer, and if so, then its r31 will be restored
10219   // as necessary).
10220   if (PVT == MVT::i64) {
10221     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10222             .addImm(0)
10223             .addReg(BufReg);
10224   } else {
10225     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10226             .addImm(0)
10227             .addReg(BufReg);
10228   }
10229   MIB.cloneMemRefs(MI);
10230 
10231   // Reload IP
10232   if (PVT == MVT::i64) {
10233     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10234             .addImm(LabelOffset)
10235             .addReg(BufReg);
10236   } else {
10237     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10238             .addImm(LabelOffset)
10239             .addReg(BufReg);
10240   }
10241   MIB.cloneMemRefs(MI);
10242 
10243   // Reload SP
10244   if (PVT == MVT::i64) {
10245     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10246             .addImm(SPOffset)
10247             .addReg(BufReg);
10248   } else {
10249     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10250             .addImm(SPOffset)
10251             .addReg(BufReg);
10252   }
10253   MIB.cloneMemRefs(MI);
10254 
10255   // Reload BP
10256   if (PVT == MVT::i64) {
10257     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10258             .addImm(BPOffset)
10259             .addReg(BufReg);
10260   } else {
10261     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10262             .addImm(BPOffset)
10263             .addReg(BufReg);
10264   }
10265   MIB.cloneMemRefs(MI);
10266 
10267   // Reload TOC
10268   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10269     setUsesTOCBasePtr(*MBB->getParent());
10270     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10271               .addImm(TOCOffset)
10272               .addReg(BufReg)
10273               .cloneMemRefs(MI);
10274   }
10275 
10276   // Jump
10277   BuildMI(*MBB, MI, DL,
10278           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10279   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10280 
10281   MI.eraseFromParent();
10282   return MBB;
10283 }
10284 
10285 MachineBasicBlock *
10286 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10287                                                MachineBasicBlock *BB) const {
10288   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10289       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10290     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10291         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10292       // Call lowering should have added an r2 operand to indicate a dependence
10293       // on the TOC base pointer value. It can't however, because there is no
10294       // way to mark the dependence as implicit there, and so the stackmap code
10295       // will confuse it with a regular operand. Instead, add the dependence
10296       // here.
10297       setUsesTOCBasePtr(*BB->getParent());
10298       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10299     }
10300 
10301     return emitPatchPoint(MI, BB);
10302   }
10303 
10304   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10305       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10306     return emitEHSjLjSetJmp(MI, BB);
10307   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10308              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10309     return emitEHSjLjLongJmp(MI, BB);
10310   }
10311 
10312   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10313 
10314   // To "insert" these instructions we actually have to insert their
10315   // control-flow patterns.
10316   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10317   MachineFunction::iterator It = ++BB->getIterator();
10318 
10319   MachineFunction *F = BB->getParent();
10320 
10321   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10322        MI.getOpcode() == PPC::SELECT_CC_I8 ||
10323        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
10324     SmallVector<MachineOperand, 2> Cond;
10325     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10326         MI.getOpcode() == PPC::SELECT_CC_I8)
10327       Cond.push_back(MI.getOperand(4));
10328     else
10329       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10330     Cond.push_back(MI.getOperand(1));
10331 
10332     DebugLoc dl = MI.getDebugLoc();
10333     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10334                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10335   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10336              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10337              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10338              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10339              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10340              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10341              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10342              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10343              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10344              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10345              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10346              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10347              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10348              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10349              MI.getOpcode() == PPC::SELECT_I4 ||
10350              MI.getOpcode() == PPC::SELECT_I8 ||
10351              MI.getOpcode() == PPC::SELECT_F4 ||
10352              MI.getOpcode() == PPC::SELECT_F8 ||
10353              MI.getOpcode() == PPC::SELECT_F16 ||
10354              MI.getOpcode() == PPC::SELECT_QFRC ||
10355              MI.getOpcode() == PPC::SELECT_QSRC ||
10356              MI.getOpcode() == PPC::SELECT_QBRC ||
10357              MI.getOpcode() == PPC::SELECT_SPE ||
10358              MI.getOpcode() == PPC::SELECT_SPE4 ||
10359              MI.getOpcode() == PPC::SELECT_VRRC ||
10360              MI.getOpcode() == PPC::SELECT_VSFRC ||
10361              MI.getOpcode() == PPC::SELECT_VSSRC ||
10362              MI.getOpcode() == PPC::SELECT_VSRC) {
10363     // The incoming instruction knows the destination vreg to set, the
10364     // condition code register to branch on, the true/false values to
10365     // select between, and a branch opcode to use.
10366 
10367     //  thisMBB:
10368     //  ...
10369     //   TrueVal = ...
10370     //   cmpTY ccX, r1, r2
10371     //   bCC copy1MBB
10372     //   fallthrough --> copy0MBB
10373     MachineBasicBlock *thisMBB = BB;
10374     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10375     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10376     DebugLoc dl = MI.getDebugLoc();
10377     F->insert(It, copy0MBB);
10378     F->insert(It, sinkMBB);
10379 
10380     // Transfer the remainder of BB and its successor edges to sinkMBB.
10381     sinkMBB->splice(sinkMBB->begin(), BB,
10382                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10383     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10384 
10385     // Next, add the true and fallthrough blocks as its successors.
10386     BB->addSuccessor(copy0MBB);
10387     BB->addSuccessor(sinkMBB);
10388 
10389     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10390         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10391         MI.getOpcode() == PPC::SELECT_F16 ||
10392         MI.getOpcode() == PPC::SELECT_SPE4 ||
10393         MI.getOpcode() == PPC::SELECT_SPE ||
10394         MI.getOpcode() == PPC::SELECT_QFRC ||
10395         MI.getOpcode() == PPC::SELECT_QSRC ||
10396         MI.getOpcode() == PPC::SELECT_QBRC ||
10397         MI.getOpcode() == PPC::SELECT_VRRC ||
10398         MI.getOpcode() == PPC::SELECT_VSFRC ||
10399         MI.getOpcode() == PPC::SELECT_VSSRC ||
10400         MI.getOpcode() == PPC::SELECT_VSRC) {
10401       BuildMI(BB, dl, TII->get(PPC::BC))
10402           .addReg(MI.getOperand(1).getReg())
10403           .addMBB(sinkMBB);
10404     } else {
10405       unsigned SelectPred = MI.getOperand(4).getImm();
10406       BuildMI(BB, dl, TII->get(PPC::BCC))
10407           .addImm(SelectPred)
10408           .addReg(MI.getOperand(1).getReg())
10409           .addMBB(sinkMBB);
10410     }
10411 
10412     //  copy0MBB:
10413     //   %FalseValue = ...
10414     //   # fallthrough to sinkMBB
10415     BB = copy0MBB;
10416 
10417     // Update machine-CFG edges
10418     BB->addSuccessor(sinkMBB);
10419 
10420     //  sinkMBB:
10421     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10422     //  ...
10423     BB = sinkMBB;
10424     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10425         .addReg(MI.getOperand(3).getReg())
10426         .addMBB(copy0MBB)
10427         .addReg(MI.getOperand(2).getReg())
10428         .addMBB(thisMBB);
10429   } else if (MI.getOpcode() == PPC::ReadTB) {
10430     // To read the 64-bit time-base register on a 32-bit target, we read the
10431     // two halves. Should the counter have wrapped while it was being read, we
10432     // need to try again.
10433     // ...
10434     // readLoop:
10435     // mfspr Rx,TBU # load from TBU
10436     // mfspr Ry,TB  # load from TB
10437     // mfspr Rz,TBU # load from TBU
10438     // cmpw crX,Rx,Rz # check if 'old'='new'
10439     // bne readLoop   # branch if they're not equal
10440     // ...
10441 
10442     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10443     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10444     DebugLoc dl = MI.getDebugLoc();
10445     F->insert(It, readMBB);
10446     F->insert(It, sinkMBB);
10447 
10448     // Transfer the remainder of BB and its successor edges to sinkMBB.
10449     sinkMBB->splice(sinkMBB->begin(), BB,
10450                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10451     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10452 
10453     BB->addSuccessor(readMBB);
10454     BB = readMBB;
10455 
10456     MachineRegisterInfo &RegInfo = F->getRegInfo();
10457     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10458     unsigned LoReg = MI.getOperand(0).getReg();
10459     unsigned HiReg = MI.getOperand(1).getReg();
10460 
10461     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10462     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10463     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10464 
10465     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10466 
10467     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10468       .addReg(HiReg).addReg(ReadAgainReg);
10469     BuildMI(BB, dl, TII->get(PPC::BCC))
10470       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10471 
10472     BB->addSuccessor(readMBB);
10473     BB->addSuccessor(sinkMBB);
10474   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10475     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10476   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10477     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10478   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10479     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10480   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10481     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10482 
10483   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10484     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10485   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10486     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10487   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10488     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10489   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10490     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10491 
10492   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10493     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10494   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10495     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10496   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10497     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10498   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10499     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10500 
10501   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10502     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10503   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10504     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10505   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10506     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10507   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10508     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10509 
10510   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10511     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10512   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10513     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10514   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10515     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10516   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10517     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10518 
10519   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10520     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10521   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10522     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10523   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10524     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10525   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10526     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10527 
10528   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10529     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10530   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10531     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10532   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10533     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10534   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10535     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10536 
10537   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10538     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10539   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10540     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10541   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10542     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10544     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10545 
10546   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10547     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10548   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10549     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10550   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10551     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10553     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10554 
10555   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10556     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10557   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10558     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10559   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10560     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10562     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10563 
10564   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10565     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10566   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10567     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10568   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10569     BB = EmitAtomicBinary(MI, BB, 4, 0);
10570   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10571     BB = EmitAtomicBinary(MI, BB, 8, 0);
10572   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10573            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10574            (Subtarget.hasPartwordAtomics() &&
10575             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10576            (Subtarget.hasPartwordAtomics() &&
10577             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10578     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10579 
10580     auto LoadMnemonic = PPC::LDARX;
10581     auto StoreMnemonic = PPC::STDCX;
10582     switch (MI.getOpcode()) {
10583     default:
10584       llvm_unreachable("Compare and swap of unknown size");
10585     case PPC::ATOMIC_CMP_SWAP_I8:
10586       LoadMnemonic = PPC::LBARX;
10587       StoreMnemonic = PPC::STBCX;
10588       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10589       break;
10590     case PPC::ATOMIC_CMP_SWAP_I16:
10591       LoadMnemonic = PPC::LHARX;
10592       StoreMnemonic = PPC::STHCX;
10593       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10594       break;
10595     case PPC::ATOMIC_CMP_SWAP_I32:
10596       LoadMnemonic = PPC::LWARX;
10597       StoreMnemonic = PPC::STWCX;
10598       break;
10599     case PPC::ATOMIC_CMP_SWAP_I64:
10600       LoadMnemonic = PPC::LDARX;
10601       StoreMnemonic = PPC::STDCX;
10602       break;
10603     }
10604     unsigned dest = MI.getOperand(0).getReg();
10605     unsigned ptrA = MI.getOperand(1).getReg();
10606     unsigned ptrB = MI.getOperand(2).getReg();
10607     unsigned oldval = MI.getOperand(3).getReg();
10608     unsigned newval = MI.getOperand(4).getReg();
10609     DebugLoc dl = MI.getDebugLoc();
10610 
10611     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10612     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10613     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10614     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10615     F->insert(It, loop1MBB);
10616     F->insert(It, loop2MBB);
10617     F->insert(It, midMBB);
10618     F->insert(It, exitMBB);
10619     exitMBB->splice(exitMBB->begin(), BB,
10620                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10621     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10622 
10623     //  thisMBB:
10624     //   ...
10625     //   fallthrough --> loopMBB
10626     BB->addSuccessor(loop1MBB);
10627 
10628     // loop1MBB:
10629     //   l[bhwd]arx dest, ptr
10630     //   cmp[wd] dest, oldval
10631     //   bne- midMBB
10632     // loop2MBB:
10633     //   st[bhwd]cx. newval, ptr
10634     //   bne- loopMBB
10635     //   b exitBB
10636     // midMBB:
10637     //   st[bhwd]cx. dest, ptr
10638     // exitBB:
10639     BB = loop1MBB;
10640     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10641       .addReg(ptrA).addReg(ptrB);
10642     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10643       .addReg(oldval).addReg(dest);
10644     BuildMI(BB, dl, TII->get(PPC::BCC))
10645       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10646     BB->addSuccessor(loop2MBB);
10647     BB->addSuccessor(midMBB);
10648 
10649     BB = loop2MBB;
10650     BuildMI(BB, dl, TII->get(StoreMnemonic))
10651       .addReg(newval).addReg(ptrA).addReg(ptrB);
10652     BuildMI(BB, dl, TII->get(PPC::BCC))
10653       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10654     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10655     BB->addSuccessor(loop1MBB);
10656     BB->addSuccessor(exitMBB);
10657 
10658     BB = midMBB;
10659     BuildMI(BB, dl, TII->get(StoreMnemonic))
10660       .addReg(dest).addReg(ptrA).addReg(ptrB);
10661     BB->addSuccessor(exitMBB);
10662 
10663     //  exitMBB:
10664     //   ...
10665     BB = exitMBB;
10666   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10667              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10668     // We must use 64-bit registers for addresses when targeting 64-bit,
10669     // since we're actually doing arithmetic on them.  Other registers
10670     // can be 32-bit.
10671     bool is64bit = Subtarget.isPPC64();
10672     bool isLittleEndian = Subtarget.isLittleEndian();
10673     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10674 
10675     unsigned dest = MI.getOperand(0).getReg();
10676     unsigned ptrA = MI.getOperand(1).getReg();
10677     unsigned ptrB = MI.getOperand(2).getReg();
10678     unsigned oldval = MI.getOperand(3).getReg();
10679     unsigned newval = MI.getOperand(4).getReg();
10680     DebugLoc dl = MI.getDebugLoc();
10681 
10682     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10683     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10684     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10685     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10686     F->insert(It, loop1MBB);
10687     F->insert(It, loop2MBB);
10688     F->insert(It, midMBB);
10689     F->insert(It, exitMBB);
10690     exitMBB->splice(exitMBB->begin(), BB,
10691                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10692     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10693 
10694     MachineRegisterInfo &RegInfo = F->getRegInfo();
10695     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10696                                             : &PPC::GPRCRegClass;
10697     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10698     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10699     unsigned ShiftReg =
10700       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10701     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10702     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10703     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10704     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10705     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10706     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10707     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10708     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10709     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10710     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10711     unsigned Ptr1Reg;
10712     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10713     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10714     //  thisMBB:
10715     //   ...
10716     //   fallthrough --> loopMBB
10717     BB->addSuccessor(loop1MBB);
10718 
10719     // The 4-byte load must be aligned, while a char or short may be
10720     // anywhere in the word.  Hence all this nasty bookkeeping code.
10721     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10722     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10723     //   xori shift, shift1, 24 [16]
10724     //   rlwinm ptr, ptr1, 0, 0, 29
10725     //   slw newval2, newval, shift
10726     //   slw oldval2, oldval,shift
10727     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10728     //   slw mask, mask2, shift
10729     //   and newval3, newval2, mask
10730     //   and oldval3, oldval2, mask
10731     // loop1MBB:
10732     //   lwarx tmpDest, ptr
10733     //   and tmp, tmpDest, mask
10734     //   cmpw tmp, oldval3
10735     //   bne- midMBB
10736     // loop2MBB:
10737     //   andc tmp2, tmpDest, mask
10738     //   or tmp4, tmp2, newval3
10739     //   stwcx. tmp4, ptr
10740     //   bne- loop1MBB
10741     //   b exitBB
10742     // midMBB:
10743     //   stwcx. tmpDest, ptr
10744     // exitBB:
10745     //   srw dest, tmpDest, shift
10746     if (ptrA != ZeroReg) {
10747       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10748       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10749         .addReg(ptrA).addReg(ptrB);
10750     } else {
10751       Ptr1Reg = ptrB;
10752     }
10753     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10754         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10755     if (!isLittleEndian)
10756       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10757           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10758     if (is64bit)
10759       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10760         .addReg(Ptr1Reg).addImm(0).addImm(61);
10761     else
10762       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10763         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10764     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10765         .addReg(newval).addReg(ShiftReg);
10766     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10767         .addReg(oldval).addReg(ShiftReg);
10768     if (is8bit)
10769       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10770     else {
10771       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10772       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10773         .addReg(Mask3Reg).addImm(65535);
10774     }
10775     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10776         .addReg(Mask2Reg).addReg(ShiftReg);
10777     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10778         .addReg(NewVal2Reg).addReg(MaskReg);
10779     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10780         .addReg(OldVal2Reg).addReg(MaskReg);
10781 
10782     BB = loop1MBB;
10783     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10784         .addReg(ZeroReg).addReg(PtrReg);
10785     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10786         .addReg(TmpDestReg).addReg(MaskReg);
10787     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10788         .addReg(TmpReg).addReg(OldVal3Reg);
10789     BuildMI(BB, dl, TII->get(PPC::BCC))
10790         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10791     BB->addSuccessor(loop2MBB);
10792     BB->addSuccessor(midMBB);
10793 
10794     BB = loop2MBB;
10795     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10796         .addReg(TmpDestReg).addReg(MaskReg);
10797     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10798         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10799     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10800         .addReg(ZeroReg).addReg(PtrReg);
10801     BuildMI(BB, dl, TII->get(PPC::BCC))
10802       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10803     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10804     BB->addSuccessor(loop1MBB);
10805     BB->addSuccessor(exitMBB);
10806 
10807     BB = midMBB;
10808     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10809       .addReg(ZeroReg).addReg(PtrReg);
10810     BB->addSuccessor(exitMBB);
10811 
10812     //  exitMBB:
10813     //   ...
10814     BB = exitMBB;
10815     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10816       .addReg(ShiftReg);
10817   } else if (MI.getOpcode() == PPC::FADDrtz) {
10818     // This pseudo performs an FADD with rounding mode temporarily forced
10819     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10820     // is not modeled at the SelectionDAG level.
10821     unsigned Dest = MI.getOperand(0).getReg();
10822     unsigned Src1 = MI.getOperand(1).getReg();
10823     unsigned Src2 = MI.getOperand(2).getReg();
10824     DebugLoc dl = MI.getDebugLoc();
10825 
10826     MachineRegisterInfo &RegInfo = F->getRegInfo();
10827     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10828 
10829     // Save FPSCR value.
10830     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10831 
10832     // Set rounding mode to round-to-zero.
10833     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10834     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10835 
10836     // Perform addition.
10837     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10838 
10839     // Restore FPSCR value.
10840     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10841   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10842              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10843              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10844              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10845     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10846                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10847                           ? PPC::ANDIo8
10848                           : PPC::ANDIo;
10849     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10850                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10851 
10852     MachineRegisterInfo &RegInfo = F->getRegInfo();
10853     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10854                                                   &PPC::GPRCRegClass :
10855                                                   &PPC::G8RCRegClass);
10856 
10857     DebugLoc dl = MI.getDebugLoc();
10858     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10859         .addReg(MI.getOperand(1).getReg())
10860         .addImm(1);
10861     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10862             MI.getOperand(0).getReg())
10863         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10864   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10865     DebugLoc Dl = MI.getDebugLoc();
10866     MachineRegisterInfo &RegInfo = F->getRegInfo();
10867     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10868     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10869     return BB;
10870   } else {
10871     llvm_unreachable("Unexpected instr type to insert");
10872   }
10873 
10874   MI.eraseFromParent(); // The pseudo instruction is gone now.
10875   return BB;
10876 }
10877 
10878 //===----------------------------------------------------------------------===//
10879 // Target Optimization Hooks
10880 //===----------------------------------------------------------------------===//
10881 
10882 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10883   // For the estimates, convergence is quadratic, so we essentially double the
10884   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10885   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10886   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10887   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10888   if (VT.getScalarType() == MVT::f64)
10889     RefinementSteps++;
10890   return RefinementSteps;
10891 }
10892 
10893 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10894                                            int Enabled, int &RefinementSteps,
10895                                            bool &UseOneConstNR,
10896                                            bool Reciprocal) const {
10897   EVT VT = Operand.getValueType();
10898   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10899       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10900       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10901       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10902       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10903       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10904     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10905       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10906 
10907     UseOneConstNR = true;
10908     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10909   }
10910   return SDValue();
10911 }
10912 
10913 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10914                                             int Enabled,
10915                                             int &RefinementSteps) const {
10916   EVT VT = Operand.getValueType();
10917   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10918       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10919       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10920       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10921       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10922       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10923     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10924       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10925     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10926   }
10927   return SDValue();
10928 }
10929 
10930 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10931   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10932   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10933   // enabled for division), this functionality is redundant with the default
10934   // combiner logic (once the division -> reciprocal/multiply transformation
10935   // has taken place). As a result, this matters more for older cores than for
10936   // newer ones.
10937 
10938   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10939   // reciprocal if there are two or more FDIVs (for embedded cores with only
10940   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10941   switch (Subtarget.getDarwinDirective()) {
10942   default:
10943     return 3;
10944   case PPC::DIR_440:
10945   case PPC::DIR_A2:
10946   case PPC::DIR_E500:
10947   case PPC::DIR_E500mc:
10948   case PPC::DIR_E5500:
10949     return 2;
10950   }
10951 }
10952 
10953 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10954 // collapsed, and so we need to look through chains of them.
10955 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10956                                      int64_t& Offset, SelectionDAG &DAG) {
10957   if (DAG.isBaseWithConstantOffset(Loc)) {
10958     Base = Loc.getOperand(0);
10959     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10960 
10961     // The base might itself be a base plus an offset, and if so, accumulate
10962     // that as well.
10963     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10964   }
10965 }
10966 
10967 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10968                             unsigned Bytes, int Dist,
10969                             SelectionDAG &DAG) {
10970   if (VT.getSizeInBits() / 8 != Bytes)
10971     return false;
10972 
10973   SDValue BaseLoc = Base->getBasePtr();
10974   if (Loc.getOpcode() == ISD::FrameIndex) {
10975     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10976       return false;
10977     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10978     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10979     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10980     int FS  = MFI.getObjectSize(FI);
10981     int BFS = MFI.getObjectSize(BFI);
10982     if (FS != BFS || FS != (int)Bytes) return false;
10983     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10984   }
10985 
10986   SDValue Base1 = Loc, Base2 = BaseLoc;
10987   int64_t Offset1 = 0, Offset2 = 0;
10988   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10989   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10990   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10991     return true;
10992 
10993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10994   const GlobalValue *GV1 = nullptr;
10995   const GlobalValue *GV2 = nullptr;
10996   Offset1 = 0;
10997   Offset2 = 0;
10998   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10999   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11000   if (isGA1 && isGA2 && GV1 == GV2)
11001     return Offset1 == (Offset2 + Dist*Bytes);
11002   return false;
11003 }
11004 
11005 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11006 // not enforce equality of the chain operands.
11007 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11008                             unsigned Bytes, int Dist,
11009                             SelectionDAG &DAG) {
11010   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11011     EVT VT = LS->getMemoryVT();
11012     SDValue Loc = LS->getBasePtr();
11013     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11014   }
11015 
11016   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11017     EVT VT;
11018     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11019     default: return false;
11020     case Intrinsic::ppc_qpx_qvlfd:
11021     case Intrinsic::ppc_qpx_qvlfda:
11022       VT = MVT::v4f64;
11023       break;
11024     case Intrinsic::ppc_qpx_qvlfs:
11025     case Intrinsic::ppc_qpx_qvlfsa:
11026       VT = MVT::v4f32;
11027       break;
11028     case Intrinsic::ppc_qpx_qvlfcd:
11029     case Intrinsic::ppc_qpx_qvlfcda:
11030       VT = MVT::v2f64;
11031       break;
11032     case Intrinsic::ppc_qpx_qvlfcs:
11033     case Intrinsic::ppc_qpx_qvlfcsa:
11034       VT = MVT::v2f32;
11035       break;
11036     case Intrinsic::ppc_qpx_qvlfiwa:
11037     case Intrinsic::ppc_qpx_qvlfiwz:
11038     case Intrinsic::ppc_altivec_lvx:
11039     case Intrinsic::ppc_altivec_lvxl:
11040     case Intrinsic::ppc_vsx_lxvw4x:
11041     case Intrinsic::ppc_vsx_lxvw4x_be:
11042       VT = MVT::v4i32;
11043       break;
11044     case Intrinsic::ppc_vsx_lxvd2x:
11045     case Intrinsic::ppc_vsx_lxvd2x_be:
11046       VT = MVT::v2f64;
11047       break;
11048     case Intrinsic::ppc_altivec_lvebx:
11049       VT = MVT::i8;
11050       break;
11051     case Intrinsic::ppc_altivec_lvehx:
11052       VT = MVT::i16;
11053       break;
11054     case Intrinsic::ppc_altivec_lvewx:
11055       VT = MVT::i32;
11056       break;
11057     }
11058 
11059     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11060   }
11061 
11062   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11063     EVT VT;
11064     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11065     default: return false;
11066     case Intrinsic::ppc_qpx_qvstfd:
11067     case Intrinsic::ppc_qpx_qvstfda:
11068       VT = MVT::v4f64;
11069       break;
11070     case Intrinsic::ppc_qpx_qvstfs:
11071     case Intrinsic::ppc_qpx_qvstfsa:
11072       VT = MVT::v4f32;
11073       break;
11074     case Intrinsic::ppc_qpx_qvstfcd:
11075     case Intrinsic::ppc_qpx_qvstfcda:
11076       VT = MVT::v2f64;
11077       break;
11078     case Intrinsic::ppc_qpx_qvstfcs:
11079     case Intrinsic::ppc_qpx_qvstfcsa:
11080       VT = MVT::v2f32;
11081       break;
11082     case Intrinsic::ppc_qpx_qvstfiw:
11083     case Intrinsic::ppc_qpx_qvstfiwa:
11084     case Intrinsic::ppc_altivec_stvx:
11085     case Intrinsic::ppc_altivec_stvxl:
11086     case Intrinsic::ppc_vsx_stxvw4x:
11087       VT = MVT::v4i32;
11088       break;
11089     case Intrinsic::ppc_vsx_stxvd2x:
11090       VT = MVT::v2f64;
11091       break;
11092     case Intrinsic::ppc_vsx_stxvw4x_be:
11093       VT = MVT::v4i32;
11094       break;
11095     case Intrinsic::ppc_vsx_stxvd2x_be:
11096       VT = MVT::v2f64;
11097       break;
11098     case Intrinsic::ppc_altivec_stvebx:
11099       VT = MVT::i8;
11100       break;
11101     case Intrinsic::ppc_altivec_stvehx:
11102       VT = MVT::i16;
11103       break;
11104     case Intrinsic::ppc_altivec_stvewx:
11105       VT = MVT::i32;
11106       break;
11107     }
11108 
11109     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11110   }
11111 
11112   return false;
11113 }
11114 
11115 // Return true is there is a nearyby consecutive load to the one provided
11116 // (regardless of alignment). We search up and down the chain, looking though
11117 // token factors and other loads (but nothing else). As a result, a true result
11118 // indicates that it is safe to create a new consecutive load adjacent to the
11119 // load provided.
11120 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11121   SDValue Chain = LD->getChain();
11122   EVT VT = LD->getMemoryVT();
11123 
11124   SmallSet<SDNode *, 16> LoadRoots;
11125   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11126   SmallSet<SDNode *, 16> Visited;
11127 
11128   // First, search up the chain, branching to follow all token-factor operands.
11129   // If we find a consecutive load, then we're done, otherwise, record all
11130   // nodes just above the top-level loads and token factors.
11131   while (!Queue.empty()) {
11132     SDNode *ChainNext = Queue.pop_back_val();
11133     if (!Visited.insert(ChainNext).second)
11134       continue;
11135 
11136     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11137       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11138         return true;
11139 
11140       if (!Visited.count(ChainLD->getChain().getNode()))
11141         Queue.push_back(ChainLD->getChain().getNode());
11142     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11143       for (const SDUse &O : ChainNext->ops())
11144         if (!Visited.count(O.getNode()))
11145           Queue.push_back(O.getNode());
11146     } else
11147       LoadRoots.insert(ChainNext);
11148   }
11149 
11150   // Second, search down the chain, starting from the top-level nodes recorded
11151   // in the first phase. These top-level nodes are the nodes just above all
11152   // loads and token factors. Starting with their uses, recursively look though
11153   // all loads (just the chain uses) and token factors to find a consecutive
11154   // load.
11155   Visited.clear();
11156   Queue.clear();
11157 
11158   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11159        IE = LoadRoots.end(); I != IE; ++I) {
11160     Queue.push_back(*I);
11161 
11162     while (!Queue.empty()) {
11163       SDNode *LoadRoot = Queue.pop_back_val();
11164       if (!Visited.insert(LoadRoot).second)
11165         continue;
11166 
11167       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11168         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11169           return true;
11170 
11171       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11172            UE = LoadRoot->use_end(); UI != UE; ++UI)
11173         if (((isa<MemSDNode>(*UI) &&
11174             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11175             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11176           Queue.push_back(*UI);
11177     }
11178   }
11179 
11180   return false;
11181 }
11182 
11183 /// This function is called when we have proved that a SETCC node can be replaced
11184 /// by subtraction (and other supporting instructions) so that the result of
11185 /// comparison is kept in a GPR instead of CR. This function is purely for
11186 /// codegen purposes and has some flags to guide the codegen process.
11187 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11188                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11189   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11190 
11191   // Zero extend the operands to the largest legal integer. Originally, they
11192   // must be of a strictly smaller size.
11193   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11194                          DAG.getConstant(Size, DL, MVT::i32));
11195   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11196                          DAG.getConstant(Size, DL, MVT::i32));
11197 
11198   // Swap if needed. Depends on the condition code.
11199   if (Swap)
11200     std::swap(Op0, Op1);
11201 
11202   // Subtract extended integers.
11203   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11204 
11205   // Move the sign bit to the least significant position and zero out the rest.
11206   // Now the least significant bit carries the result of original comparison.
11207   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11208                              DAG.getConstant(Size - 1, DL, MVT::i32));
11209   auto Final = Shifted;
11210 
11211   // Complement the result if needed. Based on the condition code.
11212   if (Complement)
11213     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11214                         DAG.getConstant(1, DL, MVT::i64));
11215 
11216   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11217 }
11218 
11219 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11220                                                   DAGCombinerInfo &DCI) const {
11221   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11222 
11223   SelectionDAG &DAG = DCI.DAG;
11224   SDLoc DL(N);
11225 
11226   // Size of integers being compared has a critical role in the following
11227   // analysis, so we prefer to do this when all types are legal.
11228   if (!DCI.isAfterLegalizeDAG())
11229     return SDValue();
11230 
11231   // If all users of SETCC extend its value to a legal integer type
11232   // then we replace SETCC with a subtraction
11233   for (SDNode::use_iterator UI = N->use_begin(),
11234        UE = N->use_end(); UI != UE; ++UI) {
11235     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11236       return SDValue();
11237   }
11238 
11239   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11240   auto OpSize = N->getOperand(0).getValueSizeInBits();
11241 
11242   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11243 
11244   if (OpSize < Size) {
11245     switch (CC) {
11246     default: break;
11247     case ISD::SETULT:
11248       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11249     case ISD::SETULE:
11250       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11251     case ISD::SETUGT:
11252       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11253     case ISD::SETUGE:
11254       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11255     }
11256   }
11257 
11258   return SDValue();
11259 }
11260 
11261 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11262                                                   DAGCombinerInfo &DCI) const {
11263   SelectionDAG &DAG = DCI.DAG;
11264   SDLoc dl(N);
11265 
11266   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11267   // If we're tracking CR bits, we need to be careful that we don't have:
11268   //   trunc(binary-ops(zext(x), zext(y)))
11269   // or
11270   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11271   // such that we're unnecessarily moving things into GPRs when it would be
11272   // better to keep them in CR bits.
11273 
11274   // Note that trunc here can be an actual i1 trunc, or can be the effective
11275   // truncation that comes from a setcc or select_cc.
11276   if (N->getOpcode() == ISD::TRUNCATE &&
11277       N->getValueType(0) != MVT::i1)
11278     return SDValue();
11279 
11280   if (N->getOperand(0).getValueType() != MVT::i32 &&
11281       N->getOperand(0).getValueType() != MVT::i64)
11282     return SDValue();
11283 
11284   if (N->getOpcode() == ISD::SETCC ||
11285       N->getOpcode() == ISD::SELECT_CC) {
11286     // If we're looking at a comparison, then we need to make sure that the
11287     // high bits (all except for the first) don't matter the result.
11288     ISD::CondCode CC =
11289       cast<CondCodeSDNode>(N->getOperand(
11290         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11291     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11292 
11293     if (ISD::isSignedIntSetCC(CC)) {
11294       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11295           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11296         return SDValue();
11297     } else if (ISD::isUnsignedIntSetCC(CC)) {
11298       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11299                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11300           !DAG.MaskedValueIsZero(N->getOperand(1),
11301                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11302         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11303                                              : SDValue());
11304     } else {
11305       // This is neither a signed nor an unsigned comparison, just make sure
11306       // that the high bits are equal.
11307       KnownBits Op1Known, Op2Known;
11308       DAG.computeKnownBits(N->getOperand(0), Op1Known);
11309       DAG.computeKnownBits(N->getOperand(1), Op2Known);
11310 
11311       // We don't really care about what is known about the first bit (if
11312       // anything), so clear it in all masks prior to comparing them.
11313       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11314       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11315 
11316       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11317         return SDValue();
11318     }
11319   }
11320 
11321   // We now know that the higher-order bits are irrelevant, we just need to
11322   // make sure that all of the intermediate operations are bit operations, and
11323   // all inputs are extensions.
11324   if (N->getOperand(0).getOpcode() != ISD::AND &&
11325       N->getOperand(0).getOpcode() != ISD::OR  &&
11326       N->getOperand(0).getOpcode() != ISD::XOR &&
11327       N->getOperand(0).getOpcode() != ISD::SELECT &&
11328       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11329       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11330       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11331       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11332       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11333     return SDValue();
11334 
11335   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11336       N->getOperand(1).getOpcode() != ISD::AND &&
11337       N->getOperand(1).getOpcode() != ISD::OR  &&
11338       N->getOperand(1).getOpcode() != ISD::XOR &&
11339       N->getOperand(1).getOpcode() != ISD::SELECT &&
11340       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11341       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11342       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11343       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11344       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11345     return SDValue();
11346 
11347   SmallVector<SDValue, 4> Inputs;
11348   SmallVector<SDValue, 8> BinOps, PromOps;
11349   SmallPtrSet<SDNode *, 16> Visited;
11350 
11351   for (unsigned i = 0; i < 2; ++i) {
11352     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11353           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11354           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11355           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11356         isa<ConstantSDNode>(N->getOperand(i)))
11357       Inputs.push_back(N->getOperand(i));
11358     else
11359       BinOps.push_back(N->getOperand(i));
11360 
11361     if (N->getOpcode() == ISD::TRUNCATE)
11362       break;
11363   }
11364 
11365   // Visit all inputs, collect all binary operations (and, or, xor and
11366   // select) that are all fed by extensions.
11367   while (!BinOps.empty()) {
11368     SDValue BinOp = BinOps.back();
11369     BinOps.pop_back();
11370 
11371     if (!Visited.insert(BinOp.getNode()).second)
11372       continue;
11373 
11374     PromOps.push_back(BinOp);
11375 
11376     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11377       // The condition of the select is not promoted.
11378       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11379         continue;
11380       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11381         continue;
11382 
11383       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11384             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11385             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11386            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11387           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11388         Inputs.push_back(BinOp.getOperand(i));
11389       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11390                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11391                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11392                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11393                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11394                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11395                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11396                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11397                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11398         BinOps.push_back(BinOp.getOperand(i));
11399       } else {
11400         // We have an input that is not an extension or another binary
11401         // operation; we'll abort this transformation.
11402         return SDValue();
11403       }
11404     }
11405   }
11406 
11407   // Make sure that this is a self-contained cluster of operations (which
11408   // is not quite the same thing as saying that everything has only one
11409   // use).
11410   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11411     if (isa<ConstantSDNode>(Inputs[i]))
11412       continue;
11413 
11414     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11415                               UE = Inputs[i].getNode()->use_end();
11416          UI != UE; ++UI) {
11417       SDNode *User = *UI;
11418       if (User != N && !Visited.count(User))
11419         return SDValue();
11420 
11421       // Make sure that we're not going to promote the non-output-value
11422       // operand(s) or SELECT or SELECT_CC.
11423       // FIXME: Although we could sometimes handle this, and it does occur in
11424       // practice that one of the condition inputs to the select is also one of
11425       // the outputs, we currently can't deal with this.
11426       if (User->getOpcode() == ISD::SELECT) {
11427         if (User->getOperand(0) == Inputs[i])
11428           return SDValue();
11429       } else if (User->getOpcode() == ISD::SELECT_CC) {
11430         if (User->getOperand(0) == Inputs[i] ||
11431             User->getOperand(1) == Inputs[i])
11432           return SDValue();
11433       }
11434     }
11435   }
11436 
11437   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11438     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11439                               UE = PromOps[i].getNode()->use_end();
11440          UI != UE; ++UI) {
11441       SDNode *User = *UI;
11442       if (User != N && !Visited.count(User))
11443         return SDValue();
11444 
11445       // Make sure that we're not going to promote the non-output-value
11446       // operand(s) or SELECT or SELECT_CC.
11447       // FIXME: Although we could sometimes handle this, and it does occur in
11448       // practice that one of the condition inputs to the select is also one of
11449       // the outputs, we currently can't deal with this.
11450       if (User->getOpcode() == ISD::SELECT) {
11451         if (User->getOperand(0) == PromOps[i])
11452           return SDValue();
11453       } else if (User->getOpcode() == ISD::SELECT_CC) {
11454         if (User->getOperand(0) == PromOps[i] ||
11455             User->getOperand(1) == PromOps[i])
11456           return SDValue();
11457       }
11458     }
11459   }
11460 
11461   // Replace all inputs with the extension operand.
11462   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11463     // Constants may have users outside the cluster of to-be-promoted nodes,
11464     // and so we need to replace those as we do the promotions.
11465     if (isa<ConstantSDNode>(Inputs[i]))
11466       continue;
11467     else
11468       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11469   }
11470 
11471   std::list<HandleSDNode> PromOpHandles;
11472   for (auto &PromOp : PromOps)
11473     PromOpHandles.emplace_back(PromOp);
11474 
11475   // Replace all operations (these are all the same, but have a different
11476   // (i1) return type). DAG.getNode will validate that the types of
11477   // a binary operator match, so go through the list in reverse so that
11478   // we've likely promoted both operands first. Any intermediate truncations or
11479   // extensions disappear.
11480   while (!PromOpHandles.empty()) {
11481     SDValue PromOp = PromOpHandles.back().getValue();
11482     PromOpHandles.pop_back();
11483 
11484     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11485         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11486         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11487         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11488       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11489           PromOp.getOperand(0).getValueType() != MVT::i1) {
11490         // The operand is not yet ready (see comment below).
11491         PromOpHandles.emplace_front(PromOp);
11492         continue;
11493       }
11494 
11495       SDValue RepValue = PromOp.getOperand(0);
11496       if (isa<ConstantSDNode>(RepValue))
11497         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11498 
11499       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11500       continue;
11501     }
11502 
11503     unsigned C;
11504     switch (PromOp.getOpcode()) {
11505     default:             C = 0; break;
11506     case ISD::SELECT:    C = 1; break;
11507     case ISD::SELECT_CC: C = 2; break;
11508     }
11509 
11510     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11511          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11512         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11513          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11514       // The to-be-promoted operands of this node have not yet been
11515       // promoted (this should be rare because we're going through the
11516       // list backward, but if one of the operands has several users in
11517       // this cluster of to-be-promoted nodes, it is possible).
11518       PromOpHandles.emplace_front(PromOp);
11519       continue;
11520     }
11521 
11522     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11523                                 PromOp.getNode()->op_end());
11524 
11525     // If there are any constant inputs, make sure they're replaced now.
11526     for (unsigned i = 0; i < 2; ++i)
11527       if (isa<ConstantSDNode>(Ops[C+i]))
11528         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11529 
11530     DAG.ReplaceAllUsesOfValueWith(PromOp,
11531       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11532   }
11533 
11534   // Now we're left with the initial truncation itself.
11535   if (N->getOpcode() == ISD::TRUNCATE)
11536     return N->getOperand(0);
11537 
11538   // Otherwise, this is a comparison. The operands to be compared have just
11539   // changed type (to i1), but everything else is the same.
11540   return SDValue(N, 0);
11541 }
11542 
11543 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11544                                                   DAGCombinerInfo &DCI) const {
11545   SelectionDAG &DAG = DCI.DAG;
11546   SDLoc dl(N);
11547 
11548   // If we're tracking CR bits, we need to be careful that we don't have:
11549   //   zext(binary-ops(trunc(x), trunc(y)))
11550   // or
11551   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11552   // such that we're unnecessarily moving things into CR bits that can more
11553   // efficiently stay in GPRs. Note that if we're not certain that the high
11554   // bits are set as required by the final extension, we still may need to do
11555   // some masking to get the proper behavior.
11556 
11557   // This same functionality is important on PPC64 when dealing with
11558   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11559   // the return values of functions. Because it is so similar, it is handled
11560   // here as well.
11561 
11562   if (N->getValueType(0) != MVT::i32 &&
11563       N->getValueType(0) != MVT::i64)
11564     return SDValue();
11565 
11566   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11567         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11568     return SDValue();
11569 
11570   if (N->getOperand(0).getOpcode() != ISD::AND &&
11571       N->getOperand(0).getOpcode() != ISD::OR  &&
11572       N->getOperand(0).getOpcode() != ISD::XOR &&
11573       N->getOperand(0).getOpcode() != ISD::SELECT &&
11574       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11575     return SDValue();
11576 
11577   SmallVector<SDValue, 4> Inputs;
11578   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11579   SmallPtrSet<SDNode *, 16> Visited;
11580 
11581   // Visit all inputs, collect all binary operations (and, or, xor and
11582   // select) that are all fed by truncations.
11583   while (!BinOps.empty()) {
11584     SDValue BinOp = BinOps.back();
11585     BinOps.pop_back();
11586 
11587     if (!Visited.insert(BinOp.getNode()).second)
11588       continue;
11589 
11590     PromOps.push_back(BinOp);
11591 
11592     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11593       // The condition of the select is not promoted.
11594       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11595         continue;
11596       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11597         continue;
11598 
11599       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11600           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11601         Inputs.push_back(BinOp.getOperand(i));
11602       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11603                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11604                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11605                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11606                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11607         BinOps.push_back(BinOp.getOperand(i));
11608       } else {
11609         // We have an input that is not a truncation or another binary
11610         // operation; we'll abort this transformation.
11611         return SDValue();
11612       }
11613     }
11614   }
11615 
11616   // The operands of a select that must be truncated when the select is
11617   // promoted because the operand is actually part of the to-be-promoted set.
11618   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11619 
11620   // Make sure that this is a self-contained cluster of operations (which
11621   // is not quite the same thing as saying that everything has only one
11622   // use).
11623   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11624     if (isa<ConstantSDNode>(Inputs[i]))
11625       continue;
11626 
11627     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11628                               UE = Inputs[i].getNode()->use_end();
11629          UI != UE; ++UI) {
11630       SDNode *User = *UI;
11631       if (User != N && !Visited.count(User))
11632         return SDValue();
11633 
11634       // If we're going to promote the non-output-value operand(s) or SELECT or
11635       // SELECT_CC, record them for truncation.
11636       if (User->getOpcode() == ISD::SELECT) {
11637         if (User->getOperand(0) == Inputs[i])
11638           SelectTruncOp[0].insert(std::make_pair(User,
11639                                     User->getOperand(0).getValueType()));
11640       } else if (User->getOpcode() == ISD::SELECT_CC) {
11641         if (User->getOperand(0) == Inputs[i])
11642           SelectTruncOp[0].insert(std::make_pair(User,
11643                                     User->getOperand(0).getValueType()));
11644         if (User->getOperand(1) == Inputs[i])
11645           SelectTruncOp[1].insert(std::make_pair(User,
11646                                     User->getOperand(1).getValueType()));
11647       }
11648     }
11649   }
11650 
11651   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11652     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11653                               UE = PromOps[i].getNode()->use_end();
11654          UI != UE; ++UI) {
11655       SDNode *User = *UI;
11656       if (User != N && !Visited.count(User))
11657         return SDValue();
11658 
11659       // If we're going to promote the non-output-value operand(s) or SELECT or
11660       // SELECT_CC, record them for truncation.
11661       if (User->getOpcode() == ISD::SELECT) {
11662         if (User->getOperand(0) == PromOps[i])
11663           SelectTruncOp[0].insert(std::make_pair(User,
11664                                     User->getOperand(0).getValueType()));
11665       } else if (User->getOpcode() == ISD::SELECT_CC) {
11666         if (User->getOperand(0) == PromOps[i])
11667           SelectTruncOp[0].insert(std::make_pair(User,
11668                                     User->getOperand(0).getValueType()));
11669         if (User->getOperand(1) == PromOps[i])
11670           SelectTruncOp[1].insert(std::make_pair(User,
11671                                     User->getOperand(1).getValueType()));
11672       }
11673     }
11674   }
11675 
11676   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11677   bool ReallyNeedsExt = false;
11678   if (N->getOpcode() != ISD::ANY_EXTEND) {
11679     // If all of the inputs are not already sign/zero extended, then
11680     // we'll still need to do that at the end.
11681     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11682       if (isa<ConstantSDNode>(Inputs[i]))
11683         continue;
11684 
11685       unsigned OpBits =
11686         Inputs[i].getOperand(0).getValueSizeInBits();
11687       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11688 
11689       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11690            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11691                                   APInt::getHighBitsSet(OpBits,
11692                                                         OpBits-PromBits))) ||
11693           (N->getOpcode() == ISD::SIGN_EXTEND &&
11694            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11695              (OpBits-(PromBits-1)))) {
11696         ReallyNeedsExt = true;
11697         break;
11698       }
11699     }
11700   }
11701 
11702   // Replace all inputs, either with the truncation operand, or a
11703   // truncation or extension to the final output type.
11704   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11705     // Constant inputs need to be replaced with the to-be-promoted nodes that
11706     // use them because they might have users outside of the cluster of
11707     // promoted nodes.
11708     if (isa<ConstantSDNode>(Inputs[i]))
11709       continue;
11710 
11711     SDValue InSrc = Inputs[i].getOperand(0);
11712     if (Inputs[i].getValueType() == N->getValueType(0))
11713       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11714     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11715       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11716         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11717     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11718       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11719         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11720     else
11721       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11722         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11723   }
11724 
11725   std::list<HandleSDNode> PromOpHandles;
11726   for (auto &PromOp : PromOps)
11727     PromOpHandles.emplace_back(PromOp);
11728 
11729   // Replace all operations (these are all the same, but have a different
11730   // (promoted) return type). DAG.getNode will validate that the types of
11731   // a binary operator match, so go through the list in reverse so that
11732   // we've likely promoted both operands first.
11733   while (!PromOpHandles.empty()) {
11734     SDValue PromOp = PromOpHandles.back().getValue();
11735     PromOpHandles.pop_back();
11736 
11737     unsigned C;
11738     switch (PromOp.getOpcode()) {
11739     default:             C = 0; break;
11740     case ISD::SELECT:    C = 1; break;
11741     case ISD::SELECT_CC: C = 2; break;
11742     }
11743 
11744     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11745          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11746         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11747          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11748       // The to-be-promoted operands of this node have not yet been
11749       // promoted (this should be rare because we're going through the
11750       // list backward, but if one of the operands has several users in
11751       // this cluster of to-be-promoted nodes, it is possible).
11752       PromOpHandles.emplace_front(PromOp);
11753       continue;
11754     }
11755 
11756     // For SELECT and SELECT_CC nodes, we do a similar check for any
11757     // to-be-promoted comparison inputs.
11758     if (PromOp.getOpcode() == ISD::SELECT ||
11759         PromOp.getOpcode() == ISD::SELECT_CC) {
11760       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11761            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11762           (SelectTruncOp[1].count(PromOp.getNode()) &&
11763            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11764         PromOpHandles.emplace_front(PromOp);
11765         continue;
11766       }
11767     }
11768 
11769     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11770                                 PromOp.getNode()->op_end());
11771 
11772     // If this node has constant inputs, then they'll need to be promoted here.
11773     for (unsigned i = 0; i < 2; ++i) {
11774       if (!isa<ConstantSDNode>(Ops[C+i]))
11775         continue;
11776       if (Ops[C+i].getValueType() == N->getValueType(0))
11777         continue;
11778 
11779       if (N->getOpcode() == ISD::SIGN_EXTEND)
11780         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11781       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11782         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11783       else
11784         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11785     }
11786 
11787     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11788     // truncate them again to the original value type.
11789     if (PromOp.getOpcode() == ISD::SELECT ||
11790         PromOp.getOpcode() == ISD::SELECT_CC) {
11791       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11792       if (SI0 != SelectTruncOp[0].end())
11793         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11794       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11795       if (SI1 != SelectTruncOp[1].end())
11796         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11797     }
11798 
11799     DAG.ReplaceAllUsesOfValueWith(PromOp,
11800       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11801   }
11802 
11803   // Now we're left with the initial extension itself.
11804   if (!ReallyNeedsExt)
11805     return N->getOperand(0);
11806 
11807   // To zero extend, just mask off everything except for the first bit (in the
11808   // i1 case).
11809   if (N->getOpcode() == ISD::ZERO_EXTEND)
11810     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11811                        DAG.getConstant(APInt::getLowBitsSet(
11812                                          N->getValueSizeInBits(0), PromBits),
11813                                        dl, N->getValueType(0)));
11814 
11815   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11816          "Invalid extension type");
11817   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11818   SDValue ShiftCst =
11819       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11820   return DAG.getNode(
11821       ISD::SRA, dl, N->getValueType(0),
11822       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11823       ShiftCst);
11824 }
11825 
11826 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
11827                                         DAGCombinerInfo &DCI) const {
11828   assert(N->getOpcode() == ISD::SETCC &&
11829          "Should be called with a SETCC node");
11830 
11831   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11832   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
11833     SDValue LHS = N->getOperand(0);
11834     SDValue RHS = N->getOperand(1);
11835 
11836     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
11837     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
11838         LHS.hasOneUse())
11839       std::swap(LHS, RHS);
11840 
11841     // x == 0-y --> x+y == 0
11842     // x != 0-y --> x+y != 0
11843     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
11844         RHS.hasOneUse()) {
11845       SDLoc DL(N);
11846       SelectionDAG &DAG = DCI.DAG;
11847       EVT VT = N->getValueType(0);
11848       EVT OpVT = LHS.getValueType();
11849       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
11850       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
11851     }
11852   }
11853 
11854   return DAGCombineTruncBoolExt(N, DCI);
11855 }
11856 
11857 // Is this an extending load from an f32 to an f64?
11858 static bool isFPExtLoad(SDValue Op) {
11859   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
11860     return LD->getExtensionType() == ISD::EXTLOAD &&
11861       Op.getValueType() == MVT::f64;
11862   return false;
11863 }
11864 
11865 /// Reduces the number of fp-to-int conversion when building a vector.
11866 ///
11867 /// If this vector is built out of floating to integer conversions,
11868 /// transform it to a vector built out of floating point values followed by a
11869 /// single floating to integer conversion of the vector.
11870 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11871 /// becomes (fptosi (build_vector ($A, $B, ...)))
11872 SDValue PPCTargetLowering::
11873 combineElementTruncationToVectorTruncation(SDNode *N,
11874                                            DAGCombinerInfo &DCI) const {
11875   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11876          "Should be called with a BUILD_VECTOR node");
11877 
11878   SelectionDAG &DAG = DCI.DAG;
11879   SDLoc dl(N);
11880 
11881   SDValue FirstInput = N->getOperand(0);
11882   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11883          "The input operand must be an fp-to-int conversion.");
11884 
11885   // This combine happens after legalization so the fp_to_[su]i nodes are
11886   // already converted to PPCSISD nodes.
11887   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11888   if (FirstConversion == PPCISD::FCTIDZ ||
11889       FirstConversion == PPCISD::FCTIDUZ ||
11890       FirstConversion == PPCISD::FCTIWZ ||
11891       FirstConversion == PPCISD::FCTIWUZ) {
11892     bool IsSplat = true;
11893     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11894       FirstConversion == PPCISD::FCTIWUZ;
11895     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11896     SmallVector<SDValue, 4> Ops;
11897     EVT TargetVT = N->getValueType(0);
11898     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11899       SDValue NextOp = N->getOperand(i);
11900       if (NextOp.getOpcode() != PPCISD::MFVSR)
11901         return SDValue();
11902       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
11903       if (NextConversion != FirstConversion)
11904         return SDValue();
11905       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
11906       // This is not valid if the input was originally double precision. It is
11907       // also not profitable to do unless this is an extending load in which
11908       // case doing this combine will allow us to combine consecutive loads.
11909       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
11910         return SDValue();
11911       if (N->getOperand(i) != FirstInput)
11912         IsSplat = false;
11913     }
11914 
11915     // If this is a splat, we leave it as-is since there will be only a single
11916     // fp-to-int conversion followed by a splat of the integer. This is better
11917     // for 32-bit and smaller ints and neutral for 64-bit ints.
11918     if (IsSplat)
11919       return SDValue();
11920 
11921     // Now that we know we have the right type of node, get its operands
11922     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11923       SDValue In = N->getOperand(i).getOperand(0);
11924       if (Is32Bit) {
11925         // For 32-bit values, we need to add an FP_ROUND node (if we made it
11926         // here, we know that all inputs are extending loads so this is safe).
11927         if (In.isUndef())
11928           Ops.push_back(DAG.getUNDEF(SrcVT));
11929         else {
11930           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11931                                       MVT::f32, In.getOperand(0),
11932                                       DAG.getIntPtrConstant(1, dl));
11933           Ops.push_back(Trunc);
11934         }
11935       } else
11936         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11937     }
11938 
11939     unsigned Opcode;
11940     if (FirstConversion == PPCISD::FCTIDZ ||
11941         FirstConversion == PPCISD::FCTIWZ)
11942       Opcode = ISD::FP_TO_SINT;
11943     else
11944       Opcode = ISD::FP_TO_UINT;
11945 
11946     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11947     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11948     return DAG.getNode(Opcode, dl, TargetVT, BV);
11949   }
11950   return SDValue();
11951 }
11952 
11953 /// Reduce the number of loads when building a vector.
11954 ///
11955 /// Building a vector out of multiple loads can be converted to a load
11956 /// of the vector type if the loads are consecutive. If the loads are
11957 /// consecutive but in descending order, a shuffle is added at the end
11958 /// to reorder the vector.
11959 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11960   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11961          "Should be called with a BUILD_VECTOR node");
11962 
11963   SDLoc dl(N);
11964   bool InputsAreConsecutiveLoads = true;
11965   bool InputsAreReverseConsecutive = true;
11966   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11967   SDValue FirstInput = N->getOperand(0);
11968   bool IsRoundOfExtLoad = false;
11969 
11970   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11971       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11972     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11973     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11974   }
11975   // Not a build vector of (possibly fp_rounded) loads.
11976   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
11977       N->getNumOperands() == 1)
11978     return SDValue();
11979 
11980   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11981     // If any inputs are fp_round(extload), they all must be.
11982     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11983       return SDValue();
11984 
11985     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11986       N->getOperand(i);
11987     if (NextInput.getOpcode() != ISD::LOAD)
11988       return SDValue();
11989 
11990     SDValue PreviousInput =
11991       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11992     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11993     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11994 
11995     // If any inputs are fp_round(extload), they all must be.
11996     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11997       return SDValue();
11998 
11999     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12000       InputsAreConsecutiveLoads = false;
12001     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12002       InputsAreReverseConsecutive = false;
12003 
12004     // Exit early if the loads are neither consecutive nor reverse consecutive.
12005     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12006       return SDValue();
12007   }
12008 
12009   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12010          "The loads cannot be both consecutive and reverse consecutive.");
12011 
12012   SDValue FirstLoadOp =
12013     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12014   SDValue LastLoadOp =
12015     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12016                        N->getOperand(N->getNumOperands()-1);
12017 
12018   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12019   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12020   if (InputsAreConsecutiveLoads) {
12021     assert(LD1 && "Input needs to be a LoadSDNode.");
12022     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12023                        LD1->getBasePtr(), LD1->getPointerInfo(),
12024                        LD1->getAlignment());
12025   }
12026   if (InputsAreReverseConsecutive) {
12027     assert(LDL && "Input needs to be a LoadSDNode.");
12028     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12029                                LDL->getBasePtr(), LDL->getPointerInfo(),
12030                                LDL->getAlignment());
12031     SmallVector<int, 16> Ops;
12032     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12033       Ops.push_back(i);
12034 
12035     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12036                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12037   }
12038   return SDValue();
12039 }
12040 
12041 // This function adds the required vector_shuffle needed to get
12042 // the elements of the vector extract in the correct position
12043 // as specified by the CorrectElems encoding.
12044 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12045                                       SDValue Input, uint64_t Elems,
12046                                       uint64_t CorrectElems) {
12047   SDLoc dl(N);
12048 
12049   unsigned NumElems = Input.getValueType().getVectorNumElements();
12050   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12051 
12052   // Knowing the element indices being extracted from the original
12053   // vector and the order in which they're being inserted, just put
12054   // them at element indices required for the instruction.
12055   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12056     if (DAG.getDataLayout().isLittleEndian())
12057       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12058     else
12059       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12060     CorrectElems = CorrectElems >> 8;
12061     Elems = Elems >> 8;
12062   }
12063 
12064   SDValue Shuffle =
12065       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12066                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12067 
12068   EVT Ty = N->getValueType(0);
12069   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12070   return BV;
12071 }
12072 
12073 // Look for build vector patterns where input operands come from sign
12074 // extended vector_extract elements of specific indices. If the correct indices
12075 // aren't used, add a vector shuffle to fix up the indices and create a new
12076 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12077 // during instruction selection.
12078 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12079   // This array encodes the indices that the vector sign extend instructions
12080   // extract from when extending from one type to another for both BE and LE.
12081   // The right nibble of each byte corresponds to the LE incides.
12082   // and the left nibble of each byte corresponds to the BE incides.
12083   // For example: 0x3074B8FC  byte->word
12084   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12085   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12086   // For example: 0x000070F8  byte->double word
12087   // For LE: the allowed indices are: 0x0,0x8
12088   // For BE: the allowed indices are: 0x7,0xF
12089   uint64_t TargetElems[] = {
12090       0x3074B8FC, // b->w
12091       0x000070F8, // b->d
12092       0x10325476, // h->w
12093       0x00003074, // h->d
12094       0x00001032, // w->d
12095   };
12096 
12097   uint64_t Elems = 0;
12098   int Index;
12099   SDValue Input;
12100 
12101   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12102     if (!Op)
12103       return false;
12104     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12105         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12106       return false;
12107 
12108     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12109     // of the right width.
12110     SDValue Extract = Op.getOperand(0);
12111     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12112       Extract = Extract.getOperand(0);
12113     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12114       return false;
12115 
12116     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12117     if (!ExtOp)
12118       return false;
12119 
12120     Index = ExtOp->getZExtValue();
12121     if (Input && Input != Extract.getOperand(0))
12122       return false;
12123 
12124     if (!Input)
12125       Input = Extract.getOperand(0);
12126 
12127     Elems = Elems << 8;
12128     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12129     Elems |= Index;
12130 
12131     return true;
12132   };
12133 
12134   // If the build vector operands aren't sign extended vector extracts,
12135   // of the same input vector, then return.
12136   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12137     if (!isSExtOfVecExtract(N->getOperand(i))) {
12138       return SDValue();
12139     }
12140   }
12141 
12142   // If the vector extract indicies are not correct, add the appropriate
12143   // vector_shuffle.
12144   int TgtElemArrayIdx;
12145   int InputSize = Input.getValueType().getScalarSizeInBits();
12146   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12147   if (InputSize + OutputSize == 40)
12148     TgtElemArrayIdx = 0;
12149   else if (InputSize + OutputSize == 72)
12150     TgtElemArrayIdx = 1;
12151   else if (InputSize + OutputSize == 48)
12152     TgtElemArrayIdx = 2;
12153   else if (InputSize + OutputSize == 80)
12154     TgtElemArrayIdx = 3;
12155   else if (InputSize + OutputSize == 96)
12156     TgtElemArrayIdx = 4;
12157   else
12158     return SDValue();
12159 
12160   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12161   CorrectElems = DAG.getDataLayout().isLittleEndian()
12162                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12163                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12164   if (Elems != CorrectElems) {
12165     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12166   }
12167 
12168   // Regular lowering will catch cases where a shuffle is not needed.
12169   return SDValue();
12170 }
12171 
12172 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12173                                                  DAGCombinerInfo &DCI) const {
12174   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12175          "Should be called with a BUILD_VECTOR node");
12176 
12177   SelectionDAG &DAG = DCI.DAG;
12178   SDLoc dl(N);
12179 
12180   if (!Subtarget.hasVSX())
12181     return SDValue();
12182 
12183   // The target independent DAG combiner will leave a build_vector of
12184   // float-to-int conversions intact. We can generate MUCH better code for
12185   // a float-to-int conversion of a vector of floats.
12186   SDValue FirstInput = N->getOperand(0);
12187   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12188     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12189     if (Reduced)
12190       return Reduced;
12191   }
12192 
12193   // If we're building a vector out of consecutive loads, just load that
12194   // vector type.
12195   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12196   if (Reduced)
12197     return Reduced;
12198 
12199   // If we're building a vector out of extended elements from another vector
12200   // we have P9 vector integer extend instructions. The code assumes legal
12201   // input types (i.e. it can't handle things like v4i16) so do not run before
12202   // legalization.
12203   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12204     Reduced = combineBVOfVecSExt(N, DAG);
12205     if (Reduced)
12206       return Reduced;
12207   }
12208 
12209 
12210   if (N->getValueType(0) != MVT::v2f64)
12211     return SDValue();
12212 
12213   // Looking for:
12214   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12215   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12216       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12217     return SDValue();
12218   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12219       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12220     return SDValue();
12221   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12222     return SDValue();
12223 
12224   SDValue Ext1 = FirstInput.getOperand(0);
12225   SDValue Ext2 = N->getOperand(1).getOperand(0);
12226   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12227      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12228     return SDValue();
12229 
12230   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12231   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12232   if (!Ext1Op || !Ext2Op)
12233     return SDValue();
12234   if (Ext1.getValueType() != MVT::i32 ||
12235       Ext2.getValueType() != MVT::i32)
12236   if (Ext1.getOperand(0) != Ext2.getOperand(0))
12237     return SDValue();
12238 
12239   int FirstElem = Ext1Op->getZExtValue();
12240   int SecondElem = Ext2Op->getZExtValue();
12241   int SubvecIdx;
12242   if (FirstElem == 0 && SecondElem == 1)
12243     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12244   else if (FirstElem == 2 && SecondElem == 3)
12245     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12246   else
12247     return SDValue();
12248 
12249   SDValue SrcVec = Ext1.getOperand(0);
12250   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12251     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12252   return DAG.getNode(NodeType, dl, MVT::v2f64,
12253                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12254 }
12255 
12256 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12257                                               DAGCombinerInfo &DCI) const {
12258   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12259           N->getOpcode() == ISD::UINT_TO_FP) &&
12260          "Need an int -> FP conversion node here");
12261 
12262   if (useSoftFloat() || !Subtarget.has64BitSupport())
12263     return SDValue();
12264 
12265   SelectionDAG &DAG = DCI.DAG;
12266   SDLoc dl(N);
12267   SDValue Op(N, 0);
12268 
12269   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12270   // from the hardware.
12271   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12272     return SDValue();
12273   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12274       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12275     return SDValue();
12276 
12277   SDValue FirstOperand(Op.getOperand(0));
12278   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12279     (FirstOperand.getValueType() == MVT::i8 ||
12280      FirstOperand.getValueType() == MVT::i16);
12281   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12282     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12283     bool DstDouble = Op.getValueType() == MVT::f64;
12284     unsigned ConvOp = Signed ?
12285       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12286       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12287     SDValue WidthConst =
12288       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12289                             dl, false);
12290     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12291     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12292     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12293                                          DAG.getVTList(MVT::f64, MVT::Other),
12294                                          Ops, MVT::i8, LDN->getMemOperand());
12295 
12296     // For signed conversion, we need to sign-extend the value in the VSR
12297     if (Signed) {
12298       SDValue ExtOps[] = { Ld, WidthConst };
12299       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12300       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12301     } else
12302       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12303   }
12304 
12305 
12306   // For i32 intermediate values, unfortunately, the conversion functions
12307   // leave the upper 32 bits of the value are undefined. Within the set of
12308   // scalar instructions, we have no method for zero- or sign-extending the
12309   // value. Thus, we cannot handle i32 intermediate values here.
12310   if (Op.getOperand(0).getValueType() == MVT::i32)
12311     return SDValue();
12312 
12313   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12314          "UINT_TO_FP is supported only with FPCVT");
12315 
12316   // If we have FCFIDS, then use it when converting to single-precision.
12317   // Otherwise, convert to double-precision and then round.
12318   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12319                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12320                                                             : PPCISD::FCFIDS)
12321                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12322                                                             : PPCISD::FCFID);
12323   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12324                   ? MVT::f32
12325                   : MVT::f64;
12326 
12327   // If we're converting from a float, to an int, and back to a float again,
12328   // then we don't need the store/load pair at all.
12329   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12330        Subtarget.hasFPCVT()) ||
12331       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12332     SDValue Src = Op.getOperand(0).getOperand(0);
12333     if (Src.getValueType() == MVT::f32) {
12334       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12335       DCI.AddToWorklist(Src.getNode());
12336     } else if (Src.getValueType() != MVT::f64) {
12337       // Make sure that we don't pick up a ppc_fp128 source value.
12338       return SDValue();
12339     }
12340 
12341     unsigned FCTOp =
12342       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12343                                                         PPCISD::FCTIDUZ;
12344 
12345     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12346     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12347 
12348     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12349       FP = DAG.getNode(ISD::FP_ROUND, dl,
12350                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12351       DCI.AddToWorklist(FP.getNode());
12352     }
12353 
12354     return FP;
12355   }
12356 
12357   return SDValue();
12358 }
12359 
12360 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12361 // builtins) into loads with swaps.
12362 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12363                                               DAGCombinerInfo &DCI) const {
12364   SelectionDAG &DAG = DCI.DAG;
12365   SDLoc dl(N);
12366   SDValue Chain;
12367   SDValue Base;
12368   MachineMemOperand *MMO;
12369 
12370   switch (N->getOpcode()) {
12371   default:
12372     llvm_unreachable("Unexpected opcode for little endian VSX load");
12373   case ISD::LOAD: {
12374     LoadSDNode *LD = cast<LoadSDNode>(N);
12375     Chain = LD->getChain();
12376     Base = LD->getBasePtr();
12377     MMO = LD->getMemOperand();
12378     // If the MMO suggests this isn't a load of a full vector, leave
12379     // things alone.  For a built-in, we have to make the change for
12380     // correctness, so if there is a size problem that will be a bug.
12381     if (MMO->getSize() < 16)
12382       return SDValue();
12383     break;
12384   }
12385   case ISD::INTRINSIC_W_CHAIN: {
12386     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12387     Chain = Intrin->getChain();
12388     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12389     // us what we want. Get operand 2 instead.
12390     Base = Intrin->getOperand(2);
12391     MMO = Intrin->getMemOperand();
12392     break;
12393   }
12394   }
12395 
12396   MVT VecTy = N->getValueType(0).getSimpleVT();
12397 
12398   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12399   // aligned and the type is a vector with elements up to 4 bytes
12400   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12401       && VecTy.getScalarSizeInBits() <= 32 ) {
12402     return SDValue();
12403   }
12404 
12405   SDValue LoadOps[] = { Chain, Base };
12406   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12407                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12408                                          LoadOps, MVT::v2f64, MMO);
12409 
12410   DCI.AddToWorklist(Load.getNode());
12411   Chain = Load.getValue(1);
12412   SDValue Swap = DAG.getNode(
12413       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12414   DCI.AddToWorklist(Swap.getNode());
12415 
12416   // Add a bitcast if the resulting load type doesn't match v2f64.
12417   if (VecTy != MVT::v2f64) {
12418     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12419     DCI.AddToWorklist(N.getNode());
12420     // Package {bitcast value, swap's chain} to match Load's shape.
12421     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12422                        N, Swap.getValue(1));
12423   }
12424 
12425   return Swap;
12426 }
12427 
12428 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12429 // builtins) into stores with swaps.
12430 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12431                                                DAGCombinerInfo &DCI) const {
12432   SelectionDAG &DAG = DCI.DAG;
12433   SDLoc dl(N);
12434   SDValue Chain;
12435   SDValue Base;
12436   unsigned SrcOpnd;
12437   MachineMemOperand *MMO;
12438 
12439   switch (N->getOpcode()) {
12440   default:
12441     llvm_unreachable("Unexpected opcode for little endian VSX store");
12442   case ISD::STORE: {
12443     StoreSDNode *ST = cast<StoreSDNode>(N);
12444     Chain = ST->getChain();
12445     Base = ST->getBasePtr();
12446     MMO = ST->getMemOperand();
12447     SrcOpnd = 1;
12448     // If the MMO suggests this isn't a store of a full vector, leave
12449     // things alone.  For a built-in, we have to make the change for
12450     // correctness, so if there is a size problem that will be a bug.
12451     if (MMO->getSize() < 16)
12452       return SDValue();
12453     break;
12454   }
12455   case ISD::INTRINSIC_VOID: {
12456     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12457     Chain = Intrin->getChain();
12458     // Intrin->getBasePtr() oddly does not get what we want.
12459     Base = Intrin->getOperand(3);
12460     MMO = Intrin->getMemOperand();
12461     SrcOpnd = 2;
12462     break;
12463   }
12464   }
12465 
12466   SDValue Src = N->getOperand(SrcOpnd);
12467   MVT VecTy = Src.getValueType().getSimpleVT();
12468 
12469   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12470   // aligned and the type is a vector with elements up to 4 bytes
12471   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12472       && VecTy.getScalarSizeInBits() <= 32 ) {
12473     return SDValue();
12474   }
12475 
12476   // All stores are done as v2f64 and possible bit cast.
12477   if (VecTy != MVT::v2f64) {
12478     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12479     DCI.AddToWorklist(Src.getNode());
12480   }
12481 
12482   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12483                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12484   DCI.AddToWorklist(Swap.getNode());
12485   Chain = Swap.getValue(1);
12486   SDValue StoreOps[] = { Chain, Swap, Base };
12487   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12488                                           DAG.getVTList(MVT::Other),
12489                                           StoreOps, VecTy, MMO);
12490   DCI.AddToWorklist(Store.getNode());
12491   return Store;
12492 }
12493 
12494 // Handle DAG combine for STORE (FP_TO_INT F).
12495 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12496                                                DAGCombinerInfo &DCI) const {
12497 
12498   SelectionDAG &DAG = DCI.DAG;
12499   SDLoc dl(N);
12500   unsigned Opcode = N->getOperand(1).getOpcode();
12501 
12502   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12503          && "Not a FP_TO_INT Instruction!");
12504 
12505   SDValue Val = N->getOperand(1).getOperand(0);
12506   EVT Op1VT = N->getOperand(1).getValueType();
12507   EVT ResVT = Val.getValueType();
12508 
12509   // Floating point types smaller than 32 bits are not legal on Power.
12510   if (ResVT.getScalarSizeInBits() < 32)
12511     return SDValue();
12512 
12513   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12514   bool ValidTypeForStoreFltAsInt =
12515         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12516          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12517 
12518   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12519       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12520     return SDValue();
12521 
12522   // Extend f32 values to f64
12523   if (ResVT.getScalarSizeInBits() == 32) {
12524     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12525     DCI.AddToWorklist(Val.getNode());
12526   }
12527 
12528   // Set signed or unsigned conversion opcode.
12529   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12530                           PPCISD::FP_TO_SINT_IN_VSR :
12531                           PPCISD::FP_TO_UINT_IN_VSR;
12532 
12533   Val = DAG.getNode(ConvOpcode,
12534                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12535   DCI.AddToWorklist(Val.getNode());
12536 
12537   // Set number of bytes being converted.
12538   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12539   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12540                     DAG.getIntPtrConstant(ByteSize, dl, false),
12541                     DAG.getValueType(Op1VT) };
12542 
12543   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12544           DAG.getVTList(MVT::Other), Ops,
12545           cast<StoreSDNode>(N)->getMemoryVT(),
12546           cast<StoreSDNode>(N)->getMemOperand());
12547 
12548   DCI.AddToWorklist(Val.getNode());
12549   return Val;
12550 }
12551 
12552 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12553                                              DAGCombinerInfo &DCI) const {
12554   SelectionDAG &DAG = DCI.DAG;
12555   SDLoc dl(N);
12556   switch (N->getOpcode()) {
12557   default: break;
12558   case ISD::ADD:
12559     return combineADD(N, DCI);
12560   case ISD::SHL:
12561     return combineSHL(N, DCI);
12562   case ISD::SRA:
12563     return combineSRA(N, DCI);
12564   case ISD::SRL:
12565     return combineSRL(N, DCI);
12566   case PPCISD::SHL:
12567     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12568         return N->getOperand(0);
12569     break;
12570   case PPCISD::SRL:
12571     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12572         return N->getOperand(0);
12573     break;
12574   case PPCISD::SRA:
12575     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12576       if (C->isNullValue() ||   //  0 >>s V -> 0.
12577           C->isAllOnesValue())    // -1 >>s V -> -1.
12578         return N->getOperand(0);
12579     }
12580     break;
12581   case ISD::SIGN_EXTEND:
12582   case ISD::ZERO_EXTEND:
12583   case ISD::ANY_EXTEND:
12584     return DAGCombineExtBoolTrunc(N, DCI);
12585   case ISD::TRUNCATE:
12586     return combineTRUNCATE(N, DCI);
12587   case ISD::SETCC:
12588     if (SDValue CSCC = combineSetCC(N, DCI))
12589       return CSCC;
12590     LLVM_FALLTHROUGH;
12591   case ISD::SELECT_CC:
12592     return DAGCombineTruncBoolExt(N, DCI);
12593   case ISD::SINT_TO_FP:
12594   case ISD::UINT_TO_FP:
12595     return combineFPToIntToFP(N, DCI);
12596   case ISD::STORE: {
12597 
12598     EVT Op1VT = N->getOperand(1).getValueType();
12599     unsigned Opcode = N->getOperand(1).getOpcode();
12600 
12601     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12602       SDValue Val= combineStoreFPToInt(N, DCI);
12603       if (Val)
12604         return Val;
12605     }
12606 
12607     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12608     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12609         N->getOperand(1).getNode()->hasOneUse() &&
12610         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12611          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12612 
12613       // STBRX can only handle simple types.
12614       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12615       if (mVT.isExtended())
12616         break;
12617 
12618       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12619       // Do an any-extend to 32-bits if this is a half-word input.
12620       if (BSwapOp.getValueType() == MVT::i16)
12621         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12622 
12623       // If the type of BSWAP operand is wider than stored memory width
12624       // it need to be shifted to the right side before STBRX.
12625       if (Op1VT.bitsGT(mVT)) {
12626         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12627         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12628                               DAG.getConstant(Shift, dl, MVT::i32));
12629         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12630         if (Op1VT == MVT::i64)
12631           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12632       }
12633 
12634       SDValue Ops[] = {
12635         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12636       };
12637       return
12638         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12639                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12640                                 cast<StoreSDNode>(N)->getMemOperand());
12641     }
12642 
12643     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12644     // So it can increase the chance of CSE constant construction.
12645     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12646         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12647       // Need to sign-extended to 64-bits to handle negative values.
12648       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12649       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12650                                     MemVT.getSizeInBits());
12651       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12652 
12653       // DAG.getTruncStore() can't be used here because it doesn't accept
12654       // the general (base + offset) addressing mode.
12655       // So we use UpdateNodeOperands and setTruncatingStore instead.
12656       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12657                              N->getOperand(3));
12658       cast<StoreSDNode>(N)->setTruncatingStore(true);
12659       return SDValue(N, 0);
12660     }
12661 
12662     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12663     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12664     if (Op1VT.isSimple()) {
12665       MVT StoreVT = Op1VT.getSimpleVT();
12666       if (Subtarget.needsSwapsForVSXMemOps() &&
12667           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12668            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12669         return expandVSXStoreForLE(N, DCI);
12670     }
12671     break;
12672   }
12673   case ISD::LOAD: {
12674     LoadSDNode *LD = cast<LoadSDNode>(N);
12675     EVT VT = LD->getValueType(0);
12676 
12677     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12678     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12679     if (VT.isSimple()) {
12680       MVT LoadVT = VT.getSimpleVT();
12681       if (Subtarget.needsSwapsForVSXMemOps() &&
12682           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12683            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12684         return expandVSXLoadForLE(N, DCI);
12685     }
12686 
12687     // We sometimes end up with a 64-bit integer load, from which we extract
12688     // two single-precision floating-point numbers. This happens with
12689     // std::complex<float>, and other similar structures, because of the way we
12690     // canonicalize structure copies. However, if we lack direct moves,
12691     // then the final bitcasts from the extracted integer values to the
12692     // floating-point numbers turn into store/load pairs. Even with direct moves,
12693     // just loading the two floating-point numbers is likely better.
12694     auto ReplaceTwoFloatLoad = [&]() {
12695       if (VT != MVT::i64)
12696         return false;
12697 
12698       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12699           LD->isVolatile())
12700         return false;
12701 
12702       //  We're looking for a sequence like this:
12703       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12704       //      t16: i64 = srl t13, Constant:i32<32>
12705       //    t17: i32 = truncate t16
12706       //  t18: f32 = bitcast t17
12707       //    t19: i32 = truncate t13
12708       //  t20: f32 = bitcast t19
12709 
12710       if (!LD->hasNUsesOfValue(2, 0))
12711         return false;
12712 
12713       auto UI = LD->use_begin();
12714       while (UI.getUse().getResNo() != 0) ++UI;
12715       SDNode *Trunc = *UI++;
12716       while (UI.getUse().getResNo() != 0) ++UI;
12717       SDNode *RightShift = *UI;
12718       if (Trunc->getOpcode() != ISD::TRUNCATE)
12719         std::swap(Trunc, RightShift);
12720 
12721       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12722           Trunc->getValueType(0) != MVT::i32 ||
12723           !Trunc->hasOneUse())
12724         return false;
12725       if (RightShift->getOpcode() != ISD::SRL ||
12726           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12727           RightShift->getConstantOperandVal(1) != 32 ||
12728           !RightShift->hasOneUse())
12729         return false;
12730 
12731       SDNode *Trunc2 = *RightShift->use_begin();
12732       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12733           Trunc2->getValueType(0) != MVT::i32 ||
12734           !Trunc2->hasOneUse())
12735         return false;
12736 
12737       SDNode *Bitcast = *Trunc->use_begin();
12738       SDNode *Bitcast2 = *Trunc2->use_begin();
12739 
12740       if (Bitcast->getOpcode() != ISD::BITCAST ||
12741           Bitcast->getValueType(0) != MVT::f32)
12742         return false;
12743       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12744           Bitcast2->getValueType(0) != MVT::f32)
12745         return false;
12746 
12747       if (Subtarget.isLittleEndian())
12748         std::swap(Bitcast, Bitcast2);
12749 
12750       // Bitcast has the second float (in memory-layout order) and Bitcast2
12751       // has the first one.
12752 
12753       SDValue BasePtr = LD->getBasePtr();
12754       if (LD->isIndexed()) {
12755         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12756                "Non-pre-inc AM on PPC?");
12757         BasePtr =
12758           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12759                       LD->getOffset());
12760       }
12761 
12762       auto MMOFlags =
12763           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12764       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12765                                       LD->getPointerInfo(), LD->getAlignment(),
12766                                       MMOFlags, LD->getAAInfo());
12767       SDValue AddPtr =
12768         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12769                     BasePtr, DAG.getIntPtrConstant(4, dl));
12770       SDValue FloatLoad2 = DAG.getLoad(
12771           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12772           LD->getPointerInfo().getWithOffset(4),
12773           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12774 
12775       if (LD->isIndexed()) {
12776         // Note that DAGCombine should re-form any pre-increment load(s) from
12777         // what is produced here if that makes sense.
12778         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12779       }
12780 
12781       DCI.CombineTo(Bitcast2, FloatLoad);
12782       DCI.CombineTo(Bitcast, FloatLoad2);
12783 
12784       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12785                                     SDValue(FloatLoad2.getNode(), 1));
12786       return true;
12787     };
12788 
12789     if (ReplaceTwoFloatLoad())
12790       return SDValue(N, 0);
12791 
12792     EVT MemVT = LD->getMemoryVT();
12793     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12794     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12795     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12796     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12797     if (LD->isUnindexed() && VT.isVector() &&
12798         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12799           // P8 and later hardware should just use LOAD.
12800           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12801                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12802          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12803           LD->getAlignment() >= ScalarABIAlignment)) &&
12804         LD->getAlignment() < ABIAlignment) {
12805       // This is a type-legal unaligned Altivec or QPX load.
12806       SDValue Chain = LD->getChain();
12807       SDValue Ptr = LD->getBasePtr();
12808       bool isLittleEndian = Subtarget.isLittleEndian();
12809 
12810       // This implements the loading of unaligned vectors as described in
12811       // the venerable Apple Velocity Engine overview. Specifically:
12812       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12813       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12814       //
12815       // The general idea is to expand a sequence of one or more unaligned
12816       // loads into an alignment-based permutation-control instruction (lvsl
12817       // or lvsr), a series of regular vector loads (which always truncate
12818       // their input address to an aligned address), and a series of
12819       // permutations.  The results of these permutations are the requested
12820       // loaded values.  The trick is that the last "extra" load is not taken
12821       // from the address you might suspect (sizeof(vector) bytes after the
12822       // last requested load), but rather sizeof(vector) - 1 bytes after the
12823       // last requested vector. The point of this is to avoid a page fault if
12824       // the base address happened to be aligned. This works because if the
12825       // base address is aligned, then adding less than a full vector length
12826       // will cause the last vector in the sequence to be (re)loaded.
12827       // Otherwise, the next vector will be fetched as you might suspect was
12828       // necessary.
12829 
12830       // We might be able to reuse the permutation generation from
12831       // a different base address offset from this one by an aligned amount.
12832       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12833       // optimization later.
12834       Intrinsic::ID Intr, IntrLD, IntrPerm;
12835       MVT PermCntlTy, PermTy, LDTy;
12836       if (Subtarget.hasAltivec()) {
12837         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12838                                  Intrinsic::ppc_altivec_lvsl;
12839         IntrLD = Intrinsic::ppc_altivec_lvx;
12840         IntrPerm = Intrinsic::ppc_altivec_vperm;
12841         PermCntlTy = MVT::v16i8;
12842         PermTy = MVT::v4i32;
12843         LDTy = MVT::v4i32;
12844       } else {
12845         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12846                                        Intrinsic::ppc_qpx_qvlpcls;
12847         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12848                                        Intrinsic::ppc_qpx_qvlfs;
12849         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12850         PermCntlTy = MVT::v4f64;
12851         PermTy = MVT::v4f64;
12852         LDTy = MemVT.getSimpleVT();
12853       }
12854 
12855       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12856 
12857       // Create the new MMO for the new base load. It is like the original MMO,
12858       // but represents an area in memory almost twice the vector size centered
12859       // on the original address. If the address is unaligned, we might start
12860       // reading up to (sizeof(vector)-1) bytes below the address of the
12861       // original unaligned load.
12862       MachineFunction &MF = DAG.getMachineFunction();
12863       MachineMemOperand *BaseMMO =
12864         MF.getMachineMemOperand(LD->getMemOperand(),
12865                                 -(long)MemVT.getStoreSize()+1,
12866                                 2*MemVT.getStoreSize()-1);
12867 
12868       // Create the new base load.
12869       SDValue LDXIntID =
12870           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12871       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12872       SDValue BaseLoad =
12873         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12874                                 DAG.getVTList(PermTy, MVT::Other),
12875                                 BaseLoadOps, LDTy, BaseMMO);
12876 
12877       // Note that the value of IncOffset (which is provided to the next
12878       // load's pointer info offset value, and thus used to calculate the
12879       // alignment), and the value of IncValue (which is actually used to
12880       // increment the pointer value) are different! This is because we
12881       // require the next load to appear to be aligned, even though it
12882       // is actually offset from the base pointer by a lesser amount.
12883       int IncOffset = VT.getSizeInBits() / 8;
12884       int IncValue = IncOffset;
12885 
12886       // Walk (both up and down) the chain looking for another load at the real
12887       // (aligned) offset (the alignment of the other load does not matter in
12888       // this case). If found, then do not use the offset reduction trick, as
12889       // that will prevent the loads from being later combined (as they would
12890       // otherwise be duplicates).
12891       if (!findConsecutiveLoad(LD, DAG))
12892         --IncValue;
12893 
12894       SDValue Increment =
12895           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12896       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12897 
12898       MachineMemOperand *ExtraMMO =
12899         MF.getMachineMemOperand(LD->getMemOperand(),
12900                                 1, 2*MemVT.getStoreSize()-1);
12901       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12902       SDValue ExtraLoad =
12903         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12904                                 DAG.getVTList(PermTy, MVT::Other),
12905                                 ExtraLoadOps, LDTy, ExtraMMO);
12906 
12907       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12908         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12909 
12910       // Because vperm has a big-endian bias, we must reverse the order
12911       // of the input vectors and complement the permute control vector
12912       // when generating little endian code.  We have already handled the
12913       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12914       // and ExtraLoad here.
12915       SDValue Perm;
12916       if (isLittleEndian)
12917         Perm = BuildIntrinsicOp(IntrPerm,
12918                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12919       else
12920         Perm = BuildIntrinsicOp(IntrPerm,
12921                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12922 
12923       if (VT != PermTy)
12924         Perm = Subtarget.hasAltivec() ?
12925                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12926                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12927                                DAG.getTargetConstant(1, dl, MVT::i64));
12928                                // second argument is 1 because this rounding
12929                                // is always exact.
12930 
12931       // The output of the permutation is our loaded result, the TokenFactor is
12932       // our new chain.
12933       DCI.CombineTo(N, Perm, TF);
12934       return SDValue(N, 0);
12935     }
12936     }
12937     break;
12938     case ISD::INTRINSIC_WO_CHAIN: {
12939       bool isLittleEndian = Subtarget.isLittleEndian();
12940       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12941       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12942                                            : Intrinsic::ppc_altivec_lvsl);
12943       if ((IID == Intr ||
12944            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12945            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12946         N->getOperand(1)->getOpcode() == ISD::ADD) {
12947         SDValue Add = N->getOperand(1);
12948 
12949         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12950                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12951 
12952         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12953                                   APInt::getAllOnesValue(Bits /* alignment */)
12954                                       .zext(Add.getScalarValueSizeInBits()))) {
12955           SDNode *BasePtr = Add->getOperand(0).getNode();
12956           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12957                                     UE = BasePtr->use_end();
12958                UI != UE; ++UI) {
12959             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12960                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12961               // We've found another LVSL/LVSR, and this address is an aligned
12962               // multiple of that one. The results will be the same, so use the
12963               // one we've just found instead.
12964 
12965               return SDValue(*UI, 0);
12966             }
12967           }
12968         }
12969 
12970         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12971           SDNode *BasePtr = Add->getOperand(0).getNode();
12972           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12973                UE = BasePtr->use_end(); UI != UE; ++UI) {
12974             if (UI->getOpcode() == ISD::ADD &&
12975                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12976                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12977                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12978                 (1ULL << Bits) == 0) {
12979               SDNode *OtherAdd = *UI;
12980               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12981                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12982                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12983                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12984                   return SDValue(*VI, 0);
12985                 }
12986               }
12987             }
12988           }
12989         }
12990       }
12991     }
12992 
12993     break;
12994   case ISD::INTRINSIC_W_CHAIN:
12995     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12996     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12997     if (Subtarget.needsSwapsForVSXMemOps()) {
12998       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12999       default:
13000         break;
13001       case Intrinsic::ppc_vsx_lxvw4x:
13002       case Intrinsic::ppc_vsx_lxvd2x:
13003         return expandVSXLoadForLE(N, DCI);
13004       }
13005     }
13006     break;
13007   case ISD::INTRINSIC_VOID:
13008     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13009     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13010     if (Subtarget.needsSwapsForVSXMemOps()) {
13011       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13012       default:
13013         break;
13014       case Intrinsic::ppc_vsx_stxvw4x:
13015       case Intrinsic::ppc_vsx_stxvd2x:
13016         return expandVSXStoreForLE(N, DCI);
13017       }
13018     }
13019     break;
13020   case ISD::BSWAP:
13021     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13022     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13023         N->getOperand(0).hasOneUse() &&
13024         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13025          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13026           N->getValueType(0) == MVT::i64))) {
13027       SDValue Load = N->getOperand(0);
13028       LoadSDNode *LD = cast<LoadSDNode>(Load);
13029       // Create the byte-swapping load.
13030       SDValue Ops[] = {
13031         LD->getChain(),    // Chain
13032         LD->getBasePtr(),  // Ptr
13033         DAG.getValueType(N->getValueType(0)) // VT
13034       };
13035       SDValue BSLoad =
13036         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13037                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13038                                               MVT::i64 : MVT::i32, MVT::Other),
13039                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13040 
13041       // If this is an i16 load, insert the truncate.
13042       SDValue ResVal = BSLoad;
13043       if (N->getValueType(0) == MVT::i16)
13044         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13045 
13046       // First, combine the bswap away.  This makes the value produced by the
13047       // load dead.
13048       DCI.CombineTo(N, ResVal);
13049 
13050       // Next, combine the load away, we give it a bogus result value but a real
13051       // chain result.  The result value is dead because the bswap is dead.
13052       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13053 
13054       // Return N so it doesn't get rechecked!
13055       return SDValue(N, 0);
13056     }
13057     break;
13058   case PPCISD::VCMP:
13059     // If a VCMPo node already exists with exactly the same operands as this
13060     // node, use its result instead of this node (VCMPo computes both a CR6 and
13061     // a normal output).
13062     //
13063     if (!N->getOperand(0).hasOneUse() &&
13064         !N->getOperand(1).hasOneUse() &&
13065         !N->getOperand(2).hasOneUse()) {
13066 
13067       // Scan all of the users of the LHS, looking for VCMPo's that match.
13068       SDNode *VCMPoNode = nullptr;
13069 
13070       SDNode *LHSN = N->getOperand(0).getNode();
13071       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13072            UI != E; ++UI)
13073         if (UI->getOpcode() == PPCISD::VCMPo &&
13074             UI->getOperand(1) == N->getOperand(1) &&
13075             UI->getOperand(2) == N->getOperand(2) &&
13076             UI->getOperand(0) == N->getOperand(0)) {
13077           VCMPoNode = *UI;
13078           break;
13079         }
13080 
13081       // If there is no VCMPo node, or if the flag value has a single use, don't
13082       // transform this.
13083       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13084         break;
13085 
13086       // Look at the (necessarily single) use of the flag value.  If it has a
13087       // chain, this transformation is more complex.  Note that multiple things
13088       // could use the value result, which we should ignore.
13089       SDNode *FlagUser = nullptr;
13090       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13091            FlagUser == nullptr; ++UI) {
13092         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13093         SDNode *User = *UI;
13094         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13095           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13096             FlagUser = User;
13097             break;
13098           }
13099         }
13100       }
13101 
13102       // If the user is a MFOCRF instruction, we know this is safe.
13103       // Otherwise we give up for right now.
13104       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13105         return SDValue(VCMPoNode, 0);
13106     }
13107     break;
13108   case ISD::BRCOND: {
13109     SDValue Cond = N->getOperand(1);
13110     SDValue Target = N->getOperand(2);
13111 
13112     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13113         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13114           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13115 
13116       // We now need to make the intrinsic dead (it cannot be instruction
13117       // selected).
13118       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13119       assert(Cond.getNode()->hasOneUse() &&
13120              "Counter decrement has more than one use");
13121 
13122       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13123                          N->getOperand(0), Target);
13124     }
13125   }
13126   break;
13127   case ISD::BR_CC: {
13128     // If this is a branch on an altivec predicate comparison, lower this so
13129     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13130     // lowering is done pre-legalize, because the legalizer lowers the predicate
13131     // compare down to code that is difficult to reassemble.
13132     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13133     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13134 
13135     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13136     // value. If so, pass-through the AND to get to the intrinsic.
13137     if (LHS.getOpcode() == ISD::AND &&
13138         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13139         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13140           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13141         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13142         !isNullConstant(LHS.getOperand(1)))
13143       LHS = LHS.getOperand(0);
13144 
13145     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13146         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13147           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13148         isa<ConstantSDNode>(RHS)) {
13149       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13150              "Counter decrement comparison is not EQ or NE");
13151 
13152       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13153       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13154                     (CC == ISD::SETNE && !Val);
13155 
13156       // We now need to make the intrinsic dead (it cannot be instruction
13157       // selected).
13158       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13159       assert(LHS.getNode()->hasOneUse() &&
13160              "Counter decrement has more than one use");
13161 
13162       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13163                          N->getOperand(0), N->getOperand(4));
13164     }
13165 
13166     int CompareOpc;
13167     bool isDot;
13168 
13169     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13170         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13171         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13172       assert(isDot && "Can't compare against a vector result!");
13173 
13174       // If this is a comparison against something other than 0/1, then we know
13175       // that the condition is never/always true.
13176       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13177       if (Val != 0 && Val != 1) {
13178         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13179           return N->getOperand(0);
13180         // Always !=, turn it into an unconditional branch.
13181         return DAG.getNode(ISD::BR, dl, MVT::Other,
13182                            N->getOperand(0), N->getOperand(4));
13183       }
13184 
13185       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13186 
13187       // Create the PPCISD altivec 'dot' comparison node.
13188       SDValue Ops[] = {
13189         LHS.getOperand(2),  // LHS of compare
13190         LHS.getOperand(3),  // RHS of compare
13191         DAG.getConstant(CompareOpc, dl, MVT::i32)
13192       };
13193       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13194       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13195 
13196       // Unpack the result based on how the target uses it.
13197       PPC::Predicate CompOpc;
13198       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13199       default:  // Can't happen, don't crash on invalid number though.
13200       case 0:   // Branch on the value of the EQ bit of CR6.
13201         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13202         break;
13203       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13204         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13205         break;
13206       case 2:   // Branch on the value of the LT bit of CR6.
13207         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13208         break;
13209       case 3:   // Branch on the inverted value of the LT bit of CR6.
13210         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13211         break;
13212       }
13213 
13214       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13215                          DAG.getConstant(CompOpc, dl, MVT::i32),
13216                          DAG.getRegister(PPC::CR6, MVT::i32),
13217                          N->getOperand(4), CompNode.getValue(1));
13218     }
13219     break;
13220   }
13221   case ISD::BUILD_VECTOR:
13222     return DAGCombineBuildVector(N, DCI);
13223   }
13224 
13225   return SDValue();
13226 }
13227 
13228 SDValue
13229 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13230                                  SelectionDAG &DAG,
13231                                  SmallVectorImpl<SDNode *> &Created) const {
13232   // fold (sdiv X, pow2)
13233   EVT VT = N->getValueType(0);
13234   if (VT == MVT::i64 && !Subtarget.isPPC64())
13235     return SDValue();
13236   if ((VT != MVT::i32 && VT != MVT::i64) ||
13237       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13238     return SDValue();
13239 
13240   SDLoc DL(N);
13241   SDValue N0 = N->getOperand(0);
13242 
13243   bool IsNegPow2 = (-Divisor).isPowerOf2();
13244   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13245   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13246 
13247   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13248   Created.push_back(Op.getNode());
13249 
13250   if (IsNegPow2) {
13251     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13252     Created.push_back(Op.getNode());
13253   }
13254 
13255   return Op;
13256 }
13257 
13258 //===----------------------------------------------------------------------===//
13259 // Inline Assembly Support
13260 //===----------------------------------------------------------------------===//
13261 
13262 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13263                                                       KnownBits &Known,
13264                                                       const APInt &DemandedElts,
13265                                                       const SelectionDAG &DAG,
13266                                                       unsigned Depth) const {
13267   Known.resetAll();
13268   switch (Op.getOpcode()) {
13269   default: break;
13270   case PPCISD::LBRX: {
13271     // lhbrx is known to have the top bits cleared out.
13272     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13273       Known.Zero = 0xFFFF0000;
13274     break;
13275   }
13276   case ISD::INTRINSIC_WO_CHAIN: {
13277     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13278     default: break;
13279     case Intrinsic::ppc_altivec_vcmpbfp_p:
13280     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13281     case Intrinsic::ppc_altivec_vcmpequb_p:
13282     case Intrinsic::ppc_altivec_vcmpequh_p:
13283     case Intrinsic::ppc_altivec_vcmpequw_p:
13284     case Intrinsic::ppc_altivec_vcmpequd_p:
13285     case Intrinsic::ppc_altivec_vcmpgefp_p:
13286     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13287     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13288     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13289     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13290     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13291     case Intrinsic::ppc_altivec_vcmpgtub_p:
13292     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13293     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13294     case Intrinsic::ppc_altivec_vcmpgtud_p:
13295       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13296       break;
13297     }
13298   }
13299   }
13300 }
13301 
13302 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13303   switch (Subtarget.getDarwinDirective()) {
13304   default: break;
13305   case PPC::DIR_970:
13306   case PPC::DIR_PWR4:
13307   case PPC::DIR_PWR5:
13308   case PPC::DIR_PWR5X:
13309   case PPC::DIR_PWR6:
13310   case PPC::DIR_PWR6X:
13311   case PPC::DIR_PWR7:
13312   case PPC::DIR_PWR8:
13313   case PPC::DIR_PWR9: {
13314     if (!ML)
13315       break;
13316 
13317     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13318 
13319     // For small loops (between 5 and 8 instructions), align to a 32-byte
13320     // boundary so that the entire loop fits in one instruction-cache line.
13321     uint64_t LoopSize = 0;
13322     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13323       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13324         LoopSize += TII->getInstSizeInBytes(*J);
13325         if (LoopSize > 32)
13326           break;
13327       }
13328 
13329     if (LoopSize > 16 && LoopSize <= 32)
13330       return 5;
13331 
13332     break;
13333   }
13334   }
13335 
13336   return TargetLowering::getPrefLoopAlignment(ML);
13337 }
13338 
13339 /// getConstraintType - Given a constraint, return the type of
13340 /// constraint it is for this target.
13341 PPCTargetLowering::ConstraintType
13342 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13343   if (Constraint.size() == 1) {
13344     switch (Constraint[0]) {
13345     default: break;
13346     case 'b':
13347     case 'r':
13348     case 'f':
13349     case 'd':
13350     case 'v':
13351     case 'y':
13352       return C_RegisterClass;
13353     case 'Z':
13354       // FIXME: While Z does indicate a memory constraint, it specifically
13355       // indicates an r+r address (used in conjunction with the 'y' modifier
13356       // in the replacement string). Currently, we're forcing the base
13357       // register to be r0 in the asm printer (which is interpreted as zero)
13358       // and forming the complete address in the second register. This is
13359       // suboptimal.
13360       return C_Memory;
13361     }
13362   } else if (Constraint == "wc") { // individual CR bits.
13363     return C_RegisterClass;
13364   } else if (Constraint == "wa" || Constraint == "wd" ||
13365              Constraint == "wf" || Constraint == "ws" ||
13366              Constraint == "wi") {
13367     return C_RegisterClass; // VSX registers.
13368   }
13369   return TargetLowering::getConstraintType(Constraint);
13370 }
13371 
13372 /// Examine constraint type and operand type and determine a weight value.
13373 /// This object must already have been set up with the operand type
13374 /// and the current alternative constraint selected.
13375 TargetLowering::ConstraintWeight
13376 PPCTargetLowering::getSingleConstraintMatchWeight(
13377     AsmOperandInfo &info, const char *constraint) const {
13378   ConstraintWeight weight = CW_Invalid;
13379   Value *CallOperandVal = info.CallOperandVal;
13380     // If we don't have a value, we can't do a match,
13381     // but allow it at the lowest weight.
13382   if (!CallOperandVal)
13383     return CW_Default;
13384   Type *type = CallOperandVal->getType();
13385 
13386   // Look at the constraint type.
13387   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13388     return CW_Register; // an individual CR bit.
13389   else if ((StringRef(constraint) == "wa" ||
13390             StringRef(constraint) == "wd" ||
13391             StringRef(constraint) == "wf") &&
13392            type->isVectorTy())
13393     return CW_Register;
13394   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13395     return CW_Register;
13396   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13397     return CW_Register; // just hold 64-bit integers data.
13398 
13399   switch (*constraint) {
13400   default:
13401     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13402     break;
13403   case 'b':
13404     if (type->isIntegerTy())
13405       weight = CW_Register;
13406     break;
13407   case 'f':
13408     if (type->isFloatTy())
13409       weight = CW_Register;
13410     break;
13411   case 'd':
13412     if (type->isDoubleTy())
13413       weight = CW_Register;
13414     break;
13415   case 'v':
13416     if (type->isVectorTy())
13417       weight = CW_Register;
13418     break;
13419   case 'y':
13420     weight = CW_Register;
13421     break;
13422   case 'Z':
13423     weight = CW_Memory;
13424     break;
13425   }
13426   return weight;
13427 }
13428 
13429 std::pair<unsigned, const TargetRegisterClass *>
13430 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13431                                                 StringRef Constraint,
13432                                                 MVT VT) const {
13433   if (Constraint.size() == 1) {
13434     // GCC RS6000 Constraint Letters
13435     switch (Constraint[0]) {
13436     case 'b':   // R1-R31
13437       if (VT == MVT::i64 && Subtarget.isPPC64())
13438         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13439       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13440     case 'r':   // R0-R31
13441       if (VT == MVT::i64 && Subtarget.isPPC64())
13442         return std::make_pair(0U, &PPC::G8RCRegClass);
13443       return std::make_pair(0U, &PPC::GPRCRegClass);
13444     // 'd' and 'f' constraints are both defined to be "the floating point
13445     // registers", where one is for 32-bit and the other for 64-bit. We don't
13446     // really care overly much here so just give them all the same reg classes.
13447     case 'd':
13448     case 'f':
13449       if (Subtarget.hasSPE()) {
13450         if (VT == MVT::f32 || VT == MVT::i32)
13451           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13452         if (VT == MVT::f64 || VT == MVT::i64)
13453           return std::make_pair(0U, &PPC::SPERCRegClass);
13454       } else {
13455         if (VT == MVT::f32 || VT == MVT::i32)
13456           return std::make_pair(0U, &PPC::F4RCRegClass);
13457         if (VT == MVT::f64 || VT == MVT::i64)
13458           return std::make_pair(0U, &PPC::F8RCRegClass);
13459         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13460           return std::make_pair(0U, &PPC::QFRCRegClass);
13461         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13462           return std::make_pair(0U, &PPC::QSRCRegClass);
13463       }
13464       break;
13465     case 'v':
13466       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13467         return std::make_pair(0U, &PPC::QFRCRegClass);
13468       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13469         return std::make_pair(0U, &PPC::QSRCRegClass);
13470       if (Subtarget.hasAltivec())
13471         return std::make_pair(0U, &PPC::VRRCRegClass);
13472       break;
13473     case 'y':   // crrc
13474       return std::make_pair(0U, &PPC::CRRCRegClass);
13475     }
13476   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13477     // An individual CR bit.
13478     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13479   } else if ((Constraint == "wa" || Constraint == "wd" ||
13480              Constraint == "wf" || Constraint == "wi") &&
13481              Subtarget.hasVSX()) {
13482     return std::make_pair(0U, &PPC::VSRCRegClass);
13483   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13484     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13485       return std::make_pair(0U, &PPC::VSSRCRegClass);
13486     else
13487       return std::make_pair(0U, &PPC::VSFRCRegClass);
13488   }
13489 
13490   std::pair<unsigned, const TargetRegisterClass *> R =
13491       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13492 
13493   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13494   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13495   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13496   // register.
13497   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13498   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13499   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13500       PPC::GPRCRegClass.contains(R.first))
13501     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13502                             PPC::sub_32, &PPC::G8RCRegClass),
13503                           &PPC::G8RCRegClass);
13504 
13505   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13506   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13507     R.first = PPC::CR0;
13508     R.second = &PPC::CRRCRegClass;
13509   }
13510 
13511   return R;
13512 }
13513 
13514 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13515 /// vector.  If it is invalid, don't add anything to Ops.
13516 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13517                                                      std::string &Constraint,
13518                                                      std::vector<SDValue>&Ops,
13519                                                      SelectionDAG &DAG) const {
13520   SDValue Result;
13521 
13522   // Only support length 1 constraints.
13523   if (Constraint.length() > 1) return;
13524 
13525   char Letter = Constraint[0];
13526   switch (Letter) {
13527   default: break;
13528   case 'I':
13529   case 'J':
13530   case 'K':
13531   case 'L':
13532   case 'M':
13533   case 'N':
13534   case 'O':
13535   case 'P': {
13536     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13537     if (!CST) return; // Must be an immediate to match.
13538     SDLoc dl(Op);
13539     int64_t Value = CST->getSExtValue();
13540     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13541                          // numbers are printed as such.
13542     switch (Letter) {
13543     default: llvm_unreachable("Unknown constraint letter!");
13544     case 'I':  // "I" is a signed 16-bit constant.
13545       if (isInt<16>(Value))
13546         Result = DAG.getTargetConstant(Value, dl, TCVT);
13547       break;
13548     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13549       if (isShiftedUInt<16, 16>(Value))
13550         Result = DAG.getTargetConstant(Value, dl, TCVT);
13551       break;
13552     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13553       if (isShiftedInt<16, 16>(Value))
13554         Result = DAG.getTargetConstant(Value, dl, TCVT);
13555       break;
13556     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13557       if (isUInt<16>(Value))
13558         Result = DAG.getTargetConstant(Value, dl, TCVT);
13559       break;
13560     case 'M':  // "M" is a constant that is greater than 31.
13561       if (Value > 31)
13562         Result = DAG.getTargetConstant(Value, dl, TCVT);
13563       break;
13564     case 'N':  // "N" is a positive constant that is an exact power of two.
13565       if (Value > 0 && isPowerOf2_64(Value))
13566         Result = DAG.getTargetConstant(Value, dl, TCVT);
13567       break;
13568     case 'O':  // "O" is the constant zero.
13569       if (Value == 0)
13570         Result = DAG.getTargetConstant(Value, dl, TCVT);
13571       break;
13572     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13573       if (isInt<16>(-Value))
13574         Result = DAG.getTargetConstant(Value, dl, TCVT);
13575       break;
13576     }
13577     break;
13578   }
13579   }
13580 
13581   if (Result.getNode()) {
13582     Ops.push_back(Result);
13583     return;
13584   }
13585 
13586   // Handle standard constraint letters.
13587   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13588 }
13589 
13590 // isLegalAddressingMode - Return true if the addressing mode represented
13591 // by AM is legal for this target, for a load/store of the specified type.
13592 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13593                                               const AddrMode &AM, Type *Ty,
13594                                               unsigned AS, Instruction *I) const {
13595   // PPC does not allow r+i addressing modes for vectors!
13596   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13597     return false;
13598 
13599   // PPC allows a sign-extended 16-bit immediate field.
13600   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13601     return false;
13602 
13603   // No global is ever allowed as a base.
13604   if (AM.BaseGV)
13605     return false;
13606 
13607   // PPC only support r+r,
13608   switch (AM.Scale) {
13609   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13610     break;
13611   case 1:
13612     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13613       return false;
13614     // Otherwise we have r+r or r+i.
13615     break;
13616   case 2:
13617     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13618       return false;
13619     // Allow 2*r as r+r.
13620     break;
13621   default:
13622     // No other scales are supported.
13623     return false;
13624   }
13625 
13626   return true;
13627 }
13628 
13629 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13630                                            SelectionDAG &DAG) const {
13631   MachineFunction &MF = DAG.getMachineFunction();
13632   MachineFrameInfo &MFI = MF.getFrameInfo();
13633   MFI.setReturnAddressIsTaken(true);
13634 
13635   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13636     return SDValue();
13637 
13638   SDLoc dl(Op);
13639   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13640 
13641   // Make sure the function does not optimize away the store of the RA to
13642   // the stack.
13643   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13644   FuncInfo->setLRStoreRequired();
13645   bool isPPC64 = Subtarget.isPPC64();
13646   auto PtrVT = getPointerTy(MF.getDataLayout());
13647 
13648   if (Depth > 0) {
13649     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13650     SDValue Offset =
13651         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13652                         isPPC64 ? MVT::i64 : MVT::i32);
13653     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13654                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13655                        MachinePointerInfo());
13656   }
13657 
13658   // Just load the return address off the stack.
13659   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13660   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13661                      MachinePointerInfo());
13662 }
13663 
13664 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13665                                           SelectionDAG &DAG) const {
13666   SDLoc dl(Op);
13667   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13668 
13669   MachineFunction &MF = DAG.getMachineFunction();
13670   MachineFrameInfo &MFI = MF.getFrameInfo();
13671   MFI.setFrameAddressIsTaken(true);
13672 
13673   EVT PtrVT = getPointerTy(MF.getDataLayout());
13674   bool isPPC64 = PtrVT == MVT::i64;
13675 
13676   // Naked functions never have a frame pointer, and so we use r1. For all
13677   // other functions, this decision must be delayed until during PEI.
13678   unsigned FrameReg;
13679   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13680     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13681   else
13682     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13683 
13684   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13685                                          PtrVT);
13686   while (Depth--)
13687     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13688                             FrameAddr, MachinePointerInfo());
13689   return FrameAddr;
13690 }
13691 
13692 // FIXME? Maybe this could be a TableGen attribute on some registers and
13693 // this table could be generated automatically from RegInfo.
13694 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13695                                               SelectionDAG &DAG) const {
13696   bool isPPC64 = Subtarget.isPPC64();
13697   bool isDarwinABI = Subtarget.isDarwinABI();
13698 
13699   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13700       (!isPPC64 && VT != MVT::i32))
13701     report_fatal_error("Invalid register global variable type");
13702 
13703   bool is64Bit = isPPC64 && VT == MVT::i64;
13704   unsigned Reg = StringSwitch<unsigned>(RegName)
13705                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13706                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13707                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13708                                   (is64Bit ? PPC::X13 : PPC::R13))
13709                    .Default(0);
13710 
13711   if (Reg)
13712     return Reg;
13713   report_fatal_error("Invalid register name global variable");
13714 }
13715 
13716 bool
13717 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13718   // The PowerPC target isn't yet aware of offsets.
13719   return false;
13720 }
13721 
13722 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13723                                            const CallInst &I,
13724                                            MachineFunction &MF,
13725                                            unsigned Intrinsic) const {
13726   switch (Intrinsic) {
13727   case Intrinsic::ppc_qpx_qvlfd:
13728   case Intrinsic::ppc_qpx_qvlfs:
13729   case Intrinsic::ppc_qpx_qvlfcd:
13730   case Intrinsic::ppc_qpx_qvlfcs:
13731   case Intrinsic::ppc_qpx_qvlfiwa:
13732   case Intrinsic::ppc_qpx_qvlfiwz:
13733   case Intrinsic::ppc_altivec_lvx:
13734   case Intrinsic::ppc_altivec_lvxl:
13735   case Intrinsic::ppc_altivec_lvebx:
13736   case Intrinsic::ppc_altivec_lvehx:
13737   case Intrinsic::ppc_altivec_lvewx:
13738   case Intrinsic::ppc_vsx_lxvd2x:
13739   case Intrinsic::ppc_vsx_lxvw4x: {
13740     EVT VT;
13741     switch (Intrinsic) {
13742     case Intrinsic::ppc_altivec_lvebx:
13743       VT = MVT::i8;
13744       break;
13745     case Intrinsic::ppc_altivec_lvehx:
13746       VT = MVT::i16;
13747       break;
13748     case Intrinsic::ppc_altivec_lvewx:
13749       VT = MVT::i32;
13750       break;
13751     case Intrinsic::ppc_vsx_lxvd2x:
13752       VT = MVT::v2f64;
13753       break;
13754     case Intrinsic::ppc_qpx_qvlfd:
13755       VT = MVT::v4f64;
13756       break;
13757     case Intrinsic::ppc_qpx_qvlfs:
13758       VT = MVT::v4f32;
13759       break;
13760     case Intrinsic::ppc_qpx_qvlfcd:
13761       VT = MVT::v2f64;
13762       break;
13763     case Intrinsic::ppc_qpx_qvlfcs:
13764       VT = MVT::v2f32;
13765       break;
13766     default:
13767       VT = MVT::v4i32;
13768       break;
13769     }
13770 
13771     Info.opc = ISD::INTRINSIC_W_CHAIN;
13772     Info.memVT = VT;
13773     Info.ptrVal = I.getArgOperand(0);
13774     Info.offset = -VT.getStoreSize()+1;
13775     Info.size = 2*VT.getStoreSize()-1;
13776     Info.align = 1;
13777     Info.flags = MachineMemOperand::MOLoad;
13778     return true;
13779   }
13780   case Intrinsic::ppc_qpx_qvlfda:
13781   case Intrinsic::ppc_qpx_qvlfsa:
13782   case Intrinsic::ppc_qpx_qvlfcda:
13783   case Intrinsic::ppc_qpx_qvlfcsa:
13784   case Intrinsic::ppc_qpx_qvlfiwaa:
13785   case Intrinsic::ppc_qpx_qvlfiwza: {
13786     EVT VT;
13787     switch (Intrinsic) {
13788     case Intrinsic::ppc_qpx_qvlfda:
13789       VT = MVT::v4f64;
13790       break;
13791     case Intrinsic::ppc_qpx_qvlfsa:
13792       VT = MVT::v4f32;
13793       break;
13794     case Intrinsic::ppc_qpx_qvlfcda:
13795       VT = MVT::v2f64;
13796       break;
13797     case Intrinsic::ppc_qpx_qvlfcsa:
13798       VT = MVT::v2f32;
13799       break;
13800     default:
13801       VT = MVT::v4i32;
13802       break;
13803     }
13804 
13805     Info.opc = ISD::INTRINSIC_W_CHAIN;
13806     Info.memVT = VT;
13807     Info.ptrVal = I.getArgOperand(0);
13808     Info.offset = 0;
13809     Info.size = VT.getStoreSize();
13810     Info.align = 1;
13811     Info.flags = MachineMemOperand::MOLoad;
13812     return true;
13813   }
13814   case Intrinsic::ppc_qpx_qvstfd:
13815   case Intrinsic::ppc_qpx_qvstfs:
13816   case Intrinsic::ppc_qpx_qvstfcd:
13817   case Intrinsic::ppc_qpx_qvstfcs:
13818   case Intrinsic::ppc_qpx_qvstfiw:
13819   case Intrinsic::ppc_altivec_stvx:
13820   case Intrinsic::ppc_altivec_stvxl:
13821   case Intrinsic::ppc_altivec_stvebx:
13822   case Intrinsic::ppc_altivec_stvehx:
13823   case Intrinsic::ppc_altivec_stvewx:
13824   case Intrinsic::ppc_vsx_stxvd2x:
13825   case Intrinsic::ppc_vsx_stxvw4x: {
13826     EVT VT;
13827     switch (Intrinsic) {
13828     case Intrinsic::ppc_altivec_stvebx:
13829       VT = MVT::i8;
13830       break;
13831     case Intrinsic::ppc_altivec_stvehx:
13832       VT = MVT::i16;
13833       break;
13834     case Intrinsic::ppc_altivec_stvewx:
13835       VT = MVT::i32;
13836       break;
13837     case Intrinsic::ppc_vsx_stxvd2x:
13838       VT = MVT::v2f64;
13839       break;
13840     case Intrinsic::ppc_qpx_qvstfd:
13841       VT = MVT::v4f64;
13842       break;
13843     case Intrinsic::ppc_qpx_qvstfs:
13844       VT = MVT::v4f32;
13845       break;
13846     case Intrinsic::ppc_qpx_qvstfcd:
13847       VT = MVT::v2f64;
13848       break;
13849     case Intrinsic::ppc_qpx_qvstfcs:
13850       VT = MVT::v2f32;
13851       break;
13852     default:
13853       VT = MVT::v4i32;
13854       break;
13855     }
13856 
13857     Info.opc = ISD::INTRINSIC_VOID;
13858     Info.memVT = VT;
13859     Info.ptrVal = I.getArgOperand(1);
13860     Info.offset = -VT.getStoreSize()+1;
13861     Info.size = 2*VT.getStoreSize()-1;
13862     Info.align = 1;
13863     Info.flags = MachineMemOperand::MOStore;
13864     return true;
13865   }
13866   case Intrinsic::ppc_qpx_qvstfda:
13867   case Intrinsic::ppc_qpx_qvstfsa:
13868   case Intrinsic::ppc_qpx_qvstfcda:
13869   case Intrinsic::ppc_qpx_qvstfcsa:
13870   case Intrinsic::ppc_qpx_qvstfiwa: {
13871     EVT VT;
13872     switch (Intrinsic) {
13873     case Intrinsic::ppc_qpx_qvstfda:
13874       VT = MVT::v4f64;
13875       break;
13876     case Intrinsic::ppc_qpx_qvstfsa:
13877       VT = MVT::v4f32;
13878       break;
13879     case Intrinsic::ppc_qpx_qvstfcda:
13880       VT = MVT::v2f64;
13881       break;
13882     case Intrinsic::ppc_qpx_qvstfcsa:
13883       VT = MVT::v2f32;
13884       break;
13885     default:
13886       VT = MVT::v4i32;
13887       break;
13888     }
13889 
13890     Info.opc = ISD::INTRINSIC_VOID;
13891     Info.memVT = VT;
13892     Info.ptrVal = I.getArgOperand(1);
13893     Info.offset = 0;
13894     Info.size = VT.getStoreSize();
13895     Info.align = 1;
13896     Info.flags = MachineMemOperand::MOStore;
13897     return true;
13898   }
13899   default:
13900     break;
13901   }
13902 
13903   return false;
13904 }
13905 
13906 /// getOptimalMemOpType - Returns the target specific optimal type for load
13907 /// and store operations as a result of memset, memcpy, and memmove
13908 /// lowering. If DstAlign is zero that means it's safe to destination
13909 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13910 /// means there isn't a need to check it against alignment requirement,
13911 /// probably because the source does not need to be loaded. If 'IsMemset' is
13912 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13913 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13914 /// source is constant so it does not need to be loaded.
13915 /// It returns EVT::Other if the type should be determined using generic
13916 /// target-independent logic.
13917 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13918                                            unsigned DstAlign, unsigned SrcAlign,
13919                                            bool IsMemset, bool ZeroMemset,
13920                                            bool MemcpyStrSrc,
13921                                            MachineFunction &MF) const {
13922   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13923     const Function &F = MF.getFunction();
13924     // When expanding a memset, require at least two QPX instructions to cover
13925     // the cost of loading the value to be stored from the constant pool.
13926     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13927        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13928         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
13929       return MVT::v4f64;
13930     }
13931 
13932     // We should use Altivec/VSX loads and stores when available. For unaligned
13933     // addresses, unaligned VSX loads are only fast starting with the P8.
13934     if (Subtarget.hasAltivec() && Size >= 16 &&
13935         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13936          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13937       return MVT::v4i32;
13938   }
13939 
13940   if (Subtarget.isPPC64()) {
13941     return MVT::i64;
13942   }
13943 
13944   return MVT::i32;
13945 }
13946 
13947 /// Returns true if it is beneficial to convert a load of a constant
13948 /// to just the constant itself.
13949 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13950                                                           Type *Ty) const {
13951   assert(Ty->isIntegerTy());
13952 
13953   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13954   return !(BitSize == 0 || BitSize > 64);
13955 }
13956 
13957 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13958   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13959     return false;
13960   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13961   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13962   return NumBits1 == 64 && NumBits2 == 32;
13963 }
13964 
13965 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13966   if (!VT1.isInteger() || !VT2.isInteger())
13967     return false;
13968   unsigned NumBits1 = VT1.getSizeInBits();
13969   unsigned NumBits2 = VT2.getSizeInBits();
13970   return NumBits1 == 64 && NumBits2 == 32;
13971 }
13972 
13973 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13974   // Generally speaking, zexts are not free, but they are free when they can be
13975   // folded with other operations.
13976   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13977     EVT MemVT = LD->getMemoryVT();
13978     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13979          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13980         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13981          LD->getExtensionType() == ISD::ZEXTLOAD))
13982       return true;
13983   }
13984 
13985   // FIXME: Add other cases...
13986   //  - 32-bit shifts with a zext to i64
13987   //  - zext after ctlz, bswap, etc.
13988   //  - zext after and by a constant mask
13989 
13990   return TargetLowering::isZExtFree(Val, VT2);
13991 }
13992 
13993 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13994   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13995          "invalid fpext types");
13996   // Extending to float128 is not free.
13997   if (DestVT == MVT::f128)
13998     return false;
13999   return true;
14000 }
14001 
14002 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14003   return isInt<16>(Imm) || isUInt<16>(Imm);
14004 }
14005 
14006 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14007   return isInt<16>(Imm) || isUInt<16>(Imm);
14008 }
14009 
14010 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14011                                                        unsigned,
14012                                                        unsigned,
14013                                                        bool *Fast) const {
14014   if (DisablePPCUnaligned)
14015     return false;
14016 
14017   // PowerPC supports unaligned memory access for simple non-vector types.
14018   // Although accessing unaligned addresses is not as efficient as accessing
14019   // aligned addresses, it is generally more efficient than manual expansion,
14020   // and generally only traps for software emulation when crossing page
14021   // boundaries.
14022 
14023   if (!VT.isSimple())
14024     return false;
14025 
14026   if (VT.getSimpleVT().isVector()) {
14027     if (Subtarget.hasVSX()) {
14028       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14029           VT != MVT::v4f32 && VT != MVT::v4i32)
14030         return false;
14031     } else {
14032       return false;
14033     }
14034   }
14035 
14036   if (VT == MVT::ppcf128)
14037     return false;
14038 
14039   if (Fast)
14040     *Fast = true;
14041 
14042   return true;
14043 }
14044 
14045 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14046   VT = VT.getScalarType();
14047 
14048   if (!VT.isSimple())
14049     return false;
14050 
14051   switch (VT.getSimpleVT().SimpleTy) {
14052   case MVT::f32:
14053   case MVT::f64:
14054     return true;
14055   case MVT::f128:
14056     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14057   default:
14058     break;
14059   }
14060 
14061   return false;
14062 }
14063 
14064 const MCPhysReg *
14065 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14066   // LR is a callee-save register, but we must treat it as clobbered by any call
14067   // site. Hence we include LR in the scratch registers, which are in turn added
14068   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14069   // to CTR, which is used by any indirect call.
14070   static const MCPhysReg ScratchRegs[] = {
14071     PPC::X12, PPC::LR8, PPC::CTR8, 0
14072   };
14073 
14074   return ScratchRegs;
14075 }
14076 
14077 unsigned PPCTargetLowering::getExceptionPointerRegister(
14078     const Constant *PersonalityFn) const {
14079   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14080 }
14081 
14082 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14083     const Constant *PersonalityFn) const {
14084   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14085 }
14086 
14087 bool
14088 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14089                      EVT VT , unsigned DefinedValues) const {
14090   if (VT == MVT::v2i64)
14091     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14092 
14093   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14094     return true;
14095 
14096   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14097 }
14098 
14099 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14100   if (DisableILPPref || Subtarget.enableMachineScheduler())
14101     return TargetLowering::getSchedulingPreference(N);
14102 
14103   return Sched::ILP;
14104 }
14105 
14106 // Create a fast isel object.
14107 FastISel *
14108 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14109                                   const TargetLibraryInfo *LibInfo) const {
14110   return PPC::createFastISel(FuncInfo, LibInfo);
14111 }
14112 
14113 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14114   if (Subtarget.isDarwinABI()) return;
14115   if (!Subtarget.isPPC64()) return;
14116 
14117   // Update IsSplitCSR in PPCFunctionInfo
14118   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14119   PFI->setIsSplitCSR(true);
14120 }
14121 
14122 void PPCTargetLowering::insertCopiesSplitCSR(
14123   MachineBasicBlock *Entry,
14124   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14125   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14126   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14127   if (!IStart)
14128     return;
14129 
14130   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14131   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14132   MachineBasicBlock::iterator MBBI = Entry->begin();
14133   for (const MCPhysReg *I = IStart; *I; ++I) {
14134     const TargetRegisterClass *RC = nullptr;
14135     if (PPC::G8RCRegClass.contains(*I))
14136       RC = &PPC::G8RCRegClass;
14137     else if (PPC::F8RCRegClass.contains(*I))
14138       RC = &PPC::F8RCRegClass;
14139     else if (PPC::CRRCRegClass.contains(*I))
14140       RC = &PPC::CRRCRegClass;
14141     else if (PPC::VRRCRegClass.contains(*I))
14142       RC = &PPC::VRRCRegClass;
14143     else
14144       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14145 
14146     unsigned NewVR = MRI->createVirtualRegister(RC);
14147     // Create copy from CSR to a virtual register.
14148     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14149     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14150     // nounwind. If we want to generalize this later, we may need to emit
14151     // CFI pseudo-instructions.
14152     assert(Entry->getParent()->getFunction().hasFnAttribute(
14153              Attribute::NoUnwind) &&
14154            "Function should be nounwind in insertCopiesSplitCSR!");
14155     Entry->addLiveIn(*I);
14156     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14157       .addReg(*I);
14158 
14159     // Insert the copy-back instructions right before the terminator
14160     for (auto *Exit : Exits)
14161       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14162               TII->get(TargetOpcode::COPY), *I)
14163         .addReg(NewVR);
14164   }
14165 }
14166 
14167 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14168 bool PPCTargetLowering::useLoadStackGuardNode() const {
14169   if (!Subtarget.isTargetLinux())
14170     return TargetLowering::useLoadStackGuardNode();
14171   return true;
14172 }
14173 
14174 // Override to disable global variable loading on Linux.
14175 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14176   if (!Subtarget.isTargetLinux())
14177     return TargetLowering::insertSSPDeclarations(M);
14178 }
14179 
14180 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14181   if (!VT.isSimple() || !Subtarget.hasVSX())
14182     return false;
14183 
14184   switch(VT.getSimpleVT().SimpleTy) {
14185   default:
14186     // For FP types that are currently not supported by PPC backend, return
14187     // false. Examples: f16, f80.
14188     return false;
14189   case MVT::f32:
14190   case MVT::f64:
14191   case MVT::ppcf128:
14192     return Imm.isPosZero();
14193   }
14194 }
14195 
14196 // For vector shift operation op, fold
14197 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14198 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14199                                   SelectionDAG &DAG) {
14200   SDValue N0 = N->getOperand(0);
14201   SDValue N1 = N->getOperand(1);
14202   EVT VT = N0.getValueType();
14203   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14204   unsigned Opcode = N->getOpcode();
14205   unsigned TargetOpcode;
14206 
14207   switch (Opcode) {
14208   default:
14209     llvm_unreachable("Unexpected shift operation");
14210   case ISD::SHL:
14211     TargetOpcode = PPCISD::SHL;
14212     break;
14213   case ISD::SRL:
14214     TargetOpcode = PPCISD::SRL;
14215     break;
14216   case ISD::SRA:
14217     TargetOpcode = PPCISD::SRA;
14218     break;
14219   }
14220 
14221   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14222       N1->getOpcode() == ISD::AND)
14223     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14224       if (Mask->getZExtValue() == OpSizeInBits - 1)
14225         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14226 
14227   return SDValue();
14228 }
14229 
14230 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14231   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14232     return Value;
14233 
14234   SDValue N0 = N->getOperand(0);
14235   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14236   if (!Subtarget.isISA3_0() ||
14237       N0.getOpcode() != ISD::SIGN_EXTEND ||
14238       N0.getOperand(0).getValueType() != MVT::i32 ||
14239       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14240     return SDValue();
14241 
14242   // We can't save an operation here if the value is already extended, and
14243   // the existing shift is easier to combine.
14244   SDValue ExtsSrc = N0.getOperand(0);
14245   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14246       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14247     return SDValue();
14248 
14249   SDLoc DL(N0);
14250   SDValue ShiftBy = SDValue(CN1, 0);
14251   // We want the shift amount to be i32 on the extswli, but the shift could
14252   // have an i64.
14253   if (ShiftBy.getValueType() == MVT::i64)
14254     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14255 
14256   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14257                          ShiftBy);
14258 }
14259 
14260 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14261   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14262     return Value;
14263 
14264   return SDValue();
14265 }
14266 
14267 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14268   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14269     return Value;
14270 
14271   return SDValue();
14272 }
14273 
14274 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14275 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14276 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14277 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14278 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14279                                  const PPCSubtarget &Subtarget) {
14280   if (!Subtarget.isPPC64())
14281     return SDValue();
14282 
14283   SDValue LHS = N->getOperand(0);
14284   SDValue RHS = N->getOperand(1);
14285 
14286   auto isZextOfCompareWithConstant = [](SDValue Op) {
14287     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14288         Op.getValueType() != MVT::i64)
14289       return false;
14290 
14291     SDValue Cmp = Op.getOperand(0);
14292     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14293         Cmp.getOperand(0).getValueType() != MVT::i64)
14294       return false;
14295 
14296     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14297       int64_t NegConstant = 0 - Constant->getSExtValue();
14298       // Due to the limitations of the addi instruction,
14299       // -C is required to be [-32768, 32767].
14300       return isInt<16>(NegConstant);
14301     }
14302 
14303     return false;
14304   };
14305 
14306   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14307   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14308 
14309   // If there is a pattern, canonicalize a zext operand to the RHS.
14310   if (LHSHasPattern && !RHSHasPattern)
14311     std::swap(LHS, RHS);
14312   else if (!LHSHasPattern && !RHSHasPattern)
14313     return SDValue();
14314 
14315   SDLoc DL(N);
14316   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64);
14317   SDValue Cmp = RHS.getOperand(0);
14318   SDValue Z = Cmp.getOperand(0);
14319   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14320 
14321   assert(Constant && "Constant Should not be a null pointer.");
14322   int64_t NegConstant = 0 - Constant->getSExtValue();
14323 
14324   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14325   default: break;
14326   case ISD::SETNE: {
14327     //                                 when C == 0
14328     //                             --> addze X, (addic Z, -1).carry
14329     //                            /
14330     // add X, (zext(setne Z, C))--
14331     //                            \    when -32768 <= -C <= 32767 && C != 0
14332     //                             --> addze X, (addic (addi Z, -C), -1).carry
14333     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14334                               DAG.getConstant(NegConstant, DL, MVT::i64));
14335     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14336     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14337                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14338     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14339                        SDValue(Addc.getNode(), 1));
14340     }
14341   case ISD::SETEQ: {
14342     //                                 when C == 0
14343     //                             --> addze X, (subfic Z, 0).carry
14344     //                            /
14345     // add X, (zext(sete  Z, C))--
14346     //                            \    when -32768 <= -C <= 32767 && C != 0
14347     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14348     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14349                               DAG.getConstant(NegConstant, DL, MVT::i64));
14350     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14351     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14352                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14353     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14354                        SDValue(Subc.getNode(), 1));
14355     }
14356   }
14357 
14358   return SDValue();
14359 }
14360 
14361 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14362   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14363     return Value;
14364 
14365   return SDValue();
14366 }
14367 
14368 // Detect TRUNCATE operations on bitcasts of float128 values.
14369 // What we are looking for here is the situtation where we extract a subset
14370 // of bits from a 128 bit float.
14371 // This can be of two forms:
14372 // 1) BITCAST of f128 feeding TRUNCATE
14373 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14374 // The reason this is required is because we do not have a legal i128 type
14375 // and so we want to prevent having to store the f128 and then reload part
14376 // of it.
14377 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14378                                            DAGCombinerInfo &DCI) const {
14379   // If we are using CRBits then try that first.
14380   if (Subtarget.useCRBits()) {
14381     // Check if CRBits did anything and return that if it did.
14382     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14383       return CRTruncValue;
14384   }
14385 
14386   SDLoc dl(N);
14387   SDValue Op0 = N->getOperand(0);
14388 
14389   // Looking for a truncate of i128 to i64.
14390   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14391     return SDValue();
14392 
14393   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14394 
14395   // SRL feeding TRUNCATE.
14396   if (Op0.getOpcode() == ISD::SRL) {
14397     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14398     // The right shift has to be by 64 bits.
14399     if (!ConstNode || ConstNode->getZExtValue() != 64)
14400       return SDValue();
14401 
14402     // Switch the element number to extract.
14403     EltToExtract = EltToExtract ? 0 : 1;
14404     // Update Op0 past the SRL.
14405     Op0 = Op0.getOperand(0);
14406   }
14407 
14408   // BITCAST feeding a TRUNCATE possibly via SRL.
14409   if (Op0.getOpcode() == ISD::BITCAST &&
14410       Op0.getValueType() == MVT::i128 &&
14411       Op0.getOperand(0).getValueType() == MVT::f128) {
14412     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14413     return DCI.DAG.getNode(
14414         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14415         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14416   }
14417   return SDValue();
14418 }
14419 
14420 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14421   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14422   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14423     return false;
14424 
14425   // If not a tail call then no need to proceed.
14426   if (!CI->isTailCall())
14427     return false;
14428 
14429   // If tail calls are disabled for the caller then we are done.
14430   const Function *Caller = CI->getParent()->getParent();
14431   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14432   if (Attr.getValueAsString() == "true")
14433     return false;
14434 
14435   // If sibling calls have been disabled and tail-calls aren't guaranteed
14436   // there is no reason to duplicate.
14437   auto &TM = getTargetMachine();
14438   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14439     return false;
14440 
14441   // Can't tail call a function called indirectly, or if it has variadic args.
14442   const Function *Callee = CI->getCalledFunction();
14443   if (!Callee || Callee->isVarArg())
14444     return false;
14445 
14446   // Make sure the callee and caller calling conventions are eligible for tco.
14447   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14448                                            CI->getCallingConv()))
14449       return false;
14450 
14451   // If the function is local then we have a good chance at tail-calling it
14452   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14453 }
14454 
14455 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14456   if (!Subtarget.hasVSX())
14457     return false;
14458   if (Subtarget.hasP9Vector() && VT == MVT::f128)
14459     return true;
14460   return VT == MVT::f32 || VT == MVT::f64 ||
14461     VT == MVT::v4f32 || VT == MVT::v2f64;
14462 }
14463 
14464 bool PPCTargetLowering::
14465 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14466   const Value *Mask = AndI.getOperand(1);
14467   // If the mask is suitable for andi. or andis. we should sink the and.
14468   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14469     // Can't handle constants wider than 64-bits.
14470     if (CI->getBitWidth() > 64)
14471       return false;
14472     int64_t ConstVal = CI->getZExtValue();
14473     return isUInt<16>(ConstVal) ||
14474       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14475   }
14476 
14477   // For non-constant masks, we can always use the record-form and.
14478   return true;
14479 }
14480