1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
226                         isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230 
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
233                          isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237     } else {
238       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
240       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
242     }
243 
244     // PowerPC does not support direct load/store of condition registers.
245     setOperationAction(ISD::LOAD, MVT::i1, Custom);
246     setOperationAction(ISD::STORE, MVT::i1, Custom);
247 
248     // FIXME: Remove this once the ANDI glue bug is fixed:
249     if (ANDIGlueBug)
250       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
251 
252     for (MVT VT : MVT::integer_valuetypes()) {
253       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
254       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
255       setTruncStoreAction(VT, MVT::i1, Expand);
256     }
257 
258     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
259   }
260 
261   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
262   // PPC (the libcall is not available).
263   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
264   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
265   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
266   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
267 
268   // We do not currently implement these libm ops for PowerPC.
269   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
270   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
271   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
272   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
273   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
274   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
275 
276   // PowerPC has no SREM/UREM instructions unless we are on P9
277   // On P9 we may use a hardware instruction to compute the remainder.
278   // When the result of both the remainder and the division is required it is
279   // more efficient to compute the remainder from the result of the division
280   // rather than use the remainder instruction. The instructions are legalized
281   // directly because the DivRemPairsPass performs the transformation at the IR
282   // level.
283   if (Subtarget.isISA3_0()) {
284     setOperationAction(ISD::SREM, MVT::i32, Legal);
285     setOperationAction(ISD::UREM, MVT::i32, Legal);
286     setOperationAction(ISD::SREM, MVT::i64, Legal);
287     setOperationAction(ISD::UREM, MVT::i64, Legal);
288   } else {
289     setOperationAction(ISD::SREM, MVT::i32, Expand);
290     setOperationAction(ISD::UREM, MVT::i32, Expand);
291     setOperationAction(ISD::SREM, MVT::i64, Expand);
292     setOperationAction(ISD::UREM, MVT::i64, Expand);
293   }
294 
295   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
296   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
297   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
298   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
299   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
300   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
301   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
302   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
303   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
304 
305   // Handle constrained floating-point operations of scalar.
306   // TODO: Handle SPE specific operation.
307   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
308   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
309   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
310   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
311   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
312   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
313 
314   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
315   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
316   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
317   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
318   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
319   if (Subtarget.hasVSX())
320     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
321 
322   if (Subtarget.hasFSQRT()) {
323     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
324     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
325   }
326 
327   if (Subtarget.hasFPRND()) {
328     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
329     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
330     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
331     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
332 
333     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
334     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
335     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
336     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
337   }
338 
339   // We don't support sin/cos/sqrt/fmod/pow
340   setOperationAction(ISD::FSIN , MVT::f64, Expand);
341   setOperationAction(ISD::FCOS , MVT::f64, Expand);
342   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
343   setOperationAction(ISD::FREM , MVT::f64, Expand);
344   setOperationAction(ISD::FPOW , MVT::f64, Expand);
345   setOperationAction(ISD::FSIN , MVT::f32, Expand);
346   setOperationAction(ISD::FCOS , MVT::f32, Expand);
347   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
348   setOperationAction(ISD::FREM , MVT::f32, Expand);
349   setOperationAction(ISD::FPOW , MVT::f32, Expand);
350   if (Subtarget.hasSPE()) {
351     setOperationAction(ISD::FMA  , MVT::f64, Expand);
352     setOperationAction(ISD::FMA  , MVT::f32, Expand);
353   } else {
354     setOperationAction(ISD::FMA  , MVT::f64, Legal);
355     setOperationAction(ISD::FMA  , MVT::f32, Legal);
356   }
357 
358   if (Subtarget.hasSPE())
359     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
360 
361   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
362 
363   // If we're enabling GP optimizations, use hardware square root
364   if (!Subtarget.hasFSQRT() &&
365       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
366         Subtarget.hasFRE()))
367     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
368 
369   if (!Subtarget.hasFSQRT() &&
370       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
371         Subtarget.hasFRES()))
372     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
373 
374   if (Subtarget.hasFCPSGN()) {
375     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
376     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
377   } else {
378     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
379     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
380   }
381 
382   if (Subtarget.hasFPRND()) {
383     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
384     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
385     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
386     setOperationAction(ISD::FROUND, MVT::f64, Legal);
387 
388     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
389     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
390     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
391     setOperationAction(ISD::FROUND, MVT::f32, Legal);
392   }
393 
394   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
395   // to speed up scalar BSWAP64.
396   // CTPOP or CTTZ were introduced in P8/P9 respectively
397   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
398   if (Subtarget.hasP9Vector())
399     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
400   else
401     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
402   if (Subtarget.isISA3_0()) {
403     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
404     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
405   } else {
406     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
407     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
408   }
409 
410   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
411     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
412     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
413   } else {
414     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
415     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
416   }
417 
418   // PowerPC does not have ROTR
419   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
420   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
421 
422   if (!Subtarget.useCRBits()) {
423     // PowerPC does not have Select
424     setOperationAction(ISD::SELECT, MVT::i32, Expand);
425     setOperationAction(ISD::SELECT, MVT::i64, Expand);
426     setOperationAction(ISD::SELECT, MVT::f32, Expand);
427     setOperationAction(ISD::SELECT, MVT::f64, Expand);
428   }
429 
430   // PowerPC wants to turn select_cc of FP into fsel when possible.
431   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
432   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
433 
434   // PowerPC wants to optimize integer setcc a bit
435   if (!Subtarget.useCRBits())
436     setOperationAction(ISD::SETCC, MVT::i32, Custom);
437 
438   if (Subtarget.hasFPU()) {
439     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
440     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
441     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
442 
443     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
444     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
445     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
446   }
447 
448   // PowerPC does not have BRCOND which requires SetCC
449   if (!Subtarget.useCRBits())
450     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
451 
452   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
453 
454   if (Subtarget.hasSPE()) {
455     // SPE has built-in conversions
456     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
457     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
458     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
459     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
460     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
461     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
462   } else {
463     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
464     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
465     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
466 
467     // PowerPC does not have [U|S]INT_TO_FP
468     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
469     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
470     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
471     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
472   }
473 
474   if (Subtarget.hasDirectMove() && isPPC64) {
475     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
476     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
477     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
478     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
479     if (TM.Options.UnsafeFPMath) {
480       setOperationAction(ISD::LRINT, MVT::f64, Legal);
481       setOperationAction(ISD::LRINT, MVT::f32, Legal);
482       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
483       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
484       setOperationAction(ISD::LROUND, MVT::f64, Legal);
485       setOperationAction(ISD::LROUND, MVT::f32, Legal);
486       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
487       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
488     }
489   } else {
490     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
491     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
492     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
493     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
494   }
495 
496   // We cannot sextinreg(i1).  Expand to shifts.
497   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
498 
499   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
500   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
501   // support continuation, user-level threading, and etc.. As a result, no
502   // other SjLj exception interfaces are implemented and please don't build
503   // your own exception handling based on them.
504   // LLVM/Clang supports zero-cost DWARF exception handling.
505   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
506   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
507 
508   // We want to legalize GlobalAddress and ConstantPool nodes into the
509   // appropriate instructions to materialize the address.
510   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
511   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
512   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
513   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
514   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
515   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
516   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
517   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
518   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
519   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
520 
521   // TRAP is legal.
522   setOperationAction(ISD::TRAP, MVT::Other, Legal);
523 
524   // TRAMPOLINE is custom lowered.
525   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
526   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
527 
528   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
529   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
530 
531   if (Subtarget.is64BitELFABI()) {
532     // VAARG always uses double-word chunks, so promote anything smaller.
533     setOperationAction(ISD::VAARG, MVT::i1, Promote);
534     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
535     setOperationAction(ISD::VAARG, MVT::i8, Promote);
536     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
537     setOperationAction(ISD::VAARG, MVT::i16, Promote);
538     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
539     setOperationAction(ISD::VAARG, MVT::i32, Promote);
540     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
541     setOperationAction(ISD::VAARG, MVT::Other, Expand);
542   } else if (Subtarget.is32BitELFABI()) {
543     // VAARG is custom lowered with the 32-bit SVR4 ABI.
544     setOperationAction(ISD::VAARG, MVT::Other, Custom);
545     setOperationAction(ISD::VAARG, MVT::i64, Custom);
546   } else
547     setOperationAction(ISD::VAARG, MVT::Other, Expand);
548 
549   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
550   if (Subtarget.is32BitELFABI())
551     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
552   else
553     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
554 
555   // Use the default implementation.
556   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
557   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
558   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
559   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
560   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
561   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
562   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
563   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
564   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
565 
566   // We want to custom lower some of our intrinsics.
567   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
568 
569   // To handle counter-based loop conditions.
570   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
571 
572   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
573   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
574   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
575   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
576 
577   // Comparisons that require checking two conditions.
578   if (Subtarget.hasSPE()) {
579     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
580     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
581     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
582     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
583   }
584   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
585   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
586   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
587   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
588   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
589   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
590   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
591   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
592   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
593   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
594   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
595   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
596 
597   if (Subtarget.has64BitSupport()) {
598     // They also have instructions for converting between i64 and fp.
599     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
600     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
601     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
602     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
603     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
604     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
605     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
606     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
607     // This is just the low 32 bits of a (signed) fp->i64 conversion.
608     // We cannot do this with Promote because i64 is not a legal type.
609     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
610     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
611 
612     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
613       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
614       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
615     }
616   } else {
617     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
618     if (Subtarget.hasSPE()) {
619       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
620       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
621     } else {
622       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
623       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
624     }
625   }
626 
627   // With the instructions enabled under FPCVT, we can do everything.
628   if (Subtarget.hasFPCVT()) {
629     if (Subtarget.has64BitSupport()) {
630       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
631       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
632       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
633       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
634       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
635       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
636       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
637       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
638     }
639 
640     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
641     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
642     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
643     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
644     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
645     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
646     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
647     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
648   }
649 
650   if (Subtarget.use64BitRegs()) {
651     // 64-bit PowerPC implementations can support i64 types directly
652     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
653     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
654     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
655     // 64-bit PowerPC wants to expand i128 shifts itself.
656     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
657     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
658     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
659   } else {
660     // 32-bit PowerPC wants to expand i64 shifts itself.
661     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
662     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
663     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
664   }
665 
666   // PowerPC has better expansions for funnel shifts than the generic
667   // TargetLowering::expandFunnelShift.
668   if (Subtarget.has64BitSupport()) {
669     setOperationAction(ISD::FSHL, MVT::i64, Custom);
670     setOperationAction(ISD::FSHR, MVT::i64, Custom);
671   }
672   setOperationAction(ISD::FSHL, MVT::i32, Custom);
673   setOperationAction(ISD::FSHR, MVT::i32, Custom);
674 
675   if (Subtarget.hasVSX()) {
676     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
677     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
678     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
679     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
680   }
681 
682   if (Subtarget.hasAltivec()) {
683     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
684       setOperationAction(ISD::SADDSAT, VT, Legal);
685       setOperationAction(ISD::SSUBSAT, VT, Legal);
686       setOperationAction(ISD::UADDSAT, VT, Legal);
687       setOperationAction(ISD::USUBSAT, VT, Legal);
688     }
689     // First set operation action for all vector types to expand. Then we
690     // will selectively turn on ones that can be effectively codegen'd.
691     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
692       // add/sub are legal for all supported vector VT's.
693       setOperationAction(ISD::ADD, VT, Legal);
694       setOperationAction(ISD::SUB, VT, Legal);
695 
696       // For v2i64, these are only valid with P8Vector. This is corrected after
697       // the loop.
698       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
699         setOperationAction(ISD::SMAX, VT, Legal);
700         setOperationAction(ISD::SMIN, VT, Legal);
701         setOperationAction(ISD::UMAX, VT, Legal);
702         setOperationAction(ISD::UMIN, VT, Legal);
703       }
704       else {
705         setOperationAction(ISD::SMAX, VT, Expand);
706         setOperationAction(ISD::SMIN, VT, Expand);
707         setOperationAction(ISD::UMAX, VT, Expand);
708         setOperationAction(ISD::UMIN, VT, Expand);
709       }
710 
711       if (Subtarget.hasVSX()) {
712         setOperationAction(ISD::FMAXNUM, VT, Legal);
713         setOperationAction(ISD::FMINNUM, VT, Legal);
714       }
715 
716       // Vector instructions introduced in P8
717       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
718         setOperationAction(ISD::CTPOP, VT, Legal);
719         setOperationAction(ISD::CTLZ, VT, Legal);
720       }
721       else {
722         setOperationAction(ISD::CTPOP, VT, Expand);
723         setOperationAction(ISD::CTLZ, VT, Expand);
724       }
725 
726       // Vector instructions introduced in P9
727       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
728         setOperationAction(ISD::CTTZ, VT, Legal);
729       else
730         setOperationAction(ISD::CTTZ, VT, Expand);
731 
732       // We promote all shuffles to v16i8.
733       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
734       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
735 
736       // We promote all non-typed operations to v4i32.
737       setOperationAction(ISD::AND   , VT, Promote);
738       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
739       setOperationAction(ISD::OR    , VT, Promote);
740       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
741       setOperationAction(ISD::XOR   , VT, Promote);
742       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
743       setOperationAction(ISD::LOAD  , VT, Promote);
744       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
745       setOperationAction(ISD::SELECT, VT, Promote);
746       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
747       setOperationAction(ISD::VSELECT, VT, Legal);
748       setOperationAction(ISD::SELECT_CC, VT, Promote);
749       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
750       setOperationAction(ISD::STORE, VT, Promote);
751       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
752 
753       // No other operations are legal.
754       setOperationAction(ISD::MUL , VT, Expand);
755       setOperationAction(ISD::SDIV, VT, Expand);
756       setOperationAction(ISD::SREM, VT, Expand);
757       setOperationAction(ISD::UDIV, VT, Expand);
758       setOperationAction(ISD::UREM, VT, Expand);
759       setOperationAction(ISD::FDIV, VT, Expand);
760       setOperationAction(ISD::FREM, VT, Expand);
761       setOperationAction(ISD::FNEG, VT, Expand);
762       setOperationAction(ISD::FSQRT, VT, Expand);
763       setOperationAction(ISD::FLOG, VT, Expand);
764       setOperationAction(ISD::FLOG10, VT, Expand);
765       setOperationAction(ISD::FLOG2, VT, Expand);
766       setOperationAction(ISD::FEXP, VT, Expand);
767       setOperationAction(ISD::FEXP2, VT, Expand);
768       setOperationAction(ISD::FSIN, VT, Expand);
769       setOperationAction(ISD::FCOS, VT, Expand);
770       setOperationAction(ISD::FABS, VT, Expand);
771       setOperationAction(ISD::FFLOOR, VT, Expand);
772       setOperationAction(ISD::FCEIL,  VT, Expand);
773       setOperationAction(ISD::FTRUNC, VT, Expand);
774       setOperationAction(ISD::FRINT,  VT, Expand);
775       setOperationAction(ISD::FNEARBYINT, VT, Expand);
776       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
777       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
778       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
779       setOperationAction(ISD::MULHU, VT, Expand);
780       setOperationAction(ISD::MULHS, VT, Expand);
781       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
782       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
783       setOperationAction(ISD::UDIVREM, VT, Expand);
784       setOperationAction(ISD::SDIVREM, VT, Expand);
785       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
786       setOperationAction(ISD::FPOW, VT, Expand);
787       setOperationAction(ISD::BSWAP, VT, Expand);
788       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
789       setOperationAction(ISD::ROTL, VT, Expand);
790       setOperationAction(ISD::ROTR, VT, Expand);
791 
792       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
793         setTruncStoreAction(VT, InnerVT, Expand);
794         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
795         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
796         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
797       }
798     }
799     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
800     if (!Subtarget.hasP8Vector()) {
801       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
802       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
803       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
804       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
805     }
806 
807     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
808       setOperationAction(ISD::ABS, VT, Custom);
809 
810     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
811     // with merges, splats, etc.
812     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
813 
814     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
815     // are cheap, so handle them before they get expanded to scalar.
816     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
817     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
818     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
819     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
820     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
821 
822     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
823     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
824     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
825     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
826     setOperationAction(ISD::SELECT, MVT::v4i32,
827                        Subtarget.useCRBits() ? Legal : Expand);
828     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
829     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
830     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
831     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
832     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
833     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
834     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
835     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
836     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
837     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
838     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
839     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
840     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
841 
842     // Without hasP8Altivec set, v2i64 SMAX isn't available.
843     // But ABS custom lowering requires SMAX support.
844     if (!Subtarget.hasP8Altivec())
845       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
846 
847     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
848     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
849     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
850     if (Subtarget.hasAltivec())
851       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
852         setOperationAction(ISD::ROTL, VT, Legal);
853     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
854     if (Subtarget.hasP8Altivec())
855       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
856 
857     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
858     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
859     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
860     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
861 
862     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
863     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
864 
865     if (Subtarget.hasVSX()) {
866       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
867       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
868     }
869 
870     if (Subtarget.hasP8Altivec())
871       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
872     else
873       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
874 
875     if (Subtarget.isISA3_1()) {
876       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
877       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
878       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
879       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
880       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
881       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
882       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
883       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
884       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
885       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
886       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
887       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
888       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
889     }
890 
891     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
892     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
893 
894     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
895     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
896 
897     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
898     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
899     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
900     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
901 
902     // Altivec does not contain unordered floating-point compare instructions
903     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
904     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
905     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
906     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
907 
908     if (Subtarget.hasVSX()) {
909       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
910       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
911       if (Subtarget.hasP8Vector()) {
912         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
913         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
914       }
915       if (Subtarget.hasDirectMove() && isPPC64) {
916         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
917         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
918         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
919         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
920         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
921         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
922         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
923         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
924       }
925       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
926 
927       // The nearbyint variants are not allowed to raise the inexact exception
928       // so we can only code-gen them with unsafe math.
929       if (TM.Options.UnsafeFPMath) {
930         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
931         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
932       }
933 
934       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
935       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
936       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
937       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
938       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
939       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
940       setOperationAction(ISD::FROUND, MVT::f64, Legal);
941       setOperationAction(ISD::FRINT, MVT::f64, Legal);
942 
943       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
944       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
945       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
946       setOperationAction(ISD::FROUND, MVT::f32, Legal);
947       setOperationAction(ISD::FRINT, MVT::f32, Legal);
948 
949       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
950       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
951 
952       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
953       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
954 
955       // Share the Altivec comparison restrictions.
956       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
957       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
958       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
959       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
960 
961       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
962       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
963 
964       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
965 
966       if (Subtarget.hasP8Vector())
967         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
968 
969       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
970 
971       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
972       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
973       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
974 
975       if (Subtarget.hasP8Altivec()) {
976         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
977         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
978         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
979 
980         // 128 bit shifts can be accomplished via 3 instructions for SHL and
981         // SRL, but not for SRA because of the instructions available:
982         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
983         // doing
984         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
985         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
986         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
987 
988         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
989       }
990       else {
991         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
992         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
993         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
994 
995         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
996 
997         // VSX v2i64 only supports non-arithmetic operations.
998         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
999         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1000       }
1001 
1002       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1003 
1004       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1005       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1006       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1007       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1008 
1009       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1010 
1011       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1012       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1013       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1014       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1015       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1016       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1017       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1018       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1019 
1020       // Custom handling for partial vectors of integers converted to
1021       // floating point. We already have optimal handling for v2i32 through
1022       // the DAG combine, so those aren't necessary.
1023       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1024       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1025       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1026       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1027       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1028       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1029       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1030       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1031       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1032       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1033       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1034       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1035       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1036       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1037       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1038       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1039 
1040       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1041       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1042       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1043       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1044       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1045       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1046 
1047       if (Subtarget.hasDirectMove())
1048         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1049       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1050 
1051       // Handle constrained floating-point operations of vector.
1052       // The predictor is `hasVSX` because altivec instruction has
1053       // no exception but VSX vector instruction has.
1054       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1055       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1056       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1057       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1058       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1059       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1060       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1061       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1062       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
1063       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1064       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1065       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1066       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1067 
1068       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1069       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1070       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1071       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1072       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1073       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1074       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1075       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1076       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
1077       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1078       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1079       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1080       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1081 
1082       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1083     }
1084 
1085     if (Subtarget.hasP8Altivec()) {
1086       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1087       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1088     }
1089 
1090     if (Subtarget.hasP9Vector()) {
1091       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1092       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1093 
1094       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1095       // SRL, but not for SRA because of the instructions available:
1096       // VS{RL} and VS{RL}O.
1097       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1098       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1099       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1100 
1101       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1102       setOperationAction(ISD::FADD, MVT::f128, Legal);
1103       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1104       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1105       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1106       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1107       // No extending loads to f128 on PPC.
1108       for (MVT FPT : MVT::fp_valuetypes())
1109         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1110       setOperationAction(ISD::FMA, MVT::f128, Legal);
1111       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1112       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1113       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1114       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1115       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1116       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1117 
1118       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1119       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1120       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1121       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1122       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1123       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1124 
1125       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1126       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1127       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1128       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1129       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1130       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1131       // No implementation for these ops for PowerPC.
1132       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1133       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1134       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1135       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1136       setOperationAction(ISD::FREM, MVT::f128, Expand);
1137 
1138       // Handle constrained floating-point operations of fp128
1139       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1140       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1141       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1142       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1143       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1144       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1145       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1146       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1147       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1148       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1149       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1150       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1151       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1152       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1153       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1154       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1155       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1156       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1157       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1158       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1159     }
1160 
1161     if (Subtarget.hasP9Altivec()) {
1162       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1163       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1164 
1165       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1166       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1167       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1168       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1169       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1170       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1171       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1172     }
1173   }
1174 
1175   if (Subtarget.has64BitSupport())
1176     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1177 
1178   if (Subtarget.isISA3_1())
1179     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1180 
1181   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1182 
1183   if (!isPPC64) {
1184     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1185     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1186   }
1187 
1188   setBooleanContents(ZeroOrOneBooleanContent);
1189 
1190   if (Subtarget.hasAltivec()) {
1191     // Altivec instructions set fields to all zeros or all ones.
1192     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1193   }
1194 
1195   if (!isPPC64) {
1196     // These libcalls are not available in 32-bit.
1197     setLibcallName(RTLIB::SHL_I128, nullptr);
1198     setLibcallName(RTLIB::SRL_I128, nullptr);
1199     setLibcallName(RTLIB::SRA_I128, nullptr);
1200   }
1201 
1202   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1203 
1204   // We have target-specific dag combine patterns for the following nodes:
1205   setTargetDAGCombine(ISD::ADD);
1206   setTargetDAGCombine(ISD::SHL);
1207   setTargetDAGCombine(ISD::SRA);
1208   setTargetDAGCombine(ISD::SRL);
1209   setTargetDAGCombine(ISD::MUL);
1210   setTargetDAGCombine(ISD::FMA);
1211   setTargetDAGCombine(ISD::SINT_TO_FP);
1212   setTargetDAGCombine(ISD::BUILD_VECTOR);
1213   if (Subtarget.hasFPCVT())
1214     setTargetDAGCombine(ISD::UINT_TO_FP);
1215   setTargetDAGCombine(ISD::LOAD);
1216   setTargetDAGCombine(ISD::STORE);
1217   setTargetDAGCombine(ISD::BR_CC);
1218   if (Subtarget.useCRBits())
1219     setTargetDAGCombine(ISD::BRCOND);
1220   setTargetDAGCombine(ISD::BSWAP);
1221   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1222   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1223   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1224 
1225   setTargetDAGCombine(ISD::SIGN_EXTEND);
1226   setTargetDAGCombine(ISD::ZERO_EXTEND);
1227   setTargetDAGCombine(ISD::ANY_EXTEND);
1228 
1229   setTargetDAGCombine(ISD::TRUNCATE);
1230   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1231 
1232 
1233   if (Subtarget.useCRBits()) {
1234     setTargetDAGCombine(ISD::TRUNCATE);
1235     setTargetDAGCombine(ISD::SETCC);
1236     setTargetDAGCombine(ISD::SELECT_CC);
1237   }
1238 
1239   if (Subtarget.hasP9Altivec()) {
1240     setTargetDAGCombine(ISD::ABS);
1241     setTargetDAGCombine(ISD::VSELECT);
1242   }
1243 
1244   setLibcallName(RTLIB::LOG_F128, "logf128");
1245   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1246   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1247   setLibcallName(RTLIB::EXP_F128, "expf128");
1248   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1249   setLibcallName(RTLIB::SIN_F128, "sinf128");
1250   setLibcallName(RTLIB::COS_F128, "cosf128");
1251   setLibcallName(RTLIB::POW_F128, "powf128");
1252   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1253   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1254   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1255   setLibcallName(RTLIB::REM_F128, "fmodf128");
1256 
1257   // With 32 condition bits, we don't need to sink (and duplicate) compares
1258   // aggressively in CodeGenPrep.
1259   if (Subtarget.useCRBits()) {
1260     setHasMultipleConditionRegisters();
1261     setJumpIsExpensive();
1262   }
1263 
1264   setMinFunctionAlignment(Align(4));
1265 
1266   switch (Subtarget.getCPUDirective()) {
1267   default: break;
1268   case PPC::DIR_970:
1269   case PPC::DIR_A2:
1270   case PPC::DIR_E500:
1271   case PPC::DIR_E500mc:
1272   case PPC::DIR_E5500:
1273   case PPC::DIR_PWR4:
1274   case PPC::DIR_PWR5:
1275   case PPC::DIR_PWR5X:
1276   case PPC::DIR_PWR6:
1277   case PPC::DIR_PWR6X:
1278   case PPC::DIR_PWR7:
1279   case PPC::DIR_PWR8:
1280   case PPC::DIR_PWR9:
1281   case PPC::DIR_PWR10:
1282   case PPC::DIR_PWR_FUTURE:
1283     setPrefLoopAlignment(Align(16));
1284     setPrefFunctionAlignment(Align(16));
1285     break;
1286   }
1287 
1288   if (Subtarget.enableMachineScheduler())
1289     setSchedulingPreference(Sched::Source);
1290   else
1291     setSchedulingPreference(Sched::Hybrid);
1292 
1293   computeRegisterProperties(STI.getRegisterInfo());
1294 
1295   // The Freescale cores do better with aggressive inlining of memcpy and
1296   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1297   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1298       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1299     MaxStoresPerMemset = 32;
1300     MaxStoresPerMemsetOptSize = 16;
1301     MaxStoresPerMemcpy = 32;
1302     MaxStoresPerMemcpyOptSize = 8;
1303     MaxStoresPerMemmove = 32;
1304     MaxStoresPerMemmoveOptSize = 8;
1305   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1306     // The A2 also benefits from (very) aggressive inlining of memcpy and
1307     // friends. The overhead of a the function call, even when warm, can be
1308     // over one hundred cycles.
1309     MaxStoresPerMemset = 128;
1310     MaxStoresPerMemcpy = 128;
1311     MaxStoresPerMemmove = 128;
1312     MaxLoadsPerMemcmp = 128;
1313   } else {
1314     MaxLoadsPerMemcmp = 8;
1315     MaxLoadsPerMemcmpOptSize = 4;
1316   }
1317 
1318   // Let the subtarget (CPU) decide if a predictable select is more expensive
1319   // than the corresponding branch. This information is used in CGP to decide
1320   // when to convert selects into branches.
1321   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1322 }
1323 
1324 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1325 /// the desired ByVal argument alignment.
1326 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1327   if (MaxAlign == MaxMaxAlign)
1328     return;
1329   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1330     if (MaxMaxAlign >= 32 &&
1331         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1332       MaxAlign = Align(32);
1333     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1334              MaxAlign < 16)
1335       MaxAlign = Align(16);
1336   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1337     Align EltAlign;
1338     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1339     if (EltAlign > MaxAlign)
1340       MaxAlign = EltAlign;
1341   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1342     for (auto *EltTy : STy->elements()) {
1343       Align EltAlign;
1344       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1345       if (EltAlign > MaxAlign)
1346         MaxAlign = EltAlign;
1347       if (MaxAlign == MaxMaxAlign)
1348         break;
1349     }
1350   }
1351 }
1352 
1353 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1354 /// function arguments in the caller parameter area.
1355 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1356                                                   const DataLayout &DL) const {
1357   // 16byte and wider vectors are passed on 16byte boundary.
1358   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1359   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1360   if (Subtarget.hasAltivec())
1361     getMaxByValAlign(Ty, Alignment, Align(16));
1362   return Alignment.value();
1363 }
1364 
1365 bool PPCTargetLowering::useSoftFloat() const {
1366   return Subtarget.useSoftFloat();
1367 }
1368 
1369 bool PPCTargetLowering::hasSPE() const {
1370   return Subtarget.hasSPE();
1371 }
1372 
1373 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1374   return VT.isScalarInteger();
1375 }
1376 
1377 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1378 /// type is cheaper than a multiply followed by a shift.
1379 /// This is true for words and doublewords on 64-bit PowerPC.
1380 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1381   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1382                               isOperationLegal(ISD::MULHU, Type)))
1383     return true;
1384   return TargetLowering::isMulhCheaperThanMulShift(Type);
1385 }
1386 
1387 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1388   switch ((PPCISD::NodeType)Opcode) {
1389   case PPCISD::FIRST_NUMBER:    break;
1390   case PPCISD::FSEL:            return "PPCISD::FSEL";
1391   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1392   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1393   case PPCISD::FCFID:           return "PPCISD::FCFID";
1394   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1395   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1396   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1397   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1398   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1399   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1400   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1401   case PPCISD::FP_TO_UINT_IN_VSR:
1402                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1403   case PPCISD::FP_TO_SINT_IN_VSR:
1404                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1405   case PPCISD::FRE:             return "PPCISD::FRE";
1406   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1407   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1408   case PPCISD::VPERM:           return "PPCISD::VPERM";
1409   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1410   case PPCISD::XXSPLTI_SP_TO_DP:
1411     return "PPCISD::XXSPLTI_SP_TO_DP";
1412   case PPCISD::XXSPLTI32DX:
1413     return "PPCISD::XXSPLTI32DX";
1414   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1415   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1416   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1417   case PPCISD::CMPB:            return "PPCISD::CMPB";
1418   case PPCISD::Hi:              return "PPCISD::Hi";
1419   case PPCISD::Lo:              return "PPCISD::Lo";
1420   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1421   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1422   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1423   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1424   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1425   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1426   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1427   case PPCISD::SRL:             return "PPCISD::SRL";
1428   case PPCISD::SRA:             return "PPCISD::SRA";
1429   case PPCISD::SHL:             return "PPCISD::SHL";
1430   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1431   case PPCISD::CALL:            return "PPCISD::CALL";
1432   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1433   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1434   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1435   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1436   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1437   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1438   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1439   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1440   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1441   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1442   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1443   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1444   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1445   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1446   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1447   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1448     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1449   case PPCISD::ANDI_rec_1_EQ_BIT:
1450     return "PPCISD::ANDI_rec_1_EQ_BIT";
1451   case PPCISD::ANDI_rec_1_GT_BIT:
1452     return "PPCISD::ANDI_rec_1_GT_BIT";
1453   case PPCISD::VCMP:            return "PPCISD::VCMP";
1454   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1455   case PPCISD::LBRX:            return "PPCISD::LBRX";
1456   case PPCISD::STBRX:           return "PPCISD::STBRX";
1457   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1458   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1459   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1460   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1461   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1462   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1463   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1464   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1465   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1466   case PPCISD::ST_VSR_SCAL_INT:
1467                                 return "PPCISD::ST_VSR_SCAL_INT";
1468   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1469   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1470   case PPCISD::BDZ:             return "PPCISD::BDZ";
1471   case PPCISD::MFFS:            return "PPCISD::MFFS";
1472   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1473   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1474   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1475   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1476   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1477   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1478   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1479   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1480   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1481   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1482   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1483   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1484   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1485   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1486   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1487   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1488   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1489   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1490   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1491   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1492   case PPCISD::SC:              return "PPCISD::SC";
1493   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1494   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1495   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1496   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1497   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1498   case PPCISD::VABSD:           return "PPCISD::VABSD";
1499   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1500   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1501   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1502   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1503   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1504   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1505   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1506   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1507     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1508   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1509   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1510   case PPCISD::STRICT_FADDRTZ:
1511     return "PPCISD::STRICT_FADDRTZ";
1512   case PPCISD::STRICT_FCTIDZ:
1513     return "PPCISD::STRICT_FCTIDZ";
1514   case PPCISD::STRICT_FCTIWZ:
1515     return "PPCISD::STRICT_FCTIWZ";
1516   case PPCISD::STRICT_FCTIDUZ:
1517     return "PPCISD::STRICT_FCTIDUZ";
1518   case PPCISD::STRICT_FCTIWUZ:
1519     return "PPCISD::STRICT_FCTIWUZ";
1520   case PPCISD::STRICT_FCFID:
1521     return "PPCISD::STRICT_FCFID";
1522   case PPCISD::STRICT_FCFIDU:
1523     return "PPCISD::STRICT_FCFIDU";
1524   case PPCISD::STRICT_FCFIDS:
1525     return "PPCISD::STRICT_FCFIDS";
1526   case PPCISD::STRICT_FCFIDUS:
1527     return "PPCISD::STRICT_FCFIDUS";
1528   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1529   }
1530   return nullptr;
1531 }
1532 
1533 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1534                                           EVT VT) const {
1535   if (!VT.isVector())
1536     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1537 
1538   return VT.changeVectorElementTypeToInteger();
1539 }
1540 
1541 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1542   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1543   return true;
1544 }
1545 
1546 //===----------------------------------------------------------------------===//
1547 // Node matching predicates, for use by the tblgen matching code.
1548 //===----------------------------------------------------------------------===//
1549 
1550 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1551 static bool isFloatingPointZero(SDValue Op) {
1552   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1553     return CFP->getValueAPF().isZero();
1554   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1555     // Maybe this has already been legalized into the constant pool?
1556     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1557       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1558         return CFP->getValueAPF().isZero();
1559   }
1560   return false;
1561 }
1562 
1563 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1564 /// true if Op is undef or if it matches the specified value.
1565 static bool isConstantOrUndef(int Op, int Val) {
1566   return Op < 0 || Op == Val;
1567 }
1568 
1569 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1570 /// VPKUHUM instruction.
1571 /// The ShuffleKind distinguishes between big-endian operations with
1572 /// two different inputs (0), either-endian operations with two identical
1573 /// inputs (1), and little-endian operations with two different inputs (2).
1574 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1575 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1576                                SelectionDAG &DAG) {
1577   bool IsLE = DAG.getDataLayout().isLittleEndian();
1578   if (ShuffleKind == 0) {
1579     if (IsLE)
1580       return false;
1581     for (unsigned i = 0; i != 16; ++i)
1582       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1583         return false;
1584   } else if (ShuffleKind == 2) {
1585     if (!IsLE)
1586       return false;
1587     for (unsigned i = 0; i != 16; ++i)
1588       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1589         return false;
1590   } else if (ShuffleKind == 1) {
1591     unsigned j = IsLE ? 0 : 1;
1592     for (unsigned i = 0; i != 8; ++i)
1593       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1594           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1595         return false;
1596   }
1597   return true;
1598 }
1599 
1600 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1601 /// VPKUWUM instruction.
1602 /// The ShuffleKind distinguishes between big-endian operations with
1603 /// two different inputs (0), either-endian operations with two identical
1604 /// inputs (1), and little-endian operations with two different inputs (2).
1605 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1606 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1607                                SelectionDAG &DAG) {
1608   bool IsLE = DAG.getDataLayout().isLittleEndian();
1609   if (ShuffleKind == 0) {
1610     if (IsLE)
1611       return false;
1612     for (unsigned i = 0; i != 16; i += 2)
1613       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1614           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1615         return false;
1616   } else if (ShuffleKind == 2) {
1617     if (!IsLE)
1618       return false;
1619     for (unsigned i = 0; i != 16; i += 2)
1620       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1621           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1622         return false;
1623   } else if (ShuffleKind == 1) {
1624     unsigned j = IsLE ? 0 : 2;
1625     for (unsigned i = 0; i != 8; i += 2)
1626       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1627           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1628           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1629           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1630         return false;
1631   }
1632   return true;
1633 }
1634 
1635 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1636 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1637 /// current subtarget.
1638 ///
1639 /// The ShuffleKind distinguishes between big-endian operations with
1640 /// two different inputs (0), either-endian operations with two identical
1641 /// inputs (1), and little-endian operations with two different inputs (2).
1642 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1643 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1644                                SelectionDAG &DAG) {
1645   const PPCSubtarget& Subtarget =
1646       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1647   if (!Subtarget.hasP8Vector())
1648     return false;
1649 
1650   bool IsLE = DAG.getDataLayout().isLittleEndian();
1651   if (ShuffleKind == 0) {
1652     if (IsLE)
1653       return false;
1654     for (unsigned i = 0; i != 16; i += 4)
1655       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1656           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1657           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1658           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1659         return false;
1660   } else if (ShuffleKind == 2) {
1661     if (!IsLE)
1662       return false;
1663     for (unsigned i = 0; i != 16; i += 4)
1664       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1665           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1666           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1667           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1668         return false;
1669   } else if (ShuffleKind == 1) {
1670     unsigned j = IsLE ? 0 : 4;
1671     for (unsigned i = 0; i != 8; i += 4)
1672       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1673           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1674           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1675           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1676           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1677           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1678           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1679           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1680         return false;
1681   }
1682   return true;
1683 }
1684 
1685 /// isVMerge - Common function, used to match vmrg* shuffles.
1686 ///
1687 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1688                      unsigned LHSStart, unsigned RHSStart) {
1689   if (N->getValueType(0) != MVT::v16i8)
1690     return false;
1691   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1692          "Unsupported merge size!");
1693 
1694   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1695     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1696       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1697                              LHSStart+j+i*UnitSize) ||
1698           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1699                              RHSStart+j+i*UnitSize))
1700         return false;
1701     }
1702   return true;
1703 }
1704 
1705 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1706 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1707 /// The ShuffleKind distinguishes between big-endian merges with two
1708 /// different inputs (0), either-endian merges with two identical inputs (1),
1709 /// and little-endian merges with two different inputs (2).  For the latter,
1710 /// the input operands are swapped (see PPCInstrAltivec.td).
1711 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1712                              unsigned ShuffleKind, SelectionDAG &DAG) {
1713   if (DAG.getDataLayout().isLittleEndian()) {
1714     if (ShuffleKind == 1) // unary
1715       return isVMerge(N, UnitSize, 0, 0);
1716     else if (ShuffleKind == 2) // swapped
1717       return isVMerge(N, UnitSize, 0, 16);
1718     else
1719       return false;
1720   } else {
1721     if (ShuffleKind == 1) // unary
1722       return isVMerge(N, UnitSize, 8, 8);
1723     else if (ShuffleKind == 0) // normal
1724       return isVMerge(N, UnitSize, 8, 24);
1725     else
1726       return false;
1727   }
1728 }
1729 
1730 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1731 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1732 /// The ShuffleKind distinguishes between big-endian merges with two
1733 /// different inputs (0), either-endian merges with two identical inputs (1),
1734 /// and little-endian merges with two different inputs (2).  For the latter,
1735 /// the input operands are swapped (see PPCInstrAltivec.td).
1736 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1737                              unsigned ShuffleKind, SelectionDAG &DAG) {
1738   if (DAG.getDataLayout().isLittleEndian()) {
1739     if (ShuffleKind == 1) // unary
1740       return isVMerge(N, UnitSize, 8, 8);
1741     else if (ShuffleKind == 2) // swapped
1742       return isVMerge(N, UnitSize, 8, 24);
1743     else
1744       return false;
1745   } else {
1746     if (ShuffleKind == 1) // unary
1747       return isVMerge(N, UnitSize, 0, 0);
1748     else if (ShuffleKind == 0) // normal
1749       return isVMerge(N, UnitSize, 0, 16);
1750     else
1751       return false;
1752   }
1753 }
1754 
1755 /**
1756  * Common function used to match vmrgew and vmrgow shuffles
1757  *
1758  * The indexOffset determines whether to look for even or odd words in
1759  * the shuffle mask. This is based on the of the endianness of the target
1760  * machine.
1761  *   - Little Endian:
1762  *     - Use offset of 0 to check for odd elements
1763  *     - Use offset of 4 to check for even elements
1764  *   - Big Endian:
1765  *     - Use offset of 0 to check for even elements
1766  *     - Use offset of 4 to check for odd elements
1767  * A detailed description of the vector element ordering for little endian and
1768  * big endian can be found at
1769  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1770  * Targeting your applications - what little endian and big endian IBM XL C/C++
1771  * compiler differences mean to you
1772  *
1773  * The mask to the shuffle vector instruction specifies the indices of the
1774  * elements from the two input vectors to place in the result. The elements are
1775  * numbered in array-access order, starting with the first vector. These vectors
1776  * are always of type v16i8, thus each vector will contain 16 elements of size
1777  * 8. More info on the shuffle vector can be found in the
1778  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1779  * Language Reference.
1780  *
1781  * The RHSStartValue indicates whether the same input vectors are used (unary)
1782  * or two different input vectors are used, based on the following:
1783  *   - If the instruction uses the same vector for both inputs, the range of the
1784  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1785  *     be 0.
1786  *   - If the instruction has two different vectors then the range of the
1787  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1788  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1789  *     to 31 specify elements in the second vector).
1790  *
1791  * \param[in] N The shuffle vector SD Node to analyze
1792  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1793  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1794  * vector to the shuffle_vector instruction
1795  * \return true iff this shuffle vector represents an even or odd word merge
1796  */
1797 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1798                      unsigned RHSStartValue) {
1799   if (N->getValueType(0) != MVT::v16i8)
1800     return false;
1801 
1802   for (unsigned i = 0; i < 2; ++i)
1803     for (unsigned j = 0; j < 4; ++j)
1804       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1805                              i*RHSStartValue+j+IndexOffset) ||
1806           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1807                              i*RHSStartValue+j+IndexOffset+8))
1808         return false;
1809   return true;
1810 }
1811 
1812 /**
1813  * Determine if the specified shuffle mask is suitable for the vmrgew or
1814  * vmrgow instructions.
1815  *
1816  * \param[in] N The shuffle vector SD Node to analyze
1817  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1818  * \param[in] ShuffleKind Identify the type of merge:
1819  *   - 0 = big-endian merge with two different inputs;
1820  *   - 1 = either-endian merge with two identical inputs;
1821  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1822  *     little-endian merges).
1823  * \param[in] DAG The current SelectionDAG
1824  * \return true iff this shuffle mask
1825  */
1826 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1827                               unsigned ShuffleKind, SelectionDAG &DAG) {
1828   if (DAG.getDataLayout().isLittleEndian()) {
1829     unsigned indexOffset = CheckEven ? 4 : 0;
1830     if (ShuffleKind == 1) // Unary
1831       return isVMerge(N, indexOffset, 0);
1832     else if (ShuffleKind == 2) // swapped
1833       return isVMerge(N, indexOffset, 16);
1834     else
1835       return false;
1836   }
1837   else {
1838     unsigned indexOffset = CheckEven ? 0 : 4;
1839     if (ShuffleKind == 1) // Unary
1840       return isVMerge(N, indexOffset, 0);
1841     else if (ShuffleKind == 0) // Normal
1842       return isVMerge(N, indexOffset, 16);
1843     else
1844       return false;
1845   }
1846   return false;
1847 }
1848 
1849 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1850 /// amount, otherwise return -1.
1851 /// The ShuffleKind distinguishes between big-endian operations with two
1852 /// different inputs (0), either-endian operations with two identical inputs
1853 /// (1), and little-endian operations with two different inputs (2).  For the
1854 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1855 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1856                              SelectionDAG &DAG) {
1857   if (N->getValueType(0) != MVT::v16i8)
1858     return -1;
1859 
1860   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1861 
1862   // Find the first non-undef value in the shuffle mask.
1863   unsigned i;
1864   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1865     /*search*/;
1866 
1867   if (i == 16) return -1;  // all undef.
1868 
1869   // Otherwise, check to see if the rest of the elements are consecutively
1870   // numbered from this value.
1871   unsigned ShiftAmt = SVOp->getMaskElt(i);
1872   if (ShiftAmt < i) return -1;
1873 
1874   ShiftAmt -= i;
1875   bool isLE = DAG.getDataLayout().isLittleEndian();
1876 
1877   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1878     // Check the rest of the elements to see if they are consecutive.
1879     for (++i; i != 16; ++i)
1880       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1881         return -1;
1882   } else if (ShuffleKind == 1) {
1883     // Check the rest of the elements to see if they are consecutive.
1884     for (++i; i != 16; ++i)
1885       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1886         return -1;
1887   } else
1888     return -1;
1889 
1890   if (isLE)
1891     ShiftAmt = 16 - ShiftAmt;
1892 
1893   return ShiftAmt;
1894 }
1895 
1896 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1897 /// specifies a splat of a single element that is suitable for input to
1898 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1899 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1900   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1901          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1902 
1903   // The consecutive indices need to specify an element, not part of two
1904   // different elements.  So abandon ship early if this isn't the case.
1905   if (N->getMaskElt(0) % EltSize != 0)
1906     return false;
1907 
1908   // This is a splat operation if each element of the permute is the same, and
1909   // if the value doesn't reference the second vector.
1910   unsigned ElementBase = N->getMaskElt(0);
1911 
1912   // FIXME: Handle UNDEF elements too!
1913   if (ElementBase >= 16)
1914     return false;
1915 
1916   // Check that the indices are consecutive, in the case of a multi-byte element
1917   // splatted with a v16i8 mask.
1918   for (unsigned i = 1; i != EltSize; ++i)
1919     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1920       return false;
1921 
1922   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1923     if (N->getMaskElt(i) < 0) continue;
1924     for (unsigned j = 0; j != EltSize; ++j)
1925       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1926         return false;
1927   }
1928   return true;
1929 }
1930 
1931 /// Check that the mask is shuffling N byte elements. Within each N byte
1932 /// element of the mask, the indices could be either in increasing or
1933 /// decreasing order as long as they are consecutive.
1934 /// \param[in] N the shuffle vector SD Node to analyze
1935 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1936 /// Word/DoubleWord/QuadWord).
1937 /// \param[in] StepLen the delta indices number among the N byte element, if
1938 /// the mask is in increasing/decreasing order then it is 1/-1.
1939 /// \return true iff the mask is shuffling N byte elements.
1940 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1941                                    int StepLen) {
1942   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1943          "Unexpected element width.");
1944   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1945 
1946   unsigned NumOfElem = 16 / Width;
1947   unsigned MaskVal[16]; //  Width is never greater than 16
1948   for (unsigned i = 0; i < NumOfElem; ++i) {
1949     MaskVal[0] = N->getMaskElt(i * Width);
1950     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1951       return false;
1952     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1953       return false;
1954     }
1955 
1956     for (unsigned int j = 1; j < Width; ++j) {
1957       MaskVal[j] = N->getMaskElt(i * Width + j);
1958       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1959         return false;
1960       }
1961     }
1962   }
1963 
1964   return true;
1965 }
1966 
1967 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1968                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1969   if (!isNByteElemShuffleMask(N, 4, 1))
1970     return false;
1971 
1972   // Now we look at mask elements 0,4,8,12
1973   unsigned M0 = N->getMaskElt(0) / 4;
1974   unsigned M1 = N->getMaskElt(4) / 4;
1975   unsigned M2 = N->getMaskElt(8) / 4;
1976   unsigned M3 = N->getMaskElt(12) / 4;
1977   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1978   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1979 
1980   // Below, let H and L be arbitrary elements of the shuffle mask
1981   // where H is in the range [4,7] and L is in the range [0,3].
1982   // H, 1, 2, 3 or L, 5, 6, 7
1983   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1984       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1985     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1986     InsertAtByte = IsLE ? 12 : 0;
1987     Swap = M0 < 4;
1988     return true;
1989   }
1990   // 0, H, 2, 3 or 4, L, 6, 7
1991   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1992       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1993     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1994     InsertAtByte = IsLE ? 8 : 4;
1995     Swap = M1 < 4;
1996     return true;
1997   }
1998   // 0, 1, H, 3 or 4, 5, L, 7
1999   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2000       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2001     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2002     InsertAtByte = IsLE ? 4 : 8;
2003     Swap = M2 < 4;
2004     return true;
2005   }
2006   // 0, 1, 2, H or 4, 5, 6, L
2007   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2008       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2009     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2010     InsertAtByte = IsLE ? 0 : 12;
2011     Swap = M3 < 4;
2012     return true;
2013   }
2014 
2015   // If both vector operands for the shuffle are the same vector, the mask will
2016   // contain only elements from the first one and the second one will be undef.
2017   if (N->getOperand(1).isUndef()) {
2018     ShiftElts = 0;
2019     Swap = true;
2020     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2021     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2022       InsertAtByte = IsLE ? 12 : 0;
2023       return true;
2024     }
2025     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2026       InsertAtByte = IsLE ? 8 : 4;
2027       return true;
2028     }
2029     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2030       InsertAtByte = IsLE ? 4 : 8;
2031       return true;
2032     }
2033     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2034       InsertAtByte = IsLE ? 0 : 12;
2035       return true;
2036     }
2037   }
2038 
2039   return false;
2040 }
2041 
2042 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2043                                bool &Swap, bool IsLE) {
2044   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2045   // Ensure each byte index of the word is consecutive.
2046   if (!isNByteElemShuffleMask(N, 4, 1))
2047     return false;
2048 
2049   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2050   unsigned M0 = N->getMaskElt(0) / 4;
2051   unsigned M1 = N->getMaskElt(4) / 4;
2052   unsigned M2 = N->getMaskElt(8) / 4;
2053   unsigned M3 = N->getMaskElt(12) / 4;
2054 
2055   // If both vector operands for the shuffle are the same vector, the mask will
2056   // contain only elements from the first one and the second one will be undef.
2057   if (N->getOperand(1).isUndef()) {
2058     assert(M0 < 4 && "Indexing into an undef vector?");
2059     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2060       return false;
2061 
2062     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2063     Swap = false;
2064     return true;
2065   }
2066 
2067   // Ensure each word index of the ShuffleVector Mask is consecutive.
2068   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2069     return false;
2070 
2071   if (IsLE) {
2072     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2073       // Input vectors don't need to be swapped if the leading element
2074       // of the result is one of the 3 left elements of the second vector
2075       // (or if there is no shift to be done at all).
2076       Swap = false;
2077       ShiftElts = (8 - M0) % 8;
2078     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2079       // Input vectors need to be swapped if the leading element
2080       // of the result is one of the 3 left elements of the first vector
2081       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2082       Swap = true;
2083       ShiftElts = (4 - M0) % 4;
2084     }
2085 
2086     return true;
2087   } else {                                          // BE
2088     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2089       // Input vectors don't need to be swapped if the leading element
2090       // of the result is one of the 4 elements of the first vector.
2091       Swap = false;
2092       ShiftElts = M0;
2093     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2094       // Input vectors need to be swapped if the leading element
2095       // of the result is one of the 4 elements of the right vector.
2096       Swap = true;
2097       ShiftElts = M0 - 4;
2098     }
2099 
2100     return true;
2101   }
2102 }
2103 
2104 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2105   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2106 
2107   if (!isNByteElemShuffleMask(N, Width, -1))
2108     return false;
2109 
2110   for (int i = 0; i < 16; i += Width)
2111     if (N->getMaskElt(i) != i + Width - 1)
2112       return false;
2113 
2114   return true;
2115 }
2116 
2117 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2118   return isXXBRShuffleMaskHelper(N, 2);
2119 }
2120 
2121 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2122   return isXXBRShuffleMaskHelper(N, 4);
2123 }
2124 
2125 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2126   return isXXBRShuffleMaskHelper(N, 8);
2127 }
2128 
2129 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2130   return isXXBRShuffleMaskHelper(N, 16);
2131 }
2132 
2133 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2134 /// if the inputs to the instruction should be swapped and set \p DM to the
2135 /// value for the immediate.
2136 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2137 /// AND element 0 of the result comes from the first input (LE) or second input
2138 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2139 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2140 /// mask.
2141 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2142                                bool &Swap, bool IsLE) {
2143   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2144 
2145   // Ensure each byte index of the double word is consecutive.
2146   if (!isNByteElemShuffleMask(N, 8, 1))
2147     return false;
2148 
2149   unsigned M0 = N->getMaskElt(0) / 8;
2150   unsigned M1 = N->getMaskElt(8) / 8;
2151   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2152 
2153   // If both vector operands for the shuffle are the same vector, the mask will
2154   // contain only elements from the first one and the second one will be undef.
2155   if (N->getOperand(1).isUndef()) {
2156     if ((M0 | M1) < 2) {
2157       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2158       Swap = false;
2159       return true;
2160     } else
2161       return false;
2162   }
2163 
2164   if (IsLE) {
2165     if (M0 > 1 && M1 < 2) {
2166       Swap = false;
2167     } else if (M0 < 2 && M1 > 1) {
2168       M0 = (M0 + 2) % 4;
2169       M1 = (M1 + 2) % 4;
2170       Swap = true;
2171     } else
2172       return false;
2173 
2174     // Note: if control flow comes here that means Swap is already set above
2175     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2176     return true;
2177   } else { // BE
2178     if (M0 < 2 && M1 > 1) {
2179       Swap = false;
2180     } else if (M0 > 1 && M1 < 2) {
2181       M0 = (M0 + 2) % 4;
2182       M1 = (M1 + 2) % 4;
2183       Swap = true;
2184     } else
2185       return false;
2186 
2187     // Note: if control flow comes here that means Swap is already set above
2188     DM = (M0 << 1) + (M1 & 1);
2189     return true;
2190   }
2191 }
2192 
2193 
2194 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2195 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2196 /// elements are counted from the left of the vector register).
2197 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2198                                          SelectionDAG &DAG) {
2199   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2200   assert(isSplatShuffleMask(SVOp, EltSize));
2201   if (DAG.getDataLayout().isLittleEndian())
2202     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2203   else
2204     return SVOp->getMaskElt(0) / EltSize;
2205 }
2206 
2207 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2208 /// by using a vspltis[bhw] instruction of the specified element size, return
2209 /// the constant being splatted.  The ByteSize field indicates the number of
2210 /// bytes of each element [124] -> [bhw].
2211 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2212   SDValue OpVal(nullptr, 0);
2213 
2214   // If ByteSize of the splat is bigger than the element size of the
2215   // build_vector, then we have a case where we are checking for a splat where
2216   // multiple elements of the buildvector are folded together into a single
2217   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2218   unsigned EltSize = 16/N->getNumOperands();
2219   if (EltSize < ByteSize) {
2220     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2221     SDValue UniquedVals[4];
2222     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2223 
2224     // See if all of the elements in the buildvector agree across.
2225     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2226       if (N->getOperand(i).isUndef()) continue;
2227       // If the element isn't a constant, bail fully out.
2228       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2229 
2230       if (!UniquedVals[i&(Multiple-1)].getNode())
2231         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2232       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2233         return SDValue();  // no match.
2234     }
2235 
2236     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2237     // either constant or undef values that are identical for each chunk.  See
2238     // if these chunks can form into a larger vspltis*.
2239 
2240     // Check to see if all of the leading entries are either 0 or -1.  If
2241     // neither, then this won't fit into the immediate field.
2242     bool LeadingZero = true;
2243     bool LeadingOnes = true;
2244     for (unsigned i = 0; i != Multiple-1; ++i) {
2245       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2246 
2247       LeadingZero &= isNullConstant(UniquedVals[i]);
2248       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2249     }
2250     // Finally, check the least significant entry.
2251     if (LeadingZero) {
2252       if (!UniquedVals[Multiple-1].getNode())
2253         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2254       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2255       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2256         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2257     }
2258     if (LeadingOnes) {
2259       if (!UniquedVals[Multiple-1].getNode())
2260         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2261       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2262       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2263         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2264     }
2265 
2266     return SDValue();
2267   }
2268 
2269   // Check to see if this buildvec has a single non-undef value in its elements.
2270   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2271     if (N->getOperand(i).isUndef()) continue;
2272     if (!OpVal.getNode())
2273       OpVal = N->getOperand(i);
2274     else if (OpVal != N->getOperand(i))
2275       return SDValue();
2276   }
2277 
2278   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2279 
2280   unsigned ValSizeInBytes = EltSize;
2281   uint64_t Value = 0;
2282   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2283     Value = CN->getZExtValue();
2284   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2285     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2286     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2287   }
2288 
2289   // If the splat value is larger than the element value, then we can never do
2290   // this splat.  The only case that we could fit the replicated bits into our
2291   // immediate field for would be zero, and we prefer to use vxor for it.
2292   if (ValSizeInBytes < ByteSize) return SDValue();
2293 
2294   // If the element value is larger than the splat value, check if it consists
2295   // of a repeated bit pattern of size ByteSize.
2296   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2297     return SDValue();
2298 
2299   // Properly sign extend the value.
2300   int MaskVal = SignExtend32(Value, ByteSize * 8);
2301 
2302   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2303   if (MaskVal == 0) return SDValue();
2304 
2305   // Finally, if this value fits in a 5 bit sext field, return it
2306   if (SignExtend32<5>(MaskVal) == MaskVal)
2307     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2308   return SDValue();
2309 }
2310 
2311 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2312 /// amount, otherwise return -1.
2313 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2314   EVT VT = N->getValueType(0);
2315   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2316     return -1;
2317 
2318   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2319 
2320   // Find the first non-undef value in the shuffle mask.
2321   unsigned i;
2322   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2323     /*search*/;
2324 
2325   if (i == 4) return -1;  // all undef.
2326 
2327   // Otherwise, check to see if the rest of the elements are consecutively
2328   // numbered from this value.
2329   unsigned ShiftAmt = SVOp->getMaskElt(i);
2330   if (ShiftAmt < i) return -1;
2331   ShiftAmt -= i;
2332 
2333   // Check the rest of the elements to see if they are consecutive.
2334   for (++i; i != 4; ++i)
2335     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2336       return -1;
2337 
2338   return ShiftAmt;
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 //  Addressing Mode Selection
2343 //===----------------------------------------------------------------------===//
2344 
2345 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2346 /// or 64-bit immediate, and if the value can be accurately represented as a
2347 /// sign extension from a 16-bit value.  If so, this returns true and the
2348 /// immediate.
2349 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2350   if (!isa<ConstantSDNode>(N))
2351     return false;
2352 
2353   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2354   if (N->getValueType(0) == MVT::i32)
2355     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2356   else
2357     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2358 }
2359 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2360   return isIntS16Immediate(Op.getNode(), Imm);
2361 }
2362 
2363 
2364 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2365 /// be represented as an indexed [r+r] operation.
2366 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2367                                                SDValue &Index,
2368                                                SelectionDAG &DAG) const {
2369   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2370       UI != E; ++UI) {
2371     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2372       if (Memop->getMemoryVT() == MVT::f64) {
2373           Base = N.getOperand(0);
2374           Index = N.getOperand(1);
2375           return true;
2376       }
2377     }
2378   }
2379   return false;
2380 }
2381 
2382 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2383 /// can be represented as an indexed [r+r] operation.  Returns false if it
2384 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2385 /// non-zero and N can be represented by a base register plus a signed 16-bit
2386 /// displacement, make a more precise judgement by checking (displacement % \p
2387 /// EncodingAlignment).
2388 bool PPCTargetLowering::SelectAddressRegReg(
2389     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2390     MaybeAlign EncodingAlignment) const {
2391   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2392   // a [pc+imm].
2393   if (SelectAddressPCRel(N, Base))
2394     return false;
2395 
2396   int16_t Imm = 0;
2397   if (N.getOpcode() == ISD::ADD) {
2398     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2399     // SPE load/store can only handle 8-bit offsets.
2400     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2401         return true;
2402     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2403         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2404       return false; // r+i
2405     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2406       return false;    // r+i
2407 
2408     Base = N.getOperand(0);
2409     Index = N.getOperand(1);
2410     return true;
2411   } else if (N.getOpcode() == ISD::OR) {
2412     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2413         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2414       return false; // r+i can fold it if we can.
2415 
2416     // If this is an or of disjoint bitfields, we can codegen this as an add
2417     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2418     // disjoint.
2419     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2420 
2421     if (LHSKnown.Zero.getBoolValue()) {
2422       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2423       // If all of the bits are known zero on the LHS or RHS, the add won't
2424       // carry.
2425       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2426         Base = N.getOperand(0);
2427         Index = N.getOperand(1);
2428         return true;
2429       }
2430     }
2431   }
2432 
2433   return false;
2434 }
2435 
2436 // If we happen to be doing an i64 load or store into a stack slot that has
2437 // less than a 4-byte alignment, then the frame-index elimination may need to
2438 // use an indexed load or store instruction (because the offset may not be a
2439 // multiple of 4). The extra register needed to hold the offset comes from the
2440 // register scavenger, and it is possible that the scavenger will need to use
2441 // an emergency spill slot. As a result, we need to make sure that a spill slot
2442 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2443 // stack slot.
2444 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2445   // FIXME: This does not handle the LWA case.
2446   if (VT != MVT::i64)
2447     return;
2448 
2449   // NOTE: We'll exclude negative FIs here, which come from argument
2450   // lowering, because there are no known test cases triggering this problem
2451   // using packed structures (or similar). We can remove this exclusion if
2452   // we find such a test case. The reason why this is so test-case driven is
2453   // because this entire 'fixup' is only to prevent crashes (from the
2454   // register scavenger) on not-really-valid inputs. For example, if we have:
2455   //   %a = alloca i1
2456   //   %b = bitcast i1* %a to i64*
2457   //   store i64* a, i64 b
2458   // then the store should really be marked as 'align 1', but is not. If it
2459   // were marked as 'align 1' then the indexed form would have been
2460   // instruction-selected initially, and the problem this 'fixup' is preventing
2461   // won't happen regardless.
2462   if (FrameIdx < 0)
2463     return;
2464 
2465   MachineFunction &MF = DAG.getMachineFunction();
2466   MachineFrameInfo &MFI = MF.getFrameInfo();
2467 
2468   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2469     return;
2470 
2471   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2472   FuncInfo->setHasNonRISpills();
2473 }
2474 
2475 /// Returns true if the address N can be represented by a base register plus
2476 /// a signed 16-bit displacement [r+imm], and if it is not better
2477 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2478 /// displacements that are multiples of that value.
2479 bool PPCTargetLowering::SelectAddressRegImm(
2480     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2481     MaybeAlign EncodingAlignment) const {
2482   // FIXME dl should come from parent load or store, not from address
2483   SDLoc dl(N);
2484 
2485   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2486   // a [pc+imm].
2487   if (SelectAddressPCRel(N, Base))
2488     return false;
2489 
2490   // If this can be more profitably realized as r+r, fail.
2491   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2492     return false;
2493 
2494   if (N.getOpcode() == ISD::ADD) {
2495     int16_t imm = 0;
2496     if (isIntS16Immediate(N.getOperand(1), imm) &&
2497         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2498       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2499       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2500         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2501         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2502       } else {
2503         Base = N.getOperand(0);
2504       }
2505       return true; // [r+i]
2506     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2507       // Match LOAD (ADD (X, Lo(G))).
2508       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2509              && "Cannot handle constant offsets yet!");
2510       Disp = N.getOperand(1).getOperand(0);  // The global address.
2511       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2512              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2513              Disp.getOpcode() == ISD::TargetConstantPool ||
2514              Disp.getOpcode() == ISD::TargetJumpTable);
2515       Base = N.getOperand(0);
2516       return true;  // [&g+r]
2517     }
2518   } else if (N.getOpcode() == ISD::OR) {
2519     int16_t imm = 0;
2520     if (isIntS16Immediate(N.getOperand(1), imm) &&
2521         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2522       // If this is an or of disjoint bitfields, we can codegen this as an add
2523       // (for better address arithmetic) if the LHS and RHS of the OR are
2524       // provably disjoint.
2525       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2526 
2527       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2528         // If all of the bits are known zero on the LHS or RHS, the add won't
2529         // carry.
2530         if (FrameIndexSDNode *FI =
2531               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2532           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2533           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2534         } else {
2535           Base = N.getOperand(0);
2536         }
2537         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2538         return true;
2539       }
2540     }
2541   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2542     // Loading from a constant address.
2543 
2544     // If this address fits entirely in a 16-bit sext immediate field, codegen
2545     // this as "d, 0"
2546     int16_t Imm;
2547     if (isIntS16Immediate(CN, Imm) &&
2548         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2549       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2550       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2551                              CN->getValueType(0));
2552       return true;
2553     }
2554 
2555     // Handle 32-bit sext immediates with LIS + addr mode.
2556     if ((CN->getValueType(0) == MVT::i32 ||
2557          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2558         (!EncodingAlignment ||
2559          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2560       int Addr = (int)CN->getZExtValue();
2561 
2562       // Otherwise, break this down into an LIS + disp.
2563       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2564 
2565       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2566                                    MVT::i32);
2567       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2568       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2569       return true;
2570     }
2571   }
2572 
2573   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2574   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2575     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2576     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2577   } else
2578     Base = N;
2579   return true;      // [r+0]
2580 }
2581 
2582 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2583 /// represented as an indexed [r+r] operation.
2584 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2585                                                 SDValue &Index,
2586                                                 SelectionDAG &DAG) const {
2587   // Check to see if we can easily represent this as an [r+r] address.  This
2588   // will fail if it thinks that the address is more profitably represented as
2589   // reg+imm, e.g. where imm = 0.
2590   if (SelectAddressRegReg(N, Base, Index, DAG))
2591     return true;
2592 
2593   // If the address is the result of an add, we will utilize the fact that the
2594   // address calculation includes an implicit add.  However, we can reduce
2595   // register pressure if we do not materialize a constant just for use as the
2596   // index register.  We only get rid of the add if it is not an add of a
2597   // value and a 16-bit signed constant and both have a single use.
2598   int16_t imm = 0;
2599   if (N.getOpcode() == ISD::ADD &&
2600       (!isIntS16Immediate(N.getOperand(1), imm) ||
2601        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2602     Base = N.getOperand(0);
2603     Index = N.getOperand(1);
2604     return true;
2605   }
2606 
2607   // Otherwise, do it the hard way, using R0 as the base register.
2608   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2609                          N.getValueType());
2610   Index = N;
2611   return true;
2612 }
2613 
2614 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2615   Ty *PCRelCand = dyn_cast<Ty>(N);
2616   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2617 }
2618 
2619 /// Returns true if this address is a PC Relative address.
2620 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2621 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2622 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2623   // This is a materialize PC Relative node. Always select this as PC Relative.
2624   Base = N;
2625   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2626     return true;
2627   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2628       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2629       isValidPCRelNode<JumpTableSDNode>(N) ||
2630       isValidPCRelNode<BlockAddressSDNode>(N))
2631     return true;
2632   return false;
2633 }
2634 
2635 /// Returns true if we should use a direct load into vector instruction
2636 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2637 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2638 
2639   // If there are any other uses other than scalar to vector, then we should
2640   // keep it as a scalar load -> direct move pattern to prevent multiple
2641   // loads.
2642   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2643   if (!LD)
2644     return false;
2645 
2646   EVT MemVT = LD->getMemoryVT();
2647   if (!MemVT.isSimple())
2648     return false;
2649   switch(MemVT.getSimpleVT().SimpleTy) {
2650   case MVT::i64:
2651     break;
2652   case MVT::i32:
2653     if (!ST.hasP8Vector())
2654       return false;
2655     break;
2656   case MVT::i16:
2657   case MVT::i8:
2658     if (!ST.hasP9Vector())
2659       return false;
2660     break;
2661   default:
2662     return false;
2663   }
2664 
2665   SDValue LoadedVal(N, 0);
2666   if (!LoadedVal.hasOneUse())
2667     return false;
2668 
2669   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2670        UI != UE; ++UI)
2671     if (UI.getUse().get().getResNo() == 0 &&
2672         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2673         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2674       return false;
2675 
2676   return true;
2677 }
2678 
2679 /// getPreIndexedAddressParts - returns true by value, base pointer and
2680 /// offset pointer and addressing mode by reference if the node's address
2681 /// can be legally represented as pre-indexed load / store address.
2682 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2683                                                   SDValue &Offset,
2684                                                   ISD::MemIndexedMode &AM,
2685                                                   SelectionDAG &DAG) const {
2686   if (DisablePPCPreinc) return false;
2687 
2688   bool isLoad = true;
2689   SDValue Ptr;
2690   EVT VT;
2691   unsigned Alignment;
2692   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2693     Ptr = LD->getBasePtr();
2694     VT = LD->getMemoryVT();
2695     Alignment = LD->getAlignment();
2696   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2697     Ptr = ST->getBasePtr();
2698     VT  = ST->getMemoryVT();
2699     Alignment = ST->getAlignment();
2700     isLoad = false;
2701   } else
2702     return false;
2703 
2704   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2705   // instructions because we can fold these into a more efficient instruction
2706   // instead, (such as LXSD).
2707   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2708     return false;
2709   }
2710 
2711   // PowerPC doesn't have preinc load/store instructions for vectors
2712   if (VT.isVector())
2713     return false;
2714 
2715   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2716     // Common code will reject creating a pre-inc form if the base pointer
2717     // is a frame index, or if N is a store and the base pointer is either
2718     // the same as or a predecessor of the value being stored.  Check for
2719     // those situations here, and try with swapped Base/Offset instead.
2720     bool Swap = false;
2721 
2722     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2723       Swap = true;
2724     else if (!isLoad) {
2725       SDValue Val = cast<StoreSDNode>(N)->getValue();
2726       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2727         Swap = true;
2728     }
2729 
2730     if (Swap)
2731       std::swap(Base, Offset);
2732 
2733     AM = ISD::PRE_INC;
2734     return true;
2735   }
2736 
2737   // LDU/STU can only handle immediates that are a multiple of 4.
2738   if (VT != MVT::i64) {
2739     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2740       return false;
2741   } else {
2742     // LDU/STU need an address with at least 4-byte alignment.
2743     if (Alignment < 4)
2744       return false;
2745 
2746     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2747       return false;
2748   }
2749 
2750   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2751     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2752     // sext i32 to i64 when addr mode is r+i.
2753     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2754         LD->getExtensionType() == ISD::SEXTLOAD &&
2755         isa<ConstantSDNode>(Offset))
2756       return false;
2757   }
2758 
2759   AM = ISD::PRE_INC;
2760   return true;
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 //  LowerOperation implementation
2765 //===----------------------------------------------------------------------===//
2766 
2767 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2768 /// and LoOpFlags to the target MO flags.
2769 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2770                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2771                                const GlobalValue *GV = nullptr) {
2772   HiOpFlags = PPCII::MO_HA;
2773   LoOpFlags = PPCII::MO_LO;
2774 
2775   // Don't use the pic base if not in PIC relocation model.
2776   if (IsPIC) {
2777     HiOpFlags |= PPCII::MO_PIC_FLAG;
2778     LoOpFlags |= PPCII::MO_PIC_FLAG;
2779   }
2780 }
2781 
2782 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2783                              SelectionDAG &DAG) {
2784   SDLoc DL(HiPart);
2785   EVT PtrVT = HiPart.getValueType();
2786   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2787 
2788   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2789   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2790 
2791   // With PIC, the first instruction is actually "GR+hi(&G)".
2792   if (isPIC)
2793     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2794                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2795 
2796   // Generate non-pic code that has direct accesses to the constant pool.
2797   // The address of the global is just (hi(&g)+lo(&g)).
2798   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2799 }
2800 
2801 static void setUsesTOCBasePtr(MachineFunction &MF) {
2802   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2803   FuncInfo->setUsesTOCBasePtr();
2804 }
2805 
2806 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2807   setUsesTOCBasePtr(DAG.getMachineFunction());
2808 }
2809 
2810 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2811                                        SDValue GA) const {
2812   const bool Is64Bit = Subtarget.isPPC64();
2813   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2814   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2815                         : Subtarget.isAIXABI()
2816                               ? DAG.getRegister(PPC::R2, VT)
2817                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2818   SDValue Ops[] = { GA, Reg };
2819   return DAG.getMemIntrinsicNode(
2820       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2821       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2822       MachineMemOperand::MOLoad);
2823 }
2824 
2825 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2826                                              SelectionDAG &DAG) const {
2827   EVT PtrVT = Op.getValueType();
2828   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2829   const Constant *C = CP->getConstVal();
2830 
2831   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2832   // The actual address of the GlobalValue is stored in the TOC.
2833   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2834     if (Subtarget.isUsingPCRelativeCalls()) {
2835       SDLoc DL(CP);
2836       EVT Ty = getPointerTy(DAG.getDataLayout());
2837       SDValue ConstPool = DAG.getTargetConstantPool(
2838           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2839       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2840     }
2841     setUsesTOCBasePtr(DAG);
2842     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2843     return getTOCEntry(DAG, SDLoc(CP), GA);
2844   }
2845 
2846   unsigned MOHiFlag, MOLoFlag;
2847   bool IsPIC = isPositionIndependent();
2848   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2849 
2850   if (IsPIC && Subtarget.isSVR4ABI()) {
2851     SDValue GA =
2852         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2853     return getTOCEntry(DAG, SDLoc(CP), GA);
2854   }
2855 
2856   SDValue CPIHi =
2857       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2858   SDValue CPILo =
2859       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2860   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2861 }
2862 
2863 // For 64-bit PowerPC, prefer the more compact relative encodings.
2864 // This trades 32 bits per jump table entry for one or two instructions
2865 // on the jump site.
2866 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2867   if (isJumpTableRelative())
2868     return MachineJumpTableInfo::EK_LabelDifference32;
2869 
2870   return TargetLowering::getJumpTableEncoding();
2871 }
2872 
2873 bool PPCTargetLowering::isJumpTableRelative() const {
2874   if (UseAbsoluteJumpTables)
2875     return false;
2876   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2877     return true;
2878   return TargetLowering::isJumpTableRelative();
2879 }
2880 
2881 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2882                                                     SelectionDAG &DAG) const {
2883   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2884     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2885 
2886   switch (getTargetMachine().getCodeModel()) {
2887   case CodeModel::Small:
2888   case CodeModel::Medium:
2889     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2890   default:
2891     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2892                        getPointerTy(DAG.getDataLayout()));
2893   }
2894 }
2895 
2896 const MCExpr *
2897 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2898                                                 unsigned JTI,
2899                                                 MCContext &Ctx) const {
2900   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2901     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2902 
2903   switch (getTargetMachine().getCodeModel()) {
2904   case CodeModel::Small:
2905   case CodeModel::Medium:
2906     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2907   default:
2908     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2909   }
2910 }
2911 
2912 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2913   EVT PtrVT = Op.getValueType();
2914   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2915 
2916   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2917   if (Subtarget.isUsingPCRelativeCalls()) {
2918     SDLoc DL(JT);
2919     EVT Ty = getPointerTy(DAG.getDataLayout());
2920     SDValue GA =
2921         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2922     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2923     return MatAddr;
2924   }
2925 
2926   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2927   // The actual address of the GlobalValue is stored in the TOC.
2928   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2929     setUsesTOCBasePtr(DAG);
2930     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2931     return getTOCEntry(DAG, SDLoc(JT), GA);
2932   }
2933 
2934   unsigned MOHiFlag, MOLoFlag;
2935   bool IsPIC = isPositionIndependent();
2936   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2937 
2938   if (IsPIC && Subtarget.isSVR4ABI()) {
2939     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2940                                         PPCII::MO_PIC_FLAG);
2941     return getTOCEntry(DAG, SDLoc(GA), GA);
2942   }
2943 
2944   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2945   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2946   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2947 }
2948 
2949 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2950                                              SelectionDAG &DAG) const {
2951   EVT PtrVT = Op.getValueType();
2952   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2953   const BlockAddress *BA = BASDN->getBlockAddress();
2954 
2955   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2956   if (Subtarget.isUsingPCRelativeCalls()) {
2957     SDLoc DL(BASDN);
2958     EVT Ty = getPointerTy(DAG.getDataLayout());
2959     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2960                                            PPCII::MO_PCREL_FLAG);
2961     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2962     return MatAddr;
2963   }
2964 
2965   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2966   // The actual BlockAddress is stored in the TOC.
2967   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2968     setUsesTOCBasePtr(DAG);
2969     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2970     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2971   }
2972 
2973   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2974   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2975     return getTOCEntry(
2976         DAG, SDLoc(BASDN),
2977         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2978 
2979   unsigned MOHiFlag, MOLoFlag;
2980   bool IsPIC = isPositionIndependent();
2981   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2982   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2983   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2984   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2985 }
2986 
2987 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2988                                               SelectionDAG &DAG) const {
2989   // FIXME: TLS addresses currently use medium model code sequences,
2990   // which is the most useful form.  Eventually support for small and
2991   // large models could be added if users need it, at the cost of
2992   // additional complexity.
2993   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
2994     report_fatal_error("Thread local storage is not supported with pc-relative"
2995                        " addressing - please compile with -mno-pcrel");
2996   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2997   if (DAG.getTarget().useEmulatedTLS())
2998     return LowerToTLSEmulatedModel(GA, DAG);
2999 
3000   SDLoc dl(GA);
3001   const GlobalValue *GV = GA->getGlobal();
3002   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3003   bool is64bit = Subtarget.isPPC64();
3004   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3005   PICLevel::Level picLevel = M->getPICLevel();
3006 
3007   const TargetMachine &TM = getTargetMachine();
3008   TLSModel::Model Model = TM.getTLSModel(GV);
3009 
3010   if (Model == TLSModel::LocalExec) {
3011     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3012                                                PPCII::MO_TPREL_HA);
3013     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3014                                                PPCII::MO_TPREL_LO);
3015     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3016                              : DAG.getRegister(PPC::R2, MVT::i32);
3017 
3018     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3019     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3020   }
3021 
3022   if (Model == TLSModel::InitialExec) {
3023     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3024     SDValue TGA = DAG.getTargetGlobalAddress(
3025         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3026     SDValue TGATLS = DAG.getTargetGlobalAddress(
3027         GV, dl, PtrVT, 0,
3028         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3029     SDValue TPOffset;
3030     if (IsPCRel) {
3031       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3032       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3033                              MachinePointerInfo());
3034     } else {
3035       SDValue GOTPtr;
3036       if (is64bit) {
3037         setUsesTOCBasePtr(DAG);
3038         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3039         GOTPtr =
3040             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3041       } else {
3042         if (!TM.isPositionIndependent())
3043           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3044         else if (picLevel == PICLevel::SmallPIC)
3045           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3046         else
3047           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3048       }
3049       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3050     }
3051     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3052   }
3053 
3054   if (Model == TLSModel::GeneralDynamic) {
3055     if (Subtarget.isUsingPCRelativeCalls()) {
3056       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3057                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3058       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3059     }
3060 
3061     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3062     SDValue GOTPtr;
3063     if (is64bit) {
3064       setUsesTOCBasePtr(DAG);
3065       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3066       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3067                                    GOTReg, TGA);
3068     } else {
3069       if (picLevel == PICLevel::SmallPIC)
3070         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3071       else
3072         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3073     }
3074     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3075                        GOTPtr, TGA, TGA);
3076   }
3077 
3078   if (Model == TLSModel::LocalDynamic) {
3079     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3080     SDValue GOTPtr;
3081     if (is64bit) {
3082       setUsesTOCBasePtr(DAG);
3083       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3084       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3085                            GOTReg, TGA);
3086     } else {
3087       if (picLevel == PICLevel::SmallPIC)
3088         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3089       else
3090         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3091     }
3092     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3093                                   PtrVT, GOTPtr, TGA, TGA);
3094     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3095                                       PtrVT, TLSAddr, TGA);
3096     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3097   }
3098 
3099   llvm_unreachable("Unknown TLS model!");
3100 }
3101 
3102 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3103                                               SelectionDAG &DAG) const {
3104   EVT PtrVT = Op.getValueType();
3105   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3106   SDLoc DL(GSDN);
3107   const GlobalValue *GV = GSDN->getGlobal();
3108 
3109   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3110   // The actual address of the GlobalValue is stored in the TOC.
3111   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3112     if (Subtarget.isUsingPCRelativeCalls()) {
3113       EVT Ty = getPointerTy(DAG.getDataLayout());
3114       if (isAccessedAsGotIndirect(Op)) {
3115         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3116                                                 PPCII::MO_PCREL_FLAG |
3117                                                     PPCII::MO_GOT_FLAG);
3118         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3119         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3120                                    MachinePointerInfo());
3121         return Load;
3122       } else {
3123         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3124                                                 PPCII::MO_PCREL_FLAG);
3125         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3126       }
3127     }
3128     setUsesTOCBasePtr(DAG);
3129     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3130     return getTOCEntry(DAG, DL, GA);
3131   }
3132 
3133   unsigned MOHiFlag, MOLoFlag;
3134   bool IsPIC = isPositionIndependent();
3135   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3136 
3137   if (IsPIC && Subtarget.isSVR4ABI()) {
3138     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3139                                             GSDN->getOffset(),
3140                                             PPCII::MO_PIC_FLAG);
3141     return getTOCEntry(DAG, DL, GA);
3142   }
3143 
3144   SDValue GAHi =
3145     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3146   SDValue GALo =
3147     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3148 
3149   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3150 }
3151 
3152 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3153   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3154   SDLoc dl(Op);
3155 
3156   if (Op.getValueType() == MVT::v2i64) {
3157     // When the operands themselves are v2i64 values, we need to do something
3158     // special because VSX has no underlying comparison operations for these.
3159     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3160       // Equality can be handled by casting to the legal type for Altivec
3161       // comparisons, everything else needs to be expanded.
3162       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3163         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3164                  DAG.getSetCC(dl, MVT::v4i32,
3165                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3166                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3167                    CC));
3168       }
3169 
3170       return SDValue();
3171     }
3172 
3173     // We handle most of these in the usual way.
3174     return Op;
3175   }
3176 
3177   // If we're comparing for equality to zero, expose the fact that this is
3178   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3179   // fold the new nodes.
3180   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3181     return V;
3182 
3183   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3184     // Leave comparisons against 0 and -1 alone for now, since they're usually
3185     // optimized.  FIXME: revisit this when we can custom lower all setcc
3186     // optimizations.
3187     if (C->isAllOnesValue() || C->isNullValue())
3188       return SDValue();
3189   }
3190 
3191   // If we have an integer seteq/setne, turn it into a compare against zero
3192   // by xor'ing the rhs with the lhs, which is faster than setting a
3193   // condition register, reading it back out, and masking the correct bit.  The
3194   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3195   // the result to other bit-twiddling opportunities.
3196   EVT LHSVT = Op.getOperand(0).getValueType();
3197   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3198     EVT VT = Op.getValueType();
3199     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3200                                 Op.getOperand(1));
3201     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3202   }
3203   return SDValue();
3204 }
3205 
3206 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3207   SDNode *Node = Op.getNode();
3208   EVT VT = Node->getValueType(0);
3209   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3210   SDValue InChain = Node->getOperand(0);
3211   SDValue VAListPtr = Node->getOperand(1);
3212   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3213   SDLoc dl(Node);
3214 
3215   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3216 
3217   // gpr_index
3218   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3219                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3220   InChain = GprIndex.getValue(1);
3221 
3222   if (VT == MVT::i64) {
3223     // Check if GprIndex is even
3224     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3225                                  DAG.getConstant(1, dl, MVT::i32));
3226     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3227                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3228     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3229                                           DAG.getConstant(1, dl, MVT::i32));
3230     // Align GprIndex to be even if it isn't
3231     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3232                            GprIndex);
3233   }
3234 
3235   // fpr index is 1 byte after gpr
3236   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3237                                DAG.getConstant(1, dl, MVT::i32));
3238 
3239   // fpr
3240   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3241                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3242   InChain = FprIndex.getValue(1);
3243 
3244   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3245                                        DAG.getConstant(8, dl, MVT::i32));
3246 
3247   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3248                                         DAG.getConstant(4, dl, MVT::i32));
3249 
3250   // areas
3251   SDValue OverflowArea =
3252       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3253   InChain = OverflowArea.getValue(1);
3254 
3255   SDValue RegSaveArea =
3256       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3257   InChain = RegSaveArea.getValue(1);
3258 
3259   // select overflow_area if index > 8
3260   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3261                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3262 
3263   // adjustment constant gpr_index * 4/8
3264   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3265                                     VT.isInteger() ? GprIndex : FprIndex,
3266                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3267                                                     MVT::i32));
3268 
3269   // OurReg = RegSaveArea + RegConstant
3270   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3271                                RegConstant);
3272 
3273   // Floating types are 32 bytes into RegSaveArea
3274   if (VT.isFloatingPoint())
3275     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3276                          DAG.getConstant(32, dl, MVT::i32));
3277 
3278   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3279   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3280                                    VT.isInteger() ? GprIndex : FprIndex,
3281                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3282                                                    MVT::i32));
3283 
3284   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3285                               VT.isInteger() ? VAListPtr : FprPtr,
3286                               MachinePointerInfo(SV), MVT::i8);
3287 
3288   // determine if we should load from reg_save_area or overflow_area
3289   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3290 
3291   // increase overflow_area by 4/8 if gpr/fpr > 8
3292   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3293                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3294                                           dl, MVT::i32));
3295 
3296   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3297                              OverflowAreaPlusN);
3298 
3299   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3300                               MachinePointerInfo(), MVT::i32);
3301 
3302   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3303 }
3304 
3305 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3306   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3307 
3308   // We have to copy the entire va_list struct:
3309   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3310   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3311                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3312                        false, true, false, MachinePointerInfo(),
3313                        MachinePointerInfo());
3314 }
3315 
3316 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3317                                                   SelectionDAG &DAG) const {
3318   if (Subtarget.isAIXABI())
3319     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3320 
3321   return Op.getOperand(0);
3322 }
3323 
3324 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3325                                                 SelectionDAG &DAG) const {
3326   if (Subtarget.isAIXABI())
3327     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3328 
3329   SDValue Chain = Op.getOperand(0);
3330   SDValue Trmp = Op.getOperand(1); // trampoline
3331   SDValue FPtr = Op.getOperand(2); // nested function
3332   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3333   SDLoc dl(Op);
3334 
3335   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3336   bool isPPC64 = (PtrVT == MVT::i64);
3337   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3338 
3339   TargetLowering::ArgListTy Args;
3340   TargetLowering::ArgListEntry Entry;
3341 
3342   Entry.Ty = IntPtrTy;
3343   Entry.Node = Trmp; Args.push_back(Entry);
3344 
3345   // TrampSize == (isPPC64 ? 48 : 40);
3346   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3347                                isPPC64 ? MVT::i64 : MVT::i32);
3348   Args.push_back(Entry);
3349 
3350   Entry.Node = FPtr; Args.push_back(Entry);
3351   Entry.Node = Nest; Args.push_back(Entry);
3352 
3353   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3354   TargetLowering::CallLoweringInfo CLI(DAG);
3355   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3356       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3357       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3358 
3359   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3360   return CallResult.second;
3361 }
3362 
3363 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3364   MachineFunction &MF = DAG.getMachineFunction();
3365   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3366   EVT PtrVT = getPointerTy(MF.getDataLayout());
3367 
3368   SDLoc dl(Op);
3369 
3370   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3371     // vastart just stores the address of the VarArgsFrameIndex slot into the
3372     // memory location argument.
3373     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3374     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3375     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3376                         MachinePointerInfo(SV));
3377   }
3378 
3379   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3380   // We suppose the given va_list is already allocated.
3381   //
3382   // typedef struct {
3383   //  char gpr;     /* index into the array of 8 GPRs
3384   //                 * stored in the register save area
3385   //                 * gpr=0 corresponds to r3,
3386   //                 * gpr=1 to r4, etc.
3387   //                 */
3388   //  char fpr;     /* index into the array of 8 FPRs
3389   //                 * stored in the register save area
3390   //                 * fpr=0 corresponds to f1,
3391   //                 * fpr=1 to f2, etc.
3392   //                 */
3393   //  char *overflow_arg_area;
3394   //                /* location on stack that holds
3395   //                 * the next overflow argument
3396   //                 */
3397   //  char *reg_save_area;
3398   //               /* where r3:r10 and f1:f8 (if saved)
3399   //                * are stored
3400   //                */
3401   // } va_list[1];
3402 
3403   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3404   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3405   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3406                                             PtrVT);
3407   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3408                                  PtrVT);
3409 
3410   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3411   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3412 
3413   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3414   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3415 
3416   uint64_t FPROffset = 1;
3417   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3418 
3419   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3420 
3421   // Store first byte : number of int regs
3422   SDValue firstStore =
3423       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3424                         MachinePointerInfo(SV), MVT::i8);
3425   uint64_t nextOffset = FPROffset;
3426   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3427                                   ConstFPROffset);
3428 
3429   // Store second byte : number of float regs
3430   SDValue secondStore =
3431       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3432                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3433   nextOffset += StackOffset;
3434   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3435 
3436   // Store second word : arguments given on stack
3437   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3438                                     MachinePointerInfo(SV, nextOffset));
3439   nextOffset += FrameOffset;
3440   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3441 
3442   // Store third word : arguments given in registers
3443   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3444                       MachinePointerInfo(SV, nextOffset));
3445 }
3446 
3447 /// FPR - The set of FP registers that should be allocated for arguments
3448 /// on Darwin and AIX.
3449 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3450                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3451                                 PPC::F11, PPC::F12, PPC::F13};
3452 
3453 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3454 /// the stack.
3455 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3456                                        unsigned PtrByteSize) {
3457   unsigned ArgSize = ArgVT.getStoreSize();
3458   if (Flags.isByVal())
3459     ArgSize = Flags.getByValSize();
3460 
3461   // Round up to multiples of the pointer size, except for array members,
3462   // which are always packed.
3463   if (!Flags.isInConsecutiveRegs())
3464     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3465 
3466   return ArgSize;
3467 }
3468 
3469 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3470 /// on the stack.
3471 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3472                                          ISD::ArgFlagsTy Flags,
3473                                          unsigned PtrByteSize) {
3474   Align Alignment(PtrByteSize);
3475 
3476   // Altivec parameters are padded to a 16 byte boundary.
3477   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3478       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3479       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3480       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3481     Alignment = Align(16);
3482 
3483   // ByVal parameters are aligned as requested.
3484   if (Flags.isByVal()) {
3485     auto BVAlign = Flags.getNonZeroByValAlign();
3486     if (BVAlign > PtrByteSize) {
3487       if (BVAlign.value() % PtrByteSize != 0)
3488         llvm_unreachable(
3489             "ByVal alignment is not a multiple of the pointer size");
3490 
3491       Alignment = BVAlign;
3492     }
3493   }
3494 
3495   // Array members are always packed to their original alignment.
3496   if (Flags.isInConsecutiveRegs()) {
3497     // If the array member was split into multiple registers, the first
3498     // needs to be aligned to the size of the full type.  (Except for
3499     // ppcf128, which is only aligned as its f64 components.)
3500     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3501       Alignment = Align(OrigVT.getStoreSize());
3502     else
3503       Alignment = Align(ArgVT.getStoreSize());
3504   }
3505 
3506   return Alignment;
3507 }
3508 
3509 /// CalculateStackSlotUsed - Return whether this argument will use its
3510 /// stack slot (instead of being passed in registers).  ArgOffset,
3511 /// AvailableFPRs, and AvailableVRs must hold the current argument
3512 /// position, and will be updated to account for this argument.
3513 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3514                                    unsigned PtrByteSize, unsigned LinkageSize,
3515                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3516                                    unsigned &AvailableFPRs,
3517                                    unsigned &AvailableVRs) {
3518   bool UseMemory = false;
3519 
3520   // Respect alignment of argument on the stack.
3521   Align Alignment =
3522       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3523   ArgOffset = alignTo(ArgOffset, Alignment);
3524   // If there's no space left in the argument save area, we must
3525   // use memory (this check also catches zero-sized arguments).
3526   if (ArgOffset >= LinkageSize + ParamAreaSize)
3527     UseMemory = true;
3528 
3529   // Allocate argument on the stack.
3530   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3531   if (Flags.isInConsecutiveRegsLast())
3532     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3533   // If we overran the argument save area, we must use memory
3534   // (this check catches arguments passed partially in memory)
3535   if (ArgOffset > LinkageSize + ParamAreaSize)
3536     UseMemory = true;
3537 
3538   // However, if the argument is actually passed in an FPR or a VR,
3539   // we don't use memory after all.
3540   if (!Flags.isByVal()) {
3541     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3542       if (AvailableFPRs > 0) {
3543         --AvailableFPRs;
3544         return false;
3545       }
3546     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3547         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3548         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3549         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3550       if (AvailableVRs > 0) {
3551         --AvailableVRs;
3552         return false;
3553       }
3554   }
3555 
3556   return UseMemory;
3557 }
3558 
3559 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3560 /// ensure minimum alignment required for target.
3561 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3562                                      unsigned NumBytes) {
3563   return alignTo(NumBytes, Lowering->getStackAlign());
3564 }
3565 
3566 SDValue PPCTargetLowering::LowerFormalArguments(
3567     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3568     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3569     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3570   if (Subtarget.isAIXABI())
3571     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3572                                     InVals);
3573   if (Subtarget.is64BitELFABI())
3574     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3575                                        InVals);
3576   if (Subtarget.is32BitELFABI())
3577     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3578                                        InVals);
3579 
3580   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3581                                      InVals);
3582 }
3583 
3584 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3585     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3586     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3587     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3588 
3589   // 32-bit SVR4 ABI Stack Frame Layout:
3590   //              +-----------------------------------+
3591   //        +-->  |            Back chain             |
3592   //        |     +-----------------------------------+
3593   //        |     | Floating-point register save area |
3594   //        |     +-----------------------------------+
3595   //        |     |    General register save area     |
3596   //        |     +-----------------------------------+
3597   //        |     |          CR save word             |
3598   //        |     +-----------------------------------+
3599   //        |     |         VRSAVE save word          |
3600   //        |     +-----------------------------------+
3601   //        |     |         Alignment padding         |
3602   //        |     +-----------------------------------+
3603   //        |     |     Vector register save area     |
3604   //        |     +-----------------------------------+
3605   //        |     |       Local variable space        |
3606   //        |     +-----------------------------------+
3607   //        |     |        Parameter list area        |
3608   //        |     +-----------------------------------+
3609   //        |     |           LR save word            |
3610   //        |     +-----------------------------------+
3611   // SP-->  +---  |            Back chain             |
3612   //              +-----------------------------------+
3613   //
3614   // Specifications:
3615   //   System V Application Binary Interface PowerPC Processor Supplement
3616   //   AltiVec Technology Programming Interface Manual
3617 
3618   MachineFunction &MF = DAG.getMachineFunction();
3619   MachineFrameInfo &MFI = MF.getFrameInfo();
3620   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3621 
3622   EVT PtrVT = getPointerTy(MF.getDataLayout());
3623   // Potential tail calls could cause overwriting of argument stack slots.
3624   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3625                        (CallConv == CallingConv::Fast));
3626   const Align PtrAlign(4);
3627 
3628   // Assign locations to all of the incoming arguments.
3629   SmallVector<CCValAssign, 16> ArgLocs;
3630   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3631                  *DAG.getContext());
3632 
3633   // Reserve space for the linkage area on the stack.
3634   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3635   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3636   if (useSoftFloat())
3637     CCInfo.PreAnalyzeFormalArguments(Ins);
3638 
3639   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3640   CCInfo.clearWasPPCF128();
3641 
3642   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3643     CCValAssign &VA = ArgLocs[i];
3644 
3645     // Arguments stored in registers.
3646     if (VA.isRegLoc()) {
3647       const TargetRegisterClass *RC;
3648       EVT ValVT = VA.getValVT();
3649 
3650       switch (ValVT.getSimpleVT().SimpleTy) {
3651         default:
3652           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3653         case MVT::i1:
3654         case MVT::i32:
3655           RC = &PPC::GPRCRegClass;
3656           break;
3657         case MVT::f32:
3658           if (Subtarget.hasP8Vector())
3659             RC = &PPC::VSSRCRegClass;
3660           else if (Subtarget.hasSPE())
3661             RC = &PPC::GPRCRegClass;
3662           else
3663             RC = &PPC::F4RCRegClass;
3664           break;
3665         case MVT::f64:
3666           if (Subtarget.hasVSX())
3667             RC = &PPC::VSFRCRegClass;
3668           else if (Subtarget.hasSPE())
3669             // SPE passes doubles in GPR pairs.
3670             RC = &PPC::GPRCRegClass;
3671           else
3672             RC = &PPC::F8RCRegClass;
3673           break;
3674         case MVT::v16i8:
3675         case MVT::v8i16:
3676         case MVT::v4i32:
3677           RC = &PPC::VRRCRegClass;
3678           break;
3679         case MVT::v4f32:
3680           RC = &PPC::VRRCRegClass;
3681           break;
3682         case MVT::v2f64:
3683         case MVT::v2i64:
3684           RC = &PPC::VRRCRegClass;
3685           break;
3686       }
3687 
3688       SDValue ArgValue;
3689       // Transform the arguments stored in physical registers into
3690       // virtual ones.
3691       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3692         assert(i + 1 < e && "No second half of double precision argument");
3693         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3694         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3695         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3696         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3697         if (!Subtarget.isLittleEndian())
3698           std::swap (ArgValueLo, ArgValueHi);
3699         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3700                                ArgValueHi);
3701       } else {
3702         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3703         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3704                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3705         if (ValVT == MVT::i1)
3706           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3707       }
3708 
3709       InVals.push_back(ArgValue);
3710     } else {
3711       // Argument stored in memory.
3712       assert(VA.isMemLoc());
3713 
3714       // Get the extended size of the argument type in stack
3715       unsigned ArgSize = VA.getLocVT().getStoreSize();
3716       // Get the actual size of the argument type
3717       unsigned ObjSize = VA.getValVT().getStoreSize();
3718       unsigned ArgOffset = VA.getLocMemOffset();
3719       // Stack objects in PPC32 are right justified.
3720       ArgOffset += ArgSize - ObjSize;
3721       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3722 
3723       // Create load nodes to retrieve arguments from the stack.
3724       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3725       InVals.push_back(
3726           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3727     }
3728   }
3729 
3730   // Assign locations to all of the incoming aggregate by value arguments.
3731   // Aggregates passed by value are stored in the local variable space of the
3732   // caller's stack frame, right above the parameter list area.
3733   SmallVector<CCValAssign, 16> ByValArgLocs;
3734   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3735                       ByValArgLocs, *DAG.getContext());
3736 
3737   // Reserve stack space for the allocations in CCInfo.
3738   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3739 
3740   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3741 
3742   // Area that is at least reserved in the caller of this function.
3743   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3744   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3745 
3746   // Set the size that is at least reserved in caller of this function.  Tail
3747   // call optimized function's reserved stack space needs to be aligned so that
3748   // taking the difference between two stack areas will result in an aligned
3749   // stack.
3750   MinReservedArea =
3751       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3752   FuncInfo->setMinReservedArea(MinReservedArea);
3753 
3754   SmallVector<SDValue, 8> MemOps;
3755 
3756   // If the function takes variable number of arguments, make a frame index for
3757   // the start of the first vararg value... for expansion of llvm.va_start.
3758   if (isVarArg) {
3759     static const MCPhysReg GPArgRegs[] = {
3760       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3761       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3762     };
3763     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3764 
3765     static const MCPhysReg FPArgRegs[] = {
3766       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3767       PPC::F8
3768     };
3769     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3770 
3771     if (useSoftFloat() || hasSPE())
3772        NumFPArgRegs = 0;
3773 
3774     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3775     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3776 
3777     // Make room for NumGPArgRegs and NumFPArgRegs.
3778     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3779                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3780 
3781     FuncInfo->setVarArgsStackOffset(
3782       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3783                             CCInfo.getNextStackOffset(), true));
3784 
3785     FuncInfo->setVarArgsFrameIndex(
3786         MFI.CreateStackObject(Depth, Align(8), false));
3787     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3788 
3789     // The fixed integer arguments of a variadic function are stored to the
3790     // VarArgsFrameIndex on the stack so that they may be loaded by
3791     // dereferencing the result of va_next.
3792     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3793       // Get an existing live-in vreg, or add a new one.
3794       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3795       if (!VReg)
3796         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3797 
3798       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3799       SDValue Store =
3800           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3801       MemOps.push_back(Store);
3802       // Increment the address by four for the next argument to store
3803       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3804       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3805     }
3806 
3807     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3808     // is set.
3809     // The double arguments are stored to the VarArgsFrameIndex
3810     // on the stack.
3811     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3812       // Get an existing live-in vreg, or add a new one.
3813       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3814       if (!VReg)
3815         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3816 
3817       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3818       SDValue Store =
3819           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3820       MemOps.push_back(Store);
3821       // Increment the address by eight for the next argument to store
3822       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3823                                          PtrVT);
3824       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3825     }
3826   }
3827 
3828   if (!MemOps.empty())
3829     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3830 
3831   return Chain;
3832 }
3833 
3834 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3835 // value to MVT::i64 and then truncate to the correct register size.
3836 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3837                                              EVT ObjectVT, SelectionDAG &DAG,
3838                                              SDValue ArgVal,
3839                                              const SDLoc &dl) const {
3840   if (Flags.isSExt())
3841     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3842                          DAG.getValueType(ObjectVT));
3843   else if (Flags.isZExt())
3844     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3845                          DAG.getValueType(ObjectVT));
3846 
3847   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3848 }
3849 
3850 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3851     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3852     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3853     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3854   // TODO: add description of PPC stack frame format, or at least some docs.
3855   //
3856   bool isELFv2ABI = Subtarget.isELFv2ABI();
3857   bool isLittleEndian = Subtarget.isLittleEndian();
3858   MachineFunction &MF = DAG.getMachineFunction();
3859   MachineFrameInfo &MFI = MF.getFrameInfo();
3860   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3861 
3862   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3863          "fastcc not supported on varargs functions");
3864 
3865   EVT PtrVT = getPointerTy(MF.getDataLayout());
3866   // Potential tail calls could cause overwriting of argument stack slots.
3867   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3868                        (CallConv == CallingConv::Fast));
3869   unsigned PtrByteSize = 8;
3870   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3871 
3872   static const MCPhysReg GPR[] = {
3873     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3874     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3875   };
3876   static const MCPhysReg VR[] = {
3877     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3878     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3879   };
3880 
3881   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3882   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3883   const unsigned Num_VR_Regs  = array_lengthof(VR);
3884 
3885   // Do a first pass over the arguments to determine whether the ABI
3886   // guarantees that our caller has allocated the parameter save area
3887   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3888   // in the ELFv2 ABI, it is true if this is a vararg function or if
3889   // any parameter is located in a stack slot.
3890 
3891   bool HasParameterArea = !isELFv2ABI || isVarArg;
3892   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3893   unsigned NumBytes = LinkageSize;
3894   unsigned AvailableFPRs = Num_FPR_Regs;
3895   unsigned AvailableVRs = Num_VR_Regs;
3896   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3897     if (Ins[i].Flags.isNest())
3898       continue;
3899 
3900     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3901                                PtrByteSize, LinkageSize, ParamAreaSize,
3902                                NumBytes, AvailableFPRs, AvailableVRs))
3903       HasParameterArea = true;
3904   }
3905 
3906   // Add DAG nodes to load the arguments or copy them out of registers.  On
3907   // entry to a function on PPC, the arguments start after the linkage area,
3908   // although the first ones are often in registers.
3909 
3910   unsigned ArgOffset = LinkageSize;
3911   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3912   SmallVector<SDValue, 8> MemOps;
3913   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3914   unsigned CurArgIdx = 0;
3915   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3916     SDValue ArgVal;
3917     bool needsLoad = false;
3918     EVT ObjectVT = Ins[ArgNo].VT;
3919     EVT OrigVT = Ins[ArgNo].ArgVT;
3920     unsigned ObjSize = ObjectVT.getStoreSize();
3921     unsigned ArgSize = ObjSize;
3922     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3923     if (Ins[ArgNo].isOrigArg()) {
3924       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3925       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3926     }
3927     // We re-align the argument offset for each argument, except when using the
3928     // fast calling convention, when we need to make sure we do that only when
3929     // we'll actually use a stack slot.
3930     unsigned CurArgOffset;
3931     Align Alignment;
3932     auto ComputeArgOffset = [&]() {
3933       /* Respect alignment of argument on the stack.  */
3934       Alignment =
3935           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3936       ArgOffset = alignTo(ArgOffset, Alignment);
3937       CurArgOffset = ArgOffset;
3938     };
3939 
3940     if (CallConv != CallingConv::Fast) {
3941       ComputeArgOffset();
3942 
3943       /* Compute GPR index associated with argument offset.  */
3944       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3945       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3946     }
3947 
3948     // FIXME the codegen can be much improved in some cases.
3949     // We do not have to keep everything in memory.
3950     if (Flags.isByVal()) {
3951       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3952 
3953       if (CallConv == CallingConv::Fast)
3954         ComputeArgOffset();
3955 
3956       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3957       ObjSize = Flags.getByValSize();
3958       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3959       // Empty aggregate parameters do not take up registers.  Examples:
3960       //   struct { } a;
3961       //   union  { } b;
3962       //   int c[0];
3963       // etc.  However, we have to provide a place-holder in InVals, so
3964       // pretend we have an 8-byte item at the current address for that
3965       // purpose.
3966       if (!ObjSize) {
3967         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3968         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3969         InVals.push_back(FIN);
3970         continue;
3971       }
3972 
3973       // Create a stack object covering all stack doublewords occupied
3974       // by the argument.  If the argument is (fully or partially) on
3975       // the stack, or if the argument is fully in registers but the
3976       // caller has allocated the parameter save anyway, we can refer
3977       // directly to the caller's stack frame.  Otherwise, create a
3978       // local copy in our own frame.
3979       int FI;
3980       if (HasParameterArea ||
3981           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3982         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3983       else
3984         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3985       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3986 
3987       // Handle aggregates smaller than 8 bytes.
3988       if (ObjSize < PtrByteSize) {
3989         // The value of the object is its address, which differs from the
3990         // address of the enclosing doubleword on big-endian systems.
3991         SDValue Arg = FIN;
3992         if (!isLittleEndian) {
3993           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3994           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3995         }
3996         InVals.push_back(Arg);
3997 
3998         if (GPR_idx != Num_GPR_Regs) {
3999           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4000           FuncInfo->addLiveInAttr(VReg, Flags);
4001           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4002           SDValue Store;
4003 
4004           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4005             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4006                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4007             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4008                                       MachinePointerInfo(&*FuncArg), ObjType);
4009           } else {
4010             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4011             // store the whole register as-is to the parameter save area
4012             // slot.
4013             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4014                                  MachinePointerInfo(&*FuncArg));
4015           }
4016 
4017           MemOps.push_back(Store);
4018         }
4019         // Whether we copied from a register or not, advance the offset
4020         // into the parameter save area by a full doubleword.
4021         ArgOffset += PtrByteSize;
4022         continue;
4023       }
4024 
4025       // The value of the object is its address, which is the address of
4026       // its first stack doubleword.
4027       InVals.push_back(FIN);
4028 
4029       // Store whatever pieces of the object are in registers to memory.
4030       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4031         if (GPR_idx == Num_GPR_Regs)
4032           break;
4033 
4034         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4035         FuncInfo->addLiveInAttr(VReg, Flags);
4036         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4037         SDValue Addr = FIN;
4038         if (j) {
4039           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4040           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4041         }
4042         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4043                                      MachinePointerInfo(&*FuncArg, j));
4044         MemOps.push_back(Store);
4045         ++GPR_idx;
4046       }
4047       ArgOffset += ArgSize;
4048       continue;
4049     }
4050 
4051     switch (ObjectVT.getSimpleVT().SimpleTy) {
4052     default: llvm_unreachable("Unhandled argument type!");
4053     case MVT::i1:
4054     case MVT::i32:
4055     case MVT::i64:
4056       if (Flags.isNest()) {
4057         // The 'nest' parameter, if any, is passed in R11.
4058         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4059         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4060 
4061         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4062           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4063 
4064         break;
4065       }
4066 
4067       // These can be scalar arguments or elements of an integer array type
4068       // passed directly.  Clang may use those instead of "byval" aggregate
4069       // types to avoid forcing arguments to memory unnecessarily.
4070       if (GPR_idx != Num_GPR_Regs) {
4071         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4072         FuncInfo->addLiveInAttr(VReg, Flags);
4073         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4074 
4075         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4076           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4077           // value to MVT::i64 and then truncate to the correct register size.
4078           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4079       } else {
4080         if (CallConv == CallingConv::Fast)
4081           ComputeArgOffset();
4082 
4083         needsLoad = true;
4084         ArgSize = PtrByteSize;
4085       }
4086       if (CallConv != CallingConv::Fast || needsLoad)
4087         ArgOffset += 8;
4088       break;
4089 
4090     case MVT::f32:
4091     case MVT::f64:
4092       // These can be scalar arguments or elements of a float array type
4093       // passed directly.  The latter are used to implement ELFv2 homogenous
4094       // float aggregates.
4095       if (FPR_idx != Num_FPR_Regs) {
4096         unsigned VReg;
4097 
4098         if (ObjectVT == MVT::f32)
4099           VReg = MF.addLiveIn(FPR[FPR_idx],
4100                               Subtarget.hasP8Vector()
4101                                   ? &PPC::VSSRCRegClass
4102                                   : &PPC::F4RCRegClass);
4103         else
4104           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4105                                                 ? &PPC::VSFRCRegClass
4106                                                 : &PPC::F8RCRegClass);
4107 
4108         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4109         ++FPR_idx;
4110       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4111         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4112         // once we support fp <-> gpr moves.
4113 
4114         // This can only ever happen in the presence of f32 array types,
4115         // since otherwise we never run out of FPRs before running out
4116         // of GPRs.
4117         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4118         FuncInfo->addLiveInAttr(VReg, Flags);
4119         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4120 
4121         if (ObjectVT == MVT::f32) {
4122           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4123             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4124                                  DAG.getConstant(32, dl, MVT::i32));
4125           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4126         }
4127 
4128         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4129       } else {
4130         if (CallConv == CallingConv::Fast)
4131           ComputeArgOffset();
4132 
4133         needsLoad = true;
4134       }
4135 
4136       // When passing an array of floats, the array occupies consecutive
4137       // space in the argument area; only round up to the next doubleword
4138       // at the end of the array.  Otherwise, each float takes 8 bytes.
4139       if (CallConv != CallingConv::Fast || needsLoad) {
4140         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4141         ArgOffset += ArgSize;
4142         if (Flags.isInConsecutiveRegsLast())
4143           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4144       }
4145       break;
4146     case MVT::v4f32:
4147     case MVT::v4i32:
4148     case MVT::v8i16:
4149     case MVT::v16i8:
4150     case MVT::v2f64:
4151     case MVT::v2i64:
4152     case MVT::v1i128:
4153     case MVT::f128:
4154       // These can be scalar arguments or elements of a vector array type
4155       // passed directly.  The latter are used to implement ELFv2 homogenous
4156       // vector aggregates.
4157       if (VR_idx != Num_VR_Regs) {
4158         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4159         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4160         ++VR_idx;
4161       } else {
4162         if (CallConv == CallingConv::Fast)
4163           ComputeArgOffset();
4164         needsLoad = true;
4165       }
4166       if (CallConv != CallingConv::Fast || needsLoad)
4167         ArgOffset += 16;
4168       break;
4169     }
4170 
4171     // We need to load the argument to a virtual register if we determined
4172     // above that we ran out of physical registers of the appropriate type.
4173     if (needsLoad) {
4174       if (ObjSize < ArgSize && !isLittleEndian)
4175         CurArgOffset += ArgSize - ObjSize;
4176       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4177       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4178       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4179     }
4180 
4181     InVals.push_back(ArgVal);
4182   }
4183 
4184   // Area that is at least reserved in the caller of this function.
4185   unsigned MinReservedArea;
4186   if (HasParameterArea)
4187     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4188   else
4189     MinReservedArea = LinkageSize;
4190 
4191   // Set the size that is at least reserved in caller of this function.  Tail
4192   // call optimized functions' reserved stack space needs to be aligned so that
4193   // taking the difference between two stack areas will result in an aligned
4194   // stack.
4195   MinReservedArea =
4196       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4197   FuncInfo->setMinReservedArea(MinReservedArea);
4198 
4199   // If the function takes variable number of arguments, make a frame index for
4200   // the start of the first vararg value... for expansion of llvm.va_start.
4201   // On ELFv2ABI spec, it writes:
4202   // C programs that are intended to be *portable* across different compilers
4203   // and architectures must use the header file <stdarg.h> to deal with variable
4204   // argument lists.
4205   if (isVarArg && MFI.hasVAStart()) {
4206     int Depth = ArgOffset;
4207 
4208     FuncInfo->setVarArgsFrameIndex(
4209       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4210     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4211 
4212     // If this function is vararg, store any remaining integer argument regs
4213     // to their spots on the stack so that they may be loaded by dereferencing
4214     // the result of va_next.
4215     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4216          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4217       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4218       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4219       SDValue Store =
4220           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4221       MemOps.push_back(Store);
4222       // Increment the address by four for the next argument to store
4223       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4224       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4225     }
4226   }
4227 
4228   if (!MemOps.empty())
4229     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4230 
4231   return Chain;
4232 }
4233 
4234 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4235     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4236     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4237     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4238   // TODO: add description of PPC stack frame format, or at least some docs.
4239   //
4240   MachineFunction &MF = DAG.getMachineFunction();
4241   MachineFrameInfo &MFI = MF.getFrameInfo();
4242   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4243 
4244   EVT PtrVT = getPointerTy(MF.getDataLayout());
4245   bool isPPC64 = PtrVT == MVT::i64;
4246   // Potential tail calls could cause overwriting of argument stack slots.
4247   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4248                        (CallConv == CallingConv::Fast));
4249   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4250   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4251   unsigned ArgOffset = LinkageSize;
4252   // Area that is at least reserved in caller of this function.
4253   unsigned MinReservedArea = ArgOffset;
4254 
4255   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4256     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4257     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4258   };
4259   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4260     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4261     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4262   };
4263   static const MCPhysReg VR[] = {
4264     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4265     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4266   };
4267 
4268   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4269   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4270   const unsigned Num_VR_Regs  = array_lengthof( VR);
4271 
4272   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4273 
4274   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4275 
4276   // In 32-bit non-varargs functions, the stack space for vectors is after the
4277   // stack space for non-vectors.  We do not use this space unless we have
4278   // too many vectors to fit in registers, something that only occurs in
4279   // constructed examples:), but we have to walk the arglist to figure
4280   // that out...for the pathological case, compute VecArgOffset as the
4281   // start of the vector parameter area.  Computing VecArgOffset is the
4282   // entire point of the following loop.
4283   unsigned VecArgOffset = ArgOffset;
4284   if (!isVarArg && !isPPC64) {
4285     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4286          ++ArgNo) {
4287       EVT ObjectVT = Ins[ArgNo].VT;
4288       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4289 
4290       if (Flags.isByVal()) {
4291         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4292         unsigned ObjSize = Flags.getByValSize();
4293         unsigned ArgSize =
4294                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4295         VecArgOffset += ArgSize;
4296         continue;
4297       }
4298 
4299       switch(ObjectVT.getSimpleVT().SimpleTy) {
4300       default: llvm_unreachable("Unhandled argument type!");
4301       case MVT::i1:
4302       case MVT::i32:
4303       case MVT::f32:
4304         VecArgOffset += 4;
4305         break;
4306       case MVT::i64:  // PPC64
4307       case MVT::f64:
4308         // FIXME: We are guaranteed to be !isPPC64 at this point.
4309         // Does MVT::i64 apply?
4310         VecArgOffset += 8;
4311         break;
4312       case MVT::v4f32:
4313       case MVT::v4i32:
4314       case MVT::v8i16:
4315       case MVT::v16i8:
4316         // Nothing to do, we're only looking at Nonvector args here.
4317         break;
4318       }
4319     }
4320   }
4321   // We've found where the vector parameter area in memory is.  Skip the
4322   // first 12 parameters; these don't use that memory.
4323   VecArgOffset = ((VecArgOffset+15)/16)*16;
4324   VecArgOffset += 12*16;
4325 
4326   // Add DAG nodes to load the arguments or copy them out of registers.  On
4327   // entry to a function on PPC, the arguments start after the linkage area,
4328   // although the first ones are often in registers.
4329 
4330   SmallVector<SDValue, 8> MemOps;
4331   unsigned nAltivecParamsAtEnd = 0;
4332   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4333   unsigned CurArgIdx = 0;
4334   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4335     SDValue ArgVal;
4336     bool needsLoad = false;
4337     EVT ObjectVT = Ins[ArgNo].VT;
4338     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4339     unsigned ArgSize = ObjSize;
4340     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4341     if (Ins[ArgNo].isOrigArg()) {
4342       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4343       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4344     }
4345     unsigned CurArgOffset = ArgOffset;
4346 
4347     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4348     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4349         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4350       if (isVarArg || isPPC64) {
4351         MinReservedArea = ((MinReservedArea+15)/16)*16;
4352         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4353                                                   Flags,
4354                                                   PtrByteSize);
4355       } else  nAltivecParamsAtEnd++;
4356     } else
4357       // Calculate min reserved area.
4358       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4359                                                 Flags,
4360                                                 PtrByteSize);
4361 
4362     // FIXME the codegen can be much improved in some cases.
4363     // We do not have to keep everything in memory.
4364     if (Flags.isByVal()) {
4365       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4366 
4367       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4368       ObjSize = Flags.getByValSize();
4369       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4370       // Objects of size 1 and 2 are right justified, everything else is
4371       // left justified.  This means the memory address is adjusted forwards.
4372       if (ObjSize==1 || ObjSize==2) {
4373         CurArgOffset = CurArgOffset + (4 - ObjSize);
4374       }
4375       // The value of the object is its address.
4376       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4377       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4378       InVals.push_back(FIN);
4379       if (ObjSize==1 || ObjSize==2) {
4380         if (GPR_idx != Num_GPR_Regs) {
4381           unsigned VReg;
4382           if (isPPC64)
4383             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4384           else
4385             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4386           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4387           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4388           SDValue Store =
4389               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4390                                 MachinePointerInfo(&*FuncArg), ObjType);
4391           MemOps.push_back(Store);
4392           ++GPR_idx;
4393         }
4394 
4395         ArgOffset += PtrByteSize;
4396 
4397         continue;
4398       }
4399       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4400         // Store whatever pieces of the object are in registers
4401         // to memory.  ArgOffset will be the address of the beginning
4402         // of the object.
4403         if (GPR_idx != Num_GPR_Regs) {
4404           unsigned VReg;
4405           if (isPPC64)
4406             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4407           else
4408             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4409           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4410           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4411           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4412           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4413                                        MachinePointerInfo(&*FuncArg, j));
4414           MemOps.push_back(Store);
4415           ++GPR_idx;
4416           ArgOffset += PtrByteSize;
4417         } else {
4418           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4419           break;
4420         }
4421       }
4422       continue;
4423     }
4424 
4425     switch (ObjectVT.getSimpleVT().SimpleTy) {
4426     default: llvm_unreachable("Unhandled argument type!");
4427     case MVT::i1:
4428     case MVT::i32:
4429       if (!isPPC64) {
4430         if (GPR_idx != Num_GPR_Regs) {
4431           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4432           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4433 
4434           if (ObjectVT == MVT::i1)
4435             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4436 
4437           ++GPR_idx;
4438         } else {
4439           needsLoad = true;
4440           ArgSize = PtrByteSize;
4441         }
4442         // All int arguments reserve stack space in the Darwin ABI.
4443         ArgOffset += PtrByteSize;
4444         break;
4445       }
4446       LLVM_FALLTHROUGH;
4447     case MVT::i64:  // PPC64
4448       if (GPR_idx != Num_GPR_Regs) {
4449         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4450         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4451 
4452         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4453           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4454           // value to MVT::i64 and then truncate to the correct register size.
4455           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4456 
4457         ++GPR_idx;
4458       } else {
4459         needsLoad = true;
4460         ArgSize = PtrByteSize;
4461       }
4462       // All int arguments reserve stack space in the Darwin ABI.
4463       ArgOffset += 8;
4464       break;
4465 
4466     case MVT::f32:
4467     case MVT::f64:
4468       // Every 4 bytes of argument space consumes one of the GPRs available for
4469       // argument passing.
4470       if (GPR_idx != Num_GPR_Regs) {
4471         ++GPR_idx;
4472         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4473           ++GPR_idx;
4474       }
4475       if (FPR_idx != Num_FPR_Regs) {
4476         unsigned VReg;
4477 
4478         if (ObjectVT == MVT::f32)
4479           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4480         else
4481           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4482 
4483         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4484         ++FPR_idx;
4485       } else {
4486         needsLoad = true;
4487       }
4488 
4489       // All FP arguments reserve stack space in the Darwin ABI.
4490       ArgOffset += isPPC64 ? 8 : ObjSize;
4491       break;
4492     case MVT::v4f32:
4493     case MVT::v4i32:
4494     case MVT::v8i16:
4495     case MVT::v16i8:
4496       // Note that vector arguments in registers don't reserve stack space,
4497       // except in varargs functions.
4498       if (VR_idx != Num_VR_Regs) {
4499         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4500         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4501         if (isVarArg) {
4502           while ((ArgOffset % 16) != 0) {
4503             ArgOffset += PtrByteSize;
4504             if (GPR_idx != Num_GPR_Regs)
4505               GPR_idx++;
4506           }
4507           ArgOffset += 16;
4508           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4509         }
4510         ++VR_idx;
4511       } else {
4512         if (!isVarArg && !isPPC64) {
4513           // Vectors go after all the nonvectors.
4514           CurArgOffset = VecArgOffset;
4515           VecArgOffset += 16;
4516         } else {
4517           // Vectors are aligned.
4518           ArgOffset = ((ArgOffset+15)/16)*16;
4519           CurArgOffset = ArgOffset;
4520           ArgOffset += 16;
4521         }
4522         needsLoad = true;
4523       }
4524       break;
4525     }
4526 
4527     // We need to load the argument to a virtual register if we determined above
4528     // that we ran out of physical registers of the appropriate type.
4529     if (needsLoad) {
4530       int FI = MFI.CreateFixedObject(ObjSize,
4531                                      CurArgOffset + (ArgSize - ObjSize),
4532                                      isImmutable);
4533       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4534       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4535     }
4536 
4537     InVals.push_back(ArgVal);
4538   }
4539 
4540   // Allow for Altivec parameters at the end, if needed.
4541   if (nAltivecParamsAtEnd) {
4542     MinReservedArea = ((MinReservedArea+15)/16)*16;
4543     MinReservedArea += 16*nAltivecParamsAtEnd;
4544   }
4545 
4546   // Area that is at least reserved in the caller of this function.
4547   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4548 
4549   // Set the size that is at least reserved in caller of this function.  Tail
4550   // call optimized functions' reserved stack space needs to be aligned so that
4551   // taking the difference between two stack areas will result in an aligned
4552   // stack.
4553   MinReservedArea =
4554       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4555   FuncInfo->setMinReservedArea(MinReservedArea);
4556 
4557   // If the function takes variable number of arguments, make a frame index for
4558   // the start of the first vararg value... for expansion of llvm.va_start.
4559   if (isVarArg) {
4560     int Depth = ArgOffset;
4561 
4562     FuncInfo->setVarArgsFrameIndex(
4563       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4564                             Depth, true));
4565     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4566 
4567     // If this function is vararg, store any remaining integer argument regs
4568     // to their spots on the stack so that they may be loaded by dereferencing
4569     // the result of va_next.
4570     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4571       unsigned VReg;
4572 
4573       if (isPPC64)
4574         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4575       else
4576         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4577 
4578       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4579       SDValue Store =
4580           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4581       MemOps.push_back(Store);
4582       // Increment the address by four for the next argument to store
4583       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4584       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4585     }
4586   }
4587 
4588   if (!MemOps.empty())
4589     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4590 
4591   return Chain;
4592 }
4593 
4594 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4595 /// adjusted to accommodate the arguments for the tailcall.
4596 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4597                                    unsigned ParamSize) {
4598 
4599   if (!isTailCall) return 0;
4600 
4601   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4602   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4603   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4604   // Remember only if the new adjustment is bigger.
4605   if (SPDiff < FI->getTailCallSPDelta())
4606     FI->setTailCallSPDelta(SPDiff);
4607 
4608   return SPDiff;
4609 }
4610 
4611 static bool isFunctionGlobalAddress(SDValue Callee);
4612 
4613 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4614                               const TargetMachine &TM) {
4615   // It does not make sense to call callsShareTOCBase() with a caller that
4616   // is PC Relative since PC Relative callers do not have a TOC.
4617 #ifndef NDEBUG
4618   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4619   assert(!STICaller->isUsingPCRelativeCalls() &&
4620          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4621 #endif
4622 
4623   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4624   // don't have enough information to determine if the caller and callee share
4625   // the same  TOC base, so we have to pessimistically assume they don't for
4626   // correctness.
4627   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4628   if (!G)
4629     return false;
4630 
4631   const GlobalValue *GV = G->getGlobal();
4632 
4633   // If the callee is preemptable, then the static linker will use a plt-stub
4634   // which saves the toc to the stack, and needs a nop after the call
4635   // instruction to convert to a toc-restore.
4636   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4637     return false;
4638 
4639   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4640   // We may need a TOC restore in the situation where the caller requires a
4641   // valid TOC but the callee is PC Relative and does not.
4642   const Function *F = dyn_cast<Function>(GV);
4643   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4644 
4645   // If we have an Alias we can try to get the function from there.
4646   if (Alias) {
4647     const GlobalObject *GlobalObj = Alias->getBaseObject();
4648     F = dyn_cast<Function>(GlobalObj);
4649   }
4650 
4651   // If we still have no valid function pointer we do not have enough
4652   // information to determine if the callee uses PC Relative calls so we must
4653   // assume that it does.
4654   if (!F)
4655     return false;
4656 
4657   // If the callee uses PC Relative we cannot guarantee that the callee won't
4658   // clobber the TOC of the caller and so we must assume that the two
4659   // functions do not share a TOC base.
4660   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4661   if (STICallee->isUsingPCRelativeCalls())
4662     return false;
4663 
4664   // The medium and large code models are expected to provide a sufficiently
4665   // large TOC to provide all data addressing needs of a module with a
4666   // single TOC.
4667   if (CodeModel::Medium == TM.getCodeModel() ||
4668       CodeModel::Large == TM.getCodeModel())
4669     return true;
4670 
4671   // Otherwise we need to ensure callee and caller are in the same section,
4672   // since the linker may allocate multiple TOCs, and we don't know which
4673   // sections will belong to the same TOC base.
4674   if (!GV->isStrongDefinitionForLinker())
4675     return false;
4676 
4677   // Any explicitly-specified sections and section prefixes must also match.
4678   // Also, if we're using -ffunction-sections, then each function is always in
4679   // a different section (the same is true for COMDAT functions).
4680   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4681       GV->getSection() != Caller->getSection())
4682     return false;
4683   if (const auto *F = dyn_cast<Function>(GV)) {
4684     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4685       return false;
4686   }
4687 
4688   return true;
4689 }
4690 
4691 static bool
4692 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4693                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4694   assert(Subtarget.is64BitELFABI());
4695 
4696   const unsigned PtrByteSize = 8;
4697   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4698 
4699   static const MCPhysReg GPR[] = {
4700     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4701     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4702   };
4703   static const MCPhysReg VR[] = {
4704     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4705     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4706   };
4707 
4708   const unsigned NumGPRs = array_lengthof(GPR);
4709   const unsigned NumFPRs = 13;
4710   const unsigned NumVRs = array_lengthof(VR);
4711   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4712 
4713   unsigned NumBytes = LinkageSize;
4714   unsigned AvailableFPRs = NumFPRs;
4715   unsigned AvailableVRs = NumVRs;
4716 
4717   for (const ISD::OutputArg& Param : Outs) {
4718     if (Param.Flags.isNest()) continue;
4719 
4720     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4721                                LinkageSize, ParamAreaSize, NumBytes,
4722                                AvailableFPRs, AvailableVRs))
4723       return true;
4724   }
4725   return false;
4726 }
4727 
4728 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4729   if (CB.arg_size() != CallerFn->arg_size())
4730     return false;
4731 
4732   auto CalleeArgIter = CB.arg_begin();
4733   auto CalleeArgEnd = CB.arg_end();
4734   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4735 
4736   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4737     const Value* CalleeArg = *CalleeArgIter;
4738     const Value* CallerArg = &(*CallerArgIter);
4739     if (CalleeArg == CallerArg)
4740       continue;
4741 
4742     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4743     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4744     //      }
4745     // 1st argument of callee is undef and has the same type as caller.
4746     if (CalleeArg->getType() == CallerArg->getType() &&
4747         isa<UndefValue>(CalleeArg))
4748       continue;
4749 
4750     return false;
4751   }
4752 
4753   return true;
4754 }
4755 
4756 // Returns true if TCO is possible between the callers and callees
4757 // calling conventions.
4758 static bool
4759 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4760                                     CallingConv::ID CalleeCC) {
4761   // Tail calls are possible with fastcc and ccc.
4762   auto isTailCallableCC  = [] (CallingConv::ID CC){
4763       return  CC == CallingConv::C || CC == CallingConv::Fast;
4764   };
4765   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4766     return false;
4767 
4768   // We can safely tail call both fastcc and ccc callees from a c calling
4769   // convention caller. If the caller is fastcc, we may have less stack space
4770   // than a non-fastcc caller with the same signature so disable tail-calls in
4771   // that case.
4772   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4773 }
4774 
4775 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4776     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4777     const SmallVectorImpl<ISD::OutputArg> &Outs,
4778     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4779   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4780 
4781   if (DisableSCO && !TailCallOpt) return false;
4782 
4783   // Variadic argument functions are not supported.
4784   if (isVarArg) return false;
4785 
4786   auto &Caller = DAG.getMachineFunction().getFunction();
4787   // Check that the calling conventions are compatible for tco.
4788   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4789     return false;
4790 
4791   // Caller contains any byval parameter is not supported.
4792   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4793     return false;
4794 
4795   // Callee contains any byval parameter is not supported, too.
4796   // Note: This is a quick work around, because in some cases, e.g.
4797   // caller's stack size > callee's stack size, we are still able to apply
4798   // sibling call optimization. For example, gcc is able to do SCO for caller1
4799   // in the following example, but not for caller2.
4800   //   struct test {
4801   //     long int a;
4802   //     char ary[56];
4803   //   } gTest;
4804   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4805   //     b->a = v.a;
4806   //     return 0;
4807   //   }
4808   //   void caller1(struct test a, struct test c, struct test *b) {
4809   //     callee(gTest, b); }
4810   //   void caller2(struct test *b) { callee(gTest, b); }
4811   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4812     return false;
4813 
4814   // If callee and caller use different calling conventions, we cannot pass
4815   // parameters on stack since offsets for the parameter area may be different.
4816   if (Caller.getCallingConv() != CalleeCC &&
4817       needStackSlotPassParameters(Subtarget, Outs))
4818     return false;
4819 
4820   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4821   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4822   // callee potentially have different TOC bases then we cannot tail call since
4823   // we need to restore the TOC pointer after the call.
4824   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4825   // We cannot guarantee this for indirect calls or calls to external functions.
4826   // When PC-Relative addressing is used, the concept of the TOC is no longer
4827   // applicable so this check is not required.
4828   // Check first for indirect calls.
4829   if (!Subtarget.isUsingPCRelativeCalls() &&
4830       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4831     return false;
4832 
4833   // Check if we share the TOC base.
4834   if (!Subtarget.isUsingPCRelativeCalls() &&
4835       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4836     return false;
4837 
4838   // TCO allows altering callee ABI, so we don't have to check further.
4839   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4840     return true;
4841 
4842   if (DisableSCO) return false;
4843 
4844   // If callee use the same argument list that caller is using, then we can
4845   // apply SCO on this case. If it is not, then we need to check if callee needs
4846   // stack for passing arguments.
4847   // PC Relative tail calls may not have a CallBase.
4848   // If there is no CallBase we cannot verify if we have the same argument
4849   // list so assume that we don't have the same argument list.
4850   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4851       needStackSlotPassParameters(Subtarget, Outs))
4852     return false;
4853   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4854     return false;
4855 
4856   return true;
4857 }
4858 
4859 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4860 /// for tail call optimization. Targets which want to do tail call
4861 /// optimization should implement this function.
4862 bool
4863 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4864                                                      CallingConv::ID CalleeCC,
4865                                                      bool isVarArg,
4866                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4867                                                      SelectionDAG& DAG) const {
4868   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4869     return false;
4870 
4871   // Variable argument functions are not supported.
4872   if (isVarArg)
4873     return false;
4874 
4875   MachineFunction &MF = DAG.getMachineFunction();
4876   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4877   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4878     // Functions containing by val parameters are not supported.
4879     for (unsigned i = 0; i != Ins.size(); i++) {
4880        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4881        if (Flags.isByVal()) return false;
4882     }
4883 
4884     // Non-PIC/GOT tail calls are supported.
4885     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4886       return true;
4887 
4888     // At the moment we can only do local tail calls (in same module, hidden
4889     // or protected) if we are generating PIC.
4890     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4891       return G->getGlobal()->hasHiddenVisibility()
4892           || G->getGlobal()->hasProtectedVisibility();
4893   }
4894 
4895   return false;
4896 }
4897 
4898 /// isCallCompatibleAddress - Return the immediate to use if the specified
4899 /// 32-bit value is representable in the immediate field of a BxA instruction.
4900 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4901   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4902   if (!C) return nullptr;
4903 
4904   int Addr = C->getZExtValue();
4905   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4906       SignExtend32<26>(Addr) != Addr)
4907     return nullptr;  // Top 6 bits have to be sext of immediate.
4908 
4909   return DAG
4910       .getConstant(
4911           (int)C->getZExtValue() >> 2, SDLoc(Op),
4912           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4913       .getNode();
4914 }
4915 
4916 namespace {
4917 
4918 struct TailCallArgumentInfo {
4919   SDValue Arg;
4920   SDValue FrameIdxOp;
4921   int FrameIdx = 0;
4922 
4923   TailCallArgumentInfo() = default;
4924 };
4925 
4926 } // end anonymous namespace
4927 
4928 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4929 static void StoreTailCallArgumentsToStackSlot(
4930     SelectionDAG &DAG, SDValue Chain,
4931     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4932     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4933   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4934     SDValue Arg = TailCallArgs[i].Arg;
4935     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4936     int FI = TailCallArgs[i].FrameIdx;
4937     // Store relative to framepointer.
4938     MemOpChains.push_back(DAG.getStore(
4939         Chain, dl, Arg, FIN,
4940         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4941   }
4942 }
4943 
4944 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4945 /// the appropriate stack slot for the tail call optimized function call.
4946 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4947                                              SDValue OldRetAddr, SDValue OldFP,
4948                                              int SPDiff, const SDLoc &dl) {
4949   if (SPDiff) {
4950     // Calculate the new stack slot for the return address.
4951     MachineFunction &MF = DAG.getMachineFunction();
4952     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4953     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4954     bool isPPC64 = Subtarget.isPPC64();
4955     int SlotSize = isPPC64 ? 8 : 4;
4956     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4957     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4958                                                          NewRetAddrLoc, true);
4959     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4960     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4961     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4962                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4963   }
4964   return Chain;
4965 }
4966 
4967 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4968 /// the position of the argument.
4969 static void
4970 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4971                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4972                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4973   int Offset = ArgOffset + SPDiff;
4974   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4975   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4976   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4977   SDValue FIN = DAG.getFrameIndex(FI, VT);
4978   TailCallArgumentInfo Info;
4979   Info.Arg = Arg;
4980   Info.FrameIdxOp = FIN;
4981   Info.FrameIdx = FI;
4982   TailCallArguments.push_back(Info);
4983 }
4984 
4985 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4986 /// stack slot. Returns the chain as result and the loaded frame pointers in
4987 /// LROpOut/FPOpout. Used when tail calling.
4988 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4989     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4990     SDValue &FPOpOut, const SDLoc &dl) const {
4991   if (SPDiff) {
4992     // Load the LR and FP stack slot for later adjusting.
4993     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4994     LROpOut = getReturnAddrFrameIndex(DAG);
4995     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4996     Chain = SDValue(LROpOut.getNode(), 1);
4997   }
4998   return Chain;
4999 }
5000 
5001 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5002 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5003 /// specified by the specific parameter attribute. The copy will be passed as
5004 /// a byval function parameter.
5005 /// Sometimes what we are copying is the end of a larger object, the part that
5006 /// does not fit in registers.
5007 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5008                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5009                                          SelectionDAG &DAG, const SDLoc &dl) {
5010   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5011   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5012                        Flags.getNonZeroByValAlign(), false, false, false,
5013                        MachinePointerInfo(), MachinePointerInfo());
5014 }
5015 
5016 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5017 /// tail calls.
5018 static void LowerMemOpCallTo(
5019     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5020     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5021     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5022     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5023   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5024   if (!isTailCall) {
5025     if (isVector) {
5026       SDValue StackPtr;
5027       if (isPPC64)
5028         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5029       else
5030         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5031       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5032                            DAG.getConstant(ArgOffset, dl, PtrVT));
5033     }
5034     MemOpChains.push_back(
5035         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5036     // Calculate and remember argument location.
5037   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5038                                   TailCallArguments);
5039 }
5040 
5041 static void
5042 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5043                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5044                 SDValue FPOp,
5045                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5046   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5047   // might overwrite each other in case of tail call optimization.
5048   SmallVector<SDValue, 8> MemOpChains2;
5049   // Do not flag preceding copytoreg stuff together with the following stuff.
5050   InFlag = SDValue();
5051   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5052                                     MemOpChains2, dl);
5053   if (!MemOpChains2.empty())
5054     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5055 
5056   // Store the return address to the appropriate stack slot.
5057   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5058 
5059   // Emit callseq_end just before tailcall node.
5060   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5061                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5062   InFlag = Chain.getValue(1);
5063 }
5064 
5065 // Is this global address that of a function that can be called by name? (as
5066 // opposed to something that must hold a descriptor for an indirect call).
5067 static bool isFunctionGlobalAddress(SDValue Callee) {
5068   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5069     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5070         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5071       return false;
5072 
5073     return G->getGlobal()->getValueType()->isFunctionTy();
5074   }
5075 
5076   return false;
5077 }
5078 
5079 SDValue PPCTargetLowering::LowerCallResult(
5080     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5081     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5082     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5083   SmallVector<CCValAssign, 16> RVLocs;
5084   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5085                     *DAG.getContext());
5086 
5087   CCRetInfo.AnalyzeCallResult(
5088       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5089                ? RetCC_PPC_Cold
5090                : RetCC_PPC);
5091 
5092   // Copy all of the result registers out of their specified physreg.
5093   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5094     CCValAssign &VA = RVLocs[i];
5095     assert(VA.isRegLoc() && "Can only return in registers!");
5096 
5097     SDValue Val;
5098 
5099     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5100       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5101                                       InFlag);
5102       Chain = Lo.getValue(1);
5103       InFlag = Lo.getValue(2);
5104       VA = RVLocs[++i]; // skip ahead to next loc
5105       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5106                                       InFlag);
5107       Chain = Hi.getValue(1);
5108       InFlag = Hi.getValue(2);
5109       if (!Subtarget.isLittleEndian())
5110         std::swap (Lo, Hi);
5111       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5112     } else {
5113       Val = DAG.getCopyFromReg(Chain, dl,
5114                                VA.getLocReg(), VA.getLocVT(), InFlag);
5115       Chain = Val.getValue(1);
5116       InFlag = Val.getValue(2);
5117     }
5118 
5119     switch (VA.getLocInfo()) {
5120     default: llvm_unreachable("Unknown loc info!");
5121     case CCValAssign::Full: break;
5122     case CCValAssign::AExt:
5123       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5124       break;
5125     case CCValAssign::ZExt:
5126       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5127                         DAG.getValueType(VA.getValVT()));
5128       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5129       break;
5130     case CCValAssign::SExt:
5131       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5132                         DAG.getValueType(VA.getValVT()));
5133       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5134       break;
5135     }
5136 
5137     InVals.push_back(Val);
5138   }
5139 
5140   return Chain;
5141 }
5142 
5143 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5144                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5145   // PatchPoint calls are not indirect.
5146   if (isPatchPoint)
5147     return false;
5148 
5149   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5150     return false;
5151 
5152   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5153   // becuase the immediate function pointer points to a descriptor instead of
5154   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5155   // pointer immediate points to the global entry point, while the BLA would
5156   // need to jump to the local entry point (see rL211174).
5157   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5158       isBLACompatibleAddress(Callee, DAG))
5159     return false;
5160 
5161   return true;
5162 }
5163 
5164 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5165 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5166   return Subtarget.isAIXABI() ||
5167          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5168 }
5169 
5170 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5171                               const Function &Caller,
5172                               const SDValue &Callee,
5173                               const PPCSubtarget &Subtarget,
5174                               const TargetMachine &TM) {
5175   if (CFlags.IsTailCall)
5176     return PPCISD::TC_RETURN;
5177 
5178   // This is a call through a function pointer.
5179   if (CFlags.IsIndirect) {
5180     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5181     // indirect calls. The save of the caller's TOC pointer to the stack will be
5182     // inserted into the DAG as part of call lowering. The restore of the TOC
5183     // pointer is modeled by using a pseudo instruction for the call opcode that
5184     // represents the 2 instruction sequence of an indirect branch and link,
5185     // immediately followed by a load of the TOC pointer from the the stack save
5186     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5187     // as it is not saved or used.
5188     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5189                                                : PPCISD::BCTRL;
5190   }
5191 
5192   if (Subtarget.isUsingPCRelativeCalls()) {
5193     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5194     return PPCISD::CALL_NOTOC;
5195   }
5196 
5197   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5198   // immediately following the call instruction if the caller and callee may
5199   // have different TOC bases. At link time if the linker determines the calls
5200   // may not share a TOC base, the call is redirected to a trampoline inserted
5201   // by the linker. The trampoline will (among other things) save the callers
5202   // TOC pointer at an ABI designated offset in the linkage area and the linker
5203   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5204   // into gpr2.
5205   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5206     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5207                                                   : PPCISD::CALL_NOP;
5208 
5209   return PPCISD::CALL;
5210 }
5211 
5212 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5213                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5214   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5215     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5216       return SDValue(Dest, 0);
5217 
5218   // Returns true if the callee is local, and false otherwise.
5219   auto isLocalCallee = [&]() {
5220     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5221     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5222     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5223 
5224     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5225            !dyn_cast_or_null<GlobalIFunc>(GV);
5226   };
5227 
5228   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5229   // a static relocation model causes some versions of GNU LD (2.17.50, at
5230   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5231   // built with secure-PLT.
5232   bool UsePlt =
5233       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5234       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5235 
5236   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5237     const TargetMachine &TM = Subtarget.getTargetMachine();
5238     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5239     MCSymbolXCOFF *S =
5240         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5241 
5242     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5243     return DAG.getMCSymbol(S, PtrVT);
5244   };
5245 
5246   if (isFunctionGlobalAddress(Callee)) {
5247     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5248 
5249     if (Subtarget.isAIXABI()) {
5250       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5251       return getAIXFuncEntryPointSymbolSDNode(GV);
5252     }
5253     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5254                                       UsePlt ? PPCII::MO_PLT : 0);
5255   }
5256 
5257   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5258     const char *SymName = S->getSymbol();
5259     if (Subtarget.isAIXABI()) {
5260       // If there exists a user-declared function whose name is the same as the
5261       // ExternalSymbol's, then we pick up the user-declared version.
5262       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5263       if (const Function *F =
5264               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5265         return getAIXFuncEntryPointSymbolSDNode(F);
5266 
5267       // On AIX, direct function calls reference the symbol for the function's
5268       // entry point, which is named by prepending a "." before the function's
5269       // C-linkage name. A Qualname is returned here because an external
5270       // function entry point is a csect with XTY_ER property.
5271       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5272         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5273         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5274             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5275             SectionKind::getMetadata());
5276         return Sec->getQualNameSymbol();
5277       };
5278 
5279       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5280     }
5281     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5282                                        UsePlt ? PPCII::MO_PLT : 0);
5283   }
5284 
5285   // No transformation needed.
5286   assert(Callee.getNode() && "What no callee?");
5287   return Callee;
5288 }
5289 
5290 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5291   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5292          "Expected a CALLSEQ_STARTSDNode.");
5293 
5294   // The last operand is the chain, except when the node has glue. If the node
5295   // has glue, then the last operand is the glue, and the chain is the second
5296   // last operand.
5297   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5298   if (LastValue.getValueType() != MVT::Glue)
5299     return LastValue;
5300 
5301   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5302 }
5303 
5304 // Creates the node that moves a functions address into the count register
5305 // to prepare for an indirect call instruction.
5306 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5307                                 SDValue &Glue, SDValue &Chain,
5308                                 const SDLoc &dl) {
5309   SDValue MTCTROps[] = {Chain, Callee, Glue};
5310   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5311   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5312                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5313   // The glue is the second value produced.
5314   Glue = Chain.getValue(1);
5315 }
5316 
5317 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5318                                           SDValue &Glue, SDValue &Chain,
5319                                           SDValue CallSeqStart,
5320                                           const CallBase *CB, const SDLoc &dl,
5321                                           bool hasNest,
5322                                           const PPCSubtarget &Subtarget) {
5323   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5324   // entry point, but to the function descriptor (the function entry point
5325   // address is part of the function descriptor though).
5326   // The function descriptor is a three doubleword structure with the
5327   // following fields: function entry point, TOC base address and
5328   // environment pointer.
5329   // Thus for a call through a function pointer, the following actions need
5330   // to be performed:
5331   //   1. Save the TOC of the caller in the TOC save area of its stack
5332   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5333   //   2. Load the address of the function entry point from the function
5334   //      descriptor.
5335   //   3. Load the TOC of the callee from the function descriptor into r2.
5336   //   4. Load the environment pointer from the function descriptor into
5337   //      r11.
5338   //   5. Branch to the function entry point address.
5339   //   6. On return of the callee, the TOC of the caller needs to be
5340   //      restored (this is done in FinishCall()).
5341   //
5342   // The loads are scheduled at the beginning of the call sequence, and the
5343   // register copies are flagged together to ensure that no other
5344   // operations can be scheduled in between. E.g. without flagging the
5345   // copies together, a TOC access in the caller could be scheduled between
5346   // the assignment of the callee TOC and the branch to the callee, which leads
5347   // to incorrect code.
5348 
5349   // Start by loading the function address from the descriptor.
5350   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5351   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5352                       ? (MachineMemOperand::MODereferenceable |
5353                          MachineMemOperand::MOInvariant)
5354                       : MachineMemOperand::MONone;
5355 
5356   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5357 
5358   // Registers used in building the DAG.
5359   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5360   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5361 
5362   // Offsets of descriptor members.
5363   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5364   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5365 
5366   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5367   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5368 
5369   // One load for the functions entry point address.
5370   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5371                                     Alignment, MMOFlags);
5372 
5373   // One for loading the TOC anchor for the module that contains the called
5374   // function.
5375   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5376   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5377   SDValue TOCPtr =
5378       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5379                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5380 
5381   // One for loading the environment pointer.
5382   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5383   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5384   SDValue LoadEnvPtr =
5385       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5386                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5387 
5388 
5389   // Then copy the newly loaded TOC anchor to the TOC pointer.
5390   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5391   Chain = TOCVal.getValue(0);
5392   Glue = TOCVal.getValue(1);
5393 
5394   // If the function call has an explicit 'nest' parameter, it takes the
5395   // place of the environment pointer.
5396   assert((!hasNest || !Subtarget.isAIXABI()) &&
5397          "Nest parameter is not supported on AIX.");
5398   if (!hasNest) {
5399     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5400     Chain = EnvVal.getValue(0);
5401     Glue = EnvVal.getValue(1);
5402   }
5403 
5404   // The rest of the indirect call sequence is the same as the non-descriptor
5405   // DAG.
5406   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5407 }
5408 
5409 static void
5410 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5411                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5412                   SelectionDAG &DAG,
5413                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5414                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5415                   const PPCSubtarget &Subtarget) {
5416   const bool IsPPC64 = Subtarget.isPPC64();
5417   // MVT for a general purpose register.
5418   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5419 
5420   // First operand is always the chain.
5421   Ops.push_back(Chain);
5422 
5423   // If it's a direct call pass the callee as the second operand.
5424   if (!CFlags.IsIndirect)
5425     Ops.push_back(Callee);
5426   else {
5427     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5428 
5429     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5430     // on the stack (this would have been done in `LowerCall_64SVR4` or
5431     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5432     // represents both the indirect branch and a load that restores the TOC
5433     // pointer from the linkage area. The operand for the TOC restore is an add
5434     // of the TOC save offset to the stack pointer. This must be the second
5435     // operand: after the chain input but before any other variadic arguments.
5436     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5437     // saved or used.
5438     if (isTOCSaveRestoreRequired(Subtarget)) {
5439       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5440 
5441       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5442       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5443       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5444       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5445       Ops.push_back(AddTOC);
5446     }
5447 
5448     // Add the register used for the environment pointer.
5449     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5450       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5451                                     RegVT));
5452 
5453 
5454     // Add CTR register as callee so a bctr can be emitted later.
5455     if (CFlags.IsTailCall)
5456       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5457   }
5458 
5459   // If this is a tail call add stack pointer delta.
5460   if (CFlags.IsTailCall)
5461     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5462 
5463   // Add argument registers to the end of the list so that they are known live
5464   // into the call.
5465   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5466     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5467                                   RegsToPass[i].second.getValueType()));
5468 
5469   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5470   // no way to mark dependencies as implicit here.
5471   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5472   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5473        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5474     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5475 
5476   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5477   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5478     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5479 
5480   // Add a register mask operand representing the call-preserved registers.
5481   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5482   const uint32_t *Mask =
5483       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5484   assert(Mask && "Missing call preserved mask for calling convention");
5485   Ops.push_back(DAG.getRegisterMask(Mask));
5486 
5487   // If the glue is valid, it is the last operand.
5488   if (Glue.getNode())
5489     Ops.push_back(Glue);
5490 }
5491 
5492 SDValue PPCTargetLowering::FinishCall(
5493     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5494     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5495     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5496     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5497     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5498 
5499   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5500       Subtarget.isAIXABI())
5501     setUsesTOCBasePtr(DAG);
5502 
5503   unsigned CallOpc =
5504       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5505                     Subtarget, DAG.getTarget());
5506 
5507   if (!CFlags.IsIndirect)
5508     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5509   else if (Subtarget.usesFunctionDescriptors())
5510     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5511                                   dl, CFlags.HasNest, Subtarget);
5512   else
5513     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5514 
5515   // Build the operand list for the call instruction.
5516   SmallVector<SDValue, 8> Ops;
5517   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5518                     SPDiff, Subtarget);
5519 
5520   // Emit tail call.
5521   if (CFlags.IsTailCall) {
5522     // Indirect tail call when using PC Relative calls do not have the same
5523     // constraints.
5524     assert(((Callee.getOpcode() == ISD::Register &&
5525              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5526             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5527             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5528             isa<ConstantSDNode>(Callee) ||
5529             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5530            "Expecting a global address, external symbol, absolute value, "
5531            "register or an indirect tail call when PC Relative calls are "
5532            "used.");
5533     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5534     assert(CallOpc == PPCISD::TC_RETURN &&
5535            "Unexpected call opcode for a tail call.");
5536     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5537     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5538   }
5539 
5540   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5541   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5542   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5543   Glue = Chain.getValue(1);
5544 
5545   // When performing tail call optimization the callee pops its arguments off
5546   // the stack. Account for this here so these bytes can be pushed back on in
5547   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5548   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5549                          getTargetMachine().Options.GuaranteedTailCallOpt)
5550                             ? NumBytes
5551                             : 0;
5552 
5553   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5554                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5555                              Glue, dl);
5556   Glue = Chain.getValue(1);
5557 
5558   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5559                          DAG, InVals);
5560 }
5561 
5562 SDValue
5563 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5564                              SmallVectorImpl<SDValue> &InVals) const {
5565   SelectionDAG &DAG                     = CLI.DAG;
5566   SDLoc &dl                             = CLI.DL;
5567   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5568   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5569   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5570   SDValue Chain                         = CLI.Chain;
5571   SDValue Callee                        = CLI.Callee;
5572   bool &isTailCall                      = CLI.IsTailCall;
5573   CallingConv::ID CallConv              = CLI.CallConv;
5574   bool isVarArg                         = CLI.IsVarArg;
5575   bool isPatchPoint                     = CLI.IsPatchPoint;
5576   const CallBase *CB                    = CLI.CB;
5577 
5578   if (isTailCall) {
5579     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5580       isTailCall = false;
5581     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5582       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5583           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5584     else
5585       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5586                                                      Ins, DAG);
5587     if (isTailCall) {
5588       ++NumTailCalls;
5589       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5590         ++NumSiblingCalls;
5591 
5592       // PC Relative calls no longer guarantee that the callee is a Global
5593       // Address Node. The callee could be an indirect tail call in which
5594       // case the SDValue for the callee could be a load (to load the address
5595       // of a function pointer) or it may be a register copy (to move the
5596       // address of the callee from a function parameter into a virtual
5597       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5598       assert((Subtarget.isUsingPCRelativeCalls() ||
5599               isa<GlobalAddressSDNode>(Callee)) &&
5600              "Callee should be an llvm::Function object.");
5601 
5602       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5603                         << "\nTCO callee: ");
5604       LLVM_DEBUG(Callee.dump());
5605     }
5606   }
5607 
5608   if (!isTailCall && CB && CB->isMustTailCall())
5609     report_fatal_error("failed to perform tail call elimination on a call "
5610                        "site marked musttail");
5611 
5612   // When long calls (i.e. indirect calls) are always used, calls are always
5613   // made via function pointer. If we have a function name, first translate it
5614   // into a pointer.
5615   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5616       !isTailCall)
5617     Callee = LowerGlobalAddress(Callee, DAG);
5618 
5619   CallFlags CFlags(
5620       CallConv, isTailCall, isVarArg, isPatchPoint,
5621       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5622       // hasNest
5623       Subtarget.is64BitELFABI() &&
5624           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5625       CLI.NoMerge);
5626 
5627   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5628     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5629                             InVals, CB);
5630 
5631   if (Subtarget.isSVR4ABI())
5632     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5633                             InVals, CB);
5634 
5635   if (Subtarget.isAIXABI())
5636     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5637                          InVals, CB);
5638 
5639   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5640                           InVals, CB);
5641 }
5642 
5643 SDValue PPCTargetLowering::LowerCall_32SVR4(
5644     SDValue Chain, SDValue Callee, CallFlags CFlags,
5645     const SmallVectorImpl<ISD::OutputArg> &Outs,
5646     const SmallVectorImpl<SDValue> &OutVals,
5647     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5648     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5649     const CallBase *CB) const {
5650   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5651   // of the 32-bit SVR4 ABI stack frame layout.
5652 
5653   const CallingConv::ID CallConv = CFlags.CallConv;
5654   const bool IsVarArg = CFlags.IsVarArg;
5655   const bool IsTailCall = CFlags.IsTailCall;
5656 
5657   assert((CallConv == CallingConv::C ||
5658           CallConv == CallingConv::Cold ||
5659           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5660 
5661   const Align PtrAlign(4);
5662 
5663   MachineFunction &MF = DAG.getMachineFunction();
5664 
5665   // Mark this function as potentially containing a function that contains a
5666   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5667   // and restoring the callers stack pointer in this functions epilog. This is
5668   // done because by tail calling the called function might overwrite the value
5669   // in this function's (MF) stack pointer stack slot 0(SP).
5670   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5671       CallConv == CallingConv::Fast)
5672     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5673 
5674   // Count how many bytes are to be pushed on the stack, including the linkage
5675   // area, parameter list area and the part of the local variable space which
5676   // contains copies of aggregates which are passed by value.
5677 
5678   // Assign locations to all of the outgoing arguments.
5679   SmallVector<CCValAssign, 16> ArgLocs;
5680   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5681 
5682   // Reserve space for the linkage area on the stack.
5683   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5684                        PtrAlign);
5685   if (useSoftFloat())
5686     CCInfo.PreAnalyzeCallOperands(Outs);
5687 
5688   if (IsVarArg) {
5689     // Handle fixed and variable vector arguments differently.
5690     // Fixed vector arguments go into registers as long as registers are
5691     // available. Variable vector arguments always go into memory.
5692     unsigned NumArgs = Outs.size();
5693 
5694     for (unsigned i = 0; i != NumArgs; ++i) {
5695       MVT ArgVT = Outs[i].VT;
5696       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5697       bool Result;
5698 
5699       if (Outs[i].IsFixed) {
5700         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5701                                CCInfo);
5702       } else {
5703         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5704                                       ArgFlags, CCInfo);
5705       }
5706 
5707       if (Result) {
5708 #ifndef NDEBUG
5709         errs() << "Call operand #" << i << " has unhandled type "
5710              << EVT(ArgVT).getEVTString() << "\n";
5711 #endif
5712         llvm_unreachable(nullptr);
5713       }
5714     }
5715   } else {
5716     // All arguments are treated the same.
5717     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5718   }
5719   CCInfo.clearWasPPCF128();
5720 
5721   // Assign locations to all of the outgoing aggregate by value arguments.
5722   SmallVector<CCValAssign, 16> ByValArgLocs;
5723   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5724 
5725   // Reserve stack space for the allocations in CCInfo.
5726   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5727 
5728   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5729 
5730   // Size of the linkage area, parameter list area and the part of the local
5731   // space variable where copies of aggregates which are passed by value are
5732   // stored.
5733   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5734 
5735   // Calculate by how many bytes the stack has to be adjusted in case of tail
5736   // call optimization.
5737   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5738 
5739   // Adjust the stack pointer for the new arguments...
5740   // These operations are automatically eliminated by the prolog/epilog pass
5741   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5742   SDValue CallSeqStart = Chain;
5743 
5744   // Load the return address and frame pointer so it can be moved somewhere else
5745   // later.
5746   SDValue LROp, FPOp;
5747   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5748 
5749   // Set up a copy of the stack pointer for use loading and storing any
5750   // arguments that may not fit in the registers available for argument
5751   // passing.
5752   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5753 
5754   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5755   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5756   SmallVector<SDValue, 8> MemOpChains;
5757 
5758   bool seenFloatArg = false;
5759   // Walk the register/memloc assignments, inserting copies/loads.
5760   // i - Tracks the index into the list of registers allocated for the call
5761   // RealArgIdx - Tracks the index into the list of actual function arguments
5762   // j - Tracks the index into the list of byval arguments
5763   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5764        i != e;
5765        ++i, ++RealArgIdx) {
5766     CCValAssign &VA = ArgLocs[i];
5767     SDValue Arg = OutVals[RealArgIdx];
5768     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5769 
5770     if (Flags.isByVal()) {
5771       // Argument is an aggregate which is passed by value, thus we need to
5772       // create a copy of it in the local variable space of the current stack
5773       // frame (which is the stack frame of the caller) and pass the address of
5774       // this copy to the callee.
5775       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5776       CCValAssign &ByValVA = ByValArgLocs[j++];
5777       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5778 
5779       // Memory reserved in the local variable space of the callers stack frame.
5780       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5781 
5782       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5783       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5784                            StackPtr, PtrOff);
5785 
5786       // Create a copy of the argument in the local area of the current
5787       // stack frame.
5788       SDValue MemcpyCall =
5789         CreateCopyOfByValArgument(Arg, PtrOff,
5790                                   CallSeqStart.getNode()->getOperand(0),
5791                                   Flags, DAG, dl);
5792 
5793       // This must go outside the CALLSEQ_START..END.
5794       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5795                                                      SDLoc(MemcpyCall));
5796       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5797                              NewCallSeqStart.getNode());
5798       Chain = CallSeqStart = NewCallSeqStart;
5799 
5800       // Pass the address of the aggregate copy on the stack either in a
5801       // physical register or in the parameter list area of the current stack
5802       // frame to the callee.
5803       Arg = PtrOff;
5804     }
5805 
5806     // When useCRBits() is true, there can be i1 arguments.
5807     // It is because getRegisterType(MVT::i1) => MVT::i1,
5808     // and for other integer types getRegisterType() => MVT::i32.
5809     // Extend i1 and ensure callee will get i32.
5810     if (Arg.getValueType() == MVT::i1)
5811       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5812                         dl, MVT::i32, Arg);
5813 
5814     if (VA.isRegLoc()) {
5815       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5816       // Put argument in a physical register.
5817       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5818         bool IsLE = Subtarget.isLittleEndian();
5819         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5820                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5821         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5822         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5823                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5824         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5825                              SVal.getValue(0)));
5826       } else
5827         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5828     } else {
5829       // Put argument in the parameter list area of the current stack frame.
5830       assert(VA.isMemLoc());
5831       unsigned LocMemOffset = VA.getLocMemOffset();
5832 
5833       if (!IsTailCall) {
5834         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5835         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5836                              StackPtr, PtrOff);
5837 
5838         MemOpChains.push_back(
5839             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5840       } else {
5841         // Calculate and remember argument location.
5842         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5843                                  TailCallArguments);
5844       }
5845     }
5846   }
5847 
5848   if (!MemOpChains.empty())
5849     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5850 
5851   // Build a sequence of copy-to-reg nodes chained together with token chain
5852   // and flag operands which copy the outgoing args into the appropriate regs.
5853   SDValue InFlag;
5854   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5855     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5856                              RegsToPass[i].second, InFlag);
5857     InFlag = Chain.getValue(1);
5858   }
5859 
5860   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5861   // registers.
5862   if (IsVarArg) {
5863     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5864     SDValue Ops[] = { Chain, InFlag };
5865 
5866     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5867                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5868 
5869     InFlag = Chain.getValue(1);
5870   }
5871 
5872   if (IsTailCall)
5873     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5874                     TailCallArguments);
5875 
5876   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5877                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5878 }
5879 
5880 // Copy an argument into memory, being careful to do this outside the
5881 // call sequence for the call to which the argument belongs.
5882 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5883     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5884     SelectionDAG &DAG, const SDLoc &dl) const {
5885   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5886                         CallSeqStart.getNode()->getOperand(0),
5887                         Flags, DAG, dl);
5888   // The MEMCPY must go outside the CALLSEQ_START..END.
5889   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5890   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5891                                                  SDLoc(MemcpyCall));
5892   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5893                          NewCallSeqStart.getNode());
5894   return NewCallSeqStart;
5895 }
5896 
5897 SDValue PPCTargetLowering::LowerCall_64SVR4(
5898     SDValue Chain, SDValue Callee, CallFlags CFlags,
5899     const SmallVectorImpl<ISD::OutputArg> &Outs,
5900     const SmallVectorImpl<SDValue> &OutVals,
5901     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5902     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5903     const CallBase *CB) const {
5904   bool isELFv2ABI = Subtarget.isELFv2ABI();
5905   bool isLittleEndian = Subtarget.isLittleEndian();
5906   unsigned NumOps = Outs.size();
5907   bool IsSibCall = false;
5908   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5909 
5910   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5911   unsigned PtrByteSize = 8;
5912 
5913   MachineFunction &MF = DAG.getMachineFunction();
5914 
5915   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5916     IsSibCall = true;
5917 
5918   // Mark this function as potentially containing a function that contains a
5919   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5920   // and restoring the callers stack pointer in this functions epilog. This is
5921   // done because by tail calling the called function might overwrite the value
5922   // in this function's (MF) stack pointer stack slot 0(SP).
5923   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5924     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5925 
5926   assert(!(IsFastCall && CFlags.IsVarArg) &&
5927          "fastcc not supported on varargs functions");
5928 
5929   // Count how many bytes are to be pushed on the stack, including the linkage
5930   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5931   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5932   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5933   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5934   unsigned NumBytes = LinkageSize;
5935   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5936 
5937   static const MCPhysReg GPR[] = {
5938     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5939     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5940   };
5941   static const MCPhysReg VR[] = {
5942     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5943     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5944   };
5945 
5946   const unsigned NumGPRs = array_lengthof(GPR);
5947   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5948   const unsigned NumVRs  = array_lengthof(VR);
5949 
5950   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5951   // can be passed to the callee in registers.
5952   // For the fast calling convention, there is another check below.
5953   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5954   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5955   if (!HasParameterArea) {
5956     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5957     unsigned AvailableFPRs = NumFPRs;
5958     unsigned AvailableVRs = NumVRs;
5959     unsigned NumBytesTmp = NumBytes;
5960     for (unsigned i = 0; i != NumOps; ++i) {
5961       if (Outs[i].Flags.isNest()) continue;
5962       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5963                                  PtrByteSize, LinkageSize, ParamAreaSize,
5964                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5965         HasParameterArea = true;
5966     }
5967   }
5968 
5969   // When using the fast calling convention, we don't provide backing for
5970   // arguments that will be in registers.
5971   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5972 
5973   // Avoid allocating parameter area for fastcc functions if all the arguments
5974   // can be passed in the registers.
5975   if (IsFastCall)
5976     HasParameterArea = false;
5977 
5978   // Add up all the space actually used.
5979   for (unsigned i = 0; i != NumOps; ++i) {
5980     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5981     EVT ArgVT = Outs[i].VT;
5982     EVT OrigVT = Outs[i].ArgVT;
5983 
5984     if (Flags.isNest())
5985       continue;
5986 
5987     if (IsFastCall) {
5988       if (Flags.isByVal()) {
5989         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5990         if (NumGPRsUsed > NumGPRs)
5991           HasParameterArea = true;
5992       } else {
5993         switch (ArgVT.getSimpleVT().SimpleTy) {
5994         default: llvm_unreachable("Unexpected ValueType for argument!");
5995         case MVT::i1:
5996         case MVT::i32:
5997         case MVT::i64:
5998           if (++NumGPRsUsed <= NumGPRs)
5999             continue;
6000           break;
6001         case MVT::v4i32:
6002         case MVT::v8i16:
6003         case MVT::v16i8:
6004         case MVT::v2f64:
6005         case MVT::v2i64:
6006         case MVT::v1i128:
6007         case MVT::f128:
6008           if (++NumVRsUsed <= NumVRs)
6009             continue;
6010           break;
6011         case MVT::v4f32:
6012           if (++NumVRsUsed <= NumVRs)
6013             continue;
6014           break;
6015         case MVT::f32:
6016         case MVT::f64:
6017           if (++NumFPRsUsed <= NumFPRs)
6018             continue;
6019           break;
6020         }
6021         HasParameterArea = true;
6022       }
6023     }
6024 
6025     /* Respect alignment of argument on the stack.  */
6026     auto Alignement =
6027         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6028     NumBytes = alignTo(NumBytes, Alignement);
6029 
6030     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6031     if (Flags.isInConsecutiveRegsLast())
6032       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6033   }
6034 
6035   unsigned NumBytesActuallyUsed = NumBytes;
6036 
6037   // In the old ELFv1 ABI,
6038   // the prolog code of the callee may store up to 8 GPR argument registers to
6039   // the stack, allowing va_start to index over them in memory if its varargs.
6040   // Because we cannot tell if this is needed on the caller side, we have to
6041   // conservatively assume that it is needed.  As such, make sure we have at
6042   // least enough stack space for the caller to store the 8 GPRs.
6043   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6044   // really requires memory operands, e.g. a vararg function.
6045   if (HasParameterArea)
6046     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6047   else
6048     NumBytes = LinkageSize;
6049 
6050   // Tail call needs the stack to be aligned.
6051   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6052     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6053 
6054   int SPDiff = 0;
6055 
6056   // Calculate by how many bytes the stack has to be adjusted in case of tail
6057   // call optimization.
6058   if (!IsSibCall)
6059     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6060 
6061   // To protect arguments on the stack from being clobbered in a tail call,
6062   // force all the loads to happen before doing any other lowering.
6063   if (CFlags.IsTailCall)
6064     Chain = DAG.getStackArgumentTokenFactor(Chain);
6065 
6066   // Adjust the stack pointer for the new arguments...
6067   // These operations are automatically eliminated by the prolog/epilog pass
6068   if (!IsSibCall)
6069     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6070   SDValue CallSeqStart = Chain;
6071 
6072   // Load the return address and frame pointer so it can be move somewhere else
6073   // later.
6074   SDValue LROp, FPOp;
6075   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6076 
6077   // Set up a copy of the stack pointer for use loading and storing any
6078   // arguments that may not fit in the registers available for argument
6079   // passing.
6080   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6081 
6082   // Figure out which arguments are going to go in registers, and which in
6083   // memory.  Also, if this is a vararg function, floating point operations
6084   // must be stored to our stack, and loaded into integer regs as well, if
6085   // any integer regs are available for argument passing.
6086   unsigned ArgOffset = LinkageSize;
6087 
6088   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6089   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6090 
6091   SmallVector<SDValue, 8> MemOpChains;
6092   for (unsigned i = 0; i != NumOps; ++i) {
6093     SDValue Arg = OutVals[i];
6094     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6095     EVT ArgVT = Outs[i].VT;
6096     EVT OrigVT = Outs[i].ArgVT;
6097 
6098     // PtrOff will be used to store the current argument to the stack if a
6099     // register cannot be found for it.
6100     SDValue PtrOff;
6101 
6102     // We re-align the argument offset for each argument, except when using the
6103     // fast calling convention, when we need to make sure we do that only when
6104     // we'll actually use a stack slot.
6105     auto ComputePtrOff = [&]() {
6106       /* Respect alignment of argument on the stack.  */
6107       auto Alignment =
6108           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6109       ArgOffset = alignTo(ArgOffset, Alignment);
6110 
6111       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6112 
6113       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6114     };
6115 
6116     if (!IsFastCall) {
6117       ComputePtrOff();
6118 
6119       /* Compute GPR index associated with argument offset.  */
6120       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6121       GPR_idx = std::min(GPR_idx, NumGPRs);
6122     }
6123 
6124     // Promote integers to 64-bit values.
6125     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6126       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6127       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6128       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6129     }
6130 
6131     // FIXME memcpy is used way more than necessary.  Correctness first.
6132     // Note: "by value" is code for passing a structure by value, not
6133     // basic types.
6134     if (Flags.isByVal()) {
6135       // Note: Size includes alignment padding, so
6136       //   struct x { short a; char b; }
6137       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6138       // These are the proper values we need for right-justifying the
6139       // aggregate in a parameter register.
6140       unsigned Size = Flags.getByValSize();
6141 
6142       // An empty aggregate parameter takes up no storage and no
6143       // registers.
6144       if (Size == 0)
6145         continue;
6146 
6147       if (IsFastCall)
6148         ComputePtrOff();
6149 
6150       // All aggregates smaller than 8 bytes must be passed right-justified.
6151       if (Size==1 || Size==2 || Size==4) {
6152         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6153         if (GPR_idx != NumGPRs) {
6154           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6155                                         MachinePointerInfo(), VT);
6156           MemOpChains.push_back(Load.getValue(1));
6157           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6158 
6159           ArgOffset += PtrByteSize;
6160           continue;
6161         }
6162       }
6163 
6164       if (GPR_idx == NumGPRs && Size < 8) {
6165         SDValue AddPtr = PtrOff;
6166         if (!isLittleEndian) {
6167           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6168                                           PtrOff.getValueType());
6169           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6170         }
6171         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6172                                                           CallSeqStart,
6173                                                           Flags, DAG, dl);
6174         ArgOffset += PtrByteSize;
6175         continue;
6176       }
6177       // Copy entire object into memory.  There are cases where gcc-generated
6178       // code assumes it is there, even if it could be put entirely into
6179       // registers.  (This is not what the doc says.)
6180 
6181       // FIXME: The above statement is likely due to a misunderstanding of the
6182       // documents.  All arguments must be copied into the parameter area BY
6183       // THE CALLEE in the event that the callee takes the address of any
6184       // formal argument.  That has not yet been implemented.  However, it is
6185       // reasonable to use the stack area as a staging area for the register
6186       // load.
6187 
6188       // Skip this for small aggregates, as we will use the same slot for a
6189       // right-justified copy, below.
6190       if (Size >= 8)
6191         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6192                                                           CallSeqStart,
6193                                                           Flags, DAG, dl);
6194 
6195       // When a register is available, pass a small aggregate right-justified.
6196       if (Size < 8 && GPR_idx != NumGPRs) {
6197         // The easiest way to get this right-justified in a register
6198         // is to copy the structure into the rightmost portion of a
6199         // local variable slot, then load the whole slot into the
6200         // register.
6201         // FIXME: The memcpy seems to produce pretty awful code for
6202         // small aggregates, particularly for packed ones.
6203         // FIXME: It would be preferable to use the slot in the
6204         // parameter save area instead of a new local variable.
6205         SDValue AddPtr = PtrOff;
6206         if (!isLittleEndian) {
6207           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6208           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6209         }
6210         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6211                                                           CallSeqStart,
6212                                                           Flags, DAG, dl);
6213 
6214         // Load the slot into the register.
6215         SDValue Load =
6216             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6217         MemOpChains.push_back(Load.getValue(1));
6218         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6219 
6220         // Done with this argument.
6221         ArgOffset += PtrByteSize;
6222         continue;
6223       }
6224 
6225       // For aggregates larger than PtrByteSize, copy the pieces of the
6226       // object that fit into registers from the parameter save area.
6227       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6228         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6229         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6230         if (GPR_idx != NumGPRs) {
6231           SDValue Load =
6232               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6233           MemOpChains.push_back(Load.getValue(1));
6234           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6235           ArgOffset += PtrByteSize;
6236         } else {
6237           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6238           break;
6239         }
6240       }
6241       continue;
6242     }
6243 
6244     switch (Arg.getSimpleValueType().SimpleTy) {
6245     default: llvm_unreachable("Unexpected ValueType for argument!");
6246     case MVT::i1:
6247     case MVT::i32:
6248     case MVT::i64:
6249       if (Flags.isNest()) {
6250         // The 'nest' parameter, if any, is passed in R11.
6251         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6252         break;
6253       }
6254 
6255       // These can be scalar arguments or elements of an integer array type
6256       // passed directly.  Clang may use those instead of "byval" aggregate
6257       // types to avoid forcing arguments to memory unnecessarily.
6258       if (GPR_idx != NumGPRs) {
6259         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6260       } else {
6261         if (IsFastCall)
6262           ComputePtrOff();
6263 
6264         assert(HasParameterArea &&
6265                "Parameter area must exist to pass an argument in memory.");
6266         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6267                          true, CFlags.IsTailCall, false, MemOpChains,
6268                          TailCallArguments, dl);
6269         if (IsFastCall)
6270           ArgOffset += PtrByteSize;
6271       }
6272       if (!IsFastCall)
6273         ArgOffset += PtrByteSize;
6274       break;
6275     case MVT::f32:
6276     case MVT::f64: {
6277       // These can be scalar arguments or elements of a float array type
6278       // passed directly.  The latter are used to implement ELFv2 homogenous
6279       // float aggregates.
6280 
6281       // Named arguments go into FPRs first, and once they overflow, the
6282       // remaining arguments go into GPRs and then the parameter save area.
6283       // Unnamed arguments for vararg functions always go to GPRs and
6284       // then the parameter save area.  For now, put all arguments to vararg
6285       // routines always in both locations (FPR *and* GPR or stack slot).
6286       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6287       bool NeededLoad = false;
6288 
6289       // First load the argument into the next available FPR.
6290       if (FPR_idx != NumFPRs)
6291         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6292 
6293       // Next, load the argument into GPR or stack slot if needed.
6294       if (!NeedGPROrStack)
6295         ;
6296       else if (GPR_idx != NumGPRs && !IsFastCall) {
6297         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6298         // once we support fp <-> gpr moves.
6299 
6300         // In the non-vararg case, this can only ever happen in the
6301         // presence of f32 array types, since otherwise we never run
6302         // out of FPRs before running out of GPRs.
6303         SDValue ArgVal;
6304 
6305         // Double values are always passed in a single GPR.
6306         if (Arg.getValueType() != MVT::f32) {
6307           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6308 
6309         // Non-array float values are extended and passed in a GPR.
6310         } else if (!Flags.isInConsecutiveRegs()) {
6311           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6312           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6313 
6314         // If we have an array of floats, we collect every odd element
6315         // together with its predecessor into one GPR.
6316         } else if (ArgOffset % PtrByteSize != 0) {
6317           SDValue Lo, Hi;
6318           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6319           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6320           if (!isLittleEndian)
6321             std::swap(Lo, Hi);
6322           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6323 
6324         // The final element, if even, goes into the first half of a GPR.
6325         } else if (Flags.isInConsecutiveRegsLast()) {
6326           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6327           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6328           if (!isLittleEndian)
6329             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6330                                  DAG.getConstant(32, dl, MVT::i32));
6331 
6332         // Non-final even elements are skipped; they will be handled
6333         // together the with subsequent argument on the next go-around.
6334         } else
6335           ArgVal = SDValue();
6336 
6337         if (ArgVal.getNode())
6338           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6339       } else {
6340         if (IsFastCall)
6341           ComputePtrOff();
6342 
6343         // Single-precision floating-point values are mapped to the
6344         // second (rightmost) word of the stack doubleword.
6345         if (Arg.getValueType() == MVT::f32 &&
6346             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6347           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6348           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6349         }
6350 
6351         assert(HasParameterArea &&
6352                "Parameter area must exist to pass an argument in memory.");
6353         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6354                          true, CFlags.IsTailCall, false, MemOpChains,
6355                          TailCallArguments, dl);
6356 
6357         NeededLoad = true;
6358       }
6359       // When passing an array of floats, the array occupies consecutive
6360       // space in the argument area; only round up to the next doubleword
6361       // at the end of the array.  Otherwise, each float takes 8 bytes.
6362       if (!IsFastCall || NeededLoad) {
6363         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6364                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6365         if (Flags.isInConsecutiveRegsLast())
6366           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6367       }
6368       break;
6369     }
6370     case MVT::v4f32:
6371     case MVT::v4i32:
6372     case MVT::v8i16:
6373     case MVT::v16i8:
6374     case MVT::v2f64:
6375     case MVT::v2i64:
6376     case MVT::v1i128:
6377     case MVT::f128:
6378       // These can be scalar arguments or elements of a vector array type
6379       // passed directly.  The latter are used to implement ELFv2 homogenous
6380       // vector aggregates.
6381 
6382       // For a varargs call, named arguments go into VRs or on the stack as
6383       // usual; unnamed arguments always go to the stack or the corresponding
6384       // GPRs when within range.  For now, we always put the value in both
6385       // locations (or even all three).
6386       if (CFlags.IsVarArg) {
6387         assert(HasParameterArea &&
6388                "Parameter area must exist if we have a varargs call.");
6389         // We could elide this store in the case where the object fits
6390         // entirely in R registers.  Maybe later.
6391         SDValue Store =
6392             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6393         MemOpChains.push_back(Store);
6394         if (VR_idx != NumVRs) {
6395           SDValue Load =
6396               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6397           MemOpChains.push_back(Load.getValue(1));
6398           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6399         }
6400         ArgOffset += 16;
6401         for (unsigned i=0; i<16; i+=PtrByteSize) {
6402           if (GPR_idx == NumGPRs)
6403             break;
6404           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6405                                    DAG.getConstant(i, dl, PtrVT));
6406           SDValue Load =
6407               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6408           MemOpChains.push_back(Load.getValue(1));
6409           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6410         }
6411         break;
6412       }
6413 
6414       // Non-varargs Altivec params go into VRs or on the stack.
6415       if (VR_idx != NumVRs) {
6416         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6417       } else {
6418         if (IsFastCall)
6419           ComputePtrOff();
6420 
6421         assert(HasParameterArea &&
6422                "Parameter area must exist to pass an argument in memory.");
6423         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6424                          true, CFlags.IsTailCall, true, MemOpChains,
6425                          TailCallArguments, dl);
6426         if (IsFastCall)
6427           ArgOffset += 16;
6428       }
6429 
6430       if (!IsFastCall)
6431         ArgOffset += 16;
6432       break;
6433     }
6434   }
6435 
6436   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6437          "mismatch in size of parameter area");
6438   (void)NumBytesActuallyUsed;
6439 
6440   if (!MemOpChains.empty())
6441     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6442 
6443   // Check if this is an indirect call (MTCTR/BCTRL).
6444   // See prepareDescriptorIndirectCall and buildCallOperands for more
6445   // information about calls through function pointers in the 64-bit SVR4 ABI.
6446   if (CFlags.IsIndirect) {
6447     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6448     // caller in the TOC save area.
6449     if (isTOCSaveRestoreRequired(Subtarget)) {
6450       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6451       // Load r2 into a virtual register and store it to the TOC save area.
6452       setUsesTOCBasePtr(DAG);
6453       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6454       // TOC save area offset.
6455       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6456       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6457       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6458       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6459                            MachinePointerInfo::getStack(
6460                                DAG.getMachineFunction(), TOCSaveOffset));
6461     }
6462     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6463     // This does not mean the MTCTR instruction must use R12; it's easier
6464     // to model this as an extra parameter, so do that.
6465     if (isELFv2ABI && !CFlags.IsPatchPoint)
6466       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6467   }
6468 
6469   // Build a sequence of copy-to-reg nodes chained together with token chain
6470   // and flag operands which copy the outgoing args into the appropriate regs.
6471   SDValue InFlag;
6472   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6473     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6474                              RegsToPass[i].second, InFlag);
6475     InFlag = Chain.getValue(1);
6476   }
6477 
6478   if (CFlags.IsTailCall && !IsSibCall)
6479     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6480                     TailCallArguments);
6481 
6482   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6483                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6484 }
6485 
6486 SDValue PPCTargetLowering::LowerCall_Darwin(
6487     SDValue Chain, SDValue Callee, CallFlags CFlags,
6488     const SmallVectorImpl<ISD::OutputArg> &Outs,
6489     const SmallVectorImpl<SDValue> &OutVals,
6490     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6491     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6492     const CallBase *CB) const {
6493   unsigned NumOps = Outs.size();
6494 
6495   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6496   bool isPPC64 = PtrVT == MVT::i64;
6497   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6498 
6499   MachineFunction &MF = DAG.getMachineFunction();
6500 
6501   // Mark this function as potentially containing a function that contains a
6502   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6503   // and restoring the callers stack pointer in this functions epilog. This is
6504   // done because by tail calling the called function might overwrite the value
6505   // in this function's (MF) stack pointer stack slot 0(SP).
6506   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6507       CFlags.CallConv == CallingConv::Fast)
6508     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6509 
6510   // Count how many bytes are to be pushed on the stack, including the linkage
6511   // area, and parameter passing area.  We start with 24/48 bytes, which is
6512   // prereserved space for [SP][CR][LR][3 x unused].
6513   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6514   unsigned NumBytes = LinkageSize;
6515 
6516   // Add up all the space actually used.
6517   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6518   // they all go in registers, but we must reserve stack space for them for
6519   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6520   // assigned stack space in order, with padding so Altivec parameters are
6521   // 16-byte aligned.
6522   unsigned nAltivecParamsAtEnd = 0;
6523   for (unsigned i = 0; i != NumOps; ++i) {
6524     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6525     EVT ArgVT = Outs[i].VT;
6526     // Varargs Altivec parameters are padded to a 16 byte boundary.
6527     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6528         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6529         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6530       if (!CFlags.IsVarArg && !isPPC64) {
6531         // Non-varargs Altivec parameters go after all the non-Altivec
6532         // parameters; handle those later so we know how much padding we need.
6533         nAltivecParamsAtEnd++;
6534         continue;
6535       }
6536       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6537       NumBytes = ((NumBytes+15)/16)*16;
6538     }
6539     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6540   }
6541 
6542   // Allow for Altivec parameters at the end, if needed.
6543   if (nAltivecParamsAtEnd) {
6544     NumBytes = ((NumBytes+15)/16)*16;
6545     NumBytes += 16*nAltivecParamsAtEnd;
6546   }
6547 
6548   // The prolog code of the callee may store up to 8 GPR argument registers to
6549   // the stack, allowing va_start to index over them in memory if its varargs.
6550   // Because we cannot tell if this is needed on the caller side, we have to
6551   // conservatively assume that it is needed.  As such, make sure we have at
6552   // least enough stack space for the caller to store the 8 GPRs.
6553   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6554 
6555   // Tail call needs the stack to be aligned.
6556   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6557       CFlags.CallConv == CallingConv::Fast)
6558     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6559 
6560   // Calculate by how many bytes the stack has to be adjusted in case of tail
6561   // call optimization.
6562   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6563 
6564   // To protect arguments on the stack from being clobbered in a tail call,
6565   // force all the loads to happen before doing any other lowering.
6566   if (CFlags.IsTailCall)
6567     Chain = DAG.getStackArgumentTokenFactor(Chain);
6568 
6569   // Adjust the stack pointer for the new arguments...
6570   // These operations are automatically eliminated by the prolog/epilog pass
6571   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6572   SDValue CallSeqStart = Chain;
6573 
6574   // Load the return address and frame pointer so it can be move somewhere else
6575   // later.
6576   SDValue LROp, FPOp;
6577   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6578 
6579   // Set up a copy of the stack pointer for use loading and storing any
6580   // arguments that may not fit in the registers available for argument
6581   // passing.
6582   SDValue StackPtr;
6583   if (isPPC64)
6584     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6585   else
6586     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6587 
6588   // Figure out which arguments are going to go in registers, and which in
6589   // memory.  Also, if this is a vararg function, floating point operations
6590   // must be stored to our stack, and loaded into integer regs as well, if
6591   // any integer regs are available for argument passing.
6592   unsigned ArgOffset = LinkageSize;
6593   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6594 
6595   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6596     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6597     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6598   };
6599   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6600     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6601     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6602   };
6603   static const MCPhysReg VR[] = {
6604     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6605     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6606   };
6607   const unsigned NumGPRs = array_lengthof(GPR_32);
6608   const unsigned NumFPRs = 13;
6609   const unsigned NumVRs  = array_lengthof(VR);
6610 
6611   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6612 
6613   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6614   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6615 
6616   SmallVector<SDValue, 8> MemOpChains;
6617   for (unsigned i = 0; i != NumOps; ++i) {
6618     SDValue Arg = OutVals[i];
6619     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6620 
6621     // PtrOff will be used to store the current argument to the stack if a
6622     // register cannot be found for it.
6623     SDValue PtrOff;
6624 
6625     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6626 
6627     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6628 
6629     // On PPC64, promote integers to 64-bit values.
6630     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6631       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6632       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6633       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6634     }
6635 
6636     // FIXME memcpy is used way more than necessary.  Correctness first.
6637     // Note: "by value" is code for passing a structure by value, not
6638     // basic types.
6639     if (Flags.isByVal()) {
6640       unsigned Size = Flags.getByValSize();
6641       // Very small objects are passed right-justified.  Everything else is
6642       // passed left-justified.
6643       if (Size==1 || Size==2) {
6644         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6645         if (GPR_idx != NumGPRs) {
6646           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6647                                         MachinePointerInfo(), VT);
6648           MemOpChains.push_back(Load.getValue(1));
6649           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6650 
6651           ArgOffset += PtrByteSize;
6652         } else {
6653           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6654                                           PtrOff.getValueType());
6655           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6656           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6657                                                             CallSeqStart,
6658                                                             Flags, DAG, dl);
6659           ArgOffset += PtrByteSize;
6660         }
6661         continue;
6662       }
6663       // Copy entire object into memory.  There are cases where gcc-generated
6664       // code assumes it is there, even if it could be put entirely into
6665       // registers.  (This is not what the doc says.)
6666       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6667                                                         CallSeqStart,
6668                                                         Flags, DAG, dl);
6669 
6670       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6671       // copy the pieces of the object that fit into registers from the
6672       // parameter save area.
6673       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6674         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6675         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6676         if (GPR_idx != NumGPRs) {
6677           SDValue Load =
6678               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6679           MemOpChains.push_back(Load.getValue(1));
6680           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6681           ArgOffset += PtrByteSize;
6682         } else {
6683           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6684           break;
6685         }
6686       }
6687       continue;
6688     }
6689 
6690     switch (Arg.getSimpleValueType().SimpleTy) {
6691     default: llvm_unreachable("Unexpected ValueType for argument!");
6692     case MVT::i1:
6693     case MVT::i32:
6694     case MVT::i64:
6695       if (GPR_idx != NumGPRs) {
6696         if (Arg.getValueType() == MVT::i1)
6697           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6698 
6699         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6700       } else {
6701         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6702                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6703                          TailCallArguments, dl);
6704       }
6705       ArgOffset += PtrByteSize;
6706       break;
6707     case MVT::f32:
6708     case MVT::f64:
6709       if (FPR_idx != NumFPRs) {
6710         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6711 
6712         if (CFlags.IsVarArg) {
6713           SDValue Store =
6714               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6715           MemOpChains.push_back(Store);
6716 
6717           // Float varargs are always shadowed in available integer registers
6718           if (GPR_idx != NumGPRs) {
6719             SDValue Load =
6720                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6721             MemOpChains.push_back(Load.getValue(1));
6722             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6723           }
6724           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6725             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6726             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6727             SDValue Load =
6728                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6729             MemOpChains.push_back(Load.getValue(1));
6730             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6731           }
6732         } else {
6733           // If we have any FPRs remaining, we may also have GPRs remaining.
6734           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6735           // GPRs.
6736           if (GPR_idx != NumGPRs)
6737             ++GPR_idx;
6738           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6739               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6740             ++GPR_idx;
6741         }
6742       } else
6743         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6744                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6745                          TailCallArguments, dl);
6746       if (isPPC64)
6747         ArgOffset += 8;
6748       else
6749         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6750       break;
6751     case MVT::v4f32:
6752     case MVT::v4i32:
6753     case MVT::v8i16:
6754     case MVT::v16i8:
6755       if (CFlags.IsVarArg) {
6756         // These go aligned on the stack, or in the corresponding R registers
6757         // when within range.  The Darwin PPC ABI doc claims they also go in
6758         // V registers; in fact gcc does this only for arguments that are
6759         // prototyped, not for those that match the ...  We do it for all
6760         // arguments, seems to work.
6761         while (ArgOffset % 16 !=0) {
6762           ArgOffset += PtrByteSize;
6763           if (GPR_idx != NumGPRs)
6764             GPR_idx++;
6765         }
6766         // We could elide this store in the case where the object fits
6767         // entirely in R registers.  Maybe later.
6768         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6769                              DAG.getConstant(ArgOffset, dl, PtrVT));
6770         SDValue Store =
6771             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6772         MemOpChains.push_back(Store);
6773         if (VR_idx != NumVRs) {
6774           SDValue Load =
6775               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6776           MemOpChains.push_back(Load.getValue(1));
6777           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6778         }
6779         ArgOffset += 16;
6780         for (unsigned i=0; i<16; i+=PtrByteSize) {
6781           if (GPR_idx == NumGPRs)
6782             break;
6783           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6784                                    DAG.getConstant(i, dl, PtrVT));
6785           SDValue Load =
6786               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6787           MemOpChains.push_back(Load.getValue(1));
6788           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6789         }
6790         break;
6791       }
6792 
6793       // Non-varargs Altivec params generally go in registers, but have
6794       // stack space allocated at the end.
6795       if (VR_idx != NumVRs) {
6796         // Doesn't have GPR space allocated.
6797         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6798       } else if (nAltivecParamsAtEnd==0) {
6799         // We are emitting Altivec params in order.
6800         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6801                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6802                          TailCallArguments, dl);
6803         ArgOffset += 16;
6804       }
6805       break;
6806     }
6807   }
6808   // If all Altivec parameters fit in registers, as they usually do,
6809   // they get stack space following the non-Altivec parameters.  We
6810   // don't track this here because nobody below needs it.
6811   // If there are more Altivec parameters than fit in registers emit
6812   // the stores here.
6813   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6814     unsigned j = 0;
6815     // Offset is aligned; skip 1st 12 params which go in V registers.
6816     ArgOffset = ((ArgOffset+15)/16)*16;
6817     ArgOffset += 12*16;
6818     for (unsigned i = 0; i != NumOps; ++i) {
6819       SDValue Arg = OutVals[i];
6820       EVT ArgType = Outs[i].VT;
6821       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6822           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6823         if (++j > NumVRs) {
6824           SDValue PtrOff;
6825           // We are emitting Altivec params in order.
6826           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6827                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6828                            TailCallArguments, dl);
6829           ArgOffset += 16;
6830         }
6831       }
6832     }
6833   }
6834 
6835   if (!MemOpChains.empty())
6836     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6837 
6838   // On Darwin, R12 must contain the address of an indirect callee.  This does
6839   // not mean the MTCTR instruction must use R12; it's easier to model this as
6840   // an extra parameter, so do that.
6841   if (CFlags.IsIndirect) {
6842     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6843     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6844                                                    PPC::R12), Callee));
6845   }
6846 
6847   // Build a sequence of copy-to-reg nodes chained together with token chain
6848   // and flag operands which copy the outgoing args into the appropriate regs.
6849   SDValue InFlag;
6850   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6851     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6852                              RegsToPass[i].second, InFlag);
6853     InFlag = Chain.getValue(1);
6854   }
6855 
6856   if (CFlags.IsTailCall)
6857     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6858                     TailCallArguments);
6859 
6860   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6861                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6862 }
6863 
6864 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6865                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6866                    CCState &State) {
6867 
6868   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6869       State.getMachineFunction().getSubtarget());
6870   const bool IsPPC64 = Subtarget.isPPC64();
6871   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6872   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6873 
6874   assert((!ValVT.isInteger() ||
6875           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6876          "Integer argument exceeds register size: should have been legalized");
6877 
6878   if (ValVT == MVT::f128)
6879     report_fatal_error("f128 is unimplemented on AIX.");
6880 
6881   if (ArgFlags.isNest())
6882     report_fatal_error("Nest arguments are unimplemented.");
6883 
6884   if (ValVT.isVector() || LocVT.isVector())
6885     report_fatal_error("Vector arguments are unimplemented on AIX.");
6886 
6887   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6888                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6889                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6890   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6891                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6892                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6893 
6894   if (ArgFlags.isByVal()) {
6895     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6896       report_fatal_error("Pass-by-value arguments with alignment greater than "
6897                          "register width are not supported.");
6898 
6899     const unsigned ByValSize = ArgFlags.getByValSize();
6900 
6901     // An empty aggregate parameter takes up no storage and no registers,
6902     // but needs a MemLoc for a stack slot for the formal arguments side.
6903     if (ByValSize == 0) {
6904       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6905                                        State.getNextStackOffset(), RegVT,
6906                                        LocInfo));
6907       return false;
6908     }
6909 
6910     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6911     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6912     for (const unsigned E = Offset + StackSize; Offset < E;
6913          Offset += PtrAlign.value()) {
6914       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6915         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6916       else {
6917         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6918                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6919                                          LocInfo));
6920         break;
6921       }
6922     }
6923     return false;
6924   }
6925 
6926   // Arguments always reserve parameter save area.
6927   switch (ValVT.SimpleTy) {
6928   default:
6929     report_fatal_error("Unhandled value type for argument.");
6930   case MVT::i64:
6931     // i64 arguments should have been split to i32 for PPC32.
6932     assert(IsPPC64 && "PPC32 should have split i64 values.");
6933     LLVM_FALLTHROUGH;
6934   case MVT::i1:
6935   case MVT::i32: {
6936     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6937     // AIX integer arguments are always passed in register width.
6938     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6939       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6940                                   : CCValAssign::LocInfo::ZExt;
6941     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6942       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6943     else
6944       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6945 
6946     return false;
6947   }
6948   case MVT::f32:
6949   case MVT::f64: {
6950     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6951     const unsigned StoreSize = LocVT.getStoreSize();
6952     // Floats are always 4-byte aligned in the PSA on AIX.
6953     // This includes f64 in 64-bit mode for ABI compatibility.
6954     const unsigned Offset =
6955         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6956     unsigned FReg = State.AllocateReg(FPR);
6957     if (FReg)
6958       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6959 
6960     // Reserve and initialize GPRs or initialize the PSA as required.
6961     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6962       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6963         assert(FReg && "An FPR should be available when a GPR is reserved.");
6964         if (State.isVarArg()) {
6965           // Successfully reserved GPRs are only initialized for vararg calls.
6966           // Custom handling is required for:
6967           //   f64 in PPC32 needs to be split into 2 GPRs.
6968           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6969           State.addLoc(
6970               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6971         }
6972       } else {
6973         // If there are insufficient GPRs, the PSA needs to be initialized.
6974         // Initialization occurs even if an FPR was initialized for
6975         // compatibility with the AIX XL compiler. The full memory for the
6976         // argument will be initialized even if a prior word is saved in GPR.
6977         // A custom memLoc is used when the argument also passes in FPR so
6978         // that the callee handling can skip over it easily.
6979         State.addLoc(
6980             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6981                                              LocInfo)
6982                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6983         break;
6984       }
6985     }
6986 
6987     return false;
6988   }
6989   }
6990   return true;
6991 }
6992 
6993 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6994                                                     bool IsPPC64) {
6995   assert((IsPPC64 || SVT != MVT::i64) &&
6996          "i64 should have been split for 32-bit codegen.");
6997 
6998   switch (SVT) {
6999   default:
7000     report_fatal_error("Unexpected value type for formal argument");
7001   case MVT::i1:
7002   case MVT::i32:
7003   case MVT::i64:
7004     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7005   case MVT::f32:
7006     return &PPC::F4RCRegClass;
7007   case MVT::f64:
7008     return &PPC::F8RCRegClass;
7009   }
7010 }
7011 
7012 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7013                                         SelectionDAG &DAG, SDValue ArgValue,
7014                                         MVT LocVT, const SDLoc &dl) {
7015   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7016   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7017 
7018   if (Flags.isSExt())
7019     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7020                            DAG.getValueType(ValVT));
7021   else if (Flags.isZExt())
7022     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7023                            DAG.getValueType(ValVT));
7024 
7025   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7026 }
7027 
7028 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7029   const unsigned LASize = FL->getLinkageSize();
7030 
7031   if (PPC::GPRCRegClass.contains(Reg)) {
7032     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7033            "Reg must be a valid argument register!");
7034     return LASize + 4 * (Reg - PPC::R3);
7035   }
7036 
7037   if (PPC::G8RCRegClass.contains(Reg)) {
7038     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7039            "Reg must be a valid argument register!");
7040     return LASize + 8 * (Reg - PPC::X3);
7041   }
7042 
7043   llvm_unreachable("Only general purpose registers expected.");
7044 }
7045 
7046 //   AIX ABI Stack Frame Layout:
7047 //
7048 //   Low Memory +--------------------------------------------+
7049 //   SP   +---> | Back chain                                 | ---+
7050 //        |     +--------------------------------------------+    |
7051 //        |     | Saved Condition Register                   |    |
7052 //        |     +--------------------------------------------+    |
7053 //        |     | Saved Linkage Register                     |    |
7054 //        |     +--------------------------------------------+    | Linkage Area
7055 //        |     | Reserved for compilers                     |    |
7056 //        |     +--------------------------------------------+    |
7057 //        |     | Reserved for binders                       |    |
7058 //        |     +--------------------------------------------+    |
7059 //        |     | Saved TOC pointer                          | ---+
7060 //        |     +--------------------------------------------+
7061 //        |     | Parameter save area                        |
7062 //        |     +--------------------------------------------+
7063 //        |     | Alloca space                               |
7064 //        |     +--------------------------------------------+
7065 //        |     | Local variable space                       |
7066 //        |     +--------------------------------------------+
7067 //        |     | Float/int conversion temporary             |
7068 //        |     +--------------------------------------------+
7069 //        |     | Save area for AltiVec registers            |
7070 //        |     +--------------------------------------------+
7071 //        |     | AltiVec alignment padding                  |
7072 //        |     +--------------------------------------------+
7073 //        |     | Save area for VRSAVE register              |
7074 //        |     +--------------------------------------------+
7075 //        |     | Save area for General Purpose registers    |
7076 //        |     +--------------------------------------------+
7077 //        |     | Save area for Floating Point registers     |
7078 //        |     +--------------------------------------------+
7079 //        +---- | Back chain                                 |
7080 // High Memory  +--------------------------------------------+
7081 //
7082 //  Specifications:
7083 //  AIX 7.2 Assembler Language Reference
7084 //  Subroutine linkage convention
7085 
7086 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7087     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7088     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7089     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7090 
7091   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7092           CallConv == CallingConv::Fast) &&
7093          "Unexpected calling convention!");
7094 
7095   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7096     report_fatal_error("Tail call support is unimplemented on AIX.");
7097 
7098   if (useSoftFloat())
7099     report_fatal_error("Soft float support is unimplemented on AIX.");
7100 
7101   const PPCSubtarget &Subtarget =
7102       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7103 
7104   const bool IsPPC64 = Subtarget.isPPC64();
7105   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7106 
7107   // Assign locations to all of the incoming arguments.
7108   SmallVector<CCValAssign, 16> ArgLocs;
7109   MachineFunction &MF = DAG.getMachineFunction();
7110   MachineFrameInfo &MFI = MF.getFrameInfo();
7111   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7112 
7113   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7114   // Reserve space for the linkage area on the stack.
7115   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7116   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7117   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7118 
7119   SmallVector<SDValue, 8> MemOps;
7120 
7121   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7122     CCValAssign &VA = ArgLocs[I++];
7123     MVT LocVT = VA.getLocVT();
7124     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7125 
7126     // For compatibility with the AIX XL compiler, the float args in the
7127     // parameter save area are initialized even if the argument is available
7128     // in register.  The caller is required to initialize both the register
7129     // and memory, however, the callee can choose to expect it in either.
7130     // The memloc is dismissed here because the argument is retrieved from
7131     // the register.
7132     if (VA.isMemLoc() && VA.needsCustom())
7133       continue;
7134 
7135     if (Flags.isByVal() && VA.isMemLoc()) {
7136       const unsigned Size =
7137           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7138                   PtrByteSize);
7139       const int FI = MF.getFrameInfo().CreateFixedObject(
7140           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7141           /* IsAliased */ true);
7142       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7143       InVals.push_back(FIN);
7144 
7145       continue;
7146     }
7147 
7148     if (Flags.isByVal()) {
7149       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7150 
7151       const MCPhysReg ArgReg = VA.getLocReg();
7152       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7153 
7154       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7155         report_fatal_error("Over aligned byvals not supported yet.");
7156 
7157       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7158       const int FI = MF.getFrameInfo().CreateFixedObject(
7159           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7160           /* IsAliased */ true);
7161       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7162       InVals.push_back(FIN);
7163 
7164       // Add live ins for all the RegLocs for the same ByVal.
7165       const TargetRegisterClass *RegClass =
7166           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7167 
7168       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7169                                                unsigned Offset) {
7170         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7171         // Since the callers side has left justified the aggregate in the
7172         // register, we can simply store the entire register into the stack
7173         // slot.
7174         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7175         // The store to the fixedstack object is needed becuase accessing a
7176         // field of the ByVal will use a gep and load. Ideally we will optimize
7177         // to extracting the value from the register directly, and elide the
7178         // stores when the arguments address is not taken, but that will need to
7179         // be future work.
7180         SDValue Store = DAG.getStore(
7181             CopyFrom.getValue(1), dl, CopyFrom,
7182             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7183             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7184 
7185         MemOps.push_back(Store);
7186       };
7187 
7188       unsigned Offset = 0;
7189       HandleRegLoc(VA.getLocReg(), Offset);
7190       Offset += PtrByteSize;
7191       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7192            Offset += PtrByteSize) {
7193         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7194                "RegLocs should be for ByVal argument.");
7195 
7196         const CCValAssign RL = ArgLocs[I++];
7197         HandleRegLoc(RL.getLocReg(), Offset);
7198       }
7199 
7200       if (Offset != StackSize) {
7201         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7202                "Expected MemLoc for remaining bytes.");
7203         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7204         // Consume the MemLoc.The InVal has already been emitted, so nothing
7205         // more needs to be done.
7206         ++I;
7207       }
7208 
7209       continue;
7210     }
7211 
7212     EVT ValVT = VA.getValVT();
7213     if (VA.isRegLoc() && !VA.needsCustom()) {
7214       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7215       unsigned VReg =
7216           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7217       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7218       if (ValVT.isScalarInteger() &&
7219           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7220         ArgValue =
7221             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7222       }
7223       InVals.push_back(ArgValue);
7224       continue;
7225     }
7226     if (VA.isMemLoc()) {
7227       const unsigned LocSize = LocVT.getStoreSize();
7228       const unsigned ValSize = ValVT.getStoreSize();
7229       assert((ValSize <= LocSize) &&
7230              "Object size is larger than size of MemLoc");
7231       int CurArgOffset = VA.getLocMemOffset();
7232       // Objects are right-justified because AIX is big-endian.
7233       if (LocSize > ValSize)
7234         CurArgOffset += LocSize - ValSize;
7235       // Potential tail calls could cause overwriting of argument stack slots.
7236       const bool IsImmutable =
7237           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7238             (CallConv == CallingConv::Fast));
7239       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7240       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7241       SDValue ArgValue =
7242           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7243       InVals.push_back(ArgValue);
7244       continue;
7245     }
7246   }
7247 
7248   // On AIX a minimum of 8 words is saved to the parameter save area.
7249   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7250   // Area that is at least reserved in the caller of this function.
7251   unsigned CallerReservedArea =
7252       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7253 
7254   // Set the size that is at least reserved in caller of this function. Tail
7255   // call optimized function's reserved stack space needs to be aligned so
7256   // that taking the difference between two stack areas will result in an
7257   // aligned stack.
7258   CallerReservedArea =
7259       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7260   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7261   FuncInfo->setMinReservedArea(CallerReservedArea);
7262 
7263   if (isVarArg) {
7264     FuncInfo->setVarArgsFrameIndex(
7265         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7266     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7267 
7268     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7269                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7270 
7271     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7272                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7273     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7274 
7275     // The fixed integer arguments of a variadic function are stored to the
7276     // VarArgsFrameIndex on the stack so that they may be loaded by
7277     // dereferencing the result of va_next.
7278     for (unsigned GPRIndex =
7279              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7280          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7281 
7282       const unsigned VReg =
7283           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7284                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7285 
7286       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7287       SDValue Store =
7288           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7289       MemOps.push_back(Store);
7290       // Increment the address for the next argument to store.
7291       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7292       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7293     }
7294   }
7295 
7296   if (!MemOps.empty())
7297     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7298 
7299   return Chain;
7300 }
7301 
7302 SDValue PPCTargetLowering::LowerCall_AIX(
7303     SDValue Chain, SDValue Callee, CallFlags CFlags,
7304     const SmallVectorImpl<ISD::OutputArg> &Outs,
7305     const SmallVectorImpl<SDValue> &OutVals,
7306     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7307     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7308     const CallBase *CB) const {
7309   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7310   // AIX ABI stack frame layout.
7311 
7312   assert((CFlags.CallConv == CallingConv::C ||
7313           CFlags.CallConv == CallingConv::Cold ||
7314           CFlags.CallConv == CallingConv::Fast) &&
7315          "Unexpected calling convention!");
7316 
7317   if (CFlags.IsPatchPoint)
7318     report_fatal_error("This call type is unimplemented on AIX.");
7319 
7320   const PPCSubtarget& Subtarget =
7321       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7322   if (Subtarget.hasAltivec())
7323     report_fatal_error("Altivec support is unimplemented on AIX.");
7324 
7325   MachineFunction &MF = DAG.getMachineFunction();
7326   SmallVector<CCValAssign, 16> ArgLocs;
7327   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7328                  *DAG.getContext());
7329 
7330   // Reserve space for the linkage save area (LSA) on the stack.
7331   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7332   //   [SP][CR][LR][2 x reserved][TOC].
7333   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7334   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7335   const bool IsPPC64 = Subtarget.isPPC64();
7336   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7337   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7338   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7339   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7340 
7341   // The prolog code of the callee may store up to 8 GPR argument registers to
7342   // the stack, allowing va_start to index over them in memory if the callee
7343   // is variadic.
7344   // Because we cannot tell if this is needed on the caller side, we have to
7345   // conservatively assume that it is needed.  As such, make sure we have at
7346   // least enough stack space for the caller to store the 8 GPRs.
7347   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7348   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7349                                      CCInfo.getNextStackOffset());
7350 
7351   // Adjust the stack pointer for the new arguments...
7352   // These operations are automatically eliminated by the prolog/epilog pass.
7353   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7354   SDValue CallSeqStart = Chain;
7355 
7356   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7357   SmallVector<SDValue, 8> MemOpChains;
7358 
7359   // Set up a copy of the stack pointer for loading and storing any
7360   // arguments that may not fit in the registers available for argument
7361   // passing.
7362   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7363                                    : DAG.getRegister(PPC::R1, MVT::i32);
7364 
7365   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7366     const unsigned ValNo = ArgLocs[I].getValNo();
7367     SDValue Arg = OutVals[ValNo];
7368     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7369 
7370     if (Flags.isByVal()) {
7371       const unsigned ByValSize = Flags.getByValSize();
7372 
7373       // Nothing to do for zero-sized ByVals on the caller side.
7374       if (!ByValSize) {
7375         ++I;
7376         continue;
7377       }
7378 
7379       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7380         return DAG.getExtLoad(
7381             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7382             (LoadOffset != 0)
7383                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7384                 : Arg,
7385             MachinePointerInfo(), VT);
7386       };
7387 
7388       unsigned LoadOffset = 0;
7389 
7390       // Initialize registers, which are fully occupied by the by-val argument.
7391       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7392         SDValue Load = GetLoad(PtrVT, LoadOffset);
7393         MemOpChains.push_back(Load.getValue(1));
7394         LoadOffset += PtrByteSize;
7395         const CCValAssign &ByValVA = ArgLocs[I++];
7396         assert(ByValVA.getValNo() == ValNo &&
7397                "Unexpected location for pass-by-value argument.");
7398         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7399       }
7400 
7401       if (LoadOffset == ByValSize)
7402         continue;
7403 
7404       // There must be one more loc to handle the remainder.
7405       assert(ArgLocs[I].getValNo() == ValNo &&
7406              "Expected additional location for by-value argument.");
7407 
7408       if (ArgLocs[I].isMemLoc()) {
7409         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7410         const CCValAssign &ByValVA = ArgLocs[I++];
7411         ISD::ArgFlagsTy MemcpyFlags = Flags;
7412         // Only memcpy the bytes that don't pass in register.
7413         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7414         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7415             (LoadOffset != 0)
7416                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7417                 : Arg,
7418             DAG.getObjectPtrOffset(dl, StackPtr,
7419                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7420             CallSeqStart, MemcpyFlags, DAG, dl);
7421         continue;
7422       }
7423 
7424       // Initialize the final register residue.
7425       // Any residue that occupies the final by-val arg register must be
7426       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7427       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7428       // 2 and 1 byte loads.
7429       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7430       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7431              "Unexpected register residue for by-value argument.");
7432       SDValue ResidueVal;
7433       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7434         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7435         const MVT VT =
7436             N == 1 ? MVT::i8
7437                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7438         SDValue Load = GetLoad(VT, LoadOffset);
7439         MemOpChains.push_back(Load.getValue(1));
7440         LoadOffset += N;
7441         Bytes += N;
7442 
7443         // By-val arguments are passed left-justfied in register.
7444         // Every load here needs to be shifted, otherwise a full register load
7445         // should have been used.
7446         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7447                "Unexpected load emitted during handling of pass-by-value "
7448                "argument.");
7449         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7450         EVT ShiftAmountTy =
7451             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7452         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7453         SDValue ShiftedLoad =
7454             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7455         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7456                                               ShiftedLoad)
7457                                 : ShiftedLoad;
7458       }
7459 
7460       const CCValAssign &ByValVA = ArgLocs[I++];
7461       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7462       continue;
7463     }
7464 
7465     CCValAssign &VA = ArgLocs[I++];
7466     const MVT LocVT = VA.getLocVT();
7467     const MVT ValVT = VA.getValVT();
7468 
7469     switch (VA.getLocInfo()) {
7470     default:
7471       report_fatal_error("Unexpected argument extension type.");
7472     case CCValAssign::Full:
7473       break;
7474     case CCValAssign::ZExt:
7475       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7476       break;
7477     case CCValAssign::SExt:
7478       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7479       break;
7480     }
7481 
7482     if (VA.isRegLoc() && !VA.needsCustom()) {
7483       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7484       continue;
7485     }
7486 
7487     if (VA.isMemLoc()) {
7488       SDValue PtrOff =
7489           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7490       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7491       MemOpChains.push_back(
7492           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7493 
7494       continue;
7495     }
7496 
7497     // Custom handling is used for GPR initializations for vararg float
7498     // arguments.
7499     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7500            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7501            "Unexpected register handling for calling convention.");
7502 
7503     SDValue ArgAsInt =
7504         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7505 
7506     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7507       // f32 in 32-bit GPR
7508       // f64 in 64-bit GPR
7509       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7510     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7511       // f32 in 64-bit GPR.
7512       RegsToPass.push_back(std::make_pair(
7513           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7514     else {
7515       // f64 in two 32-bit GPRs
7516       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7517       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7518              "Unexpected custom register for argument!");
7519       CCValAssign &GPR1 = VA;
7520       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7521                                      DAG.getConstant(32, dl, MVT::i8));
7522       RegsToPass.push_back(std::make_pair(
7523           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7524 
7525       if (I != E) {
7526         // If only 1 GPR was available, there will only be one custom GPR and
7527         // the argument will also pass in memory.
7528         CCValAssign &PeekArg = ArgLocs[I];
7529         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7530           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7531           CCValAssign &GPR2 = ArgLocs[I++];
7532           RegsToPass.push_back(std::make_pair(
7533               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7534         }
7535       }
7536     }
7537   }
7538 
7539   if (!MemOpChains.empty())
7540     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7541 
7542   // For indirect calls, we need to save the TOC base to the stack for
7543   // restoration after the call.
7544   if (CFlags.IsIndirect) {
7545     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7546     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7547     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7548     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7549     const unsigned TOCSaveOffset =
7550         Subtarget.getFrameLowering()->getTOCSaveOffset();
7551 
7552     setUsesTOCBasePtr(DAG);
7553     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7554     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7555     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7556     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7557     Chain = DAG.getStore(
7558         Val.getValue(1), dl, Val, AddPtr,
7559         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7560   }
7561 
7562   // Build a sequence of copy-to-reg nodes chained together with token chain
7563   // and flag operands which copy the outgoing args into the appropriate regs.
7564   SDValue InFlag;
7565   for (auto Reg : RegsToPass) {
7566     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7567     InFlag = Chain.getValue(1);
7568   }
7569 
7570   const int SPDiff = 0;
7571   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7572                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7573 }
7574 
7575 bool
7576 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7577                                   MachineFunction &MF, bool isVarArg,
7578                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7579                                   LLVMContext &Context) const {
7580   SmallVector<CCValAssign, 16> RVLocs;
7581   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7582   return CCInfo.CheckReturn(
7583       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7584                 ? RetCC_PPC_Cold
7585                 : RetCC_PPC);
7586 }
7587 
7588 SDValue
7589 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7590                                bool isVarArg,
7591                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7592                                const SmallVectorImpl<SDValue> &OutVals,
7593                                const SDLoc &dl, SelectionDAG &DAG) const {
7594   SmallVector<CCValAssign, 16> RVLocs;
7595   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7596                  *DAG.getContext());
7597   CCInfo.AnalyzeReturn(Outs,
7598                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7599                            ? RetCC_PPC_Cold
7600                            : RetCC_PPC);
7601 
7602   SDValue Flag;
7603   SmallVector<SDValue, 4> RetOps(1, Chain);
7604 
7605   // Copy the result values into the output registers.
7606   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7607     CCValAssign &VA = RVLocs[i];
7608     assert(VA.isRegLoc() && "Can only return in registers!");
7609 
7610     SDValue Arg = OutVals[RealResIdx];
7611 
7612     switch (VA.getLocInfo()) {
7613     default: llvm_unreachable("Unknown loc info!");
7614     case CCValAssign::Full: break;
7615     case CCValAssign::AExt:
7616       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7617       break;
7618     case CCValAssign::ZExt:
7619       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7620       break;
7621     case CCValAssign::SExt:
7622       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7623       break;
7624     }
7625     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7626       bool isLittleEndian = Subtarget.isLittleEndian();
7627       // Legalize ret f64 -> ret 2 x i32.
7628       SDValue SVal =
7629           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7630                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7631       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7632       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7633       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7634                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7635       Flag = Chain.getValue(1);
7636       VA = RVLocs[++i]; // skip ahead to next loc
7637       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7638     } else
7639       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7640     Flag = Chain.getValue(1);
7641     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7642   }
7643 
7644   RetOps[0] = Chain;  // Update chain.
7645 
7646   // Add the flag if we have it.
7647   if (Flag.getNode())
7648     RetOps.push_back(Flag);
7649 
7650   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7651 }
7652 
7653 SDValue
7654 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7655                                                 SelectionDAG &DAG) const {
7656   SDLoc dl(Op);
7657 
7658   // Get the correct type for integers.
7659   EVT IntVT = Op.getValueType();
7660 
7661   // Get the inputs.
7662   SDValue Chain = Op.getOperand(0);
7663   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7664   // Build a DYNAREAOFFSET node.
7665   SDValue Ops[2] = {Chain, FPSIdx};
7666   SDVTList VTs = DAG.getVTList(IntVT);
7667   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7668 }
7669 
7670 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7671                                              SelectionDAG &DAG) const {
7672   // When we pop the dynamic allocation we need to restore the SP link.
7673   SDLoc dl(Op);
7674 
7675   // Get the correct type for pointers.
7676   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7677 
7678   // Construct the stack pointer operand.
7679   bool isPPC64 = Subtarget.isPPC64();
7680   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7681   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7682 
7683   // Get the operands for the STACKRESTORE.
7684   SDValue Chain = Op.getOperand(0);
7685   SDValue SaveSP = Op.getOperand(1);
7686 
7687   // Load the old link SP.
7688   SDValue LoadLinkSP =
7689       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7690 
7691   // Restore the stack pointer.
7692   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7693 
7694   // Store the old link SP.
7695   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7696 }
7697 
7698 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7699   MachineFunction &MF = DAG.getMachineFunction();
7700   bool isPPC64 = Subtarget.isPPC64();
7701   EVT PtrVT = getPointerTy(MF.getDataLayout());
7702 
7703   // Get current frame pointer save index.  The users of this index will be
7704   // primarily DYNALLOC instructions.
7705   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7706   int RASI = FI->getReturnAddrSaveIndex();
7707 
7708   // If the frame pointer save index hasn't been defined yet.
7709   if (!RASI) {
7710     // Find out what the fix offset of the frame pointer save area.
7711     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7712     // Allocate the frame index for frame pointer save area.
7713     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7714     // Save the result.
7715     FI->setReturnAddrSaveIndex(RASI);
7716   }
7717   return DAG.getFrameIndex(RASI, PtrVT);
7718 }
7719 
7720 SDValue
7721 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7722   MachineFunction &MF = DAG.getMachineFunction();
7723   bool isPPC64 = Subtarget.isPPC64();
7724   EVT PtrVT = getPointerTy(MF.getDataLayout());
7725 
7726   // Get current frame pointer save index.  The users of this index will be
7727   // primarily DYNALLOC instructions.
7728   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7729   int FPSI = FI->getFramePointerSaveIndex();
7730 
7731   // If the frame pointer save index hasn't been defined yet.
7732   if (!FPSI) {
7733     // Find out what the fix offset of the frame pointer save area.
7734     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7735     // Allocate the frame index for frame pointer save area.
7736     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7737     // Save the result.
7738     FI->setFramePointerSaveIndex(FPSI);
7739   }
7740   return DAG.getFrameIndex(FPSI, PtrVT);
7741 }
7742 
7743 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7744                                                    SelectionDAG &DAG) const {
7745   MachineFunction &MF = DAG.getMachineFunction();
7746   // Get the inputs.
7747   SDValue Chain = Op.getOperand(0);
7748   SDValue Size  = Op.getOperand(1);
7749   SDLoc dl(Op);
7750 
7751   // Get the correct type for pointers.
7752   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7753   // Negate the size.
7754   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7755                                 DAG.getConstant(0, dl, PtrVT), Size);
7756   // Construct a node for the frame pointer save index.
7757   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7758   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7759   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7760   if (hasInlineStackProbe(MF))
7761     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7762   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7763 }
7764 
7765 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7766                                                      SelectionDAG &DAG) const {
7767   MachineFunction &MF = DAG.getMachineFunction();
7768 
7769   bool isPPC64 = Subtarget.isPPC64();
7770   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7771 
7772   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7773   return DAG.getFrameIndex(FI, PtrVT);
7774 }
7775 
7776 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7777                                                SelectionDAG &DAG) const {
7778   SDLoc DL(Op);
7779   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7780                      DAG.getVTList(MVT::i32, MVT::Other),
7781                      Op.getOperand(0), Op.getOperand(1));
7782 }
7783 
7784 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7785                                                 SelectionDAG &DAG) const {
7786   SDLoc DL(Op);
7787   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7788                      Op.getOperand(0), Op.getOperand(1));
7789 }
7790 
7791 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7792 
7793   assert(Op.getValueType() == MVT::i1 &&
7794          "Custom lowering only for i1 loads");
7795 
7796   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7797 
7798   SDLoc dl(Op);
7799   LoadSDNode *LD = cast<LoadSDNode>(Op);
7800 
7801   SDValue Chain = LD->getChain();
7802   SDValue BasePtr = LD->getBasePtr();
7803   MachineMemOperand *MMO = LD->getMemOperand();
7804 
7805   SDValue NewLD =
7806       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7807                      BasePtr, MVT::i8, MMO);
7808   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7809 
7810   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7811   return DAG.getMergeValues(Ops, dl);
7812 }
7813 
7814 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7815   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7816          "Custom lowering only for i1 stores");
7817 
7818   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7819 
7820   SDLoc dl(Op);
7821   StoreSDNode *ST = cast<StoreSDNode>(Op);
7822 
7823   SDValue Chain = ST->getChain();
7824   SDValue BasePtr = ST->getBasePtr();
7825   SDValue Value = ST->getValue();
7826   MachineMemOperand *MMO = ST->getMemOperand();
7827 
7828   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7829                       Value);
7830   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7831 }
7832 
7833 // FIXME: Remove this once the ANDI glue bug is fixed:
7834 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7835   assert(Op.getValueType() == MVT::i1 &&
7836          "Custom lowering only for i1 results");
7837 
7838   SDLoc DL(Op);
7839   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7840 }
7841 
7842 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7843                                                SelectionDAG &DAG) const {
7844 
7845   // Implements a vector truncate that fits in a vector register as a shuffle.
7846   // We want to legalize vector truncates down to where the source fits in
7847   // a vector register (and target is therefore smaller than vector register
7848   // size).  At that point legalization will try to custom lower the sub-legal
7849   // result and get here - where we can contain the truncate as a single target
7850   // operation.
7851 
7852   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7853   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7854   //
7855   // We will implement it for big-endian ordering as this (where x denotes
7856   // undefined):
7857   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7858   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7859   //
7860   // The same operation in little-endian ordering will be:
7861   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7862   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7863 
7864   EVT TrgVT = Op.getValueType();
7865   assert(TrgVT.isVector() && "Vector type expected.");
7866   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7867   EVT EltVT = TrgVT.getVectorElementType();
7868   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7869       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7870       !isPowerOf2_32(EltVT.getSizeInBits()))
7871     return SDValue();
7872 
7873   SDValue N1 = Op.getOperand(0);
7874   EVT SrcVT = N1.getValueType();
7875   unsigned SrcSize = SrcVT.getSizeInBits();
7876   if (SrcSize > 256 ||
7877       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7878       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7879     return SDValue();
7880   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7881     return SDValue();
7882 
7883   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7884   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7885 
7886   SDLoc DL(Op);
7887   SDValue Op1, Op2;
7888   if (SrcSize == 256) {
7889     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7890     EVT SplitVT =
7891         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7892     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7893     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7894                       DAG.getConstant(0, DL, VecIdxTy));
7895     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7896                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7897   }
7898   else {
7899     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7900     Op2 = DAG.getUNDEF(WideVT);
7901   }
7902 
7903   // First list the elements we want to keep.
7904   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7905   SmallVector<int, 16> ShuffV;
7906   if (Subtarget.isLittleEndian())
7907     for (unsigned i = 0; i < TrgNumElts; ++i)
7908       ShuffV.push_back(i * SizeMult);
7909   else
7910     for (unsigned i = 1; i <= TrgNumElts; ++i)
7911       ShuffV.push_back(i * SizeMult - 1);
7912 
7913   // Populate the remaining elements with undefs.
7914   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7915     // ShuffV.push_back(i + WideNumElts);
7916     ShuffV.push_back(WideNumElts + 1);
7917 
7918   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7919   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7920   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7921 }
7922 
7923 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7924 /// possible.
7925 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7926   // Not FP, or using SPE? Not a fsel.
7927   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7928       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7929     return Op;
7930 
7931   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7932 
7933   EVT ResVT = Op.getValueType();
7934   EVT CmpVT = Op.getOperand(0).getValueType();
7935   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7936   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7937   SDLoc dl(Op);
7938   SDNodeFlags Flags = Op.getNode()->getFlags();
7939 
7940   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7941   // presence of infinities.
7942   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7943     switch (CC) {
7944     default:
7945       break;
7946     case ISD::SETOGT:
7947     case ISD::SETGT:
7948       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7949     case ISD::SETOLT:
7950     case ISD::SETLT:
7951       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7952     }
7953   }
7954 
7955   // We might be able to do better than this under some circumstances, but in
7956   // general, fsel-based lowering of select is a finite-math-only optimization.
7957   // For more information, see section F.3 of the 2.06 ISA specification.
7958   // With ISA 3.0
7959   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7960       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7961     return Op;
7962 
7963   // If the RHS of the comparison is a 0.0, we don't need to do the
7964   // subtraction at all.
7965   SDValue Sel1;
7966   if (isFloatingPointZero(RHS))
7967     switch (CC) {
7968     default: break;       // SETUO etc aren't handled by fsel.
7969     case ISD::SETNE:
7970       std::swap(TV, FV);
7971       LLVM_FALLTHROUGH;
7972     case ISD::SETEQ:
7973       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7974         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7975       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7976       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7977         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7978       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7979                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7980     case ISD::SETULT:
7981     case ISD::SETLT:
7982       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7983       LLVM_FALLTHROUGH;
7984     case ISD::SETOGE:
7985     case ISD::SETGE:
7986       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7987         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7988       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7989     case ISD::SETUGT:
7990     case ISD::SETGT:
7991       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7992       LLVM_FALLTHROUGH;
7993     case ISD::SETOLE:
7994     case ISD::SETLE:
7995       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7996         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7997       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7998                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7999     }
8000 
8001   SDValue Cmp;
8002   switch (CC) {
8003   default: break;       // SETUO etc aren't handled by fsel.
8004   case ISD::SETNE:
8005     std::swap(TV, FV);
8006     LLVM_FALLTHROUGH;
8007   case ISD::SETEQ:
8008     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8009     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8010       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8011     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8012     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8013       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8014     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8015                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8016   case ISD::SETULT:
8017   case ISD::SETLT:
8018     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8019     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8020       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8021     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8022   case ISD::SETOGE:
8023   case ISD::SETGE:
8024     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8025     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8026       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8027     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8028   case ISD::SETUGT:
8029   case ISD::SETGT:
8030     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8031     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8032       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8033     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8034   case ISD::SETOLE:
8035   case ISD::SETLE:
8036     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8037     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8038       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8039     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8040   }
8041   return Op;
8042 }
8043 
8044 static unsigned getPPCStrictOpcode(unsigned Opc) {
8045   switch (Opc) {
8046   default:
8047     llvm_unreachable("No strict version of this opcode!");
8048   case PPCISD::FCTIDZ:
8049     return PPCISD::STRICT_FCTIDZ;
8050   case PPCISD::FCTIWZ:
8051     return PPCISD::STRICT_FCTIWZ;
8052   case PPCISD::FCTIDUZ:
8053     return PPCISD::STRICT_FCTIDUZ;
8054   case PPCISD::FCTIWUZ:
8055     return PPCISD::STRICT_FCTIWUZ;
8056   case PPCISD::FCFID:
8057     return PPCISD::STRICT_FCFID;
8058   case PPCISD::FCFIDU:
8059     return PPCISD::STRICT_FCFIDU;
8060   case PPCISD::FCFIDS:
8061     return PPCISD::STRICT_FCFIDS;
8062   case PPCISD::FCFIDUS:
8063     return PPCISD::STRICT_FCFIDUS;
8064   }
8065 }
8066 
8067 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8068                               const PPCSubtarget &Subtarget) {
8069   SDLoc dl(Op);
8070   bool IsStrict = Op->isStrictFPOpcode();
8071   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8072                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8073   // For strict nodes, source is the second operand.
8074   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8075   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8076   assert(Src.getValueType().isFloatingPoint());
8077   if (Src.getValueType() == MVT::f32) {
8078     if (IsStrict) {
8079       Src = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f64, MVT::Other},
8080                         {Chain, Src});
8081       Chain = Src.getValue(1);
8082     } else
8083       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8084   }
8085   SDValue Conv;
8086   unsigned Opc = ISD::DELETED_NODE;
8087   switch (Op.getSimpleValueType().SimpleTy) {
8088   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8089   case MVT::i32:
8090     Opc = IsSigned ? PPCISD::FCTIWZ
8091                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8092     break;
8093   case MVT::i64:
8094     assert((IsSigned || Subtarget.hasFPCVT()) &&
8095            "i64 FP_TO_UINT is supported only with FPCVT");
8096     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8097   }
8098   if (IsStrict) {
8099     Opc = getPPCStrictOpcode(Opc);
8100     Conv = DAG.getNode(Opc, dl, {MVT::f64, MVT::Other}, {Chain, Src});
8101   } else {
8102     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8103   }
8104   return Conv;
8105 }
8106 
8107 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8108                                                SelectionDAG &DAG,
8109                                                const SDLoc &dl) const {
8110   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8111   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8112                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8113   bool IsStrict = Op->isStrictFPOpcode();
8114 
8115   // Convert the FP value to an int value through memory.
8116   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8117                   (IsSigned || Subtarget.hasFPCVT());
8118   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8119   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8120   MachinePointerInfo MPI =
8121       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8122 
8123   // Emit a store to the stack slot.
8124   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8125   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8126   if (i32Stack) {
8127     MachineFunction &MF = DAG.getMachineFunction();
8128     Alignment = Align(4);
8129     MachineMemOperand *MMO =
8130         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8131     SDValue Ops[] = { Chain, Tmp, FIPtr };
8132     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8133               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8134   } else
8135     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8136 
8137   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8138   // add in a bias on big endian.
8139   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8140     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8141                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8142     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8143   }
8144 
8145   RLI.Chain = Chain;
8146   RLI.Ptr = FIPtr;
8147   RLI.MPI = MPI;
8148   RLI.Alignment = Alignment;
8149 }
8150 
8151 /// Custom lowers floating point to integer conversions to use
8152 /// the direct move instructions available in ISA 2.07 to avoid the
8153 /// need for load/store combinations.
8154 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8155                                                     SelectionDAG &DAG,
8156                                                     const SDLoc &dl) const {
8157   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8158   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8159   if (Op->isStrictFPOpcode())
8160     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8161   else
8162     return Mov;
8163 }
8164 
8165 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8166                                           const SDLoc &dl) const {
8167   bool IsStrict = Op->isStrictFPOpcode();
8168   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8169                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8170   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8171   EVT SrcVT = Src.getValueType();
8172   EVT DstVT = Op.getValueType();
8173 
8174   // FP to INT conversions are legal for f128.
8175   if (SrcVT == MVT::f128)
8176     return Op;
8177 
8178   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8179   // PPC (the libcall is not available).
8180   if (SrcVT == MVT::ppcf128) {
8181     if (DstVT == MVT::i32) {
8182       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8183       // set other fast-math flags to FP operations in both strict and
8184       // non-strict cases. (FP_TO_SINT, FSUB)
8185       SDNodeFlags Flags;
8186       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8187 
8188       if (IsSigned) {
8189         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8190                                  DAG.getIntPtrConstant(0, dl));
8191         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8192                                  DAG.getIntPtrConstant(1, dl));
8193 
8194         // Add the two halves of the long double in round-to-zero mode, and use
8195         // a smaller FP_TO_SINT.
8196         if (IsStrict) {
8197           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8198                                     DAG.getVTList(MVT::f64, MVT::Other),
8199                                     {Op.getOperand(0), Lo, Hi}, Flags);
8200           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8201                              DAG.getVTList(MVT::i32, MVT::Other),
8202                              {Res.getValue(1), Res}, Flags);
8203         } else {
8204           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8205           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8206         }
8207       } else {
8208         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8209         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8210         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8211         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8212         if (IsStrict) {
8213           // Sel = Src < 0x80000000
8214           // FltOfs = select Sel, 0.0, 0x80000000
8215           // IntOfs = select Sel, 0, 0x80000000
8216           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8217           SDValue Chain = Op.getOperand(0);
8218           EVT SetCCVT =
8219               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8220           EVT DstSetCCVT =
8221               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8222           SDValue Sel =
8223               DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, Chain, true);
8224           Chain = Sel.getValue(1);
8225 
8226           SDValue FltOfs = DAG.getSelect(
8227               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8228           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8229 
8230           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8231                                     DAG.getVTList(SrcVT, MVT::Other),
8232                                     {Chain, Src, FltOfs}, Flags);
8233           Chain = Val.getValue(1);
8234           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8235                                      DAG.getVTList(DstVT, MVT::Other),
8236                                      {Chain, Val}, Flags);
8237           Chain = SInt.getValue(1);
8238           SDValue IntOfs = DAG.getSelect(
8239               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8240           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8241           return DAG.getMergeValues({Result, Chain}, dl);
8242         } else {
8243           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8244           // FIXME: generated code sucks.
8245           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8246           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8247           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8248           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8249           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8250         }
8251       }
8252     }
8253 
8254     return SDValue();
8255   }
8256 
8257   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8258     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8259 
8260   ReuseLoadInfo RLI;
8261   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8262 
8263   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8264                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8265 }
8266 
8267 // We're trying to insert a regular store, S, and then a load, L. If the
8268 // incoming value, O, is a load, we might just be able to have our load use the
8269 // address used by O. However, we don't know if anything else will store to
8270 // that address before we can load from it. To prevent this situation, we need
8271 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8272 // the same chain operand as O, we create a token factor from the chain results
8273 // of O and L, and we replace all uses of O's chain result with that token
8274 // factor (see spliceIntoChain below for this last part).
8275 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8276                                             ReuseLoadInfo &RLI,
8277                                             SelectionDAG &DAG,
8278                                             ISD::LoadExtType ET) const {
8279   // Conservatively skip reusing for constrained FP nodes.
8280   if (Op->isStrictFPOpcode())
8281     return false;
8282 
8283   SDLoc dl(Op);
8284   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8285                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8286   if (ET == ISD::NON_EXTLOAD &&
8287       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8288       isOperationLegalOrCustom(Op.getOpcode(),
8289                                Op.getOperand(0).getValueType())) {
8290 
8291     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8292     return true;
8293   }
8294 
8295   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8296   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8297       LD->isNonTemporal())
8298     return false;
8299   if (LD->getMemoryVT() != MemVT)
8300     return false;
8301 
8302   RLI.Ptr = LD->getBasePtr();
8303   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8304     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8305            "Non-pre-inc AM on PPC?");
8306     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8307                           LD->getOffset());
8308   }
8309 
8310   RLI.Chain = LD->getChain();
8311   RLI.MPI = LD->getPointerInfo();
8312   RLI.IsDereferenceable = LD->isDereferenceable();
8313   RLI.IsInvariant = LD->isInvariant();
8314   RLI.Alignment = LD->getAlign();
8315   RLI.AAInfo = LD->getAAInfo();
8316   RLI.Ranges = LD->getRanges();
8317 
8318   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8319   return true;
8320 }
8321 
8322 // Given the head of the old chain, ResChain, insert a token factor containing
8323 // it and NewResChain, and make users of ResChain now be users of that token
8324 // factor.
8325 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8326 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8327                                         SDValue NewResChain,
8328                                         SelectionDAG &DAG) const {
8329   if (!ResChain)
8330     return;
8331 
8332   SDLoc dl(NewResChain);
8333 
8334   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8335                            NewResChain, DAG.getUNDEF(MVT::Other));
8336   assert(TF.getNode() != NewResChain.getNode() &&
8337          "A new TF really is required here");
8338 
8339   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8340   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8341 }
8342 
8343 /// Analyze profitability of direct move
8344 /// prefer float load to int load plus direct move
8345 /// when there is no integer use of int load
8346 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8347   SDNode *Origin = Op.getOperand(0).getNode();
8348   if (Origin->getOpcode() != ISD::LOAD)
8349     return true;
8350 
8351   // If there is no LXSIBZX/LXSIHZX, like Power8,
8352   // prefer direct move if the memory size is 1 or 2 bytes.
8353   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8354   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8355     return true;
8356 
8357   for (SDNode::use_iterator UI = Origin->use_begin(),
8358                             UE = Origin->use_end();
8359        UI != UE; ++UI) {
8360 
8361     // Only look at the users of the loaded value.
8362     if (UI.getUse().get().getResNo() != 0)
8363       continue;
8364 
8365     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8366         UI->getOpcode() != ISD::UINT_TO_FP &&
8367         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8368         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8369       return true;
8370   }
8371 
8372   return false;
8373 }
8374 
8375 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8376                               const PPCSubtarget &Subtarget,
8377                               SDValue Chain = SDValue()) {
8378   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8379                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8380   SDLoc dl(Op);
8381   // If we have FCFIDS, then use it when converting to single-precision.
8382   // Otherwise, convert to double-precision and then round.
8383   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8384   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8385                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8386   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8387   if (Op->isStrictFPOpcode()) {
8388     if (!Chain)
8389       Chain = Op.getOperand(0);
8390     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, {ConvTy, MVT::Other},
8391                        {Chain, Src});
8392   } else
8393     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8394 }
8395 
8396 /// Custom lowers integer to floating point conversions to use
8397 /// the direct move instructions available in ISA 2.07 to avoid the
8398 /// need for load/store combinations.
8399 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8400                                                     SelectionDAG &DAG,
8401                                                     const SDLoc &dl) const {
8402   assert((Op.getValueType() == MVT::f32 ||
8403           Op.getValueType() == MVT::f64) &&
8404          "Invalid floating point type as target of conversion");
8405   assert(Subtarget.hasFPCVT() &&
8406          "Int to FP conversions with direct moves require FPCVT");
8407   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8408   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8409   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8410                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8411   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8412   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8413   return convertIntToFP(Op, Mov, DAG, Subtarget);
8414 }
8415 
8416 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8417 
8418   EVT VecVT = Vec.getValueType();
8419   assert(VecVT.isVector() && "Expected a vector type.");
8420   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8421 
8422   EVT EltVT = VecVT.getVectorElementType();
8423   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8424   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8425 
8426   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8427   SmallVector<SDValue, 16> Ops(NumConcat);
8428   Ops[0] = Vec;
8429   SDValue UndefVec = DAG.getUNDEF(VecVT);
8430   for (unsigned i = 1; i < NumConcat; ++i)
8431     Ops[i] = UndefVec;
8432 
8433   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8434 }
8435 
8436 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8437                                                 const SDLoc &dl) const {
8438   bool IsStrict = Op->isStrictFPOpcode();
8439   unsigned Opc = Op.getOpcode();
8440   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8441   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8442           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8443          "Unexpected conversion type");
8444   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8445          "Supports conversions to v2f64/v4f32 only.");
8446 
8447   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8448   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8449 
8450   SDValue Wide = widenVec(DAG, Src, dl);
8451   EVT WideVT = Wide.getValueType();
8452   unsigned WideNumElts = WideVT.getVectorNumElements();
8453   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8454 
8455   SmallVector<int, 16> ShuffV;
8456   for (unsigned i = 0; i < WideNumElts; ++i)
8457     ShuffV.push_back(i + WideNumElts);
8458 
8459   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8460   int SaveElts = FourEltRes ? 4 : 2;
8461   if (Subtarget.isLittleEndian())
8462     for (int i = 0; i < SaveElts; i++)
8463       ShuffV[i * Stride] = i;
8464   else
8465     for (int i = 1; i <= SaveElts; i++)
8466       ShuffV[i * Stride - 1] = i - 1;
8467 
8468   SDValue ShuffleSrc2 =
8469       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8470   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8471 
8472   SDValue Extend;
8473   if (SignedConv) {
8474     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8475     EVT ExtVT = Src.getValueType();
8476     if (Subtarget.hasP9Altivec())
8477       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8478                                IntermediateVT.getVectorNumElements());
8479 
8480     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8481                          DAG.getValueType(ExtVT));
8482   } else
8483     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8484 
8485   if (IsStrict)
8486     return DAG.getNode(Opc, dl, {Op.getValueType(), MVT::Other},
8487                        {Op.getOperand(0), Extend});
8488 
8489   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8490 }
8491 
8492 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8493                                           SelectionDAG &DAG) const {
8494   SDLoc dl(Op);
8495   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8496                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8497   bool IsStrict = Op->isStrictFPOpcode();
8498   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8499   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8500 
8501   EVT InVT = Src.getValueType();
8502   EVT OutVT = Op.getValueType();
8503   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8504       isOperationCustom(Op.getOpcode(), InVT))
8505     return LowerINT_TO_FPVector(Op, DAG, dl);
8506 
8507   // Conversions to f128 are legal.
8508   if (Op.getValueType() == MVT::f128)
8509     return Op;
8510 
8511   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8512   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8513     return SDValue();
8514 
8515   if (Src.getValueType() == MVT::i1)
8516     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8517                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8518                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8519 
8520   // If we have direct moves, we can do all the conversion, skip the store/load
8521   // however, without FPCVT we can't do most conversions.
8522   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8523       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8524     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8525 
8526   assert((IsSigned || Subtarget.hasFPCVT()) &&
8527          "UINT_TO_FP is supported only with FPCVT");
8528 
8529   if (Src.getValueType() == MVT::i64) {
8530     SDValue SINT = Src;
8531     // When converting to single-precision, we actually need to convert
8532     // to double-precision first and then round to single-precision.
8533     // To avoid double-rounding effects during that operation, we have
8534     // to prepare the input operand.  Bits that might be truncated when
8535     // converting to double-precision are replaced by a bit that won't
8536     // be lost at this stage, but is below the single-precision rounding
8537     // position.
8538     //
8539     // However, if -enable-unsafe-fp-math is in effect, accept double
8540     // rounding to avoid the extra overhead.
8541     if (Op.getValueType() == MVT::f32 &&
8542         !Subtarget.hasFPCVT() &&
8543         !DAG.getTarget().Options.UnsafeFPMath) {
8544 
8545       // Twiddle input to make sure the low 11 bits are zero.  (If this
8546       // is the case, we are guaranteed the value will fit into the 53 bit
8547       // mantissa of an IEEE double-precision value without rounding.)
8548       // If any of those low 11 bits were not zero originally, make sure
8549       // bit 12 (value 2048) is set instead, so that the final rounding
8550       // to single-precision gets the correct result.
8551       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8552                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8553       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8554                           Round, DAG.getConstant(2047, dl, MVT::i64));
8555       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8556       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8557                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8558 
8559       // However, we cannot use that value unconditionally: if the magnitude
8560       // of the input value is small, the bit-twiddling we did above might
8561       // end up visibly changing the output.  Fortunately, in that case, we
8562       // don't need to twiddle bits since the original input will convert
8563       // exactly to double-precision floating-point already.  Therefore,
8564       // construct a conditional to use the original value if the top 11
8565       // bits are all sign-bit copies, and use the rounded value computed
8566       // above otherwise.
8567       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8568                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8569       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8570                          Cond, DAG.getConstant(1, dl, MVT::i64));
8571       Cond = DAG.getSetCC(
8572           dl,
8573           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8574           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8575 
8576       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8577     }
8578 
8579     ReuseLoadInfo RLI;
8580     SDValue Bits;
8581 
8582     MachineFunction &MF = DAG.getMachineFunction();
8583     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8584       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8585                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8586       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8587     } else if (Subtarget.hasLFIWAX() &&
8588                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8589       MachineMemOperand *MMO =
8590         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8591                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8592       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8593       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8594                                      DAG.getVTList(MVT::f64, MVT::Other),
8595                                      Ops, MVT::i32, MMO);
8596       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8597     } else if (Subtarget.hasFPCVT() &&
8598                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8599       MachineMemOperand *MMO =
8600         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8601                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8602       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8603       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8604                                      DAG.getVTList(MVT::f64, MVT::Other),
8605                                      Ops, MVT::i32, MMO);
8606       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8607     } else if (((Subtarget.hasLFIWAX() &&
8608                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8609                 (Subtarget.hasFPCVT() &&
8610                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8611                SINT.getOperand(0).getValueType() == MVT::i32) {
8612       MachineFrameInfo &MFI = MF.getFrameInfo();
8613       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8614 
8615       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8616       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8617 
8618       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8619                                    MachinePointerInfo::getFixedStack(
8620                                        DAG.getMachineFunction(), FrameIdx));
8621       Chain = Store;
8622 
8623       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8624              "Expected an i32 store");
8625 
8626       RLI.Ptr = FIdx;
8627       RLI.Chain = Chain;
8628       RLI.MPI =
8629           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8630       RLI.Alignment = Align(4);
8631 
8632       MachineMemOperand *MMO =
8633         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8634                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8635       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8636       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8637                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8638                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8639                                      Ops, MVT::i32, MMO);
8640       Chain = Bits.getValue(1);
8641     } else
8642       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8643 
8644     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8645     if (IsStrict)
8646       Chain = FP.getValue(1);
8647 
8648     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8649       if (IsStrict)
8650         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other},
8651                          {Chain, FP, DAG.getIntPtrConstant(0, dl)});
8652       else
8653         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8654                          DAG.getIntPtrConstant(0, dl));
8655     }
8656     return FP;
8657   }
8658 
8659   assert(Src.getValueType() == MVT::i32 &&
8660          "Unhandled INT_TO_FP type in custom expander!");
8661   // Since we only generate this in 64-bit mode, we can take advantage of
8662   // 64-bit registers.  In particular, sign extend the input value into the
8663   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8664   // then lfd it and fcfid it.
8665   MachineFunction &MF = DAG.getMachineFunction();
8666   MachineFrameInfo &MFI = MF.getFrameInfo();
8667   EVT PtrVT = getPointerTy(MF.getDataLayout());
8668 
8669   SDValue Ld;
8670   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8671     ReuseLoadInfo RLI;
8672     bool ReusingLoad;
8673     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8674       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8675       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8676 
8677       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8678                                    MachinePointerInfo::getFixedStack(
8679                                        DAG.getMachineFunction(), FrameIdx));
8680       Chain = Store;
8681 
8682       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8683              "Expected an i32 store");
8684 
8685       RLI.Ptr = FIdx;
8686       RLI.Chain = Chain;
8687       RLI.MPI =
8688           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8689       RLI.Alignment = Align(4);
8690     }
8691 
8692     MachineMemOperand *MMO =
8693       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8694                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8695     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8696     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8697                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8698                                  MVT::i32, MMO);
8699     Chain = Ld.getValue(1);
8700     if (ReusingLoad)
8701       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8702   } else {
8703     assert(Subtarget.isPPC64() &&
8704            "i32->FP without LFIWAX supported only on PPC64");
8705 
8706     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8707     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8708 
8709     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8710 
8711     // STD the extended value into the stack slot.
8712     SDValue Store = DAG.getStore(
8713         Chain, dl, Ext64, FIdx,
8714         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8715     Chain = Store;
8716 
8717     // Load the value as a double.
8718     Ld = DAG.getLoad(
8719         MVT::f64, dl, Chain, FIdx,
8720         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8721     Chain = Ld.getValue(1);
8722   }
8723 
8724   // FCFID it and return it.
8725   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8726   if (IsStrict)
8727     Chain = FP.getValue(1);
8728   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8729     if (IsStrict)
8730       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other},
8731                        {Chain, FP, DAG.getIntPtrConstant(0, dl)});
8732     else
8733       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8734                        DAG.getIntPtrConstant(0, dl));
8735   }
8736   return FP;
8737 }
8738 
8739 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8740                                             SelectionDAG &DAG) const {
8741   SDLoc dl(Op);
8742   /*
8743    The rounding mode is in bits 30:31 of FPSR, and has the following
8744    settings:
8745      00 Round to nearest
8746      01 Round to 0
8747      10 Round to +inf
8748      11 Round to -inf
8749 
8750   FLT_ROUNDS, on the other hand, expects the following:
8751     -1 Undefined
8752      0 Round to 0
8753      1 Round to nearest
8754      2 Round to +inf
8755      3 Round to -inf
8756 
8757   To perform the conversion, we do:
8758     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8759   */
8760 
8761   MachineFunction &MF = DAG.getMachineFunction();
8762   EVT VT = Op.getValueType();
8763   EVT PtrVT = getPointerTy(MF.getDataLayout());
8764 
8765   // Save FP Control Word to register
8766   SDValue Chain = Op.getOperand(0);
8767   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8768   Chain = MFFS.getValue(1);
8769 
8770   // Save FP register to stack slot
8771   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8772   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8773   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8774 
8775   // Load FP Control Word from low 32 bits of stack slot.
8776   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8777   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8778   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8779   Chain = CWD.getValue(1);
8780 
8781   // Transform as necessary
8782   SDValue CWD1 =
8783     DAG.getNode(ISD::AND, dl, MVT::i32,
8784                 CWD, DAG.getConstant(3, dl, MVT::i32));
8785   SDValue CWD2 =
8786     DAG.getNode(ISD::SRL, dl, MVT::i32,
8787                 DAG.getNode(ISD::AND, dl, MVT::i32,
8788                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8789                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8790                             DAG.getConstant(3, dl, MVT::i32)),
8791                 DAG.getConstant(1, dl, MVT::i32));
8792 
8793   SDValue RetVal =
8794     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8795 
8796   RetVal =
8797       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8798                   dl, VT, RetVal);
8799 
8800   return DAG.getMergeValues({RetVal, Chain}, dl);
8801 }
8802 
8803 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8804   EVT VT = Op.getValueType();
8805   unsigned BitWidth = VT.getSizeInBits();
8806   SDLoc dl(Op);
8807   assert(Op.getNumOperands() == 3 &&
8808          VT == Op.getOperand(1).getValueType() &&
8809          "Unexpected SHL!");
8810 
8811   // Expand into a bunch of logical ops.  Note that these ops
8812   // depend on the PPC behavior for oversized shift amounts.
8813   SDValue Lo = Op.getOperand(0);
8814   SDValue Hi = Op.getOperand(1);
8815   SDValue Amt = Op.getOperand(2);
8816   EVT AmtVT = Amt.getValueType();
8817 
8818   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8819                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8820   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8821   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8822   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8823   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8824                              DAG.getConstant(-BitWidth, dl, AmtVT));
8825   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8826   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8827   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8828   SDValue OutOps[] = { OutLo, OutHi };
8829   return DAG.getMergeValues(OutOps, dl);
8830 }
8831 
8832 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8833   EVT VT = Op.getValueType();
8834   SDLoc dl(Op);
8835   unsigned BitWidth = VT.getSizeInBits();
8836   assert(Op.getNumOperands() == 3 &&
8837          VT == Op.getOperand(1).getValueType() &&
8838          "Unexpected SRL!");
8839 
8840   // Expand into a bunch of logical ops.  Note that these ops
8841   // depend on the PPC behavior for oversized shift amounts.
8842   SDValue Lo = Op.getOperand(0);
8843   SDValue Hi = Op.getOperand(1);
8844   SDValue Amt = Op.getOperand(2);
8845   EVT AmtVT = Amt.getValueType();
8846 
8847   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8848                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8849   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8850   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8851   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8852   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8853                              DAG.getConstant(-BitWidth, dl, AmtVT));
8854   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8855   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8856   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8857   SDValue OutOps[] = { OutLo, OutHi };
8858   return DAG.getMergeValues(OutOps, dl);
8859 }
8860 
8861 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8862   SDLoc dl(Op);
8863   EVT VT = Op.getValueType();
8864   unsigned BitWidth = VT.getSizeInBits();
8865   assert(Op.getNumOperands() == 3 &&
8866          VT == Op.getOperand(1).getValueType() &&
8867          "Unexpected SRA!");
8868 
8869   // Expand into a bunch of logical ops, followed by a select_cc.
8870   SDValue Lo = Op.getOperand(0);
8871   SDValue Hi = Op.getOperand(1);
8872   SDValue Amt = Op.getOperand(2);
8873   EVT AmtVT = Amt.getValueType();
8874 
8875   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8876                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8877   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8878   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8879   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8880   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8881                              DAG.getConstant(-BitWidth, dl, AmtVT));
8882   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8883   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8884   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8885                                   Tmp4, Tmp6, ISD::SETLE);
8886   SDValue OutOps[] = { OutLo, OutHi };
8887   return DAG.getMergeValues(OutOps, dl);
8888 }
8889 
8890 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8891                                             SelectionDAG &DAG) const {
8892   SDLoc dl(Op);
8893   EVT VT = Op.getValueType();
8894   unsigned BitWidth = VT.getSizeInBits();
8895 
8896   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8897   SDValue X = Op.getOperand(0);
8898   SDValue Y = Op.getOperand(1);
8899   SDValue Z = Op.getOperand(2);
8900   EVT AmtVT = Z.getValueType();
8901 
8902   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8903   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8904   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8905   // on PowerPC shift by BW being well defined.
8906   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8907                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8908   SDValue SubZ =
8909       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8910   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8911   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8912   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8913 }
8914 
8915 //===----------------------------------------------------------------------===//
8916 // Vector related lowering.
8917 //
8918 
8919 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8920 /// element size of SplatSize. Cast the result to VT.
8921 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8922                                       SelectionDAG &DAG, const SDLoc &dl) {
8923   static const MVT VTys[] = { // canonical VT to use for each size.
8924     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8925   };
8926 
8927   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8928 
8929   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8930   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8931     SplatSize = 1;
8932     Val = 0xFF;
8933   }
8934 
8935   EVT CanonicalVT = VTys[SplatSize-1];
8936 
8937   // Build a canonical splat for this value.
8938   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8939 }
8940 
8941 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8942 /// specified intrinsic ID.
8943 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8944                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8945   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8946   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8947                      DAG.getConstant(IID, dl, MVT::i32), Op);
8948 }
8949 
8950 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8951 /// specified intrinsic ID.
8952 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8953                                 SelectionDAG &DAG, const SDLoc &dl,
8954                                 EVT DestVT = MVT::Other) {
8955   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8956   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8957                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8958 }
8959 
8960 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8961 /// specified intrinsic ID.
8962 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8963                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8964                                 EVT DestVT = MVT::Other) {
8965   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8966   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8967                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8968 }
8969 
8970 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8971 /// amount.  The result has the specified value type.
8972 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8973                            SelectionDAG &DAG, const SDLoc &dl) {
8974   // Force LHS/RHS to be the right type.
8975   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8976   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8977 
8978   int Ops[16];
8979   for (unsigned i = 0; i != 16; ++i)
8980     Ops[i] = i + Amt;
8981   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8982   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8983 }
8984 
8985 /// Do we have an efficient pattern in a .td file for this node?
8986 ///
8987 /// \param V - pointer to the BuildVectorSDNode being matched
8988 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8989 ///
8990 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8991 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8992 /// the opposite is true (expansion is beneficial) are:
8993 /// - The node builds a vector out of integers that are not 32 or 64-bits
8994 /// - The node builds a vector out of constants
8995 /// - The node is a "load-and-splat"
8996 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8997 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8998                                             bool HasDirectMove,
8999                                             bool HasP8Vector) {
9000   EVT VecVT = V->getValueType(0);
9001   bool RightType = VecVT == MVT::v2f64 ||
9002     (HasP8Vector && VecVT == MVT::v4f32) ||
9003     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9004   if (!RightType)
9005     return false;
9006 
9007   bool IsSplat = true;
9008   bool IsLoad = false;
9009   SDValue Op0 = V->getOperand(0);
9010 
9011   // This function is called in a block that confirms the node is not a constant
9012   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9013   // different constants.
9014   if (V->isConstant())
9015     return false;
9016   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9017     if (V->getOperand(i).isUndef())
9018       return false;
9019     // We want to expand nodes that represent load-and-splat even if the
9020     // loaded value is a floating point truncation or conversion to int.
9021     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9022         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9023          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9024         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9025          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9026         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9027          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9028       IsLoad = true;
9029     // If the operands are different or the input is not a load and has more
9030     // uses than just this BV node, then it isn't a splat.
9031     if (V->getOperand(i) != Op0 ||
9032         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9033       IsSplat = false;
9034   }
9035   return !(IsSplat && IsLoad);
9036 }
9037 
9038 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9039 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9040 
9041   SDLoc dl(Op);
9042   SDValue Op0 = Op->getOperand(0);
9043 
9044   if ((Op.getValueType() != MVT::f128) ||
9045       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9046       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9047       (Op0.getOperand(1).getValueType() != MVT::i64))
9048     return SDValue();
9049 
9050   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9051                      Op0.getOperand(1));
9052 }
9053 
9054 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9055   const SDValue *InputLoad = &Op;
9056   if (InputLoad->getOpcode() == ISD::BITCAST)
9057     InputLoad = &InputLoad->getOperand(0);
9058   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9059       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9060     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9061     InputLoad = &InputLoad->getOperand(0);
9062   }
9063   if (InputLoad->getOpcode() != ISD::LOAD)
9064     return nullptr;
9065   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9066   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9067 }
9068 
9069 // Convert the argument APFloat to a single precision APFloat if there is no
9070 // loss in information during the conversion to single precision APFloat and the
9071 // resulting number is not a denormal number. Return true if successful.
9072 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9073   APFloat APFloatToConvert = ArgAPFloat;
9074   bool LosesInfo = true;
9075   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9076                            &LosesInfo);
9077   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9078   if (Success)
9079     ArgAPFloat = APFloatToConvert;
9080   return Success;
9081 }
9082 
9083 // Bitcast the argument APInt to a double and convert it to a single precision
9084 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9085 // argument if there is no loss in information during the conversion from
9086 // double to single precision APFloat and the resulting number is not a denormal
9087 // number. Return true if successful.
9088 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9089   double DpValue = ArgAPInt.bitsToDouble();
9090   APFloat APFloatDp(DpValue);
9091   bool Success = convertToNonDenormSingle(APFloatDp);
9092   if (Success)
9093     ArgAPInt = APFloatDp.bitcastToAPInt();
9094   return Success;
9095 }
9096 
9097 // If this is a case we can't handle, return null and let the default
9098 // expansion code take care of it.  If we CAN select this case, and if it
9099 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9100 // this case more efficiently than a constant pool load, lower it to the
9101 // sequence of ops that should be used.
9102 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9103                                              SelectionDAG &DAG) const {
9104   SDLoc dl(Op);
9105   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9106   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9107 
9108   // Check if this is a splat of a constant value.
9109   APInt APSplatBits, APSplatUndef;
9110   unsigned SplatBitSize;
9111   bool HasAnyUndefs;
9112   bool BVNIsConstantSplat =
9113       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9114                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9115 
9116   // If it is a splat of a double, check if we can shrink it to a 32 bit
9117   // non-denormal float which when converted back to double gives us the same
9118   // double. This is to exploit the XXSPLTIDP instruction.
9119   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9120       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9121       convertToNonDenormSingle(APSplatBits)) {
9122     SDValue SplatNode = DAG.getNode(
9123         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9124         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9125     return DAG.getBitcast(Op.getValueType(), SplatNode);
9126   }
9127 
9128   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9129 
9130     bool IsPermutedLoad = false;
9131     const SDValue *InputLoad =
9132         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9133     // Handle load-and-splat patterns as we have instructions that will do this
9134     // in one go.
9135     if (InputLoad && DAG.isSplatValue(Op, true)) {
9136       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9137 
9138       // We have handling for 4 and 8 byte elements.
9139       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9140 
9141       // Checking for a single use of this load, we have to check for vector
9142       // width (128 bits) / ElementSize uses (since each operand of the
9143       // BUILD_VECTOR is a separate use of the value.
9144       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9145           ((Subtarget.hasVSX() && ElementSize == 64) ||
9146            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9147         SDValue Ops[] = {
9148           LD->getChain(),    // Chain
9149           LD->getBasePtr(),  // Ptr
9150           DAG.getValueType(Op.getValueType()) // VT
9151         };
9152         return
9153           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9154                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9155                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9156       }
9157     }
9158 
9159     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9160     // lowered to VSX instructions under certain conditions.
9161     // Without VSX, there is no pattern more efficient than expanding the node.
9162     if (Subtarget.hasVSX() &&
9163         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9164                                         Subtarget.hasP8Vector()))
9165       return Op;
9166     return SDValue();
9167   }
9168 
9169   uint64_t SplatBits = APSplatBits.getZExtValue();
9170   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9171   unsigned SplatSize = SplatBitSize / 8;
9172 
9173   // First, handle single instruction cases.
9174 
9175   // All zeros?
9176   if (SplatBits == 0) {
9177     // Canonicalize all zero vectors to be v4i32.
9178     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9179       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9180       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9181     }
9182     return Op;
9183   }
9184 
9185   // We have XXSPLTIW for constant splats four bytes wide.
9186   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9187   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9188   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9189   // turned into a 4-byte splat of 0xABABABAB.
9190   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9191     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9192                                   Op.getValueType(), DAG, dl);
9193 
9194   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9195     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9196                                   dl);
9197 
9198   // We have XXSPLTIB for constant splats one byte wide.
9199   if (Subtarget.hasP9Vector() && SplatSize == 1)
9200     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9201                                   dl);
9202 
9203   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9204   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9205                     (32-SplatBitSize));
9206   if (SextVal >= -16 && SextVal <= 15)
9207     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9208                                   dl);
9209 
9210   // Two instruction sequences.
9211 
9212   // If this value is in the range [-32,30] and is even, use:
9213   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9214   // If this value is in the range [17,31] and is odd, use:
9215   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9216   // If this value is in the range [-31,-17] and is odd, use:
9217   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9218   // Note the last two are three-instruction sequences.
9219   if (SextVal >= -32 && SextVal <= 31) {
9220     // To avoid having these optimizations undone by constant folding,
9221     // we convert to a pseudo that will be expanded later into one of
9222     // the above forms.
9223     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9224     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9225               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9226     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9227     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9228     if (VT == Op.getValueType())
9229       return RetVal;
9230     else
9231       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9232   }
9233 
9234   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9235   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9236   // for fneg/fabs.
9237   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9238     // Make -1 and vspltisw -1:
9239     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9240 
9241     // Make the VSLW intrinsic, computing 0x8000_0000.
9242     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9243                                    OnesV, DAG, dl);
9244 
9245     // xor by OnesV to invert it.
9246     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9247     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9248   }
9249 
9250   // Check to see if this is a wide variety of vsplti*, binop self cases.
9251   static const signed char SplatCsts[] = {
9252     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9253     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9254   };
9255 
9256   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9257     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9258     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9259     int i = SplatCsts[idx];
9260 
9261     // Figure out what shift amount will be used by altivec if shifted by i in
9262     // this splat size.
9263     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9264 
9265     // vsplti + shl self.
9266     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9267       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9268       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9269         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9270         Intrinsic::ppc_altivec_vslw
9271       };
9272       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9273       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9274     }
9275 
9276     // vsplti + srl self.
9277     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9278       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9279       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9280         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9281         Intrinsic::ppc_altivec_vsrw
9282       };
9283       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9284       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9285     }
9286 
9287     // vsplti + sra self.
9288     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9289       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9290       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9291         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9292         Intrinsic::ppc_altivec_vsraw
9293       };
9294       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9295       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9296     }
9297 
9298     // vsplti + rol self.
9299     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9300                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9301       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9302       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9303         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9304         Intrinsic::ppc_altivec_vrlw
9305       };
9306       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9307       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9308     }
9309 
9310     // t = vsplti c, result = vsldoi t, t, 1
9311     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9312       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9313       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9314       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9315     }
9316     // t = vsplti c, result = vsldoi t, t, 2
9317     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9318       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9319       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9320       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9321     }
9322     // t = vsplti c, result = vsldoi t, t, 3
9323     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9324       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9325       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9326       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9327     }
9328   }
9329 
9330   return SDValue();
9331 }
9332 
9333 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9334 /// the specified operations to build the shuffle.
9335 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9336                                       SDValue RHS, SelectionDAG &DAG,
9337                                       const SDLoc &dl) {
9338   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9339   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9340   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9341 
9342   enum {
9343     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9344     OP_VMRGHW,
9345     OP_VMRGLW,
9346     OP_VSPLTISW0,
9347     OP_VSPLTISW1,
9348     OP_VSPLTISW2,
9349     OP_VSPLTISW3,
9350     OP_VSLDOI4,
9351     OP_VSLDOI8,
9352     OP_VSLDOI12
9353   };
9354 
9355   if (OpNum == OP_COPY) {
9356     if (LHSID == (1*9+2)*9+3) return LHS;
9357     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9358     return RHS;
9359   }
9360 
9361   SDValue OpLHS, OpRHS;
9362   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9363   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9364 
9365   int ShufIdxs[16];
9366   switch (OpNum) {
9367   default: llvm_unreachable("Unknown i32 permute!");
9368   case OP_VMRGHW:
9369     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9370     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9371     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9372     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9373     break;
9374   case OP_VMRGLW:
9375     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9376     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9377     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9378     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9379     break;
9380   case OP_VSPLTISW0:
9381     for (unsigned i = 0; i != 16; ++i)
9382       ShufIdxs[i] = (i&3)+0;
9383     break;
9384   case OP_VSPLTISW1:
9385     for (unsigned i = 0; i != 16; ++i)
9386       ShufIdxs[i] = (i&3)+4;
9387     break;
9388   case OP_VSPLTISW2:
9389     for (unsigned i = 0; i != 16; ++i)
9390       ShufIdxs[i] = (i&3)+8;
9391     break;
9392   case OP_VSPLTISW3:
9393     for (unsigned i = 0; i != 16; ++i)
9394       ShufIdxs[i] = (i&3)+12;
9395     break;
9396   case OP_VSLDOI4:
9397     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9398   case OP_VSLDOI8:
9399     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9400   case OP_VSLDOI12:
9401     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9402   }
9403   EVT VT = OpLHS.getValueType();
9404   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9405   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9406   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9407   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9408 }
9409 
9410 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9411 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9412 /// SDValue.
9413 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9414                                            SelectionDAG &DAG) const {
9415   const unsigned BytesInVector = 16;
9416   bool IsLE = Subtarget.isLittleEndian();
9417   SDLoc dl(N);
9418   SDValue V1 = N->getOperand(0);
9419   SDValue V2 = N->getOperand(1);
9420   unsigned ShiftElts = 0, InsertAtByte = 0;
9421   bool Swap = false;
9422 
9423   // Shifts required to get the byte we want at element 7.
9424   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9425                                    0, 15, 14, 13, 12, 11, 10, 9};
9426   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9427                                 1, 2,  3,  4,  5,  6,  7,  8};
9428 
9429   ArrayRef<int> Mask = N->getMask();
9430   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9431 
9432   // For each mask element, find out if we're just inserting something
9433   // from V2 into V1 or vice versa.
9434   // Possible permutations inserting an element from V2 into V1:
9435   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9436   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9437   //   ...
9438   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9439   // Inserting from V1 into V2 will be similar, except mask range will be
9440   // [16,31].
9441 
9442   bool FoundCandidate = false;
9443   // If both vector operands for the shuffle are the same vector, the mask
9444   // will contain only elements from the first one and the second one will be
9445   // undef.
9446   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9447   // Go through the mask of half-words to find an element that's being moved
9448   // from one vector to the other.
9449   for (unsigned i = 0; i < BytesInVector; ++i) {
9450     unsigned CurrentElement = Mask[i];
9451     // If 2nd operand is undefined, we should only look for element 7 in the
9452     // Mask.
9453     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9454       continue;
9455 
9456     bool OtherElementsInOrder = true;
9457     // Examine the other elements in the Mask to see if they're in original
9458     // order.
9459     for (unsigned j = 0; j < BytesInVector; ++j) {
9460       if (j == i)
9461         continue;
9462       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9463       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9464       // in which we always assume we're always picking from the 1st operand.
9465       int MaskOffset =
9466           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9467       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9468         OtherElementsInOrder = false;
9469         break;
9470       }
9471     }
9472     // If other elements are in original order, we record the number of shifts
9473     // we need to get the element we want into element 7. Also record which byte
9474     // in the vector we should insert into.
9475     if (OtherElementsInOrder) {
9476       // If 2nd operand is undefined, we assume no shifts and no swapping.
9477       if (V2.isUndef()) {
9478         ShiftElts = 0;
9479         Swap = false;
9480       } else {
9481         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9482         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9483                          : BigEndianShifts[CurrentElement & 0xF];
9484         Swap = CurrentElement < BytesInVector;
9485       }
9486       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9487       FoundCandidate = true;
9488       break;
9489     }
9490   }
9491 
9492   if (!FoundCandidate)
9493     return SDValue();
9494 
9495   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9496   // optionally with VECSHL if shift is required.
9497   if (Swap)
9498     std::swap(V1, V2);
9499   if (V2.isUndef())
9500     V2 = V1;
9501   if (ShiftElts) {
9502     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9503                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9504     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9505                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9506   }
9507   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9508                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9509 }
9510 
9511 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9512 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9513 /// SDValue.
9514 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9515                                            SelectionDAG &DAG) const {
9516   const unsigned NumHalfWords = 8;
9517   const unsigned BytesInVector = NumHalfWords * 2;
9518   // Check that the shuffle is on half-words.
9519   if (!isNByteElemShuffleMask(N, 2, 1))
9520     return SDValue();
9521 
9522   bool IsLE = Subtarget.isLittleEndian();
9523   SDLoc dl(N);
9524   SDValue V1 = N->getOperand(0);
9525   SDValue V2 = N->getOperand(1);
9526   unsigned ShiftElts = 0, InsertAtByte = 0;
9527   bool Swap = false;
9528 
9529   // Shifts required to get the half-word we want at element 3.
9530   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9531   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9532 
9533   uint32_t Mask = 0;
9534   uint32_t OriginalOrderLow = 0x1234567;
9535   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9536   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9537   // 32-bit space, only need 4-bit nibbles per element.
9538   for (unsigned i = 0; i < NumHalfWords; ++i) {
9539     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9540     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9541   }
9542 
9543   // For each mask element, find out if we're just inserting something
9544   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9545   // from V2 into V1:
9546   //   X, 1, 2, 3, 4, 5, 6, 7
9547   //   0, X, 2, 3, 4, 5, 6, 7
9548   //   0, 1, X, 3, 4, 5, 6, 7
9549   //   0, 1, 2, X, 4, 5, 6, 7
9550   //   0, 1, 2, 3, X, 5, 6, 7
9551   //   0, 1, 2, 3, 4, X, 6, 7
9552   //   0, 1, 2, 3, 4, 5, X, 7
9553   //   0, 1, 2, 3, 4, 5, 6, X
9554   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9555 
9556   bool FoundCandidate = false;
9557   // Go through the mask of half-words to find an element that's being moved
9558   // from one vector to the other.
9559   for (unsigned i = 0; i < NumHalfWords; ++i) {
9560     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9561     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9562     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9563     uint32_t TargetOrder = 0x0;
9564 
9565     // If both vector operands for the shuffle are the same vector, the mask
9566     // will contain only elements from the first one and the second one will be
9567     // undef.
9568     if (V2.isUndef()) {
9569       ShiftElts = 0;
9570       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9571       TargetOrder = OriginalOrderLow;
9572       Swap = false;
9573       // Skip if not the correct element or mask of other elements don't equal
9574       // to our expected order.
9575       if (MaskOneElt == VINSERTHSrcElem &&
9576           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9577         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9578         FoundCandidate = true;
9579         break;
9580       }
9581     } else { // If both operands are defined.
9582       // Target order is [8,15] if the current mask is between [0,7].
9583       TargetOrder =
9584           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9585       // Skip if mask of other elements don't equal our expected order.
9586       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9587         // We only need the last 3 bits for the number of shifts.
9588         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9589                          : BigEndianShifts[MaskOneElt & 0x7];
9590         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9591         Swap = MaskOneElt < NumHalfWords;
9592         FoundCandidate = true;
9593         break;
9594       }
9595     }
9596   }
9597 
9598   if (!FoundCandidate)
9599     return SDValue();
9600 
9601   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9602   // optionally with VECSHL if shift is required.
9603   if (Swap)
9604     std::swap(V1, V2);
9605   if (V2.isUndef())
9606     V2 = V1;
9607   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9608   if (ShiftElts) {
9609     // Double ShiftElts because we're left shifting on v16i8 type.
9610     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9611                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9612     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9613     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9614                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9615     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9616   }
9617   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9618   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9619                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9620   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9621 }
9622 
9623 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9624 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9625 /// return the default SDValue.
9626 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9627                                               SelectionDAG &DAG) const {
9628   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9629   // to v16i8. Peek through the bitcasts to get the actual operands.
9630   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9631   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9632 
9633   auto ShuffleMask = SVN->getMask();
9634   SDValue VecShuffle(SVN, 0);
9635   SDLoc DL(SVN);
9636 
9637   // Check that we have a four byte shuffle.
9638   if (!isNByteElemShuffleMask(SVN, 4, 1))
9639     return SDValue();
9640 
9641   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9642   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9643     std::swap(LHS, RHS);
9644     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9645     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9646   }
9647 
9648   // Ensure that the RHS is a vector of constants.
9649   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9650   if (!BVN)
9651     return SDValue();
9652 
9653   // Check if RHS is a splat of 4-bytes (or smaller).
9654   APInt APSplatValue, APSplatUndef;
9655   unsigned SplatBitSize;
9656   bool HasAnyUndefs;
9657   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9658                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9659       SplatBitSize > 32)
9660     return SDValue();
9661 
9662   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9663   // The instruction splats a constant C into two words of the source vector
9664   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9665   // Thus we check that the shuffle mask is the equivalent  of
9666   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9667   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9668   // within each word are consecutive, so we only need to check the first byte.
9669   SDValue Index;
9670   bool IsLE = Subtarget.isLittleEndian();
9671   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9672       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9673        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9674     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9675   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9676            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9677             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9678     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9679   else
9680     return SDValue();
9681 
9682   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9683   // for XXSPLTI32DX.
9684   unsigned SplatVal = APSplatValue.getZExtValue();
9685   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9686     SplatVal |= (SplatVal << SplatBitSize);
9687 
9688   SDValue SplatNode = DAG.getNode(
9689       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9690       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9691   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9692 }
9693 
9694 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9695 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9696 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9697 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9698 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9699   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9700   assert(Op.getValueType() == MVT::v1i128 &&
9701          "Only set v1i128 as custom, other type shouldn't reach here!");
9702   SDLoc dl(Op);
9703   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9704   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9705   unsigned SHLAmt = N1.getConstantOperandVal(0);
9706   if (SHLAmt % 8 == 0) {
9707     SmallVector<int, 16> Mask(16, 0);
9708     std::iota(Mask.begin(), Mask.end(), 0);
9709     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9710     if (SDValue Shuffle =
9711             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9712                                  DAG.getUNDEF(MVT::v16i8), Mask))
9713       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9714   }
9715   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9716   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9717                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9718   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9719                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9720   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9721   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9722 }
9723 
9724 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9725 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9726 /// return the code it can be lowered into.  Worst case, it can always be
9727 /// lowered into a vperm.
9728 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9729                                                SelectionDAG &DAG) const {
9730   SDLoc dl(Op);
9731   SDValue V1 = Op.getOperand(0);
9732   SDValue V2 = Op.getOperand(1);
9733   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9734 
9735   // Any nodes that were combined in the target-independent combiner prior
9736   // to vector legalization will not be sent to the target combine. Try to
9737   // combine it here.
9738   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9739     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9740       return NewShuffle;
9741     Op = NewShuffle;
9742     SVOp = cast<ShuffleVectorSDNode>(Op);
9743     V1 = Op.getOperand(0);
9744     V2 = Op.getOperand(1);
9745   }
9746   EVT VT = Op.getValueType();
9747   bool isLittleEndian = Subtarget.isLittleEndian();
9748 
9749   unsigned ShiftElts, InsertAtByte;
9750   bool Swap = false;
9751 
9752   // If this is a load-and-splat, we can do that with a single instruction
9753   // in some cases. However if the load has multiple uses, we don't want to
9754   // combine it because that will just produce multiple loads.
9755   bool IsPermutedLoad = false;
9756   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9757   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9758       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9759       InputLoad->hasOneUse()) {
9760     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9761     int SplatIdx =
9762       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9763 
9764     // The splat index for permuted loads will be in the left half of the vector
9765     // which is strictly wider than the loaded value by 8 bytes. So we need to
9766     // adjust the splat index to point to the correct address in memory.
9767     if (IsPermutedLoad) {
9768       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9769       SplatIdx += IsFourByte ? 2 : 1;
9770       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9771              "Splat of a value outside of the loaded memory");
9772     }
9773 
9774     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9775     // For 4-byte load-and-splat, we need Power9.
9776     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9777       uint64_t Offset = 0;
9778       if (IsFourByte)
9779         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9780       else
9781         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9782 
9783       SDValue BasePtr = LD->getBasePtr();
9784       if (Offset != 0)
9785         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9786                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9787       SDValue Ops[] = {
9788         LD->getChain(),    // Chain
9789         BasePtr,           // BasePtr
9790         DAG.getValueType(Op.getValueType()) // VT
9791       };
9792       SDVTList VTL =
9793         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9794       SDValue LdSplt =
9795         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9796                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9797       if (LdSplt.getValueType() != SVOp->getValueType(0))
9798         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9799       return LdSplt;
9800     }
9801   }
9802   if (Subtarget.hasP9Vector() &&
9803       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9804                            isLittleEndian)) {
9805     if (Swap)
9806       std::swap(V1, V2);
9807     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9808     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9809     if (ShiftElts) {
9810       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9811                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9812       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9813                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9814       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9815     }
9816     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9817                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9818     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9819   }
9820 
9821   if (Subtarget.hasPrefixInstrs()) {
9822     SDValue SplatInsertNode;
9823     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9824       return SplatInsertNode;
9825   }
9826 
9827   if (Subtarget.hasP9Altivec()) {
9828     SDValue NewISDNode;
9829     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9830       return NewISDNode;
9831 
9832     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9833       return NewISDNode;
9834   }
9835 
9836   if (Subtarget.hasVSX() &&
9837       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9838     if (Swap)
9839       std::swap(V1, V2);
9840     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9841     SDValue Conv2 =
9842         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9843 
9844     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9845                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9846     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9847   }
9848 
9849   if (Subtarget.hasVSX() &&
9850     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9851     if (Swap)
9852       std::swap(V1, V2);
9853     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9854     SDValue Conv2 =
9855         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9856 
9857     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9858                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9859     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9860   }
9861 
9862   if (Subtarget.hasP9Vector()) {
9863      if (PPC::isXXBRHShuffleMask(SVOp)) {
9864       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9865       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9866       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9867     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9868       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9869       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9870       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9871     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9872       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9873       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9874       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9875     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9876       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9877       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9878       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9879     }
9880   }
9881 
9882   if (Subtarget.hasVSX()) {
9883     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9884       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9885 
9886       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9887       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9888                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9889       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9890     }
9891 
9892     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9893     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9894       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9895       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9896       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9897     }
9898   }
9899 
9900   // Cases that are handled by instructions that take permute immediates
9901   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9902   // selected by the instruction selector.
9903   if (V2.isUndef()) {
9904     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9905         PPC::isSplatShuffleMask(SVOp, 2) ||
9906         PPC::isSplatShuffleMask(SVOp, 4) ||
9907         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9908         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9909         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9910         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9911         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9912         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9913         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9914         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9915         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9916         (Subtarget.hasP8Altivec() && (
9917          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9918          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9919          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9920       return Op;
9921     }
9922   }
9923 
9924   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9925   // and produce a fixed permutation.  If any of these match, do not lower to
9926   // VPERM.
9927   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9928   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9929       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9930       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9931       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9932       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9933       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9934       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9935       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9936       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9937       (Subtarget.hasP8Altivec() && (
9938        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9939        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9940        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9941     return Op;
9942 
9943   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9944   // perfect shuffle table to emit an optimal matching sequence.
9945   ArrayRef<int> PermMask = SVOp->getMask();
9946 
9947   unsigned PFIndexes[4];
9948   bool isFourElementShuffle = true;
9949   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9950     unsigned EltNo = 8;   // Start out undef.
9951     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9952       if (PermMask[i*4+j] < 0)
9953         continue;   // Undef, ignore it.
9954 
9955       unsigned ByteSource = PermMask[i*4+j];
9956       if ((ByteSource & 3) != j) {
9957         isFourElementShuffle = false;
9958         break;
9959       }
9960 
9961       if (EltNo == 8) {
9962         EltNo = ByteSource/4;
9963       } else if (EltNo != ByteSource/4) {
9964         isFourElementShuffle = false;
9965         break;
9966       }
9967     }
9968     PFIndexes[i] = EltNo;
9969   }
9970 
9971   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9972   // perfect shuffle vector to determine if it is cost effective to do this as
9973   // discrete instructions, or whether we should use a vperm.
9974   // For now, we skip this for little endian until such time as we have a
9975   // little-endian perfect shuffle table.
9976   if (isFourElementShuffle && !isLittleEndian) {
9977     // Compute the index in the perfect shuffle table.
9978     unsigned PFTableIndex =
9979       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9980 
9981     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9982     unsigned Cost  = (PFEntry >> 30);
9983 
9984     // Determining when to avoid vperm is tricky.  Many things affect the cost
9985     // of vperm, particularly how many times the perm mask needs to be computed.
9986     // For example, if the perm mask can be hoisted out of a loop or is already
9987     // used (perhaps because there are multiple permutes with the same shuffle
9988     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9989     // the loop requires an extra register.
9990     //
9991     // As a compromise, we only emit discrete instructions if the shuffle can be
9992     // generated in 3 or fewer operations.  When we have loop information
9993     // available, if this block is within a loop, we should avoid using vperm
9994     // for 3-operation perms and use a constant pool load instead.
9995     if (Cost < 3)
9996       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9997   }
9998 
9999   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10000   // vector that will get spilled to the constant pool.
10001   if (V2.isUndef()) V2 = V1;
10002 
10003   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10004   // that it is in input element units, not in bytes.  Convert now.
10005 
10006   // For little endian, the order of the input vectors is reversed, and
10007   // the permutation mask is complemented with respect to 31.  This is
10008   // necessary to produce proper semantics with the big-endian-biased vperm
10009   // instruction.
10010   EVT EltVT = V1.getValueType().getVectorElementType();
10011   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10012 
10013   SmallVector<SDValue, 16> ResultMask;
10014   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10015     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10016 
10017     for (unsigned j = 0; j != BytesPerElement; ++j)
10018       if (isLittleEndian)
10019         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10020                                              dl, MVT::i32));
10021       else
10022         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10023                                              MVT::i32));
10024   }
10025 
10026   ShufflesHandledWithVPERM++;
10027   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10028   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10029   LLVM_DEBUG(SVOp->dump());
10030   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10031   LLVM_DEBUG(VPermMask.dump());
10032 
10033   if (isLittleEndian)
10034     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10035                        V2, V1, VPermMask);
10036   else
10037     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10038                        V1, V2, VPermMask);
10039 }
10040 
10041 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10042 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10043 /// information about the intrinsic.
10044 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10045                                  bool &isDot, const PPCSubtarget &Subtarget) {
10046   unsigned IntrinsicID =
10047       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10048   CompareOpc = -1;
10049   isDot = false;
10050   switch (IntrinsicID) {
10051   default:
10052     return false;
10053   // Comparison predicates.
10054   case Intrinsic::ppc_altivec_vcmpbfp_p:
10055     CompareOpc = 966;
10056     isDot = true;
10057     break;
10058   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10059     CompareOpc = 198;
10060     isDot = true;
10061     break;
10062   case Intrinsic::ppc_altivec_vcmpequb_p:
10063     CompareOpc = 6;
10064     isDot = true;
10065     break;
10066   case Intrinsic::ppc_altivec_vcmpequh_p:
10067     CompareOpc = 70;
10068     isDot = true;
10069     break;
10070   case Intrinsic::ppc_altivec_vcmpequw_p:
10071     CompareOpc = 134;
10072     isDot = true;
10073     break;
10074   case Intrinsic::ppc_altivec_vcmpequd_p:
10075     if (Subtarget.hasP8Altivec()) {
10076       CompareOpc = 199;
10077       isDot = true;
10078     } else
10079       return false;
10080     break;
10081   case Intrinsic::ppc_altivec_vcmpneb_p:
10082   case Intrinsic::ppc_altivec_vcmpneh_p:
10083   case Intrinsic::ppc_altivec_vcmpnew_p:
10084   case Intrinsic::ppc_altivec_vcmpnezb_p:
10085   case Intrinsic::ppc_altivec_vcmpnezh_p:
10086   case Intrinsic::ppc_altivec_vcmpnezw_p:
10087     if (Subtarget.hasP9Altivec()) {
10088       switch (IntrinsicID) {
10089       default:
10090         llvm_unreachable("Unknown comparison intrinsic.");
10091       case Intrinsic::ppc_altivec_vcmpneb_p:
10092         CompareOpc = 7;
10093         break;
10094       case Intrinsic::ppc_altivec_vcmpneh_p:
10095         CompareOpc = 71;
10096         break;
10097       case Intrinsic::ppc_altivec_vcmpnew_p:
10098         CompareOpc = 135;
10099         break;
10100       case Intrinsic::ppc_altivec_vcmpnezb_p:
10101         CompareOpc = 263;
10102         break;
10103       case Intrinsic::ppc_altivec_vcmpnezh_p:
10104         CompareOpc = 327;
10105         break;
10106       case Intrinsic::ppc_altivec_vcmpnezw_p:
10107         CompareOpc = 391;
10108         break;
10109       }
10110       isDot = true;
10111     } else
10112       return false;
10113     break;
10114   case Intrinsic::ppc_altivec_vcmpgefp_p:
10115     CompareOpc = 454;
10116     isDot = true;
10117     break;
10118   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10119     CompareOpc = 710;
10120     isDot = true;
10121     break;
10122   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10123     CompareOpc = 774;
10124     isDot = true;
10125     break;
10126   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10127     CompareOpc = 838;
10128     isDot = true;
10129     break;
10130   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10131     CompareOpc = 902;
10132     isDot = true;
10133     break;
10134   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10135     if (Subtarget.hasP8Altivec()) {
10136       CompareOpc = 967;
10137       isDot = true;
10138     } else
10139       return false;
10140     break;
10141   case Intrinsic::ppc_altivec_vcmpgtub_p:
10142     CompareOpc = 518;
10143     isDot = true;
10144     break;
10145   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10146     CompareOpc = 582;
10147     isDot = true;
10148     break;
10149   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10150     CompareOpc = 646;
10151     isDot = true;
10152     break;
10153   case Intrinsic::ppc_altivec_vcmpgtud_p:
10154     if (Subtarget.hasP8Altivec()) {
10155       CompareOpc = 711;
10156       isDot = true;
10157     } else
10158       return false;
10159     break;
10160 
10161   // VSX predicate comparisons use the same infrastructure
10162   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10163   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10164   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10165   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10166   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10167   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10168     if (Subtarget.hasVSX()) {
10169       switch (IntrinsicID) {
10170       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10171         CompareOpc = 99;
10172         break;
10173       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10174         CompareOpc = 115;
10175         break;
10176       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10177         CompareOpc = 107;
10178         break;
10179       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10180         CompareOpc = 67;
10181         break;
10182       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10183         CompareOpc = 83;
10184         break;
10185       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10186         CompareOpc = 75;
10187         break;
10188       }
10189       isDot = true;
10190     } else
10191       return false;
10192     break;
10193 
10194   // Normal Comparisons.
10195   case Intrinsic::ppc_altivec_vcmpbfp:
10196     CompareOpc = 966;
10197     break;
10198   case Intrinsic::ppc_altivec_vcmpeqfp:
10199     CompareOpc = 198;
10200     break;
10201   case Intrinsic::ppc_altivec_vcmpequb:
10202     CompareOpc = 6;
10203     break;
10204   case Intrinsic::ppc_altivec_vcmpequh:
10205     CompareOpc = 70;
10206     break;
10207   case Intrinsic::ppc_altivec_vcmpequw:
10208     CompareOpc = 134;
10209     break;
10210   case Intrinsic::ppc_altivec_vcmpequd:
10211     if (Subtarget.hasP8Altivec())
10212       CompareOpc = 199;
10213     else
10214       return false;
10215     break;
10216   case Intrinsic::ppc_altivec_vcmpneb:
10217   case Intrinsic::ppc_altivec_vcmpneh:
10218   case Intrinsic::ppc_altivec_vcmpnew:
10219   case Intrinsic::ppc_altivec_vcmpnezb:
10220   case Intrinsic::ppc_altivec_vcmpnezh:
10221   case Intrinsic::ppc_altivec_vcmpnezw:
10222     if (Subtarget.hasP9Altivec())
10223       switch (IntrinsicID) {
10224       default:
10225         llvm_unreachable("Unknown comparison intrinsic.");
10226       case Intrinsic::ppc_altivec_vcmpneb:
10227         CompareOpc = 7;
10228         break;
10229       case Intrinsic::ppc_altivec_vcmpneh:
10230         CompareOpc = 71;
10231         break;
10232       case Intrinsic::ppc_altivec_vcmpnew:
10233         CompareOpc = 135;
10234         break;
10235       case Intrinsic::ppc_altivec_vcmpnezb:
10236         CompareOpc = 263;
10237         break;
10238       case Intrinsic::ppc_altivec_vcmpnezh:
10239         CompareOpc = 327;
10240         break;
10241       case Intrinsic::ppc_altivec_vcmpnezw:
10242         CompareOpc = 391;
10243         break;
10244       }
10245     else
10246       return false;
10247     break;
10248   case Intrinsic::ppc_altivec_vcmpgefp:
10249     CompareOpc = 454;
10250     break;
10251   case Intrinsic::ppc_altivec_vcmpgtfp:
10252     CompareOpc = 710;
10253     break;
10254   case Intrinsic::ppc_altivec_vcmpgtsb:
10255     CompareOpc = 774;
10256     break;
10257   case Intrinsic::ppc_altivec_vcmpgtsh:
10258     CompareOpc = 838;
10259     break;
10260   case Intrinsic::ppc_altivec_vcmpgtsw:
10261     CompareOpc = 902;
10262     break;
10263   case Intrinsic::ppc_altivec_vcmpgtsd:
10264     if (Subtarget.hasP8Altivec())
10265       CompareOpc = 967;
10266     else
10267       return false;
10268     break;
10269   case Intrinsic::ppc_altivec_vcmpgtub:
10270     CompareOpc = 518;
10271     break;
10272   case Intrinsic::ppc_altivec_vcmpgtuh:
10273     CompareOpc = 582;
10274     break;
10275   case Intrinsic::ppc_altivec_vcmpgtuw:
10276     CompareOpc = 646;
10277     break;
10278   case Intrinsic::ppc_altivec_vcmpgtud:
10279     if (Subtarget.hasP8Altivec())
10280       CompareOpc = 711;
10281     else
10282       return false;
10283     break;
10284   }
10285   return true;
10286 }
10287 
10288 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10289 /// lower, do it, otherwise return null.
10290 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10291                                                    SelectionDAG &DAG) const {
10292   unsigned IntrinsicID =
10293     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10294 
10295   SDLoc dl(Op);
10296 
10297   if (IntrinsicID == Intrinsic::thread_pointer) {
10298     // Reads the thread pointer register, used for __builtin_thread_pointer.
10299     if (Subtarget.isPPC64())
10300       return DAG.getRegister(PPC::X13, MVT::i64);
10301     return DAG.getRegister(PPC::R2, MVT::i32);
10302   }
10303 
10304   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10305   // opcode number of the comparison.
10306   int CompareOpc;
10307   bool isDot;
10308   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10309     return SDValue();    // Don't custom lower most intrinsics.
10310 
10311   // If this is a non-dot comparison, make the VCMP node and we are done.
10312   if (!isDot) {
10313     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10314                               Op.getOperand(1), Op.getOperand(2),
10315                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10316     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10317   }
10318 
10319   // Create the PPCISD altivec 'dot' comparison node.
10320   SDValue Ops[] = {
10321     Op.getOperand(2),  // LHS
10322     Op.getOperand(3),  // RHS
10323     DAG.getConstant(CompareOpc, dl, MVT::i32)
10324   };
10325   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10326   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10327 
10328   // Now that we have the comparison, emit a copy from the CR to a GPR.
10329   // This is flagged to the above dot comparison.
10330   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10331                                 DAG.getRegister(PPC::CR6, MVT::i32),
10332                                 CompNode.getValue(1));
10333 
10334   // Unpack the result based on how the target uses it.
10335   unsigned BitNo;   // Bit # of CR6.
10336   bool InvertBit;   // Invert result?
10337   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10338   default:  // Can't happen, don't crash on invalid number though.
10339   case 0:   // Return the value of the EQ bit of CR6.
10340     BitNo = 0; InvertBit = false;
10341     break;
10342   case 1:   // Return the inverted value of the EQ bit of CR6.
10343     BitNo = 0; InvertBit = true;
10344     break;
10345   case 2:   // Return the value of the LT bit of CR6.
10346     BitNo = 2; InvertBit = false;
10347     break;
10348   case 3:   // Return the inverted value of the LT bit of CR6.
10349     BitNo = 2; InvertBit = true;
10350     break;
10351   }
10352 
10353   // Shift the bit into the low position.
10354   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10355                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10356   // Isolate the bit.
10357   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10358                       DAG.getConstant(1, dl, MVT::i32));
10359 
10360   // If we are supposed to, toggle the bit.
10361   if (InvertBit)
10362     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10363                         DAG.getConstant(1, dl, MVT::i32));
10364   return Flags;
10365 }
10366 
10367 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10368                                                SelectionDAG &DAG) const {
10369   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10370   // the beginning of the argument list.
10371   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10372   SDLoc DL(Op);
10373   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10374   case Intrinsic::ppc_cfence: {
10375     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10376     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10377     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10378                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10379                                                   Op.getOperand(ArgStart + 1)),
10380                                       Op.getOperand(0)),
10381                    0);
10382   }
10383   default:
10384     break;
10385   }
10386   return SDValue();
10387 }
10388 
10389 // Lower scalar BSWAP64 to xxbrd.
10390 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10391   SDLoc dl(Op);
10392   // MTVSRDD
10393   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10394                    Op.getOperand(0));
10395   // XXBRD
10396   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10397   // MFVSRD
10398   int VectorIndex = 0;
10399   if (Subtarget.isLittleEndian())
10400     VectorIndex = 1;
10401   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10402                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10403   return Op;
10404 }
10405 
10406 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10407 // compared to a value that is atomically loaded (atomic loads zero-extend).
10408 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10409                                                 SelectionDAG &DAG) const {
10410   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10411          "Expecting an atomic compare-and-swap here.");
10412   SDLoc dl(Op);
10413   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10414   EVT MemVT = AtomicNode->getMemoryVT();
10415   if (MemVT.getSizeInBits() >= 32)
10416     return Op;
10417 
10418   SDValue CmpOp = Op.getOperand(2);
10419   // If this is already correctly zero-extended, leave it alone.
10420   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10421   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10422     return Op;
10423 
10424   // Clear the high bits of the compare operand.
10425   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10426   SDValue NewCmpOp =
10427     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10428                 DAG.getConstant(MaskVal, dl, MVT::i32));
10429 
10430   // Replace the existing compare operand with the properly zero-extended one.
10431   SmallVector<SDValue, 4> Ops;
10432   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10433     Ops.push_back(AtomicNode->getOperand(i));
10434   Ops[2] = NewCmpOp;
10435   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10436   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10437   auto NodeTy =
10438     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10439   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10440 }
10441 
10442 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10443                                                  SelectionDAG &DAG) const {
10444   SDLoc dl(Op);
10445   // Create a stack slot that is 16-byte aligned.
10446   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10447   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10448   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10449   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10450 
10451   // Store the input value into Value#0 of the stack slot.
10452   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10453                                MachinePointerInfo());
10454   // Load it out.
10455   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10456 }
10457 
10458 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10459                                                   SelectionDAG &DAG) const {
10460   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10461          "Should only be called for ISD::INSERT_VECTOR_ELT");
10462 
10463   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10464   // We have legal lowering for constant indices but not for variable ones.
10465   if (!C)
10466     return SDValue();
10467 
10468   EVT VT = Op.getValueType();
10469   SDLoc dl(Op);
10470   SDValue V1 = Op.getOperand(0);
10471   SDValue V2 = Op.getOperand(1);
10472   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10473   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10474     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10475     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10476     unsigned InsertAtElement = C->getZExtValue();
10477     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10478     if (Subtarget.isLittleEndian()) {
10479       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10480     }
10481     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10482                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10483   }
10484   return Op;
10485 }
10486 
10487 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10488   SDLoc dl(Op);
10489   if (Op.getValueType() == MVT::v4i32) {
10490     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10491 
10492     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10493     // +16 as shift amt.
10494     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10495     SDValue RHSSwap =   // = vrlw RHS, 16
10496       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10497 
10498     // Shrinkify inputs to v8i16.
10499     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10500     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10501     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10502 
10503     // Low parts multiplied together, generating 32-bit results (we ignore the
10504     // top parts).
10505     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10506                                         LHS, RHS, DAG, dl, MVT::v4i32);
10507 
10508     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10509                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10510     // Shift the high parts up 16 bits.
10511     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10512                               Neg16, DAG, dl);
10513     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10514   } else if (Op.getValueType() == MVT::v16i8) {
10515     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10516     bool isLittleEndian = Subtarget.isLittleEndian();
10517 
10518     // Multiply the even 8-bit parts, producing 16-bit sums.
10519     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10520                                            LHS, RHS, DAG, dl, MVT::v8i16);
10521     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10522 
10523     // Multiply the odd 8-bit parts, producing 16-bit sums.
10524     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10525                                           LHS, RHS, DAG, dl, MVT::v8i16);
10526     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10527 
10528     // Merge the results together.  Because vmuleub and vmuloub are
10529     // instructions with a big-endian bias, we must reverse the
10530     // element numbering and reverse the meaning of "odd" and "even"
10531     // when generating little endian code.
10532     int Ops[16];
10533     for (unsigned i = 0; i != 8; ++i) {
10534       if (isLittleEndian) {
10535         Ops[i*2  ] = 2*i;
10536         Ops[i*2+1] = 2*i+16;
10537       } else {
10538         Ops[i*2  ] = 2*i+1;
10539         Ops[i*2+1] = 2*i+1+16;
10540       }
10541     }
10542     if (isLittleEndian)
10543       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10544     else
10545       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10546   } else {
10547     llvm_unreachable("Unknown mul to lower!");
10548   }
10549 }
10550 
10551 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10552 
10553   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10554 
10555   EVT VT = Op.getValueType();
10556   assert(VT.isVector() &&
10557          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10558   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10559           VT == MVT::v16i8) &&
10560          "Unexpected vector element type!");
10561   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10562          "Current subtarget doesn't support smax v2i64!");
10563 
10564   // For vector abs, it can be lowered to:
10565   // abs x
10566   // ==>
10567   // y = -x
10568   // smax(x, y)
10569 
10570   SDLoc dl(Op);
10571   SDValue X = Op.getOperand(0);
10572   SDValue Zero = DAG.getConstant(0, dl, VT);
10573   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10574 
10575   // SMAX patch https://reviews.llvm.org/D47332
10576   // hasn't landed yet, so use intrinsic first here.
10577   // TODO: Should use SMAX directly once SMAX patch landed
10578   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10579   if (VT == MVT::v2i64)
10580     BifID = Intrinsic::ppc_altivec_vmaxsd;
10581   else if (VT == MVT::v8i16)
10582     BifID = Intrinsic::ppc_altivec_vmaxsh;
10583   else if (VT == MVT::v16i8)
10584     BifID = Intrinsic::ppc_altivec_vmaxsb;
10585 
10586   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10587 }
10588 
10589 // Custom lowering for fpext vf32 to v2f64
10590 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10591 
10592   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10593          "Should only be called for ISD::FP_EXTEND");
10594 
10595   // FIXME: handle extends from half precision float vectors on P9.
10596   // We only want to custom lower an extend from v2f32 to v2f64.
10597   if (Op.getValueType() != MVT::v2f64 ||
10598       Op.getOperand(0).getValueType() != MVT::v2f32)
10599     return SDValue();
10600 
10601   SDLoc dl(Op);
10602   SDValue Op0 = Op.getOperand(0);
10603 
10604   switch (Op0.getOpcode()) {
10605   default:
10606     return SDValue();
10607   case ISD::EXTRACT_SUBVECTOR: {
10608     assert(Op0.getNumOperands() == 2 &&
10609            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10610            "Node should have 2 operands with second one being a constant!");
10611 
10612     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10613       return SDValue();
10614 
10615     // Custom lower is only done for high or low doubleword.
10616     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10617     if (Idx % 2 != 0)
10618       return SDValue();
10619 
10620     // Since input is v4f32, at this point Idx is either 0 or 2.
10621     // Shift to get the doubleword position we want.
10622     int DWord = Idx >> 1;
10623 
10624     // High and low word positions are different on little endian.
10625     if (Subtarget.isLittleEndian())
10626       DWord ^= 0x1;
10627 
10628     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10629                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10630   }
10631   case ISD::FADD:
10632   case ISD::FMUL:
10633   case ISD::FSUB: {
10634     SDValue NewLoad[2];
10635     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10636       // Ensure both input are loads.
10637       SDValue LdOp = Op0.getOperand(i);
10638       if (LdOp.getOpcode() != ISD::LOAD)
10639         return SDValue();
10640       // Generate new load node.
10641       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10642       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10643       NewLoad[i] = DAG.getMemIntrinsicNode(
10644           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10645           LD->getMemoryVT(), LD->getMemOperand());
10646     }
10647     SDValue NewOp =
10648         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10649                     NewLoad[1], Op0.getNode()->getFlags());
10650     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10651                        DAG.getConstant(0, dl, MVT::i32));
10652   }
10653   case ISD::LOAD: {
10654     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10655     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10656     SDValue NewLd = DAG.getMemIntrinsicNode(
10657         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10658         LD->getMemoryVT(), LD->getMemOperand());
10659     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10660                        DAG.getConstant(0, dl, MVT::i32));
10661   }
10662   }
10663   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10664 }
10665 
10666 /// LowerOperation - Provide custom lowering hooks for some operations.
10667 ///
10668 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10669   switch (Op.getOpcode()) {
10670   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10671   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10672   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10673   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10674   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10675   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10676   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10677   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10678   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10679 
10680   // Variable argument lowering.
10681   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10682   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10683   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10684 
10685   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10686   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10687   case ISD::GET_DYNAMIC_AREA_OFFSET:
10688     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10689 
10690   // Exception handling lowering.
10691   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10692   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10693   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10694 
10695   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10696   case ISD::STORE:              return LowerSTORE(Op, DAG);
10697   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10698   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10699   case ISD::STRICT_FP_TO_UINT:
10700   case ISD::STRICT_FP_TO_SINT:
10701   case ISD::FP_TO_UINT:
10702   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10703   case ISD::STRICT_UINT_TO_FP:
10704   case ISD::STRICT_SINT_TO_FP:
10705   case ISD::UINT_TO_FP:
10706   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10707   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10708 
10709   // Lower 64-bit shifts.
10710   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10711   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10712   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10713 
10714   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10715   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10716 
10717   // Vector-related lowering.
10718   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10719   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10720   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10721   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10722   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10723   case ISD::MUL:                return LowerMUL(Op, DAG);
10724   case ISD::ABS:                return LowerABS(Op, DAG);
10725   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10726   case ISD::ROTL:               return LowerROTL(Op, DAG);
10727 
10728   // For counter-based loop handling.
10729   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10730 
10731   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10732 
10733   // Frame & Return address.
10734   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10735   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10736 
10737   case ISD::INTRINSIC_VOID:
10738     return LowerINTRINSIC_VOID(Op, DAG);
10739   case ISD::BSWAP:
10740     return LowerBSWAP(Op, DAG);
10741   case ISD::ATOMIC_CMP_SWAP:
10742     return LowerATOMIC_CMP_SWAP(Op, DAG);
10743   }
10744 }
10745 
10746 void PPCTargetLowering::LowerOperationWrapper(SDNode *N,
10747                                               SmallVectorImpl<SDValue> &Results,
10748                                               SelectionDAG &DAG) const {
10749   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10750 
10751   if (!Res.getNode())
10752     return;
10753 
10754   // Take the return value as-is if original node has only one result.
10755   if (N->getNumValues() == 1) {
10756     Results.push_back(Res);
10757     return;
10758   }
10759 
10760   // New node should have the same number of results.
10761   assert((N->getNumValues() == Res->getNumValues()) &&
10762       "Lowering returned the wrong number of results!");
10763 
10764   for (unsigned i = 0; i < N->getNumValues(); ++i)
10765     Results.push_back(Res.getValue(i));
10766 }
10767 
10768 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10769                                            SmallVectorImpl<SDValue>&Results,
10770                                            SelectionDAG &DAG) const {
10771   SDLoc dl(N);
10772   switch (N->getOpcode()) {
10773   default:
10774     llvm_unreachable("Do not know how to custom type legalize this operation!");
10775   case ISD::READCYCLECOUNTER: {
10776     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10777     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10778 
10779     Results.push_back(
10780         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10781     Results.push_back(RTB.getValue(2));
10782     break;
10783   }
10784   case ISD::INTRINSIC_W_CHAIN: {
10785     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10786         Intrinsic::loop_decrement)
10787       break;
10788 
10789     assert(N->getValueType(0) == MVT::i1 &&
10790            "Unexpected result type for CTR decrement intrinsic");
10791     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10792                                  N->getValueType(0));
10793     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10794     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10795                                  N->getOperand(1));
10796 
10797     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10798     Results.push_back(NewInt.getValue(1));
10799     break;
10800   }
10801   case ISD::VAARG: {
10802     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10803       return;
10804 
10805     EVT VT = N->getValueType(0);
10806 
10807     if (VT == MVT::i64) {
10808       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10809 
10810       Results.push_back(NewNode);
10811       Results.push_back(NewNode.getValue(1));
10812     }
10813     return;
10814   }
10815   case ISD::STRICT_FP_TO_SINT:
10816   case ISD::STRICT_FP_TO_UINT:
10817   case ISD::FP_TO_SINT:
10818   case ISD::FP_TO_UINT:
10819     // LowerFP_TO_INT() can only handle f32 and f64.
10820     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10821         MVT::ppcf128)
10822       return;
10823     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10824     return;
10825   case ISD::TRUNCATE: {
10826     if (!N->getValueType(0).isVector())
10827       return;
10828     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10829     if (Lowered)
10830       Results.push_back(Lowered);
10831     return;
10832   }
10833   case ISD::BITCAST:
10834     // Don't handle bitcast here.
10835     return;
10836   case ISD::FP_EXTEND:
10837     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10838     if (Lowered)
10839       Results.push_back(Lowered);
10840     return;
10841   }
10842 }
10843 
10844 //===----------------------------------------------------------------------===//
10845 //  Other Lowering Code
10846 //===----------------------------------------------------------------------===//
10847 
10848 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10849   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10850   Function *Func = Intrinsic::getDeclaration(M, Id);
10851   return Builder.CreateCall(Func, {});
10852 }
10853 
10854 // The mappings for emitLeading/TrailingFence is taken from
10855 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10856 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10857                                                  Instruction *Inst,
10858                                                  AtomicOrdering Ord) const {
10859   if (Ord == AtomicOrdering::SequentiallyConsistent)
10860     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10861   if (isReleaseOrStronger(Ord))
10862     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10863   return nullptr;
10864 }
10865 
10866 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10867                                                   Instruction *Inst,
10868                                                   AtomicOrdering Ord) const {
10869   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10870     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10871     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10872     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10873     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10874       return Builder.CreateCall(
10875           Intrinsic::getDeclaration(
10876               Builder.GetInsertBlock()->getParent()->getParent(),
10877               Intrinsic::ppc_cfence, {Inst->getType()}),
10878           {Inst});
10879     // FIXME: Can use isync for rmw operation.
10880     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10881   }
10882   return nullptr;
10883 }
10884 
10885 MachineBasicBlock *
10886 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10887                                     unsigned AtomicSize,
10888                                     unsigned BinOpcode,
10889                                     unsigned CmpOpcode,
10890                                     unsigned CmpPred) const {
10891   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10892   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10893 
10894   auto LoadMnemonic = PPC::LDARX;
10895   auto StoreMnemonic = PPC::STDCX;
10896   switch (AtomicSize) {
10897   default:
10898     llvm_unreachable("Unexpected size of atomic entity");
10899   case 1:
10900     LoadMnemonic = PPC::LBARX;
10901     StoreMnemonic = PPC::STBCX;
10902     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10903     break;
10904   case 2:
10905     LoadMnemonic = PPC::LHARX;
10906     StoreMnemonic = PPC::STHCX;
10907     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10908     break;
10909   case 4:
10910     LoadMnemonic = PPC::LWARX;
10911     StoreMnemonic = PPC::STWCX;
10912     break;
10913   case 8:
10914     LoadMnemonic = PPC::LDARX;
10915     StoreMnemonic = PPC::STDCX;
10916     break;
10917   }
10918 
10919   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10920   MachineFunction *F = BB->getParent();
10921   MachineFunction::iterator It = ++BB->getIterator();
10922 
10923   Register dest = MI.getOperand(0).getReg();
10924   Register ptrA = MI.getOperand(1).getReg();
10925   Register ptrB = MI.getOperand(2).getReg();
10926   Register incr = MI.getOperand(3).getReg();
10927   DebugLoc dl = MI.getDebugLoc();
10928 
10929   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10930   MachineBasicBlock *loop2MBB =
10931     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10932   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10933   F->insert(It, loopMBB);
10934   if (CmpOpcode)
10935     F->insert(It, loop2MBB);
10936   F->insert(It, exitMBB);
10937   exitMBB->splice(exitMBB->begin(), BB,
10938                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10939   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10940 
10941   MachineRegisterInfo &RegInfo = F->getRegInfo();
10942   Register TmpReg = (!BinOpcode) ? incr :
10943     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10944                                            : &PPC::GPRCRegClass);
10945 
10946   //  thisMBB:
10947   //   ...
10948   //   fallthrough --> loopMBB
10949   BB->addSuccessor(loopMBB);
10950 
10951   //  loopMBB:
10952   //   l[wd]arx dest, ptr
10953   //   add r0, dest, incr
10954   //   st[wd]cx. r0, ptr
10955   //   bne- loopMBB
10956   //   fallthrough --> exitMBB
10957 
10958   // For max/min...
10959   //  loopMBB:
10960   //   l[wd]arx dest, ptr
10961   //   cmpl?[wd] incr, dest
10962   //   bgt exitMBB
10963   //  loop2MBB:
10964   //   st[wd]cx. dest, ptr
10965   //   bne- loopMBB
10966   //   fallthrough --> exitMBB
10967 
10968   BB = loopMBB;
10969   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10970     .addReg(ptrA).addReg(ptrB);
10971   if (BinOpcode)
10972     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10973   if (CmpOpcode) {
10974     // Signed comparisons of byte or halfword values must be sign-extended.
10975     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10976       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10977       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10978               ExtReg).addReg(dest);
10979       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10980         .addReg(incr).addReg(ExtReg);
10981     } else
10982       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10983         .addReg(incr).addReg(dest);
10984 
10985     BuildMI(BB, dl, TII->get(PPC::BCC))
10986       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10987     BB->addSuccessor(loop2MBB);
10988     BB->addSuccessor(exitMBB);
10989     BB = loop2MBB;
10990   }
10991   BuildMI(BB, dl, TII->get(StoreMnemonic))
10992     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10993   BuildMI(BB, dl, TII->get(PPC::BCC))
10994     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10995   BB->addSuccessor(loopMBB);
10996   BB->addSuccessor(exitMBB);
10997 
10998   //  exitMBB:
10999   //   ...
11000   BB = exitMBB;
11001   return BB;
11002 }
11003 
11004 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11005     MachineInstr &MI, MachineBasicBlock *BB,
11006     bool is8bit, // operation
11007     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11008   // If we support part-word atomic mnemonics, just use them
11009   if (Subtarget.hasPartwordAtomics())
11010     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11011                             CmpPred);
11012 
11013   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11014   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11015   // In 64 bit mode we have to use 64 bits for addresses, even though the
11016   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11017   // registers without caring whether they're 32 or 64, but here we're
11018   // doing actual arithmetic on the addresses.
11019   bool is64bit = Subtarget.isPPC64();
11020   bool isLittleEndian = Subtarget.isLittleEndian();
11021   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11022 
11023   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11024   MachineFunction *F = BB->getParent();
11025   MachineFunction::iterator It = ++BB->getIterator();
11026 
11027   Register dest = MI.getOperand(0).getReg();
11028   Register ptrA = MI.getOperand(1).getReg();
11029   Register ptrB = MI.getOperand(2).getReg();
11030   Register incr = MI.getOperand(3).getReg();
11031   DebugLoc dl = MI.getDebugLoc();
11032 
11033   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11034   MachineBasicBlock *loop2MBB =
11035       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11036   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11037   F->insert(It, loopMBB);
11038   if (CmpOpcode)
11039     F->insert(It, loop2MBB);
11040   F->insert(It, exitMBB);
11041   exitMBB->splice(exitMBB->begin(), BB,
11042                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11043   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11044 
11045   MachineRegisterInfo &RegInfo = F->getRegInfo();
11046   const TargetRegisterClass *RC =
11047       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11048   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11049 
11050   Register PtrReg = RegInfo.createVirtualRegister(RC);
11051   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11052   Register ShiftReg =
11053       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11054   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11055   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11056   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11057   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11058   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11059   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11060   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11061   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11062   Register Ptr1Reg;
11063   Register TmpReg =
11064       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11065 
11066   //  thisMBB:
11067   //   ...
11068   //   fallthrough --> loopMBB
11069   BB->addSuccessor(loopMBB);
11070 
11071   // The 4-byte load must be aligned, while a char or short may be
11072   // anywhere in the word.  Hence all this nasty bookkeeping code.
11073   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11074   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11075   //   xori shift, shift1, 24 [16]
11076   //   rlwinm ptr, ptr1, 0, 0, 29
11077   //   slw incr2, incr, shift
11078   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11079   //   slw mask, mask2, shift
11080   //  loopMBB:
11081   //   lwarx tmpDest, ptr
11082   //   add tmp, tmpDest, incr2
11083   //   andc tmp2, tmpDest, mask
11084   //   and tmp3, tmp, mask
11085   //   or tmp4, tmp3, tmp2
11086   //   stwcx. tmp4, ptr
11087   //   bne- loopMBB
11088   //   fallthrough --> exitMBB
11089   //   srw dest, tmpDest, shift
11090   if (ptrA != ZeroReg) {
11091     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11092     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11093         .addReg(ptrA)
11094         .addReg(ptrB);
11095   } else {
11096     Ptr1Reg = ptrB;
11097   }
11098   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11099   // mode.
11100   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11101       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11102       .addImm(3)
11103       .addImm(27)
11104       .addImm(is8bit ? 28 : 27);
11105   if (!isLittleEndian)
11106     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11107         .addReg(Shift1Reg)
11108         .addImm(is8bit ? 24 : 16);
11109   if (is64bit)
11110     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11111         .addReg(Ptr1Reg)
11112         .addImm(0)
11113         .addImm(61);
11114   else
11115     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11116         .addReg(Ptr1Reg)
11117         .addImm(0)
11118         .addImm(0)
11119         .addImm(29);
11120   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11121   if (is8bit)
11122     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11123   else {
11124     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11125     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11126         .addReg(Mask3Reg)
11127         .addImm(65535);
11128   }
11129   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11130       .addReg(Mask2Reg)
11131       .addReg(ShiftReg);
11132 
11133   BB = loopMBB;
11134   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11135       .addReg(ZeroReg)
11136       .addReg(PtrReg);
11137   if (BinOpcode)
11138     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11139         .addReg(Incr2Reg)
11140         .addReg(TmpDestReg);
11141   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11142       .addReg(TmpDestReg)
11143       .addReg(MaskReg);
11144   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11145   if (CmpOpcode) {
11146     // For unsigned comparisons, we can directly compare the shifted values.
11147     // For signed comparisons we shift and sign extend.
11148     Register SReg = RegInfo.createVirtualRegister(GPRC);
11149     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11150         .addReg(TmpDestReg)
11151         .addReg(MaskReg);
11152     unsigned ValueReg = SReg;
11153     unsigned CmpReg = Incr2Reg;
11154     if (CmpOpcode == PPC::CMPW) {
11155       ValueReg = RegInfo.createVirtualRegister(GPRC);
11156       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11157           .addReg(SReg)
11158           .addReg(ShiftReg);
11159       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11160       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11161           .addReg(ValueReg);
11162       ValueReg = ValueSReg;
11163       CmpReg = incr;
11164     }
11165     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11166         .addReg(CmpReg)
11167         .addReg(ValueReg);
11168     BuildMI(BB, dl, TII->get(PPC::BCC))
11169         .addImm(CmpPred)
11170         .addReg(PPC::CR0)
11171         .addMBB(exitMBB);
11172     BB->addSuccessor(loop2MBB);
11173     BB->addSuccessor(exitMBB);
11174     BB = loop2MBB;
11175   }
11176   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11177   BuildMI(BB, dl, TII->get(PPC::STWCX))
11178       .addReg(Tmp4Reg)
11179       .addReg(ZeroReg)
11180       .addReg(PtrReg);
11181   BuildMI(BB, dl, TII->get(PPC::BCC))
11182       .addImm(PPC::PRED_NE)
11183       .addReg(PPC::CR0)
11184       .addMBB(loopMBB);
11185   BB->addSuccessor(loopMBB);
11186   BB->addSuccessor(exitMBB);
11187 
11188   //  exitMBB:
11189   //   ...
11190   BB = exitMBB;
11191   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11192       .addReg(TmpDestReg)
11193       .addReg(ShiftReg);
11194   return BB;
11195 }
11196 
11197 llvm::MachineBasicBlock *
11198 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11199                                     MachineBasicBlock *MBB) const {
11200   DebugLoc DL = MI.getDebugLoc();
11201   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11202   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11203 
11204   MachineFunction *MF = MBB->getParent();
11205   MachineRegisterInfo &MRI = MF->getRegInfo();
11206 
11207   const BasicBlock *BB = MBB->getBasicBlock();
11208   MachineFunction::iterator I = ++MBB->getIterator();
11209 
11210   Register DstReg = MI.getOperand(0).getReg();
11211   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11212   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11213   Register mainDstReg = MRI.createVirtualRegister(RC);
11214   Register restoreDstReg = MRI.createVirtualRegister(RC);
11215 
11216   MVT PVT = getPointerTy(MF->getDataLayout());
11217   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11218          "Invalid Pointer Size!");
11219   // For v = setjmp(buf), we generate
11220   //
11221   // thisMBB:
11222   //  SjLjSetup mainMBB
11223   //  bl mainMBB
11224   //  v_restore = 1
11225   //  b sinkMBB
11226   //
11227   // mainMBB:
11228   //  buf[LabelOffset] = LR
11229   //  v_main = 0
11230   //
11231   // sinkMBB:
11232   //  v = phi(main, restore)
11233   //
11234 
11235   MachineBasicBlock *thisMBB = MBB;
11236   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11237   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11238   MF->insert(I, mainMBB);
11239   MF->insert(I, sinkMBB);
11240 
11241   MachineInstrBuilder MIB;
11242 
11243   // Transfer the remainder of BB and its successor edges to sinkMBB.
11244   sinkMBB->splice(sinkMBB->begin(), MBB,
11245                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11246   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11247 
11248   // Note that the structure of the jmp_buf used here is not compatible
11249   // with that used by libc, and is not designed to be. Specifically, it
11250   // stores only those 'reserved' registers that LLVM does not otherwise
11251   // understand how to spill. Also, by convention, by the time this
11252   // intrinsic is called, Clang has already stored the frame address in the
11253   // first slot of the buffer and stack address in the third. Following the
11254   // X86 target code, we'll store the jump address in the second slot. We also
11255   // need to save the TOC pointer (R2) to handle jumps between shared
11256   // libraries, and that will be stored in the fourth slot. The thread
11257   // identifier (R13) is not affected.
11258 
11259   // thisMBB:
11260   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11261   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11262   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11263 
11264   // Prepare IP either in reg.
11265   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11266   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11267   Register BufReg = MI.getOperand(1).getReg();
11268 
11269   if (Subtarget.is64BitELFABI()) {
11270     setUsesTOCBasePtr(*MBB->getParent());
11271     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11272               .addReg(PPC::X2)
11273               .addImm(TOCOffset)
11274               .addReg(BufReg)
11275               .cloneMemRefs(MI);
11276   }
11277 
11278   // Naked functions never have a base pointer, and so we use r1. For all
11279   // other functions, this decision must be delayed until during PEI.
11280   unsigned BaseReg;
11281   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11282     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11283   else
11284     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11285 
11286   MIB = BuildMI(*thisMBB, MI, DL,
11287                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11288             .addReg(BaseReg)
11289             .addImm(BPOffset)
11290             .addReg(BufReg)
11291             .cloneMemRefs(MI);
11292 
11293   // Setup
11294   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11295   MIB.addRegMask(TRI->getNoPreservedMask());
11296 
11297   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11298 
11299   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11300           .addMBB(mainMBB);
11301   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11302 
11303   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11304   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11305 
11306   // mainMBB:
11307   //  mainDstReg = 0
11308   MIB =
11309       BuildMI(mainMBB, DL,
11310               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11311 
11312   // Store IP
11313   if (Subtarget.isPPC64()) {
11314     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11315             .addReg(LabelReg)
11316             .addImm(LabelOffset)
11317             .addReg(BufReg);
11318   } else {
11319     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11320             .addReg(LabelReg)
11321             .addImm(LabelOffset)
11322             .addReg(BufReg);
11323   }
11324   MIB.cloneMemRefs(MI);
11325 
11326   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11327   mainMBB->addSuccessor(sinkMBB);
11328 
11329   // sinkMBB:
11330   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11331           TII->get(PPC::PHI), DstReg)
11332     .addReg(mainDstReg).addMBB(mainMBB)
11333     .addReg(restoreDstReg).addMBB(thisMBB);
11334 
11335   MI.eraseFromParent();
11336   return sinkMBB;
11337 }
11338 
11339 MachineBasicBlock *
11340 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11341                                      MachineBasicBlock *MBB) const {
11342   DebugLoc DL = MI.getDebugLoc();
11343   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11344 
11345   MachineFunction *MF = MBB->getParent();
11346   MachineRegisterInfo &MRI = MF->getRegInfo();
11347 
11348   MVT PVT = getPointerTy(MF->getDataLayout());
11349   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11350          "Invalid Pointer Size!");
11351 
11352   const TargetRegisterClass *RC =
11353     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11354   Register Tmp = MRI.createVirtualRegister(RC);
11355   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11356   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11357   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11358   unsigned BP =
11359       (PVT == MVT::i64)
11360           ? PPC::X30
11361           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11362                                                               : PPC::R30);
11363 
11364   MachineInstrBuilder MIB;
11365 
11366   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11367   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11368   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11369   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11370 
11371   Register BufReg = MI.getOperand(0).getReg();
11372 
11373   // Reload FP (the jumped-to function may not have had a
11374   // frame pointer, and if so, then its r31 will be restored
11375   // as necessary).
11376   if (PVT == MVT::i64) {
11377     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11378             .addImm(0)
11379             .addReg(BufReg);
11380   } else {
11381     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11382             .addImm(0)
11383             .addReg(BufReg);
11384   }
11385   MIB.cloneMemRefs(MI);
11386 
11387   // Reload IP
11388   if (PVT == MVT::i64) {
11389     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11390             .addImm(LabelOffset)
11391             .addReg(BufReg);
11392   } else {
11393     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11394             .addImm(LabelOffset)
11395             .addReg(BufReg);
11396   }
11397   MIB.cloneMemRefs(MI);
11398 
11399   // Reload SP
11400   if (PVT == MVT::i64) {
11401     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11402             .addImm(SPOffset)
11403             .addReg(BufReg);
11404   } else {
11405     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11406             .addImm(SPOffset)
11407             .addReg(BufReg);
11408   }
11409   MIB.cloneMemRefs(MI);
11410 
11411   // Reload BP
11412   if (PVT == MVT::i64) {
11413     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11414             .addImm(BPOffset)
11415             .addReg(BufReg);
11416   } else {
11417     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11418             .addImm(BPOffset)
11419             .addReg(BufReg);
11420   }
11421   MIB.cloneMemRefs(MI);
11422 
11423   // Reload TOC
11424   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11425     setUsesTOCBasePtr(*MBB->getParent());
11426     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11427               .addImm(TOCOffset)
11428               .addReg(BufReg)
11429               .cloneMemRefs(MI);
11430   }
11431 
11432   // Jump
11433   BuildMI(*MBB, MI, DL,
11434           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11435   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11436 
11437   MI.eraseFromParent();
11438   return MBB;
11439 }
11440 
11441 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11442   // If the function specifically requests inline stack probes, emit them.
11443   if (MF.getFunction().hasFnAttribute("probe-stack"))
11444     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11445            "inline-asm";
11446   return false;
11447 }
11448 
11449 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11450   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11451   unsigned StackAlign = TFI->getStackAlignment();
11452   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11453          "Unexpected stack alignment");
11454   // The default stack probe size is 4096 if the function has no
11455   // stack-probe-size attribute.
11456   unsigned StackProbeSize = 4096;
11457   const Function &Fn = MF.getFunction();
11458   if (Fn.hasFnAttribute("stack-probe-size"))
11459     Fn.getFnAttribute("stack-probe-size")
11460         .getValueAsString()
11461         .getAsInteger(0, StackProbeSize);
11462   // Round down to the stack alignment.
11463   StackProbeSize &= ~(StackAlign - 1);
11464   return StackProbeSize ? StackProbeSize : StackAlign;
11465 }
11466 
11467 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11468 // into three phases. In the first phase, it uses pseudo instruction
11469 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11470 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11471 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11472 // MaxCallFrameSize so that it can calculate correct data area pointer.
11473 MachineBasicBlock *
11474 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11475                                     MachineBasicBlock *MBB) const {
11476   const bool isPPC64 = Subtarget.isPPC64();
11477   MachineFunction *MF = MBB->getParent();
11478   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11479   DebugLoc DL = MI.getDebugLoc();
11480   const unsigned ProbeSize = getStackProbeSize(*MF);
11481   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11482   MachineRegisterInfo &MRI = MF->getRegInfo();
11483   // The CFG of probing stack looks as
11484   //         +-----+
11485   //         | MBB |
11486   //         +--+--+
11487   //            |
11488   //       +----v----+
11489   //  +--->+ TestMBB +---+
11490   //  |    +----+----+   |
11491   //  |         |        |
11492   //  |   +-----v----+   |
11493   //  +---+ BlockMBB |   |
11494   //      +----------+   |
11495   //                     |
11496   //       +---------+   |
11497   //       | TailMBB +<--+
11498   //       +---------+
11499   // In MBB, calculate previous frame pointer and final stack pointer.
11500   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11501   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11502   // TailMBB is spliced via \p MI.
11503   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11504   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11505   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11506 
11507   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11508   MF->insert(MBBIter, TestMBB);
11509   MF->insert(MBBIter, BlockMBB);
11510   MF->insert(MBBIter, TailMBB);
11511 
11512   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11513   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11514 
11515   Register DstReg = MI.getOperand(0).getReg();
11516   Register NegSizeReg = MI.getOperand(1).getReg();
11517   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11518   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11519   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11520   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11521 
11522   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11523   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11524   // NegSize.
11525   unsigned ProbeOpc;
11526   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11527     ProbeOpc =
11528         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11529   else
11530     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11531     // and NegSizeReg will be allocated in the same phyreg to avoid
11532     // redundant copy when NegSizeReg has only one use which is current MI and
11533     // will be replaced by PREPARE_PROBED_ALLOCA then.
11534     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11535                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11536   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11537       .addDef(ActualNegSizeReg)
11538       .addReg(NegSizeReg)
11539       .add(MI.getOperand(2))
11540       .add(MI.getOperand(3));
11541 
11542   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11543   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11544           FinalStackPtr)
11545       .addReg(SPReg)
11546       .addReg(ActualNegSizeReg);
11547 
11548   // Materialize a scratch register for update.
11549   int64_t NegProbeSize = -(int64_t)ProbeSize;
11550   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11551   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11552   if (!isInt<16>(NegProbeSize)) {
11553     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11554     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11555         .addImm(NegProbeSize >> 16);
11556     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11557             ScratchReg)
11558         .addReg(TempReg)
11559         .addImm(NegProbeSize & 0xFFFF);
11560   } else
11561     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11562         .addImm(NegProbeSize);
11563 
11564   {
11565     // Probing leading residual part.
11566     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11567     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11568         .addReg(ActualNegSizeReg)
11569         .addReg(ScratchReg);
11570     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11571     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11572         .addReg(Div)
11573         .addReg(ScratchReg);
11574     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11575     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11576         .addReg(Mul)
11577         .addReg(ActualNegSizeReg);
11578     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11579         .addReg(FramePointer)
11580         .addReg(SPReg)
11581         .addReg(NegMod);
11582   }
11583 
11584   {
11585     // Remaining part should be multiple of ProbeSize.
11586     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11587     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11588         .addReg(SPReg)
11589         .addReg(FinalStackPtr);
11590     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11591         .addImm(PPC::PRED_EQ)
11592         .addReg(CmpResult)
11593         .addMBB(TailMBB);
11594     TestMBB->addSuccessor(BlockMBB);
11595     TestMBB->addSuccessor(TailMBB);
11596   }
11597 
11598   {
11599     // Touch the block.
11600     // |P...|P...|P...
11601     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11602         .addReg(FramePointer)
11603         .addReg(SPReg)
11604         .addReg(ScratchReg);
11605     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11606     BlockMBB->addSuccessor(TestMBB);
11607   }
11608 
11609   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11610   // DYNAREAOFFSET pseudo instruction to get the future result.
11611   Register MaxCallFrameSizeReg =
11612       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11613   BuildMI(TailMBB, DL,
11614           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11615           MaxCallFrameSizeReg)
11616       .add(MI.getOperand(2))
11617       .add(MI.getOperand(3));
11618   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11619       .addReg(SPReg)
11620       .addReg(MaxCallFrameSizeReg);
11621 
11622   // Splice instructions after MI to TailMBB.
11623   TailMBB->splice(TailMBB->end(), MBB,
11624                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11625   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11626   MBB->addSuccessor(TestMBB);
11627 
11628   // Delete the pseudo instruction.
11629   MI.eraseFromParent();
11630 
11631   ++NumDynamicAllocaProbed;
11632   return TailMBB;
11633 }
11634 
11635 MachineBasicBlock *
11636 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11637                                                MachineBasicBlock *BB) const {
11638   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11639       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11640     if (Subtarget.is64BitELFABI() &&
11641         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11642         !Subtarget.isUsingPCRelativeCalls()) {
11643       // Call lowering should have added an r2 operand to indicate a dependence
11644       // on the TOC base pointer value. It can't however, because there is no
11645       // way to mark the dependence as implicit there, and so the stackmap code
11646       // will confuse it with a regular operand. Instead, add the dependence
11647       // here.
11648       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11649     }
11650 
11651     return emitPatchPoint(MI, BB);
11652   }
11653 
11654   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11655       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11656     return emitEHSjLjSetJmp(MI, BB);
11657   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11658              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11659     return emitEHSjLjLongJmp(MI, BB);
11660   }
11661 
11662   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11663 
11664   // To "insert" these instructions we actually have to insert their
11665   // control-flow patterns.
11666   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11667   MachineFunction::iterator It = ++BB->getIterator();
11668 
11669   MachineFunction *F = BB->getParent();
11670 
11671   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11672       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11673       MI.getOpcode() == PPC::SELECT_I8) {
11674     SmallVector<MachineOperand, 2> Cond;
11675     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11676         MI.getOpcode() == PPC::SELECT_CC_I8)
11677       Cond.push_back(MI.getOperand(4));
11678     else
11679       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11680     Cond.push_back(MI.getOperand(1));
11681 
11682     DebugLoc dl = MI.getDebugLoc();
11683     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11684                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11685   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11686              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11687              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11688              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11689              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11690              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11691              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11692              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11693              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11694              MI.getOpcode() == PPC::SELECT_F4 ||
11695              MI.getOpcode() == PPC::SELECT_F8 ||
11696              MI.getOpcode() == PPC::SELECT_F16 ||
11697              MI.getOpcode() == PPC::SELECT_SPE ||
11698              MI.getOpcode() == PPC::SELECT_SPE4 ||
11699              MI.getOpcode() == PPC::SELECT_VRRC ||
11700              MI.getOpcode() == PPC::SELECT_VSFRC ||
11701              MI.getOpcode() == PPC::SELECT_VSSRC ||
11702              MI.getOpcode() == PPC::SELECT_VSRC) {
11703     // The incoming instruction knows the destination vreg to set, the
11704     // condition code register to branch on, the true/false values to
11705     // select between, and a branch opcode to use.
11706 
11707     //  thisMBB:
11708     //  ...
11709     //   TrueVal = ...
11710     //   cmpTY ccX, r1, r2
11711     //   bCC copy1MBB
11712     //   fallthrough --> copy0MBB
11713     MachineBasicBlock *thisMBB = BB;
11714     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11715     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11716     DebugLoc dl = MI.getDebugLoc();
11717     F->insert(It, copy0MBB);
11718     F->insert(It, sinkMBB);
11719 
11720     // Transfer the remainder of BB and its successor edges to sinkMBB.
11721     sinkMBB->splice(sinkMBB->begin(), BB,
11722                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11723     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11724 
11725     // Next, add the true and fallthrough blocks as its successors.
11726     BB->addSuccessor(copy0MBB);
11727     BB->addSuccessor(sinkMBB);
11728 
11729     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11730         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11731         MI.getOpcode() == PPC::SELECT_F16 ||
11732         MI.getOpcode() == PPC::SELECT_SPE4 ||
11733         MI.getOpcode() == PPC::SELECT_SPE ||
11734         MI.getOpcode() == PPC::SELECT_VRRC ||
11735         MI.getOpcode() == PPC::SELECT_VSFRC ||
11736         MI.getOpcode() == PPC::SELECT_VSSRC ||
11737         MI.getOpcode() == PPC::SELECT_VSRC) {
11738       BuildMI(BB, dl, TII->get(PPC::BC))
11739           .addReg(MI.getOperand(1).getReg())
11740           .addMBB(sinkMBB);
11741     } else {
11742       unsigned SelectPred = MI.getOperand(4).getImm();
11743       BuildMI(BB, dl, TII->get(PPC::BCC))
11744           .addImm(SelectPred)
11745           .addReg(MI.getOperand(1).getReg())
11746           .addMBB(sinkMBB);
11747     }
11748 
11749     //  copy0MBB:
11750     //   %FalseValue = ...
11751     //   # fallthrough to sinkMBB
11752     BB = copy0MBB;
11753 
11754     // Update machine-CFG edges
11755     BB->addSuccessor(sinkMBB);
11756 
11757     //  sinkMBB:
11758     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11759     //  ...
11760     BB = sinkMBB;
11761     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11762         .addReg(MI.getOperand(3).getReg())
11763         .addMBB(copy0MBB)
11764         .addReg(MI.getOperand(2).getReg())
11765         .addMBB(thisMBB);
11766   } else if (MI.getOpcode() == PPC::ReadTB) {
11767     // To read the 64-bit time-base register on a 32-bit target, we read the
11768     // two halves. Should the counter have wrapped while it was being read, we
11769     // need to try again.
11770     // ...
11771     // readLoop:
11772     // mfspr Rx,TBU # load from TBU
11773     // mfspr Ry,TB  # load from TB
11774     // mfspr Rz,TBU # load from TBU
11775     // cmpw crX,Rx,Rz # check if 'old'='new'
11776     // bne readLoop   # branch if they're not equal
11777     // ...
11778 
11779     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11780     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11781     DebugLoc dl = MI.getDebugLoc();
11782     F->insert(It, readMBB);
11783     F->insert(It, sinkMBB);
11784 
11785     // Transfer the remainder of BB and its successor edges to sinkMBB.
11786     sinkMBB->splice(sinkMBB->begin(), BB,
11787                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11788     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11789 
11790     BB->addSuccessor(readMBB);
11791     BB = readMBB;
11792 
11793     MachineRegisterInfo &RegInfo = F->getRegInfo();
11794     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11795     Register LoReg = MI.getOperand(0).getReg();
11796     Register HiReg = MI.getOperand(1).getReg();
11797 
11798     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11799     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11800     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11801 
11802     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11803 
11804     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11805         .addReg(HiReg)
11806         .addReg(ReadAgainReg);
11807     BuildMI(BB, dl, TII->get(PPC::BCC))
11808         .addImm(PPC::PRED_NE)
11809         .addReg(CmpReg)
11810         .addMBB(readMBB);
11811 
11812     BB->addSuccessor(readMBB);
11813     BB->addSuccessor(sinkMBB);
11814   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11815     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11816   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11817     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11818   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11819     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11820   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11821     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11822 
11823   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11824     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11825   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11826     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11827   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11828     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11829   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11830     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11831 
11832   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11833     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11834   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11835     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11836   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11837     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11838   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11839     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11840 
11841   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11842     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11843   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11844     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11845   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11846     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11847   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11848     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11849 
11850   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11851     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11852   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11853     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11854   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11855     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11856   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11857     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11858 
11859   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11860     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11861   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11862     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11863   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11864     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11865   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11866     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11867 
11868   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11869     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11870   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11871     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11872   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11873     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11874   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11875     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11876 
11877   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11878     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11879   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11880     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11881   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11882     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11883   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11884     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11885 
11886   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11887     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11888   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11889     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11890   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11891     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11892   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11893     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11894 
11895   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11896     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11897   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11898     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11899   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11900     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11901   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11902     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11903 
11904   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11905     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11906   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11907     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11908   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11909     BB = EmitAtomicBinary(MI, BB, 4, 0);
11910   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11911     BB = EmitAtomicBinary(MI, BB, 8, 0);
11912   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11913            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11914            (Subtarget.hasPartwordAtomics() &&
11915             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11916            (Subtarget.hasPartwordAtomics() &&
11917             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11918     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11919 
11920     auto LoadMnemonic = PPC::LDARX;
11921     auto StoreMnemonic = PPC::STDCX;
11922     switch (MI.getOpcode()) {
11923     default:
11924       llvm_unreachable("Compare and swap of unknown size");
11925     case PPC::ATOMIC_CMP_SWAP_I8:
11926       LoadMnemonic = PPC::LBARX;
11927       StoreMnemonic = PPC::STBCX;
11928       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11929       break;
11930     case PPC::ATOMIC_CMP_SWAP_I16:
11931       LoadMnemonic = PPC::LHARX;
11932       StoreMnemonic = PPC::STHCX;
11933       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11934       break;
11935     case PPC::ATOMIC_CMP_SWAP_I32:
11936       LoadMnemonic = PPC::LWARX;
11937       StoreMnemonic = PPC::STWCX;
11938       break;
11939     case PPC::ATOMIC_CMP_SWAP_I64:
11940       LoadMnemonic = PPC::LDARX;
11941       StoreMnemonic = PPC::STDCX;
11942       break;
11943     }
11944     Register dest = MI.getOperand(0).getReg();
11945     Register ptrA = MI.getOperand(1).getReg();
11946     Register ptrB = MI.getOperand(2).getReg();
11947     Register oldval = MI.getOperand(3).getReg();
11948     Register newval = MI.getOperand(4).getReg();
11949     DebugLoc dl = MI.getDebugLoc();
11950 
11951     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11952     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11953     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11954     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11955     F->insert(It, loop1MBB);
11956     F->insert(It, loop2MBB);
11957     F->insert(It, midMBB);
11958     F->insert(It, exitMBB);
11959     exitMBB->splice(exitMBB->begin(), BB,
11960                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11961     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11962 
11963     //  thisMBB:
11964     //   ...
11965     //   fallthrough --> loopMBB
11966     BB->addSuccessor(loop1MBB);
11967 
11968     // loop1MBB:
11969     //   l[bhwd]arx dest, ptr
11970     //   cmp[wd] dest, oldval
11971     //   bne- midMBB
11972     // loop2MBB:
11973     //   st[bhwd]cx. newval, ptr
11974     //   bne- loopMBB
11975     //   b exitBB
11976     // midMBB:
11977     //   st[bhwd]cx. dest, ptr
11978     // exitBB:
11979     BB = loop1MBB;
11980     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11981     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11982         .addReg(oldval)
11983         .addReg(dest);
11984     BuildMI(BB, dl, TII->get(PPC::BCC))
11985         .addImm(PPC::PRED_NE)
11986         .addReg(PPC::CR0)
11987         .addMBB(midMBB);
11988     BB->addSuccessor(loop2MBB);
11989     BB->addSuccessor(midMBB);
11990 
11991     BB = loop2MBB;
11992     BuildMI(BB, dl, TII->get(StoreMnemonic))
11993         .addReg(newval)
11994         .addReg(ptrA)
11995         .addReg(ptrB);
11996     BuildMI(BB, dl, TII->get(PPC::BCC))
11997         .addImm(PPC::PRED_NE)
11998         .addReg(PPC::CR0)
11999         .addMBB(loop1MBB);
12000     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12001     BB->addSuccessor(loop1MBB);
12002     BB->addSuccessor(exitMBB);
12003 
12004     BB = midMBB;
12005     BuildMI(BB, dl, TII->get(StoreMnemonic))
12006         .addReg(dest)
12007         .addReg(ptrA)
12008         .addReg(ptrB);
12009     BB->addSuccessor(exitMBB);
12010 
12011     //  exitMBB:
12012     //   ...
12013     BB = exitMBB;
12014   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12015              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12016     // We must use 64-bit registers for addresses when targeting 64-bit,
12017     // since we're actually doing arithmetic on them.  Other registers
12018     // can be 32-bit.
12019     bool is64bit = Subtarget.isPPC64();
12020     bool isLittleEndian = Subtarget.isLittleEndian();
12021     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12022 
12023     Register dest = MI.getOperand(0).getReg();
12024     Register ptrA = MI.getOperand(1).getReg();
12025     Register ptrB = MI.getOperand(2).getReg();
12026     Register oldval = MI.getOperand(3).getReg();
12027     Register newval = MI.getOperand(4).getReg();
12028     DebugLoc dl = MI.getDebugLoc();
12029 
12030     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12031     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12032     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12033     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12034     F->insert(It, loop1MBB);
12035     F->insert(It, loop2MBB);
12036     F->insert(It, midMBB);
12037     F->insert(It, exitMBB);
12038     exitMBB->splice(exitMBB->begin(), BB,
12039                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12040     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12041 
12042     MachineRegisterInfo &RegInfo = F->getRegInfo();
12043     const TargetRegisterClass *RC =
12044         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12045     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12046 
12047     Register PtrReg = RegInfo.createVirtualRegister(RC);
12048     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12049     Register ShiftReg =
12050         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12051     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12052     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12053     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12054     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12055     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12056     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12057     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12058     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12059     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12060     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12061     Register Ptr1Reg;
12062     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12063     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12064     //  thisMBB:
12065     //   ...
12066     //   fallthrough --> loopMBB
12067     BB->addSuccessor(loop1MBB);
12068 
12069     // The 4-byte load must be aligned, while a char or short may be
12070     // anywhere in the word.  Hence all this nasty bookkeeping code.
12071     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12072     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12073     //   xori shift, shift1, 24 [16]
12074     //   rlwinm ptr, ptr1, 0, 0, 29
12075     //   slw newval2, newval, shift
12076     //   slw oldval2, oldval,shift
12077     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12078     //   slw mask, mask2, shift
12079     //   and newval3, newval2, mask
12080     //   and oldval3, oldval2, mask
12081     // loop1MBB:
12082     //   lwarx tmpDest, ptr
12083     //   and tmp, tmpDest, mask
12084     //   cmpw tmp, oldval3
12085     //   bne- midMBB
12086     // loop2MBB:
12087     //   andc tmp2, tmpDest, mask
12088     //   or tmp4, tmp2, newval3
12089     //   stwcx. tmp4, ptr
12090     //   bne- loop1MBB
12091     //   b exitBB
12092     // midMBB:
12093     //   stwcx. tmpDest, ptr
12094     // exitBB:
12095     //   srw dest, tmpDest, shift
12096     if (ptrA != ZeroReg) {
12097       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12098       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12099           .addReg(ptrA)
12100           .addReg(ptrB);
12101     } else {
12102       Ptr1Reg = ptrB;
12103     }
12104 
12105     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12106     // mode.
12107     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12108         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12109         .addImm(3)
12110         .addImm(27)
12111         .addImm(is8bit ? 28 : 27);
12112     if (!isLittleEndian)
12113       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12114           .addReg(Shift1Reg)
12115           .addImm(is8bit ? 24 : 16);
12116     if (is64bit)
12117       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12118           .addReg(Ptr1Reg)
12119           .addImm(0)
12120           .addImm(61);
12121     else
12122       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12123           .addReg(Ptr1Reg)
12124           .addImm(0)
12125           .addImm(0)
12126           .addImm(29);
12127     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12128         .addReg(newval)
12129         .addReg(ShiftReg);
12130     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12131         .addReg(oldval)
12132         .addReg(ShiftReg);
12133     if (is8bit)
12134       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12135     else {
12136       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12137       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12138           .addReg(Mask3Reg)
12139           .addImm(65535);
12140     }
12141     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12142         .addReg(Mask2Reg)
12143         .addReg(ShiftReg);
12144     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12145         .addReg(NewVal2Reg)
12146         .addReg(MaskReg);
12147     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12148         .addReg(OldVal2Reg)
12149         .addReg(MaskReg);
12150 
12151     BB = loop1MBB;
12152     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12153         .addReg(ZeroReg)
12154         .addReg(PtrReg);
12155     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12156         .addReg(TmpDestReg)
12157         .addReg(MaskReg);
12158     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12159         .addReg(TmpReg)
12160         .addReg(OldVal3Reg);
12161     BuildMI(BB, dl, TII->get(PPC::BCC))
12162         .addImm(PPC::PRED_NE)
12163         .addReg(PPC::CR0)
12164         .addMBB(midMBB);
12165     BB->addSuccessor(loop2MBB);
12166     BB->addSuccessor(midMBB);
12167 
12168     BB = loop2MBB;
12169     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12170         .addReg(TmpDestReg)
12171         .addReg(MaskReg);
12172     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12173         .addReg(Tmp2Reg)
12174         .addReg(NewVal3Reg);
12175     BuildMI(BB, dl, TII->get(PPC::STWCX))
12176         .addReg(Tmp4Reg)
12177         .addReg(ZeroReg)
12178         .addReg(PtrReg);
12179     BuildMI(BB, dl, TII->get(PPC::BCC))
12180         .addImm(PPC::PRED_NE)
12181         .addReg(PPC::CR0)
12182         .addMBB(loop1MBB);
12183     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12184     BB->addSuccessor(loop1MBB);
12185     BB->addSuccessor(exitMBB);
12186 
12187     BB = midMBB;
12188     BuildMI(BB, dl, TII->get(PPC::STWCX))
12189         .addReg(TmpDestReg)
12190         .addReg(ZeroReg)
12191         .addReg(PtrReg);
12192     BB->addSuccessor(exitMBB);
12193 
12194     //  exitMBB:
12195     //   ...
12196     BB = exitMBB;
12197     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12198         .addReg(TmpReg)
12199         .addReg(ShiftReg);
12200   } else if (MI.getOpcode() == PPC::FADDrtz) {
12201     // This pseudo performs an FADD with rounding mode temporarily forced
12202     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12203     // is not modeled at the SelectionDAG level.
12204     Register Dest = MI.getOperand(0).getReg();
12205     Register Src1 = MI.getOperand(1).getReg();
12206     Register Src2 = MI.getOperand(2).getReg();
12207     DebugLoc dl = MI.getDebugLoc();
12208 
12209     MachineRegisterInfo &RegInfo = F->getRegInfo();
12210     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12211 
12212     // Save FPSCR value.
12213     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12214 
12215     // Set rounding mode to round-to-zero.
12216     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12217         .addImm(31)
12218         .addReg(PPC::RM, RegState::ImplicitDefine);
12219 
12220     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12221         .addImm(30)
12222         .addReg(PPC::RM, RegState::ImplicitDefine);
12223 
12224     // Perform addition.
12225     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12226                    .addReg(Src1)
12227                    .addReg(Src2);
12228     if (MI.getFlag(MachineInstr::NoFPExcept))
12229       MIB.setMIFlag(MachineInstr::NoFPExcept);
12230 
12231     // Restore FPSCR value.
12232     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12233   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12234              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12235              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12236              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12237     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12238                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12239                           ? PPC::ANDI8_rec
12240                           : PPC::ANDI_rec;
12241     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12242                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12243 
12244     MachineRegisterInfo &RegInfo = F->getRegInfo();
12245     Register Dest = RegInfo.createVirtualRegister(
12246         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12247 
12248     DebugLoc Dl = MI.getDebugLoc();
12249     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12250         .addReg(MI.getOperand(1).getReg())
12251         .addImm(1);
12252     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12253             MI.getOperand(0).getReg())
12254         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12255   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12256     DebugLoc Dl = MI.getDebugLoc();
12257     MachineRegisterInfo &RegInfo = F->getRegInfo();
12258     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12259     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12260     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12261             MI.getOperand(0).getReg())
12262         .addReg(CRReg);
12263   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12264     DebugLoc Dl = MI.getDebugLoc();
12265     unsigned Imm = MI.getOperand(1).getImm();
12266     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12267     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12268             MI.getOperand(0).getReg())
12269         .addReg(PPC::CR0EQ);
12270   } else if (MI.getOpcode() == PPC::SETRNDi) {
12271     DebugLoc dl = MI.getDebugLoc();
12272     Register OldFPSCRReg = MI.getOperand(0).getReg();
12273 
12274     // Save FPSCR value.
12275     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12276 
12277     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12278     // the following settings:
12279     //   00 Round to nearest
12280     //   01 Round to 0
12281     //   10 Round to +inf
12282     //   11 Round to -inf
12283 
12284     // When the operand is immediate, using the two least significant bits of
12285     // the immediate to set the bits 62:63 of FPSCR.
12286     unsigned Mode = MI.getOperand(1).getImm();
12287     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12288         .addImm(31)
12289         .addReg(PPC::RM, RegState::ImplicitDefine);
12290 
12291     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12292         .addImm(30)
12293         .addReg(PPC::RM, RegState::ImplicitDefine);
12294   } else if (MI.getOpcode() == PPC::SETRND) {
12295     DebugLoc dl = MI.getDebugLoc();
12296 
12297     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12298     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12299     // If the target doesn't have DirectMove, we should use stack to do the
12300     // conversion, because the target doesn't have the instructions like mtvsrd
12301     // or mfvsrd to do this conversion directly.
12302     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12303       if (Subtarget.hasDirectMove()) {
12304         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12305           .addReg(SrcReg);
12306       } else {
12307         // Use stack to do the register copy.
12308         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12309         MachineRegisterInfo &RegInfo = F->getRegInfo();
12310         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12311         if (RC == &PPC::F8RCRegClass) {
12312           // Copy register from F8RCRegClass to G8RCRegclass.
12313           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12314                  "Unsupported RegClass.");
12315 
12316           StoreOp = PPC::STFD;
12317           LoadOp = PPC::LD;
12318         } else {
12319           // Copy register from G8RCRegClass to F8RCRegclass.
12320           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12321                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12322                  "Unsupported RegClass.");
12323         }
12324 
12325         MachineFrameInfo &MFI = F->getFrameInfo();
12326         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12327 
12328         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12329             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12330             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12331             MFI.getObjectAlign(FrameIdx));
12332 
12333         // Store the SrcReg into the stack.
12334         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12335           .addReg(SrcReg)
12336           .addImm(0)
12337           .addFrameIndex(FrameIdx)
12338           .addMemOperand(MMOStore);
12339 
12340         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12341             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12342             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12343             MFI.getObjectAlign(FrameIdx));
12344 
12345         // Load from the stack where SrcReg is stored, and save to DestReg,
12346         // so we have done the RegClass conversion from RegClass::SrcReg to
12347         // RegClass::DestReg.
12348         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12349           .addImm(0)
12350           .addFrameIndex(FrameIdx)
12351           .addMemOperand(MMOLoad);
12352       }
12353     };
12354 
12355     Register OldFPSCRReg = MI.getOperand(0).getReg();
12356 
12357     // Save FPSCR value.
12358     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12359 
12360     // When the operand is gprc register, use two least significant bits of the
12361     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12362     //
12363     // copy OldFPSCRTmpReg, OldFPSCRReg
12364     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12365     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12366     // copy NewFPSCRReg, NewFPSCRTmpReg
12367     // mtfsf 255, NewFPSCRReg
12368     MachineOperand SrcOp = MI.getOperand(1);
12369     MachineRegisterInfo &RegInfo = F->getRegInfo();
12370     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12371 
12372     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12373 
12374     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12375     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12376 
12377     // The first operand of INSERT_SUBREG should be a register which has
12378     // subregisters, we only care about its RegClass, so we should use an
12379     // IMPLICIT_DEF register.
12380     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12381     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12382       .addReg(ImDefReg)
12383       .add(SrcOp)
12384       .addImm(1);
12385 
12386     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12387     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12388       .addReg(OldFPSCRTmpReg)
12389       .addReg(ExtSrcReg)
12390       .addImm(0)
12391       .addImm(62);
12392 
12393     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12394     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12395 
12396     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12397     // bits of FPSCR.
12398     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12399       .addImm(255)
12400       .addReg(NewFPSCRReg)
12401       .addImm(0)
12402       .addImm(0);
12403   } else if (MI.getOpcode() == PPC::SETFLM) {
12404     DebugLoc Dl = MI.getDebugLoc();
12405 
12406     // Result of setflm is previous FPSCR content, so we need to save it first.
12407     Register OldFPSCRReg = MI.getOperand(0).getReg();
12408     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12409 
12410     // Put bits in 32:63 to FPSCR.
12411     Register NewFPSCRReg = MI.getOperand(1).getReg();
12412     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12413         .addImm(255)
12414         .addReg(NewFPSCRReg)
12415         .addImm(0)
12416         .addImm(0);
12417   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12418              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12419     return emitProbedAlloca(MI, BB);
12420   } else {
12421     llvm_unreachable("Unexpected instr type to insert");
12422   }
12423 
12424   MI.eraseFromParent(); // The pseudo instruction is gone now.
12425   return BB;
12426 }
12427 
12428 //===----------------------------------------------------------------------===//
12429 // Target Optimization Hooks
12430 //===----------------------------------------------------------------------===//
12431 
12432 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12433   // For the estimates, convergence is quadratic, so we essentially double the
12434   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12435   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12436   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12437   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12438   if (VT.getScalarType() == MVT::f64)
12439     RefinementSteps++;
12440   return RefinementSteps;
12441 }
12442 
12443 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12444                                            int Enabled, int &RefinementSteps,
12445                                            bool &UseOneConstNR,
12446                                            bool Reciprocal) const {
12447   EVT VT = Operand.getValueType();
12448   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12449       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12450       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12451       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12452     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12453       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12454 
12455     // The Newton-Raphson computation with a single constant does not provide
12456     // enough accuracy on some CPUs.
12457     UseOneConstNR = !Subtarget.needsTwoConstNR();
12458     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12459   }
12460   return SDValue();
12461 }
12462 
12463 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12464                                             int Enabled,
12465                                             int &RefinementSteps) const {
12466   EVT VT = Operand.getValueType();
12467   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12468       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12469       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12470       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12471     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12472       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12473     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12474   }
12475   return SDValue();
12476 }
12477 
12478 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12479   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12480   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12481   // enabled for division), this functionality is redundant with the default
12482   // combiner logic (once the division -> reciprocal/multiply transformation
12483   // has taken place). As a result, this matters more for older cores than for
12484   // newer ones.
12485 
12486   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12487   // reciprocal if there are two or more FDIVs (for embedded cores with only
12488   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12489   switch (Subtarget.getCPUDirective()) {
12490   default:
12491     return 3;
12492   case PPC::DIR_440:
12493   case PPC::DIR_A2:
12494   case PPC::DIR_E500:
12495   case PPC::DIR_E500mc:
12496   case PPC::DIR_E5500:
12497     return 2;
12498   }
12499 }
12500 
12501 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12502 // collapsed, and so we need to look through chains of them.
12503 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12504                                      int64_t& Offset, SelectionDAG &DAG) {
12505   if (DAG.isBaseWithConstantOffset(Loc)) {
12506     Base = Loc.getOperand(0);
12507     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12508 
12509     // The base might itself be a base plus an offset, and if so, accumulate
12510     // that as well.
12511     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12512   }
12513 }
12514 
12515 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12516                             unsigned Bytes, int Dist,
12517                             SelectionDAG &DAG) {
12518   if (VT.getSizeInBits() / 8 != Bytes)
12519     return false;
12520 
12521   SDValue BaseLoc = Base->getBasePtr();
12522   if (Loc.getOpcode() == ISD::FrameIndex) {
12523     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12524       return false;
12525     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12526     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12527     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12528     int FS  = MFI.getObjectSize(FI);
12529     int BFS = MFI.getObjectSize(BFI);
12530     if (FS != BFS || FS != (int)Bytes) return false;
12531     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12532   }
12533 
12534   SDValue Base1 = Loc, Base2 = BaseLoc;
12535   int64_t Offset1 = 0, Offset2 = 0;
12536   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12537   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12538   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12539     return true;
12540 
12541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12542   const GlobalValue *GV1 = nullptr;
12543   const GlobalValue *GV2 = nullptr;
12544   Offset1 = 0;
12545   Offset2 = 0;
12546   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12547   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12548   if (isGA1 && isGA2 && GV1 == GV2)
12549     return Offset1 == (Offset2 + Dist*Bytes);
12550   return false;
12551 }
12552 
12553 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12554 // not enforce equality of the chain operands.
12555 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12556                             unsigned Bytes, int Dist,
12557                             SelectionDAG &DAG) {
12558   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12559     EVT VT = LS->getMemoryVT();
12560     SDValue Loc = LS->getBasePtr();
12561     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12562   }
12563 
12564   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12565     EVT VT;
12566     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12567     default: return false;
12568     case Intrinsic::ppc_altivec_lvx:
12569     case Intrinsic::ppc_altivec_lvxl:
12570     case Intrinsic::ppc_vsx_lxvw4x:
12571     case Intrinsic::ppc_vsx_lxvw4x_be:
12572       VT = MVT::v4i32;
12573       break;
12574     case Intrinsic::ppc_vsx_lxvd2x:
12575     case Intrinsic::ppc_vsx_lxvd2x_be:
12576       VT = MVT::v2f64;
12577       break;
12578     case Intrinsic::ppc_altivec_lvebx:
12579       VT = MVT::i8;
12580       break;
12581     case Intrinsic::ppc_altivec_lvehx:
12582       VT = MVT::i16;
12583       break;
12584     case Intrinsic::ppc_altivec_lvewx:
12585       VT = MVT::i32;
12586       break;
12587     }
12588 
12589     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12590   }
12591 
12592   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12593     EVT VT;
12594     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12595     default: return false;
12596     case Intrinsic::ppc_altivec_stvx:
12597     case Intrinsic::ppc_altivec_stvxl:
12598     case Intrinsic::ppc_vsx_stxvw4x:
12599       VT = MVT::v4i32;
12600       break;
12601     case Intrinsic::ppc_vsx_stxvd2x:
12602       VT = MVT::v2f64;
12603       break;
12604     case Intrinsic::ppc_vsx_stxvw4x_be:
12605       VT = MVT::v4i32;
12606       break;
12607     case Intrinsic::ppc_vsx_stxvd2x_be:
12608       VT = MVT::v2f64;
12609       break;
12610     case Intrinsic::ppc_altivec_stvebx:
12611       VT = MVT::i8;
12612       break;
12613     case Intrinsic::ppc_altivec_stvehx:
12614       VT = MVT::i16;
12615       break;
12616     case Intrinsic::ppc_altivec_stvewx:
12617       VT = MVT::i32;
12618       break;
12619     }
12620 
12621     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12622   }
12623 
12624   return false;
12625 }
12626 
12627 // Return true is there is a nearyby consecutive load to the one provided
12628 // (regardless of alignment). We search up and down the chain, looking though
12629 // token factors and other loads (but nothing else). As a result, a true result
12630 // indicates that it is safe to create a new consecutive load adjacent to the
12631 // load provided.
12632 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12633   SDValue Chain = LD->getChain();
12634   EVT VT = LD->getMemoryVT();
12635 
12636   SmallSet<SDNode *, 16> LoadRoots;
12637   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12638   SmallSet<SDNode *, 16> Visited;
12639 
12640   // First, search up the chain, branching to follow all token-factor operands.
12641   // If we find a consecutive load, then we're done, otherwise, record all
12642   // nodes just above the top-level loads and token factors.
12643   while (!Queue.empty()) {
12644     SDNode *ChainNext = Queue.pop_back_val();
12645     if (!Visited.insert(ChainNext).second)
12646       continue;
12647 
12648     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12649       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12650         return true;
12651 
12652       if (!Visited.count(ChainLD->getChain().getNode()))
12653         Queue.push_back(ChainLD->getChain().getNode());
12654     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12655       for (const SDUse &O : ChainNext->ops())
12656         if (!Visited.count(O.getNode()))
12657           Queue.push_back(O.getNode());
12658     } else
12659       LoadRoots.insert(ChainNext);
12660   }
12661 
12662   // Second, search down the chain, starting from the top-level nodes recorded
12663   // in the first phase. These top-level nodes are the nodes just above all
12664   // loads and token factors. Starting with their uses, recursively look though
12665   // all loads (just the chain uses) and token factors to find a consecutive
12666   // load.
12667   Visited.clear();
12668   Queue.clear();
12669 
12670   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12671        IE = LoadRoots.end(); I != IE; ++I) {
12672     Queue.push_back(*I);
12673 
12674     while (!Queue.empty()) {
12675       SDNode *LoadRoot = Queue.pop_back_val();
12676       if (!Visited.insert(LoadRoot).second)
12677         continue;
12678 
12679       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12680         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12681           return true;
12682 
12683       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12684            UE = LoadRoot->use_end(); UI != UE; ++UI)
12685         if (((isa<MemSDNode>(*UI) &&
12686             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12687             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12688           Queue.push_back(*UI);
12689     }
12690   }
12691 
12692   return false;
12693 }
12694 
12695 /// This function is called when we have proved that a SETCC node can be replaced
12696 /// by subtraction (and other supporting instructions) so that the result of
12697 /// comparison is kept in a GPR instead of CR. This function is purely for
12698 /// codegen purposes and has some flags to guide the codegen process.
12699 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12700                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12701   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12702 
12703   // Zero extend the operands to the largest legal integer. Originally, they
12704   // must be of a strictly smaller size.
12705   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12706                          DAG.getConstant(Size, DL, MVT::i32));
12707   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12708                          DAG.getConstant(Size, DL, MVT::i32));
12709 
12710   // Swap if needed. Depends on the condition code.
12711   if (Swap)
12712     std::swap(Op0, Op1);
12713 
12714   // Subtract extended integers.
12715   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12716 
12717   // Move the sign bit to the least significant position and zero out the rest.
12718   // Now the least significant bit carries the result of original comparison.
12719   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12720                              DAG.getConstant(Size - 1, DL, MVT::i32));
12721   auto Final = Shifted;
12722 
12723   // Complement the result if needed. Based on the condition code.
12724   if (Complement)
12725     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12726                         DAG.getConstant(1, DL, MVT::i64));
12727 
12728   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12729 }
12730 
12731 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12732                                                   DAGCombinerInfo &DCI) const {
12733   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12734 
12735   SelectionDAG &DAG = DCI.DAG;
12736   SDLoc DL(N);
12737 
12738   // Size of integers being compared has a critical role in the following
12739   // analysis, so we prefer to do this when all types are legal.
12740   if (!DCI.isAfterLegalizeDAG())
12741     return SDValue();
12742 
12743   // If all users of SETCC extend its value to a legal integer type
12744   // then we replace SETCC with a subtraction
12745   for (SDNode::use_iterator UI = N->use_begin(),
12746        UE = N->use_end(); UI != UE; ++UI) {
12747     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12748       return SDValue();
12749   }
12750 
12751   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12752   auto OpSize = N->getOperand(0).getValueSizeInBits();
12753 
12754   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12755 
12756   if (OpSize < Size) {
12757     switch (CC) {
12758     default: break;
12759     case ISD::SETULT:
12760       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12761     case ISD::SETULE:
12762       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12763     case ISD::SETUGT:
12764       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12765     case ISD::SETUGE:
12766       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12767     }
12768   }
12769 
12770   return SDValue();
12771 }
12772 
12773 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12774                                                   DAGCombinerInfo &DCI) const {
12775   SelectionDAG &DAG = DCI.DAG;
12776   SDLoc dl(N);
12777 
12778   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12779   // If we're tracking CR bits, we need to be careful that we don't have:
12780   //   trunc(binary-ops(zext(x), zext(y)))
12781   // or
12782   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12783   // such that we're unnecessarily moving things into GPRs when it would be
12784   // better to keep them in CR bits.
12785 
12786   // Note that trunc here can be an actual i1 trunc, or can be the effective
12787   // truncation that comes from a setcc or select_cc.
12788   if (N->getOpcode() == ISD::TRUNCATE &&
12789       N->getValueType(0) != MVT::i1)
12790     return SDValue();
12791 
12792   if (N->getOperand(0).getValueType() != MVT::i32 &&
12793       N->getOperand(0).getValueType() != MVT::i64)
12794     return SDValue();
12795 
12796   if (N->getOpcode() == ISD::SETCC ||
12797       N->getOpcode() == ISD::SELECT_CC) {
12798     // If we're looking at a comparison, then we need to make sure that the
12799     // high bits (all except for the first) don't matter the result.
12800     ISD::CondCode CC =
12801       cast<CondCodeSDNode>(N->getOperand(
12802         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12803     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12804 
12805     if (ISD::isSignedIntSetCC(CC)) {
12806       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12807           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12808         return SDValue();
12809     } else if (ISD::isUnsignedIntSetCC(CC)) {
12810       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12811                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12812           !DAG.MaskedValueIsZero(N->getOperand(1),
12813                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12814         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12815                                              : SDValue());
12816     } else {
12817       // This is neither a signed nor an unsigned comparison, just make sure
12818       // that the high bits are equal.
12819       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12820       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12821 
12822       // We don't really care about what is known about the first bit (if
12823       // anything), so clear it in all masks prior to comparing them.
12824       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12825       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12826 
12827       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12828         return SDValue();
12829     }
12830   }
12831 
12832   // We now know that the higher-order bits are irrelevant, we just need to
12833   // make sure that all of the intermediate operations are bit operations, and
12834   // all inputs are extensions.
12835   if (N->getOperand(0).getOpcode() != ISD::AND &&
12836       N->getOperand(0).getOpcode() != ISD::OR  &&
12837       N->getOperand(0).getOpcode() != ISD::XOR &&
12838       N->getOperand(0).getOpcode() != ISD::SELECT &&
12839       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12840       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12841       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12842       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12843       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12844     return SDValue();
12845 
12846   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12847       N->getOperand(1).getOpcode() != ISD::AND &&
12848       N->getOperand(1).getOpcode() != ISD::OR  &&
12849       N->getOperand(1).getOpcode() != ISD::XOR &&
12850       N->getOperand(1).getOpcode() != ISD::SELECT &&
12851       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12852       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12853       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12854       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12855       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12856     return SDValue();
12857 
12858   SmallVector<SDValue, 4> Inputs;
12859   SmallVector<SDValue, 8> BinOps, PromOps;
12860   SmallPtrSet<SDNode *, 16> Visited;
12861 
12862   for (unsigned i = 0; i < 2; ++i) {
12863     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12864           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12865           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12866           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12867         isa<ConstantSDNode>(N->getOperand(i)))
12868       Inputs.push_back(N->getOperand(i));
12869     else
12870       BinOps.push_back(N->getOperand(i));
12871 
12872     if (N->getOpcode() == ISD::TRUNCATE)
12873       break;
12874   }
12875 
12876   // Visit all inputs, collect all binary operations (and, or, xor and
12877   // select) that are all fed by extensions.
12878   while (!BinOps.empty()) {
12879     SDValue BinOp = BinOps.back();
12880     BinOps.pop_back();
12881 
12882     if (!Visited.insert(BinOp.getNode()).second)
12883       continue;
12884 
12885     PromOps.push_back(BinOp);
12886 
12887     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12888       // The condition of the select is not promoted.
12889       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12890         continue;
12891       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12892         continue;
12893 
12894       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12895             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12896             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12897            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12898           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12899         Inputs.push_back(BinOp.getOperand(i));
12900       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12901                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12902                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12903                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12904                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12905                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12906                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12907                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12908                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12909         BinOps.push_back(BinOp.getOperand(i));
12910       } else {
12911         // We have an input that is not an extension or another binary
12912         // operation; we'll abort this transformation.
12913         return SDValue();
12914       }
12915     }
12916   }
12917 
12918   // Make sure that this is a self-contained cluster of operations (which
12919   // is not quite the same thing as saying that everything has only one
12920   // use).
12921   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12922     if (isa<ConstantSDNode>(Inputs[i]))
12923       continue;
12924 
12925     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12926                               UE = Inputs[i].getNode()->use_end();
12927          UI != UE; ++UI) {
12928       SDNode *User = *UI;
12929       if (User != N && !Visited.count(User))
12930         return SDValue();
12931 
12932       // Make sure that we're not going to promote the non-output-value
12933       // operand(s) or SELECT or SELECT_CC.
12934       // FIXME: Although we could sometimes handle this, and it does occur in
12935       // practice that one of the condition inputs to the select is also one of
12936       // the outputs, we currently can't deal with this.
12937       if (User->getOpcode() == ISD::SELECT) {
12938         if (User->getOperand(0) == Inputs[i])
12939           return SDValue();
12940       } else if (User->getOpcode() == ISD::SELECT_CC) {
12941         if (User->getOperand(0) == Inputs[i] ||
12942             User->getOperand(1) == Inputs[i])
12943           return SDValue();
12944       }
12945     }
12946   }
12947 
12948   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12949     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12950                               UE = PromOps[i].getNode()->use_end();
12951          UI != UE; ++UI) {
12952       SDNode *User = *UI;
12953       if (User != N && !Visited.count(User))
12954         return SDValue();
12955 
12956       // Make sure that we're not going to promote the non-output-value
12957       // operand(s) or SELECT or SELECT_CC.
12958       // FIXME: Although we could sometimes handle this, and it does occur in
12959       // practice that one of the condition inputs to the select is also one of
12960       // the outputs, we currently can't deal with this.
12961       if (User->getOpcode() == ISD::SELECT) {
12962         if (User->getOperand(0) == PromOps[i])
12963           return SDValue();
12964       } else if (User->getOpcode() == ISD::SELECT_CC) {
12965         if (User->getOperand(0) == PromOps[i] ||
12966             User->getOperand(1) == PromOps[i])
12967           return SDValue();
12968       }
12969     }
12970   }
12971 
12972   // Replace all inputs with the extension operand.
12973   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12974     // Constants may have users outside the cluster of to-be-promoted nodes,
12975     // and so we need to replace those as we do the promotions.
12976     if (isa<ConstantSDNode>(Inputs[i]))
12977       continue;
12978     else
12979       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12980   }
12981 
12982   std::list<HandleSDNode> PromOpHandles;
12983   for (auto &PromOp : PromOps)
12984     PromOpHandles.emplace_back(PromOp);
12985 
12986   // Replace all operations (these are all the same, but have a different
12987   // (i1) return type). DAG.getNode will validate that the types of
12988   // a binary operator match, so go through the list in reverse so that
12989   // we've likely promoted both operands first. Any intermediate truncations or
12990   // extensions disappear.
12991   while (!PromOpHandles.empty()) {
12992     SDValue PromOp = PromOpHandles.back().getValue();
12993     PromOpHandles.pop_back();
12994 
12995     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12996         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12997         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12998         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12999       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13000           PromOp.getOperand(0).getValueType() != MVT::i1) {
13001         // The operand is not yet ready (see comment below).
13002         PromOpHandles.emplace_front(PromOp);
13003         continue;
13004       }
13005 
13006       SDValue RepValue = PromOp.getOperand(0);
13007       if (isa<ConstantSDNode>(RepValue))
13008         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13009 
13010       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13011       continue;
13012     }
13013 
13014     unsigned C;
13015     switch (PromOp.getOpcode()) {
13016     default:             C = 0; break;
13017     case ISD::SELECT:    C = 1; break;
13018     case ISD::SELECT_CC: C = 2; break;
13019     }
13020 
13021     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13022          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13023         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13024          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13025       // The to-be-promoted operands of this node have not yet been
13026       // promoted (this should be rare because we're going through the
13027       // list backward, but if one of the operands has several users in
13028       // this cluster of to-be-promoted nodes, it is possible).
13029       PromOpHandles.emplace_front(PromOp);
13030       continue;
13031     }
13032 
13033     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13034                                 PromOp.getNode()->op_end());
13035 
13036     // If there are any constant inputs, make sure they're replaced now.
13037     for (unsigned i = 0; i < 2; ++i)
13038       if (isa<ConstantSDNode>(Ops[C+i]))
13039         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13040 
13041     DAG.ReplaceAllUsesOfValueWith(PromOp,
13042       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13043   }
13044 
13045   // Now we're left with the initial truncation itself.
13046   if (N->getOpcode() == ISD::TRUNCATE)
13047     return N->getOperand(0);
13048 
13049   // Otherwise, this is a comparison. The operands to be compared have just
13050   // changed type (to i1), but everything else is the same.
13051   return SDValue(N, 0);
13052 }
13053 
13054 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13055                                                   DAGCombinerInfo &DCI) const {
13056   SelectionDAG &DAG = DCI.DAG;
13057   SDLoc dl(N);
13058 
13059   // If we're tracking CR bits, we need to be careful that we don't have:
13060   //   zext(binary-ops(trunc(x), trunc(y)))
13061   // or
13062   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13063   // such that we're unnecessarily moving things into CR bits that can more
13064   // efficiently stay in GPRs. Note that if we're not certain that the high
13065   // bits are set as required by the final extension, we still may need to do
13066   // some masking to get the proper behavior.
13067 
13068   // This same functionality is important on PPC64 when dealing with
13069   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13070   // the return values of functions. Because it is so similar, it is handled
13071   // here as well.
13072 
13073   if (N->getValueType(0) != MVT::i32 &&
13074       N->getValueType(0) != MVT::i64)
13075     return SDValue();
13076 
13077   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13078         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13079     return SDValue();
13080 
13081   if (N->getOperand(0).getOpcode() != ISD::AND &&
13082       N->getOperand(0).getOpcode() != ISD::OR  &&
13083       N->getOperand(0).getOpcode() != ISD::XOR &&
13084       N->getOperand(0).getOpcode() != ISD::SELECT &&
13085       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13086     return SDValue();
13087 
13088   SmallVector<SDValue, 4> Inputs;
13089   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13090   SmallPtrSet<SDNode *, 16> Visited;
13091 
13092   // Visit all inputs, collect all binary operations (and, or, xor and
13093   // select) that are all fed by truncations.
13094   while (!BinOps.empty()) {
13095     SDValue BinOp = BinOps.back();
13096     BinOps.pop_back();
13097 
13098     if (!Visited.insert(BinOp.getNode()).second)
13099       continue;
13100 
13101     PromOps.push_back(BinOp);
13102 
13103     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13104       // The condition of the select is not promoted.
13105       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13106         continue;
13107       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13108         continue;
13109 
13110       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13111           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13112         Inputs.push_back(BinOp.getOperand(i));
13113       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13114                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13115                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13116                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13117                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13118         BinOps.push_back(BinOp.getOperand(i));
13119       } else {
13120         // We have an input that is not a truncation or another binary
13121         // operation; we'll abort this transformation.
13122         return SDValue();
13123       }
13124     }
13125   }
13126 
13127   // The operands of a select that must be truncated when the select is
13128   // promoted because the operand is actually part of the to-be-promoted set.
13129   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13130 
13131   // Make sure that this is a self-contained cluster of operations (which
13132   // is not quite the same thing as saying that everything has only one
13133   // use).
13134   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13135     if (isa<ConstantSDNode>(Inputs[i]))
13136       continue;
13137 
13138     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13139                               UE = Inputs[i].getNode()->use_end();
13140          UI != UE; ++UI) {
13141       SDNode *User = *UI;
13142       if (User != N && !Visited.count(User))
13143         return SDValue();
13144 
13145       // If we're going to promote the non-output-value operand(s) or SELECT or
13146       // SELECT_CC, record them for truncation.
13147       if (User->getOpcode() == ISD::SELECT) {
13148         if (User->getOperand(0) == Inputs[i])
13149           SelectTruncOp[0].insert(std::make_pair(User,
13150                                     User->getOperand(0).getValueType()));
13151       } else if (User->getOpcode() == ISD::SELECT_CC) {
13152         if (User->getOperand(0) == Inputs[i])
13153           SelectTruncOp[0].insert(std::make_pair(User,
13154                                     User->getOperand(0).getValueType()));
13155         if (User->getOperand(1) == Inputs[i])
13156           SelectTruncOp[1].insert(std::make_pair(User,
13157                                     User->getOperand(1).getValueType()));
13158       }
13159     }
13160   }
13161 
13162   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13163     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13164                               UE = PromOps[i].getNode()->use_end();
13165          UI != UE; ++UI) {
13166       SDNode *User = *UI;
13167       if (User != N && !Visited.count(User))
13168         return SDValue();
13169 
13170       // If we're going to promote the non-output-value operand(s) or SELECT or
13171       // SELECT_CC, record them for truncation.
13172       if (User->getOpcode() == ISD::SELECT) {
13173         if (User->getOperand(0) == PromOps[i])
13174           SelectTruncOp[0].insert(std::make_pair(User,
13175                                     User->getOperand(0).getValueType()));
13176       } else if (User->getOpcode() == ISD::SELECT_CC) {
13177         if (User->getOperand(0) == PromOps[i])
13178           SelectTruncOp[0].insert(std::make_pair(User,
13179                                     User->getOperand(0).getValueType()));
13180         if (User->getOperand(1) == PromOps[i])
13181           SelectTruncOp[1].insert(std::make_pair(User,
13182                                     User->getOperand(1).getValueType()));
13183       }
13184     }
13185   }
13186 
13187   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13188   bool ReallyNeedsExt = false;
13189   if (N->getOpcode() != ISD::ANY_EXTEND) {
13190     // If all of the inputs are not already sign/zero extended, then
13191     // we'll still need to do that at the end.
13192     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13193       if (isa<ConstantSDNode>(Inputs[i]))
13194         continue;
13195 
13196       unsigned OpBits =
13197         Inputs[i].getOperand(0).getValueSizeInBits();
13198       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13199 
13200       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13201            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13202                                   APInt::getHighBitsSet(OpBits,
13203                                                         OpBits-PromBits))) ||
13204           (N->getOpcode() == ISD::SIGN_EXTEND &&
13205            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13206              (OpBits-(PromBits-1)))) {
13207         ReallyNeedsExt = true;
13208         break;
13209       }
13210     }
13211   }
13212 
13213   // Replace all inputs, either with the truncation operand, or a
13214   // truncation or extension to the final output type.
13215   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13216     // Constant inputs need to be replaced with the to-be-promoted nodes that
13217     // use them because they might have users outside of the cluster of
13218     // promoted nodes.
13219     if (isa<ConstantSDNode>(Inputs[i]))
13220       continue;
13221 
13222     SDValue InSrc = Inputs[i].getOperand(0);
13223     if (Inputs[i].getValueType() == N->getValueType(0))
13224       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13225     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13226       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13227         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13228     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13229       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13230         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13231     else
13232       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13233         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13234   }
13235 
13236   std::list<HandleSDNode> PromOpHandles;
13237   for (auto &PromOp : PromOps)
13238     PromOpHandles.emplace_back(PromOp);
13239 
13240   // Replace all operations (these are all the same, but have a different
13241   // (promoted) return type). DAG.getNode will validate that the types of
13242   // a binary operator match, so go through the list in reverse so that
13243   // we've likely promoted both operands first.
13244   while (!PromOpHandles.empty()) {
13245     SDValue PromOp = PromOpHandles.back().getValue();
13246     PromOpHandles.pop_back();
13247 
13248     unsigned C;
13249     switch (PromOp.getOpcode()) {
13250     default:             C = 0; break;
13251     case ISD::SELECT:    C = 1; break;
13252     case ISD::SELECT_CC: C = 2; break;
13253     }
13254 
13255     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13256          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13257         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13258          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13259       // The to-be-promoted operands of this node have not yet been
13260       // promoted (this should be rare because we're going through the
13261       // list backward, but if one of the operands has several users in
13262       // this cluster of to-be-promoted nodes, it is possible).
13263       PromOpHandles.emplace_front(PromOp);
13264       continue;
13265     }
13266 
13267     // For SELECT and SELECT_CC nodes, we do a similar check for any
13268     // to-be-promoted comparison inputs.
13269     if (PromOp.getOpcode() == ISD::SELECT ||
13270         PromOp.getOpcode() == ISD::SELECT_CC) {
13271       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13272            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13273           (SelectTruncOp[1].count(PromOp.getNode()) &&
13274            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13275         PromOpHandles.emplace_front(PromOp);
13276         continue;
13277       }
13278     }
13279 
13280     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13281                                 PromOp.getNode()->op_end());
13282 
13283     // If this node has constant inputs, then they'll need to be promoted here.
13284     for (unsigned i = 0; i < 2; ++i) {
13285       if (!isa<ConstantSDNode>(Ops[C+i]))
13286         continue;
13287       if (Ops[C+i].getValueType() == N->getValueType(0))
13288         continue;
13289 
13290       if (N->getOpcode() == ISD::SIGN_EXTEND)
13291         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13292       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13293         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13294       else
13295         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13296     }
13297 
13298     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13299     // truncate them again to the original value type.
13300     if (PromOp.getOpcode() == ISD::SELECT ||
13301         PromOp.getOpcode() == ISD::SELECT_CC) {
13302       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13303       if (SI0 != SelectTruncOp[0].end())
13304         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13305       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13306       if (SI1 != SelectTruncOp[1].end())
13307         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13308     }
13309 
13310     DAG.ReplaceAllUsesOfValueWith(PromOp,
13311       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13312   }
13313 
13314   // Now we're left with the initial extension itself.
13315   if (!ReallyNeedsExt)
13316     return N->getOperand(0);
13317 
13318   // To zero extend, just mask off everything except for the first bit (in the
13319   // i1 case).
13320   if (N->getOpcode() == ISD::ZERO_EXTEND)
13321     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13322                        DAG.getConstant(APInt::getLowBitsSet(
13323                                          N->getValueSizeInBits(0), PromBits),
13324                                        dl, N->getValueType(0)));
13325 
13326   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13327          "Invalid extension type");
13328   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13329   SDValue ShiftCst =
13330       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13331   return DAG.getNode(
13332       ISD::SRA, dl, N->getValueType(0),
13333       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13334       ShiftCst);
13335 }
13336 
13337 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13338                                         DAGCombinerInfo &DCI) const {
13339   assert(N->getOpcode() == ISD::SETCC &&
13340          "Should be called with a SETCC node");
13341 
13342   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13343   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13344     SDValue LHS = N->getOperand(0);
13345     SDValue RHS = N->getOperand(1);
13346 
13347     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13348     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13349         LHS.hasOneUse())
13350       std::swap(LHS, RHS);
13351 
13352     // x == 0-y --> x+y == 0
13353     // x != 0-y --> x+y != 0
13354     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13355         RHS.hasOneUse()) {
13356       SDLoc DL(N);
13357       SelectionDAG &DAG = DCI.DAG;
13358       EVT VT = N->getValueType(0);
13359       EVT OpVT = LHS.getValueType();
13360       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13361       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13362     }
13363   }
13364 
13365   return DAGCombineTruncBoolExt(N, DCI);
13366 }
13367 
13368 // Is this an extending load from an f32 to an f64?
13369 static bool isFPExtLoad(SDValue Op) {
13370   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13371     return LD->getExtensionType() == ISD::EXTLOAD &&
13372       Op.getValueType() == MVT::f64;
13373   return false;
13374 }
13375 
13376 /// Reduces the number of fp-to-int conversion when building a vector.
13377 ///
13378 /// If this vector is built out of floating to integer conversions,
13379 /// transform it to a vector built out of floating point values followed by a
13380 /// single floating to integer conversion of the vector.
13381 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13382 /// becomes (fptosi (build_vector ($A, $B, ...)))
13383 SDValue PPCTargetLowering::
13384 combineElementTruncationToVectorTruncation(SDNode *N,
13385                                            DAGCombinerInfo &DCI) const {
13386   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13387          "Should be called with a BUILD_VECTOR node");
13388 
13389   SelectionDAG &DAG = DCI.DAG;
13390   SDLoc dl(N);
13391 
13392   SDValue FirstInput = N->getOperand(0);
13393   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13394          "The input operand must be an fp-to-int conversion.");
13395 
13396   // This combine happens after legalization so the fp_to_[su]i nodes are
13397   // already converted to PPCSISD nodes.
13398   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13399   if (FirstConversion == PPCISD::FCTIDZ ||
13400       FirstConversion == PPCISD::FCTIDUZ ||
13401       FirstConversion == PPCISD::FCTIWZ ||
13402       FirstConversion == PPCISD::FCTIWUZ) {
13403     bool IsSplat = true;
13404     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13405       FirstConversion == PPCISD::FCTIWUZ;
13406     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13407     SmallVector<SDValue, 4> Ops;
13408     EVT TargetVT = N->getValueType(0);
13409     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13410       SDValue NextOp = N->getOperand(i);
13411       if (NextOp.getOpcode() != PPCISD::MFVSR)
13412         return SDValue();
13413       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13414       if (NextConversion != FirstConversion)
13415         return SDValue();
13416       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13417       // This is not valid if the input was originally double precision. It is
13418       // also not profitable to do unless this is an extending load in which
13419       // case doing this combine will allow us to combine consecutive loads.
13420       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13421         return SDValue();
13422       if (N->getOperand(i) != FirstInput)
13423         IsSplat = false;
13424     }
13425 
13426     // If this is a splat, we leave it as-is since there will be only a single
13427     // fp-to-int conversion followed by a splat of the integer. This is better
13428     // for 32-bit and smaller ints and neutral for 64-bit ints.
13429     if (IsSplat)
13430       return SDValue();
13431 
13432     // Now that we know we have the right type of node, get its operands
13433     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13434       SDValue In = N->getOperand(i).getOperand(0);
13435       if (Is32Bit) {
13436         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13437         // here, we know that all inputs are extending loads so this is safe).
13438         if (In.isUndef())
13439           Ops.push_back(DAG.getUNDEF(SrcVT));
13440         else {
13441           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13442                                       MVT::f32, In.getOperand(0),
13443                                       DAG.getIntPtrConstant(1, dl));
13444           Ops.push_back(Trunc);
13445         }
13446       } else
13447         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13448     }
13449 
13450     unsigned Opcode;
13451     if (FirstConversion == PPCISD::FCTIDZ ||
13452         FirstConversion == PPCISD::FCTIWZ)
13453       Opcode = ISD::FP_TO_SINT;
13454     else
13455       Opcode = ISD::FP_TO_UINT;
13456 
13457     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13458     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13459     return DAG.getNode(Opcode, dl, TargetVT, BV);
13460   }
13461   return SDValue();
13462 }
13463 
13464 /// Reduce the number of loads when building a vector.
13465 ///
13466 /// Building a vector out of multiple loads can be converted to a load
13467 /// of the vector type if the loads are consecutive. If the loads are
13468 /// consecutive but in descending order, a shuffle is added at the end
13469 /// to reorder the vector.
13470 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13471   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13472          "Should be called with a BUILD_VECTOR node");
13473 
13474   SDLoc dl(N);
13475 
13476   // Return early for non byte-sized type, as they can't be consecutive.
13477   if (!N->getValueType(0).getVectorElementType().isByteSized())
13478     return SDValue();
13479 
13480   bool InputsAreConsecutiveLoads = true;
13481   bool InputsAreReverseConsecutive = true;
13482   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13483   SDValue FirstInput = N->getOperand(0);
13484   bool IsRoundOfExtLoad = false;
13485 
13486   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13487       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13488     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13489     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13490   }
13491   // Not a build vector of (possibly fp_rounded) loads.
13492   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13493       N->getNumOperands() == 1)
13494     return SDValue();
13495 
13496   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13497     // If any inputs are fp_round(extload), they all must be.
13498     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13499       return SDValue();
13500 
13501     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13502       N->getOperand(i);
13503     if (NextInput.getOpcode() != ISD::LOAD)
13504       return SDValue();
13505 
13506     SDValue PreviousInput =
13507       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13508     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13509     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13510 
13511     // If any inputs are fp_round(extload), they all must be.
13512     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13513       return SDValue();
13514 
13515     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13516       InputsAreConsecutiveLoads = false;
13517     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13518       InputsAreReverseConsecutive = false;
13519 
13520     // Exit early if the loads are neither consecutive nor reverse consecutive.
13521     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13522       return SDValue();
13523   }
13524 
13525   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13526          "The loads cannot be both consecutive and reverse consecutive.");
13527 
13528   SDValue FirstLoadOp =
13529     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13530   SDValue LastLoadOp =
13531     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13532                        N->getOperand(N->getNumOperands()-1);
13533 
13534   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13535   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13536   if (InputsAreConsecutiveLoads) {
13537     assert(LD1 && "Input needs to be a LoadSDNode.");
13538     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13539                        LD1->getBasePtr(), LD1->getPointerInfo(),
13540                        LD1->getAlignment());
13541   }
13542   if (InputsAreReverseConsecutive) {
13543     assert(LDL && "Input needs to be a LoadSDNode.");
13544     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13545                                LDL->getBasePtr(), LDL->getPointerInfo(),
13546                                LDL->getAlignment());
13547     SmallVector<int, 16> Ops;
13548     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13549       Ops.push_back(i);
13550 
13551     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13552                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13553   }
13554   return SDValue();
13555 }
13556 
13557 // This function adds the required vector_shuffle needed to get
13558 // the elements of the vector extract in the correct position
13559 // as specified by the CorrectElems encoding.
13560 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13561                                       SDValue Input, uint64_t Elems,
13562                                       uint64_t CorrectElems) {
13563   SDLoc dl(N);
13564 
13565   unsigned NumElems = Input.getValueType().getVectorNumElements();
13566   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13567 
13568   // Knowing the element indices being extracted from the original
13569   // vector and the order in which they're being inserted, just put
13570   // them at element indices required for the instruction.
13571   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13572     if (DAG.getDataLayout().isLittleEndian())
13573       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13574     else
13575       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13576     CorrectElems = CorrectElems >> 8;
13577     Elems = Elems >> 8;
13578   }
13579 
13580   SDValue Shuffle =
13581       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13582                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13583 
13584   EVT VT = N->getValueType(0);
13585   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13586 
13587   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13588                                Input.getValueType().getVectorElementType(),
13589                                VT.getVectorNumElements());
13590   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13591                      DAG.getValueType(ExtVT));
13592 }
13593 
13594 // Look for build vector patterns where input operands come from sign
13595 // extended vector_extract elements of specific indices. If the correct indices
13596 // aren't used, add a vector shuffle to fix up the indices and create
13597 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13598 // during instruction selection.
13599 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13600   // This array encodes the indices that the vector sign extend instructions
13601   // extract from when extending from one type to another for both BE and LE.
13602   // The right nibble of each byte corresponds to the LE incides.
13603   // and the left nibble of each byte corresponds to the BE incides.
13604   // For example: 0x3074B8FC  byte->word
13605   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13606   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13607   // For example: 0x000070F8  byte->double word
13608   // For LE: the allowed indices are: 0x0,0x8
13609   // For BE: the allowed indices are: 0x7,0xF
13610   uint64_t TargetElems[] = {
13611       0x3074B8FC, // b->w
13612       0x000070F8, // b->d
13613       0x10325476, // h->w
13614       0x00003074, // h->d
13615       0x00001032, // w->d
13616   };
13617 
13618   uint64_t Elems = 0;
13619   int Index;
13620   SDValue Input;
13621 
13622   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13623     if (!Op)
13624       return false;
13625     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13626         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13627       return false;
13628 
13629     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13630     // of the right width.
13631     SDValue Extract = Op.getOperand(0);
13632     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13633       Extract = Extract.getOperand(0);
13634     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13635       return false;
13636 
13637     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13638     if (!ExtOp)
13639       return false;
13640 
13641     Index = ExtOp->getZExtValue();
13642     if (Input && Input != Extract.getOperand(0))
13643       return false;
13644 
13645     if (!Input)
13646       Input = Extract.getOperand(0);
13647 
13648     Elems = Elems << 8;
13649     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13650     Elems |= Index;
13651 
13652     return true;
13653   };
13654 
13655   // If the build vector operands aren't sign extended vector extracts,
13656   // of the same input vector, then return.
13657   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13658     if (!isSExtOfVecExtract(N->getOperand(i))) {
13659       return SDValue();
13660     }
13661   }
13662 
13663   // If the vector extract indicies are not correct, add the appropriate
13664   // vector_shuffle.
13665   int TgtElemArrayIdx;
13666   int InputSize = Input.getValueType().getScalarSizeInBits();
13667   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13668   if (InputSize + OutputSize == 40)
13669     TgtElemArrayIdx = 0;
13670   else if (InputSize + OutputSize == 72)
13671     TgtElemArrayIdx = 1;
13672   else if (InputSize + OutputSize == 48)
13673     TgtElemArrayIdx = 2;
13674   else if (InputSize + OutputSize == 80)
13675     TgtElemArrayIdx = 3;
13676   else if (InputSize + OutputSize == 96)
13677     TgtElemArrayIdx = 4;
13678   else
13679     return SDValue();
13680 
13681   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13682   CorrectElems = DAG.getDataLayout().isLittleEndian()
13683                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13684                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13685   if (Elems != CorrectElems) {
13686     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13687   }
13688 
13689   // Regular lowering will catch cases where a shuffle is not needed.
13690   return SDValue();
13691 }
13692 
13693 // Look for the pattern of a load from a narrow width to i128, feeding
13694 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13695 // (LXVRZX). This node represents a zero extending load that will be matched
13696 // to the Load VSX Vector Rightmost instructions.
13697 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13698   SDLoc DL(N);
13699 
13700   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13701   if (N->getValueType(0) != MVT::v1i128)
13702     return SDValue();
13703 
13704   SDValue Operand = N->getOperand(0);
13705   // Proceed with the transformation if the operand to the BUILD_VECTOR
13706   // is a load instruction.
13707   if (Operand.getOpcode() != ISD::LOAD)
13708     return SDValue();
13709 
13710   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13711   EVT MemoryType = LD->getMemoryVT();
13712 
13713   // This transformation is only valid if the we are loading either a byte,
13714   // halfword, word, or doubleword.
13715   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13716                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13717 
13718   // Ensure that the load from the narrow width is being zero extended to i128.
13719   if (!ValidLDType ||
13720       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13721        LD->getExtensionType() != ISD::EXTLOAD))
13722     return SDValue();
13723 
13724   SDValue LoadOps[] = {
13725       LD->getChain(), LD->getBasePtr(),
13726       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13727 
13728   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13729                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13730                                  LoadOps, MemoryType, LD->getMemOperand());
13731 }
13732 
13733 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13734                                                  DAGCombinerInfo &DCI) const {
13735   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13736          "Should be called with a BUILD_VECTOR node");
13737 
13738   SelectionDAG &DAG = DCI.DAG;
13739   SDLoc dl(N);
13740 
13741   if (!Subtarget.hasVSX())
13742     return SDValue();
13743 
13744   // The target independent DAG combiner will leave a build_vector of
13745   // float-to-int conversions intact. We can generate MUCH better code for
13746   // a float-to-int conversion of a vector of floats.
13747   SDValue FirstInput = N->getOperand(0);
13748   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13749     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13750     if (Reduced)
13751       return Reduced;
13752   }
13753 
13754   // If we're building a vector out of consecutive loads, just load that
13755   // vector type.
13756   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13757   if (Reduced)
13758     return Reduced;
13759 
13760   // If we're building a vector out of extended elements from another vector
13761   // we have P9 vector integer extend instructions. The code assumes legal
13762   // input types (i.e. it can't handle things like v4i16) so do not run before
13763   // legalization.
13764   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13765     Reduced = combineBVOfVecSExt(N, DAG);
13766     if (Reduced)
13767       return Reduced;
13768   }
13769 
13770   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13771   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13772   // is a load from <valid narrow width> to i128.
13773   if (Subtarget.isISA3_1()) {
13774     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13775     if (BVOfZLoad)
13776       return BVOfZLoad;
13777   }
13778 
13779   if (N->getValueType(0) != MVT::v2f64)
13780     return SDValue();
13781 
13782   // Looking for:
13783   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13784   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13785       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13786     return SDValue();
13787   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13788       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13789     return SDValue();
13790   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13791     return SDValue();
13792 
13793   SDValue Ext1 = FirstInput.getOperand(0);
13794   SDValue Ext2 = N->getOperand(1).getOperand(0);
13795   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13796      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13797     return SDValue();
13798 
13799   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13800   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13801   if (!Ext1Op || !Ext2Op)
13802     return SDValue();
13803   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13804       Ext1.getOperand(0) != Ext2.getOperand(0))
13805     return SDValue();
13806 
13807   int FirstElem = Ext1Op->getZExtValue();
13808   int SecondElem = Ext2Op->getZExtValue();
13809   int SubvecIdx;
13810   if (FirstElem == 0 && SecondElem == 1)
13811     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13812   else if (FirstElem == 2 && SecondElem == 3)
13813     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13814   else
13815     return SDValue();
13816 
13817   SDValue SrcVec = Ext1.getOperand(0);
13818   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13819     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13820   return DAG.getNode(NodeType, dl, MVT::v2f64,
13821                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13822 }
13823 
13824 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13825                                               DAGCombinerInfo &DCI) const {
13826   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13827           N->getOpcode() == ISD::UINT_TO_FP) &&
13828          "Need an int -> FP conversion node here");
13829 
13830   if (useSoftFloat() || !Subtarget.has64BitSupport())
13831     return SDValue();
13832 
13833   SelectionDAG &DAG = DCI.DAG;
13834   SDLoc dl(N);
13835   SDValue Op(N, 0);
13836 
13837   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13838   // from the hardware.
13839   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13840     return SDValue();
13841   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13842       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13843     return SDValue();
13844 
13845   SDValue FirstOperand(Op.getOperand(0));
13846   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13847     (FirstOperand.getValueType() == MVT::i8 ||
13848      FirstOperand.getValueType() == MVT::i16);
13849   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13850     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13851     bool DstDouble = Op.getValueType() == MVT::f64;
13852     unsigned ConvOp = Signed ?
13853       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13854       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13855     SDValue WidthConst =
13856       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13857                             dl, false);
13858     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13859     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13860     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13861                                          DAG.getVTList(MVT::f64, MVT::Other),
13862                                          Ops, MVT::i8, LDN->getMemOperand());
13863 
13864     // For signed conversion, we need to sign-extend the value in the VSR
13865     if (Signed) {
13866       SDValue ExtOps[] = { Ld, WidthConst };
13867       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13868       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13869     } else
13870       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13871   }
13872 
13873 
13874   // For i32 intermediate values, unfortunately, the conversion functions
13875   // leave the upper 32 bits of the value are undefined. Within the set of
13876   // scalar instructions, we have no method for zero- or sign-extending the
13877   // value. Thus, we cannot handle i32 intermediate values here.
13878   if (Op.getOperand(0).getValueType() == MVT::i32)
13879     return SDValue();
13880 
13881   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13882          "UINT_TO_FP is supported only with FPCVT");
13883 
13884   // If we have FCFIDS, then use it when converting to single-precision.
13885   // Otherwise, convert to double-precision and then round.
13886   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13887                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13888                                                             : PPCISD::FCFIDS)
13889                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13890                                                             : PPCISD::FCFID);
13891   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13892                   ? MVT::f32
13893                   : MVT::f64;
13894 
13895   // If we're converting from a float, to an int, and back to a float again,
13896   // then we don't need the store/load pair at all.
13897   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13898        Subtarget.hasFPCVT()) ||
13899       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13900     SDValue Src = Op.getOperand(0).getOperand(0);
13901     if (Src.getValueType() == MVT::f32) {
13902       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13903       DCI.AddToWorklist(Src.getNode());
13904     } else if (Src.getValueType() != MVT::f64) {
13905       // Make sure that we don't pick up a ppc_fp128 source value.
13906       return SDValue();
13907     }
13908 
13909     unsigned FCTOp =
13910       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13911                                                         PPCISD::FCTIDUZ;
13912 
13913     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13914     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13915 
13916     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13917       FP = DAG.getNode(ISD::FP_ROUND, dl,
13918                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13919       DCI.AddToWorklist(FP.getNode());
13920     }
13921 
13922     return FP;
13923   }
13924 
13925   return SDValue();
13926 }
13927 
13928 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13929 // builtins) into loads with swaps.
13930 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13931                                               DAGCombinerInfo &DCI) const {
13932   SelectionDAG &DAG = DCI.DAG;
13933   SDLoc dl(N);
13934   SDValue Chain;
13935   SDValue Base;
13936   MachineMemOperand *MMO;
13937 
13938   switch (N->getOpcode()) {
13939   default:
13940     llvm_unreachable("Unexpected opcode for little endian VSX load");
13941   case ISD::LOAD: {
13942     LoadSDNode *LD = cast<LoadSDNode>(N);
13943     Chain = LD->getChain();
13944     Base = LD->getBasePtr();
13945     MMO = LD->getMemOperand();
13946     // If the MMO suggests this isn't a load of a full vector, leave
13947     // things alone.  For a built-in, we have to make the change for
13948     // correctness, so if there is a size problem that will be a bug.
13949     if (MMO->getSize() < 16)
13950       return SDValue();
13951     break;
13952   }
13953   case ISD::INTRINSIC_W_CHAIN: {
13954     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13955     Chain = Intrin->getChain();
13956     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13957     // us what we want. Get operand 2 instead.
13958     Base = Intrin->getOperand(2);
13959     MMO = Intrin->getMemOperand();
13960     break;
13961   }
13962   }
13963 
13964   MVT VecTy = N->getValueType(0).getSimpleVT();
13965 
13966   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13967   // aligned and the type is a vector with elements up to 4 bytes
13968   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13969       VecTy.getScalarSizeInBits() <= 32) {
13970     return SDValue();
13971   }
13972 
13973   SDValue LoadOps[] = { Chain, Base };
13974   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13975                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13976                                          LoadOps, MVT::v2f64, MMO);
13977 
13978   DCI.AddToWorklist(Load.getNode());
13979   Chain = Load.getValue(1);
13980   SDValue Swap = DAG.getNode(
13981       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13982   DCI.AddToWorklist(Swap.getNode());
13983 
13984   // Add a bitcast if the resulting load type doesn't match v2f64.
13985   if (VecTy != MVT::v2f64) {
13986     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13987     DCI.AddToWorklist(N.getNode());
13988     // Package {bitcast value, swap's chain} to match Load's shape.
13989     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13990                        N, Swap.getValue(1));
13991   }
13992 
13993   return Swap;
13994 }
13995 
13996 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13997 // builtins) into stores with swaps.
13998 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13999                                                DAGCombinerInfo &DCI) const {
14000   SelectionDAG &DAG = DCI.DAG;
14001   SDLoc dl(N);
14002   SDValue Chain;
14003   SDValue Base;
14004   unsigned SrcOpnd;
14005   MachineMemOperand *MMO;
14006 
14007   switch (N->getOpcode()) {
14008   default:
14009     llvm_unreachable("Unexpected opcode for little endian VSX store");
14010   case ISD::STORE: {
14011     StoreSDNode *ST = cast<StoreSDNode>(N);
14012     Chain = ST->getChain();
14013     Base = ST->getBasePtr();
14014     MMO = ST->getMemOperand();
14015     SrcOpnd = 1;
14016     // If the MMO suggests this isn't a store of a full vector, leave
14017     // things alone.  For a built-in, we have to make the change for
14018     // correctness, so if there is a size problem that will be a bug.
14019     if (MMO->getSize() < 16)
14020       return SDValue();
14021     break;
14022   }
14023   case ISD::INTRINSIC_VOID: {
14024     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14025     Chain = Intrin->getChain();
14026     // Intrin->getBasePtr() oddly does not get what we want.
14027     Base = Intrin->getOperand(3);
14028     MMO = Intrin->getMemOperand();
14029     SrcOpnd = 2;
14030     break;
14031   }
14032   }
14033 
14034   SDValue Src = N->getOperand(SrcOpnd);
14035   MVT VecTy = Src.getValueType().getSimpleVT();
14036 
14037   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14038   // aligned and the type is a vector with elements up to 4 bytes
14039   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14040       VecTy.getScalarSizeInBits() <= 32) {
14041     return SDValue();
14042   }
14043 
14044   // All stores are done as v2f64 and possible bit cast.
14045   if (VecTy != MVT::v2f64) {
14046     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14047     DCI.AddToWorklist(Src.getNode());
14048   }
14049 
14050   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14051                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14052   DCI.AddToWorklist(Swap.getNode());
14053   Chain = Swap.getValue(1);
14054   SDValue StoreOps[] = { Chain, Swap, Base };
14055   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14056                                           DAG.getVTList(MVT::Other),
14057                                           StoreOps, VecTy, MMO);
14058   DCI.AddToWorklist(Store.getNode());
14059   return Store;
14060 }
14061 
14062 // Handle DAG combine for STORE (FP_TO_INT F).
14063 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14064                                                DAGCombinerInfo &DCI) const {
14065 
14066   SelectionDAG &DAG = DCI.DAG;
14067   SDLoc dl(N);
14068   unsigned Opcode = N->getOperand(1).getOpcode();
14069 
14070   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14071          && "Not a FP_TO_INT Instruction!");
14072 
14073   SDValue Val = N->getOperand(1).getOperand(0);
14074   EVT Op1VT = N->getOperand(1).getValueType();
14075   EVT ResVT = Val.getValueType();
14076 
14077   // Floating point types smaller than 32 bits are not legal on Power.
14078   if (ResVT.getScalarSizeInBits() < 32)
14079     return SDValue();
14080 
14081   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14082   bool ValidTypeForStoreFltAsInt =
14083         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14084          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14085 
14086   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14087       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14088     return SDValue();
14089 
14090   // Extend f32 values to f64
14091   if (ResVT.getScalarSizeInBits() == 32) {
14092     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14093     DCI.AddToWorklist(Val.getNode());
14094   }
14095 
14096   // Set signed or unsigned conversion opcode.
14097   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14098                           PPCISD::FP_TO_SINT_IN_VSR :
14099                           PPCISD::FP_TO_UINT_IN_VSR;
14100 
14101   Val = DAG.getNode(ConvOpcode,
14102                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14103   DCI.AddToWorklist(Val.getNode());
14104 
14105   // Set number of bytes being converted.
14106   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14107   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14108                     DAG.getIntPtrConstant(ByteSize, dl, false),
14109                     DAG.getValueType(Op1VT) };
14110 
14111   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14112           DAG.getVTList(MVT::Other), Ops,
14113           cast<StoreSDNode>(N)->getMemoryVT(),
14114           cast<StoreSDNode>(N)->getMemOperand());
14115 
14116   DCI.AddToWorklist(Val.getNode());
14117   return Val;
14118 }
14119 
14120 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14121   // Check that the source of the element keeps flipping
14122   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14123   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14124   for (int i = 1, e = Mask.size(); i < e; i++) {
14125     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14126       return false;
14127     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14128       return false;
14129     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14130   }
14131   return true;
14132 }
14133 
14134 static bool isSplatBV(SDValue Op) {
14135   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14136     return false;
14137   SDValue FirstOp;
14138 
14139   // Find first non-undef input.
14140   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14141     FirstOp = Op.getOperand(i);
14142     if (!FirstOp.isUndef())
14143       break;
14144   }
14145 
14146   // All inputs are undef or the same as the first non-undef input.
14147   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14148     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14149       return false;
14150   return true;
14151 }
14152 
14153 static SDValue isScalarToVec(SDValue Op) {
14154   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14155     return Op;
14156   if (Op.getOpcode() != ISD::BITCAST)
14157     return SDValue();
14158   Op = Op.getOperand(0);
14159   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14160     return Op;
14161   return SDValue();
14162 }
14163 
14164 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14165                                             int LHSMaxIdx, int RHSMinIdx,
14166                                             int RHSMaxIdx, int HalfVec) {
14167   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14168     int Idx = ShuffV[i];
14169     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14170       ShuffV[i] += HalfVec;
14171   }
14172   return;
14173 }
14174 
14175 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14176 // the original is:
14177 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14178 // In such a case, just change the shuffle mask to extract the element
14179 // from the permuted index.
14180 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14181   SDLoc dl(OrigSToV);
14182   EVT VT = OrigSToV.getValueType();
14183   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14184          "Expecting a SCALAR_TO_VECTOR here");
14185   SDValue Input = OrigSToV.getOperand(0);
14186 
14187   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14188     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14189     SDValue OrigVector = Input.getOperand(0);
14190 
14191     // Can't handle non-const element indices or different vector types
14192     // for the input to the extract and the output of the scalar_to_vector.
14193     if (Idx && VT == OrigVector.getValueType()) {
14194       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14195       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14196       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14197     }
14198   }
14199   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14200                      OrigSToV.getOperand(0));
14201 }
14202 
14203 // On little endian subtargets, combine shuffles such as:
14204 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14205 // into:
14206 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14207 // because the latter can be matched to a single instruction merge.
14208 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14209 // to put the value into element zero. Adjust the shuffle mask so that the
14210 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14211 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14212                                                 SelectionDAG &DAG) const {
14213   SDValue LHS = SVN->getOperand(0);
14214   SDValue RHS = SVN->getOperand(1);
14215   auto Mask = SVN->getMask();
14216   int NumElts = LHS.getValueType().getVectorNumElements();
14217   SDValue Res(SVN, 0);
14218   SDLoc dl(SVN);
14219 
14220   // None of these combines are useful on big endian systems since the ISA
14221   // already has a big endian bias.
14222   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14223     return Res;
14224 
14225   // If this is not a shuffle of a shuffle and the first element comes from
14226   // the second vector, canonicalize to the commuted form. This will make it
14227   // more likely to match one of the single instruction patterns.
14228   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14229       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14230     std::swap(LHS, RHS);
14231     Res = DAG.getCommutedVectorShuffle(*SVN);
14232     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14233   }
14234 
14235   // Adjust the shuffle mask if either input vector comes from a
14236   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14237   // form (to prevent the need for a swap).
14238   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14239   SDValue SToVLHS = isScalarToVec(LHS);
14240   SDValue SToVRHS = isScalarToVec(RHS);
14241   if (SToVLHS || SToVRHS) {
14242     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14243                             : SToVRHS.getValueType().getVectorNumElements();
14244     int NumEltsOut = ShuffV.size();
14245 
14246     // Initially assume that neither input is permuted. These will be adjusted
14247     // accordingly if either input is.
14248     int LHSMaxIdx = -1;
14249     int RHSMinIdx = -1;
14250     int RHSMaxIdx = -1;
14251     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14252 
14253     // Get the permuted scalar to vector nodes for the source(s) that come from
14254     // ISD::SCALAR_TO_VECTOR.
14255     if (SToVLHS) {
14256       // Set up the values for the shuffle vector fixup.
14257       LHSMaxIdx = NumEltsOut / NumEltsIn;
14258       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14259       if (SToVLHS.getValueType() != LHS.getValueType())
14260         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14261       LHS = SToVLHS;
14262     }
14263     if (SToVRHS) {
14264       RHSMinIdx = NumEltsOut;
14265       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14266       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14267       if (SToVRHS.getValueType() != RHS.getValueType())
14268         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14269       RHS = SToVRHS;
14270     }
14271 
14272     // Fix up the shuffle mask to reflect where the desired element actually is.
14273     // The minimum and maximum indices that correspond to element zero for both
14274     // the LHS and RHS are computed and will control which shuffle mask entries
14275     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14276     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14277     // HalfVec to refer to the corresponding element in the permuted vector.
14278     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14279                                     HalfVec);
14280     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14281 
14282     // We may have simplified away the shuffle. We won't be able to do anything
14283     // further with it here.
14284     if (!isa<ShuffleVectorSDNode>(Res))
14285       return Res;
14286     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14287   }
14288 
14289   // The common case after we commuted the shuffle is that the RHS is a splat
14290   // and we have elements coming in from the splat at indices that are not
14291   // conducive to using a merge.
14292   // Example:
14293   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14294   if (!isSplatBV(RHS))
14295     return Res;
14296 
14297   // We are looking for a mask such that all even elements are from
14298   // one vector and all odd elements from the other.
14299   if (!isAlternatingShuffMask(Mask, NumElts))
14300     return Res;
14301 
14302   // Adjust the mask so we are pulling in the same index from the splat
14303   // as the index from the interesting vector in consecutive elements.
14304   // Example (even elements from first vector):
14305   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14306   if (Mask[0] < NumElts)
14307     for (int i = 1, e = Mask.size(); i < e; i += 2)
14308       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14309   // Example (odd elements from first vector):
14310   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14311   else
14312     for (int i = 0, e = Mask.size(); i < e; i += 2)
14313       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14314 
14315   // If the RHS has undefs, we need to remove them since we may have created
14316   // a shuffle that adds those instead of the splat value.
14317   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14318   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14319 
14320   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14321   return Res;
14322 }
14323 
14324 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14325                                                 LSBaseSDNode *LSBase,
14326                                                 DAGCombinerInfo &DCI) const {
14327   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14328         "Not a reverse memop pattern!");
14329 
14330   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14331     auto Mask = SVN->getMask();
14332     int i = 0;
14333     auto I = Mask.rbegin();
14334     auto E = Mask.rend();
14335 
14336     for (; I != E; ++I) {
14337       if (*I != i)
14338         return false;
14339       i++;
14340     }
14341     return true;
14342   };
14343 
14344   SelectionDAG &DAG = DCI.DAG;
14345   EVT VT = SVN->getValueType(0);
14346 
14347   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14348     return SDValue();
14349 
14350   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14351   // See comment in PPCVSXSwapRemoval.cpp.
14352   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14353   if (!Subtarget.hasP9Vector())
14354     return SDValue();
14355 
14356   if(!IsElementReverse(SVN))
14357     return SDValue();
14358 
14359   if (LSBase->getOpcode() == ISD::LOAD) {
14360     SDLoc dl(SVN);
14361     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14362     return DAG.getMemIntrinsicNode(
14363         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14364         LSBase->getMemoryVT(), LSBase->getMemOperand());
14365   }
14366 
14367   if (LSBase->getOpcode() == ISD::STORE) {
14368     SDLoc dl(LSBase);
14369     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14370                           LSBase->getBasePtr()};
14371     return DAG.getMemIntrinsicNode(
14372         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14373         LSBase->getMemoryVT(), LSBase->getMemOperand());
14374   }
14375 
14376   llvm_unreachable("Expected a load or store node here");
14377 }
14378 
14379 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14380                                              DAGCombinerInfo &DCI) const {
14381   SelectionDAG &DAG = DCI.DAG;
14382   SDLoc dl(N);
14383   switch (N->getOpcode()) {
14384   default: break;
14385   case ISD::ADD:
14386     return combineADD(N, DCI);
14387   case ISD::SHL:
14388     return combineSHL(N, DCI);
14389   case ISD::SRA:
14390     return combineSRA(N, DCI);
14391   case ISD::SRL:
14392     return combineSRL(N, DCI);
14393   case ISD::MUL:
14394     return combineMUL(N, DCI);
14395   case ISD::FMA:
14396   case PPCISD::FNMSUB:
14397     return combineFMALike(N, DCI);
14398   case PPCISD::SHL:
14399     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14400         return N->getOperand(0);
14401     break;
14402   case PPCISD::SRL:
14403     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14404         return N->getOperand(0);
14405     break;
14406   case PPCISD::SRA:
14407     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14408       if (C->isNullValue() ||   //  0 >>s V -> 0.
14409           C->isAllOnesValue())    // -1 >>s V -> -1.
14410         return N->getOperand(0);
14411     }
14412     break;
14413   case ISD::SIGN_EXTEND:
14414   case ISD::ZERO_EXTEND:
14415   case ISD::ANY_EXTEND:
14416     return DAGCombineExtBoolTrunc(N, DCI);
14417   case ISD::TRUNCATE:
14418     return combineTRUNCATE(N, DCI);
14419   case ISD::SETCC:
14420     if (SDValue CSCC = combineSetCC(N, DCI))
14421       return CSCC;
14422     LLVM_FALLTHROUGH;
14423   case ISD::SELECT_CC:
14424     return DAGCombineTruncBoolExt(N, DCI);
14425   case ISD::SINT_TO_FP:
14426   case ISD::UINT_TO_FP:
14427     return combineFPToIntToFP(N, DCI);
14428   case ISD::VECTOR_SHUFFLE:
14429     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14430       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14431       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14432     }
14433     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14434   case ISD::STORE: {
14435 
14436     EVT Op1VT = N->getOperand(1).getValueType();
14437     unsigned Opcode = N->getOperand(1).getOpcode();
14438 
14439     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14440       SDValue Val= combineStoreFPToInt(N, DCI);
14441       if (Val)
14442         return Val;
14443     }
14444 
14445     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14446       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14447       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14448       if (Val)
14449         return Val;
14450     }
14451 
14452     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14453     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14454         N->getOperand(1).getNode()->hasOneUse() &&
14455         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14456          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14457 
14458       // STBRX can only handle simple types and it makes no sense to store less
14459       // two bytes in byte-reversed order.
14460       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14461       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14462         break;
14463 
14464       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14465       // Do an any-extend to 32-bits if this is a half-word input.
14466       if (BSwapOp.getValueType() == MVT::i16)
14467         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14468 
14469       // If the type of BSWAP operand is wider than stored memory width
14470       // it need to be shifted to the right side before STBRX.
14471       if (Op1VT.bitsGT(mVT)) {
14472         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14473         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14474                               DAG.getConstant(Shift, dl, MVT::i32));
14475         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14476         if (Op1VT == MVT::i64)
14477           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14478       }
14479 
14480       SDValue Ops[] = {
14481         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14482       };
14483       return
14484         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14485                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14486                                 cast<StoreSDNode>(N)->getMemOperand());
14487     }
14488 
14489     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14490     // So it can increase the chance of CSE constant construction.
14491     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14492         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14493       // Need to sign-extended to 64-bits to handle negative values.
14494       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14495       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14496                                     MemVT.getSizeInBits());
14497       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14498 
14499       // DAG.getTruncStore() can't be used here because it doesn't accept
14500       // the general (base + offset) addressing mode.
14501       // So we use UpdateNodeOperands and setTruncatingStore instead.
14502       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14503                              N->getOperand(3));
14504       cast<StoreSDNode>(N)->setTruncatingStore(true);
14505       return SDValue(N, 0);
14506     }
14507 
14508     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14509     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14510     if (Op1VT.isSimple()) {
14511       MVT StoreVT = Op1VT.getSimpleVT();
14512       if (Subtarget.needsSwapsForVSXMemOps() &&
14513           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14514            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14515         return expandVSXStoreForLE(N, DCI);
14516     }
14517     break;
14518   }
14519   case ISD::LOAD: {
14520     LoadSDNode *LD = cast<LoadSDNode>(N);
14521     EVT VT = LD->getValueType(0);
14522 
14523     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14524     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14525     if (VT.isSimple()) {
14526       MVT LoadVT = VT.getSimpleVT();
14527       if (Subtarget.needsSwapsForVSXMemOps() &&
14528           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14529            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14530         return expandVSXLoadForLE(N, DCI);
14531     }
14532 
14533     // We sometimes end up with a 64-bit integer load, from which we extract
14534     // two single-precision floating-point numbers. This happens with
14535     // std::complex<float>, and other similar structures, because of the way we
14536     // canonicalize structure copies. However, if we lack direct moves,
14537     // then the final bitcasts from the extracted integer values to the
14538     // floating-point numbers turn into store/load pairs. Even with direct moves,
14539     // just loading the two floating-point numbers is likely better.
14540     auto ReplaceTwoFloatLoad = [&]() {
14541       if (VT != MVT::i64)
14542         return false;
14543 
14544       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14545           LD->isVolatile())
14546         return false;
14547 
14548       //  We're looking for a sequence like this:
14549       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14550       //      t16: i64 = srl t13, Constant:i32<32>
14551       //    t17: i32 = truncate t16
14552       //  t18: f32 = bitcast t17
14553       //    t19: i32 = truncate t13
14554       //  t20: f32 = bitcast t19
14555 
14556       if (!LD->hasNUsesOfValue(2, 0))
14557         return false;
14558 
14559       auto UI = LD->use_begin();
14560       while (UI.getUse().getResNo() != 0) ++UI;
14561       SDNode *Trunc = *UI++;
14562       while (UI.getUse().getResNo() != 0) ++UI;
14563       SDNode *RightShift = *UI;
14564       if (Trunc->getOpcode() != ISD::TRUNCATE)
14565         std::swap(Trunc, RightShift);
14566 
14567       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14568           Trunc->getValueType(0) != MVT::i32 ||
14569           !Trunc->hasOneUse())
14570         return false;
14571       if (RightShift->getOpcode() != ISD::SRL ||
14572           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14573           RightShift->getConstantOperandVal(1) != 32 ||
14574           !RightShift->hasOneUse())
14575         return false;
14576 
14577       SDNode *Trunc2 = *RightShift->use_begin();
14578       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14579           Trunc2->getValueType(0) != MVT::i32 ||
14580           !Trunc2->hasOneUse())
14581         return false;
14582 
14583       SDNode *Bitcast = *Trunc->use_begin();
14584       SDNode *Bitcast2 = *Trunc2->use_begin();
14585 
14586       if (Bitcast->getOpcode() != ISD::BITCAST ||
14587           Bitcast->getValueType(0) != MVT::f32)
14588         return false;
14589       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14590           Bitcast2->getValueType(0) != MVT::f32)
14591         return false;
14592 
14593       if (Subtarget.isLittleEndian())
14594         std::swap(Bitcast, Bitcast2);
14595 
14596       // Bitcast has the second float (in memory-layout order) and Bitcast2
14597       // has the first one.
14598 
14599       SDValue BasePtr = LD->getBasePtr();
14600       if (LD->isIndexed()) {
14601         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14602                "Non-pre-inc AM on PPC?");
14603         BasePtr =
14604           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14605                       LD->getOffset());
14606       }
14607 
14608       auto MMOFlags =
14609           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14610       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14611                                       LD->getPointerInfo(), LD->getAlignment(),
14612                                       MMOFlags, LD->getAAInfo());
14613       SDValue AddPtr =
14614         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14615                     BasePtr, DAG.getIntPtrConstant(4, dl));
14616       SDValue FloatLoad2 = DAG.getLoad(
14617           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14618           LD->getPointerInfo().getWithOffset(4),
14619           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14620 
14621       if (LD->isIndexed()) {
14622         // Note that DAGCombine should re-form any pre-increment load(s) from
14623         // what is produced here if that makes sense.
14624         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14625       }
14626 
14627       DCI.CombineTo(Bitcast2, FloatLoad);
14628       DCI.CombineTo(Bitcast, FloatLoad2);
14629 
14630       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14631                                     SDValue(FloatLoad2.getNode(), 1));
14632       return true;
14633     };
14634 
14635     if (ReplaceTwoFloatLoad())
14636       return SDValue(N, 0);
14637 
14638     EVT MemVT = LD->getMemoryVT();
14639     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14640     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14641     if (LD->isUnindexed() && VT.isVector() &&
14642         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14643           // P8 and later hardware should just use LOAD.
14644           !Subtarget.hasP8Vector() &&
14645           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14646            VT == MVT::v4f32))) &&
14647         LD->getAlign() < ABIAlignment) {
14648       // This is a type-legal unaligned Altivec load.
14649       SDValue Chain = LD->getChain();
14650       SDValue Ptr = LD->getBasePtr();
14651       bool isLittleEndian = Subtarget.isLittleEndian();
14652 
14653       // This implements the loading of unaligned vectors as described in
14654       // the venerable Apple Velocity Engine overview. Specifically:
14655       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14656       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14657       //
14658       // The general idea is to expand a sequence of one or more unaligned
14659       // loads into an alignment-based permutation-control instruction (lvsl
14660       // or lvsr), a series of regular vector loads (which always truncate
14661       // their input address to an aligned address), and a series of
14662       // permutations.  The results of these permutations are the requested
14663       // loaded values.  The trick is that the last "extra" load is not taken
14664       // from the address you might suspect (sizeof(vector) bytes after the
14665       // last requested load), but rather sizeof(vector) - 1 bytes after the
14666       // last requested vector. The point of this is to avoid a page fault if
14667       // the base address happened to be aligned. This works because if the
14668       // base address is aligned, then adding less than a full vector length
14669       // will cause the last vector in the sequence to be (re)loaded.
14670       // Otherwise, the next vector will be fetched as you might suspect was
14671       // necessary.
14672 
14673       // We might be able to reuse the permutation generation from
14674       // a different base address offset from this one by an aligned amount.
14675       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14676       // optimization later.
14677       Intrinsic::ID Intr, IntrLD, IntrPerm;
14678       MVT PermCntlTy, PermTy, LDTy;
14679       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14680                             : Intrinsic::ppc_altivec_lvsl;
14681       IntrLD = Intrinsic::ppc_altivec_lvx;
14682       IntrPerm = Intrinsic::ppc_altivec_vperm;
14683       PermCntlTy = MVT::v16i8;
14684       PermTy = MVT::v4i32;
14685       LDTy = MVT::v4i32;
14686 
14687       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14688 
14689       // Create the new MMO for the new base load. It is like the original MMO,
14690       // but represents an area in memory almost twice the vector size centered
14691       // on the original address. If the address is unaligned, we might start
14692       // reading up to (sizeof(vector)-1) bytes below the address of the
14693       // original unaligned load.
14694       MachineFunction &MF = DAG.getMachineFunction();
14695       MachineMemOperand *BaseMMO =
14696         MF.getMachineMemOperand(LD->getMemOperand(),
14697                                 -(long)MemVT.getStoreSize()+1,
14698                                 2*MemVT.getStoreSize()-1);
14699 
14700       // Create the new base load.
14701       SDValue LDXIntID =
14702           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14703       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14704       SDValue BaseLoad =
14705         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14706                                 DAG.getVTList(PermTy, MVT::Other),
14707                                 BaseLoadOps, LDTy, BaseMMO);
14708 
14709       // Note that the value of IncOffset (which is provided to the next
14710       // load's pointer info offset value, and thus used to calculate the
14711       // alignment), and the value of IncValue (which is actually used to
14712       // increment the pointer value) are different! This is because we
14713       // require the next load to appear to be aligned, even though it
14714       // is actually offset from the base pointer by a lesser amount.
14715       int IncOffset = VT.getSizeInBits() / 8;
14716       int IncValue = IncOffset;
14717 
14718       // Walk (both up and down) the chain looking for another load at the real
14719       // (aligned) offset (the alignment of the other load does not matter in
14720       // this case). If found, then do not use the offset reduction trick, as
14721       // that will prevent the loads from being later combined (as they would
14722       // otherwise be duplicates).
14723       if (!findConsecutiveLoad(LD, DAG))
14724         --IncValue;
14725 
14726       SDValue Increment =
14727           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14728       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14729 
14730       MachineMemOperand *ExtraMMO =
14731         MF.getMachineMemOperand(LD->getMemOperand(),
14732                                 1, 2*MemVT.getStoreSize()-1);
14733       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14734       SDValue ExtraLoad =
14735         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14736                                 DAG.getVTList(PermTy, MVT::Other),
14737                                 ExtraLoadOps, LDTy, ExtraMMO);
14738 
14739       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14740         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14741 
14742       // Because vperm has a big-endian bias, we must reverse the order
14743       // of the input vectors and complement the permute control vector
14744       // when generating little endian code.  We have already handled the
14745       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14746       // and ExtraLoad here.
14747       SDValue Perm;
14748       if (isLittleEndian)
14749         Perm = BuildIntrinsicOp(IntrPerm,
14750                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14751       else
14752         Perm = BuildIntrinsicOp(IntrPerm,
14753                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14754 
14755       if (VT != PermTy)
14756         Perm = Subtarget.hasAltivec()
14757                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14758                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14759                                  DAG.getTargetConstant(1, dl, MVT::i64));
14760                                // second argument is 1 because this rounding
14761                                // is always exact.
14762 
14763       // The output of the permutation is our loaded result, the TokenFactor is
14764       // our new chain.
14765       DCI.CombineTo(N, Perm, TF);
14766       return SDValue(N, 0);
14767     }
14768     }
14769     break;
14770     case ISD::INTRINSIC_WO_CHAIN: {
14771       bool isLittleEndian = Subtarget.isLittleEndian();
14772       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14773       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14774                                            : Intrinsic::ppc_altivec_lvsl);
14775       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14776         SDValue Add = N->getOperand(1);
14777 
14778         int Bits = 4 /* 16 byte alignment */;
14779 
14780         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14781                                   APInt::getAllOnesValue(Bits /* alignment */)
14782                                       .zext(Add.getScalarValueSizeInBits()))) {
14783           SDNode *BasePtr = Add->getOperand(0).getNode();
14784           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14785                                     UE = BasePtr->use_end();
14786                UI != UE; ++UI) {
14787             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14788                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14789                     IID) {
14790               // We've found another LVSL/LVSR, and this address is an aligned
14791               // multiple of that one. The results will be the same, so use the
14792               // one we've just found instead.
14793 
14794               return SDValue(*UI, 0);
14795             }
14796           }
14797         }
14798 
14799         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14800           SDNode *BasePtr = Add->getOperand(0).getNode();
14801           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14802                UE = BasePtr->use_end(); UI != UE; ++UI) {
14803             if (UI->getOpcode() == ISD::ADD &&
14804                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14805                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14806                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14807                 (1ULL << Bits) == 0) {
14808               SDNode *OtherAdd = *UI;
14809               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14810                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14811                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14812                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14813                   return SDValue(*VI, 0);
14814                 }
14815               }
14816             }
14817           }
14818         }
14819       }
14820 
14821       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14822       // Expose the vabsduw/h/b opportunity for down stream
14823       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14824           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14825            IID == Intrinsic::ppc_altivec_vmaxsh ||
14826            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14827         SDValue V1 = N->getOperand(1);
14828         SDValue V2 = N->getOperand(2);
14829         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14830              V1.getSimpleValueType() == MVT::v8i16 ||
14831              V1.getSimpleValueType() == MVT::v16i8) &&
14832             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14833           // (0-a, a)
14834           if (V1.getOpcode() == ISD::SUB &&
14835               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14836               V1.getOperand(1) == V2) {
14837             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14838           }
14839           // (a, 0-a)
14840           if (V2.getOpcode() == ISD::SUB &&
14841               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14842               V2.getOperand(1) == V1) {
14843             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14844           }
14845           // (x-y, y-x)
14846           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14847               V1.getOperand(0) == V2.getOperand(1) &&
14848               V1.getOperand(1) == V2.getOperand(0)) {
14849             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14850           }
14851         }
14852       }
14853     }
14854 
14855     break;
14856   case ISD::INTRINSIC_W_CHAIN:
14857     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14858     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14859     if (Subtarget.needsSwapsForVSXMemOps()) {
14860       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14861       default:
14862         break;
14863       case Intrinsic::ppc_vsx_lxvw4x:
14864       case Intrinsic::ppc_vsx_lxvd2x:
14865         return expandVSXLoadForLE(N, DCI);
14866       }
14867     }
14868     break;
14869   case ISD::INTRINSIC_VOID:
14870     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14871     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14872     if (Subtarget.needsSwapsForVSXMemOps()) {
14873       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14874       default:
14875         break;
14876       case Intrinsic::ppc_vsx_stxvw4x:
14877       case Intrinsic::ppc_vsx_stxvd2x:
14878         return expandVSXStoreForLE(N, DCI);
14879       }
14880     }
14881     break;
14882   case ISD::BSWAP:
14883     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14884     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14885         N->getOperand(0).hasOneUse() &&
14886         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14887          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14888           N->getValueType(0) == MVT::i64))) {
14889       SDValue Load = N->getOperand(0);
14890       LoadSDNode *LD = cast<LoadSDNode>(Load);
14891       // Create the byte-swapping load.
14892       SDValue Ops[] = {
14893         LD->getChain(),    // Chain
14894         LD->getBasePtr(),  // Ptr
14895         DAG.getValueType(N->getValueType(0)) // VT
14896       };
14897       SDValue BSLoad =
14898         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14899                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14900                                               MVT::i64 : MVT::i32, MVT::Other),
14901                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14902 
14903       // If this is an i16 load, insert the truncate.
14904       SDValue ResVal = BSLoad;
14905       if (N->getValueType(0) == MVT::i16)
14906         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14907 
14908       // First, combine the bswap away.  This makes the value produced by the
14909       // load dead.
14910       DCI.CombineTo(N, ResVal);
14911 
14912       // Next, combine the load away, we give it a bogus result value but a real
14913       // chain result.  The result value is dead because the bswap is dead.
14914       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14915 
14916       // Return N so it doesn't get rechecked!
14917       return SDValue(N, 0);
14918     }
14919     break;
14920   case PPCISD::VCMP:
14921     // If a VCMPo node already exists with exactly the same operands as this
14922     // node, use its result instead of this node (VCMPo computes both a CR6 and
14923     // a normal output).
14924     //
14925     if (!N->getOperand(0).hasOneUse() &&
14926         !N->getOperand(1).hasOneUse() &&
14927         !N->getOperand(2).hasOneUse()) {
14928 
14929       // Scan all of the users of the LHS, looking for VCMPo's that match.
14930       SDNode *VCMPoNode = nullptr;
14931 
14932       SDNode *LHSN = N->getOperand(0).getNode();
14933       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14934            UI != E; ++UI)
14935         if (UI->getOpcode() == PPCISD::VCMPo &&
14936             UI->getOperand(1) == N->getOperand(1) &&
14937             UI->getOperand(2) == N->getOperand(2) &&
14938             UI->getOperand(0) == N->getOperand(0)) {
14939           VCMPoNode = *UI;
14940           break;
14941         }
14942 
14943       // If there is no VCMPo node, or if the flag value has a single use, don't
14944       // transform this.
14945       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14946         break;
14947 
14948       // Look at the (necessarily single) use of the flag value.  If it has a
14949       // chain, this transformation is more complex.  Note that multiple things
14950       // could use the value result, which we should ignore.
14951       SDNode *FlagUser = nullptr;
14952       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14953            FlagUser == nullptr; ++UI) {
14954         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14955         SDNode *User = *UI;
14956         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14957           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14958             FlagUser = User;
14959             break;
14960           }
14961         }
14962       }
14963 
14964       // If the user is a MFOCRF instruction, we know this is safe.
14965       // Otherwise we give up for right now.
14966       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14967         return SDValue(VCMPoNode, 0);
14968     }
14969     break;
14970   case ISD::BRCOND: {
14971     SDValue Cond = N->getOperand(1);
14972     SDValue Target = N->getOperand(2);
14973 
14974     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14975         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14976           Intrinsic::loop_decrement) {
14977 
14978       // We now need to make the intrinsic dead (it cannot be instruction
14979       // selected).
14980       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14981       assert(Cond.getNode()->hasOneUse() &&
14982              "Counter decrement has more than one use");
14983 
14984       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14985                          N->getOperand(0), Target);
14986     }
14987   }
14988   break;
14989   case ISD::BR_CC: {
14990     // If this is a branch on an altivec predicate comparison, lower this so
14991     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14992     // lowering is done pre-legalize, because the legalizer lowers the predicate
14993     // compare down to code that is difficult to reassemble.
14994     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14995     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14996 
14997     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14998     // value. If so, pass-through the AND to get to the intrinsic.
14999     if (LHS.getOpcode() == ISD::AND &&
15000         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15001         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15002           Intrinsic::loop_decrement &&
15003         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15004         !isNullConstant(LHS.getOperand(1)))
15005       LHS = LHS.getOperand(0);
15006 
15007     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15008         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15009           Intrinsic::loop_decrement &&
15010         isa<ConstantSDNode>(RHS)) {
15011       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15012              "Counter decrement comparison is not EQ or NE");
15013 
15014       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15015       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15016                     (CC == ISD::SETNE && !Val);
15017 
15018       // We now need to make the intrinsic dead (it cannot be instruction
15019       // selected).
15020       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15021       assert(LHS.getNode()->hasOneUse() &&
15022              "Counter decrement has more than one use");
15023 
15024       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15025                          N->getOperand(0), N->getOperand(4));
15026     }
15027 
15028     int CompareOpc;
15029     bool isDot;
15030 
15031     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15032         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15033         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15034       assert(isDot && "Can't compare against a vector result!");
15035 
15036       // If this is a comparison against something other than 0/1, then we know
15037       // that the condition is never/always true.
15038       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15039       if (Val != 0 && Val != 1) {
15040         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15041           return N->getOperand(0);
15042         // Always !=, turn it into an unconditional branch.
15043         return DAG.getNode(ISD::BR, dl, MVT::Other,
15044                            N->getOperand(0), N->getOperand(4));
15045       }
15046 
15047       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15048 
15049       // Create the PPCISD altivec 'dot' comparison node.
15050       SDValue Ops[] = {
15051         LHS.getOperand(2),  // LHS of compare
15052         LHS.getOperand(3),  // RHS of compare
15053         DAG.getConstant(CompareOpc, dl, MVT::i32)
15054       };
15055       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15056       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15057 
15058       // Unpack the result based on how the target uses it.
15059       PPC::Predicate CompOpc;
15060       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15061       default:  // Can't happen, don't crash on invalid number though.
15062       case 0:   // Branch on the value of the EQ bit of CR6.
15063         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15064         break;
15065       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15066         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15067         break;
15068       case 2:   // Branch on the value of the LT bit of CR6.
15069         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15070         break;
15071       case 3:   // Branch on the inverted value of the LT bit of CR6.
15072         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15073         break;
15074       }
15075 
15076       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15077                          DAG.getConstant(CompOpc, dl, MVT::i32),
15078                          DAG.getRegister(PPC::CR6, MVT::i32),
15079                          N->getOperand(4), CompNode.getValue(1));
15080     }
15081     break;
15082   }
15083   case ISD::BUILD_VECTOR:
15084     return DAGCombineBuildVector(N, DCI);
15085   case ISD::ABS:
15086     return combineABS(N, DCI);
15087   case ISD::VSELECT:
15088     return combineVSelect(N, DCI);
15089   }
15090 
15091   return SDValue();
15092 }
15093 
15094 SDValue
15095 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15096                                  SelectionDAG &DAG,
15097                                  SmallVectorImpl<SDNode *> &Created) const {
15098   // fold (sdiv X, pow2)
15099   EVT VT = N->getValueType(0);
15100   if (VT == MVT::i64 && !Subtarget.isPPC64())
15101     return SDValue();
15102   if ((VT != MVT::i32 && VT != MVT::i64) ||
15103       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15104     return SDValue();
15105 
15106   SDLoc DL(N);
15107   SDValue N0 = N->getOperand(0);
15108 
15109   bool IsNegPow2 = (-Divisor).isPowerOf2();
15110   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15111   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15112 
15113   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15114   Created.push_back(Op.getNode());
15115 
15116   if (IsNegPow2) {
15117     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15118     Created.push_back(Op.getNode());
15119   }
15120 
15121   return Op;
15122 }
15123 
15124 //===----------------------------------------------------------------------===//
15125 // Inline Assembly Support
15126 //===----------------------------------------------------------------------===//
15127 
15128 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15129                                                       KnownBits &Known,
15130                                                       const APInt &DemandedElts,
15131                                                       const SelectionDAG &DAG,
15132                                                       unsigned Depth) const {
15133   Known.resetAll();
15134   switch (Op.getOpcode()) {
15135   default: break;
15136   case PPCISD::LBRX: {
15137     // lhbrx is known to have the top bits cleared out.
15138     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15139       Known.Zero = 0xFFFF0000;
15140     break;
15141   }
15142   case ISD::INTRINSIC_WO_CHAIN: {
15143     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15144     default: break;
15145     case Intrinsic::ppc_altivec_vcmpbfp_p:
15146     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15147     case Intrinsic::ppc_altivec_vcmpequb_p:
15148     case Intrinsic::ppc_altivec_vcmpequh_p:
15149     case Intrinsic::ppc_altivec_vcmpequw_p:
15150     case Intrinsic::ppc_altivec_vcmpequd_p:
15151     case Intrinsic::ppc_altivec_vcmpgefp_p:
15152     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15153     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15154     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15155     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15156     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15157     case Intrinsic::ppc_altivec_vcmpgtub_p:
15158     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15159     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15160     case Intrinsic::ppc_altivec_vcmpgtud_p:
15161       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15162       break;
15163     }
15164   }
15165   }
15166 }
15167 
15168 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15169   switch (Subtarget.getCPUDirective()) {
15170   default: break;
15171   case PPC::DIR_970:
15172   case PPC::DIR_PWR4:
15173   case PPC::DIR_PWR5:
15174   case PPC::DIR_PWR5X:
15175   case PPC::DIR_PWR6:
15176   case PPC::DIR_PWR6X:
15177   case PPC::DIR_PWR7:
15178   case PPC::DIR_PWR8:
15179   case PPC::DIR_PWR9:
15180   case PPC::DIR_PWR10:
15181   case PPC::DIR_PWR_FUTURE: {
15182     if (!ML)
15183       break;
15184 
15185     if (!DisableInnermostLoopAlign32) {
15186       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15187       // so that we can decrease cache misses and branch-prediction misses.
15188       // Actual alignment of the loop will depend on the hotness check and other
15189       // logic in alignBlocks.
15190       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15191         return Align(32);
15192     }
15193 
15194     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15195 
15196     // For small loops (between 5 and 8 instructions), align to a 32-byte
15197     // boundary so that the entire loop fits in one instruction-cache line.
15198     uint64_t LoopSize = 0;
15199     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15200       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15201         LoopSize += TII->getInstSizeInBytes(*J);
15202         if (LoopSize > 32)
15203           break;
15204       }
15205 
15206     if (LoopSize > 16 && LoopSize <= 32)
15207       return Align(32);
15208 
15209     break;
15210   }
15211   }
15212 
15213   return TargetLowering::getPrefLoopAlignment(ML);
15214 }
15215 
15216 /// getConstraintType - Given a constraint, return the type of
15217 /// constraint it is for this target.
15218 PPCTargetLowering::ConstraintType
15219 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15220   if (Constraint.size() == 1) {
15221     switch (Constraint[0]) {
15222     default: break;
15223     case 'b':
15224     case 'r':
15225     case 'f':
15226     case 'd':
15227     case 'v':
15228     case 'y':
15229       return C_RegisterClass;
15230     case 'Z':
15231       // FIXME: While Z does indicate a memory constraint, it specifically
15232       // indicates an r+r address (used in conjunction with the 'y' modifier
15233       // in the replacement string). Currently, we're forcing the base
15234       // register to be r0 in the asm printer (which is interpreted as zero)
15235       // and forming the complete address in the second register. This is
15236       // suboptimal.
15237       return C_Memory;
15238     }
15239   } else if (Constraint == "wc") { // individual CR bits.
15240     return C_RegisterClass;
15241   } else if (Constraint == "wa" || Constraint == "wd" ||
15242              Constraint == "wf" || Constraint == "ws" ||
15243              Constraint == "wi" || Constraint == "ww") {
15244     return C_RegisterClass; // VSX registers.
15245   }
15246   return TargetLowering::getConstraintType(Constraint);
15247 }
15248 
15249 /// Examine constraint type and operand type and determine a weight value.
15250 /// This object must already have been set up with the operand type
15251 /// and the current alternative constraint selected.
15252 TargetLowering::ConstraintWeight
15253 PPCTargetLowering::getSingleConstraintMatchWeight(
15254     AsmOperandInfo &info, const char *constraint) const {
15255   ConstraintWeight weight = CW_Invalid;
15256   Value *CallOperandVal = info.CallOperandVal;
15257     // If we don't have a value, we can't do a match,
15258     // but allow it at the lowest weight.
15259   if (!CallOperandVal)
15260     return CW_Default;
15261   Type *type = CallOperandVal->getType();
15262 
15263   // Look at the constraint type.
15264   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15265     return CW_Register; // an individual CR bit.
15266   else if ((StringRef(constraint) == "wa" ||
15267             StringRef(constraint) == "wd" ||
15268             StringRef(constraint) == "wf") &&
15269            type->isVectorTy())
15270     return CW_Register;
15271   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15272     return CW_Register; // just hold 64-bit integers data.
15273   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15274     return CW_Register;
15275   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15276     return CW_Register;
15277 
15278   switch (*constraint) {
15279   default:
15280     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15281     break;
15282   case 'b':
15283     if (type->isIntegerTy())
15284       weight = CW_Register;
15285     break;
15286   case 'f':
15287     if (type->isFloatTy())
15288       weight = CW_Register;
15289     break;
15290   case 'd':
15291     if (type->isDoubleTy())
15292       weight = CW_Register;
15293     break;
15294   case 'v':
15295     if (type->isVectorTy())
15296       weight = CW_Register;
15297     break;
15298   case 'y':
15299     weight = CW_Register;
15300     break;
15301   case 'Z':
15302     weight = CW_Memory;
15303     break;
15304   }
15305   return weight;
15306 }
15307 
15308 std::pair<unsigned, const TargetRegisterClass *>
15309 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15310                                                 StringRef Constraint,
15311                                                 MVT VT) const {
15312   if (Constraint.size() == 1) {
15313     // GCC RS6000 Constraint Letters
15314     switch (Constraint[0]) {
15315     case 'b':   // R1-R31
15316       if (VT == MVT::i64 && Subtarget.isPPC64())
15317         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15318       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15319     case 'r':   // R0-R31
15320       if (VT == MVT::i64 && Subtarget.isPPC64())
15321         return std::make_pair(0U, &PPC::G8RCRegClass);
15322       return std::make_pair(0U, &PPC::GPRCRegClass);
15323     // 'd' and 'f' constraints are both defined to be "the floating point
15324     // registers", where one is for 32-bit and the other for 64-bit. We don't
15325     // really care overly much here so just give them all the same reg classes.
15326     case 'd':
15327     case 'f':
15328       if (Subtarget.hasSPE()) {
15329         if (VT == MVT::f32 || VT == MVT::i32)
15330           return std::make_pair(0U, &PPC::GPRCRegClass);
15331         if (VT == MVT::f64 || VT == MVT::i64)
15332           return std::make_pair(0U, &PPC::SPERCRegClass);
15333       } else {
15334         if (VT == MVT::f32 || VT == MVT::i32)
15335           return std::make_pair(0U, &PPC::F4RCRegClass);
15336         if (VT == MVT::f64 || VT == MVT::i64)
15337           return std::make_pair(0U, &PPC::F8RCRegClass);
15338       }
15339       break;
15340     case 'v':
15341       if (Subtarget.hasAltivec())
15342         return std::make_pair(0U, &PPC::VRRCRegClass);
15343       break;
15344     case 'y':   // crrc
15345       return std::make_pair(0U, &PPC::CRRCRegClass);
15346     }
15347   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15348     // An individual CR bit.
15349     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15350   } else if ((Constraint == "wa" || Constraint == "wd" ||
15351              Constraint == "wf" || Constraint == "wi") &&
15352              Subtarget.hasVSX()) {
15353     return std::make_pair(0U, &PPC::VSRCRegClass);
15354   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15355     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15356       return std::make_pair(0U, &PPC::VSSRCRegClass);
15357     else
15358       return std::make_pair(0U, &PPC::VSFRCRegClass);
15359   }
15360 
15361   // If we name a VSX register, we can't defer to the base class because it
15362   // will not recognize the correct register (their names will be VSL{0-31}
15363   // and V{0-31} so they won't match). So we match them here.
15364   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15365     int VSNum = atoi(Constraint.data() + 3);
15366     assert(VSNum >= 0 && VSNum <= 63 &&
15367            "Attempted to access a vsr out of range");
15368     if (VSNum < 32)
15369       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15370     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15371   }
15372   std::pair<unsigned, const TargetRegisterClass *> R =
15373       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15374 
15375   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15376   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15377   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15378   // register.
15379   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15380   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15381   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15382       PPC::GPRCRegClass.contains(R.first))
15383     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15384                             PPC::sub_32, &PPC::G8RCRegClass),
15385                           &PPC::G8RCRegClass);
15386 
15387   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15388   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15389     R.first = PPC::CR0;
15390     R.second = &PPC::CRRCRegClass;
15391   }
15392 
15393   return R;
15394 }
15395 
15396 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15397 /// vector.  If it is invalid, don't add anything to Ops.
15398 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15399                                                      std::string &Constraint,
15400                                                      std::vector<SDValue>&Ops,
15401                                                      SelectionDAG &DAG) const {
15402   SDValue Result;
15403 
15404   // Only support length 1 constraints.
15405   if (Constraint.length() > 1) return;
15406 
15407   char Letter = Constraint[0];
15408   switch (Letter) {
15409   default: break;
15410   case 'I':
15411   case 'J':
15412   case 'K':
15413   case 'L':
15414   case 'M':
15415   case 'N':
15416   case 'O':
15417   case 'P': {
15418     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15419     if (!CST) return; // Must be an immediate to match.
15420     SDLoc dl(Op);
15421     int64_t Value = CST->getSExtValue();
15422     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15423                          // numbers are printed as such.
15424     switch (Letter) {
15425     default: llvm_unreachable("Unknown constraint letter!");
15426     case 'I':  // "I" is a signed 16-bit constant.
15427       if (isInt<16>(Value))
15428         Result = DAG.getTargetConstant(Value, dl, TCVT);
15429       break;
15430     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15431       if (isShiftedUInt<16, 16>(Value))
15432         Result = DAG.getTargetConstant(Value, dl, TCVT);
15433       break;
15434     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15435       if (isShiftedInt<16, 16>(Value))
15436         Result = DAG.getTargetConstant(Value, dl, TCVT);
15437       break;
15438     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15439       if (isUInt<16>(Value))
15440         Result = DAG.getTargetConstant(Value, dl, TCVT);
15441       break;
15442     case 'M':  // "M" is a constant that is greater than 31.
15443       if (Value > 31)
15444         Result = DAG.getTargetConstant(Value, dl, TCVT);
15445       break;
15446     case 'N':  // "N" is a positive constant that is an exact power of two.
15447       if (Value > 0 && isPowerOf2_64(Value))
15448         Result = DAG.getTargetConstant(Value, dl, TCVT);
15449       break;
15450     case 'O':  // "O" is the constant zero.
15451       if (Value == 0)
15452         Result = DAG.getTargetConstant(Value, dl, TCVT);
15453       break;
15454     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15455       if (isInt<16>(-Value))
15456         Result = DAG.getTargetConstant(Value, dl, TCVT);
15457       break;
15458     }
15459     break;
15460   }
15461   }
15462 
15463   if (Result.getNode()) {
15464     Ops.push_back(Result);
15465     return;
15466   }
15467 
15468   // Handle standard constraint letters.
15469   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15470 }
15471 
15472 // isLegalAddressingMode - Return true if the addressing mode represented
15473 // by AM is legal for this target, for a load/store of the specified type.
15474 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15475                                               const AddrMode &AM, Type *Ty,
15476                                               unsigned AS,
15477                                               Instruction *I) const {
15478   // Vector type r+i form is supported since power9 as DQ form. We don't check
15479   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15480   // imm form is preferred and the offset can be adjusted to use imm form later
15481   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15482   // max offset to check legal addressing mode, we should be a little aggressive
15483   // to contain other offsets for that LSRUse.
15484   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15485     return false;
15486 
15487   // PPC allows a sign-extended 16-bit immediate field.
15488   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15489     return false;
15490 
15491   // No global is ever allowed as a base.
15492   if (AM.BaseGV)
15493     return false;
15494 
15495   // PPC only support r+r,
15496   switch (AM.Scale) {
15497   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15498     break;
15499   case 1:
15500     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15501       return false;
15502     // Otherwise we have r+r or r+i.
15503     break;
15504   case 2:
15505     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15506       return false;
15507     // Allow 2*r as r+r.
15508     break;
15509   default:
15510     // No other scales are supported.
15511     return false;
15512   }
15513 
15514   return true;
15515 }
15516 
15517 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15518                                            SelectionDAG &DAG) const {
15519   MachineFunction &MF = DAG.getMachineFunction();
15520   MachineFrameInfo &MFI = MF.getFrameInfo();
15521   MFI.setReturnAddressIsTaken(true);
15522 
15523   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15524     return SDValue();
15525 
15526   SDLoc dl(Op);
15527   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15528 
15529   // Make sure the function does not optimize away the store of the RA to
15530   // the stack.
15531   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15532   FuncInfo->setLRStoreRequired();
15533   bool isPPC64 = Subtarget.isPPC64();
15534   auto PtrVT = getPointerTy(MF.getDataLayout());
15535 
15536   if (Depth > 0) {
15537     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15538     SDValue Offset =
15539         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15540                         isPPC64 ? MVT::i64 : MVT::i32);
15541     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15542                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15543                        MachinePointerInfo());
15544   }
15545 
15546   // Just load the return address off the stack.
15547   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15548   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15549                      MachinePointerInfo());
15550 }
15551 
15552 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15553                                           SelectionDAG &DAG) const {
15554   SDLoc dl(Op);
15555   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15556 
15557   MachineFunction &MF = DAG.getMachineFunction();
15558   MachineFrameInfo &MFI = MF.getFrameInfo();
15559   MFI.setFrameAddressIsTaken(true);
15560 
15561   EVT PtrVT = getPointerTy(MF.getDataLayout());
15562   bool isPPC64 = PtrVT == MVT::i64;
15563 
15564   // Naked functions never have a frame pointer, and so we use r1. For all
15565   // other functions, this decision must be delayed until during PEI.
15566   unsigned FrameReg;
15567   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15568     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15569   else
15570     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15571 
15572   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15573                                          PtrVT);
15574   while (Depth--)
15575     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15576                             FrameAddr, MachinePointerInfo());
15577   return FrameAddr;
15578 }
15579 
15580 // FIXME? Maybe this could be a TableGen attribute on some registers and
15581 // this table could be generated automatically from RegInfo.
15582 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15583                                               const MachineFunction &MF) const {
15584   bool isPPC64 = Subtarget.isPPC64();
15585 
15586   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15587   if (!is64Bit && VT != LLT::scalar(32))
15588     report_fatal_error("Invalid register global variable type");
15589 
15590   Register Reg = StringSwitch<Register>(RegName)
15591                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15592                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15593                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15594                      .Default(Register());
15595 
15596   if (Reg)
15597     return Reg;
15598   report_fatal_error("Invalid register name global variable");
15599 }
15600 
15601 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15602   // 32-bit SVR4 ABI access everything as got-indirect.
15603   if (Subtarget.is32BitELFABI())
15604     return true;
15605 
15606   // AIX accesses everything indirectly through the TOC, which is similar to
15607   // the GOT.
15608   if (Subtarget.isAIXABI())
15609     return true;
15610 
15611   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15612   // If it is small or large code model, module locals are accessed
15613   // indirectly by loading their address from .toc/.got.
15614   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15615     return true;
15616 
15617   // JumpTable and BlockAddress are accessed as got-indirect.
15618   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15619     return true;
15620 
15621   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15622     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15623 
15624   return false;
15625 }
15626 
15627 bool
15628 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15629   // The PowerPC target isn't yet aware of offsets.
15630   return false;
15631 }
15632 
15633 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15634                                            const CallInst &I,
15635                                            MachineFunction &MF,
15636                                            unsigned Intrinsic) const {
15637   switch (Intrinsic) {
15638   case Intrinsic::ppc_altivec_lvx:
15639   case Intrinsic::ppc_altivec_lvxl:
15640   case Intrinsic::ppc_altivec_lvebx:
15641   case Intrinsic::ppc_altivec_lvehx:
15642   case Intrinsic::ppc_altivec_lvewx:
15643   case Intrinsic::ppc_vsx_lxvd2x:
15644   case Intrinsic::ppc_vsx_lxvw4x: {
15645     EVT VT;
15646     switch (Intrinsic) {
15647     case Intrinsic::ppc_altivec_lvebx:
15648       VT = MVT::i8;
15649       break;
15650     case Intrinsic::ppc_altivec_lvehx:
15651       VT = MVT::i16;
15652       break;
15653     case Intrinsic::ppc_altivec_lvewx:
15654       VT = MVT::i32;
15655       break;
15656     case Intrinsic::ppc_vsx_lxvd2x:
15657       VT = MVT::v2f64;
15658       break;
15659     default:
15660       VT = MVT::v4i32;
15661       break;
15662     }
15663 
15664     Info.opc = ISD::INTRINSIC_W_CHAIN;
15665     Info.memVT = VT;
15666     Info.ptrVal = I.getArgOperand(0);
15667     Info.offset = -VT.getStoreSize()+1;
15668     Info.size = 2*VT.getStoreSize()-1;
15669     Info.align = Align(1);
15670     Info.flags = MachineMemOperand::MOLoad;
15671     return true;
15672   }
15673   case Intrinsic::ppc_altivec_stvx:
15674   case Intrinsic::ppc_altivec_stvxl:
15675   case Intrinsic::ppc_altivec_stvebx:
15676   case Intrinsic::ppc_altivec_stvehx:
15677   case Intrinsic::ppc_altivec_stvewx:
15678   case Intrinsic::ppc_vsx_stxvd2x:
15679   case Intrinsic::ppc_vsx_stxvw4x: {
15680     EVT VT;
15681     switch (Intrinsic) {
15682     case Intrinsic::ppc_altivec_stvebx:
15683       VT = MVT::i8;
15684       break;
15685     case Intrinsic::ppc_altivec_stvehx:
15686       VT = MVT::i16;
15687       break;
15688     case Intrinsic::ppc_altivec_stvewx:
15689       VT = MVT::i32;
15690       break;
15691     case Intrinsic::ppc_vsx_stxvd2x:
15692       VT = MVT::v2f64;
15693       break;
15694     default:
15695       VT = MVT::v4i32;
15696       break;
15697     }
15698 
15699     Info.opc = ISD::INTRINSIC_VOID;
15700     Info.memVT = VT;
15701     Info.ptrVal = I.getArgOperand(1);
15702     Info.offset = -VT.getStoreSize()+1;
15703     Info.size = 2*VT.getStoreSize()-1;
15704     Info.align = Align(1);
15705     Info.flags = MachineMemOperand::MOStore;
15706     return true;
15707   }
15708   default:
15709     break;
15710   }
15711 
15712   return false;
15713 }
15714 
15715 /// It returns EVT::Other if the type should be determined using generic
15716 /// target-independent logic.
15717 EVT PPCTargetLowering::getOptimalMemOpType(
15718     const MemOp &Op, const AttributeList &FuncAttributes) const {
15719   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15720     // We should use Altivec/VSX loads and stores when available. For unaligned
15721     // addresses, unaligned VSX loads are only fast starting with the P8.
15722     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15723         (Op.isAligned(Align(16)) ||
15724          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15725       return MVT::v4i32;
15726   }
15727 
15728   if (Subtarget.isPPC64()) {
15729     return MVT::i64;
15730   }
15731 
15732   return MVT::i32;
15733 }
15734 
15735 /// Returns true if it is beneficial to convert a load of a constant
15736 /// to just the constant itself.
15737 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15738                                                           Type *Ty) const {
15739   assert(Ty->isIntegerTy());
15740 
15741   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15742   return !(BitSize == 0 || BitSize > 64);
15743 }
15744 
15745 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15746   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15747     return false;
15748   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15749   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15750   return NumBits1 == 64 && NumBits2 == 32;
15751 }
15752 
15753 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15754   if (!VT1.isInteger() || !VT2.isInteger())
15755     return false;
15756   unsigned NumBits1 = VT1.getSizeInBits();
15757   unsigned NumBits2 = VT2.getSizeInBits();
15758   return NumBits1 == 64 && NumBits2 == 32;
15759 }
15760 
15761 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15762   // Generally speaking, zexts are not free, but they are free when they can be
15763   // folded with other operations.
15764   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15765     EVT MemVT = LD->getMemoryVT();
15766     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15767          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15768         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15769          LD->getExtensionType() == ISD::ZEXTLOAD))
15770       return true;
15771   }
15772 
15773   // FIXME: Add other cases...
15774   //  - 32-bit shifts with a zext to i64
15775   //  - zext after ctlz, bswap, etc.
15776   //  - zext after and by a constant mask
15777 
15778   return TargetLowering::isZExtFree(Val, VT2);
15779 }
15780 
15781 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15782   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15783          "invalid fpext types");
15784   // Extending to float128 is not free.
15785   if (DestVT == MVT::f128)
15786     return false;
15787   return true;
15788 }
15789 
15790 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15791   return isInt<16>(Imm) || isUInt<16>(Imm);
15792 }
15793 
15794 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15795   return isInt<16>(Imm) || isUInt<16>(Imm);
15796 }
15797 
15798 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15799                                                        unsigned,
15800                                                        unsigned,
15801                                                        MachineMemOperand::Flags,
15802                                                        bool *Fast) const {
15803   if (DisablePPCUnaligned)
15804     return false;
15805 
15806   // PowerPC supports unaligned memory access for simple non-vector types.
15807   // Although accessing unaligned addresses is not as efficient as accessing
15808   // aligned addresses, it is generally more efficient than manual expansion,
15809   // and generally only traps for software emulation when crossing page
15810   // boundaries.
15811 
15812   if (!VT.isSimple())
15813     return false;
15814 
15815   if (VT.isFloatingPoint() && !VT.isVector() &&
15816       !Subtarget.allowsUnalignedFPAccess())
15817     return false;
15818 
15819   if (VT.getSimpleVT().isVector()) {
15820     if (Subtarget.hasVSX()) {
15821       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15822           VT != MVT::v4f32 && VT != MVT::v4i32)
15823         return false;
15824     } else {
15825       return false;
15826     }
15827   }
15828 
15829   if (VT == MVT::ppcf128)
15830     return false;
15831 
15832   if (Fast)
15833     *Fast = true;
15834 
15835   return true;
15836 }
15837 
15838 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15839                                                    EVT VT) const {
15840   return isFMAFasterThanFMulAndFAdd(
15841       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15842 }
15843 
15844 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15845                                                    Type *Ty) const {
15846   switch (Ty->getScalarType()->getTypeID()) {
15847   case Type::FloatTyID:
15848   case Type::DoubleTyID:
15849     return true;
15850   case Type::FP128TyID:
15851     return Subtarget.hasP9Vector();
15852   default:
15853     return false;
15854   }
15855 }
15856 
15857 // FIXME: add more patterns which are not profitable to hoist.
15858 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15859   if (!I->hasOneUse())
15860     return true;
15861 
15862   Instruction *User = I->user_back();
15863   assert(User && "A single use instruction with no uses.");
15864 
15865   switch (I->getOpcode()) {
15866   case Instruction::FMul: {
15867     // Don't break FMA, PowerPC prefers FMA.
15868     if (User->getOpcode() != Instruction::FSub &&
15869         User->getOpcode() != Instruction::FAdd)
15870       return true;
15871 
15872     const TargetOptions &Options = getTargetMachine().Options;
15873     const Function *F = I->getFunction();
15874     const DataLayout &DL = F->getParent()->getDataLayout();
15875     Type *Ty = User->getOperand(0)->getType();
15876 
15877     return !(
15878         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15879         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15880         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15881   }
15882   case Instruction::Load: {
15883     // Don't break "store (load float*)" pattern, this pattern will be combined
15884     // to "store (load int32)" in later InstCombine pass. See function
15885     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15886     // cycles than loading a 32 bit integer.
15887     LoadInst *LI = cast<LoadInst>(I);
15888     // For the loads that combineLoadToOperationType does nothing, like
15889     // ordered load, it should be profitable to hoist them.
15890     // For swifterror load, it can only be used for pointer to pointer type, so
15891     // later type check should get rid of this case.
15892     if (!LI->isUnordered())
15893       return true;
15894 
15895     if (User->getOpcode() != Instruction::Store)
15896       return true;
15897 
15898     if (I->getType()->getTypeID() != Type::FloatTyID)
15899       return true;
15900 
15901     return false;
15902   }
15903   default:
15904     return true;
15905   }
15906   return true;
15907 }
15908 
15909 const MCPhysReg *
15910 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15911   // LR is a callee-save register, but we must treat it as clobbered by any call
15912   // site. Hence we include LR in the scratch registers, which are in turn added
15913   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15914   // to CTR, which is used by any indirect call.
15915   static const MCPhysReg ScratchRegs[] = {
15916     PPC::X12, PPC::LR8, PPC::CTR8, 0
15917   };
15918 
15919   return ScratchRegs;
15920 }
15921 
15922 Register PPCTargetLowering::getExceptionPointerRegister(
15923     const Constant *PersonalityFn) const {
15924   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15925 }
15926 
15927 Register PPCTargetLowering::getExceptionSelectorRegister(
15928     const Constant *PersonalityFn) const {
15929   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15930 }
15931 
15932 bool
15933 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15934                      EVT VT , unsigned DefinedValues) const {
15935   if (VT == MVT::v2i64)
15936     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15937 
15938   if (Subtarget.hasVSX())
15939     return true;
15940 
15941   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15942 }
15943 
15944 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15945   if (DisableILPPref || Subtarget.enableMachineScheduler())
15946     return TargetLowering::getSchedulingPreference(N);
15947 
15948   return Sched::ILP;
15949 }
15950 
15951 // Create a fast isel object.
15952 FastISel *
15953 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15954                                   const TargetLibraryInfo *LibInfo) const {
15955   return PPC::createFastISel(FuncInfo, LibInfo);
15956 }
15957 
15958 // 'Inverted' means the FMA opcode after negating one multiplicand.
15959 // For example, (fma -a b c) = (fnmsub a b c)
15960 static unsigned invertFMAOpcode(unsigned Opc) {
15961   switch (Opc) {
15962   default:
15963     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15964   case ISD::FMA:
15965     return PPCISD::FNMSUB;
15966   case PPCISD::FNMSUB:
15967     return ISD::FMA;
15968   }
15969 }
15970 
15971 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15972                                                 bool LegalOps, bool OptForSize,
15973                                                 NegatibleCost &Cost,
15974                                                 unsigned Depth) const {
15975   if (Depth > SelectionDAG::MaxRecursionDepth)
15976     return SDValue();
15977 
15978   unsigned Opc = Op.getOpcode();
15979   EVT VT = Op.getValueType();
15980   SDNodeFlags Flags = Op.getNode()->getFlags();
15981 
15982   switch (Opc) {
15983   case PPCISD::FNMSUB:
15984     if (!Op.hasOneUse() || !isTypeLegal(VT))
15985       break;
15986 
15987     const TargetOptions &Options = getTargetMachine().Options;
15988     SDValue N0 = Op.getOperand(0);
15989     SDValue N1 = Op.getOperand(1);
15990     SDValue N2 = Op.getOperand(2);
15991     SDLoc Loc(Op);
15992 
15993     NegatibleCost N2Cost = NegatibleCost::Expensive;
15994     SDValue NegN2 =
15995         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15996 
15997     if (!NegN2)
15998       return SDValue();
15999 
16000     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16001     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16002     // These transformations may change sign of zeroes. For example,
16003     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16004     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16005       // Try and choose the cheaper one to negate.
16006       NegatibleCost N0Cost = NegatibleCost::Expensive;
16007       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16008                                            N0Cost, Depth + 1);
16009 
16010       NegatibleCost N1Cost = NegatibleCost::Expensive;
16011       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16012                                            N1Cost, Depth + 1);
16013 
16014       if (NegN0 && N0Cost <= N1Cost) {
16015         Cost = std::min(N0Cost, N2Cost);
16016         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16017       } else if (NegN1) {
16018         Cost = std::min(N1Cost, N2Cost);
16019         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16020       }
16021     }
16022 
16023     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16024     if (isOperationLegal(ISD::FMA, VT)) {
16025       Cost = N2Cost;
16026       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16027     }
16028 
16029     break;
16030   }
16031 
16032   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16033                                               Cost, Depth);
16034 }
16035 
16036 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16037 bool PPCTargetLowering::useLoadStackGuardNode() const {
16038   if (!Subtarget.isTargetLinux())
16039     return TargetLowering::useLoadStackGuardNode();
16040   return true;
16041 }
16042 
16043 // Override to disable global variable loading on Linux.
16044 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16045   if (!Subtarget.isTargetLinux())
16046     return TargetLowering::insertSSPDeclarations(M);
16047 }
16048 
16049 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16050                                      bool ForCodeSize) const {
16051   if (!VT.isSimple() || !Subtarget.hasVSX())
16052     return false;
16053 
16054   switch(VT.getSimpleVT().SimpleTy) {
16055   default:
16056     // For FP types that are currently not supported by PPC backend, return
16057     // false. Examples: f16, f80.
16058     return false;
16059   case MVT::f32:
16060   case MVT::f64:
16061     if (Subtarget.hasPrefixInstrs()) {
16062       // With prefixed instructions, we can materialize anything that can be
16063       // represented with a 32-bit immediate, not just positive zero.
16064       APFloat APFloatOfImm = Imm;
16065       return convertToNonDenormSingle(APFloatOfImm);
16066     }
16067     LLVM_FALLTHROUGH;
16068   case MVT::ppcf128:
16069     return Imm.isPosZero();
16070   }
16071 }
16072 
16073 // For vector shift operation op, fold
16074 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16075 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16076                                   SelectionDAG &DAG) {
16077   SDValue N0 = N->getOperand(0);
16078   SDValue N1 = N->getOperand(1);
16079   EVT VT = N0.getValueType();
16080   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16081   unsigned Opcode = N->getOpcode();
16082   unsigned TargetOpcode;
16083 
16084   switch (Opcode) {
16085   default:
16086     llvm_unreachable("Unexpected shift operation");
16087   case ISD::SHL:
16088     TargetOpcode = PPCISD::SHL;
16089     break;
16090   case ISD::SRL:
16091     TargetOpcode = PPCISD::SRL;
16092     break;
16093   case ISD::SRA:
16094     TargetOpcode = PPCISD::SRA;
16095     break;
16096   }
16097 
16098   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16099       N1->getOpcode() == ISD::AND)
16100     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16101       if (Mask->getZExtValue() == OpSizeInBits - 1)
16102         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16103 
16104   return SDValue();
16105 }
16106 
16107 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16108   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16109     return Value;
16110 
16111   SDValue N0 = N->getOperand(0);
16112   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16113   if (!Subtarget.isISA3_0() ||
16114       N0.getOpcode() != ISD::SIGN_EXTEND ||
16115       N0.getOperand(0).getValueType() != MVT::i32 ||
16116       CN1 == nullptr || N->getValueType(0) != MVT::i64)
16117     return SDValue();
16118 
16119   // We can't save an operation here if the value is already extended, and
16120   // the existing shift is easier to combine.
16121   SDValue ExtsSrc = N0.getOperand(0);
16122   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16123       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16124     return SDValue();
16125 
16126   SDLoc DL(N0);
16127   SDValue ShiftBy = SDValue(CN1, 0);
16128   // We want the shift amount to be i32 on the extswli, but the shift could
16129   // have an i64.
16130   if (ShiftBy.getValueType() == MVT::i64)
16131     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16132 
16133   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16134                          ShiftBy);
16135 }
16136 
16137 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16138   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16139     return Value;
16140 
16141   return SDValue();
16142 }
16143 
16144 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16145   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16146     return Value;
16147 
16148   return SDValue();
16149 }
16150 
16151 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16152 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16153 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16154 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16155 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16156                                  const PPCSubtarget &Subtarget) {
16157   if (!Subtarget.isPPC64())
16158     return SDValue();
16159 
16160   SDValue LHS = N->getOperand(0);
16161   SDValue RHS = N->getOperand(1);
16162 
16163   auto isZextOfCompareWithConstant = [](SDValue Op) {
16164     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16165         Op.getValueType() != MVT::i64)
16166       return false;
16167 
16168     SDValue Cmp = Op.getOperand(0);
16169     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16170         Cmp.getOperand(0).getValueType() != MVT::i64)
16171       return false;
16172 
16173     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16174       int64_t NegConstant = 0 - Constant->getSExtValue();
16175       // Due to the limitations of the addi instruction,
16176       // -C is required to be [-32768, 32767].
16177       return isInt<16>(NegConstant);
16178     }
16179 
16180     return false;
16181   };
16182 
16183   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16184   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16185 
16186   // If there is a pattern, canonicalize a zext operand to the RHS.
16187   if (LHSHasPattern && !RHSHasPattern)
16188     std::swap(LHS, RHS);
16189   else if (!LHSHasPattern && !RHSHasPattern)
16190     return SDValue();
16191 
16192   SDLoc DL(N);
16193   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16194   SDValue Cmp = RHS.getOperand(0);
16195   SDValue Z = Cmp.getOperand(0);
16196   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16197 
16198   assert(Constant && "Constant Should not be a null pointer.");
16199   int64_t NegConstant = 0 - Constant->getSExtValue();
16200 
16201   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16202   default: break;
16203   case ISD::SETNE: {
16204     //                                 when C == 0
16205     //                             --> addze X, (addic Z, -1).carry
16206     //                            /
16207     // add X, (zext(setne Z, C))--
16208     //                            \    when -32768 <= -C <= 32767 && C != 0
16209     //                             --> addze X, (addic (addi Z, -C), -1).carry
16210     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16211                               DAG.getConstant(NegConstant, DL, MVT::i64));
16212     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16213     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16214                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16215     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16216                        SDValue(Addc.getNode(), 1));
16217     }
16218   case ISD::SETEQ: {
16219     //                                 when C == 0
16220     //                             --> addze X, (subfic Z, 0).carry
16221     //                            /
16222     // add X, (zext(sete  Z, C))--
16223     //                            \    when -32768 <= -C <= 32767 && C != 0
16224     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16225     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16226                               DAG.getConstant(NegConstant, DL, MVT::i64));
16227     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16228     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16229                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16230     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16231                        SDValue(Subc.getNode(), 1));
16232     }
16233   }
16234 
16235   return SDValue();
16236 }
16237 
16238 // Transform
16239 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16240 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16241 // In this case both C1 and C2 must be known constants.
16242 // C1+C2 must fit into a 34 bit signed integer.
16243 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16244                                           const PPCSubtarget &Subtarget) {
16245   if (!Subtarget.isUsingPCRelativeCalls())
16246     return SDValue();
16247 
16248   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16249   // If we find that node try to cast the Global Address and the Constant.
16250   SDValue LHS = N->getOperand(0);
16251   SDValue RHS = N->getOperand(1);
16252 
16253   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16254     std::swap(LHS, RHS);
16255 
16256   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16257     return SDValue();
16258 
16259   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16260   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16261   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16262 
16263   // Check that both casts succeeded.
16264   if (!GSDN || !ConstNode)
16265     return SDValue();
16266 
16267   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16268   SDLoc DL(GSDN);
16269 
16270   // The signed int offset needs to fit in 34 bits.
16271   if (!isInt<34>(NewOffset))
16272     return SDValue();
16273 
16274   // The new global address is a copy of the old global address except
16275   // that it has the updated Offset.
16276   SDValue GA =
16277       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16278                                  NewOffset, GSDN->getTargetFlags());
16279   SDValue MatPCRel =
16280       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16281   return MatPCRel;
16282 }
16283 
16284 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16285   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16286     return Value;
16287 
16288   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16289     return Value;
16290 
16291   return SDValue();
16292 }
16293 
16294 // Detect TRUNCATE operations on bitcasts of float128 values.
16295 // What we are looking for here is the situtation where we extract a subset
16296 // of bits from a 128 bit float.
16297 // This can be of two forms:
16298 // 1) BITCAST of f128 feeding TRUNCATE
16299 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16300 // The reason this is required is because we do not have a legal i128 type
16301 // and so we want to prevent having to store the f128 and then reload part
16302 // of it.
16303 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16304                                            DAGCombinerInfo &DCI) const {
16305   // If we are using CRBits then try that first.
16306   if (Subtarget.useCRBits()) {
16307     // Check if CRBits did anything and return that if it did.
16308     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16309       return CRTruncValue;
16310   }
16311 
16312   SDLoc dl(N);
16313   SDValue Op0 = N->getOperand(0);
16314 
16315   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16316   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16317     EVT VT = N->getValueType(0);
16318     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16319       return SDValue();
16320     SDValue Sub = Op0.getOperand(0);
16321     if (Sub.getOpcode() == ISD::SUB) {
16322       SDValue SubOp0 = Sub.getOperand(0);
16323       SDValue SubOp1 = Sub.getOperand(1);
16324       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16325           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16326         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16327                                SubOp1.getOperand(0),
16328                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16329       }
16330     }
16331   }
16332 
16333   // Looking for a truncate of i128 to i64.
16334   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16335     return SDValue();
16336 
16337   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16338 
16339   // SRL feeding TRUNCATE.
16340   if (Op0.getOpcode() == ISD::SRL) {
16341     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16342     // The right shift has to be by 64 bits.
16343     if (!ConstNode || ConstNode->getZExtValue() != 64)
16344       return SDValue();
16345 
16346     // Switch the element number to extract.
16347     EltToExtract = EltToExtract ? 0 : 1;
16348     // Update Op0 past the SRL.
16349     Op0 = Op0.getOperand(0);
16350   }
16351 
16352   // BITCAST feeding a TRUNCATE possibly via SRL.
16353   if (Op0.getOpcode() == ISD::BITCAST &&
16354       Op0.getValueType() == MVT::i128 &&
16355       Op0.getOperand(0).getValueType() == MVT::f128) {
16356     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16357     return DCI.DAG.getNode(
16358         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16359         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16360   }
16361   return SDValue();
16362 }
16363 
16364 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16365   SelectionDAG &DAG = DCI.DAG;
16366 
16367   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16368   if (!ConstOpOrElement)
16369     return SDValue();
16370 
16371   // An imul is usually smaller than the alternative sequence for legal type.
16372   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16373       isOperationLegal(ISD::MUL, N->getValueType(0)))
16374     return SDValue();
16375 
16376   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16377     switch (this->Subtarget.getCPUDirective()) {
16378     default:
16379       // TODO: enhance the condition for subtarget before pwr8
16380       return false;
16381     case PPC::DIR_PWR8:
16382       //  type        mul     add    shl
16383       // scalar        4       1      1
16384       // vector        7       2      2
16385       return true;
16386     case PPC::DIR_PWR9:
16387     case PPC::DIR_PWR10:
16388     case PPC::DIR_PWR_FUTURE:
16389       //  type        mul     add    shl
16390       // scalar        5       2      2
16391       // vector        7       2      2
16392 
16393       // The cycle RATIO of related operations are showed as a table above.
16394       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16395       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16396       // are 4, it is always profitable; but for 3 instrs patterns
16397       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16398       // So we should only do it for vector type.
16399       return IsAddOne && IsNeg ? VT.isVector() : true;
16400     }
16401   };
16402 
16403   EVT VT = N->getValueType(0);
16404   SDLoc DL(N);
16405 
16406   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16407   bool IsNeg = MulAmt.isNegative();
16408   APInt MulAmtAbs = MulAmt.abs();
16409 
16410   if ((MulAmtAbs - 1).isPowerOf2()) {
16411     // (mul x, 2^N + 1) => (add (shl x, N), x)
16412     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16413 
16414     if (!IsProfitable(IsNeg, true, VT))
16415       return SDValue();
16416 
16417     SDValue Op0 = N->getOperand(0);
16418     SDValue Op1 =
16419         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16420                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16421     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16422 
16423     if (!IsNeg)
16424       return Res;
16425 
16426     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16427   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16428     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16429     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16430 
16431     if (!IsProfitable(IsNeg, false, VT))
16432       return SDValue();
16433 
16434     SDValue Op0 = N->getOperand(0);
16435     SDValue Op1 =
16436         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16437                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16438 
16439     if (!IsNeg)
16440       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16441     else
16442       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16443 
16444   } else {
16445     return SDValue();
16446   }
16447 }
16448 
16449 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16450 // in combiner since we need to check SD flags and other subtarget features.
16451 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16452                                           DAGCombinerInfo &DCI) const {
16453   SDValue N0 = N->getOperand(0);
16454   SDValue N1 = N->getOperand(1);
16455   SDValue N2 = N->getOperand(2);
16456   SDNodeFlags Flags = N->getFlags();
16457   EVT VT = N->getValueType(0);
16458   SelectionDAG &DAG = DCI.DAG;
16459   const TargetOptions &Options = getTargetMachine().Options;
16460   unsigned Opc = N->getOpcode();
16461   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16462   bool LegalOps = !DCI.isBeforeLegalizeOps();
16463   SDLoc Loc(N);
16464 
16465   if (!isOperationLegal(ISD::FMA, VT))
16466     return SDValue();
16467 
16468   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16469   // since (fnmsub a b c)=-0 while c-ab=+0.
16470   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16471     return SDValue();
16472 
16473   // (fma (fneg a) b c) => (fnmsub a b c)
16474   // (fnmsub (fneg a) b c) => (fma a b c)
16475   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16476     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16477 
16478   // (fma a (fneg b) c) => (fnmsub a b c)
16479   // (fnmsub a (fneg b) c) => (fma a b c)
16480   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16481     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16482 
16483   return SDValue();
16484 }
16485 
16486 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16487   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16488   if (!Subtarget.is64BitELFABI())
16489     return false;
16490 
16491   // If not a tail call then no need to proceed.
16492   if (!CI->isTailCall())
16493     return false;
16494 
16495   // If sibling calls have been disabled and tail-calls aren't guaranteed
16496   // there is no reason to duplicate.
16497   auto &TM = getTargetMachine();
16498   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16499     return false;
16500 
16501   // Can't tail call a function called indirectly, or if it has variadic args.
16502   const Function *Callee = CI->getCalledFunction();
16503   if (!Callee || Callee->isVarArg())
16504     return false;
16505 
16506   // Make sure the callee and caller calling conventions are eligible for tco.
16507   const Function *Caller = CI->getParent()->getParent();
16508   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16509                                            CI->getCallingConv()))
16510       return false;
16511 
16512   // If the function is local then we have a good chance at tail-calling it
16513   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16514 }
16515 
16516 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16517   if (!Subtarget.hasVSX())
16518     return false;
16519   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16520     return true;
16521   return VT == MVT::f32 || VT == MVT::f64 ||
16522     VT == MVT::v4f32 || VT == MVT::v2f64;
16523 }
16524 
16525 bool PPCTargetLowering::
16526 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16527   const Value *Mask = AndI.getOperand(1);
16528   // If the mask is suitable for andi. or andis. we should sink the and.
16529   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16530     // Can't handle constants wider than 64-bits.
16531     if (CI->getBitWidth() > 64)
16532       return false;
16533     int64_t ConstVal = CI->getZExtValue();
16534     return isUInt<16>(ConstVal) ||
16535       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16536   }
16537 
16538   // For non-constant masks, we can always use the record-form and.
16539   return true;
16540 }
16541 
16542 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16543 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16544 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16545 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16546 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16547 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16548   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16549   assert(Subtarget.hasP9Altivec() &&
16550          "Only combine this when P9 altivec supported!");
16551   EVT VT = N->getValueType(0);
16552   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16553     return SDValue();
16554 
16555   SelectionDAG &DAG = DCI.DAG;
16556   SDLoc dl(N);
16557   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16558     // Even for signed integers, if it's known to be positive (as signed
16559     // integer) due to zero-extended inputs.
16560     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16561     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16562     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16563          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16564         (SubOpcd1 == ISD::ZERO_EXTEND ||
16565          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16566       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16567                          N->getOperand(0)->getOperand(0),
16568                          N->getOperand(0)->getOperand(1),
16569                          DAG.getTargetConstant(0, dl, MVT::i32));
16570     }
16571 
16572     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16573     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16574         N->getOperand(0).hasOneUse()) {
16575       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16576                          N->getOperand(0)->getOperand(0),
16577                          N->getOperand(0)->getOperand(1),
16578                          DAG.getTargetConstant(1, dl, MVT::i32));
16579     }
16580   }
16581 
16582   return SDValue();
16583 }
16584 
16585 // For type v4i32/v8ii16/v16i8, transform
16586 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16587 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16588 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16589 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16590 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16591                                           DAGCombinerInfo &DCI) const {
16592   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16593   assert(Subtarget.hasP9Altivec() &&
16594          "Only combine this when P9 altivec supported!");
16595 
16596   SelectionDAG &DAG = DCI.DAG;
16597   SDLoc dl(N);
16598   SDValue Cond = N->getOperand(0);
16599   SDValue TrueOpnd = N->getOperand(1);
16600   SDValue FalseOpnd = N->getOperand(2);
16601   EVT VT = N->getOperand(1).getValueType();
16602 
16603   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16604       FalseOpnd.getOpcode() != ISD::SUB)
16605     return SDValue();
16606 
16607   // ABSD only available for type v4i32/v8i16/v16i8
16608   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16609     return SDValue();
16610 
16611   // At least to save one more dependent computation
16612   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16613     return SDValue();
16614 
16615   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16616 
16617   // Can only handle unsigned comparison here
16618   switch (CC) {
16619   default:
16620     return SDValue();
16621   case ISD::SETUGT:
16622   case ISD::SETUGE:
16623     break;
16624   case ISD::SETULT:
16625   case ISD::SETULE:
16626     std::swap(TrueOpnd, FalseOpnd);
16627     break;
16628   }
16629 
16630   SDValue CmpOpnd1 = Cond.getOperand(0);
16631   SDValue CmpOpnd2 = Cond.getOperand(1);
16632 
16633   // SETCC CmpOpnd1 CmpOpnd2 cond
16634   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16635   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16636   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16637       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16638       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16639       FalseOpnd.getOperand(1) == CmpOpnd1) {
16640     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16641                        CmpOpnd1, CmpOpnd2,
16642                        DAG.getTargetConstant(0, dl, MVT::i32));
16643   }
16644 
16645   return SDValue();
16646 }
16647