1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSymbolXCOFF.h"
78 #include "llvm/Support/AtomicOrdering.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <list>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 
103 #define DEBUG_TYPE "ppc-lowering"
104 
105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
113 
114 static cl::opt<bool> DisableSCO("disable-ppc-sco",
115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
116 
117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
119 
120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
121 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
122 
123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
124 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
125 
126 STATISTIC(NumTailCalls, "Number of tail calls");
127 STATISTIC(NumSiblingCalls, "Number of sibling calls");
128 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   if (Subtarget.isISA3_0()) {
171     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
172     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
173     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
174     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
175   } else {
176     // No extending loads from f16 or HW conversions back and forth.
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
178     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
179     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
180     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
181     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
182     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
183     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
184     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
185   }
186 
187   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
188 
189   // PowerPC has pre-inc load and store's.
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
193   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
198   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
200   if (!Subtarget.hasSPE()) {
201     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
202     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
203     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
204     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
205   }
206 
207   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
208   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
209   for (MVT VT : ScalarIntVTs) {
210     setOperationAction(ISD::ADDC, VT, Legal);
211     setOperationAction(ISD::ADDE, VT, Legal);
212     setOperationAction(ISD::SUBC, VT, Legal);
213     setOperationAction(ISD::SUBE, VT, Legal);
214   }
215 
216   if (Subtarget.useCRBits()) {
217     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
218 
219     if (isPPC64 || Subtarget.hasFPCVT()) {
220       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
221       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
222                          isPPC64 ? MVT::i64 : MVT::i32);
223       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
224       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
225                         isPPC64 ? MVT::i64 : MVT::i32);
226     } else {
227       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
228       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
229     }
230 
231     // PowerPC does not support direct load/store of condition registers.
232     setOperationAction(ISD::LOAD, MVT::i1, Custom);
233     setOperationAction(ISD::STORE, MVT::i1, Custom);
234 
235     // FIXME: Remove this once the ANDI glue bug is fixed:
236     if (ANDIGlueBug)
237       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
238 
239     for (MVT VT : MVT::integer_valuetypes()) {
240       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
241       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
242       setTruncStoreAction(VT, MVT::i1, Expand);
243     }
244 
245     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
246   }
247 
248   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
249   // PPC (the libcall is not available).
250   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
251   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
252 
253   // We do not currently implement these libm ops for PowerPC.
254   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
255   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
256   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
257   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
258   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
259   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
260 
261   // PowerPC has no SREM/UREM instructions unless we are on P9
262   // On P9 we may use a hardware instruction to compute the remainder.
263   // The instructions are not legalized directly because in the cases where the
264   // result of both the remainder and the division is required it is more
265   // efficient to compute the remainder from the result of the division rather
266   // than use the remainder instruction.
267   if (Subtarget.isISA3_0()) {
268     setOperationAction(ISD::SREM, MVT::i32, Custom);
269     setOperationAction(ISD::UREM, MVT::i32, Custom);
270     setOperationAction(ISD::SREM, MVT::i64, Custom);
271     setOperationAction(ISD::UREM, MVT::i64, Custom);
272   } else {
273     setOperationAction(ISD::SREM, MVT::i32, Expand);
274     setOperationAction(ISD::UREM, MVT::i32, Expand);
275     setOperationAction(ISD::SREM, MVT::i64, Expand);
276     setOperationAction(ISD::UREM, MVT::i64, Expand);
277   }
278 
279   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
280   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
282   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
284   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
286   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
288 
289   // Handle constrained floating-point operations of scalar.
290   // TODO: Handle SPE specific operation.
291   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
292   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
293   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
294   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
295   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
296   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
297 
298   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
299   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
300   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
301   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
302   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
303   if (Subtarget.hasVSX())
304     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
305 
306   if (Subtarget.hasFSQRT()) {
307     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
308     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
309   }
310 
311   if (Subtarget.hasFPRND()) {
312     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
313     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
314     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
315     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
316 
317     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
318     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
319     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
320     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
321   }
322 
323   // We don't support sin/cos/sqrt/fmod/pow
324   setOperationAction(ISD::FSIN , MVT::f64, Expand);
325   setOperationAction(ISD::FCOS , MVT::f64, Expand);
326   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
327   setOperationAction(ISD::FREM , MVT::f64, Expand);
328   setOperationAction(ISD::FPOW , MVT::f64, Expand);
329   setOperationAction(ISD::FSIN , MVT::f32, Expand);
330   setOperationAction(ISD::FCOS , MVT::f32, Expand);
331   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
332   setOperationAction(ISD::FREM , MVT::f32, Expand);
333   setOperationAction(ISD::FPOW , MVT::f32, Expand);
334   if (Subtarget.hasSPE()) {
335     setOperationAction(ISD::FMA  , MVT::f64, Expand);
336     setOperationAction(ISD::FMA  , MVT::f32, Expand);
337   } else {
338     setOperationAction(ISD::FMA  , MVT::f64, Legal);
339     setOperationAction(ISD::FMA  , MVT::f32, Legal);
340   }
341 
342   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
343 
344   // If we're enabling GP optimizations, use hardware square root
345   if (!Subtarget.hasFSQRT() &&
346       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
347         Subtarget.hasFRE()))
348     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
349 
350   if (!Subtarget.hasFSQRT() &&
351       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
352         Subtarget.hasFRES()))
353     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
354 
355   if (Subtarget.hasFCPSGN()) {
356     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
357     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
358   } else {
359     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
360     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
361   }
362 
363   if (Subtarget.hasFPRND()) {
364     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
365     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
366     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
367     setOperationAction(ISD::FROUND, MVT::f64, Legal);
368 
369     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
370     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
371     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
372     setOperationAction(ISD::FROUND, MVT::f32, Legal);
373   }
374 
375   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
376   // to speed up scalar BSWAP64.
377   // CTPOP or CTTZ were introduced in P8/P9 respectively
378   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
379   if (Subtarget.hasP9Vector())
380     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
381   else
382     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
383   if (Subtarget.isISA3_0()) {
384     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
385     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
386   } else {
387     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
388     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
389   }
390 
391   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
392     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
393     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
394   } else {
395     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
396     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
397   }
398 
399   // PowerPC does not have ROTR
400   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
401   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
402 
403   if (!Subtarget.useCRBits()) {
404     // PowerPC does not have Select
405     setOperationAction(ISD::SELECT, MVT::i32, Expand);
406     setOperationAction(ISD::SELECT, MVT::i64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f32, Expand);
408     setOperationAction(ISD::SELECT, MVT::f64, Expand);
409   }
410 
411   // PowerPC wants to turn select_cc of FP into fsel when possible.
412   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
413   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
414 
415   // PowerPC wants to optimize integer setcc a bit
416   if (!Subtarget.useCRBits())
417     setOperationAction(ISD::SETCC, MVT::i32, Custom);
418 
419   // PowerPC does not have BRCOND which requires SetCC
420   if (!Subtarget.useCRBits())
421     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
422 
423   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
424 
425   if (Subtarget.hasSPE()) {
426     // SPE has built-in conversions
427     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
428     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
429     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
430   } else {
431     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
432     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
433 
434     // PowerPC does not have [U|S]INT_TO_FP
435     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
436     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
437   }
438 
439   if (Subtarget.hasDirectMove() && isPPC64) {
440     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
441     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
442     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
443     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
444     if (TM.Options.UnsafeFPMath) {
445       setOperationAction(ISD::LRINT, MVT::f64, Legal);
446       setOperationAction(ISD::LRINT, MVT::f32, Legal);
447       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
448       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
449       setOperationAction(ISD::LROUND, MVT::f64, Legal);
450       setOperationAction(ISD::LROUND, MVT::f32, Legal);
451       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
452       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
453     }
454   } else {
455     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
456     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
457     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
458     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
459   }
460 
461   // We cannot sextinreg(i1).  Expand to shifts.
462   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
463 
464   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
465   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
466   // support continuation, user-level threading, and etc.. As a result, no
467   // other SjLj exception interfaces are implemented and please don't build
468   // your own exception handling based on them.
469   // LLVM/Clang supports zero-cost DWARF exception handling.
470   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
471   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
472 
473   // We want to legalize GlobalAddress and ConstantPool nodes into the
474   // appropriate instructions to materialize the address.
475   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
476   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
477   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
478   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
479   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
480   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
481   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
482   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
483   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
484   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
485 
486   // TRAP is legal.
487   setOperationAction(ISD::TRAP, MVT::Other, Legal);
488 
489   // TRAMPOLINE is custom lowered.
490   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
491   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
492 
493   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
494   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
495 
496   if (Subtarget.is64BitELFABI()) {
497     // VAARG always uses double-word chunks, so promote anything smaller.
498     setOperationAction(ISD::VAARG, MVT::i1, Promote);
499     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
500     setOperationAction(ISD::VAARG, MVT::i8, Promote);
501     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
502     setOperationAction(ISD::VAARG, MVT::i16, Promote);
503     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
504     setOperationAction(ISD::VAARG, MVT::i32, Promote);
505     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
506     setOperationAction(ISD::VAARG, MVT::Other, Expand);
507   } else if (Subtarget.is32BitELFABI()) {
508     // VAARG is custom lowered with the 32-bit SVR4 ABI.
509     setOperationAction(ISD::VAARG, MVT::Other, Custom);
510     setOperationAction(ISD::VAARG, MVT::i64, Custom);
511   } else
512     setOperationAction(ISD::VAARG, MVT::Other, Expand);
513 
514   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
515   if (Subtarget.is32BitELFABI())
516     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
517   else
518     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
519 
520   // Use the default implementation.
521   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
522   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
523   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
524   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
525   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
526   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
527   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
528   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
529   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
530 
531   // We want to custom lower some of our intrinsics.
532   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
533 
534   // To handle counter-based loop conditions.
535   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
536 
537   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
538   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
539   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
540   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
541 
542   // Comparisons that require checking two conditions.
543   if (Subtarget.hasSPE()) {
544     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
545     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
546     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
547     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
548   }
549   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
550   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
551   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
552   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
553   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
554   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
555   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
556   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
557   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
558   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
559   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
560   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
561 
562   if (Subtarget.has64BitSupport()) {
563     // They also have instructions for converting between i64 and fp.
564     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
565     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
566     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
567     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
568     // This is just the low 32 bits of a (signed) fp->i64 conversion.
569     // We cannot do this with Promote because i64 is not a legal type.
570     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
571 
572     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
573       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
574   } else {
575     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
576     if (Subtarget.hasSPE())
577       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
578     else
579       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
580   }
581 
582   // With the instructions enabled under FPCVT, we can do everything.
583   if (Subtarget.hasFPCVT()) {
584     if (Subtarget.has64BitSupport()) {
585       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
586       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
587       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
588       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
589     }
590 
591     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
592     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
593     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
594     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
595   }
596 
597   if (Subtarget.use64BitRegs()) {
598     // 64-bit PowerPC implementations can support i64 types directly
599     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
600     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
601     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
602     // 64-bit PowerPC wants to expand i128 shifts itself.
603     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
604     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
605     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
606   } else {
607     // 32-bit PowerPC wants to expand i64 shifts itself.
608     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
609     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
610     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
611   }
612 
613   if (Subtarget.hasVSX()) {
614     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
615     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
616     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
617     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
618   }
619 
620   if (Subtarget.hasAltivec()) {
621     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
622       setOperationAction(ISD::SADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::UADDSAT, VT, Legal);
625       setOperationAction(ISD::USUBSAT, VT, Legal);
626     }
627     // First set operation action for all vector types to expand. Then we
628     // will selectively turn on ones that can be effectively codegen'd.
629     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
630       // add/sub are legal for all supported vector VT's.
631       setOperationAction(ISD::ADD, VT, Legal);
632       setOperationAction(ISD::SUB, VT, Legal);
633 
634       // For v2i64, these are only valid with P8Vector. This is corrected after
635       // the loop.
636       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
637         setOperationAction(ISD::SMAX, VT, Legal);
638         setOperationAction(ISD::SMIN, VT, Legal);
639         setOperationAction(ISD::UMAX, VT, Legal);
640         setOperationAction(ISD::UMIN, VT, Legal);
641       }
642       else {
643         setOperationAction(ISD::SMAX, VT, Expand);
644         setOperationAction(ISD::SMIN, VT, Expand);
645         setOperationAction(ISD::UMAX, VT, Expand);
646         setOperationAction(ISD::UMIN, VT, Expand);
647       }
648 
649       if (Subtarget.hasVSX()) {
650         setOperationAction(ISD::FMAXNUM, VT, Legal);
651         setOperationAction(ISD::FMINNUM, VT, Legal);
652       }
653 
654       // Vector instructions introduced in P8
655       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
656         setOperationAction(ISD::CTPOP, VT, Legal);
657         setOperationAction(ISD::CTLZ, VT, Legal);
658       }
659       else {
660         setOperationAction(ISD::CTPOP, VT, Expand);
661         setOperationAction(ISD::CTLZ, VT, Expand);
662       }
663 
664       // Vector instructions introduced in P9
665       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
666         setOperationAction(ISD::CTTZ, VT, Legal);
667       else
668         setOperationAction(ISD::CTTZ, VT, Expand);
669 
670       // We promote all shuffles to v16i8.
671       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
672       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
673 
674       // We promote all non-typed operations to v4i32.
675       setOperationAction(ISD::AND   , VT, Promote);
676       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
677       setOperationAction(ISD::OR    , VT, Promote);
678       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
679       setOperationAction(ISD::XOR   , VT, Promote);
680       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
681       setOperationAction(ISD::LOAD  , VT, Promote);
682       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
683       setOperationAction(ISD::SELECT, VT, Promote);
684       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
685       setOperationAction(ISD::VSELECT, VT, Legal);
686       setOperationAction(ISD::SELECT_CC, VT, Promote);
687       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
688       setOperationAction(ISD::STORE, VT, Promote);
689       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
690 
691       // No other operations are legal.
692       setOperationAction(ISD::MUL , VT, Expand);
693       setOperationAction(ISD::SDIV, VT, Expand);
694       setOperationAction(ISD::SREM, VT, Expand);
695       setOperationAction(ISD::UDIV, VT, Expand);
696       setOperationAction(ISD::UREM, VT, Expand);
697       setOperationAction(ISD::FDIV, VT, Expand);
698       setOperationAction(ISD::FREM, VT, Expand);
699       setOperationAction(ISD::FNEG, VT, Expand);
700       setOperationAction(ISD::FSQRT, VT, Expand);
701       setOperationAction(ISD::FLOG, VT, Expand);
702       setOperationAction(ISD::FLOG10, VT, Expand);
703       setOperationAction(ISD::FLOG2, VT, Expand);
704       setOperationAction(ISD::FEXP, VT, Expand);
705       setOperationAction(ISD::FEXP2, VT, Expand);
706       setOperationAction(ISD::FSIN, VT, Expand);
707       setOperationAction(ISD::FCOS, VT, Expand);
708       setOperationAction(ISD::FABS, VT, Expand);
709       setOperationAction(ISD::FFLOOR, VT, Expand);
710       setOperationAction(ISD::FCEIL,  VT, Expand);
711       setOperationAction(ISD::FTRUNC, VT, Expand);
712       setOperationAction(ISD::FRINT,  VT, Expand);
713       setOperationAction(ISD::FNEARBYINT, VT, Expand);
714       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
715       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
716       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
717       setOperationAction(ISD::MULHU, VT, Expand);
718       setOperationAction(ISD::MULHS, VT, Expand);
719       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
720       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
721       setOperationAction(ISD::UDIVREM, VT, Expand);
722       setOperationAction(ISD::SDIVREM, VT, Expand);
723       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
724       setOperationAction(ISD::FPOW, VT, Expand);
725       setOperationAction(ISD::BSWAP, VT, Expand);
726       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
727       setOperationAction(ISD::ROTL, VT, Expand);
728       setOperationAction(ISD::ROTR, VT, Expand);
729 
730       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
731         setTruncStoreAction(VT, InnerVT, Expand);
732         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
733         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
734         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
735       }
736     }
737     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
738     if (!Subtarget.hasP8Vector()) {
739       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
740       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
741       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
742       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
743     }
744 
745     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
746       setOperationAction(ISD::ABS, VT, Custom);
747 
748     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
749     // with merges, splats, etc.
750     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
751 
752     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
753     // are cheap, so handle them before they get expanded to scalar.
754     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
755     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
756     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
757     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
758     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
759 
760     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
761     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
762     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
763     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
764     setOperationAction(ISD::SELECT, MVT::v4i32,
765                        Subtarget.useCRBits() ? Legal : Expand);
766     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
767     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
768     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
769     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
770     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
771     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
772     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
773     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
774     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
775 
776     // Without hasP8Altivec set, v2i64 SMAX isn't available.
777     // But ABS custom lowering requires SMAX support.
778     if (!Subtarget.hasP8Altivec())
779       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
780 
781     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
782     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
783     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
784     if (Subtarget.hasAltivec())
785       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
786         setOperationAction(ISD::ROTL, VT, Legal);
787     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
788     if (Subtarget.hasP8Altivec())
789       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
790 
791     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
792     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
793     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
794     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
795 
796     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
797     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
798 
799     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
800       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
801       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
802     }
803 
804     if (Subtarget.hasP8Altivec())
805       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
806     else
807       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
808 
809     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
810     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
811 
812     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
813     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
814 
815     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
816     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
817     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
818     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
819 
820     // Altivec does not contain unordered floating-point compare instructions
821     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
822     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
823     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
824     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
825 
826     if (Subtarget.hasVSX()) {
827       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
828       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
829       if (Subtarget.hasP8Vector()) {
830         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
831         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
832       }
833       if (Subtarget.hasDirectMove() && isPPC64) {
834         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
835         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
836         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
837         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
838         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
839         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
840         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
841         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
842       }
843       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
844 
845       // The nearbyint variants are not allowed to raise the inexact exception
846       // so we can only code-gen them with unsafe math.
847       if (TM.Options.UnsafeFPMath) {
848         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
849         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
850       }
851 
852       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
853       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
854       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
855       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
856       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
857       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
858       setOperationAction(ISD::FROUND, MVT::f64, Legal);
859       setOperationAction(ISD::FRINT, MVT::f64, Legal);
860 
861       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
862       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
863       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
864       setOperationAction(ISD::FROUND, MVT::f32, Legal);
865       setOperationAction(ISD::FRINT, MVT::f32, Legal);
866 
867       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
868       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
869 
870       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
871       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
872 
873       // Share the Altivec comparison restrictions.
874       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
875       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
876       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
877       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
878 
879       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
880       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
881 
882       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
883 
884       if (Subtarget.hasP8Vector())
885         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
886 
887       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
888 
889       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
890       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
891       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
892 
893       if (Subtarget.hasP8Altivec()) {
894         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
895         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
896         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
897 
898         // 128 bit shifts can be accomplished via 3 instructions for SHL and
899         // SRL, but not for SRA because of the instructions available:
900         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
901         // doing
902         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
903         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
904         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
905 
906         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
907       }
908       else {
909         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
910         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
911         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
912 
913         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
914 
915         // VSX v2i64 only supports non-arithmetic operations.
916         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
917         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
918       }
919 
920       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
921       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
922       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
923       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
924 
925       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
926 
927       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
928       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
929       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
930       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
931 
932       // Custom handling for partial vectors of integers converted to
933       // floating point. We already have optimal handling for v2i32 through
934       // the DAG combine, so those aren't necessary.
935       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
936       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
937       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
938       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
939       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
940       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
941       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
942       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
943 
944       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
945       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
946       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
947       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
948       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
949       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
950 
951       if (Subtarget.hasDirectMove())
952         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
953       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
954 
955       // Handle constrained floating-point operations of vector.
956       // The predictor is `hasVSX` because altivec instruction has
957       // no exception but VSX vector instruction has.
958       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
959       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
960       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
961       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
962       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
963       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
964       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
965       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
966       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
967       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
968       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
969       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
970       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
971 
972       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
973       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
974       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
975       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
976       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
977       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
978       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
979       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
980       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
981       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
982       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
983       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
984       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
985 
986       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
987     }
988 
989     if (Subtarget.hasP8Altivec()) {
990       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
991       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
992     }
993 
994     if (Subtarget.hasP9Vector()) {
995       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
996       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
997 
998       // 128 bit shifts can be accomplished via 3 instructions for SHL and
999       // SRL, but not for SRA because of the instructions available:
1000       // VS{RL} and VS{RL}O.
1001       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1002       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1003       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1004 
1005       if (EnableQuadPrecision) {
1006         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1007         setOperationAction(ISD::FADD, MVT::f128, Legal);
1008         setOperationAction(ISD::FSUB, MVT::f128, Legal);
1009         setOperationAction(ISD::FDIV, MVT::f128, Legal);
1010         setOperationAction(ISD::FMUL, MVT::f128, Legal);
1011         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1012         // No extending loads to f128 on PPC.
1013         for (MVT FPT : MVT::fp_valuetypes())
1014           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1015         setOperationAction(ISD::FMA, MVT::f128, Legal);
1016         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1017         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1018         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1019         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1020         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1021         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1022 
1023         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1024         setOperationAction(ISD::FRINT, MVT::f128, Legal);
1025         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1026         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1027         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1028         setOperationAction(ISD::FROUND, MVT::f128, Legal);
1029 
1030         setOperationAction(ISD::SELECT, MVT::f128, Expand);
1031         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1032         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1033         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1034         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1035         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1036         // No implementation for these ops for PowerPC.
1037         setOperationAction(ISD::FSIN , MVT::f128, Expand);
1038         setOperationAction(ISD::FCOS , MVT::f128, Expand);
1039         setOperationAction(ISD::FPOW, MVT::f128, Expand);
1040         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1041         setOperationAction(ISD::FREM, MVT::f128, Expand);
1042 
1043         // Handle constrained floating-point operations of fp128
1044         setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1045         setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1046         setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1047         setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1048         setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1049         setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1050         setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1051         setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1052         setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1053         setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1054         setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1055         setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1056         setOperationAction(ISD::STRICT_FCEIL,  MVT::f128, Legal);
1057         setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1058         setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1059       }
1060       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1061       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1062       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1063       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1064       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1065     }
1066 
1067     if (Subtarget.hasP9Altivec()) {
1068       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1069       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1070 
1071       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1072       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1073       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1074       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1075       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1076       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1077       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1078     }
1079   }
1080 
1081   if (Subtarget.hasQPX()) {
1082     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1083     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1084     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1085     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
1086 
1087     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
1088     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
1089 
1090     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
1091     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
1092 
1093     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1094     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1095 
1096     if (!Subtarget.useCRBits())
1097       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1098     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1099 
1100     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1101     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1102     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1103     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1104     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1105     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1106     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1107 
1108     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1109     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1110 
1111     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1112     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1113 
1114     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1115     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1116     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1117     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1118     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1119     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1120     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1121     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1122     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1123     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1124 
1125     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1126     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1127 
1128     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1129     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1130 
1131     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1132 
1133     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1134     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1135     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1136     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1137 
1138     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1139     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1140 
1141     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1142     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1143 
1144     if (!Subtarget.useCRBits())
1145       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1146     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1147 
1148     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1149     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1150     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1151     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1152     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1153     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1154     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1155 
1156     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1157     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1158 
1159     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1160     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1161     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1162     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1163     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1164     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1165     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1166     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1167     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1168     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1169 
1170     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1171     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1172 
1173     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1174     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1175 
1176     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1177 
1178     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1179     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1180     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1181 
1182     if (!Subtarget.useCRBits())
1183       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1184     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1185 
1186     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1187     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1188 
1189     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1190     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1191     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1192     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1193     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1194     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1195     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1196 
1197     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1198     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1199 
1200     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1201 
1202     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1203     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1204     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1205     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1206 
1207     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1208     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1209     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1210     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1211 
1212     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1213     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1214 
1215     // These need to set FE_INEXACT, and so cannot be vectorized here.
1216     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1217     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1218 
1219     if (TM.Options.UnsafeFPMath) {
1220       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1221       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1222 
1223       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1224       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1225     } else {
1226       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1227       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1228 
1229       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1230       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1231     }
1232 
1233     // TODO: Handle constrained floating-point operations of v4f64
1234   }
1235 
1236   if (Subtarget.has64BitSupport())
1237     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1238 
1239   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1240 
1241   if (!isPPC64) {
1242     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1243     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1244   }
1245 
1246   setBooleanContents(ZeroOrOneBooleanContent);
1247 
1248   if (Subtarget.hasAltivec()) {
1249     // Altivec instructions set fields to all zeros or all ones.
1250     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1251   }
1252 
1253   if (!isPPC64) {
1254     // These libcalls are not available in 32-bit.
1255     setLibcallName(RTLIB::SHL_I128, nullptr);
1256     setLibcallName(RTLIB::SRL_I128, nullptr);
1257     setLibcallName(RTLIB::SRA_I128, nullptr);
1258   }
1259 
1260   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1261 
1262   // We have target-specific dag combine patterns for the following nodes:
1263   setTargetDAGCombine(ISD::ADD);
1264   setTargetDAGCombine(ISD::SHL);
1265   setTargetDAGCombine(ISD::SRA);
1266   setTargetDAGCombine(ISD::SRL);
1267   setTargetDAGCombine(ISD::MUL);
1268   setTargetDAGCombine(ISD::FMA);
1269   setTargetDAGCombine(ISD::SINT_TO_FP);
1270   setTargetDAGCombine(ISD::BUILD_VECTOR);
1271   if (Subtarget.hasFPCVT())
1272     setTargetDAGCombine(ISD::UINT_TO_FP);
1273   setTargetDAGCombine(ISD::LOAD);
1274   setTargetDAGCombine(ISD::STORE);
1275   setTargetDAGCombine(ISD::BR_CC);
1276   if (Subtarget.useCRBits())
1277     setTargetDAGCombine(ISD::BRCOND);
1278   setTargetDAGCombine(ISD::BSWAP);
1279   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1280   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1281   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1282 
1283   setTargetDAGCombine(ISD::SIGN_EXTEND);
1284   setTargetDAGCombine(ISD::ZERO_EXTEND);
1285   setTargetDAGCombine(ISD::ANY_EXTEND);
1286 
1287   setTargetDAGCombine(ISD::TRUNCATE);
1288   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1289 
1290 
1291   if (Subtarget.useCRBits()) {
1292     setTargetDAGCombine(ISD::TRUNCATE);
1293     setTargetDAGCombine(ISD::SETCC);
1294     setTargetDAGCombine(ISD::SELECT_CC);
1295   }
1296 
1297   // Use reciprocal estimates.
1298   if (TM.Options.UnsafeFPMath) {
1299     setTargetDAGCombine(ISD::FDIV);
1300     setTargetDAGCombine(ISD::FSQRT);
1301   }
1302 
1303   if (Subtarget.hasP9Altivec()) {
1304     setTargetDAGCombine(ISD::ABS);
1305     setTargetDAGCombine(ISD::VSELECT);
1306   }
1307 
1308   if (EnableQuadPrecision) {
1309     setLibcallName(RTLIB::LOG_F128, "logf128");
1310     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1311     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1312     setLibcallName(RTLIB::EXP_F128, "expf128");
1313     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1314     setLibcallName(RTLIB::SIN_F128, "sinf128");
1315     setLibcallName(RTLIB::COS_F128, "cosf128");
1316     setLibcallName(RTLIB::POW_F128, "powf128");
1317     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1318     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1319     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1320     setLibcallName(RTLIB::REM_F128, "fmodf128");
1321   }
1322 
1323   // With 32 condition bits, we don't need to sink (and duplicate) compares
1324   // aggressively in CodeGenPrep.
1325   if (Subtarget.useCRBits()) {
1326     setHasMultipleConditionRegisters();
1327     setJumpIsExpensive();
1328   }
1329 
1330   setMinFunctionAlignment(Align(4));
1331 
1332   switch (Subtarget.getCPUDirective()) {
1333   default: break;
1334   case PPC::DIR_970:
1335   case PPC::DIR_A2:
1336   case PPC::DIR_E500:
1337   case PPC::DIR_E500mc:
1338   case PPC::DIR_E5500:
1339   case PPC::DIR_PWR4:
1340   case PPC::DIR_PWR5:
1341   case PPC::DIR_PWR5X:
1342   case PPC::DIR_PWR6:
1343   case PPC::DIR_PWR6X:
1344   case PPC::DIR_PWR7:
1345   case PPC::DIR_PWR8:
1346   case PPC::DIR_PWR9:
1347   case PPC::DIR_PWR10:
1348   case PPC::DIR_PWR_FUTURE:
1349     setPrefLoopAlignment(Align(16));
1350     setPrefFunctionAlignment(Align(16));
1351     break;
1352   }
1353 
1354   if (Subtarget.enableMachineScheduler())
1355     setSchedulingPreference(Sched::Source);
1356   else
1357     setSchedulingPreference(Sched::Hybrid);
1358 
1359   computeRegisterProperties(STI.getRegisterInfo());
1360 
1361   // The Freescale cores do better with aggressive inlining of memcpy and
1362   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1363   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1364       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1365     MaxStoresPerMemset = 32;
1366     MaxStoresPerMemsetOptSize = 16;
1367     MaxStoresPerMemcpy = 32;
1368     MaxStoresPerMemcpyOptSize = 8;
1369     MaxStoresPerMemmove = 32;
1370     MaxStoresPerMemmoveOptSize = 8;
1371   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1372     // The A2 also benefits from (very) aggressive inlining of memcpy and
1373     // friends. The overhead of a the function call, even when warm, can be
1374     // over one hundred cycles.
1375     MaxStoresPerMemset = 128;
1376     MaxStoresPerMemcpy = 128;
1377     MaxStoresPerMemmove = 128;
1378     MaxLoadsPerMemcmp = 128;
1379   } else {
1380     MaxLoadsPerMemcmp = 8;
1381     MaxLoadsPerMemcmpOptSize = 4;
1382   }
1383 
1384   // Let the subtarget (CPU) decide if a predictable select is more expensive
1385   // than the corresponding branch. This information is used in CGP to decide
1386   // when to convert selects into branches.
1387   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1388 }
1389 
1390 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1391 /// the desired ByVal argument alignment.
1392 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1393   if (MaxAlign == MaxMaxAlign)
1394     return;
1395   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1396     if (MaxMaxAlign >= 32 &&
1397         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1398       MaxAlign = Align(32);
1399     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1400              MaxAlign < 16)
1401       MaxAlign = Align(16);
1402   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1403     Align EltAlign;
1404     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1405     if (EltAlign > MaxAlign)
1406       MaxAlign = EltAlign;
1407   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1408     for (auto *EltTy : STy->elements()) {
1409       Align EltAlign;
1410       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1411       if (EltAlign > MaxAlign)
1412         MaxAlign = EltAlign;
1413       if (MaxAlign == MaxMaxAlign)
1414         break;
1415     }
1416   }
1417 }
1418 
1419 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1420 /// function arguments in the caller parameter area.
1421 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1422                                                   const DataLayout &DL) const {
1423   // 16byte and wider vectors are passed on 16byte boundary.
1424   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1425   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1426   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1427     getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16));
1428   return Alignment.value();
1429 }
1430 
1431 bool PPCTargetLowering::useSoftFloat() const {
1432   return Subtarget.useSoftFloat();
1433 }
1434 
1435 bool PPCTargetLowering::hasSPE() const {
1436   return Subtarget.hasSPE();
1437 }
1438 
1439 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1440   return VT.isScalarInteger();
1441 }
1442 
1443 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1444 /// type is cheaper than a multiply followed by a shift.
1445 /// This is true for words and doublewords on 64-bit PowerPC.
1446 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1447   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1448                               isOperationLegal(ISD::MULHU, Type)))
1449     return true;
1450   return TargetLowering::isMulhCheaperThanMulShift(Type);
1451 }
1452 
1453 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1454   switch ((PPCISD::NodeType)Opcode) {
1455   case PPCISD::FIRST_NUMBER:    break;
1456   case PPCISD::FSEL:            return "PPCISD::FSEL";
1457   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1458   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1459   case PPCISD::FCFID:           return "PPCISD::FCFID";
1460   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1461   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1462   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1463   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1464   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1465   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1466   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1467   case PPCISD::FP_TO_UINT_IN_VSR:
1468                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1469   case PPCISD::FP_TO_SINT_IN_VSR:
1470                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1471   case PPCISD::FRE:             return "PPCISD::FRE";
1472   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1473   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1474   case PPCISD::VPERM:           return "PPCISD::VPERM";
1475   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1476   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1477   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1478   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1479   case PPCISD::CMPB:            return "PPCISD::CMPB";
1480   case PPCISD::Hi:              return "PPCISD::Hi";
1481   case PPCISD::Lo:              return "PPCISD::Lo";
1482   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1483   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1484   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1485   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1486   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1487   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1488   case PPCISD::SRL:             return "PPCISD::SRL";
1489   case PPCISD::SRA:             return "PPCISD::SRA";
1490   case PPCISD::SHL:             return "PPCISD::SHL";
1491   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1492   case PPCISD::CALL:            return "PPCISD::CALL";
1493   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1494   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1495   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1496   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1497   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1498   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1499   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1500   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1501   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1502   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1503   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1504   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1505   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1506   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1507   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1508   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1509     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1510   case PPCISD::ANDI_rec_1_EQ_BIT:
1511     return "PPCISD::ANDI_rec_1_EQ_BIT";
1512   case PPCISD::ANDI_rec_1_GT_BIT:
1513     return "PPCISD::ANDI_rec_1_GT_BIT";
1514   case PPCISD::VCMP:            return "PPCISD::VCMP";
1515   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1516   case PPCISD::LBRX:            return "PPCISD::LBRX";
1517   case PPCISD::STBRX:           return "PPCISD::STBRX";
1518   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1519   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1520   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1521   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1522   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1523   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1524   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1525   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1526   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1527   case PPCISD::ST_VSR_SCAL_INT:
1528                                 return "PPCISD::ST_VSR_SCAL_INT";
1529   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1530   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1531   case PPCISD::BDZ:             return "PPCISD::BDZ";
1532   case PPCISD::MFFS:            return "PPCISD::MFFS";
1533   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1534   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1535   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1536   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1537   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1538   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1539   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1540   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1541   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1542   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1543   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1544   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1545   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1546   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1547   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1548   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1549   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1550   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1551   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1552   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1553   case PPCISD::SC:              return "PPCISD::SC";
1554   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1555   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1556   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1557   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1558   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1559   case PPCISD::VABSD:           return "PPCISD::VABSD";
1560   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1561   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1562   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1563   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1564   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1565   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1566   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1567   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1568   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1569   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1570   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1571   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1572   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1573   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1574   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1575   }
1576   return nullptr;
1577 }
1578 
1579 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1580                                           EVT VT) const {
1581   if (!VT.isVector())
1582     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1583 
1584   if (Subtarget.hasQPX())
1585     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1586 
1587   return VT.changeVectorElementTypeToInteger();
1588 }
1589 
1590 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1591   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1592   return true;
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 // Node matching predicates, for use by the tblgen matching code.
1597 //===----------------------------------------------------------------------===//
1598 
1599 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1600 static bool isFloatingPointZero(SDValue Op) {
1601   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1602     return CFP->getValueAPF().isZero();
1603   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1604     // Maybe this has already been legalized into the constant pool?
1605     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1606       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1607         return CFP->getValueAPF().isZero();
1608   }
1609   return false;
1610 }
1611 
1612 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1613 /// true if Op is undef or if it matches the specified value.
1614 static bool isConstantOrUndef(int Op, int Val) {
1615   return Op < 0 || Op == Val;
1616 }
1617 
1618 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1619 /// VPKUHUM instruction.
1620 /// The ShuffleKind distinguishes between big-endian operations with
1621 /// two different inputs (0), either-endian operations with two identical
1622 /// inputs (1), and little-endian operations with two different inputs (2).
1623 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1624 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1625                                SelectionDAG &DAG) {
1626   bool IsLE = DAG.getDataLayout().isLittleEndian();
1627   if (ShuffleKind == 0) {
1628     if (IsLE)
1629       return false;
1630     for (unsigned i = 0; i != 16; ++i)
1631       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1632         return false;
1633   } else if (ShuffleKind == 2) {
1634     if (!IsLE)
1635       return false;
1636     for (unsigned i = 0; i != 16; ++i)
1637       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1638         return false;
1639   } else if (ShuffleKind == 1) {
1640     unsigned j = IsLE ? 0 : 1;
1641     for (unsigned i = 0; i != 8; ++i)
1642       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1643           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1644         return false;
1645   }
1646   return true;
1647 }
1648 
1649 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1650 /// VPKUWUM instruction.
1651 /// The ShuffleKind distinguishes between big-endian operations with
1652 /// two different inputs (0), either-endian operations with two identical
1653 /// inputs (1), and little-endian operations with two different inputs (2).
1654 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1655 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1656                                SelectionDAG &DAG) {
1657   bool IsLE = DAG.getDataLayout().isLittleEndian();
1658   if (ShuffleKind == 0) {
1659     if (IsLE)
1660       return false;
1661     for (unsigned i = 0; i != 16; i += 2)
1662       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1663           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1664         return false;
1665   } else if (ShuffleKind == 2) {
1666     if (!IsLE)
1667       return false;
1668     for (unsigned i = 0; i != 16; i += 2)
1669       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1670           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1671         return false;
1672   } else if (ShuffleKind == 1) {
1673     unsigned j = IsLE ? 0 : 2;
1674     for (unsigned i = 0; i != 8; i += 2)
1675       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1676           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1677           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1678           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1679         return false;
1680   }
1681   return true;
1682 }
1683 
1684 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1685 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1686 /// current subtarget.
1687 ///
1688 /// The ShuffleKind distinguishes between big-endian operations with
1689 /// two different inputs (0), either-endian operations with two identical
1690 /// inputs (1), and little-endian operations with two different inputs (2).
1691 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1692 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1693                                SelectionDAG &DAG) {
1694   const PPCSubtarget& Subtarget =
1695       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1696   if (!Subtarget.hasP8Vector())
1697     return false;
1698 
1699   bool IsLE = DAG.getDataLayout().isLittleEndian();
1700   if (ShuffleKind == 0) {
1701     if (IsLE)
1702       return false;
1703     for (unsigned i = 0; i != 16; i += 4)
1704       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1705           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1706           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1707           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1708         return false;
1709   } else if (ShuffleKind == 2) {
1710     if (!IsLE)
1711       return false;
1712     for (unsigned i = 0; i != 16; i += 4)
1713       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1714           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1715           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1716           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1717         return false;
1718   } else if (ShuffleKind == 1) {
1719     unsigned j = IsLE ? 0 : 4;
1720     for (unsigned i = 0; i != 8; i += 4)
1721       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1722           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1723           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1724           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1725           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1726           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1727           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1728           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1729         return false;
1730   }
1731   return true;
1732 }
1733 
1734 /// isVMerge - Common function, used to match vmrg* shuffles.
1735 ///
1736 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1737                      unsigned LHSStart, unsigned RHSStart) {
1738   if (N->getValueType(0) != MVT::v16i8)
1739     return false;
1740   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1741          "Unsupported merge size!");
1742 
1743   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1744     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1745       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1746                              LHSStart+j+i*UnitSize) ||
1747           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1748                              RHSStart+j+i*UnitSize))
1749         return false;
1750     }
1751   return true;
1752 }
1753 
1754 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1755 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1756 /// The ShuffleKind distinguishes between big-endian merges with two
1757 /// different inputs (0), either-endian merges with two identical inputs (1),
1758 /// and little-endian merges with two different inputs (2).  For the latter,
1759 /// the input operands are swapped (see PPCInstrAltivec.td).
1760 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1761                              unsigned ShuffleKind, SelectionDAG &DAG) {
1762   if (DAG.getDataLayout().isLittleEndian()) {
1763     if (ShuffleKind == 1) // unary
1764       return isVMerge(N, UnitSize, 0, 0);
1765     else if (ShuffleKind == 2) // swapped
1766       return isVMerge(N, UnitSize, 0, 16);
1767     else
1768       return false;
1769   } else {
1770     if (ShuffleKind == 1) // unary
1771       return isVMerge(N, UnitSize, 8, 8);
1772     else if (ShuffleKind == 0) // normal
1773       return isVMerge(N, UnitSize, 8, 24);
1774     else
1775       return false;
1776   }
1777 }
1778 
1779 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1780 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1781 /// The ShuffleKind distinguishes between big-endian merges with two
1782 /// different inputs (0), either-endian merges with two identical inputs (1),
1783 /// and little-endian merges with two different inputs (2).  For the latter,
1784 /// the input operands are swapped (see PPCInstrAltivec.td).
1785 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1786                              unsigned ShuffleKind, SelectionDAG &DAG) {
1787   if (DAG.getDataLayout().isLittleEndian()) {
1788     if (ShuffleKind == 1) // unary
1789       return isVMerge(N, UnitSize, 8, 8);
1790     else if (ShuffleKind == 2) // swapped
1791       return isVMerge(N, UnitSize, 8, 24);
1792     else
1793       return false;
1794   } else {
1795     if (ShuffleKind == 1) // unary
1796       return isVMerge(N, UnitSize, 0, 0);
1797     else if (ShuffleKind == 0) // normal
1798       return isVMerge(N, UnitSize, 0, 16);
1799     else
1800       return false;
1801   }
1802 }
1803 
1804 /**
1805  * Common function used to match vmrgew and vmrgow shuffles
1806  *
1807  * The indexOffset determines whether to look for even or odd words in
1808  * the shuffle mask. This is based on the of the endianness of the target
1809  * machine.
1810  *   - Little Endian:
1811  *     - Use offset of 0 to check for odd elements
1812  *     - Use offset of 4 to check for even elements
1813  *   - Big Endian:
1814  *     - Use offset of 0 to check for even elements
1815  *     - Use offset of 4 to check for odd elements
1816  * A detailed description of the vector element ordering for little endian and
1817  * big endian can be found at
1818  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1819  * Targeting your applications - what little endian and big endian IBM XL C/C++
1820  * compiler differences mean to you
1821  *
1822  * The mask to the shuffle vector instruction specifies the indices of the
1823  * elements from the two input vectors to place in the result. The elements are
1824  * numbered in array-access order, starting with the first vector. These vectors
1825  * are always of type v16i8, thus each vector will contain 16 elements of size
1826  * 8. More info on the shuffle vector can be found in the
1827  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1828  * Language Reference.
1829  *
1830  * The RHSStartValue indicates whether the same input vectors are used (unary)
1831  * or two different input vectors are used, based on the following:
1832  *   - If the instruction uses the same vector for both inputs, the range of the
1833  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1834  *     be 0.
1835  *   - If the instruction has two different vectors then the range of the
1836  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1837  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1838  *     to 31 specify elements in the second vector).
1839  *
1840  * \param[in] N The shuffle vector SD Node to analyze
1841  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1842  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1843  * vector to the shuffle_vector instruction
1844  * \return true iff this shuffle vector represents an even or odd word merge
1845  */
1846 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1847                      unsigned RHSStartValue) {
1848   if (N->getValueType(0) != MVT::v16i8)
1849     return false;
1850 
1851   for (unsigned i = 0; i < 2; ++i)
1852     for (unsigned j = 0; j < 4; ++j)
1853       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1854                              i*RHSStartValue+j+IndexOffset) ||
1855           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1856                              i*RHSStartValue+j+IndexOffset+8))
1857         return false;
1858   return true;
1859 }
1860 
1861 /**
1862  * Determine if the specified shuffle mask is suitable for the vmrgew or
1863  * vmrgow instructions.
1864  *
1865  * \param[in] N The shuffle vector SD Node to analyze
1866  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1867  * \param[in] ShuffleKind Identify the type of merge:
1868  *   - 0 = big-endian merge with two different inputs;
1869  *   - 1 = either-endian merge with two identical inputs;
1870  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1871  *     little-endian merges).
1872  * \param[in] DAG The current SelectionDAG
1873  * \return true iff this shuffle mask
1874  */
1875 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1876                               unsigned ShuffleKind, SelectionDAG &DAG) {
1877   if (DAG.getDataLayout().isLittleEndian()) {
1878     unsigned indexOffset = CheckEven ? 4 : 0;
1879     if (ShuffleKind == 1) // Unary
1880       return isVMerge(N, indexOffset, 0);
1881     else if (ShuffleKind == 2) // swapped
1882       return isVMerge(N, indexOffset, 16);
1883     else
1884       return false;
1885   }
1886   else {
1887     unsigned indexOffset = CheckEven ? 0 : 4;
1888     if (ShuffleKind == 1) // Unary
1889       return isVMerge(N, indexOffset, 0);
1890     else if (ShuffleKind == 0) // Normal
1891       return isVMerge(N, indexOffset, 16);
1892     else
1893       return false;
1894   }
1895   return false;
1896 }
1897 
1898 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1899 /// amount, otherwise return -1.
1900 /// The ShuffleKind distinguishes between big-endian operations with two
1901 /// different inputs (0), either-endian operations with two identical inputs
1902 /// (1), and little-endian operations with two different inputs (2).  For the
1903 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1904 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1905                              SelectionDAG &DAG) {
1906   if (N->getValueType(0) != MVT::v16i8)
1907     return -1;
1908 
1909   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1910 
1911   // Find the first non-undef value in the shuffle mask.
1912   unsigned i;
1913   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1914     /*search*/;
1915 
1916   if (i == 16) return -1;  // all undef.
1917 
1918   // Otherwise, check to see if the rest of the elements are consecutively
1919   // numbered from this value.
1920   unsigned ShiftAmt = SVOp->getMaskElt(i);
1921   if (ShiftAmt < i) return -1;
1922 
1923   ShiftAmt -= i;
1924   bool isLE = DAG.getDataLayout().isLittleEndian();
1925 
1926   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1927     // Check the rest of the elements to see if they are consecutive.
1928     for (++i; i != 16; ++i)
1929       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1930         return -1;
1931   } else if (ShuffleKind == 1) {
1932     // Check the rest of the elements to see if they are consecutive.
1933     for (++i; i != 16; ++i)
1934       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1935         return -1;
1936   } else
1937     return -1;
1938 
1939   if (isLE)
1940     ShiftAmt = 16 - ShiftAmt;
1941 
1942   return ShiftAmt;
1943 }
1944 
1945 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1946 /// specifies a splat of a single element that is suitable for input to
1947 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1948 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1949   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1950          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1951 
1952   // The consecutive indices need to specify an element, not part of two
1953   // different elements.  So abandon ship early if this isn't the case.
1954   if (N->getMaskElt(0) % EltSize != 0)
1955     return false;
1956 
1957   // This is a splat operation if each element of the permute is the same, and
1958   // if the value doesn't reference the second vector.
1959   unsigned ElementBase = N->getMaskElt(0);
1960 
1961   // FIXME: Handle UNDEF elements too!
1962   if (ElementBase >= 16)
1963     return false;
1964 
1965   // Check that the indices are consecutive, in the case of a multi-byte element
1966   // splatted with a v16i8 mask.
1967   for (unsigned i = 1; i != EltSize; ++i)
1968     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1969       return false;
1970 
1971   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1972     if (N->getMaskElt(i) < 0) continue;
1973     for (unsigned j = 0; j != EltSize; ++j)
1974       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1975         return false;
1976   }
1977   return true;
1978 }
1979 
1980 /// Check that the mask is shuffling N byte elements. Within each N byte
1981 /// element of the mask, the indices could be either in increasing or
1982 /// decreasing order as long as they are consecutive.
1983 /// \param[in] N the shuffle vector SD Node to analyze
1984 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1985 /// Word/DoubleWord/QuadWord).
1986 /// \param[in] StepLen the delta indices number among the N byte element, if
1987 /// the mask is in increasing/decreasing order then it is 1/-1.
1988 /// \return true iff the mask is shuffling N byte elements.
1989 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1990                                    int StepLen) {
1991   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1992          "Unexpected element width.");
1993   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1994 
1995   unsigned NumOfElem = 16 / Width;
1996   unsigned MaskVal[16]; //  Width is never greater than 16
1997   for (unsigned i = 0; i < NumOfElem; ++i) {
1998     MaskVal[0] = N->getMaskElt(i * Width);
1999     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2000       return false;
2001     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2002       return false;
2003     }
2004 
2005     for (unsigned int j = 1; j < Width; ++j) {
2006       MaskVal[j] = N->getMaskElt(i * Width + j);
2007       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2008         return false;
2009       }
2010     }
2011   }
2012 
2013   return true;
2014 }
2015 
2016 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2017                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2018   if (!isNByteElemShuffleMask(N, 4, 1))
2019     return false;
2020 
2021   // Now we look at mask elements 0,4,8,12
2022   unsigned M0 = N->getMaskElt(0) / 4;
2023   unsigned M1 = N->getMaskElt(4) / 4;
2024   unsigned M2 = N->getMaskElt(8) / 4;
2025   unsigned M3 = N->getMaskElt(12) / 4;
2026   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2027   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2028 
2029   // Below, let H and L be arbitrary elements of the shuffle mask
2030   // where H is in the range [4,7] and L is in the range [0,3].
2031   // H, 1, 2, 3 or L, 5, 6, 7
2032   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2033       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2034     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2035     InsertAtByte = IsLE ? 12 : 0;
2036     Swap = M0 < 4;
2037     return true;
2038   }
2039   // 0, H, 2, 3 or 4, L, 6, 7
2040   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2041       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2042     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2043     InsertAtByte = IsLE ? 8 : 4;
2044     Swap = M1 < 4;
2045     return true;
2046   }
2047   // 0, 1, H, 3 or 4, 5, L, 7
2048   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2049       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2050     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2051     InsertAtByte = IsLE ? 4 : 8;
2052     Swap = M2 < 4;
2053     return true;
2054   }
2055   // 0, 1, 2, H or 4, 5, 6, L
2056   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2057       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2058     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2059     InsertAtByte = IsLE ? 0 : 12;
2060     Swap = M3 < 4;
2061     return true;
2062   }
2063 
2064   // If both vector operands for the shuffle are the same vector, the mask will
2065   // contain only elements from the first one and the second one will be undef.
2066   if (N->getOperand(1).isUndef()) {
2067     ShiftElts = 0;
2068     Swap = true;
2069     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2070     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2071       InsertAtByte = IsLE ? 12 : 0;
2072       return true;
2073     }
2074     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2075       InsertAtByte = IsLE ? 8 : 4;
2076       return true;
2077     }
2078     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2079       InsertAtByte = IsLE ? 4 : 8;
2080       return true;
2081     }
2082     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2083       InsertAtByte = IsLE ? 0 : 12;
2084       return true;
2085     }
2086   }
2087 
2088   return false;
2089 }
2090 
2091 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2092                                bool &Swap, bool IsLE) {
2093   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2094   // Ensure each byte index of the word is consecutive.
2095   if (!isNByteElemShuffleMask(N, 4, 1))
2096     return false;
2097 
2098   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2099   unsigned M0 = N->getMaskElt(0) / 4;
2100   unsigned M1 = N->getMaskElt(4) / 4;
2101   unsigned M2 = N->getMaskElt(8) / 4;
2102   unsigned M3 = N->getMaskElt(12) / 4;
2103 
2104   // If both vector operands for the shuffle are the same vector, the mask will
2105   // contain only elements from the first one and the second one will be undef.
2106   if (N->getOperand(1).isUndef()) {
2107     assert(M0 < 4 && "Indexing into an undef vector?");
2108     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2109       return false;
2110 
2111     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2112     Swap = false;
2113     return true;
2114   }
2115 
2116   // Ensure each word index of the ShuffleVector Mask is consecutive.
2117   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2118     return false;
2119 
2120   if (IsLE) {
2121     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2122       // Input vectors don't need to be swapped if the leading element
2123       // of the result is one of the 3 left elements of the second vector
2124       // (or if there is no shift to be done at all).
2125       Swap = false;
2126       ShiftElts = (8 - M0) % 8;
2127     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2128       // Input vectors need to be swapped if the leading element
2129       // of the result is one of the 3 left elements of the first vector
2130       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2131       Swap = true;
2132       ShiftElts = (4 - M0) % 4;
2133     }
2134 
2135     return true;
2136   } else {                                          // BE
2137     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2138       // Input vectors don't need to be swapped if the leading element
2139       // of the result is one of the 4 elements of the first vector.
2140       Swap = false;
2141       ShiftElts = M0;
2142     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2143       // Input vectors need to be swapped if the leading element
2144       // of the result is one of the 4 elements of the right vector.
2145       Swap = true;
2146       ShiftElts = M0 - 4;
2147     }
2148 
2149     return true;
2150   }
2151 }
2152 
2153 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2154   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2155 
2156   if (!isNByteElemShuffleMask(N, Width, -1))
2157     return false;
2158 
2159   for (int i = 0; i < 16; i += Width)
2160     if (N->getMaskElt(i) != i + Width - 1)
2161       return false;
2162 
2163   return true;
2164 }
2165 
2166 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2167   return isXXBRShuffleMaskHelper(N, 2);
2168 }
2169 
2170 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2171   return isXXBRShuffleMaskHelper(N, 4);
2172 }
2173 
2174 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2175   return isXXBRShuffleMaskHelper(N, 8);
2176 }
2177 
2178 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2179   return isXXBRShuffleMaskHelper(N, 16);
2180 }
2181 
2182 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2183 /// if the inputs to the instruction should be swapped and set \p DM to the
2184 /// value for the immediate.
2185 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2186 /// AND element 0 of the result comes from the first input (LE) or second input
2187 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2188 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2189 /// mask.
2190 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2191                                bool &Swap, bool IsLE) {
2192   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2193 
2194   // Ensure each byte index of the double word is consecutive.
2195   if (!isNByteElemShuffleMask(N, 8, 1))
2196     return false;
2197 
2198   unsigned M0 = N->getMaskElt(0) / 8;
2199   unsigned M1 = N->getMaskElt(8) / 8;
2200   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2201 
2202   // If both vector operands for the shuffle are the same vector, the mask will
2203   // contain only elements from the first one and the second one will be undef.
2204   if (N->getOperand(1).isUndef()) {
2205     if ((M0 | M1) < 2) {
2206       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2207       Swap = false;
2208       return true;
2209     } else
2210       return false;
2211   }
2212 
2213   if (IsLE) {
2214     if (M0 > 1 && M1 < 2) {
2215       Swap = false;
2216     } else if (M0 < 2 && M1 > 1) {
2217       M0 = (M0 + 2) % 4;
2218       M1 = (M1 + 2) % 4;
2219       Swap = true;
2220     } else
2221       return false;
2222 
2223     // Note: if control flow comes here that means Swap is already set above
2224     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2225     return true;
2226   } else { // BE
2227     if (M0 < 2 && M1 > 1) {
2228       Swap = false;
2229     } else if (M0 > 1 && M1 < 2) {
2230       M0 = (M0 + 2) % 4;
2231       M1 = (M1 + 2) % 4;
2232       Swap = true;
2233     } else
2234       return false;
2235 
2236     // Note: if control flow comes here that means Swap is already set above
2237     DM = (M0 << 1) + (M1 & 1);
2238     return true;
2239   }
2240 }
2241 
2242 
2243 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2244 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2245 /// elements are counted from the left of the vector register).
2246 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2247                                          SelectionDAG &DAG) {
2248   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2249   assert(isSplatShuffleMask(SVOp, EltSize));
2250   if (DAG.getDataLayout().isLittleEndian())
2251     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2252   else
2253     return SVOp->getMaskElt(0) / EltSize;
2254 }
2255 
2256 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2257 /// by using a vspltis[bhw] instruction of the specified element size, return
2258 /// the constant being splatted.  The ByteSize field indicates the number of
2259 /// bytes of each element [124] -> [bhw].
2260 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2261   SDValue OpVal(nullptr, 0);
2262 
2263   // If ByteSize of the splat is bigger than the element size of the
2264   // build_vector, then we have a case where we are checking for a splat where
2265   // multiple elements of the buildvector are folded together into a single
2266   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2267   unsigned EltSize = 16/N->getNumOperands();
2268   if (EltSize < ByteSize) {
2269     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2270     SDValue UniquedVals[4];
2271     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2272 
2273     // See if all of the elements in the buildvector agree across.
2274     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2275       if (N->getOperand(i).isUndef()) continue;
2276       // If the element isn't a constant, bail fully out.
2277       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2278 
2279       if (!UniquedVals[i&(Multiple-1)].getNode())
2280         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2281       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2282         return SDValue();  // no match.
2283     }
2284 
2285     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2286     // either constant or undef values that are identical for each chunk.  See
2287     // if these chunks can form into a larger vspltis*.
2288 
2289     // Check to see if all of the leading entries are either 0 or -1.  If
2290     // neither, then this won't fit into the immediate field.
2291     bool LeadingZero = true;
2292     bool LeadingOnes = true;
2293     for (unsigned i = 0; i != Multiple-1; ++i) {
2294       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2295 
2296       LeadingZero &= isNullConstant(UniquedVals[i]);
2297       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2298     }
2299     // Finally, check the least significant entry.
2300     if (LeadingZero) {
2301       if (!UniquedVals[Multiple-1].getNode())
2302         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2303       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2304       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2305         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2306     }
2307     if (LeadingOnes) {
2308       if (!UniquedVals[Multiple-1].getNode())
2309         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2310       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2311       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2312         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2313     }
2314 
2315     return SDValue();
2316   }
2317 
2318   // Check to see if this buildvec has a single non-undef value in its elements.
2319   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2320     if (N->getOperand(i).isUndef()) continue;
2321     if (!OpVal.getNode())
2322       OpVal = N->getOperand(i);
2323     else if (OpVal != N->getOperand(i))
2324       return SDValue();
2325   }
2326 
2327   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2328 
2329   unsigned ValSizeInBytes = EltSize;
2330   uint64_t Value = 0;
2331   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2332     Value = CN->getZExtValue();
2333   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2334     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2335     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2336   }
2337 
2338   // If the splat value is larger than the element value, then we can never do
2339   // this splat.  The only case that we could fit the replicated bits into our
2340   // immediate field for would be zero, and we prefer to use vxor for it.
2341   if (ValSizeInBytes < ByteSize) return SDValue();
2342 
2343   // If the element value is larger than the splat value, check if it consists
2344   // of a repeated bit pattern of size ByteSize.
2345   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2346     return SDValue();
2347 
2348   // Properly sign extend the value.
2349   int MaskVal = SignExtend32(Value, ByteSize * 8);
2350 
2351   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2352   if (MaskVal == 0) return SDValue();
2353 
2354   // Finally, if this value fits in a 5 bit sext field, return it
2355   if (SignExtend32<5>(MaskVal) == MaskVal)
2356     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2357   return SDValue();
2358 }
2359 
2360 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2361 /// amount, otherwise return -1.
2362 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2363   EVT VT = N->getValueType(0);
2364   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2365     return -1;
2366 
2367   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2368 
2369   // Find the first non-undef value in the shuffle mask.
2370   unsigned i;
2371   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2372     /*search*/;
2373 
2374   if (i == 4) return -1;  // all undef.
2375 
2376   // Otherwise, check to see if the rest of the elements are consecutively
2377   // numbered from this value.
2378   unsigned ShiftAmt = SVOp->getMaskElt(i);
2379   if (ShiftAmt < i) return -1;
2380   ShiftAmt -= i;
2381 
2382   // Check the rest of the elements to see if they are consecutive.
2383   for (++i; i != 4; ++i)
2384     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2385       return -1;
2386 
2387   return ShiftAmt;
2388 }
2389 
2390 //===----------------------------------------------------------------------===//
2391 //  Addressing Mode Selection
2392 //===----------------------------------------------------------------------===//
2393 
2394 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2395 /// or 64-bit immediate, and if the value can be accurately represented as a
2396 /// sign extension from a 16-bit value.  If so, this returns true and the
2397 /// immediate.
2398 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2399   if (!isa<ConstantSDNode>(N))
2400     return false;
2401 
2402   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2403   if (N->getValueType(0) == MVT::i32)
2404     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2405   else
2406     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2407 }
2408 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2409   return isIntS16Immediate(Op.getNode(), Imm);
2410 }
2411 
2412 
2413 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2414 /// be represented as an indexed [r+r] operation.
2415 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2416                                                SDValue &Index,
2417                                                SelectionDAG &DAG) const {
2418   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2419       UI != E; ++UI) {
2420     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2421       if (Memop->getMemoryVT() == MVT::f64) {
2422           Base = N.getOperand(0);
2423           Index = N.getOperand(1);
2424           return true;
2425       }
2426     }
2427   }
2428   return false;
2429 }
2430 
2431 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2432 /// can be represented as an indexed [r+r] operation.  Returns false if it
2433 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2434 /// non-zero and N can be represented by a base register plus a signed 16-bit
2435 /// displacement, make a more precise judgement by checking (displacement % \p
2436 /// EncodingAlignment).
2437 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2438                                             SDValue &Index, SelectionDAG &DAG,
2439                                             unsigned EncodingAlignment) const {
2440   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2441   // a [pc+imm].
2442   if (SelectAddressPCRel(N, Base))
2443     return false;
2444 
2445   int16_t imm = 0;
2446   if (N.getOpcode() == ISD::ADD) {
2447     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2448     // SPE load/store can only handle 8-bit offsets.
2449     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2450         return true;
2451     if (isIntS16Immediate(N.getOperand(1), imm) &&
2452         (!EncodingAlignment || !(imm % EncodingAlignment)))
2453       return false; // r+i
2454     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2455       return false;    // r+i
2456 
2457     Base = N.getOperand(0);
2458     Index = N.getOperand(1);
2459     return true;
2460   } else if (N.getOpcode() == ISD::OR) {
2461     if (isIntS16Immediate(N.getOperand(1), imm) &&
2462         (!EncodingAlignment || !(imm % EncodingAlignment)))
2463       return false; // r+i can fold it if we can.
2464 
2465     // If this is an or of disjoint bitfields, we can codegen this as an add
2466     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2467     // disjoint.
2468     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2469 
2470     if (LHSKnown.Zero.getBoolValue()) {
2471       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2472       // If all of the bits are known zero on the LHS or RHS, the add won't
2473       // carry.
2474       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2475         Base = N.getOperand(0);
2476         Index = N.getOperand(1);
2477         return true;
2478       }
2479     }
2480   }
2481 
2482   return false;
2483 }
2484 
2485 // If we happen to be doing an i64 load or store into a stack slot that has
2486 // less than a 4-byte alignment, then the frame-index elimination may need to
2487 // use an indexed load or store instruction (because the offset may not be a
2488 // multiple of 4). The extra register needed to hold the offset comes from the
2489 // register scavenger, and it is possible that the scavenger will need to use
2490 // an emergency spill slot. As a result, we need to make sure that a spill slot
2491 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2492 // stack slot.
2493 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2494   // FIXME: This does not handle the LWA case.
2495   if (VT != MVT::i64)
2496     return;
2497 
2498   // NOTE: We'll exclude negative FIs here, which come from argument
2499   // lowering, because there are no known test cases triggering this problem
2500   // using packed structures (or similar). We can remove this exclusion if
2501   // we find such a test case. The reason why this is so test-case driven is
2502   // because this entire 'fixup' is only to prevent crashes (from the
2503   // register scavenger) on not-really-valid inputs. For example, if we have:
2504   //   %a = alloca i1
2505   //   %b = bitcast i1* %a to i64*
2506   //   store i64* a, i64 b
2507   // then the store should really be marked as 'align 1', but is not. If it
2508   // were marked as 'align 1' then the indexed form would have been
2509   // instruction-selected initially, and the problem this 'fixup' is preventing
2510   // won't happen regardless.
2511   if (FrameIdx < 0)
2512     return;
2513 
2514   MachineFunction &MF = DAG.getMachineFunction();
2515   MachineFrameInfo &MFI = MF.getFrameInfo();
2516 
2517   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2518     return;
2519 
2520   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2521   FuncInfo->setHasNonRISpills();
2522 }
2523 
2524 /// Returns true if the address N can be represented by a base register plus
2525 /// a signed 16-bit displacement [r+imm], and if it is not better
2526 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2527 /// displacements that are multiples of that value.
2528 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2529                                             SDValue &Base,
2530                                             SelectionDAG &DAG,
2531                                             unsigned EncodingAlignment) const {
2532   // FIXME dl should come from parent load or store, not from address
2533   SDLoc dl(N);
2534 
2535   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2536   // a [pc+imm].
2537   if (SelectAddressPCRel(N, Base))
2538     return false;
2539 
2540   // If this can be more profitably realized as r+r, fail.
2541   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2542     return false;
2543 
2544   if (N.getOpcode() == ISD::ADD) {
2545     int16_t imm = 0;
2546     if (isIntS16Immediate(N.getOperand(1), imm) &&
2547         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2548       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2549       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2550         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2551         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2552       } else {
2553         Base = N.getOperand(0);
2554       }
2555       return true; // [r+i]
2556     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2557       // Match LOAD (ADD (X, Lo(G))).
2558       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2559              && "Cannot handle constant offsets yet!");
2560       Disp = N.getOperand(1).getOperand(0);  // The global address.
2561       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2562              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2563              Disp.getOpcode() == ISD::TargetConstantPool ||
2564              Disp.getOpcode() == ISD::TargetJumpTable);
2565       Base = N.getOperand(0);
2566       return true;  // [&g+r]
2567     }
2568   } else if (N.getOpcode() == ISD::OR) {
2569     int16_t imm = 0;
2570     if (isIntS16Immediate(N.getOperand(1), imm) &&
2571         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2572       // If this is an or of disjoint bitfields, we can codegen this as an add
2573       // (for better address arithmetic) if the LHS and RHS of the OR are
2574       // provably disjoint.
2575       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2576 
2577       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2578         // If all of the bits are known zero on the LHS or RHS, the add won't
2579         // carry.
2580         if (FrameIndexSDNode *FI =
2581               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2582           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2583           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2584         } else {
2585           Base = N.getOperand(0);
2586         }
2587         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2588         return true;
2589       }
2590     }
2591   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2592     // Loading from a constant address.
2593 
2594     // If this address fits entirely in a 16-bit sext immediate field, codegen
2595     // this as "d, 0"
2596     int16_t Imm;
2597     if (isIntS16Immediate(CN, Imm) &&
2598         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2599       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2600       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2601                              CN->getValueType(0));
2602       return true;
2603     }
2604 
2605     // Handle 32-bit sext immediates with LIS + addr mode.
2606     if ((CN->getValueType(0) == MVT::i32 ||
2607          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2608         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2609       int Addr = (int)CN->getZExtValue();
2610 
2611       // Otherwise, break this down into an LIS + disp.
2612       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2613 
2614       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2615                                    MVT::i32);
2616       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2617       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2618       return true;
2619     }
2620   }
2621 
2622   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2623   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2624     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2625     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2626   } else
2627     Base = N;
2628   return true;      // [r+0]
2629 }
2630 
2631 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2632 /// represented as an indexed [r+r] operation.
2633 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2634                                                 SDValue &Index,
2635                                                 SelectionDAG &DAG) const {
2636   // Check to see if we can easily represent this as an [r+r] address.  This
2637   // will fail if it thinks that the address is more profitably represented as
2638   // reg+imm, e.g. where imm = 0.
2639   if (SelectAddressRegReg(N, Base, Index, DAG))
2640     return true;
2641 
2642   // If the address is the result of an add, we will utilize the fact that the
2643   // address calculation includes an implicit add.  However, we can reduce
2644   // register pressure if we do not materialize a constant just for use as the
2645   // index register.  We only get rid of the add if it is not an add of a
2646   // value and a 16-bit signed constant and both have a single use.
2647   int16_t imm = 0;
2648   if (N.getOpcode() == ISD::ADD &&
2649       (!isIntS16Immediate(N.getOperand(1), imm) ||
2650        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2651     Base = N.getOperand(0);
2652     Index = N.getOperand(1);
2653     return true;
2654   }
2655 
2656   // Otherwise, do it the hard way, using R0 as the base register.
2657   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2658                          N.getValueType());
2659   Index = N;
2660   return true;
2661 }
2662 
2663 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2664   Ty *PCRelCand = dyn_cast<Ty>(N);
2665   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2666 }
2667 
2668 /// Returns true if this address is a PC Relative address.
2669 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2670 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2671 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2672   // This is a materialize PC Relative node. Always select this as PC Relative.
2673   Base = N;
2674   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2675     return true;
2676   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2677       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2678       isValidPCRelNode<JumpTableSDNode>(N) ||
2679       isValidPCRelNode<BlockAddressSDNode>(N))
2680     return true;
2681   return false;
2682 }
2683 
2684 /// Returns true if we should use a direct load into vector instruction
2685 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2686 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2687 
2688   // If there are any other uses other than scalar to vector, then we should
2689   // keep it as a scalar load -> direct move pattern to prevent multiple
2690   // loads.
2691   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2692   if (!LD)
2693     return false;
2694 
2695   EVT MemVT = LD->getMemoryVT();
2696   if (!MemVT.isSimple())
2697     return false;
2698   switch(MemVT.getSimpleVT().SimpleTy) {
2699   case MVT::i64:
2700     break;
2701   case MVT::i32:
2702     if (!ST.hasP8Vector())
2703       return false;
2704     break;
2705   case MVT::i16:
2706   case MVT::i8:
2707     if (!ST.hasP9Vector())
2708       return false;
2709     break;
2710   default:
2711     return false;
2712   }
2713 
2714   SDValue LoadedVal(N, 0);
2715   if (!LoadedVal.hasOneUse())
2716     return false;
2717 
2718   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2719        UI != UE; ++UI)
2720     if (UI.getUse().get().getResNo() == 0 &&
2721         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2722         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2723       return false;
2724 
2725   return true;
2726 }
2727 
2728 /// getPreIndexedAddressParts - returns true by value, base pointer and
2729 /// offset pointer and addressing mode by reference if the node's address
2730 /// can be legally represented as pre-indexed load / store address.
2731 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2732                                                   SDValue &Offset,
2733                                                   ISD::MemIndexedMode &AM,
2734                                                   SelectionDAG &DAG) const {
2735   if (DisablePPCPreinc) return false;
2736 
2737   bool isLoad = true;
2738   SDValue Ptr;
2739   EVT VT;
2740   unsigned Alignment;
2741   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2742     Ptr = LD->getBasePtr();
2743     VT = LD->getMemoryVT();
2744     Alignment = LD->getAlignment();
2745   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2746     Ptr = ST->getBasePtr();
2747     VT  = ST->getMemoryVT();
2748     Alignment = ST->getAlignment();
2749     isLoad = false;
2750   } else
2751     return false;
2752 
2753   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2754   // instructions because we can fold these into a more efficient instruction
2755   // instead, (such as LXSD).
2756   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2757     return false;
2758   }
2759 
2760   // PowerPC doesn't have preinc load/store instructions for vectors (except
2761   // for QPX, which does have preinc r+r forms).
2762   if (VT.isVector()) {
2763     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2764       return false;
2765     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2766       AM = ISD::PRE_INC;
2767       return true;
2768     }
2769   }
2770 
2771   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2772     // Common code will reject creating a pre-inc form if the base pointer
2773     // is a frame index, or if N is a store and the base pointer is either
2774     // the same as or a predecessor of the value being stored.  Check for
2775     // those situations here, and try with swapped Base/Offset instead.
2776     bool Swap = false;
2777 
2778     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2779       Swap = true;
2780     else if (!isLoad) {
2781       SDValue Val = cast<StoreSDNode>(N)->getValue();
2782       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2783         Swap = true;
2784     }
2785 
2786     if (Swap)
2787       std::swap(Base, Offset);
2788 
2789     AM = ISD::PRE_INC;
2790     return true;
2791   }
2792 
2793   // LDU/STU can only handle immediates that are a multiple of 4.
2794   if (VT != MVT::i64) {
2795     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2796       return false;
2797   } else {
2798     // LDU/STU need an address with at least 4-byte alignment.
2799     if (Alignment < 4)
2800       return false;
2801 
2802     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2803       return false;
2804   }
2805 
2806   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2807     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2808     // sext i32 to i64 when addr mode is r+i.
2809     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2810         LD->getExtensionType() == ISD::SEXTLOAD &&
2811         isa<ConstantSDNode>(Offset))
2812       return false;
2813   }
2814 
2815   AM = ISD::PRE_INC;
2816   return true;
2817 }
2818 
2819 //===----------------------------------------------------------------------===//
2820 //  LowerOperation implementation
2821 //===----------------------------------------------------------------------===//
2822 
2823 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2824 /// and LoOpFlags to the target MO flags.
2825 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2826                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2827                                const GlobalValue *GV = nullptr) {
2828   HiOpFlags = PPCII::MO_HA;
2829   LoOpFlags = PPCII::MO_LO;
2830 
2831   // Don't use the pic base if not in PIC relocation model.
2832   if (IsPIC) {
2833     HiOpFlags |= PPCII::MO_PIC_FLAG;
2834     LoOpFlags |= PPCII::MO_PIC_FLAG;
2835   }
2836 }
2837 
2838 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2839                              SelectionDAG &DAG) {
2840   SDLoc DL(HiPart);
2841   EVT PtrVT = HiPart.getValueType();
2842   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2843 
2844   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2845   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2846 
2847   // With PIC, the first instruction is actually "GR+hi(&G)".
2848   if (isPIC)
2849     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2850                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2851 
2852   // Generate non-pic code that has direct accesses to the constant pool.
2853   // The address of the global is just (hi(&g)+lo(&g)).
2854   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2855 }
2856 
2857 static void setUsesTOCBasePtr(MachineFunction &MF) {
2858   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2859   FuncInfo->setUsesTOCBasePtr();
2860 }
2861 
2862 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2863   setUsesTOCBasePtr(DAG.getMachineFunction());
2864 }
2865 
2866 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2867                                        SDValue GA) const {
2868   const bool Is64Bit = Subtarget.isPPC64();
2869   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2870   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2871                         : Subtarget.isAIXABI()
2872                               ? DAG.getRegister(PPC::R2, VT)
2873                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2874   SDValue Ops[] = { GA, Reg };
2875   return DAG.getMemIntrinsicNode(
2876       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2877       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2878       MachineMemOperand::MOLoad);
2879 }
2880 
2881 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2882                                              SelectionDAG &DAG) const {
2883   EVT PtrVT = Op.getValueType();
2884   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2885   const Constant *C = CP->getConstVal();
2886 
2887   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2888   // The actual address of the GlobalValue is stored in the TOC.
2889   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2890     if (Subtarget.isUsingPCRelativeCalls()) {
2891       SDLoc DL(CP);
2892       EVT Ty = getPointerTy(DAG.getDataLayout());
2893       SDValue ConstPool = DAG.getTargetConstantPool(
2894           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2895       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2896     }
2897     setUsesTOCBasePtr(DAG);
2898     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2899     return getTOCEntry(DAG, SDLoc(CP), GA);
2900   }
2901 
2902   unsigned MOHiFlag, MOLoFlag;
2903   bool IsPIC = isPositionIndependent();
2904   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2905 
2906   if (IsPIC && Subtarget.isSVR4ABI()) {
2907     SDValue GA =
2908         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2909     return getTOCEntry(DAG, SDLoc(CP), GA);
2910   }
2911 
2912   SDValue CPIHi =
2913       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2914   SDValue CPILo =
2915       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2916   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2917 }
2918 
2919 // For 64-bit PowerPC, prefer the more compact relative encodings.
2920 // This trades 32 bits per jump table entry for one or two instructions
2921 // on the jump site.
2922 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2923   if (isJumpTableRelative())
2924     return MachineJumpTableInfo::EK_LabelDifference32;
2925 
2926   return TargetLowering::getJumpTableEncoding();
2927 }
2928 
2929 bool PPCTargetLowering::isJumpTableRelative() const {
2930   if (UseAbsoluteJumpTables)
2931     return false;
2932   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2933     return true;
2934   return TargetLowering::isJumpTableRelative();
2935 }
2936 
2937 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2938                                                     SelectionDAG &DAG) const {
2939   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2940     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2941 
2942   switch (getTargetMachine().getCodeModel()) {
2943   case CodeModel::Small:
2944   case CodeModel::Medium:
2945     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2946   default:
2947     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2948                        getPointerTy(DAG.getDataLayout()));
2949   }
2950 }
2951 
2952 const MCExpr *
2953 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2954                                                 unsigned JTI,
2955                                                 MCContext &Ctx) const {
2956   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2957     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2958 
2959   switch (getTargetMachine().getCodeModel()) {
2960   case CodeModel::Small:
2961   case CodeModel::Medium:
2962     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2963   default:
2964     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2965   }
2966 }
2967 
2968 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2969   EVT PtrVT = Op.getValueType();
2970   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2971 
2972   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2973   if (Subtarget.isUsingPCRelativeCalls()) {
2974     SDLoc DL(JT);
2975     EVT Ty = getPointerTy(DAG.getDataLayout());
2976     SDValue GA =
2977         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2978     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2979     return MatAddr;
2980   }
2981 
2982   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2983   // The actual address of the GlobalValue is stored in the TOC.
2984   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2985     setUsesTOCBasePtr(DAG);
2986     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2987     return getTOCEntry(DAG, SDLoc(JT), GA);
2988   }
2989 
2990   unsigned MOHiFlag, MOLoFlag;
2991   bool IsPIC = isPositionIndependent();
2992   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2993 
2994   if (IsPIC && Subtarget.isSVR4ABI()) {
2995     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2996                                         PPCII::MO_PIC_FLAG);
2997     return getTOCEntry(DAG, SDLoc(GA), GA);
2998   }
2999 
3000   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3001   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3002   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3003 }
3004 
3005 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3006                                              SelectionDAG &DAG) const {
3007   EVT PtrVT = Op.getValueType();
3008   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3009   const BlockAddress *BA = BASDN->getBlockAddress();
3010 
3011   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3012   if (Subtarget.isUsingPCRelativeCalls()) {
3013     SDLoc DL(BASDN);
3014     EVT Ty = getPointerTy(DAG.getDataLayout());
3015     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3016                                            PPCII::MO_PCREL_FLAG);
3017     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3018     return MatAddr;
3019   }
3020 
3021   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3022   // The actual BlockAddress is stored in the TOC.
3023   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3024     setUsesTOCBasePtr(DAG);
3025     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3026     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3027   }
3028 
3029   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3030   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3031     return getTOCEntry(
3032         DAG, SDLoc(BASDN),
3033         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3034 
3035   unsigned MOHiFlag, MOLoFlag;
3036   bool IsPIC = isPositionIndependent();
3037   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3038   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3039   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3040   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3041 }
3042 
3043 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3044                                               SelectionDAG &DAG) const {
3045   // FIXME: TLS addresses currently use medium model code sequences,
3046   // which is the most useful form.  Eventually support for small and
3047   // large models could be added if users need it, at the cost of
3048   // additional complexity.
3049   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3050   if (DAG.getTarget().useEmulatedTLS())
3051     return LowerToTLSEmulatedModel(GA, DAG);
3052 
3053   SDLoc dl(GA);
3054   const GlobalValue *GV = GA->getGlobal();
3055   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3056   bool is64bit = Subtarget.isPPC64();
3057   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3058   PICLevel::Level picLevel = M->getPICLevel();
3059 
3060   const TargetMachine &TM = getTargetMachine();
3061   TLSModel::Model Model = TM.getTLSModel(GV);
3062 
3063   if (Model == TLSModel::LocalExec) {
3064     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3065                                                PPCII::MO_TPREL_HA);
3066     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3067                                                PPCII::MO_TPREL_LO);
3068     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3069                              : DAG.getRegister(PPC::R2, MVT::i32);
3070 
3071     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3072     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3073   }
3074 
3075   if (Model == TLSModel::InitialExec) {
3076     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3077     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3078                                                 PPCII::MO_TLS);
3079     SDValue GOTPtr;
3080     if (is64bit) {
3081       setUsesTOCBasePtr(DAG);
3082       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3083       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
3084                            PtrVT, GOTReg, TGA);
3085     } else {
3086       if (!TM.isPositionIndependent())
3087         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3088       else if (picLevel == PICLevel::SmallPIC)
3089         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3090       else
3091         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3092     }
3093     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
3094                                    PtrVT, TGA, GOTPtr);
3095     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3096   }
3097 
3098   if (Model == TLSModel::GeneralDynamic) {
3099     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3100     SDValue GOTPtr;
3101     if (is64bit) {
3102       setUsesTOCBasePtr(DAG);
3103       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3104       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3105                                    GOTReg, TGA);
3106     } else {
3107       if (picLevel == PICLevel::SmallPIC)
3108         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3109       else
3110         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3111     }
3112     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3113                        GOTPtr, TGA, TGA);
3114   }
3115 
3116   if (Model == TLSModel::LocalDynamic) {
3117     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3118     SDValue GOTPtr;
3119     if (is64bit) {
3120       setUsesTOCBasePtr(DAG);
3121       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3122       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3123                            GOTReg, TGA);
3124     } else {
3125       if (picLevel == PICLevel::SmallPIC)
3126         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3127       else
3128         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3129     }
3130     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3131                                   PtrVT, GOTPtr, TGA, TGA);
3132     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3133                                       PtrVT, TLSAddr, TGA);
3134     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3135   }
3136 
3137   llvm_unreachable("Unknown TLS model!");
3138 }
3139 
3140 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3141                                               SelectionDAG &DAG) const {
3142   EVT PtrVT = Op.getValueType();
3143   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3144   SDLoc DL(GSDN);
3145   const GlobalValue *GV = GSDN->getGlobal();
3146 
3147   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3148   // The actual address of the GlobalValue is stored in the TOC.
3149   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3150     if (Subtarget.isUsingPCRelativeCalls()) {
3151       EVT Ty = getPointerTy(DAG.getDataLayout());
3152       if (isAccessedAsGotIndirect(Op)) {
3153         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3154                                                 PPCII::MO_PCREL_FLAG |
3155                                                     PPCII::MO_GOT_FLAG);
3156         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3157         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3158                                    MachinePointerInfo());
3159         return Load;
3160       } else {
3161         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3162                                                 PPCII::MO_PCREL_FLAG);
3163         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3164       }
3165     }
3166     setUsesTOCBasePtr(DAG);
3167     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3168     return getTOCEntry(DAG, DL, GA);
3169   }
3170 
3171   unsigned MOHiFlag, MOLoFlag;
3172   bool IsPIC = isPositionIndependent();
3173   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3174 
3175   if (IsPIC && Subtarget.isSVR4ABI()) {
3176     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3177                                             GSDN->getOffset(),
3178                                             PPCII::MO_PIC_FLAG);
3179     return getTOCEntry(DAG, DL, GA);
3180   }
3181 
3182   SDValue GAHi =
3183     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3184   SDValue GALo =
3185     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3186 
3187   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3188 }
3189 
3190 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3191   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3192   SDLoc dl(Op);
3193 
3194   if (Op.getValueType() == MVT::v2i64) {
3195     // When the operands themselves are v2i64 values, we need to do something
3196     // special because VSX has no underlying comparison operations for these.
3197     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3198       // Equality can be handled by casting to the legal type for Altivec
3199       // comparisons, everything else needs to be expanded.
3200       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3201         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3202                  DAG.getSetCC(dl, MVT::v4i32,
3203                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3204                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3205                    CC));
3206       }
3207 
3208       return SDValue();
3209     }
3210 
3211     // We handle most of these in the usual way.
3212     return Op;
3213   }
3214 
3215   // If we're comparing for equality to zero, expose the fact that this is
3216   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3217   // fold the new nodes.
3218   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3219     return V;
3220 
3221   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3222     // Leave comparisons against 0 and -1 alone for now, since they're usually
3223     // optimized.  FIXME: revisit this when we can custom lower all setcc
3224     // optimizations.
3225     if (C->isAllOnesValue() || C->isNullValue())
3226       return SDValue();
3227   }
3228 
3229   // If we have an integer seteq/setne, turn it into a compare against zero
3230   // by xor'ing the rhs with the lhs, which is faster than setting a
3231   // condition register, reading it back out, and masking the correct bit.  The
3232   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3233   // the result to other bit-twiddling opportunities.
3234   EVT LHSVT = Op.getOperand(0).getValueType();
3235   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3236     EVT VT = Op.getValueType();
3237     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3238                                 Op.getOperand(1));
3239     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3240   }
3241   return SDValue();
3242 }
3243 
3244 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3245   SDNode *Node = Op.getNode();
3246   EVT VT = Node->getValueType(0);
3247   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3248   SDValue InChain = Node->getOperand(0);
3249   SDValue VAListPtr = Node->getOperand(1);
3250   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3251   SDLoc dl(Node);
3252 
3253   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3254 
3255   // gpr_index
3256   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3257                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3258   InChain = GprIndex.getValue(1);
3259 
3260   if (VT == MVT::i64) {
3261     // Check if GprIndex is even
3262     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3263                                  DAG.getConstant(1, dl, MVT::i32));
3264     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3265                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3266     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3267                                           DAG.getConstant(1, dl, MVT::i32));
3268     // Align GprIndex to be even if it isn't
3269     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3270                            GprIndex);
3271   }
3272 
3273   // fpr index is 1 byte after gpr
3274   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3275                                DAG.getConstant(1, dl, MVT::i32));
3276 
3277   // fpr
3278   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3279                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3280   InChain = FprIndex.getValue(1);
3281 
3282   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3283                                        DAG.getConstant(8, dl, MVT::i32));
3284 
3285   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3286                                         DAG.getConstant(4, dl, MVT::i32));
3287 
3288   // areas
3289   SDValue OverflowArea =
3290       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3291   InChain = OverflowArea.getValue(1);
3292 
3293   SDValue RegSaveArea =
3294       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3295   InChain = RegSaveArea.getValue(1);
3296 
3297   // select overflow_area if index > 8
3298   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3299                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3300 
3301   // adjustment constant gpr_index * 4/8
3302   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3303                                     VT.isInteger() ? GprIndex : FprIndex,
3304                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3305                                                     MVT::i32));
3306 
3307   // OurReg = RegSaveArea + RegConstant
3308   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3309                                RegConstant);
3310 
3311   // Floating types are 32 bytes into RegSaveArea
3312   if (VT.isFloatingPoint())
3313     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3314                          DAG.getConstant(32, dl, MVT::i32));
3315 
3316   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3317   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3318                                    VT.isInteger() ? GprIndex : FprIndex,
3319                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3320                                                    MVT::i32));
3321 
3322   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3323                               VT.isInteger() ? VAListPtr : FprPtr,
3324                               MachinePointerInfo(SV), MVT::i8);
3325 
3326   // determine if we should load from reg_save_area or overflow_area
3327   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3328 
3329   // increase overflow_area by 4/8 if gpr/fpr > 8
3330   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3331                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3332                                           dl, MVT::i32));
3333 
3334   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3335                              OverflowAreaPlusN);
3336 
3337   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3338                               MachinePointerInfo(), MVT::i32);
3339 
3340   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3341 }
3342 
3343 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3344   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3345 
3346   // We have to copy the entire va_list struct:
3347   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3348   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3349                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3350                        false, true, false, MachinePointerInfo(),
3351                        MachinePointerInfo());
3352 }
3353 
3354 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3355                                                   SelectionDAG &DAG) const {
3356   if (Subtarget.isAIXABI())
3357     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3358 
3359   return Op.getOperand(0);
3360 }
3361 
3362 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3363                                                 SelectionDAG &DAG) const {
3364   if (Subtarget.isAIXABI())
3365     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3366 
3367   SDValue Chain = Op.getOperand(0);
3368   SDValue Trmp = Op.getOperand(1); // trampoline
3369   SDValue FPtr = Op.getOperand(2); // nested function
3370   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3371   SDLoc dl(Op);
3372 
3373   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3374   bool isPPC64 = (PtrVT == MVT::i64);
3375   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3376 
3377   TargetLowering::ArgListTy Args;
3378   TargetLowering::ArgListEntry Entry;
3379 
3380   Entry.Ty = IntPtrTy;
3381   Entry.Node = Trmp; Args.push_back(Entry);
3382 
3383   // TrampSize == (isPPC64 ? 48 : 40);
3384   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3385                                isPPC64 ? MVT::i64 : MVT::i32);
3386   Args.push_back(Entry);
3387 
3388   Entry.Node = FPtr; Args.push_back(Entry);
3389   Entry.Node = Nest; Args.push_back(Entry);
3390 
3391   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3392   TargetLowering::CallLoweringInfo CLI(DAG);
3393   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3394       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3395       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3396 
3397   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3398   return CallResult.second;
3399 }
3400 
3401 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3402   MachineFunction &MF = DAG.getMachineFunction();
3403   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3404   EVT PtrVT = getPointerTy(MF.getDataLayout());
3405 
3406   SDLoc dl(Op);
3407 
3408   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3409     // vastart just stores the address of the VarArgsFrameIndex slot into the
3410     // memory location argument.
3411     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3412     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3413     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3414                         MachinePointerInfo(SV));
3415   }
3416 
3417   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3418   // We suppose the given va_list is already allocated.
3419   //
3420   // typedef struct {
3421   //  char gpr;     /* index into the array of 8 GPRs
3422   //                 * stored in the register save area
3423   //                 * gpr=0 corresponds to r3,
3424   //                 * gpr=1 to r4, etc.
3425   //                 */
3426   //  char fpr;     /* index into the array of 8 FPRs
3427   //                 * stored in the register save area
3428   //                 * fpr=0 corresponds to f1,
3429   //                 * fpr=1 to f2, etc.
3430   //                 */
3431   //  char *overflow_arg_area;
3432   //                /* location on stack that holds
3433   //                 * the next overflow argument
3434   //                 */
3435   //  char *reg_save_area;
3436   //               /* where r3:r10 and f1:f8 (if saved)
3437   //                * are stored
3438   //                */
3439   // } va_list[1];
3440 
3441   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3442   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3443   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3444                                             PtrVT);
3445   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3446                                  PtrVT);
3447 
3448   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3449   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3450 
3451   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3452   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3453 
3454   uint64_t FPROffset = 1;
3455   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3456 
3457   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3458 
3459   // Store first byte : number of int regs
3460   SDValue firstStore =
3461       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3462                         MachinePointerInfo(SV), MVT::i8);
3463   uint64_t nextOffset = FPROffset;
3464   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3465                                   ConstFPROffset);
3466 
3467   // Store second byte : number of float regs
3468   SDValue secondStore =
3469       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3470                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3471   nextOffset += StackOffset;
3472   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3473 
3474   // Store second word : arguments given on stack
3475   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3476                                     MachinePointerInfo(SV, nextOffset));
3477   nextOffset += FrameOffset;
3478   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3479 
3480   // Store third word : arguments given in registers
3481   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3482                       MachinePointerInfo(SV, nextOffset));
3483 }
3484 
3485 /// FPR - The set of FP registers that should be allocated for arguments
3486 /// on Darwin and AIX.
3487 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3488                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3489                                 PPC::F11, PPC::F12, PPC::F13};
3490 
3491 /// QFPR - The set of QPX registers that should be allocated for arguments.
3492 static const MCPhysReg QFPR[] = {
3493     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3494     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3495 
3496 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3497 /// the stack.
3498 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3499                                        unsigned PtrByteSize) {
3500   unsigned ArgSize = ArgVT.getStoreSize();
3501   if (Flags.isByVal())
3502     ArgSize = Flags.getByValSize();
3503 
3504   // Round up to multiples of the pointer size, except for array members,
3505   // which are always packed.
3506   if (!Flags.isInConsecutiveRegs())
3507     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3508 
3509   return ArgSize;
3510 }
3511 
3512 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3513 /// on the stack.
3514 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3515                                          ISD::ArgFlagsTy Flags,
3516                                          unsigned PtrByteSize) {
3517   Align Alignment(PtrByteSize);
3518 
3519   // Altivec parameters are padded to a 16 byte boundary.
3520   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3521       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3522       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3523       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3524     Alignment = Align(16);
3525   // QPX vector types stored in double-precision are padded to a 32 byte
3526   // boundary.
3527   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3528     Alignment = Align(32);
3529 
3530   // ByVal parameters are aligned as requested.
3531   if (Flags.isByVal()) {
3532     auto BVAlign = Flags.getNonZeroByValAlign();
3533     if (BVAlign > PtrByteSize) {
3534       if (BVAlign.value() % PtrByteSize != 0)
3535         llvm_unreachable(
3536             "ByVal alignment is not a multiple of the pointer size");
3537 
3538       Alignment = BVAlign;
3539     }
3540   }
3541 
3542   // Array members are always packed to their original alignment.
3543   if (Flags.isInConsecutiveRegs()) {
3544     // If the array member was split into multiple registers, the first
3545     // needs to be aligned to the size of the full type.  (Except for
3546     // ppcf128, which is only aligned as its f64 components.)
3547     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3548       Alignment = Align(OrigVT.getStoreSize());
3549     else
3550       Alignment = Align(ArgVT.getStoreSize());
3551   }
3552 
3553   return Alignment;
3554 }
3555 
3556 /// CalculateStackSlotUsed - Return whether this argument will use its
3557 /// stack slot (instead of being passed in registers).  ArgOffset,
3558 /// AvailableFPRs, and AvailableVRs must hold the current argument
3559 /// position, and will be updated to account for this argument.
3560 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3561                                    ISD::ArgFlagsTy Flags,
3562                                    unsigned PtrByteSize,
3563                                    unsigned LinkageSize,
3564                                    unsigned ParamAreaSize,
3565                                    unsigned &ArgOffset,
3566                                    unsigned &AvailableFPRs,
3567                                    unsigned &AvailableVRs, bool HasQPX) {
3568   bool UseMemory = false;
3569 
3570   // Respect alignment of argument on the stack.
3571   Align Alignment =
3572       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3573   ArgOffset = alignTo(ArgOffset, Alignment);
3574   // If there's no space left in the argument save area, we must
3575   // use memory (this check also catches zero-sized arguments).
3576   if (ArgOffset >= LinkageSize + ParamAreaSize)
3577     UseMemory = true;
3578 
3579   // Allocate argument on the stack.
3580   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3581   if (Flags.isInConsecutiveRegsLast())
3582     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3583   // If we overran the argument save area, we must use memory
3584   // (this check catches arguments passed partially in memory)
3585   if (ArgOffset > LinkageSize + ParamAreaSize)
3586     UseMemory = true;
3587 
3588   // However, if the argument is actually passed in an FPR or a VR,
3589   // we don't use memory after all.
3590   if (!Flags.isByVal()) {
3591     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3592         // QPX registers overlap with the scalar FP registers.
3593         (HasQPX && (ArgVT == MVT::v4f32 ||
3594                     ArgVT == MVT::v4f64 ||
3595                     ArgVT == MVT::v4i1)))
3596       if (AvailableFPRs > 0) {
3597         --AvailableFPRs;
3598         return false;
3599       }
3600     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3601         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3602         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3603         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3604       if (AvailableVRs > 0) {
3605         --AvailableVRs;
3606         return false;
3607       }
3608   }
3609 
3610   return UseMemory;
3611 }
3612 
3613 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3614 /// ensure minimum alignment required for target.
3615 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3616                                      unsigned NumBytes) {
3617   return alignTo(NumBytes, Lowering->getStackAlign());
3618 }
3619 
3620 SDValue PPCTargetLowering::LowerFormalArguments(
3621     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3622     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3623     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3624   if (Subtarget.isAIXABI())
3625     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3626                                     InVals);
3627   if (Subtarget.is64BitELFABI())
3628     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3629                                        InVals);
3630   if (Subtarget.is32BitELFABI())
3631     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3632                                        InVals);
3633 
3634   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3635                                      InVals);
3636 }
3637 
3638 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3639     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3640     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3641     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3642 
3643   // 32-bit SVR4 ABI Stack Frame Layout:
3644   //              +-----------------------------------+
3645   //        +-->  |            Back chain             |
3646   //        |     +-----------------------------------+
3647   //        |     | Floating-point register save area |
3648   //        |     +-----------------------------------+
3649   //        |     |    General register save area     |
3650   //        |     +-----------------------------------+
3651   //        |     |          CR save word             |
3652   //        |     +-----------------------------------+
3653   //        |     |         VRSAVE save word          |
3654   //        |     +-----------------------------------+
3655   //        |     |         Alignment padding         |
3656   //        |     +-----------------------------------+
3657   //        |     |     Vector register save area     |
3658   //        |     +-----------------------------------+
3659   //        |     |       Local variable space        |
3660   //        |     +-----------------------------------+
3661   //        |     |        Parameter list area        |
3662   //        |     +-----------------------------------+
3663   //        |     |           LR save word            |
3664   //        |     +-----------------------------------+
3665   // SP-->  +---  |            Back chain             |
3666   //              +-----------------------------------+
3667   //
3668   // Specifications:
3669   //   System V Application Binary Interface PowerPC Processor Supplement
3670   //   AltiVec Technology Programming Interface Manual
3671 
3672   MachineFunction &MF = DAG.getMachineFunction();
3673   MachineFrameInfo &MFI = MF.getFrameInfo();
3674   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3675 
3676   EVT PtrVT = getPointerTy(MF.getDataLayout());
3677   // Potential tail calls could cause overwriting of argument stack slots.
3678   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3679                        (CallConv == CallingConv::Fast));
3680   const Align PtrAlign(4);
3681 
3682   // Assign locations to all of the incoming arguments.
3683   SmallVector<CCValAssign, 16> ArgLocs;
3684   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3685                  *DAG.getContext());
3686 
3687   // Reserve space for the linkage area on the stack.
3688   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3689   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3690   if (useSoftFloat())
3691     CCInfo.PreAnalyzeFormalArguments(Ins);
3692 
3693   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3694   CCInfo.clearWasPPCF128();
3695 
3696   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3697     CCValAssign &VA = ArgLocs[i];
3698 
3699     // Arguments stored in registers.
3700     if (VA.isRegLoc()) {
3701       const TargetRegisterClass *RC;
3702       EVT ValVT = VA.getValVT();
3703 
3704       switch (ValVT.getSimpleVT().SimpleTy) {
3705         default:
3706           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3707         case MVT::i1:
3708         case MVT::i32:
3709           RC = &PPC::GPRCRegClass;
3710           break;
3711         case MVT::f32:
3712           if (Subtarget.hasP8Vector())
3713             RC = &PPC::VSSRCRegClass;
3714           else if (Subtarget.hasSPE())
3715             RC = &PPC::GPRCRegClass;
3716           else
3717             RC = &PPC::F4RCRegClass;
3718           break;
3719         case MVT::f64:
3720           if (Subtarget.hasVSX())
3721             RC = &PPC::VSFRCRegClass;
3722           else if (Subtarget.hasSPE())
3723             // SPE passes doubles in GPR pairs.
3724             RC = &PPC::GPRCRegClass;
3725           else
3726             RC = &PPC::F8RCRegClass;
3727           break;
3728         case MVT::v16i8:
3729         case MVT::v8i16:
3730         case MVT::v4i32:
3731           RC = &PPC::VRRCRegClass;
3732           break;
3733         case MVT::v4f32:
3734           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3735           break;
3736         case MVT::v2f64:
3737         case MVT::v2i64:
3738           RC = &PPC::VRRCRegClass;
3739           break;
3740         case MVT::v4f64:
3741           RC = &PPC::QFRCRegClass;
3742           break;
3743         case MVT::v4i1:
3744           RC = &PPC::QBRCRegClass;
3745           break;
3746       }
3747 
3748       SDValue ArgValue;
3749       // Transform the arguments stored in physical registers into
3750       // virtual ones.
3751       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3752         assert(i + 1 < e && "No second half of double precision argument");
3753         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3754         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3755         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3756         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3757         if (!Subtarget.isLittleEndian())
3758           std::swap (ArgValueLo, ArgValueHi);
3759         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3760                                ArgValueHi);
3761       } else {
3762         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3763         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3764                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3765         if (ValVT == MVT::i1)
3766           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3767       }
3768 
3769       InVals.push_back(ArgValue);
3770     } else {
3771       // Argument stored in memory.
3772       assert(VA.isMemLoc());
3773 
3774       // Get the extended size of the argument type in stack
3775       unsigned ArgSize = VA.getLocVT().getStoreSize();
3776       // Get the actual size of the argument type
3777       unsigned ObjSize = VA.getValVT().getStoreSize();
3778       unsigned ArgOffset = VA.getLocMemOffset();
3779       // Stack objects in PPC32 are right justified.
3780       ArgOffset += ArgSize - ObjSize;
3781       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3782 
3783       // Create load nodes to retrieve arguments from the stack.
3784       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3785       InVals.push_back(
3786           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3787     }
3788   }
3789 
3790   // Assign locations to all of the incoming aggregate by value arguments.
3791   // Aggregates passed by value are stored in the local variable space of the
3792   // caller's stack frame, right above the parameter list area.
3793   SmallVector<CCValAssign, 16> ByValArgLocs;
3794   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3795                       ByValArgLocs, *DAG.getContext());
3796 
3797   // Reserve stack space for the allocations in CCInfo.
3798   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3799 
3800   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3801 
3802   // Area that is at least reserved in the caller of this function.
3803   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3804   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3805 
3806   // Set the size that is at least reserved in caller of this function.  Tail
3807   // call optimized function's reserved stack space needs to be aligned so that
3808   // taking the difference between two stack areas will result in an aligned
3809   // stack.
3810   MinReservedArea =
3811       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3812   FuncInfo->setMinReservedArea(MinReservedArea);
3813 
3814   SmallVector<SDValue, 8> MemOps;
3815 
3816   // If the function takes variable number of arguments, make a frame index for
3817   // the start of the first vararg value... for expansion of llvm.va_start.
3818   if (isVarArg) {
3819     static const MCPhysReg GPArgRegs[] = {
3820       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3821       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3822     };
3823     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3824 
3825     static const MCPhysReg FPArgRegs[] = {
3826       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3827       PPC::F8
3828     };
3829     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3830 
3831     if (useSoftFloat() || hasSPE())
3832        NumFPArgRegs = 0;
3833 
3834     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3835     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3836 
3837     // Make room for NumGPArgRegs and NumFPArgRegs.
3838     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3839                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3840 
3841     FuncInfo->setVarArgsStackOffset(
3842       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3843                             CCInfo.getNextStackOffset(), true));
3844 
3845     FuncInfo->setVarArgsFrameIndex(
3846         MFI.CreateStackObject(Depth, Align(8), false));
3847     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3848 
3849     // The fixed integer arguments of a variadic function are stored to the
3850     // VarArgsFrameIndex on the stack so that they may be loaded by
3851     // dereferencing the result of va_next.
3852     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3853       // Get an existing live-in vreg, or add a new one.
3854       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3855       if (!VReg)
3856         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3857 
3858       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3859       SDValue Store =
3860           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3861       MemOps.push_back(Store);
3862       // Increment the address by four for the next argument to store
3863       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3864       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3865     }
3866 
3867     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3868     // is set.
3869     // The double arguments are stored to the VarArgsFrameIndex
3870     // on the stack.
3871     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3872       // Get an existing live-in vreg, or add a new one.
3873       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3874       if (!VReg)
3875         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3876 
3877       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3878       SDValue Store =
3879           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3880       MemOps.push_back(Store);
3881       // Increment the address by eight for the next argument to store
3882       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3883                                          PtrVT);
3884       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3885     }
3886   }
3887 
3888   if (!MemOps.empty())
3889     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3890 
3891   return Chain;
3892 }
3893 
3894 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3895 // value to MVT::i64 and then truncate to the correct register size.
3896 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3897                                              EVT ObjectVT, SelectionDAG &DAG,
3898                                              SDValue ArgVal,
3899                                              const SDLoc &dl) const {
3900   if (Flags.isSExt())
3901     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3902                          DAG.getValueType(ObjectVT));
3903   else if (Flags.isZExt())
3904     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3905                          DAG.getValueType(ObjectVT));
3906 
3907   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3908 }
3909 
3910 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3911     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3912     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3913     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3914   // TODO: add description of PPC stack frame format, or at least some docs.
3915   //
3916   bool isELFv2ABI = Subtarget.isELFv2ABI();
3917   bool isLittleEndian = Subtarget.isLittleEndian();
3918   MachineFunction &MF = DAG.getMachineFunction();
3919   MachineFrameInfo &MFI = MF.getFrameInfo();
3920   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3921 
3922   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3923          "fastcc not supported on varargs functions");
3924 
3925   EVT PtrVT = getPointerTy(MF.getDataLayout());
3926   // Potential tail calls could cause overwriting of argument stack slots.
3927   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3928                        (CallConv == CallingConv::Fast));
3929   unsigned PtrByteSize = 8;
3930   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3931 
3932   static const MCPhysReg GPR[] = {
3933     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3934     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3935   };
3936   static const MCPhysReg VR[] = {
3937     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3938     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3939   };
3940 
3941   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3942   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3943   const unsigned Num_VR_Regs  = array_lengthof(VR);
3944   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3945 
3946   // Do a first pass over the arguments to determine whether the ABI
3947   // guarantees that our caller has allocated the parameter save area
3948   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3949   // in the ELFv2 ABI, it is true if this is a vararg function or if
3950   // any parameter is located in a stack slot.
3951 
3952   bool HasParameterArea = !isELFv2ABI || isVarArg;
3953   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3954   unsigned NumBytes = LinkageSize;
3955   unsigned AvailableFPRs = Num_FPR_Regs;
3956   unsigned AvailableVRs = Num_VR_Regs;
3957   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3958     if (Ins[i].Flags.isNest())
3959       continue;
3960 
3961     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3962                                PtrByteSize, LinkageSize, ParamAreaSize,
3963                                NumBytes, AvailableFPRs, AvailableVRs,
3964                                Subtarget.hasQPX()))
3965       HasParameterArea = true;
3966   }
3967 
3968   // Add DAG nodes to load the arguments or copy them out of registers.  On
3969   // entry to a function on PPC, the arguments start after the linkage area,
3970   // although the first ones are often in registers.
3971 
3972   unsigned ArgOffset = LinkageSize;
3973   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3974   unsigned &QFPR_idx = FPR_idx;
3975   SmallVector<SDValue, 8> MemOps;
3976   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3977   unsigned CurArgIdx = 0;
3978   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3979     SDValue ArgVal;
3980     bool needsLoad = false;
3981     EVT ObjectVT = Ins[ArgNo].VT;
3982     EVT OrigVT = Ins[ArgNo].ArgVT;
3983     unsigned ObjSize = ObjectVT.getStoreSize();
3984     unsigned ArgSize = ObjSize;
3985     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3986     if (Ins[ArgNo].isOrigArg()) {
3987       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3988       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3989     }
3990     // We re-align the argument offset for each argument, except when using the
3991     // fast calling convention, when we need to make sure we do that only when
3992     // we'll actually use a stack slot.
3993     unsigned CurArgOffset;
3994     Align Alignment;
3995     auto ComputeArgOffset = [&]() {
3996       /* Respect alignment of argument on the stack.  */
3997       Alignment =
3998           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3999       ArgOffset = alignTo(ArgOffset, Alignment);
4000       CurArgOffset = ArgOffset;
4001     };
4002 
4003     if (CallConv != CallingConv::Fast) {
4004       ComputeArgOffset();
4005 
4006       /* Compute GPR index associated with argument offset.  */
4007       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4008       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4009     }
4010 
4011     // FIXME the codegen can be much improved in some cases.
4012     // We do not have to keep everything in memory.
4013     if (Flags.isByVal()) {
4014       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4015 
4016       if (CallConv == CallingConv::Fast)
4017         ComputeArgOffset();
4018 
4019       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4020       ObjSize = Flags.getByValSize();
4021       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4022       // Empty aggregate parameters do not take up registers.  Examples:
4023       //   struct { } a;
4024       //   union  { } b;
4025       //   int c[0];
4026       // etc.  However, we have to provide a place-holder in InVals, so
4027       // pretend we have an 8-byte item at the current address for that
4028       // purpose.
4029       if (!ObjSize) {
4030         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4031         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4032         InVals.push_back(FIN);
4033         continue;
4034       }
4035 
4036       // Create a stack object covering all stack doublewords occupied
4037       // by the argument.  If the argument is (fully or partially) on
4038       // the stack, or if the argument is fully in registers but the
4039       // caller has allocated the parameter save anyway, we can refer
4040       // directly to the caller's stack frame.  Otherwise, create a
4041       // local copy in our own frame.
4042       int FI;
4043       if (HasParameterArea ||
4044           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4045         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4046       else
4047         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4048       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4049 
4050       // Handle aggregates smaller than 8 bytes.
4051       if (ObjSize < PtrByteSize) {
4052         // The value of the object is its address, which differs from the
4053         // address of the enclosing doubleword on big-endian systems.
4054         SDValue Arg = FIN;
4055         if (!isLittleEndian) {
4056           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4057           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4058         }
4059         InVals.push_back(Arg);
4060 
4061         if (GPR_idx != Num_GPR_Regs) {
4062           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4063           FuncInfo->addLiveInAttr(VReg, Flags);
4064           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4065           SDValue Store;
4066 
4067           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4068             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4069                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4070             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4071                                       MachinePointerInfo(&*FuncArg), ObjType);
4072           } else {
4073             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4074             // store the whole register as-is to the parameter save area
4075             // slot.
4076             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4077                                  MachinePointerInfo(&*FuncArg));
4078           }
4079 
4080           MemOps.push_back(Store);
4081         }
4082         // Whether we copied from a register or not, advance the offset
4083         // into the parameter save area by a full doubleword.
4084         ArgOffset += PtrByteSize;
4085         continue;
4086       }
4087 
4088       // The value of the object is its address, which is the address of
4089       // its first stack doubleword.
4090       InVals.push_back(FIN);
4091 
4092       // Store whatever pieces of the object are in registers to memory.
4093       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4094         if (GPR_idx == Num_GPR_Regs)
4095           break;
4096 
4097         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4098         FuncInfo->addLiveInAttr(VReg, Flags);
4099         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4100         SDValue Addr = FIN;
4101         if (j) {
4102           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4103           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4104         }
4105         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4106                                      MachinePointerInfo(&*FuncArg, j));
4107         MemOps.push_back(Store);
4108         ++GPR_idx;
4109       }
4110       ArgOffset += ArgSize;
4111       continue;
4112     }
4113 
4114     switch (ObjectVT.getSimpleVT().SimpleTy) {
4115     default: llvm_unreachable("Unhandled argument type!");
4116     case MVT::i1:
4117     case MVT::i32:
4118     case MVT::i64:
4119       if (Flags.isNest()) {
4120         // The 'nest' parameter, if any, is passed in R11.
4121         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4122         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4123 
4124         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4125           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4126 
4127         break;
4128       }
4129 
4130       // These can be scalar arguments or elements of an integer array type
4131       // passed directly.  Clang may use those instead of "byval" aggregate
4132       // types to avoid forcing arguments to memory unnecessarily.
4133       if (GPR_idx != Num_GPR_Regs) {
4134         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4135         FuncInfo->addLiveInAttr(VReg, Flags);
4136         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4137 
4138         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4139           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4140           // value to MVT::i64 and then truncate to the correct register size.
4141           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4142       } else {
4143         if (CallConv == CallingConv::Fast)
4144           ComputeArgOffset();
4145 
4146         needsLoad = true;
4147         ArgSize = PtrByteSize;
4148       }
4149       if (CallConv != CallingConv::Fast || needsLoad)
4150         ArgOffset += 8;
4151       break;
4152 
4153     case MVT::f32:
4154     case MVT::f64:
4155       // These can be scalar arguments or elements of a float array type
4156       // passed directly.  The latter are used to implement ELFv2 homogenous
4157       // float aggregates.
4158       if (FPR_idx != Num_FPR_Regs) {
4159         unsigned VReg;
4160 
4161         if (ObjectVT == MVT::f32)
4162           VReg = MF.addLiveIn(FPR[FPR_idx],
4163                               Subtarget.hasP8Vector()
4164                                   ? &PPC::VSSRCRegClass
4165                                   : &PPC::F4RCRegClass);
4166         else
4167           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4168                                                 ? &PPC::VSFRCRegClass
4169                                                 : &PPC::F8RCRegClass);
4170 
4171         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4172         ++FPR_idx;
4173       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4174         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4175         // once we support fp <-> gpr moves.
4176 
4177         // This can only ever happen in the presence of f32 array types,
4178         // since otherwise we never run out of FPRs before running out
4179         // of GPRs.
4180         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4181         FuncInfo->addLiveInAttr(VReg, Flags);
4182         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4183 
4184         if (ObjectVT == MVT::f32) {
4185           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4186             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4187                                  DAG.getConstant(32, dl, MVT::i32));
4188           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4189         }
4190 
4191         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4192       } else {
4193         if (CallConv == CallingConv::Fast)
4194           ComputeArgOffset();
4195 
4196         needsLoad = true;
4197       }
4198 
4199       // When passing an array of floats, the array occupies consecutive
4200       // space in the argument area; only round up to the next doubleword
4201       // at the end of the array.  Otherwise, each float takes 8 bytes.
4202       if (CallConv != CallingConv::Fast || needsLoad) {
4203         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4204         ArgOffset += ArgSize;
4205         if (Flags.isInConsecutiveRegsLast())
4206           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4207       }
4208       break;
4209     case MVT::v4f32:
4210     case MVT::v4i32:
4211     case MVT::v8i16:
4212     case MVT::v16i8:
4213     case MVT::v2f64:
4214     case MVT::v2i64:
4215     case MVT::v1i128:
4216     case MVT::f128:
4217       if (!Subtarget.hasQPX()) {
4218         // These can be scalar arguments or elements of a vector array type
4219         // passed directly.  The latter are used to implement ELFv2 homogenous
4220         // vector aggregates.
4221         if (VR_idx != Num_VR_Regs) {
4222           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4223           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4224           ++VR_idx;
4225         } else {
4226           if (CallConv == CallingConv::Fast)
4227             ComputeArgOffset();
4228           needsLoad = true;
4229         }
4230         if (CallConv != CallingConv::Fast || needsLoad)
4231           ArgOffset += 16;
4232         break;
4233       } // not QPX
4234 
4235       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4236              "Invalid QPX parameter type");
4237       LLVM_FALLTHROUGH;
4238 
4239     case MVT::v4f64:
4240     case MVT::v4i1:
4241       // QPX vectors are treated like their scalar floating-point subregisters
4242       // (except that they're larger).
4243       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4244       if (QFPR_idx != Num_QFPR_Regs) {
4245         const TargetRegisterClass *RC;
4246         switch (ObjectVT.getSimpleVT().SimpleTy) {
4247         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4248         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4249         default:         RC = &PPC::QBRCRegClass; break;
4250         }
4251 
4252         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4253         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4254         ++QFPR_idx;
4255       } else {
4256         if (CallConv == CallingConv::Fast)
4257           ComputeArgOffset();
4258         needsLoad = true;
4259       }
4260       if (CallConv != CallingConv::Fast || needsLoad)
4261         ArgOffset += Sz;
4262       break;
4263     }
4264 
4265     // We need to load the argument to a virtual register if we determined
4266     // above that we ran out of physical registers of the appropriate type.
4267     if (needsLoad) {
4268       if (ObjSize < ArgSize && !isLittleEndian)
4269         CurArgOffset += ArgSize - ObjSize;
4270       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4271       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4272       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4273     }
4274 
4275     InVals.push_back(ArgVal);
4276   }
4277 
4278   // Area that is at least reserved in the caller of this function.
4279   unsigned MinReservedArea;
4280   if (HasParameterArea)
4281     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4282   else
4283     MinReservedArea = LinkageSize;
4284 
4285   // Set the size that is at least reserved in caller of this function.  Tail
4286   // call optimized functions' reserved stack space needs to be aligned so that
4287   // taking the difference between two stack areas will result in an aligned
4288   // stack.
4289   MinReservedArea =
4290       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4291   FuncInfo->setMinReservedArea(MinReservedArea);
4292 
4293   // If the function takes variable number of arguments, make a frame index for
4294   // the start of the first vararg value... for expansion of llvm.va_start.
4295   if (isVarArg) {
4296     int Depth = ArgOffset;
4297 
4298     FuncInfo->setVarArgsFrameIndex(
4299       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4300     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4301 
4302     // If this function is vararg, store any remaining integer argument regs
4303     // to their spots on the stack so that they may be loaded by dereferencing
4304     // the result of va_next.
4305     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4306          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4307       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4308       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4309       SDValue Store =
4310           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4311       MemOps.push_back(Store);
4312       // Increment the address by four for the next argument to store
4313       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4314       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4315     }
4316   }
4317 
4318   if (!MemOps.empty())
4319     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4320 
4321   return Chain;
4322 }
4323 
4324 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4325     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4326     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4327     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4328   // TODO: add description of PPC stack frame format, or at least some docs.
4329   //
4330   MachineFunction &MF = DAG.getMachineFunction();
4331   MachineFrameInfo &MFI = MF.getFrameInfo();
4332   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4333 
4334   EVT PtrVT = getPointerTy(MF.getDataLayout());
4335   bool isPPC64 = PtrVT == MVT::i64;
4336   // Potential tail calls could cause overwriting of argument stack slots.
4337   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4338                        (CallConv == CallingConv::Fast));
4339   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4340   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4341   unsigned ArgOffset = LinkageSize;
4342   // Area that is at least reserved in caller of this function.
4343   unsigned MinReservedArea = ArgOffset;
4344 
4345   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4346     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4347     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4348   };
4349   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4350     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4351     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4352   };
4353   static const MCPhysReg VR[] = {
4354     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4355     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4356   };
4357 
4358   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4359   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4360   const unsigned Num_VR_Regs  = array_lengthof( VR);
4361 
4362   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4363 
4364   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4365 
4366   // In 32-bit non-varargs functions, the stack space for vectors is after the
4367   // stack space for non-vectors.  We do not use this space unless we have
4368   // too many vectors to fit in registers, something that only occurs in
4369   // constructed examples:), but we have to walk the arglist to figure
4370   // that out...for the pathological case, compute VecArgOffset as the
4371   // start of the vector parameter area.  Computing VecArgOffset is the
4372   // entire point of the following loop.
4373   unsigned VecArgOffset = ArgOffset;
4374   if (!isVarArg && !isPPC64) {
4375     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4376          ++ArgNo) {
4377       EVT ObjectVT = Ins[ArgNo].VT;
4378       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4379 
4380       if (Flags.isByVal()) {
4381         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4382         unsigned ObjSize = Flags.getByValSize();
4383         unsigned ArgSize =
4384                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4385         VecArgOffset += ArgSize;
4386         continue;
4387       }
4388 
4389       switch(ObjectVT.getSimpleVT().SimpleTy) {
4390       default: llvm_unreachable("Unhandled argument type!");
4391       case MVT::i1:
4392       case MVT::i32:
4393       case MVT::f32:
4394         VecArgOffset += 4;
4395         break;
4396       case MVT::i64:  // PPC64
4397       case MVT::f64:
4398         // FIXME: We are guaranteed to be !isPPC64 at this point.
4399         // Does MVT::i64 apply?
4400         VecArgOffset += 8;
4401         break;
4402       case MVT::v4f32:
4403       case MVT::v4i32:
4404       case MVT::v8i16:
4405       case MVT::v16i8:
4406         // Nothing to do, we're only looking at Nonvector args here.
4407         break;
4408       }
4409     }
4410   }
4411   // We've found where the vector parameter area in memory is.  Skip the
4412   // first 12 parameters; these don't use that memory.
4413   VecArgOffset = ((VecArgOffset+15)/16)*16;
4414   VecArgOffset += 12*16;
4415 
4416   // Add DAG nodes to load the arguments or copy them out of registers.  On
4417   // entry to a function on PPC, the arguments start after the linkage area,
4418   // although the first ones are often in registers.
4419 
4420   SmallVector<SDValue, 8> MemOps;
4421   unsigned nAltivecParamsAtEnd = 0;
4422   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4423   unsigned CurArgIdx = 0;
4424   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4425     SDValue ArgVal;
4426     bool needsLoad = false;
4427     EVT ObjectVT = Ins[ArgNo].VT;
4428     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4429     unsigned ArgSize = ObjSize;
4430     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4431     if (Ins[ArgNo].isOrigArg()) {
4432       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4433       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4434     }
4435     unsigned CurArgOffset = ArgOffset;
4436 
4437     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4438     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4439         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4440       if (isVarArg || isPPC64) {
4441         MinReservedArea = ((MinReservedArea+15)/16)*16;
4442         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4443                                                   Flags,
4444                                                   PtrByteSize);
4445       } else  nAltivecParamsAtEnd++;
4446     } else
4447       // Calculate min reserved area.
4448       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4449                                                 Flags,
4450                                                 PtrByteSize);
4451 
4452     // FIXME the codegen can be much improved in some cases.
4453     // We do not have to keep everything in memory.
4454     if (Flags.isByVal()) {
4455       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4456 
4457       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4458       ObjSize = Flags.getByValSize();
4459       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4460       // Objects of size 1 and 2 are right justified, everything else is
4461       // left justified.  This means the memory address is adjusted forwards.
4462       if (ObjSize==1 || ObjSize==2) {
4463         CurArgOffset = CurArgOffset + (4 - ObjSize);
4464       }
4465       // The value of the object is its address.
4466       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4467       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4468       InVals.push_back(FIN);
4469       if (ObjSize==1 || ObjSize==2) {
4470         if (GPR_idx != Num_GPR_Regs) {
4471           unsigned VReg;
4472           if (isPPC64)
4473             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4474           else
4475             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4476           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4477           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4478           SDValue Store =
4479               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4480                                 MachinePointerInfo(&*FuncArg), ObjType);
4481           MemOps.push_back(Store);
4482           ++GPR_idx;
4483         }
4484 
4485         ArgOffset += PtrByteSize;
4486 
4487         continue;
4488       }
4489       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4490         // Store whatever pieces of the object are in registers
4491         // to memory.  ArgOffset will be the address of the beginning
4492         // of the object.
4493         if (GPR_idx != Num_GPR_Regs) {
4494           unsigned VReg;
4495           if (isPPC64)
4496             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4497           else
4498             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4499           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4500           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4501           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4502           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4503                                        MachinePointerInfo(&*FuncArg, j));
4504           MemOps.push_back(Store);
4505           ++GPR_idx;
4506           ArgOffset += PtrByteSize;
4507         } else {
4508           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4509           break;
4510         }
4511       }
4512       continue;
4513     }
4514 
4515     switch (ObjectVT.getSimpleVT().SimpleTy) {
4516     default: llvm_unreachable("Unhandled argument type!");
4517     case MVT::i1:
4518     case MVT::i32:
4519       if (!isPPC64) {
4520         if (GPR_idx != Num_GPR_Regs) {
4521           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4522           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4523 
4524           if (ObjectVT == MVT::i1)
4525             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4526 
4527           ++GPR_idx;
4528         } else {
4529           needsLoad = true;
4530           ArgSize = PtrByteSize;
4531         }
4532         // All int arguments reserve stack space in the Darwin ABI.
4533         ArgOffset += PtrByteSize;
4534         break;
4535       }
4536       LLVM_FALLTHROUGH;
4537     case MVT::i64:  // PPC64
4538       if (GPR_idx != Num_GPR_Regs) {
4539         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4540         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4541 
4542         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4543           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4544           // value to MVT::i64 and then truncate to the correct register size.
4545           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4546 
4547         ++GPR_idx;
4548       } else {
4549         needsLoad = true;
4550         ArgSize = PtrByteSize;
4551       }
4552       // All int arguments reserve stack space in the Darwin ABI.
4553       ArgOffset += 8;
4554       break;
4555 
4556     case MVT::f32:
4557     case MVT::f64:
4558       // Every 4 bytes of argument space consumes one of the GPRs available for
4559       // argument passing.
4560       if (GPR_idx != Num_GPR_Regs) {
4561         ++GPR_idx;
4562         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4563           ++GPR_idx;
4564       }
4565       if (FPR_idx != Num_FPR_Regs) {
4566         unsigned VReg;
4567 
4568         if (ObjectVT == MVT::f32)
4569           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4570         else
4571           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4572 
4573         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4574         ++FPR_idx;
4575       } else {
4576         needsLoad = true;
4577       }
4578 
4579       // All FP arguments reserve stack space in the Darwin ABI.
4580       ArgOffset += isPPC64 ? 8 : ObjSize;
4581       break;
4582     case MVT::v4f32:
4583     case MVT::v4i32:
4584     case MVT::v8i16:
4585     case MVT::v16i8:
4586       // Note that vector arguments in registers don't reserve stack space,
4587       // except in varargs functions.
4588       if (VR_idx != Num_VR_Regs) {
4589         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4590         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4591         if (isVarArg) {
4592           while ((ArgOffset % 16) != 0) {
4593             ArgOffset += PtrByteSize;
4594             if (GPR_idx != Num_GPR_Regs)
4595               GPR_idx++;
4596           }
4597           ArgOffset += 16;
4598           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4599         }
4600         ++VR_idx;
4601       } else {
4602         if (!isVarArg && !isPPC64) {
4603           // Vectors go after all the nonvectors.
4604           CurArgOffset = VecArgOffset;
4605           VecArgOffset += 16;
4606         } else {
4607           // Vectors are aligned.
4608           ArgOffset = ((ArgOffset+15)/16)*16;
4609           CurArgOffset = ArgOffset;
4610           ArgOffset += 16;
4611         }
4612         needsLoad = true;
4613       }
4614       break;
4615     }
4616 
4617     // We need to load the argument to a virtual register if we determined above
4618     // that we ran out of physical registers of the appropriate type.
4619     if (needsLoad) {
4620       int FI = MFI.CreateFixedObject(ObjSize,
4621                                      CurArgOffset + (ArgSize - ObjSize),
4622                                      isImmutable);
4623       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4624       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4625     }
4626 
4627     InVals.push_back(ArgVal);
4628   }
4629 
4630   // Allow for Altivec parameters at the end, if needed.
4631   if (nAltivecParamsAtEnd) {
4632     MinReservedArea = ((MinReservedArea+15)/16)*16;
4633     MinReservedArea += 16*nAltivecParamsAtEnd;
4634   }
4635 
4636   // Area that is at least reserved in the caller of this function.
4637   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4638 
4639   // Set the size that is at least reserved in caller of this function.  Tail
4640   // call optimized functions' reserved stack space needs to be aligned so that
4641   // taking the difference between two stack areas will result in an aligned
4642   // stack.
4643   MinReservedArea =
4644       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4645   FuncInfo->setMinReservedArea(MinReservedArea);
4646 
4647   // If the function takes variable number of arguments, make a frame index for
4648   // the start of the first vararg value... for expansion of llvm.va_start.
4649   if (isVarArg) {
4650     int Depth = ArgOffset;
4651 
4652     FuncInfo->setVarArgsFrameIndex(
4653       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4654                             Depth, true));
4655     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4656 
4657     // If this function is vararg, store any remaining integer argument regs
4658     // to their spots on the stack so that they may be loaded by dereferencing
4659     // the result of va_next.
4660     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4661       unsigned VReg;
4662 
4663       if (isPPC64)
4664         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4665       else
4666         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4667 
4668       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4669       SDValue Store =
4670           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4671       MemOps.push_back(Store);
4672       // Increment the address by four for the next argument to store
4673       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4674       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4675     }
4676   }
4677 
4678   if (!MemOps.empty())
4679     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4680 
4681   return Chain;
4682 }
4683 
4684 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4685 /// adjusted to accommodate the arguments for the tailcall.
4686 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4687                                    unsigned ParamSize) {
4688 
4689   if (!isTailCall) return 0;
4690 
4691   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4692   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4693   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4694   // Remember only if the new adjustment is bigger.
4695   if (SPDiff < FI->getTailCallSPDelta())
4696     FI->setTailCallSPDelta(SPDiff);
4697 
4698   return SPDiff;
4699 }
4700 
4701 static bool isFunctionGlobalAddress(SDValue Callee);
4702 
4703 static bool
4704 callsShareTOCBase(const Function *Caller, SDValue Callee,
4705                     const TargetMachine &TM) {
4706    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4707    // don't have enough information to determine if the caller and calle share
4708    // the same  TOC base, so we have to pessimistically assume they don't for
4709    // correctness.
4710    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4711    if (!G)
4712      return false;
4713 
4714    const GlobalValue *GV = G->getGlobal();
4715   // The medium and large code models are expected to provide a sufficiently
4716   // large TOC to provide all data addressing needs of a module with a
4717   // single TOC. Since each module will be addressed with a single TOC then we
4718   // only need to check that caller and callee don't cross dso boundaries.
4719   if (CodeModel::Medium == TM.getCodeModel() ||
4720       CodeModel::Large == TM.getCodeModel())
4721     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4722 
4723   // Otherwise we need to ensure callee and caller are in the same section,
4724   // since the linker may allocate multiple TOCs, and we don't know which
4725   // sections will belong to the same TOC base.
4726 
4727   if (!GV->isStrongDefinitionForLinker())
4728     return false;
4729 
4730   // Any explicitly-specified sections and section prefixes must also match.
4731   // Also, if we're using -ffunction-sections, then each function is always in
4732   // a different section (the same is true for COMDAT functions).
4733   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4734       GV->getSection() != Caller->getSection())
4735     return false;
4736   if (const auto *F = dyn_cast<Function>(GV)) {
4737     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4738       return false;
4739   }
4740 
4741   // If the callee might be interposed, then we can't assume the ultimate call
4742   // target will be in the same section. Even in cases where we can assume that
4743   // interposition won't happen, in any case where the linker might insert a
4744   // stub to allow for interposition, we must generate code as though
4745   // interposition might occur. To understand why this matters, consider a
4746   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4747   // in the same section, but a is in a different module (i.e. has a different
4748   // TOC base pointer). If the linker allows for interposition between b and c,
4749   // then it will generate a stub for the call edge between b and c which will
4750   // save the TOC pointer into the designated stack slot allocated by b. If we
4751   // return true here, and therefore allow a tail call between b and c, that
4752   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4753   // pointer into the stack slot allocated by a (where the a -> b stub saved
4754   // a's TOC base pointer). If we're not considering a tail call, but rather,
4755   // whether a nop is needed after the call instruction in b, because the linker
4756   // will insert a stub, it might complain about a missing nop if we omit it
4757   // (although many don't complain in this case).
4758   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4759     return false;
4760 
4761   return true;
4762 }
4763 
4764 static bool
4765 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4766                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4767   assert(Subtarget.is64BitELFABI());
4768 
4769   const unsigned PtrByteSize = 8;
4770   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4771 
4772   static const MCPhysReg GPR[] = {
4773     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4774     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4775   };
4776   static const MCPhysReg VR[] = {
4777     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4778     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4779   };
4780 
4781   const unsigned NumGPRs = array_lengthof(GPR);
4782   const unsigned NumFPRs = 13;
4783   const unsigned NumVRs = array_lengthof(VR);
4784   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4785 
4786   unsigned NumBytes = LinkageSize;
4787   unsigned AvailableFPRs = NumFPRs;
4788   unsigned AvailableVRs = NumVRs;
4789 
4790   for (const ISD::OutputArg& Param : Outs) {
4791     if (Param.Flags.isNest()) continue;
4792 
4793     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4794                                PtrByteSize, LinkageSize, ParamAreaSize,
4795                                NumBytes, AvailableFPRs, AvailableVRs,
4796                                Subtarget.hasQPX()))
4797       return true;
4798   }
4799   return false;
4800 }
4801 
4802 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4803   if (CB.arg_size() != CallerFn->arg_size())
4804     return false;
4805 
4806   auto CalleeArgIter = CB.arg_begin();
4807   auto CalleeArgEnd = CB.arg_end();
4808   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4809 
4810   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4811     const Value* CalleeArg = *CalleeArgIter;
4812     const Value* CallerArg = &(*CallerArgIter);
4813     if (CalleeArg == CallerArg)
4814       continue;
4815 
4816     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4817     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4818     //      }
4819     // 1st argument of callee is undef and has the same type as caller.
4820     if (CalleeArg->getType() == CallerArg->getType() &&
4821         isa<UndefValue>(CalleeArg))
4822       continue;
4823 
4824     return false;
4825   }
4826 
4827   return true;
4828 }
4829 
4830 // Returns true if TCO is possible between the callers and callees
4831 // calling conventions.
4832 static bool
4833 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4834                                     CallingConv::ID CalleeCC) {
4835   // Tail calls are possible with fastcc and ccc.
4836   auto isTailCallableCC  = [] (CallingConv::ID CC){
4837       return  CC == CallingConv::C || CC == CallingConv::Fast;
4838   };
4839   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4840     return false;
4841 
4842   // We can safely tail call both fastcc and ccc callees from a c calling
4843   // convention caller. If the caller is fastcc, we may have less stack space
4844   // than a non-fastcc caller with the same signature so disable tail-calls in
4845   // that case.
4846   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4847 }
4848 
4849 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4850     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4851     const SmallVectorImpl<ISD::OutputArg> &Outs,
4852     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4853   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4854 
4855   if (DisableSCO && !TailCallOpt) return false;
4856 
4857   // Variadic argument functions are not supported.
4858   if (isVarArg) return false;
4859 
4860   auto &Caller = DAG.getMachineFunction().getFunction();
4861   // Check that the calling conventions are compatible for tco.
4862   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4863     return false;
4864 
4865   // Caller contains any byval parameter is not supported.
4866   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4867     return false;
4868 
4869   // Callee contains any byval parameter is not supported, too.
4870   // Note: This is a quick work around, because in some cases, e.g.
4871   // caller's stack size > callee's stack size, we are still able to apply
4872   // sibling call optimization. For example, gcc is able to do SCO for caller1
4873   // in the following example, but not for caller2.
4874   //   struct test {
4875   //     long int a;
4876   //     char ary[56];
4877   //   } gTest;
4878   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4879   //     b->a = v.a;
4880   //     return 0;
4881   //   }
4882   //   void caller1(struct test a, struct test c, struct test *b) {
4883   //     callee(gTest, b); }
4884   //   void caller2(struct test *b) { callee(gTest, b); }
4885   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4886     return false;
4887 
4888   // If callee and caller use different calling conventions, we cannot pass
4889   // parameters on stack since offsets for the parameter area may be different.
4890   if (Caller.getCallingConv() != CalleeCC &&
4891       needStackSlotPassParameters(Subtarget, Outs))
4892     return false;
4893 
4894   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4895   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4896   // callee potentially have different TOC bases then we cannot tail call since
4897   // we need to restore the TOC pointer after the call.
4898   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4899   // We cannot guarantee this for indirect calls or calls to external functions.
4900   // When PC-Relative addressing is used, the concept of the TOC is no longer
4901   // applicable so this check is not required.
4902   // Check first for indirect calls.
4903   if (!Subtarget.isUsingPCRelativeCalls() &&
4904       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4905     return false;
4906 
4907   // Check if we share the TOC base.
4908   if (!Subtarget.isUsingPCRelativeCalls() &&
4909       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4910     return false;
4911 
4912   // TCO allows altering callee ABI, so we don't have to check further.
4913   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4914     return true;
4915 
4916   if (DisableSCO) return false;
4917 
4918   // If callee use the same argument list that caller is using, then we can
4919   // apply SCO on this case. If it is not, then we need to check if callee needs
4920   // stack for passing arguments.
4921   // PC Relative tail calls may not have a CallBase.
4922   // If there is no CallBase we cannot verify if we have the same argument
4923   // list so assume that we don't have the same argument list.
4924   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4925       needStackSlotPassParameters(Subtarget, Outs))
4926     return false;
4927   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4928     return false;
4929 
4930   return true;
4931 }
4932 
4933 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4934 /// for tail call optimization. Targets which want to do tail call
4935 /// optimization should implement this function.
4936 bool
4937 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4938                                                      CallingConv::ID CalleeCC,
4939                                                      bool isVarArg,
4940                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4941                                                      SelectionDAG& DAG) const {
4942   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4943     return false;
4944 
4945   // Variable argument functions are not supported.
4946   if (isVarArg)
4947     return false;
4948 
4949   MachineFunction &MF = DAG.getMachineFunction();
4950   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4951   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4952     // Functions containing by val parameters are not supported.
4953     for (unsigned i = 0; i != Ins.size(); i++) {
4954        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4955        if (Flags.isByVal()) return false;
4956     }
4957 
4958     // Non-PIC/GOT tail calls are supported.
4959     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4960       return true;
4961 
4962     // At the moment we can only do local tail calls (in same module, hidden
4963     // or protected) if we are generating PIC.
4964     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4965       return G->getGlobal()->hasHiddenVisibility()
4966           || G->getGlobal()->hasProtectedVisibility();
4967   }
4968 
4969   return false;
4970 }
4971 
4972 /// isCallCompatibleAddress - Return the immediate to use if the specified
4973 /// 32-bit value is representable in the immediate field of a BxA instruction.
4974 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4975   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4976   if (!C) return nullptr;
4977 
4978   int Addr = C->getZExtValue();
4979   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4980       SignExtend32<26>(Addr) != Addr)
4981     return nullptr;  // Top 6 bits have to be sext of immediate.
4982 
4983   return DAG
4984       .getConstant(
4985           (int)C->getZExtValue() >> 2, SDLoc(Op),
4986           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4987       .getNode();
4988 }
4989 
4990 namespace {
4991 
4992 struct TailCallArgumentInfo {
4993   SDValue Arg;
4994   SDValue FrameIdxOp;
4995   int FrameIdx = 0;
4996 
4997   TailCallArgumentInfo() = default;
4998 };
4999 
5000 } // end anonymous namespace
5001 
5002 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
5003 static void StoreTailCallArgumentsToStackSlot(
5004     SelectionDAG &DAG, SDValue Chain,
5005     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
5006     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
5007   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
5008     SDValue Arg = TailCallArgs[i].Arg;
5009     SDValue FIN = TailCallArgs[i].FrameIdxOp;
5010     int FI = TailCallArgs[i].FrameIdx;
5011     // Store relative to framepointer.
5012     MemOpChains.push_back(DAG.getStore(
5013         Chain, dl, Arg, FIN,
5014         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5015   }
5016 }
5017 
5018 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5019 /// the appropriate stack slot for the tail call optimized function call.
5020 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5021                                              SDValue OldRetAddr, SDValue OldFP,
5022                                              int SPDiff, const SDLoc &dl) {
5023   if (SPDiff) {
5024     // Calculate the new stack slot for the return address.
5025     MachineFunction &MF = DAG.getMachineFunction();
5026     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5027     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5028     bool isPPC64 = Subtarget.isPPC64();
5029     int SlotSize = isPPC64 ? 8 : 4;
5030     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5031     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5032                                                          NewRetAddrLoc, true);
5033     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5034     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5035     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5036                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5037   }
5038   return Chain;
5039 }
5040 
5041 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5042 /// the position of the argument.
5043 static void
5044 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5045                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5046                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5047   int Offset = ArgOffset + SPDiff;
5048   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5049   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5050   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5051   SDValue FIN = DAG.getFrameIndex(FI, VT);
5052   TailCallArgumentInfo Info;
5053   Info.Arg = Arg;
5054   Info.FrameIdxOp = FIN;
5055   Info.FrameIdx = FI;
5056   TailCallArguments.push_back(Info);
5057 }
5058 
5059 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5060 /// stack slot. Returns the chain as result and the loaded frame pointers in
5061 /// LROpOut/FPOpout. Used when tail calling.
5062 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5063     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5064     SDValue &FPOpOut, const SDLoc &dl) const {
5065   if (SPDiff) {
5066     // Load the LR and FP stack slot for later adjusting.
5067     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5068     LROpOut = getReturnAddrFrameIndex(DAG);
5069     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5070     Chain = SDValue(LROpOut.getNode(), 1);
5071   }
5072   return Chain;
5073 }
5074 
5075 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5076 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5077 /// specified by the specific parameter attribute. The copy will be passed as
5078 /// a byval function parameter.
5079 /// Sometimes what we are copying is the end of a larger object, the part that
5080 /// does not fit in registers.
5081 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5082                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5083                                          SelectionDAG &DAG, const SDLoc &dl) {
5084   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5085   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5086                        Flags.getNonZeroByValAlign(), false, false, false,
5087                        MachinePointerInfo(), MachinePointerInfo());
5088 }
5089 
5090 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5091 /// tail calls.
5092 static void LowerMemOpCallTo(
5093     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5094     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5095     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5096     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5097   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5098   if (!isTailCall) {
5099     if (isVector) {
5100       SDValue StackPtr;
5101       if (isPPC64)
5102         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5103       else
5104         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5105       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5106                            DAG.getConstant(ArgOffset, dl, PtrVT));
5107     }
5108     MemOpChains.push_back(
5109         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5110     // Calculate and remember argument location.
5111   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5112                                   TailCallArguments);
5113 }
5114 
5115 static void
5116 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5117                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5118                 SDValue FPOp,
5119                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5120   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5121   // might overwrite each other in case of tail call optimization.
5122   SmallVector<SDValue, 8> MemOpChains2;
5123   // Do not flag preceding copytoreg stuff together with the following stuff.
5124   InFlag = SDValue();
5125   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5126                                     MemOpChains2, dl);
5127   if (!MemOpChains2.empty())
5128     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5129 
5130   // Store the return address to the appropriate stack slot.
5131   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5132 
5133   // Emit callseq_end just before tailcall node.
5134   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5135                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5136   InFlag = Chain.getValue(1);
5137 }
5138 
5139 // Is this global address that of a function that can be called by name? (as
5140 // opposed to something that must hold a descriptor for an indirect call).
5141 static bool isFunctionGlobalAddress(SDValue Callee) {
5142   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5143     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5144         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5145       return false;
5146 
5147     return G->getGlobal()->getValueType()->isFunctionTy();
5148   }
5149 
5150   return false;
5151 }
5152 
5153 SDValue PPCTargetLowering::LowerCallResult(
5154     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5155     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5156     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5157   SmallVector<CCValAssign, 16> RVLocs;
5158   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5159                     *DAG.getContext());
5160 
5161   CCRetInfo.AnalyzeCallResult(
5162       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5163                ? RetCC_PPC_Cold
5164                : RetCC_PPC);
5165 
5166   // Copy all of the result registers out of their specified physreg.
5167   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5168     CCValAssign &VA = RVLocs[i];
5169     assert(VA.isRegLoc() && "Can only return in registers!");
5170 
5171     SDValue Val;
5172 
5173     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5174       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5175                                       InFlag);
5176       Chain = Lo.getValue(1);
5177       InFlag = Lo.getValue(2);
5178       VA = RVLocs[++i]; // skip ahead to next loc
5179       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5180                                       InFlag);
5181       Chain = Hi.getValue(1);
5182       InFlag = Hi.getValue(2);
5183       if (!Subtarget.isLittleEndian())
5184         std::swap (Lo, Hi);
5185       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5186     } else {
5187       Val = DAG.getCopyFromReg(Chain, dl,
5188                                VA.getLocReg(), VA.getLocVT(), InFlag);
5189       Chain = Val.getValue(1);
5190       InFlag = Val.getValue(2);
5191     }
5192 
5193     switch (VA.getLocInfo()) {
5194     default: llvm_unreachable("Unknown loc info!");
5195     case CCValAssign::Full: break;
5196     case CCValAssign::AExt:
5197       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5198       break;
5199     case CCValAssign::ZExt:
5200       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5201                         DAG.getValueType(VA.getValVT()));
5202       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5203       break;
5204     case CCValAssign::SExt:
5205       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5206                         DAG.getValueType(VA.getValVT()));
5207       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5208       break;
5209     }
5210 
5211     InVals.push_back(Val);
5212   }
5213 
5214   return Chain;
5215 }
5216 
5217 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5218                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5219   // PatchPoint calls are not indirect.
5220   if (isPatchPoint)
5221     return false;
5222 
5223   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5224     return false;
5225 
5226   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5227   // becuase the immediate function pointer points to a descriptor instead of
5228   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5229   // pointer immediate points to the global entry point, while the BLA would
5230   // need to jump to the local entry point (see rL211174).
5231   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5232       isBLACompatibleAddress(Callee, DAG))
5233     return false;
5234 
5235   return true;
5236 }
5237 
5238 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5239 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5240   return Subtarget.isAIXABI() ||
5241          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5242 }
5243 
5244 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5245                               const Function &Caller,
5246                               const SDValue &Callee,
5247                               const PPCSubtarget &Subtarget,
5248                               const TargetMachine &TM) {
5249   if (CFlags.IsTailCall)
5250     return PPCISD::TC_RETURN;
5251 
5252   // This is a call through a function pointer.
5253   if (CFlags.IsIndirect) {
5254     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5255     // indirect calls. The save of the caller's TOC pointer to the stack will be
5256     // inserted into the DAG as part of call lowering. The restore of the TOC
5257     // pointer is modeled by using a pseudo instruction for the call opcode that
5258     // represents the 2 instruction sequence of an indirect branch and link,
5259     // immediately followed by a load of the TOC pointer from the the stack save
5260     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5261     // as it is not saved or used.
5262     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5263                                                : PPCISD::BCTRL;
5264   }
5265 
5266   if (Subtarget.isUsingPCRelativeCalls()) {
5267     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5268     return PPCISD::CALL_NOTOC;
5269   }
5270 
5271   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5272   // immediately following the call instruction if the caller and callee may
5273   // have different TOC bases. At link time if the linker determines the calls
5274   // may not share a TOC base, the call is redirected to a trampoline inserted
5275   // by the linker. The trampoline will (among other things) save the callers
5276   // TOC pointer at an ABI designated offset in the linkage area and the linker
5277   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5278   // into gpr2.
5279   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5280       return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5281                                                     : PPCISD::CALL_NOP;
5282 
5283   return PPCISD::CALL;
5284 }
5285 
5286 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5287                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5288   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5289     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5290       return SDValue(Dest, 0);
5291 
5292   // Returns true if the callee is local, and false otherwise.
5293   auto isLocalCallee = [&]() {
5294     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5295     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5296     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5297 
5298     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5299            !dyn_cast_or_null<GlobalIFunc>(GV);
5300   };
5301 
5302   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5303   // a static relocation model causes some versions of GNU LD (2.17.50, at
5304   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5305   // built with secure-PLT.
5306   bool UsePlt =
5307       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5308       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5309 
5310   // On AIX, direct function calls reference the symbol for the function's
5311   // entry point, which is named by prepending a "." before the function's
5312   // C-linkage name.
5313   const auto getAIXFuncEntryPointSymbolSDNode =
5314       [&](StringRef FuncName, bool IsDeclaration,
5315           const XCOFF::StorageClass &SC) {
5316         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5317 
5318         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5319             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5320 
5321         if (IsDeclaration && !S->hasRepresentedCsectSet()) {
5322           // On AIX, an undefined symbol needs to be associated with a
5323           // MCSectionXCOFF to get the correct storage mapping class.
5324           // In this case, XCOFF::XMC_PR.
5325           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5326               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5327               SectionKind::getMetadata());
5328           S->setRepresentedCsect(Sec);
5329         }
5330 
5331         MVT PtrVT =
5332             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5333         return DAG.getMCSymbol(S, PtrVT);
5334       };
5335 
5336   if (isFunctionGlobalAddress(Callee)) {
5337     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5338     const GlobalValue *GV = G->getGlobal();
5339 
5340     if (!Subtarget.isAIXABI())
5341       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5342                                         UsePlt ? PPCII::MO_PLT : 0);
5343 
5344     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5345     const GlobalObject *GO = cast<GlobalObject>(GV);
5346     const XCOFF::StorageClass SC =
5347         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5348     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5349                                             SC);
5350   }
5351 
5352   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5353     const char *SymName = S->getSymbol();
5354     if (!Subtarget.isAIXABI())
5355       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5356                                          UsePlt ? PPCII::MO_PLT : 0);
5357 
5358     // If there exists a user-declared function whose name is the same as the
5359     // ExternalSymbol's, then we pick up the user-declared version.
5360     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5361     if (const Function *F =
5362             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5363       const XCOFF::StorageClass SC =
5364           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5365       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5366                                               SC);
5367     }
5368 
5369     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5370   }
5371 
5372   // No transformation needed.
5373   assert(Callee.getNode() && "What no callee?");
5374   return Callee;
5375 }
5376 
5377 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5378   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5379          "Expected a CALLSEQ_STARTSDNode.");
5380 
5381   // The last operand is the chain, except when the node has glue. If the node
5382   // has glue, then the last operand is the glue, and the chain is the second
5383   // last operand.
5384   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5385   if (LastValue.getValueType() != MVT::Glue)
5386     return LastValue;
5387 
5388   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5389 }
5390 
5391 // Creates the node that moves a functions address into the count register
5392 // to prepare for an indirect call instruction.
5393 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5394                                 SDValue &Glue, SDValue &Chain,
5395                                 const SDLoc &dl) {
5396   SDValue MTCTROps[] = {Chain, Callee, Glue};
5397   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5398   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5399                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5400   // The glue is the second value produced.
5401   Glue = Chain.getValue(1);
5402 }
5403 
5404 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5405                                           SDValue &Glue, SDValue &Chain,
5406                                           SDValue CallSeqStart,
5407                                           const CallBase *CB, const SDLoc &dl,
5408                                           bool hasNest,
5409                                           const PPCSubtarget &Subtarget) {
5410   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5411   // entry point, but to the function descriptor (the function entry point
5412   // address is part of the function descriptor though).
5413   // The function descriptor is a three doubleword structure with the
5414   // following fields: function entry point, TOC base address and
5415   // environment pointer.
5416   // Thus for a call through a function pointer, the following actions need
5417   // to be performed:
5418   //   1. Save the TOC of the caller in the TOC save area of its stack
5419   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5420   //   2. Load the address of the function entry point from the function
5421   //      descriptor.
5422   //   3. Load the TOC of the callee from the function descriptor into r2.
5423   //   4. Load the environment pointer from the function descriptor into
5424   //      r11.
5425   //   5. Branch to the function entry point address.
5426   //   6. On return of the callee, the TOC of the caller needs to be
5427   //      restored (this is done in FinishCall()).
5428   //
5429   // The loads are scheduled at the beginning of the call sequence, and the
5430   // register copies are flagged together to ensure that no other
5431   // operations can be scheduled in between. E.g. without flagging the
5432   // copies together, a TOC access in the caller could be scheduled between
5433   // the assignment of the callee TOC and the branch to the callee, which leads
5434   // to incorrect code.
5435 
5436   // Start by loading the function address from the descriptor.
5437   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5438   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5439                       ? (MachineMemOperand::MODereferenceable |
5440                          MachineMemOperand::MOInvariant)
5441                       : MachineMemOperand::MONone;
5442 
5443   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5444 
5445   // Registers used in building the DAG.
5446   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5447   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5448 
5449   // Offsets of descriptor members.
5450   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5451   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5452 
5453   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5454   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5455 
5456   // One load for the functions entry point address.
5457   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5458                                     Alignment, MMOFlags);
5459 
5460   // One for loading the TOC anchor for the module that contains the called
5461   // function.
5462   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5463   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5464   SDValue TOCPtr =
5465       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5466                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5467 
5468   // One for loading the environment pointer.
5469   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5470   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5471   SDValue LoadEnvPtr =
5472       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5473                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5474 
5475 
5476   // Then copy the newly loaded TOC anchor to the TOC pointer.
5477   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5478   Chain = TOCVal.getValue(0);
5479   Glue = TOCVal.getValue(1);
5480 
5481   // If the function call has an explicit 'nest' parameter, it takes the
5482   // place of the environment pointer.
5483   assert((!hasNest || !Subtarget.isAIXABI()) &&
5484          "Nest parameter is not supported on AIX.");
5485   if (!hasNest) {
5486     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5487     Chain = EnvVal.getValue(0);
5488     Glue = EnvVal.getValue(1);
5489   }
5490 
5491   // The rest of the indirect call sequence is the same as the non-descriptor
5492   // DAG.
5493   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5494 }
5495 
5496 static void
5497 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5498                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5499                   SelectionDAG &DAG,
5500                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5501                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5502                   const PPCSubtarget &Subtarget) {
5503   const bool IsPPC64 = Subtarget.isPPC64();
5504   // MVT for a general purpose register.
5505   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5506 
5507   // First operand is always the chain.
5508   Ops.push_back(Chain);
5509 
5510   // If it's a direct call pass the callee as the second operand.
5511   if (!CFlags.IsIndirect)
5512     Ops.push_back(Callee);
5513   else {
5514     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5515 
5516     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5517     // on the stack (this would have been done in `LowerCall_64SVR4` or
5518     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5519     // represents both the indirect branch and a load that restores the TOC
5520     // pointer from the linkage area. The operand for the TOC restore is an add
5521     // of the TOC save offset to the stack pointer. This must be the second
5522     // operand: after the chain input but before any other variadic arguments.
5523     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5524     // saved or used.
5525     if (isTOCSaveRestoreRequired(Subtarget)) {
5526       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5527 
5528       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5529       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5530       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5531       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5532       Ops.push_back(AddTOC);
5533     }
5534 
5535     // Add the register used for the environment pointer.
5536     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5537       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5538                                     RegVT));
5539 
5540 
5541     // Add CTR register as callee so a bctr can be emitted later.
5542     if (CFlags.IsTailCall)
5543       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5544   }
5545 
5546   // If this is a tail call add stack pointer delta.
5547   if (CFlags.IsTailCall)
5548     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5549 
5550   // Add argument registers to the end of the list so that they are known live
5551   // into the call.
5552   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5553     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5554                                   RegsToPass[i].second.getValueType()));
5555 
5556   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5557   // no way to mark dependencies as implicit here.
5558   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5559   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5560        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5561     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5562 
5563   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5564   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5565     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5566 
5567   // Add a register mask operand representing the call-preserved registers.
5568   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5569   const uint32_t *Mask =
5570       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5571   assert(Mask && "Missing call preserved mask for calling convention");
5572   Ops.push_back(DAG.getRegisterMask(Mask));
5573 
5574   // If the glue is valid, it is the last operand.
5575   if (Glue.getNode())
5576     Ops.push_back(Glue);
5577 }
5578 
5579 SDValue PPCTargetLowering::FinishCall(
5580     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5581     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5582     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5583     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5584     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5585 
5586   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5587       Subtarget.isAIXABI())
5588     setUsesTOCBasePtr(DAG);
5589 
5590   unsigned CallOpc =
5591       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5592                     Subtarget, DAG.getTarget());
5593 
5594   if (!CFlags.IsIndirect)
5595     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5596   else if (Subtarget.usesFunctionDescriptors())
5597     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5598                                   dl, CFlags.HasNest, Subtarget);
5599   else
5600     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5601 
5602   // Build the operand list for the call instruction.
5603   SmallVector<SDValue, 8> Ops;
5604   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5605                     SPDiff, Subtarget);
5606 
5607   // Emit tail call.
5608   if (CFlags.IsTailCall) {
5609     // Indirect tail call when using PC Relative calls do not have the same
5610     // constraints.
5611     assert(((Callee.getOpcode() == ISD::Register &&
5612              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5613             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5614             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5615             isa<ConstantSDNode>(Callee) ||
5616             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5617            "Expecting a global address, external symbol, absolute value, "
5618            "register or an indirect tail call when PC Relative calls are "
5619            "used.");
5620     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5621     assert(CallOpc == PPCISD::TC_RETURN &&
5622            "Unexpected call opcode for a tail call.");
5623     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5624     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5625   }
5626 
5627   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5628   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5629   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5630   Glue = Chain.getValue(1);
5631 
5632   // When performing tail call optimization the callee pops its arguments off
5633   // the stack. Account for this here so these bytes can be pushed back on in
5634   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5635   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5636                          getTargetMachine().Options.GuaranteedTailCallOpt)
5637                             ? NumBytes
5638                             : 0;
5639 
5640   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5641                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5642                              Glue, dl);
5643   Glue = Chain.getValue(1);
5644 
5645   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5646                          DAG, InVals);
5647 }
5648 
5649 SDValue
5650 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5651                              SmallVectorImpl<SDValue> &InVals) const {
5652   SelectionDAG &DAG                     = CLI.DAG;
5653   SDLoc &dl                             = CLI.DL;
5654   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5655   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5656   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5657   SDValue Chain                         = CLI.Chain;
5658   SDValue Callee                        = CLI.Callee;
5659   bool &isTailCall                      = CLI.IsTailCall;
5660   CallingConv::ID CallConv              = CLI.CallConv;
5661   bool isVarArg                         = CLI.IsVarArg;
5662   bool isPatchPoint                     = CLI.IsPatchPoint;
5663   const CallBase *CB                    = CLI.CB;
5664 
5665   if (isTailCall) {
5666     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5667       isTailCall = false;
5668     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5669       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5670           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5671     else
5672       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5673                                                      Ins, DAG);
5674     if (isTailCall) {
5675       ++NumTailCalls;
5676       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5677         ++NumSiblingCalls;
5678 
5679       // PC Relative calls no longer guarantee that the callee is a Global
5680       // Address Node. The callee could be an indirect tail call in which
5681       // case the SDValue for the callee could be a load (to load the address
5682       // of a function pointer) or it may be a register copy (to move the
5683       // address of the callee from a function parameter into a virtual
5684       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5685       assert((Subtarget.isUsingPCRelativeCalls() ||
5686               isa<GlobalAddressSDNode>(Callee)) &&
5687              "Callee should be an llvm::Function object.");
5688 
5689       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5690                         << "\nTCO callee: ");
5691       LLVM_DEBUG(Callee.dump());
5692     }
5693   }
5694 
5695   if (!isTailCall && CB && CB->isMustTailCall())
5696     report_fatal_error("failed to perform tail call elimination on a call "
5697                        "site marked musttail");
5698 
5699   // When long calls (i.e. indirect calls) are always used, calls are always
5700   // made via function pointer. If we have a function name, first translate it
5701   // into a pointer.
5702   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5703       !isTailCall)
5704     Callee = LowerGlobalAddress(Callee, DAG);
5705 
5706   CallFlags CFlags(
5707       CallConv, isTailCall, isVarArg, isPatchPoint,
5708       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5709       // hasNest
5710       Subtarget.is64BitELFABI() &&
5711           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5712       CLI.NoMerge);
5713 
5714   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5715     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5716                             InVals, CB);
5717 
5718   if (Subtarget.isSVR4ABI())
5719     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5720                             InVals, CB);
5721 
5722   if (Subtarget.isAIXABI())
5723     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5724                          InVals, CB);
5725 
5726   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5727                           InVals, CB);
5728 }
5729 
5730 SDValue PPCTargetLowering::LowerCall_32SVR4(
5731     SDValue Chain, SDValue Callee, CallFlags CFlags,
5732     const SmallVectorImpl<ISD::OutputArg> &Outs,
5733     const SmallVectorImpl<SDValue> &OutVals,
5734     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5735     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5736     const CallBase *CB) const {
5737   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5738   // of the 32-bit SVR4 ABI stack frame layout.
5739 
5740   const CallingConv::ID CallConv = CFlags.CallConv;
5741   const bool IsVarArg = CFlags.IsVarArg;
5742   const bool IsTailCall = CFlags.IsTailCall;
5743 
5744   assert((CallConv == CallingConv::C ||
5745           CallConv == CallingConv::Cold ||
5746           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5747 
5748   const Align PtrAlign(4);
5749 
5750   MachineFunction &MF = DAG.getMachineFunction();
5751 
5752   // Mark this function as potentially containing a function that contains a
5753   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5754   // and restoring the callers stack pointer in this functions epilog. This is
5755   // done because by tail calling the called function might overwrite the value
5756   // in this function's (MF) stack pointer stack slot 0(SP).
5757   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5758       CallConv == CallingConv::Fast)
5759     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5760 
5761   // Count how many bytes are to be pushed on the stack, including the linkage
5762   // area, parameter list area and the part of the local variable space which
5763   // contains copies of aggregates which are passed by value.
5764 
5765   // Assign locations to all of the outgoing arguments.
5766   SmallVector<CCValAssign, 16> ArgLocs;
5767   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5768 
5769   // Reserve space for the linkage area on the stack.
5770   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5771                        PtrAlign);
5772   if (useSoftFloat())
5773     CCInfo.PreAnalyzeCallOperands(Outs);
5774 
5775   if (IsVarArg) {
5776     // Handle fixed and variable vector arguments differently.
5777     // Fixed vector arguments go into registers as long as registers are
5778     // available. Variable vector arguments always go into memory.
5779     unsigned NumArgs = Outs.size();
5780 
5781     for (unsigned i = 0; i != NumArgs; ++i) {
5782       MVT ArgVT = Outs[i].VT;
5783       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5784       bool Result;
5785 
5786       if (Outs[i].IsFixed) {
5787         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5788                                CCInfo);
5789       } else {
5790         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5791                                       ArgFlags, CCInfo);
5792       }
5793 
5794       if (Result) {
5795 #ifndef NDEBUG
5796         errs() << "Call operand #" << i << " has unhandled type "
5797              << EVT(ArgVT).getEVTString() << "\n";
5798 #endif
5799         llvm_unreachable(nullptr);
5800       }
5801     }
5802   } else {
5803     // All arguments are treated the same.
5804     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5805   }
5806   CCInfo.clearWasPPCF128();
5807 
5808   // Assign locations to all of the outgoing aggregate by value arguments.
5809   SmallVector<CCValAssign, 16> ByValArgLocs;
5810   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5811 
5812   // Reserve stack space for the allocations in CCInfo.
5813   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5814 
5815   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5816 
5817   // Size of the linkage area, parameter list area and the part of the local
5818   // space variable where copies of aggregates which are passed by value are
5819   // stored.
5820   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5821 
5822   // Calculate by how many bytes the stack has to be adjusted in case of tail
5823   // call optimization.
5824   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5825 
5826   // Adjust the stack pointer for the new arguments...
5827   // These operations are automatically eliminated by the prolog/epilog pass
5828   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5829   SDValue CallSeqStart = Chain;
5830 
5831   // Load the return address and frame pointer so it can be moved somewhere else
5832   // later.
5833   SDValue LROp, FPOp;
5834   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5835 
5836   // Set up a copy of the stack pointer for use loading and storing any
5837   // arguments that may not fit in the registers available for argument
5838   // passing.
5839   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5840 
5841   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5842   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5843   SmallVector<SDValue, 8> MemOpChains;
5844 
5845   bool seenFloatArg = false;
5846   // Walk the register/memloc assignments, inserting copies/loads.
5847   // i - Tracks the index into the list of registers allocated for the call
5848   // RealArgIdx - Tracks the index into the list of actual function arguments
5849   // j - Tracks the index into the list of byval arguments
5850   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5851        i != e;
5852        ++i, ++RealArgIdx) {
5853     CCValAssign &VA = ArgLocs[i];
5854     SDValue Arg = OutVals[RealArgIdx];
5855     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5856 
5857     if (Flags.isByVal()) {
5858       // Argument is an aggregate which is passed by value, thus we need to
5859       // create a copy of it in the local variable space of the current stack
5860       // frame (which is the stack frame of the caller) and pass the address of
5861       // this copy to the callee.
5862       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5863       CCValAssign &ByValVA = ByValArgLocs[j++];
5864       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5865 
5866       // Memory reserved in the local variable space of the callers stack frame.
5867       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5868 
5869       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5870       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5871                            StackPtr, PtrOff);
5872 
5873       // Create a copy of the argument in the local area of the current
5874       // stack frame.
5875       SDValue MemcpyCall =
5876         CreateCopyOfByValArgument(Arg, PtrOff,
5877                                   CallSeqStart.getNode()->getOperand(0),
5878                                   Flags, DAG, dl);
5879 
5880       // This must go outside the CALLSEQ_START..END.
5881       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5882                                                      SDLoc(MemcpyCall));
5883       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5884                              NewCallSeqStart.getNode());
5885       Chain = CallSeqStart = NewCallSeqStart;
5886 
5887       // Pass the address of the aggregate copy on the stack either in a
5888       // physical register or in the parameter list area of the current stack
5889       // frame to the callee.
5890       Arg = PtrOff;
5891     }
5892 
5893     // When useCRBits() is true, there can be i1 arguments.
5894     // It is because getRegisterType(MVT::i1) => MVT::i1,
5895     // and for other integer types getRegisterType() => MVT::i32.
5896     // Extend i1 and ensure callee will get i32.
5897     if (Arg.getValueType() == MVT::i1)
5898       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5899                         dl, MVT::i32, Arg);
5900 
5901     if (VA.isRegLoc()) {
5902       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5903       // Put argument in a physical register.
5904       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5905         bool IsLE = Subtarget.isLittleEndian();
5906         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5907                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5908         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5909         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5910                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5911         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5912                              SVal.getValue(0)));
5913       } else
5914         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5915     } else {
5916       // Put argument in the parameter list area of the current stack frame.
5917       assert(VA.isMemLoc());
5918       unsigned LocMemOffset = VA.getLocMemOffset();
5919 
5920       if (!IsTailCall) {
5921         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5922         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5923                              StackPtr, PtrOff);
5924 
5925         MemOpChains.push_back(
5926             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5927       } else {
5928         // Calculate and remember argument location.
5929         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5930                                  TailCallArguments);
5931       }
5932     }
5933   }
5934 
5935   if (!MemOpChains.empty())
5936     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5937 
5938   // Build a sequence of copy-to-reg nodes chained together with token chain
5939   // and flag operands which copy the outgoing args into the appropriate regs.
5940   SDValue InFlag;
5941   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5942     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5943                              RegsToPass[i].second, InFlag);
5944     InFlag = Chain.getValue(1);
5945   }
5946 
5947   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5948   // registers.
5949   if (IsVarArg) {
5950     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5951     SDValue Ops[] = { Chain, InFlag };
5952 
5953     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5954                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5955 
5956     InFlag = Chain.getValue(1);
5957   }
5958 
5959   if (IsTailCall)
5960     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5961                     TailCallArguments);
5962 
5963   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5964                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5965 }
5966 
5967 // Copy an argument into memory, being careful to do this outside the
5968 // call sequence for the call to which the argument belongs.
5969 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5970     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5971     SelectionDAG &DAG, const SDLoc &dl) const {
5972   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5973                         CallSeqStart.getNode()->getOperand(0),
5974                         Flags, DAG, dl);
5975   // The MEMCPY must go outside the CALLSEQ_START..END.
5976   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5977   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5978                                                  SDLoc(MemcpyCall));
5979   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5980                          NewCallSeqStart.getNode());
5981   return NewCallSeqStart;
5982 }
5983 
5984 SDValue PPCTargetLowering::LowerCall_64SVR4(
5985     SDValue Chain, SDValue Callee, CallFlags CFlags,
5986     const SmallVectorImpl<ISD::OutputArg> &Outs,
5987     const SmallVectorImpl<SDValue> &OutVals,
5988     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5989     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5990     const CallBase *CB) const {
5991   bool isELFv2ABI = Subtarget.isELFv2ABI();
5992   bool isLittleEndian = Subtarget.isLittleEndian();
5993   unsigned NumOps = Outs.size();
5994   bool IsSibCall = false;
5995   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5996 
5997   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5998   unsigned PtrByteSize = 8;
5999 
6000   MachineFunction &MF = DAG.getMachineFunction();
6001 
6002   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
6003     IsSibCall = true;
6004 
6005   // Mark this function as potentially containing a function that contains a
6006   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6007   // and restoring the callers stack pointer in this functions epilog. This is
6008   // done because by tail calling the called function might overwrite the value
6009   // in this function's (MF) stack pointer stack slot 0(SP).
6010   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6011     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6012 
6013   assert(!(IsFastCall && CFlags.IsVarArg) &&
6014          "fastcc not supported on varargs functions");
6015 
6016   // Count how many bytes are to be pushed on the stack, including the linkage
6017   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6018   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6019   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6020   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6021   unsigned NumBytes = LinkageSize;
6022   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6023   unsigned &QFPR_idx = FPR_idx;
6024 
6025   static const MCPhysReg GPR[] = {
6026     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6027     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6028   };
6029   static const MCPhysReg VR[] = {
6030     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6031     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6032   };
6033 
6034   const unsigned NumGPRs = array_lengthof(GPR);
6035   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6036   const unsigned NumVRs  = array_lengthof(VR);
6037   const unsigned NumQFPRs = NumFPRs;
6038 
6039   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6040   // can be passed to the callee in registers.
6041   // For the fast calling convention, there is another check below.
6042   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6043   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6044   if (!HasParameterArea) {
6045     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6046     unsigned AvailableFPRs = NumFPRs;
6047     unsigned AvailableVRs = NumVRs;
6048     unsigned NumBytesTmp = NumBytes;
6049     for (unsigned i = 0; i != NumOps; ++i) {
6050       if (Outs[i].Flags.isNest()) continue;
6051       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6052                                 PtrByteSize, LinkageSize, ParamAreaSize,
6053                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
6054                                 Subtarget.hasQPX()))
6055         HasParameterArea = true;
6056     }
6057   }
6058 
6059   // When using the fast calling convention, we don't provide backing for
6060   // arguments that will be in registers.
6061   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6062 
6063   // Avoid allocating parameter area for fastcc functions if all the arguments
6064   // can be passed in the registers.
6065   if (IsFastCall)
6066     HasParameterArea = false;
6067 
6068   // Add up all the space actually used.
6069   for (unsigned i = 0; i != NumOps; ++i) {
6070     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6071     EVT ArgVT = Outs[i].VT;
6072     EVT OrigVT = Outs[i].ArgVT;
6073 
6074     if (Flags.isNest())
6075       continue;
6076 
6077     if (IsFastCall) {
6078       if (Flags.isByVal()) {
6079         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6080         if (NumGPRsUsed > NumGPRs)
6081           HasParameterArea = true;
6082       } else {
6083         switch (ArgVT.getSimpleVT().SimpleTy) {
6084         default: llvm_unreachable("Unexpected ValueType for argument!");
6085         case MVT::i1:
6086         case MVT::i32:
6087         case MVT::i64:
6088           if (++NumGPRsUsed <= NumGPRs)
6089             continue;
6090           break;
6091         case MVT::v4i32:
6092         case MVT::v8i16:
6093         case MVT::v16i8:
6094         case MVT::v2f64:
6095         case MVT::v2i64:
6096         case MVT::v1i128:
6097         case MVT::f128:
6098           if (++NumVRsUsed <= NumVRs)
6099             continue;
6100           break;
6101         case MVT::v4f32:
6102           // When using QPX, this is handled like a FP register, otherwise, it
6103           // is an Altivec register.
6104           if (Subtarget.hasQPX()) {
6105             if (++NumFPRsUsed <= NumFPRs)
6106               continue;
6107           } else {
6108             if (++NumVRsUsed <= NumVRs)
6109               continue;
6110           }
6111           break;
6112         case MVT::f32:
6113         case MVT::f64:
6114         case MVT::v4f64: // QPX
6115         case MVT::v4i1:  // QPX
6116           if (++NumFPRsUsed <= NumFPRs)
6117             continue;
6118           break;
6119         }
6120         HasParameterArea = true;
6121       }
6122     }
6123 
6124     /* Respect alignment of argument on the stack.  */
6125     auto Alignement =
6126         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6127     NumBytes = alignTo(NumBytes, Alignement);
6128 
6129     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6130     if (Flags.isInConsecutiveRegsLast())
6131       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6132   }
6133 
6134   unsigned NumBytesActuallyUsed = NumBytes;
6135 
6136   // In the old ELFv1 ABI,
6137   // the prolog code of the callee may store up to 8 GPR argument registers to
6138   // the stack, allowing va_start to index over them in memory if its varargs.
6139   // Because we cannot tell if this is needed on the caller side, we have to
6140   // conservatively assume that it is needed.  As such, make sure we have at
6141   // least enough stack space for the caller to store the 8 GPRs.
6142   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6143   // really requires memory operands, e.g. a vararg function.
6144   if (HasParameterArea)
6145     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6146   else
6147     NumBytes = LinkageSize;
6148 
6149   // Tail call needs the stack to be aligned.
6150   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6151     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6152 
6153   int SPDiff = 0;
6154 
6155   // Calculate by how many bytes the stack has to be adjusted in case of tail
6156   // call optimization.
6157   if (!IsSibCall)
6158     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6159 
6160   // To protect arguments on the stack from being clobbered in a tail call,
6161   // force all the loads to happen before doing any other lowering.
6162   if (CFlags.IsTailCall)
6163     Chain = DAG.getStackArgumentTokenFactor(Chain);
6164 
6165   // Adjust the stack pointer for the new arguments...
6166   // These operations are automatically eliminated by the prolog/epilog pass
6167   if (!IsSibCall)
6168     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6169   SDValue CallSeqStart = Chain;
6170 
6171   // Load the return address and frame pointer so it can be move somewhere else
6172   // later.
6173   SDValue LROp, FPOp;
6174   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6175 
6176   // Set up a copy of the stack pointer for use loading and storing any
6177   // arguments that may not fit in the registers available for argument
6178   // passing.
6179   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6180 
6181   // Figure out which arguments are going to go in registers, and which in
6182   // memory.  Also, if this is a vararg function, floating point operations
6183   // must be stored to our stack, and loaded into integer regs as well, if
6184   // any integer regs are available for argument passing.
6185   unsigned ArgOffset = LinkageSize;
6186 
6187   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6188   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6189 
6190   SmallVector<SDValue, 8> MemOpChains;
6191   for (unsigned i = 0; i != NumOps; ++i) {
6192     SDValue Arg = OutVals[i];
6193     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6194     EVT ArgVT = Outs[i].VT;
6195     EVT OrigVT = Outs[i].ArgVT;
6196 
6197     // PtrOff will be used to store the current argument to the stack if a
6198     // register cannot be found for it.
6199     SDValue PtrOff;
6200 
6201     // We re-align the argument offset for each argument, except when using the
6202     // fast calling convention, when we need to make sure we do that only when
6203     // we'll actually use a stack slot.
6204     auto ComputePtrOff = [&]() {
6205       /* Respect alignment of argument on the stack.  */
6206       auto Alignment =
6207           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6208       ArgOffset = alignTo(ArgOffset, Alignment);
6209 
6210       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6211 
6212       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6213     };
6214 
6215     if (!IsFastCall) {
6216       ComputePtrOff();
6217 
6218       /* Compute GPR index associated with argument offset.  */
6219       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6220       GPR_idx = std::min(GPR_idx, NumGPRs);
6221     }
6222 
6223     // Promote integers to 64-bit values.
6224     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6225       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6226       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6227       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6228     }
6229 
6230     // FIXME memcpy is used way more than necessary.  Correctness first.
6231     // Note: "by value" is code for passing a structure by value, not
6232     // basic types.
6233     if (Flags.isByVal()) {
6234       // Note: Size includes alignment padding, so
6235       //   struct x { short a; char b; }
6236       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6237       // These are the proper values we need for right-justifying the
6238       // aggregate in a parameter register.
6239       unsigned Size = Flags.getByValSize();
6240 
6241       // An empty aggregate parameter takes up no storage and no
6242       // registers.
6243       if (Size == 0)
6244         continue;
6245 
6246       if (IsFastCall)
6247         ComputePtrOff();
6248 
6249       // All aggregates smaller than 8 bytes must be passed right-justified.
6250       if (Size==1 || Size==2 || Size==4) {
6251         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6252         if (GPR_idx != NumGPRs) {
6253           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6254                                         MachinePointerInfo(), VT);
6255           MemOpChains.push_back(Load.getValue(1));
6256           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6257 
6258           ArgOffset += PtrByteSize;
6259           continue;
6260         }
6261       }
6262 
6263       if (GPR_idx == NumGPRs && Size < 8) {
6264         SDValue AddPtr = PtrOff;
6265         if (!isLittleEndian) {
6266           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6267                                           PtrOff.getValueType());
6268           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6269         }
6270         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6271                                                           CallSeqStart,
6272                                                           Flags, DAG, dl);
6273         ArgOffset += PtrByteSize;
6274         continue;
6275       }
6276       // Copy entire object into memory.  There are cases where gcc-generated
6277       // code assumes it is there, even if it could be put entirely into
6278       // registers.  (This is not what the doc says.)
6279 
6280       // FIXME: The above statement is likely due to a misunderstanding of the
6281       // documents.  All arguments must be copied into the parameter area BY
6282       // THE CALLEE in the event that the callee takes the address of any
6283       // formal argument.  That has not yet been implemented.  However, it is
6284       // reasonable to use the stack area as a staging area for the register
6285       // load.
6286 
6287       // Skip this for small aggregates, as we will use the same slot for a
6288       // right-justified copy, below.
6289       if (Size >= 8)
6290         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6291                                                           CallSeqStart,
6292                                                           Flags, DAG, dl);
6293 
6294       // When a register is available, pass a small aggregate right-justified.
6295       if (Size < 8 && GPR_idx != NumGPRs) {
6296         // The easiest way to get this right-justified in a register
6297         // is to copy the structure into the rightmost portion of a
6298         // local variable slot, then load the whole slot into the
6299         // register.
6300         // FIXME: The memcpy seems to produce pretty awful code for
6301         // small aggregates, particularly for packed ones.
6302         // FIXME: It would be preferable to use the slot in the
6303         // parameter save area instead of a new local variable.
6304         SDValue AddPtr = PtrOff;
6305         if (!isLittleEndian) {
6306           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6307           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6308         }
6309         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6310                                                           CallSeqStart,
6311                                                           Flags, DAG, dl);
6312 
6313         // Load the slot into the register.
6314         SDValue Load =
6315             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6316         MemOpChains.push_back(Load.getValue(1));
6317         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6318 
6319         // Done with this argument.
6320         ArgOffset += PtrByteSize;
6321         continue;
6322       }
6323 
6324       // For aggregates larger than PtrByteSize, copy the pieces of the
6325       // object that fit into registers from the parameter save area.
6326       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6327         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6328         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6329         if (GPR_idx != NumGPRs) {
6330           SDValue Load =
6331               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6332           MemOpChains.push_back(Load.getValue(1));
6333           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6334           ArgOffset += PtrByteSize;
6335         } else {
6336           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6337           break;
6338         }
6339       }
6340       continue;
6341     }
6342 
6343     switch (Arg.getSimpleValueType().SimpleTy) {
6344     default: llvm_unreachable("Unexpected ValueType for argument!");
6345     case MVT::i1:
6346     case MVT::i32:
6347     case MVT::i64:
6348       if (Flags.isNest()) {
6349         // The 'nest' parameter, if any, is passed in R11.
6350         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6351         break;
6352       }
6353 
6354       // These can be scalar arguments or elements of an integer array type
6355       // passed directly.  Clang may use those instead of "byval" aggregate
6356       // types to avoid forcing arguments to memory unnecessarily.
6357       if (GPR_idx != NumGPRs) {
6358         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6359       } else {
6360         if (IsFastCall)
6361           ComputePtrOff();
6362 
6363         assert(HasParameterArea &&
6364                "Parameter area must exist to pass an argument in memory.");
6365         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6366                          true, CFlags.IsTailCall, false, MemOpChains,
6367                          TailCallArguments, dl);
6368         if (IsFastCall)
6369           ArgOffset += PtrByteSize;
6370       }
6371       if (!IsFastCall)
6372         ArgOffset += PtrByteSize;
6373       break;
6374     case MVT::f32:
6375     case MVT::f64: {
6376       // These can be scalar arguments or elements of a float array type
6377       // passed directly.  The latter are used to implement ELFv2 homogenous
6378       // float aggregates.
6379 
6380       // Named arguments go into FPRs first, and once they overflow, the
6381       // remaining arguments go into GPRs and then the parameter save area.
6382       // Unnamed arguments for vararg functions always go to GPRs and
6383       // then the parameter save area.  For now, put all arguments to vararg
6384       // routines always in both locations (FPR *and* GPR or stack slot).
6385       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6386       bool NeededLoad = false;
6387 
6388       // First load the argument into the next available FPR.
6389       if (FPR_idx != NumFPRs)
6390         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6391 
6392       // Next, load the argument into GPR or stack slot if needed.
6393       if (!NeedGPROrStack)
6394         ;
6395       else if (GPR_idx != NumGPRs && !IsFastCall) {
6396         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6397         // once we support fp <-> gpr moves.
6398 
6399         // In the non-vararg case, this can only ever happen in the
6400         // presence of f32 array types, since otherwise we never run
6401         // out of FPRs before running out of GPRs.
6402         SDValue ArgVal;
6403 
6404         // Double values are always passed in a single GPR.
6405         if (Arg.getValueType() != MVT::f32) {
6406           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6407 
6408         // Non-array float values are extended and passed in a GPR.
6409         } else if (!Flags.isInConsecutiveRegs()) {
6410           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6411           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6412 
6413         // If we have an array of floats, we collect every odd element
6414         // together with its predecessor into one GPR.
6415         } else if (ArgOffset % PtrByteSize != 0) {
6416           SDValue Lo, Hi;
6417           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6418           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6419           if (!isLittleEndian)
6420             std::swap(Lo, Hi);
6421           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6422 
6423         // The final element, if even, goes into the first half of a GPR.
6424         } else if (Flags.isInConsecutiveRegsLast()) {
6425           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6426           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6427           if (!isLittleEndian)
6428             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6429                                  DAG.getConstant(32, dl, MVT::i32));
6430 
6431         // Non-final even elements are skipped; they will be handled
6432         // together the with subsequent argument on the next go-around.
6433         } else
6434           ArgVal = SDValue();
6435 
6436         if (ArgVal.getNode())
6437           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6438       } else {
6439         if (IsFastCall)
6440           ComputePtrOff();
6441 
6442         // Single-precision floating-point values are mapped to the
6443         // second (rightmost) word of the stack doubleword.
6444         if (Arg.getValueType() == MVT::f32 &&
6445             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6446           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6447           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6448         }
6449 
6450         assert(HasParameterArea &&
6451                "Parameter area must exist to pass an argument in memory.");
6452         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6453                          true, CFlags.IsTailCall, false, MemOpChains,
6454                          TailCallArguments, dl);
6455 
6456         NeededLoad = true;
6457       }
6458       // When passing an array of floats, the array occupies consecutive
6459       // space in the argument area; only round up to the next doubleword
6460       // at the end of the array.  Otherwise, each float takes 8 bytes.
6461       if (!IsFastCall || NeededLoad) {
6462         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6463                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6464         if (Flags.isInConsecutiveRegsLast())
6465           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6466       }
6467       break;
6468     }
6469     case MVT::v4f32:
6470     case MVT::v4i32:
6471     case MVT::v8i16:
6472     case MVT::v16i8:
6473     case MVT::v2f64:
6474     case MVT::v2i64:
6475     case MVT::v1i128:
6476     case MVT::f128:
6477       if (!Subtarget.hasQPX()) {
6478       // These can be scalar arguments or elements of a vector array type
6479       // passed directly.  The latter are used to implement ELFv2 homogenous
6480       // vector aggregates.
6481 
6482       // For a varargs call, named arguments go into VRs or on the stack as
6483       // usual; unnamed arguments always go to the stack or the corresponding
6484       // GPRs when within range.  For now, we always put the value in both
6485       // locations (or even all three).
6486       if (CFlags.IsVarArg) {
6487         assert(HasParameterArea &&
6488                "Parameter area must exist if we have a varargs call.");
6489         // We could elide this store in the case where the object fits
6490         // entirely in R registers.  Maybe later.
6491         SDValue Store =
6492             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6493         MemOpChains.push_back(Store);
6494         if (VR_idx != NumVRs) {
6495           SDValue Load =
6496               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6497           MemOpChains.push_back(Load.getValue(1));
6498           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6499         }
6500         ArgOffset += 16;
6501         for (unsigned i=0; i<16; i+=PtrByteSize) {
6502           if (GPR_idx == NumGPRs)
6503             break;
6504           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6505                                    DAG.getConstant(i, dl, PtrVT));
6506           SDValue Load =
6507               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6508           MemOpChains.push_back(Load.getValue(1));
6509           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6510         }
6511         break;
6512       }
6513 
6514       // Non-varargs Altivec params go into VRs or on the stack.
6515       if (VR_idx != NumVRs) {
6516         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6517       } else {
6518         if (IsFastCall)
6519           ComputePtrOff();
6520 
6521         assert(HasParameterArea &&
6522                "Parameter area must exist to pass an argument in memory.");
6523         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6524                          true, CFlags.IsTailCall, true, MemOpChains,
6525                          TailCallArguments, dl);
6526         if (IsFastCall)
6527           ArgOffset += 16;
6528       }
6529 
6530       if (!IsFastCall)
6531         ArgOffset += 16;
6532       break;
6533       } // not QPX
6534 
6535       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6536              "Invalid QPX parameter type");
6537 
6538       LLVM_FALLTHROUGH;
6539     case MVT::v4f64:
6540     case MVT::v4i1: {
6541       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6542       if (CFlags.IsVarArg) {
6543         assert(HasParameterArea &&
6544                "Parameter area must exist if we have a varargs call.");
6545         // We could elide this store in the case where the object fits
6546         // entirely in R registers.  Maybe later.
6547         SDValue Store =
6548             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6549         MemOpChains.push_back(Store);
6550         if (QFPR_idx != NumQFPRs) {
6551           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6552                                      PtrOff, MachinePointerInfo());
6553           MemOpChains.push_back(Load.getValue(1));
6554           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6555         }
6556         ArgOffset += (IsF32 ? 16 : 32);
6557         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6558           if (GPR_idx == NumGPRs)
6559             break;
6560           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6561                                    DAG.getConstant(i, dl, PtrVT));
6562           SDValue Load =
6563               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6564           MemOpChains.push_back(Load.getValue(1));
6565           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6566         }
6567         break;
6568       }
6569 
6570       // Non-varargs QPX params go into registers or on the stack.
6571       if (QFPR_idx != NumQFPRs) {
6572         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6573       } else {
6574         if (IsFastCall)
6575           ComputePtrOff();
6576 
6577         assert(HasParameterArea &&
6578                "Parameter area must exist to pass an argument in memory.");
6579         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6580                          true, CFlags.IsTailCall, true, MemOpChains,
6581                          TailCallArguments, dl);
6582         if (IsFastCall)
6583           ArgOffset += (IsF32 ? 16 : 32);
6584       }
6585 
6586       if (!IsFastCall)
6587         ArgOffset += (IsF32 ? 16 : 32);
6588       break;
6589       }
6590     }
6591   }
6592 
6593   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6594          "mismatch in size of parameter area");
6595   (void)NumBytesActuallyUsed;
6596 
6597   if (!MemOpChains.empty())
6598     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6599 
6600   // Check if this is an indirect call (MTCTR/BCTRL).
6601   // See prepareDescriptorIndirectCall and buildCallOperands for more
6602   // information about calls through function pointers in the 64-bit SVR4 ABI.
6603   if (CFlags.IsIndirect) {
6604     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6605     // caller in the TOC save area.
6606     if (isTOCSaveRestoreRequired(Subtarget)) {
6607       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6608       // Load r2 into a virtual register and store it to the TOC save area.
6609       setUsesTOCBasePtr(DAG);
6610       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6611       // TOC save area offset.
6612       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6613       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6614       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6615       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6616                            MachinePointerInfo::getStack(
6617                                DAG.getMachineFunction(), TOCSaveOffset));
6618     }
6619     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6620     // This does not mean the MTCTR instruction must use R12; it's easier
6621     // to model this as an extra parameter, so do that.
6622     if (isELFv2ABI && !CFlags.IsPatchPoint)
6623       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6624   }
6625 
6626   // Build a sequence of copy-to-reg nodes chained together with token chain
6627   // and flag operands which copy the outgoing args into the appropriate regs.
6628   SDValue InFlag;
6629   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6630     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6631                              RegsToPass[i].second, InFlag);
6632     InFlag = Chain.getValue(1);
6633   }
6634 
6635   if (CFlags.IsTailCall && !IsSibCall)
6636     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6637                     TailCallArguments);
6638 
6639   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6640                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6641 }
6642 
6643 SDValue PPCTargetLowering::LowerCall_Darwin(
6644     SDValue Chain, SDValue Callee, CallFlags CFlags,
6645     const SmallVectorImpl<ISD::OutputArg> &Outs,
6646     const SmallVectorImpl<SDValue> &OutVals,
6647     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6648     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6649     const CallBase *CB) const {
6650   unsigned NumOps = Outs.size();
6651 
6652   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6653   bool isPPC64 = PtrVT == MVT::i64;
6654   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6655 
6656   MachineFunction &MF = DAG.getMachineFunction();
6657 
6658   // Mark this function as potentially containing a function that contains a
6659   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6660   // and restoring the callers stack pointer in this functions epilog. This is
6661   // done because by tail calling the called function might overwrite the value
6662   // in this function's (MF) stack pointer stack slot 0(SP).
6663   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6664       CFlags.CallConv == CallingConv::Fast)
6665     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6666 
6667   // Count how many bytes are to be pushed on the stack, including the linkage
6668   // area, and parameter passing area.  We start with 24/48 bytes, which is
6669   // prereserved space for [SP][CR][LR][3 x unused].
6670   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6671   unsigned NumBytes = LinkageSize;
6672 
6673   // Add up all the space actually used.
6674   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6675   // they all go in registers, but we must reserve stack space for them for
6676   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6677   // assigned stack space in order, with padding so Altivec parameters are
6678   // 16-byte aligned.
6679   unsigned nAltivecParamsAtEnd = 0;
6680   for (unsigned i = 0; i != NumOps; ++i) {
6681     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6682     EVT ArgVT = Outs[i].VT;
6683     // Varargs Altivec parameters are padded to a 16 byte boundary.
6684     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6685         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6686         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6687       if (!CFlags.IsVarArg && !isPPC64) {
6688         // Non-varargs Altivec parameters go after all the non-Altivec
6689         // parameters; handle those later so we know how much padding we need.
6690         nAltivecParamsAtEnd++;
6691         continue;
6692       }
6693       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6694       NumBytes = ((NumBytes+15)/16)*16;
6695     }
6696     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6697   }
6698 
6699   // Allow for Altivec parameters at the end, if needed.
6700   if (nAltivecParamsAtEnd) {
6701     NumBytes = ((NumBytes+15)/16)*16;
6702     NumBytes += 16*nAltivecParamsAtEnd;
6703   }
6704 
6705   // The prolog code of the callee may store up to 8 GPR argument registers to
6706   // the stack, allowing va_start to index over them in memory if its varargs.
6707   // Because we cannot tell if this is needed on the caller side, we have to
6708   // conservatively assume that it is needed.  As such, make sure we have at
6709   // least enough stack space for the caller to store the 8 GPRs.
6710   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6711 
6712   // Tail call needs the stack to be aligned.
6713   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6714       CFlags.CallConv == CallingConv::Fast)
6715     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6716 
6717   // Calculate by how many bytes the stack has to be adjusted in case of tail
6718   // call optimization.
6719   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6720 
6721   // To protect arguments on the stack from being clobbered in a tail call,
6722   // force all the loads to happen before doing any other lowering.
6723   if (CFlags.IsTailCall)
6724     Chain = DAG.getStackArgumentTokenFactor(Chain);
6725 
6726   // Adjust the stack pointer for the new arguments...
6727   // These operations are automatically eliminated by the prolog/epilog pass
6728   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6729   SDValue CallSeqStart = Chain;
6730 
6731   // Load the return address and frame pointer so it can be move somewhere else
6732   // later.
6733   SDValue LROp, FPOp;
6734   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6735 
6736   // Set up a copy of the stack pointer for use loading and storing any
6737   // arguments that may not fit in the registers available for argument
6738   // passing.
6739   SDValue StackPtr;
6740   if (isPPC64)
6741     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6742   else
6743     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6744 
6745   // Figure out which arguments are going to go in registers, and which in
6746   // memory.  Also, if this is a vararg function, floating point operations
6747   // must be stored to our stack, and loaded into integer regs as well, if
6748   // any integer regs are available for argument passing.
6749   unsigned ArgOffset = LinkageSize;
6750   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6751 
6752   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6753     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6754     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6755   };
6756   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6757     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6758     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6759   };
6760   static const MCPhysReg VR[] = {
6761     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6762     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6763   };
6764   const unsigned NumGPRs = array_lengthof(GPR_32);
6765   const unsigned NumFPRs = 13;
6766   const unsigned NumVRs  = array_lengthof(VR);
6767 
6768   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6769 
6770   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6771   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6772 
6773   SmallVector<SDValue, 8> MemOpChains;
6774   for (unsigned i = 0; i != NumOps; ++i) {
6775     SDValue Arg = OutVals[i];
6776     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6777 
6778     // PtrOff will be used to store the current argument to the stack if a
6779     // register cannot be found for it.
6780     SDValue PtrOff;
6781 
6782     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6783 
6784     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6785 
6786     // On PPC64, promote integers to 64-bit values.
6787     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6788       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6789       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6790       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6791     }
6792 
6793     // FIXME memcpy is used way more than necessary.  Correctness first.
6794     // Note: "by value" is code for passing a structure by value, not
6795     // basic types.
6796     if (Flags.isByVal()) {
6797       unsigned Size = Flags.getByValSize();
6798       // Very small objects are passed right-justified.  Everything else is
6799       // passed left-justified.
6800       if (Size==1 || Size==2) {
6801         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6802         if (GPR_idx != NumGPRs) {
6803           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6804                                         MachinePointerInfo(), VT);
6805           MemOpChains.push_back(Load.getValue(1));
6806           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6807 
6808           ArgOffset += PtrByteSize;
6809         } else {
6810           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6811                                           PtrOff.getValueType());
6812           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6813           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6814                                                             CallSeqStart,
6815                                                             Flags, DAG, dl);
6816           ArgOffset += PtrByteSize;
6817         }
6818         continue;
6819       }
6820       // Copy entire object into memory.  There are cases where gcc-generated
6821       // code assumes it is there, even if it could be put entirely into
6822       // registers.  (This is not what the doc says.)
6823       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6824                                                         CallSeqStart,
6825                                                         Flags, DAG, dl);
6826 
6827       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6828       // copy the pieces of the object that fit into registers from the
6829       // parameter save area.
6830       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6831         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6832         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6833         if (GPR_idx != NumGPRs) {
6834           SDValue Load =
6835               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6836           MemOpChains.push_back(Load.getValue(1));
6837           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6838           ArgOffset += PtrByteSize;
6839         } else {
6840           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6841           break;
6842         }
6843       }
6844       continue;
6845     }
6846 
6847     switch (Arg.getSimpleValueType().SimpleTy) {
6848     default: llvm_unreachable("Unexpected ValueType for argument!");
6849     case MVT::i1:
6850     case MVT::i32:
6851     case MVT::i64:
6852       if (GPR_idx != NumGPRs) {
6853         if (Arg.getValueType() == MVT::i1)
6854           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6855 
6856         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6857       } else {
6858         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6859                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6860                          TailCallArguments, dl);
6861       }
6862       ArgOffset += PtrByteSize;
6863       break;
6864     case MVT::f32:
6865     case MVT::f64:
6866       if (FPR_idx != NumFPRs) {
6867         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6868 
6869         if (CFlags.IsVarArg) {
6870           SDValue Store =
6871               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6872           MemOpChains.push_back(Store);
6873 
6874           // Float varargs are always shadowed in available integer registers
6875           if (GPR_idx != NumGPRs) {
6876             SDValue Load =
6877                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6878             MemOpChains.push_back(Load.getValue(1));
6879             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6880           }
6881           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6882             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6883             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6884             SDValue Load =
6885                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6886             MemOpChains.push_back(Load.getValue(1));
6887             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6888           }
6889         } else {
6890           // If we have any FPRs remaining, we may also have GPRs remaining.
6891           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6892           // GPRs.
6893           if (GPR_idx != NumGPRs)
6894             ++GPR_idx;
6895           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6896               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6897             ++GPR_idx;
6898         }
6899       } else
6900         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6901                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6902                          TailCallArguments, dl);
6903       if (isPPC64)
6904         ArgOffset += 8;
6905       else
6906         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6907       break;
6908     case MVT::v4f32:
6909     case MVT::v4i32:
6910     case MVT::v8i16:
6911     case MVT::v16i8:
6912       if (CFlags.IsVarArg) {
6913         // These go aligned on the stack, or in the corresponding R registers
6914         // when within range.  The Darwin PPC ABI doc claims they also go in
6915         // V registers; in fact gcc does this only for arguments that are
6916         // prototyped, not for those that match the ...  We do it for all
6917         // arguments, seems to work.
6918         while (ArgOffset % 16 !=0) {
6919           ArgOffset += PtrByteSize;
6920           if (GPR_idx != NumGPRs)
6921             GPR_idx++;
6922         }
6923         // We could elide this store in the case where the object fits
6924         // entirely in R registers.  Maybe later.
6925         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6926                              DAG.getConstant(ArgOffset, dl, PtrVT));
6927         SDValue Store =
6928             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6929         MemOpChains.push_back(Store);
6930         if (VR_idx != NumVRs) {
6931           SDValue Load =
6932               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6933           MemOpChains.push_back(Load.getValue(1));
6934           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6935         }
6936         ArgOffset += 16;
6937         for (unsigned i=0; i<16; i+=PtrByteSize) {
6938           if (GPR_idx == NumGPRs)
6939             break;
6940           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6941                                    DAG.getConstant(i, dl, PtrVT));
6942           SDValue Load =
6943               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6944           MemOpChains.push_back(Load.getValue(1));
6945           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6946         }
6947         break;
6948       }
6949 
6950       // Non-varargs Altivec params generally go in registers, but have
6951       // stack space allocated at the end.
6952       if (VR_idx != NumVRs) {
6953         // Doesn't have GPR space allocated.
6954         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6955       } else if (nAltivecParamsAtEnd==0) {
6956         // We are emitting Altivec params in order.
6957         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6958                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6959                          TailCallArguments, dl);
6960         ArgOffset += 16;
6961       }
6962       break;
6963     }
6964   }
6965   // If all Altivec parameters fit in registers, as they usually do,
6966   // they get stack space following the non-Altivec parameters.  We
6967   // don't track this here because nobody below needs it.
6968   // If there are more Altivec parameters than fit in registers emit
6969   // the stores here.
6970   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6971     unsigned j = 0;
6972     // Offset is aligned; skip 1st 12 params which go in V registers.
6973     ArgOffset = ((ArgOffset+15)/16)*16;
6974     ArgOffset += 12*16;
6975     for (unsigned i = 0; i != NumOps; ++i) {
6976       SDValue Arg = OutVals[i];
6977       EVT ArgType = Outs[i].VT;
6978       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6979           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6980         if (++j > NumVRs) {
6981           SDValue PtrOff;
6982           // We are emitting Altivec params in order.
6983           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6984                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6985                            TailCallArguments, dl);
6986           ArgOffset += 16;
6987         }
6988       }
6989     }
6990   }
6991 
6992   if (!MemOpChains.empty())
6993     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6994 
6995   // On Darwin, R12 must contain the address of an indirect callee.  This does
6996   // not mean the MTCTR instruction must use R12; it's easier to model this as
6997   // an extra parameter, so do that.
6998   if (CFlags.IsIndirect) {
6999     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7000     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
7001                                                    PPC::R12), Callee));
7002   }
7003 
7004   // Build a sequence of copy-to-reg nodes chained together with token chain
7005   // and flag operands which copy the outgoing args into the appropriate regs.
7006   SDValue InFlag;
7007   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
7008     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
7009                              RegsToPass[i].second, InFlag);
7010     InFlag = Chain.getValue(1);
7011   }
7012 
7013   if (CFlags.IsTailCall)
7014     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
7015                     TailCallArguments);
7016 
7017   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7018                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7019 }
7020 
7021 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
7022                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
7023                    CCState &State) {
7024 
7025   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
7026       State.getMachineFunction().getSubtarget());
7027   const bool IsPPC64 = Subtarget.isPPC64();
7028   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
7029   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
7030 
7031   assert((!ValVT.isInteger() ||
7032           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
7033          "Integer argument exceeds register size: should have been legalized");
7034 
7035   if (ValVT == MVT::f128)
7036     report_fatal_error("f128 is unimplemented on AIX.");
7037 
7038   if (ArgFlags.isNest())
7039     report_fatal_error("Nest arguments are unimplemented.");
7040 
7041   if (ValVT.isVector() || LocVT.isVector())
7042     report_fatal_error("Vector arguments are unimplemented on AIX.");
7043 
7044   static const MCPhysReg GPR_32[] = {// 32-bit registers.
7045                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7046                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7047   static const MCPhysReg GPR_64[] = {// 64-bit registers.
7048                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7049                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7050 
7051   if (ArgFlags.isByVal()) {
7052     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
7053       report_fatal_error("Pass-by-value arguments with alignment greater than "
7054                          "register width are not supported.");
7055 
7056     const unsigned ByValSize = ArgFlags.getByValSize();
7057 
7058     // An empty aggregate parameter takes up no storage and no registers,
7059     // but needs a MemLoc for a stack slot for the formal arguments side.
7060     if (ByValSize == 0) {
7061       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7062                                        State.getNextStackOffset(), RegVT,
7063                                        LocInfo));
7064       return false;
7065     }
7066 
7067     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
7068     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
7069     for (const unsigned E = Offset + StackSize; Offset < E;
7070          Offset += PtrAlign.value()) {
7071       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7072         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7073       else {
7074         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7075                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
7076                                          LocInfo));
7077         break;
7078       }
7079     }
7080     return false;
7081   }
7082 
7083   // Arguments always reserve parameter save area.
7084   switch (ValVT.SimpleTy) {
7085   default:
7086     report_fatal_error("Unhandled value type for argument.");
7087   case MVT::i64:
7088     // i64 arguments should have been split to i32 for PPC32.
7089     assert(IsPPC64 && "PPC32 should have split i64 values.");
7090     LLVM_FALLTHROUGH;
7091   case MVT::i1:
7092   case MVT::i32: {
7093     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
7094     // AIX integer arguments are always passed in register width.
7095     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
7096       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
7097                                   : CCValAssign::LocInfo::ZExt;
7098     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7099       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7100     else
7101       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
7102 
7103     return false;
7104   }
7105   case MVT::f32:
7106   case MVT::f64: {
7107     // Parameter save area (PSA) is reserved even if the float passes in fpr.
7108     const unsigned StoreSize = LocVT.getStoreSize();
7109     // Floats are always 4-byte aligned in the PSA on AIX.
7110     // This includes f64 in 64-bit mode for ABI compatibility.
7111     const unsigned Offset =
7112         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
7113     unsigned FReg = State.AllocateReg(FPR);
7114     if (FReg)
7115       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7116 
7117     // Reserve and initialize GPRs or initialize the PSA as required.
7118     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
7119       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7120         assert(FReg && "An FPR should be available when a GPR is reserved.");
7121         if (State.isVarArg()) {
7122           // Successfully reserved GPRs are only initialized for vararg calls.
7123           // Custom handling is required for:
7124           //   f64 in PPC32 needs to be split into 2 GPRs.
7125           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7126           State.addLoc(
7127               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7128         }
7129       } else {
7130         // If there are insufficient GPRs, the PSA needs to be initialized.
7131         // Initialization occurs even if an FPR was initialized for
7132         // compatibility with the AIX XL compiler. The full memory for the
7133         // argument will be initialized even if a prior word is saved in GPR.
7134         // A custom memLoc is used when the argument also passes in FPR so
7135         // that the callee handling can skip over it easily.
7136         State.addLoc(
7137             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7138                                              LocInfo)
7139                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7140         break;
7141       }
7142     }
7143 
7144     return false;
7145   }
7146   }
7147   return true;
7148 }
7149 
7150 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7151                                                     bool IsPPC64) {
7152   assert((IsPPC64 || SVT != MVT::i64) &&
7153          "i64 should have been split for 32-bit codegen.");
7154 
7155   switch (SVT) {
7156   default:
7157     report_fatal_error("Unexpected value type for formal argument");
7158   case MVT::i1:
7159   case MVT::i32:
7160   case MVT::i64:
7161     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7162   case MVT::f32:
7163     return &PPC::F4RCRegClass;
7164   case MVT::f64:
7165     return &PPC::F8RCRegClass;
7166   }
7167 }
7168 
7169 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7170                                         SelectionDAG &DAG, SDValue ArgValue,
7171                                         MVT LocVT, const SDLoc &dl) {
7172   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7173   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7174 
7175   if (Flags.isSExt())
7176     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7177                            DAG.getValueType(ValVT));
7178   else if (Flags.isZExt())
7179     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7180                            DAG.getValueType(ValVT));
7181 
7182   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7183 }
7184 
7185 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7186   const unsigned LASize = FL->getLinkageSize();
7187 
7188   if (PPC::GPRCRegClass.contains(Reg)) {
7189     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7190            "Reg must be a valid argument register!");
7191     return LASize + 4 * (Reg - PPC::R3);
7192   }
7193 
7194   if (PPC::G8RCRegClass.contains(Reg)) {
7195     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7196            "Reg must be a valid argument register!");
7197     return LASize + 8 * (Reg - PPC::X3);
7198   }
7199 
7200   llvm_unreachable("Only general purpose registers expected.");
7201 }
7202 
7203 //   AIX ABI Stack Frame Layout:
7204 //
7205 //   Low Memory +--------------------------------------------+
7206 //   SP   +---> | Back chain                                 | ---+
7207 //        |     +--------------------------------------------+    |
7208 //        |     | Saved Condition Register                   |    |
7209 //        |     +--------------------------------------------+    |
7210 //        |     | Saved Linkage Register                     |    |
7211 //        |     +--------------------------------------------+    | Linkage Area
7212 //        |     | Reserved for compilers                     |    |
7213 //        |     +--------------------------------------------+    |
7214 //        |     | Reserved for binders                       |    |
7215 //        |     +--------------------------------------------+    |
7216 //        |     | Saved TOC pointer                          | ---+
7217 //        |     +--------------------------------------------+
7218 //        |     | Parameter save area                        |
7219 //        |     +--------------------------------------------+
7220 //        |     | Alloca space                               |
7221 //        |     +--------------------------------------------+
7222 //        |     | Local variable space                       |
7223 //        |     +--------------------------------------------+
7224 //        |     | Float/int conversion temporary             |
7225 //        |     +--------------------------------------------+
7226 //        |     | Save area for AltiVec registers            |
7227 //        |     +--------------------------------------------+
7228 //        |     | AltiVec alignment padding                  |
7229 //        |     +--------------------------------------------+
7230 //        |     | Save area for VRSAVE register              |
7231 //        |     +--------------------------------------------+
7232 //        |     | Save area for General Purpose registers    |
7233 //        |     +--------------------------------------------+
7234 //        |     | Save area for Floating Point registers     |
7235 //        |     +--------------------------------------------+
7236 //        +---- | Back chain                                 |
7237 // High Memory  +--------------------------------------------+
7238 //
7239 //  Specifications:
7240 //  AIX 7.2 Assembler Language Reference
7241 //  Subroutine linkage convention
7242 
7243 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7244     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7245     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7246     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7247 
7248   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7249           CallConv == CallingConv::Fast) &&
7250          "Unexpected calling convention!");
7251 
7252   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7253     report_fatal_error("Tail call support is unimplemented on AIX.");
7254 
7255   if (useSoftFloat())
7256     report_fatal_error("Soft float support is unimplemented on AIX.");
7257 
7258   const PPCSubtarget &Subtarget =
7259       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7260   if (Subtarget.hasQPX())
7261     report_fatal_error("QPX support is not supported on AIX.");
7262 
7263   const bool IsPPC64 = Subtarget.isPPC64();
7264   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7265 
7266   // Assign locations to all of the incoming arguments.
7267   SmallVector<CCValAssign, 16> ArgLocs;
7268   MachineFunction &MF = DAG.getMachineFunction();
7269   MachineFrameInfo &MFI = MF.getFrameInfo();
7270   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7271 
7272   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7273   // Reserve space for the linkage area on the stack.
7274   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7275   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7276   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7277 
7278   SmallVector<SDValue, 8> MemOps;
7279 
7280   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7281     CCValAssign &VA = ArgLocs[I++];
7282     MVT LocVT = VA.getLocVT();
7283     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7284 
7285     // For compatibility with the AIX XL compiler, the float args in the
7286     // parameter save area are initialized even if the argument is available
7287     // in register.  The caller is required to initialize both the register
7288     // and memory, however, the callee can choose to expect it in either.
7289     // The memloc is dismissed here because the argument is retrieved from
7290     // the register.
7291     if (VA.isMemLoc() && VA.needsCustom())
7292       continue;
7293 
7294     if (Flags.isByVal() && VA.isMemLoc()) {
7295       const unsigned Size =
7296           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7297                   PtrByteSize);
7298       const int FI = MF.getFrameInfo().CreateFixedObject(
7299           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7300           /* IsAliased */ true);
7301       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7302       InVals.push_back(FIN);
7303 
7304       continue;
7305     }
7306 
7307     if (Flags.isByVal()) {
7308       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7309 
7310       const MCPhysReg ArgReg = VA.getLocReg();
7311       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7312 
7313       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7314         report_fatal_error("Over aligned byvals not supported yet.");
7315 
7316       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7317       const int FI = MF.getFrameInfo().CreateFixedObject(
7318           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7319           /* IsAliased */ true);
7320       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7321       InVals.push_back(FIN);
7322 
7323       // Add live ins for all the RegLocs for the same ByVal.
7324       const TargetRegisterClass *RegClass =
7325           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7326 
7327       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7328                                                unsigned Offset) {
7329         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7330         // Since the callers side has left justified the aggregate in the
7331         // register, we can simply store the entire register into the stack
7332         // slot.
7333         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7334         // The store to the fixedstack object is needed becuase accessing a
7335         // field of the ByVal will use a gep and load. Ideally we will optimize
7336         // to extracting the value from the register directly, and elide the
7337         // stores when the arguments address is not taken, but that will need to
7338         // be future work.
7339         SDValue Store =
7340             DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
7341                          DAG.getObjectPtrOffset(dl, FIN, Offset),
7342                          MachinePointerInfo::getFixedStack(MF, FI, Offset));
7343 
7344         MemOps.push_back(Store);
7345       };
7346 
7347       unsigned Offset = 0;
7348       HandleRegLoc(VA.getLocReg(), Offset);
7349       Offset += PtrByteSize;
7350       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7351            Offset += PtrByteSize) {
7352         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7353                "RegLocs should be for ByVal argument.");
7354 
7355         const CCValAssign RL = ArgLocs[I++];
7356         HandleRegLoc(RL.getLocReg(), Offset);
7357       }
7358 
7359       if (Offset != StackSize) {
7360         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7361                "Expected MemLoc for remaining bytes.");
7362         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7363         // Consume the MemLoc.The InVal has already been emitted, so nothing
7364         // more needs to be done.
7365         ++I;
7366       }
7367 
7368       continue;
7369     }
7370 
7371     EVT ValVT = VA.getValVT();
7372     if (VA.isRegLoc() && !VA.needsCustom()) {
7373       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7374       unsigned VReg =
7375           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7376       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7377       if (ValVT.isScalarInteger() &&
7378           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7379         ArgValue =
7380             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7381       }
7382       InVals.push_back(ArgValue);
7383       continue;
7384     }
7385     if (VA.isMemLoc()) {
7386       const unsigned LocSize = LocVT.getStoreSize();
7387       const unsigned ValSize = ValVT.getStoreSize();
7388       assert((ValSize <= LocSize) &&
7389              "Object size is larger than size of MemLoc");
7390       int CurArgOffset = VA.getLocMemOffset();
7391       // Objects are right-justified because AIX is big-endian.
7392       if (LocSize > ValSize)
7393         CurArgOffset += LocSize - ValSize;
7394       // Potential tail calls could cause overwriting of argument stack slots.
7395       const bool IsImmutable =
7396           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7397             (CallConv == CallingConv::Fast));
7398       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7399       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7400       SDValue ArgValue =
7401           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7402       InVals.push_back(ArgValue);
7403       continue;
7404     }
7405   }
7406 
7407   // On AIX a minimum of 8 words is saved to the parameter save area.
7408   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7409   // Area that is at least reserved in the caller of this function.
7410   unsigned CallerReservedArea =
7411       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7412 
7413   // Set the size that is at least reserved in caller of this function. Tail
7414   // call optimized function's reserved stack space needs to be aligned so
7415   // that taking the difference between two stack areas will result in an
7416   // aligned stack.
7417   CallerReservedArea =
7418       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7419   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7420   FuncInfo->setMinReservedArea(CallerReservedArea);
7421 
7422   if (isVarArg) {
7423     FuncInfo->setVarArgsFrameIndex(
7424         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7425     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7426 
7427     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7428                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7429 
7430     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7431                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7432     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7433 
7434     // The fixed integer arguments of a variadic function are stored to the
7435     // VarArgsFrameIndex on the stack so that they may be loaded by
7436     // dereferencing the result of va_next.
7437     for (unsigned GPRIndex =
7438              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7439          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7440 
7441       const unsigned VReg =
7442           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7443                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7444 
7445       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7446       SDValue Store =
7447           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7448       MemOps.push_back(Store);
7449       // Increment the address for the next argument to store.
7450       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7451       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7452     }
7453   }
7454 
7455   if (!MemOps.empty())
7456     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7457 
7458   return Chain;
7459 }
7460 
7461 SDValue PPCTargetLowering::LowerCall_AIX(
7462     SDValue Chain, SDValue Callee, CallFlags CFlags,
7463     const SmallVectorImpl<ISD::OutputArg> &Outs,
7464     const SmallVectorImpl<SDValue> &OutVals,
7465     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7466     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7467     const CallBase *CB) const {
7468   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7469   // AIX ABI stack frame layout.
7470 
7471   assert((CFlags.CallConv == CallingConv::C ||
7472           CFlags.CallConv == CallingConv::Cold ||
7473           CFlags.CallConv == CallingConv::Fast) &&
7474          "Unexpected calling convention!");
7475 
7476   if (CFlags.IsPatchPoint)
7477     report_fatal_error("This call type is unimplemented on AIX.");
7478 
7479   const PPCSubtarget& Subtarget =
7480       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7481   if (Subtarget.hasQPX())
7482     report_fatal_error("QPX is not supported on AIX.");
7483   if (Subtarget.hasAltivec())
7484     report_fatal_error("Altivec support is unimplemented on AIX.");
7485 
7486   MachineFunction &MF = DAG.getMachineFunction();
7487   SmallVector<CCValAssign, 16> ArgLocs;
7488   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7489                  *DAG.getContext());
7490 
7491   // Reserve space for the linkage save area (LSA) on the stack.
7492   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7493   //   [SP][CR][LR][2 x reserved][TOC].
7494   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7495   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7496   const bool IsPPC64 = Subtarget.isPPC64();
7497   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7498   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7499   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7500   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7501 
7502   // The prolog code of the callee may store up to 8 GPR argument registers to
7503   // the stack, allowing va_start to index over them in memory if the callee
7504   // is variadic.
7505   // Because we cannot tell if this is needed on the caller side, we have to
7506   // conservatively assume that it is needed.  As such, make sure we have at
7507   // least enough stack space for the caller to store the 8 GPRs.
7508   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7509   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7510                                      CCInfo.getNextStackOffset());
7511 
7512   // Adjust the stack pointer for the new arguments...
7513   // These operations are automatically eliminated by the prolog/epilog pass.
7514   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7515   SDValue CallSeqStart = Chain;
7516 
7517   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7518   SmallVector<SDValue, 8> MemOpChains;
7519 
7520   // Set up a copy of the stack pointer for loading and storing any
7521   // arguments that may not fit in the registers available for argument
7522   // passing.
7523   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7524                                    : DAG.getRegister(PPC::R1, MVT::i32);
7525 
7526   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7527     const unsigned ValNo = ArgLocs[I].getValNo();
7528     SDValue Arg = OutVals[ValNo];
7529     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7530 
7531     if (Flags.isByVal()) {
7532       const unsigned ByValSize = Flags.getByValSize();
7533 
7534       // Nothing to do for zero-sized ByVals on the caller side.
7535       if (!ByValSize) {
7536         ++I;
7537         continue;
7538       }
7539 
7540       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7541         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7542                               (LoadOffset != 0)
7543                                   ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7544                                   : Arg,
7545                               MachinePointerInfo(), VT);
7546       };
7547 
7548       unsigned LoadOffset = 0;
7549 
7550       // Initialize registers, which are fully occupied by the by-val argument.
7551       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7552         SDValue Load = GetLoad(PtrVT, LoadOffset);
7553         MemOpChains.push_back(Load.getValue(1));
7554         LoadOffset += PtrByteSize;
7555         const CCValAssign &ByValVA = ArgLocs[I++];
7556         assert(ByValVA.getValNo() == ValNo &&
7557                "Unexpected location for pass-by-value argument.");
7558         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7559       }
7560 
7561       if (LoadOffset == ByValSize)
7562         continue;
7563 
7564       // There must be one more loc to handle the remainder.
7565       assert(ArgLocs[I].getValNo() == ValNo &&
7566              "Expected additional location for by-value argument.");
7567 
7568       if (ArgLocs[I].isMemLoc()) {
7569         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7570         const CCValAssign &ByValVA = ArgLocs[I++];
7571         ISD::ArgFlagsTy MemcpyFlags = Flags;
7572         // Only memcpy the bytes that don't pass in register.
7573         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7574         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7575             (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7576                               : Arg,
7577             DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
7578             CallSeqStart, MemcpyFlags, DAG, dl);
7579         continue;
7580       }
7581 
7582       // Initialize the final register residue.
7583       // Any residue that occupies the final by-val arg register must be
7584       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7585       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7586       // 2 and 1 byte loads.
7587       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7588       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7589              "Unexpected register residue for by-value argument.");
7590       SDValue ResidueVal;
7591       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7592         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7593         const MVT VT =
7594             N == 1 ? MVT::i8
7595                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7596         SDValue Load = GetLoad(VT, LoadOffset);
7597         MemOpChains.push_back(Load.getValue(1));
7598         LoadOffset += N;
7599         Bytes += N;
7600 
7601         // By-val arguments are passed left-justfied in register.
7602         // Every load here needs to be shifted, otherwise a full register load
7603         // should have been used.
7604         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7605                "Unexpected load emitted during handling of pass-by-value "
7606                "argument.");
7607         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7608         EVT ShiftAmountTy =
7609             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7610         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7611         SDValue ShiftedLoad =
7612             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7613         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7614                                               ShiftedLoad)
7615                                 : ShiftedLoad;
7616       }
7617 
7618       const CCValAssign &ByValVA = ArgLocs[I++];
7619       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7620       continue;
7621     }
7622 
7623     CCValAssign &VA = ArgLocs[I++];
7624     const MVT LocVT = VA.getLocVT();
7625     const MVT ValVT = VA.getValVT();
7626 
7627     switch (VA.getLocInfo()) {
7628     default:
7629       report_fatal_error("Unexpected argument extension type.");
7630     case CCValAssign::Full:
7631       break;
7632     case CCValAssign::ZExt:
7633       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7634       break;
7635     case CCValAssign::SExt:
7636       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7637       break;
7638     }
7639 
7640     if (VA.isRegLoc() && !VA.needsCustom()) {
7641       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7642       continue;
7643     }
7644 
7645     if (VA.isMemLoc()) {
7646       SDValue PtrOff =
7647           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7648       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7649       MemOpChains.push_back(
7650           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7651 
7652       continue;
7653     }
7654 
7655     // Custom handling is used for GPR initializations for vararg float
7656     // arguments.
7657     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7658            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7659            "Unexpected register handling for calling convention.");
7660 
7661     SDValue ArgAsInt =
7662         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7663 
7664     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7665       // f32 in 32-bit GPR
7666       // f64 in 64-bit GPR
7667       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7668     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7669       // f32 in 64-bit GPR.
7670       RegsToPass.push_back(std::make_pair(
7671           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7672     else {
7673       // f64 in two 32-bit GPRs
7674       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7675       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7676              "Unexpected custom register for argument!");
7677       CCValAssign &GPR1 = VA;
7678       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7679                                      DAG.getConstant(32, dl, MVT::i8));
7680       RegsToPass.push_back(std::make_pair(
7681           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7682 
7683       if (I != E) {
7684         // If only 1 GPR was available, there will only be one custom GPR and
7685         // the argument will also pass in memory.
7686         CCValAssign &PeekArg = ArgLocs[I];
7687         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7688           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7689           CCValAssign &GPR2 = ArgLocs[I++];
7690           RegsToPass.push_back(std::make_pair(
7691               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7692         }
7693       }
7694     }
7695   }
7696 
7697   if (!MemOpChains.empty())
7698     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7699 
7700   // For indirect calls, we need to save the TOC base to the stack for
7701   // restoration after the call.
7702   if (CFlags.IsIndirect) {
7703     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7704     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7705     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7706     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7707     const unsigned TOCSaveOffset =
7708         Subtarget.getFrameLowering()->getTOCSaveOffset();
7709 
7710     setUsesTOCBasePtr(DAG);
7711     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7712     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7713     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7714     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7715     Chain = DAG.getStore(
7716         Val.getValue(1), dl, Val, AddPtr,
7717         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7718   }
7719 
7720   // Build a sequence of copy-to-reg nodes chained together with token chain
7721   // and flag operands which copy the outgoing args into the appropriate regs.
7722   SDValue InFlag;
7723   for (auto Reg : RegsToPass) {
7724     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7725     InFlag = Chain.getValue(1);
7726   }
7727 
7728   const int SPDiff = 0;
7729   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7730                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7731 }
7732 
7733 bool
7734 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7735                                   MachineFunction &MF, bool isVarArg,
7736                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7737                                   LLVMContext &Context) const {
7738   SmallVector<CCValAssign, 16> RVLocs;
7739   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7740   return CCInfo.CheckReturn(
7741       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7742                 ? RetCC_PPC_Cold
7743                 : RetCC_PPC);
7744 }
7745 
7746 SDValue
7747 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7748                                bool isVarArg,
7749                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7750                                const SmallVectorImpl<SDValue> &OutVals,
7751                                const SDLoc &dl, SelectionDAG &DAG) const {
7752   SmallVector<CCValAssign, 16> RVLocs;
7753   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7754                  *DAG.getContext());
7755   CCInfo.AnalyzeReturn(Outs,
7756                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7757                            ? RetCC_PPC_Cold
7758                            : RetCC_PPC);
7759 
7760   SDValue Flag;
7761   SmallVector<SDValue, 4> RetOps(1, Chain);
7762 
7763   // Copy the result values into the output registers.
7764   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7765     CCValAssign &VA = RVLocs[i];
7766     assert(VA.isRegLoc() && "Can only return in registers!");
7767 
7768     SDValue Arg = OutVals[RealResIdx];
7769 
7770     switch (VA.getLocInfo()) {
7771     default: llvm_unreachable("Unknown loc info!");
7772     case CCValAssign::Full: break;
7773     case CCValAssign::AExt:
7774       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7775       break;
7776     case CCValAssign::ZExt:
7777       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7778       break;
7779     case CCValAssign::SExt:
7780       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7781       break;
7782     }
7783     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7784       bool isLittleEndian = Subtarget.isLittleEndian();
7785       // Legalize ret f64 -> ret 2 x i32.
7786       SDValue SVal =
7787           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7788                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7789       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7790       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7791       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7792                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7793       Flag = Chain.getValue(1);
7794       VA = RVLocs[++i]; // skip ahead to next loc
7795       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7796     } else
7797       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7798     Flag = Chain.getValue(1);
7799     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7800   }
7801 
7802   RetOps[0] = Chain;  // Update chain.
7803 
7804   // Add the flag if we have it.
7805   if (Flag.getNode())
7806     RetOps.push_back(Flag);
7807 
7808   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7809 }
7810 
7811 SDValue
7812 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7813                                                 SelectionDAG &DAG) const {
7814   SDLoc dl(Op);
7815 
7816   // Get the correct type for integers.
7817   EVT IntVT = Op.getValueType();
7818 
7819   // Get the inputs.
7820   SDValue Chain = Op.getOperand(0);
7821   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7822   // Build a DYNAREAOFFSET node.
7823   SDValue Ops[2] = {Chain, FPSIdx};
7824   SDVTList VTs = DAG.getVTList(IntVT);
7825   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7826 }
7827 
7828 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7829                                              SelectionDAG &DAG) const {
7830   // When we pop the dynamic allocation we need to restore the SP link.
7831   SDLoc dl(Op);
7832 
7833   // Get the correct type for pointers.
7834   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7835 
7836   // Construct the stack pointer operand.
7837   bool isPPC64 = Subtarget.isPPC64();
7838   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7839   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7840 
7841   // Get the operands for the STACKRESTORE.
7842   SDValue Chain = Op.getOperand(0);
7843   SDValue SaveSP = Op.getOperand(1);
7844 
7845   // Load the old link SP.
7846   SDValue LoadLinkSP =
7847       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7848 
7849   // Restore the stack pointer.
7850   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7851 
7852   // Store the old link SP.
7853   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7854 }
7855 
7856 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7857   MachineFunction &MF = DAG.getMachineFunction();
7858   bool isPPC64 = Subtarget.isPPC64();
7859   EVT PtrVT = getPointerTy(MF.getDataLayout());
7860 
7861   // Get current frame pointer save index.  The users of this index will be
7862   // primarily DYNALLOC instructions.
7863   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7864   int RASI = FI->getReturnAddrSaveIndex();
7865 
7866   // If the frame pointer save index hasn't been defined yet.
7867   if (!RASI) {
7868     // Find out what the fix offset of the frame pointer save area.
7869     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7870     // Allocate the frame index for frame pointer save area.
7871     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7872     // Save the result.
7873     FI->setReturnAddrSaveIndex(RASI);
7874   }
7875   return DAG.getFrameIndex(RASI, PtrVT);
7876 }
7877 
7878 SDValue
7879 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7880   MachineFunction &MF = DAG.getMachineFunction();
7881   bool isPPC64 = Subtarget.isPPC64();
7882   EVT PtrVT = getPointerTy(MF.getDataLayout());
7883 
7884   // Get current frame pointer save index.  The users of this index will be
7885   // primarily DYNALLOC instructions.
7886   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7887   int FPSI = FI->getFramePointerSaveIndex();
7888 
7889   // If the frame pointer save index hasn't been defined yet.
7890   if (!FPSI) {
7891     // Find out what the fix offset of the frame pointer save area.
7892     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7893     // Allocate the frame index for frame pointer save area.
7894     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7895     // Save the result.
7896     FI->setFramePointerSaveIndex(FPSI);
7897   }
7898   return DAG.getFrameIndex(FPSI, PtrVT);
7899 }
7900 
7901 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7902                                                    SelectionDAG &DAG) const {
7903   // Get the inputs.
7904   SDValue Chain = Op.getOperand(0);
7905   SDValue Size  = Op.getOperand(1);
7906   SDLoc dl(Op);
7907 
7908   // Get the correct type for pointers.
7909   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7910   // Negate the size.
7911   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7912                                 DAG.getConstant(0, dl, PtrVT), Size);
7913   // Construct a node for the frame pointer save index.
7914   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7915   // Build a DYNALLOC node.
7916   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7917   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7918   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7919 }
7920 
7921 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7922                                                      SelectionDAG &DAG) const {
7923   MachineFunction &MF = DAG.getMachineFunction();
7924 
7925   bool isPPC64 = Subtarget.isPPC64();
7926   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7927 
7928   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7929   return DAG.getFrameIndex(FI, PtrVT);
7930 }
7931 
7932 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7933                                                SelectionDAG &DAG) const {
7934   SDLoc DL(Op);
7935   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7936                      DAG.getVTList(MVT::i32, MVT::Other),
7937                      Op.getOperand(0), Op.getOperand(1));
7938 }
7939 
7940 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7941                                                 SelectionDAG &DAG) const {
7942   SDLoc DL(Op);
7943   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7944                      Op.getOperand(0), Op.getOperand(1));
7945 }
7946 
7947 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7948   if (Op.getValueType().isVector())
7949     return LowerVectorLoad(Op, DAG);
7950 
7951   assert(Op.getValueType() == MVT::i1 &&
7952          "Custom lowering only for i1 loads");
7953 
7954   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7955 
7956   SDLoc dl(Op);
7957   LoadSDNode *LD = cast<LoadSDNode>(Op);
7958 
7959   SDValue Chain = LD->getChain();
7960   SDValue BasePtr = LD->getBasePtr();
7961   MachineMemOperand *MMO = LD->getMemOperand();
7962 
7963   SDValue NewLD =
7964       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7965                      BasePtr, MVT::i8, MMO);
7966   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7967 
7968   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7969   return DAG.getMergeValues(Ops, dl);
7970 }
7971 
7972 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7973   if (Op.getOperand(1).getValueType().isVector())
7974     return LowerVectorStore(Op, DAG);
7975 
7976   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7977          "Custom lowering only for i1 stores");
7978 
7979   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7980 
7981   SDLoc dl(Op);
7982   StoreSDNode *ST = cast<StoreSDNode>(Op);
7983 
7984   SDValue Chain = ST->getChain();
7985   SDValue BasePtr = ST->getBasePtr();
7986   SDValue Value = ST->getValue();
7987   MachineMemOperand *MMO = ST->getMemOperand();
7988 
7989   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7990                       Value);
7991   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7992 }
7993 
7994 // FIXME: Remove this once the ANDI glue bug is fixed:
7995 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7996   assert(Op.getValueType() == MVT::i1 &&
7997          "Custom lowering only for i1 results");
7998 
7999   SDLoc DL(Op);
8000   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
8001 }
8002 
8003 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
8004                                                SelectionDAG &DAG) const {
8005 
8006   // Implements a vector truncate that fits in a vector register as a shuffle.
8007   // We want to legalize vector truncates down to where the source fits in
8008   // a vector register (and target is therefore smaller than vector register
8009   // size).  At that point legalization will try to custom lower the sub-legal
8010   // result and get here - where we can contain the truncate as a single target
8011   // operation.
8012 
8013   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
8014   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
8015   //
8016   // We will implement it for big-endian ordering as this (where x denotes
8017   // undefined):
8018   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
8019   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
8020   //
8021   // The same operation in little-endian ordering will be:
8022   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
8023   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
8024 
8025   assert(Op.getValueType().isVector() && "Vector type expected.");
8026 
8027   SDLoc DL(Op);
8028   SDValue N1 = Op.getOperand(0);
8029   unsigned SrcSize = N1.getValueType().getSizeInBits();
8030   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
8031   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
8032 
8033   EVT TrgVT = Op.getValueType();
8034   unsigned TrgNumElts = TrgVT.getVectorNumElements();
8035   EVT EltVT = TrgVT.getVectorElementType();
8036   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8037   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8038 
8039   // First list the elements we want to keep.
8040   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
8041   SmallVector<int, 16> ShuffV;
8042   if (Subtarget.isLittleEndian())
8043     for (unsigned i = 0; i < TrgNumElts; ++i)
8044       ShuffV.push_back(i * SizeMult);
8045   else
8046     for (unsigned i = 1; i <= TrgNumElts; ++i)
8047       ShuffV.push_back(i * SizeMult - 1);
8048 
8049   // Populate the remaining elements with undefs.
8050   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
8051     // ShuffV.push_back(i + WideNumElts);
8052     ShuffV.push_back(WideNumElts + 1);
8053 
8054   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
8055   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
8056 }
8057 
8058 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
8059 /// possible.
8060 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
8061   // Not FP? Not a fsel.
8062   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
8063       !Op.getOperand(2).getValueType().isFloatingPoint())
8064     return Op;
8065 
8066   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
8067 
8068   EVT ResVT = Op.getValueType();
8069   EVT CmpVT = Op.getOperand(0).getValueType();
8070   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8071   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
8072   SDLoc dl(Op);
8073   SDNodeFlags Flags = Op.getNode()->getFlags();
8074 
8075   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
8076   // presence of infinities.
8077   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8078     switch (CC) {
8079     default:
8080       break;
8081     case ISD::SETOGT:
8082     case ISD::SETGT:
8083       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
8084     case ISD::SETOLT:
8085     case ISD::SETLT:
8086       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
8087     }
8088   }
8089 
8090   // We might be able to do better than this under some circumstances, but in
8091   // general, fsel-based lowering of select is a finite-math-only optimization.
8092   // For more information, see section F.3 of the 2.06 ISA specification.
8093   // With ISA 3.0
8094   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8095       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
8096     return Op;
8097 
8098   // If the RHS of the comparison is a 0.0, we don't need to do the
8099   // subtraction at all.
8100   SDValue Sel1;
8101   if (isFloatingPointZero(RHS))
8102     switch (CC) {
8103     default: break;       // SETUO etc aren't handled by fsel.
8104     case ISD::SETNE:
8105       std::swap(TV, FV);
8106       LLVM_FALLTHROUGH;
8107     case ISD::SETEQ:
8108       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8109         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8110       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8111       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8112         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8113       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8114                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8115     case ISD::SETULT:
8116     case ISD::SETLT:
8117       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8118       LLVM_FALLTHROUGH;
8119     case ISD::SETOGE:
8120     case ISD::SETGE:
8121       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8122         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8123       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8124     case ISD::SETUGT:
8125     case ISD::SETGT:
8126       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8127       LLVM_FALLTHROUGH;
8128     case ISD::SETOLE:
8129     case ISD::SETLE:
8130       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8131         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8132       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8133                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8134     }
8135 
8136   SDValue Cmp;
8137   switch (CC) {
8138   default: break;       // SETUO etc aren't handled by fsel.
8139   case ISD::SETNE:
8140     std::swap(TV, FV);
8141     LLVM_FALLTHROUGH;
8142   case ISD::SETEQ:
8143     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8144     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8145       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8146     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8147     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8148       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8149     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8150                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8151   case ISD::SETULT:
8152   case ISD::SETLT:
8153     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8154     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8155       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8156     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8157   case ISD::SETOGE:
8158   case ISD::SETGE:
8159     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8160     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8161       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8162     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8163   case ISD::SETUGT:
8164   case ISD::SETGT:
8165     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8166     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8167       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8168     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8169   case ISD::SETOLE:
8170   case ISD::SETLE:
8171     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8172     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8173       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8174     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8175   }
8176   return Op;
8177 }
8178 
8179 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8180                                                SelectionDAG &DAG,
8181                                                const SDLoc &dl) const {
8182   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8183   SDValue Src = Op.getOperand(0);
8184   if (Src.getValueType() == MVT::f32)
8185     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8186 
8187   SDValue Tmp;
8188   switch (Op.getSimpleValueType().SimpleTy) {
8189   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8190   case MVT::i32:
8191     Tmp = DAG.getNode(
8192         Op.getOpcode() == ISD::FP_TO_SINT
8193             ? PPCISD::FCTIWZ
8194             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8195         dl, MVT::f64, Src);
8196     break;
8197   case MVT::i64:
8198     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8199            "i64 FP_TO_UINT is supported only with FPCVT");
8200     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8201                                                         PPCISD::FCTIDUZ,
8202                       dl, MVT::f64, Src);
8203     break;
8204   }
8205 
8206   // Convert the FP value to an int value through memory.
8207   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8208     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
8209   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8210   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8211   MachinePointerInfo MPI =
8212       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8213 
8214   // Emit a store to the stack slot.
8215   SDValue Chain;
8216   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8217   if (i32Stack) {
8218     MachineFunction &MF = DAG.getMachineFunction();
8219     Alignment = Align(4);
8220     MachineMemOperand *MMO =
8221         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8222     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
8223     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8224               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8225   } else
8226     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
8227 
8228   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8229   // add in a bias on big endian.
8230   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8231     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8232                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8233     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8234   }
8235 
8236   RLI.Chain = Chain;
8237   RLI.Ptr = FIPtr;
8238   RLI.MPI = MPI;
8239   RLI.Alignment = Alignment;
8240 }
8241 
8242 /// Custom lowers floating point to integer conversions to use
8243 /// the direct move instructions available in ISA 2.07 to avoid the
8244 /// need for load/store combinations.
8245 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8246                                                     SelectionDAG &DAG,
8247                                                     const SDLoc &dl) const {
8248   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8249   SDValue Src = Op.getOperand(0);
8250 
8251   if (Src.getValueType() == MVT::f32)
8252     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8253 
8254   SDValue Tmp;
8255   switch (Op.getSimpleValueType().SimpleTy) {
8256   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8257   case MVT::i32:
8258     Tmp = DAG.getNode(
8259         Op.getOpcode() == ISD::FP_TO_SINT
8260             ? PPCISD::FCTIWZ
8261             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8262         dl, MVT::f64, Src);
8263     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
8264     break;
8265   case MVT::i64:
8266     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8267            "i64 FP_TO_UINT is supported only with FPCVT");
8268     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8269                                                         PPCISD::FCTIDUZ,
8270                       dl, MVT::f64, Src);
8271     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
8272     break;
8273   }
8274   return Tmp;
8275 }
8276 
8277 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8278                                           const SDLoc &dl) const {
8279 
8280   // FP to INT conversions are legal for f128.
8281   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
8282     return Op;
8283 
8284   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8285   // PPC (the libcall is not available).
8286   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
8287     if (Op.getValueType() == MVT::i32) {
8288       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8289         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8290                                  MVT::f64, Op.getOperand(0),
8291                                  DAG.getIntPtrConstant(0, dl));
8292         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8293                                  MVT::f64, Op.getOperand(0),
8294                                  DAG.getIntPtrConstant(1, dl));
8295 
8296         // Add the two halves of the long double in round-to-zero mode.
8297         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8298 
8299         // Now use a smaller FP_TO_SINT.
8300         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8301       }
8302       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8303         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8304         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8305         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8306         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8307         // FIXME: generated code sucks.
8308         // TODO: Are there fast-math-flags to propagate to this FSUB?
8309         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
8310                                    Op.getOperand(0), Tmp);
8311         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8312         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8313                            DAG.getConstant(0x80000000, dl, MVT::i32));
8314         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
8315                                     Op.getOperand(0));
8316         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
8317                                ISD::SETGE);
8318       }
8319     }
8320 
8321     return SDValue();
8322   }
8323 
8324   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8325     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8326 
8327   ReuseLoadInfo RLI;
8328   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8329 
8330   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8331                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8332 }
8333 
8334 // We're trying to insert a regular store, S, and then a load, L. If the
8335 // incoming value, O, is a load, we might just be able to have our load use the
8336 // address used by O. However, we don't know if anything else will store to
8337 // that address before we can load from it. To prevent this situation, we need
8338 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8339 // the same chain operand as O, we create a token factor from the chain results
8340 // of O and L, and we replace all uses of O's chain result with that token
8341 // factor (see spliceIntoChain below for this last part).
8342 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8343                                             ReuseLoadInfo &RLI,
8344                                             SelectionDAG &DAG,
8345                                             ISD::LoadExtType ET) const {
8346   SDLoc dl(Op);
8347   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8348                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8349   if (ET == ISD::NON_EXTLOAD &&
8350       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8351       isOperationLegalOrCustom(Op.getOpcode(),
8352                                Op.getOperand(0).getValueType())) {
8353 
8354     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8355     return true;
8356   }
8357 
8358   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8359   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8360       LD->isNonTemporal())
8361     return false;
8362   if (LD->getMemoryVT() != MemVT)
8363     return false;
8364 
8365   RLI.Ptr = LD->getBasePtr();
8366   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8367     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8368            "Non-pre-inc AM on PPC?");
8369     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8370                           LD->getOffset());
8371   }
8372 
8373   RLI.Chain = LD->getChain();
8374   RLI.MPI = LD->getPointerInfo();
8375   RLI.IsDereferenceable = LD->isDereferenceable();
8376   RLI.IsInvariant = LD->isInvariant();
8377   RLI.Alignment = LD->getAlign();
8378   RLI.AAInfo = LD->getAAInfo();
8379   RLI.Ranges = LD->getRanges();
8380 
8381   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8382   return true;
8383 }
8384 
8385 // Given the head of the old chain, ResChain, insert a token factor containing
8386 // it and NewResChain, and make users of ResChain now be users of that token
8387 // factor.
8388 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8389 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8390                                         SDValue NewResChain,
8391                                         SelectionDAG &DAG) const {
8392   if (!ResChain)
8393     return;
8394 
8395   SDLoc dl(NewResChain);
8396 
8397   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8398                            NewResChain, DAG.getUNDEF(MVT::Other));
8399   assert(TF.getNode() != NewResChain.getNode() &&
8400          "A new TF really is required here");
8401 
8402   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8403   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8404 }
8405 
8406 /// Analyze profitability of direct move
8407 /// prefer float load to int load plus direct move
8408 /// when there is no integer use of int load
8409 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8410   SDNode *Origin = Op.getOperand(0).getNode();
8411   if (Origin->getOpcode() != ISD::LOAD)
8412     return true;
8413 
8414   // If there is no LXSIBZX/LXSIHZX, like Power8,
8415   // prefer direct move if the memory size is 1 or 2 bytes.
8416   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8417   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8418     return true;
8419 
8420   for (SDNode::use_iterator UI = Origin->use_begin(),
8421                             UE = Origin->use_end();
8422        UI != UE; ++UI) {
8423 
8424     // Only look at the users of the loaded value.
8425     if (UI.getUse().get().getResNo() != 0)
8426       continue;
8427 
8428     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8429         UI->getOpcode() != ISD::UINT_TO_FP)
8430       return true;
8431   }
8432 
8433   return false;
8434 }
8435 
8436 /// Custom lowers integer to floating point conversions to use
8437 /// the direct move instructions available in ISA 2.07 to avoid the
8438 /// need for load/store combinations.
8439 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8440                                                     SelectionDAG &DAG,
8441                                                     const SDLoc &dl) const {
8442   assert((Op.getValueType() == MVT::f32 ||
8443           Op.getValueType() == MVT::f64) &&
8444          "Invalid floating point type as target of conversion");
8445   assert(Subtarget.hasFPCVT() &&
8446          "Int to FP conversions with direct moves require FPCVT");
8447   SDValue FP;
8448   SDValue Src = Op.getOperand(0);
8449   bool SinglePrec = Op.getValueType() == MVT::f32;
8450   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8451   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8452   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8453                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8454 
8455   if (WordInt) {
8456     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8457                      dl, MVT::f64, Src);
8458     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8459   }
8460   else {
8461     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8462     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8463   }
8464 
8465   return FP;
8466 }
8467 
8468 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8469 
8470   EVT VecVT = Vec.getValueType();
8471   assert(VecVT.isVector() && "Expected a vector type.");
8472   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8473 
8474   EVT EltVT = VecVT.getVectorElementType();
8475   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8476   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8477 
8478   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8479   SmallVector<SDValue, 16> Ops(NumConcat);
8480   Ops[0] = Vec;
8481   SDValue UndefVec = DAG.getUNDEF(VecVT);
8482   for (unsigned i = 1; i < NumConcat; ++i)
8483     Ops[i] = UndefVec;
8484 
8485   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8486 }
8487 
8488 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8489                                                 const SDLoc &dl) const {
8490 
8491   unsigned Opc = Op.getOpcode();
8492   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8493          "Unexpected conversion type");
8494   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8495          "Supports conversions to v2f64/v4f32 only.");
8496 
8497   bool SignedConv = Opc == ISD::SINT_TO_FP;
8498   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8499 
8500   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8501   EVT WideVT = Wide.getValueType();
8502   unsigned WideNumElts = WideVT.getVectorNumElements();
8503   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8504 
8505   SmallVector<int, 16> ShuffV;
8506   for (unsigned i = 0; i < WideNumElts; ++i)
8507     ShuffV.push_back(i + WideNumElts);
8508 
8509   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8510   int SaveElts = FourEltRes ? 4 : 2;
8511   if (Subtarget.isLittleEndian())
8512     for (int i = 0; i < SaveElts; i++)
8513       ShuffV[i * Stride] = i;
8514   else
8515     for (int i = 1; i <= SaveElts; i++)
8516       ShuffV[i * Stride - 1] = i - 1;
8517 
8518   SDValue ShuffleSrc2 =
8519       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8520   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8521 
8522   SDValue Extend;
8523   if (SignedConv) {
8524     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8525     EVT ExtVT = Op.getOperand(0).getValueType();
8526     if (Subtarget.hasP9Altivec())
8527       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8528                                IntermediateVT.getVectorNumElements());
8529 
8530     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8531                          DAG.getValueType(ExtVT));
8532   } else
8533     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8534 
8535   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8536 }
8537 
8538 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8539                                           SelectionDAG &DAG) const {
8540   SDLoc dl(Op);
8541 
8542   EVT InVT = Op.getOperand(0).getValueType();
8543   EVT OutVT = Op.getValueType();
8544   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8545       isOperationCustom(Op.getOpcode(), InVT))
8546     return LowerINT_TO_FPVector(Op, DAG, dl);
8547 
8548   // Conversions to f128 are legal.
8549   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8550     return Op;
8551 
8552   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8553     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8554       return SDValue();
8555 
8556     SDValue Value = Op.getOperand(0);
8557     // The values are now known to be -1 (false) or 1 (true). To convert this
8558     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8559     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8560     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8561 
8562     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8563 
8564     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8565 
8566     if (Op.getValueType() != MVT::v4f64)
8567       Value = DAG.getNode(ISD::FP_ROUND, dl,
8568                           Op.getValueType(), Value,
8569                           DAG.getIntPtrConstant(1, dl));
8570     return Value;
8571   }
8572 
8573   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8574   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8575     return SDValue();
8576 
8577   if (Op.getOperand(0).getValueType() == MVT::i1)
8578     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8579                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8580                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8581 
8582   // If we have direct moves, we can do all the conversion, skip the store/load
8583   // however, without FPCVT we can't do most conversions.
8584   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8585       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8586     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8587 
8588   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8589          "UINT_TO_FP is supported only with FPCVT");
8590 
8591   // If we have FCFIDS, then use it when converting to single-precision.
8592   // Otherwise, convert to double-precision and then round.
8593   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8594                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8595                                                             : PPCISD::FCFIDS)
8596                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8597                                                             : PPCISD::FCFID);
8598   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8599                   ? MVT::f32
8600                   : MVT::f64;
8601 
8602   if (Op.getOperand(0).getValueType() == MVT::i64) {
8603     SDValue SINT = Op.getOperand(0);
8604     // When converting to single-precision, we actually need to convert
8605     // to double-precision first and then round to single-precision.
8606     // To avoid double-rounding effects during that operation, we have
8607     // to prepare the input operand.  Bits that might be truncated when
8608     // converting to double-precision are replaced by a bit that won't
8609     // be lost at this stage, but is below the single-precision rounding
8610     // position.
8611     //
8612     // However, if -enable-unsafe-fp-math is in effect, accept double
8613     // rounding to avoid the extra overhead.
8614     if (Op.getValueType() == MVT::f32 &&
8615         !Subtarget.hasFPCVT() &&
8616         !DAG.getTarget().Options.UnsafeFPMath) {
8617 
8618       // Twiddle input to make sure the low 11 bits are zero.  (If this
8619       // is the case, we are guaranteed the value will fit into the 53 bit
8620       // mantissa of an IEEE double-precision value without rounding.)
8621       // If any of those low 11 bits were not zero originally, make sure
8622       // bit 12 (value 2048) is set instead, so that the final rounding
8623       // to single-precision gets the correct result.
8624       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8625                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8626       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8627                           Round, DAG.getConstant(2047, dl, MVT::i64));
8628       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8629       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8630                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8631 
8632       // However, we cannot use that value unconditionally: if the magnitude
8633       // of the input value is small, the bit-twiddling we did above might
8634       // end up visibly changing the output.  Fortunately, in that case, we
8635       // don't need to twiddle bits since the original input will convert
8636       // exactly to double-precision floating-point already.  Therefore,
8637       // construct a conditional to use the original value if the top 11
8638       // bits are all sign-bit copies, and use the rounded value computed
8639       // above otherwise.
8640       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8641                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8642       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8643                          Cond, DAG.getConstant(1, dl, MVT::i64));
8644       Cond = DAG.getSetCC(
8645           dl,
8646           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8647           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8648 
8649       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8650     }
8651 
8652     ReuseLoadInfo RLI;
8653     SDValue Bits;
8654 
8655     MachineFunction &MF = DAG.getMachineFunction();
8656     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8657       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8658                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8659       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8660     } else if (Subtarget.hasLFIWAX() &&
8661                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8662       MachineMemOperand *MMO =
8663         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8664                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8665       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8666       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8667                                      DAG.getVTList(MVT::f64, MVT::Other),
8668                                      Ops, MVT::i32, MMO);
8669       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8670     } else if (Subtarget.hasFPCVT() &&
8671                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8672       MachineMemOperand *MMO =
8673         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8674                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8675       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8676       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8677                                      DAG.getVTList(MVT::f64, MVT::Other),
8678                                      Ops, MVT::i32, MMO);
8679       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8680     } else if (((Subtarget.hasLFIWAX() &&
8681                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8682                 (Subtarget.hasFPCVT() &&
8683                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8684                SINT.getOperand(0).getValueType() == MVT::i32) {
8685       MachineFrameInfo &MFI = MF.getFrameInfo();
8686       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8687 
8688       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8689       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8690 
8691       SDValue Store =
8692           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8693                        MachinePointerInfo::getFixedStack(
8694                            DAG.getMachineFunction(), FrameIdx));
8695 
8696       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8697              "Expected an i32 store");
8698 
8699       RLI.Ptr = FIdx;
8700       RLI.Chain = Store;
8701       RLI.MPI =
8702           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8703       RLI.Alignment = Align(4);
8704 
8705       MachineMemOperand *MMO =
8706         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8707                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8708       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8709       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8710                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8711                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8712                                      Ops, MVT::i32, MMO);
8713     } else
8714       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8715 
8716     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8717 
8718     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8719       FP = DAG.getNode(ISD::FP_ROUND, dl,
8720                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8721     return FP;
8722   }
8723 
8724   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8725          "Unhandled INT_TO_FP type in custom expander!");
8726   // Since we only generate this in 64-bit mode, we can take advantage of
8727   // 64-bit registers.  In particular, sign extend the input value into the
8728   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8729   // then lfd it and fcfid it.
8730   MachineFunction &MF = DAG.getMachineFunction();
8731   MachineFrameInfo &MFI = MF.getFrameInfo();
8732   EVT PtrVT = getPointerTy(MF.getDataLayout());
8733 
8734   SDValue Ld;
8735   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8736     ReuseLoadInfo RLI;
8737     bool ReusingLoad;
8738     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8739                                             DAG))) {
8740       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8741       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8742 
8743       SDValue Store =
8744           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8745                        MachinePointerInfo::getFixedStack(
8746                            DAG.getMachineFunction(), FrameIdx));
8747 
8748       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8749              "Expected an i32 store");
8750 
8751       RLI.Ptr = FIdx;
8752       RLI.Chain = Store;
8753       RLI.MPI =
8754           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8755       RLI.Alignment = Align(4);
8756     }
8757 
8758     MachineMemOperand *MMO =
8759       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8760                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8761     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8762     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8763                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8764                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8765                                  Ops, MVT::i32, MMO);
8766     if (ReusingLoad)
8767       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8768   } else {
8769     assert(Subtarget.isPPC64() &&
8770            "i32->FP without LFIWAX supported only on PPC64");
8771 
8772     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8773     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8774 
8775     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8776                                 Op.getOperand(0));
8777 
8778     // STD the extended value into the stack slot.
8779     SDValue Store = DAG.getStore(
8780         DAG.getEntryNode(), dl, Ext64, FIdx,
8781         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8782 
8783     // Load the value as a double.
8784     Ld = DAG.getLoad(
8785         MVT::f64, dl, Store, FIdx,
8786         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8787   }
8788 
8789   // FCFID it and return it.
8790   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8791   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8792     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8793                      DAG.getIntPtrConstant(0, dl));
8794   return FP;
8795 }
8796 
8797 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8798                                             SelectionDAG &DAG) const {
8799   SDLoc dl(Op);
8800   /*
8801    The rounding mode is in bits 30:31 of FPSR, and has the following
8802    settings:
8803      00 Round to nearest
8804      01 Round to 0
8805      10 Round to +inf
8806      11 Round to -inf
8807 
8808   FLT_ROUNDS, on the other hand, expects the following:
8809     -1 Undefined
8810      0 Round to 0
8811      1 Round to nearest
8812      2 Round to +inf
8813      3 Round to -inf
8814 
8815   To perform the conversion, we do:
8816     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8817   */
8818 
8819   MachineFunction &MF = DAG.getMachineFunction();
8820   EVT VT = Op.getValueType();
8821   EVT PtrVT = getPointerTy(MF.getDataLayout());
8822 
8823   // Save FP Control Word to register
8824   SDValue Chain = Op.getOperand(0);
8825   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8826   Chain = MFFS.getValue(1);
8827 
8828   // Save FP register to stack slot
8829   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8830   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8831   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8832 
8833   // Load FP Control Word from low 32 bits of stack slot.
8834   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8835   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8836   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8837   Chain = CWD.getValue(1);
8838 
8839   // Transform as necessary
8840   SDValue CWD1 =
8841     DAG.getNode(ISD::AND, dl, MVT::i32,
8842                 CWD, DAG.getConstant(3, dl, MVT::i32));
8843   SDValue CWD2 =
8844     DAG.getNode(ISD::SRL, dl, MVT::i32,
8845                 DAG.getNode(ISD::AND, dl, MVT::i32,
8846                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8847                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8848                             DAG.getConstant(3, dl, MVT::i32)),
8849                 DAG.getConstant(1, dl, MVT::i32));
8850 
8851   SDValue RetVal =
8852     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8853 
8854   RetVal =
8855       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8856                   dl, VT, RetVal);
8857 
8858   return DAG.getMergeValues({RetVal, Chain}, dl);
8859 }
8860 
8861 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8862   EVT VT = Op.getValueType();
8863   unsigned BitWidth = VT.getSizeInBits();
8864   SDLoc dl(Op);
8865   assert(Op.getNumOperands() == 3 &&
8866          VT == Op.getOperand(1).getValueType() &&
8867          "Unexpected SHL!");
8868 
8869   // Expand into a bunch of logical ops.  Note that these ops
8870   // depend on the PPC behavior for oversized shift amounts.
8871   SDValue Lo = Op.getOperand(0);
8872   SDValue Hi = Op.getOperand(1);
8873   SDValue Amt = Op.getOperand(2);
8874   EVT AmtVT = Amt.getValueType();
8875 
8876   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8877                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8878   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8879   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8880   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8881   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8882                              DAG.getConstant(-BitWidth, dl, AmtVT));
8883   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8884   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8885   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8886   SDValue OutOps[] = { OutLo, OutHi };
8887   return DAG.getMergeValues(OutOps, dl);
8888 }
8889 
8890 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8891   EVT VT = Op.getValueType();
8892   SDLoc dl(Op);
8893   unsigned BitWidth = VT.getSizeInBits();
8894   assert(Op.getNumOperands() == 3 &&
8895          VT == Op.getOperand(1).getValueType() &&
8896          "Unexpected SRL!");
8897 
8898   // Expand into a bunch of logical ops.  Note that these ops
8899   // depend on the PPC behavior for oversized shift amounts.
8900   SDValue Lo = Op.getOperand(0);
8901   SDValue Hi = Op.getOperand(1);
8902   SDValue Amt = Op.getOperand(2);
8903   EVT AmtVT = Amt.getValueType();
8904 
8905   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8906                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8907   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8908   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8909   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8910   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8911                              DAG.getConstant(-BitWidth, dl, AmtVT));
8912   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8913   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8914   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8915   SDValue OutOps[] = { OutLo, OutHi };
8916   return DAG.getMergeValues(OutOps, dl);
8917 }
8918 
8919 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8920   SDLoc dl(Op);
8921   EVT VT = Op.getValueType();
8922   unsigned BitWidth = VT.getSizeInBits();
8923   assert(Op.getNumOperands() == 3 &&
8924          VT == Op.getOperand(1).getValueType() &&
8925          "Unexpected SRA!");
8926 
8927   // Expand into a bunch of logical ops, followed by a select_cc.
8928   SDValue Lo = Op.getOperand(0);
8929   SDValue Hi = Op.getOperand(1);
8930   SDValue Amt = Op.getOperand(2);
8931   EVT AmtVT = Amt.getValueType();
8932 
8933   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8934                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8935   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8936   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8937   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8938   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8939                              DAG.getConstant(-BitWidth, dl, AmtVT));
8940   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8941   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8942   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8943                                   Tmp4, Tmp6, ISD::SETLE);
8944   SDValue OutOps[] = { OutLo, OutHi };
8945   return DAG.getMergeValues(OutOps, dl);
8946 }
8947 
8948 //===----------------------------------------------------------------------===//
8949 // Vector related lowering.
8950 //
8951 
8952 /// BuildSplatI - Build a canonical splati of Val with an element size of
8953 /// SplatSize.  Cast the result to VT.
8954 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8955                            SelectionDAG &DAG, const SDLoc &dl) {
8956   static const MVT VTys[] = { // canonical VT to use for each size.
8957     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8958   };
8959 
8960   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8961 
8962   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8963   if (Val == -1)
8964     SplatSize = 1;
8965 
8966   EVT CanonicalVT = VTys[SplatSize-1];
8967 
8968   // Build a canonical splat for this value.
8969   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8970 }
8971 
8972 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8973 /// specified intrinsic ID.
8974 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8975                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8976   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8977   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8978                      DAG.getConstant(IID, dl, MVT::i32), Op);
8979 }
8980 
8981 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8982 /// specified intrinsic ID.
8983 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8984                                 SelectionDAG &DAG, const SDLoc &dl,
8985                                 EVT DestVT = MVT::Other) {
8986   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8987   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8988                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8989 }
8990 
8991 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8992 /// specified intrinsic ID.
8993 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8994                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8995                                 EVT DestVT = MVT::Other) {
8996   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8997   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8998                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8999 }
9000 
9001 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9002 /// amount.  The result has the specified value type.
9003 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9004                            SelectionDAG &DAG, const SDLoc &dl) {
9005   // Force LHS/RHS to be the right type.
9006   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9007   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9008 
9009   int Ops[16];
9010   for (unsigned i = 0; i != 16; ++i)
9011     Ops[i] = i + Amt;
9012   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9013   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9014 }
9015 
9016 /// Do we have an efficient pattern in a .td file for this node?
9017 ///
9018 /// \param V - pointer to the BuildVectorSDNode being matched
9019 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9020 ///
9021 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9022 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9023 /// the opposite is true (expansion is beneficial) are:
9024 /// - The node builds a vector out of integers that are not 32 or 64-bits
9025 /// - The node builds a vector out of constants
9026 /// - The node is a "load-and-splat"
9027 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9028 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9029                                             bool HasDirectMove,
9030                                             bool HasP8Vector) {
9031   EVT VecVT = V->getValueType(0);
9032   bool RightType = VecVT == MVT::v2f64 ||
9033     (HasP8Vector && VecVT == MVT::v4f32) ||
9034     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9035   if (!RightType)
9036     return false;
9037 
9038   bool IsSplat = true;
9039   bool IsLoad = false;
9040   SDValue Op0 = V->getOperand(0);
9041 
9042   // This function is called in a block that confirms the node is not a constant
9043   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9044   // different constants.
9045   if (V->isConstant())
9046     return false;
9047   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9048     if (V->getOperand(i).isUndef())
9049       return false;
9050     // We want to expand nodes that represent load-and-splat even if the
9051     // loaded value is a floating point truncation or conversion to int.
9052     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9053         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9054          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9055         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9056          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9057         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9058          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9059       IsLoad = true;
9060     // If the operands are different or the input is not a load and has more
9061     // uses than just this BV node, then it isn't a splat.
9062     if (V->getOperand(i) != Op0 ||
9063         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9064       IsSplat = false;
9065   }
9066   return !(IsSplat && IsLoad);
9067 }
9068 
9069 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9070 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9071 
9072   SDLoc dl(Op);
9073   SDValue Op0 = Op->getOperand(0);
9074 
9075   if (!EnableQuadPrecision ||
9076       (Op.getValueType() != MVT::f128 ) ||
9077       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9078       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
9079       (Op0.getOperand(1).getValueType() != MVT::i64))
9080     return SDValue();
9081 
9082   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9083                      Op0.getOperand(1));
9084 }
9085 
9086 static const SDValue *getNormalLoadInput(const SDValue &Op) {
9087   const SDValue *InputLoad = &Op;
9088   if (InputLoad->getOpcode() == ISD::BITCAST)
9089     InputLoad = &InputLoad->getOperand(0);
9090   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9091       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED)
9092     InputLoad = &InputLoad->getOperand(0);
9093   if (InputLoad->getOpcode() != ISD::LOAD)
9094     return nullptr;
9095   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9096   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9097 }
9098 
9099 // If this is a case we can't handle, return null and let the default
9100 // expansion code take care of it.  If we CAN select this case, and if it
9101 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9102 // this case more efficiently than a constant pool load, lower it to the
9103 // sequence of ops that should be used.
9104 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9105                                              SelectionDAG &DAG) const {
9106   SDLoc dl(Op);
9107   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9108   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9109 
9110   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
9111     // We first build an i32 vector, load it into a QPX register,
9112     // then convert it to a floating-point vector and compare it
9113     // to a zero vector to get the boolean result.
9114     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9115     int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
9116     MachinePointerInfo PtrInfo =
9117         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9118     EVT PtrVT = getPointerTy(DAG.getDataLayout());
9119     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9120 
9121     assert(BVN->getNumOperands() == 4 &&
9122       "BUILD_VECTOR for v4i1 does not have 4 operands");
9123 
9124     bool IsConst = true;
9125     for (unsigned i = 0; i < 4; ++i) {
9126       if (BVN->getOperand(i).isUndef()) continue;
9127       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
9128         IsConst = false;
9129         break;
9130       }
9131     }
9132 
9133     if (IsConst) {
9134       Constant *One =
9135         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
9136       Constant *NegOne =
9137         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
9138 
9139       Constant *CV[4];
9140       for (unsigned i = 0; i < 4; ++i) {
9141         if (BVN->getOperand(i).isUndef())
9142           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
9143         else if (isNullConstant(BVN->getOperand(i)))
9144           CV[i] = NegOne;
9145         else
9146           CV[i] = One;
9147       }
9148 
9149       Constant *CP = ConstantVector::get(CV);
9150       SDValue CPIdx =
9151           DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16));
9152 
9153       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
9154       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
9155       return DAG.getMemIntrinsicNode(
9156           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
9157           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
9158     }
9159 
9160     SmallVector<SDValue, 4> Stores;
9161     for (unsigned i = 0; i < 4; ++i) {
9162       if (BVN->getOperand(i).isUndef()) continue;
9163 
9164       unsigned Offset = 4*i;
9165       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9166       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9167 
9168       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
9169       if (StoreSize > 4) {
9170         Stores.push_back(
9171             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
9172                               PtrInfo.getWithOffset(Offset), MVT::i32));
9173       } else {
9174         SDValue StoreValue = BVN->getOperand(i);
9175         if (StoreSize < 4)
9176           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
9177 
9178         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
9179                                       PtrInfo.getWithOffset(Offset)));
9180       }
9181     }
9182 
9183     SDValue StoreChain;
9184     if (!Stores.empty())
9185       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9186     else
9187       StoreChain = DAG.getEntryNode();
9188 
9189     // Now load from v4i32 into the QPX register; this will extend it to
9190     // v4i64 but not yet convert it to a floating point. Nevertheless, this
9191     // is typed as v4f64 because the QPX register integer states are not
9192     // explicitly represented.
9193 
9194     SDValue Ops[] = {StoreChain,
9195                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
9196                      FIdx};
9197     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
9198 
9199     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
9200       dl, VTs, Ops, MVT::v4i32, PtrInfo);
9201     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9202       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
9203       LoadedVect);
9204 
9205     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
9206 
9207     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
9208   }
9209 
9210   // All other QPX vectors are handled by generic code.
9211   if (Subtarget.hasQPX())
9212     return SDValue();
9213 
9214   // Check if this is a splat of a constant value.
9215   APInt APSplatBits, APSplatUndef;
9216   unsigned SplatBitSize;
9217   bool HasAnyUndefs;
9218   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9219                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9220       SplatBitSize > 32) {
9221 
9222     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
9223     // Handle load-and-splat patterns as we have instructions that will do this
9224     // in one go.
9225     if (InputLoad && DAG.isSplatValue(Op, true)) {
9226       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9227 
9228       // We have handling for 4 and 8 byte elements.
9229       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9230 
9231       // Checking for a single use of this load, we have to check for vector
9232       // width (128 bits) / ElementSize uses (since each operand of the
9233       // BUILD_VECTOR is a separate use of the value.
9234       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9235           ((Subtarget.hasVSX() && ElementSize == 64) ||
9236            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9237         SDValue Ops[] = {
9238           LD->getChain(),    // Chain
9239           LD->getBasePtr(),  // Ptr
9240           DAG.getValueType(Op.getValueType()) // VT
9241         };
9242         return
9243           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9244                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9245                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9246       }
9247     }
9248 
9249     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9250     // lowered to VSX instructions under certain conditions.
9251     // Without VSX, there is no pattern more efficient than expanding the node.
9252     if (Subtarget.hasVSX() &&
9253         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9254                                         Subtarget.hasP8Vector()))
9255       return Op;
9256     return SDValue();
9257   }
9258 
9259   unsigned SplatBits = APSplatBits.getZExtValue();
9260   unsigned SplatUndef = APSplatUndef.getZExtValue();
9261   unsigned SplatSize = SplatBitSize / 8;
9262 
9263   // First, handle single instruction cases.
9264 
9265   // All zeros?
9266   if (SplatBits == 0) {
9267     // Canonicalize all zero vectors to be v4i32.
9268     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9269       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9270       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9271     }
9272     return Op;
9273   }
9274 
9275   // We have XXSPLTIB for constant splats one byte wide
9276   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
9277   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
9278   if (Subtarget.hasP9Vector() && SplatSize == 1)
9279     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
9280 
9281   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9282   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9283                     (32-SplatBitSize));
9284   if (SextVal >= -16 && SextVal <= 15)
9285     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
9286 
9287   // Two instruction sequences.
9288 
9289   // If this value is in the range [-32,30] and is even, use:
9290   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9291   // If this value is in the range [17,31] and is odd, use:
9292   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9293   // If this value is in the range [-31,-17] and is odd, use:
9294   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9295   // Note the last two are three-instruction sequences.
9296   if (SextVal >= -32 && SextVal <= 31) {
9297     // To avoid having these optimizations undone by constant folding,
9298     // we convert to a pseudo that will be expanded later into one of
9299     // the above forms.
9300     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9301     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9302               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9303     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9304     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9305     if (VT == Op.getValueType())
9306       return RetVal;
9307     else
9308       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9309   }
9310 
9311   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9312   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9313   // for fneg/fabs.
9314   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9315     // Make -1 and vspltisw -1:
9316     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
9317 
9318     // Make the VSLW intrinsic, computing 0x8000_0000.
9319     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9320                                    OnesV, DAG, dl);
9321 
9322     // xor by OnesV to invert it.
9323     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9324     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9325   }
9326 
9327   // Check to see if this is a wide variety of vsplti*, binop self cases.
9328   static const signed char SplatCsts[] = {
9329     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9330     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9331   };
9332 
9333   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9334     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9335     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9336     int i = SplatCsts[idx];
9337 
9338     // Figure out what shift amount will be used by altivec if shifted by i in
9339     // this splat size.
9340     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9341 
9342     // vsplti + shl self.
9343     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9344       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9345       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9346         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9347         Intrinsic::ppc_altivec_vslw
9348       };
9349       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9350       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9351     }
9352 
9353     // vsplti + srl self.
9354     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9355       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9356       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9357         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9358         Intrinsic::ppc_altivec_vsrw
9359       };
9360       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9361       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9362     }
9363 
9364     // vsplti + sra self.
9365     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9366       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9367       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9368         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9369         Intrinsic::ppc_altivec_vsraw
9370       };
9371       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9372       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9373     }
9374 
9375     // vsplti + rol self.
9376     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9377                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9378       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9379       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9380         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9381         Intrinsic::ppc_altivec_vrlw
9382       };
9383       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9384       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9385     }
9386 
9387     // t = vsplti c, result = vsldoi t, t, 1
9388     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9389       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9390       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9391       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9392     }
9393     // t = vsplti c, result = vsldoi t, t, 2
9394     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9395       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9396       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9397       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9398     }
9399     // t = vsplti c, result = vsldoi t, t, 3
9400     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9401       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9402       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9403       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9404     }
9405   }
9406 
9407   return SDValue();
9408 }
9409 
9410 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9411 /// the specified operations to build the shuffle.
9412 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9413                                       SDValue RHS, SelectionDAG &DAG,
9414                                       const SDLoc &dl) {
9415   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9416   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9417   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9418 
9419   enum {
9420     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9421     OP_VMRGHW,
9422     OP_VMRGLW,
9423     OP_VSPLTISW0,
9424     OP_VSPLTISW1,
9425     OP_VSPLTISW2,
9426     OP_VSPLTISW3,
9427     OP_VSLDOI4,
9428     OP_VSLDOI8,
9429     OP_VSLDOI12
9430   };
9431 
9432   if (OpNum == OP_COPY) {
9433     if (LHSID == (1*9+2)*9+3) return LHS;
9434     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9435     return RHS;
9436   }
9437 
9438   SDValue OpLHS, OpRHS;
9439   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9440   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9441 
9442   int ShufIdxs[16];
9443   switch (OpNum) {
9444   default: llvm_unreachable("Unknown i32 permute!");
9445   case OP_VMRGHW:
9446     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9447     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9448     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9449     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9450     break;
9451   case OP_VMRGLW:
9452     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9453     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9454     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9455     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9456     break;
9457   case OP_VSPLTISW0:
9458     for (unsigned i = 0; i != 16; ++i)
9459       ShufIdxs[i] = (i&3)+0;
9460     break;
9461   case OP_VSPLTISW1:
9462     for (unsigned i = 0; i != 16; ++i)
9463       ShufIdxs[i] = (i&3)+4;
9464     break;
9465   case OP_VSPLTISW2:
9466     for (unsigned i = 0; i != 16; ++i)
9467       ShufIdxs[i] = (i&3)+8;
9468     break;
9469   case OP_VSPLTISW3:
9470     for (unsigned i = 0; i != 16; ++i)
9471       ShufIdxs[i] = (i&3)+12;
9472     break;
9473   case OP_VSLDOI4:
9474     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9475   case OP_VSLDOI8:
9476     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9477   case OP_VSLDOI12:
9478     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9479   }
9480   EVT VT = OpLHS.getValueType();
9481   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9482   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9483   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9484   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9485 }
9486 
9487 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9488 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9489 /// SDValue.
9490 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9491                                            SelectionDAG &DAG) const {
9492   const unsigned BytesInVector = 16;
9493   bool IsLE = Subtarget.isLittleEndian();
9494   SDLoc dl(N);
9495   SDValue V1 = N->getOperand(0);
9496   SDValue V2 = N->getOperand(1);
9497   unsigned ShiftElts = 0, InsertAtByte = 0;
9498   bool Swap = false;
9499 
9500   // Shifts required to get the byte we want at element 7.
9501   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9502                                    0, 15, 14, 13, 12, 11, 10, 9};
9503   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9504                                 1, 2,  3,  4,  5,  6,  7,  8};
9505 
9506   ArrayRef<int> Mask = N->getMask();
9507   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9508 
9509   // For each mask element, find out if we're just inserting something
9510   // from V2 into V1 or vice versa.
9511   // Possible permutations inserting an element from V2 into V1:
9512   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9513   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9514   //   ...
9515   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9516   // Inserting from V1 into V2 will be similar, except mask range will be
9517   // [16,31].
9518 
9519   bool FoundCandidate = false;
9520   // If both vector operands for the shuffle are the same vector, the mask
9521   // will contain only elements from the first one and the second one will be
9522   // undef.
9523   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9524   // Go through the mask of half-words to find an element that's being moved
9525   // from one vector to the other.
9526   for (unsigned i = 0; i < BytesInVector; ++i) {
9527     unsigned CurrentElement = Mask[i];
9528     // If 2nd operand is undefined, we should only look for element 7 in the
9529     // Mask.
9530     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9531       continue;
9532 
9533     bool OtherElementsInOrder = true;
9534     // Examine the other elements in the Mask to see if they're in original
9535     // order.
9536     for (unsigned j = 0; j < BytesInVector; ++j) {
9537       if (j == i)
9538         continue;
9539       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9540       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9541       // in which we always assume we're always picking from the 1st operand.
9542       int MaskOffset =
9543           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9544       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9545         OtherElementsInOrder = false;
9546         break;
9547       }
9548     }
9549     // If other elements are in original order, we record the number of shifts
9550     // we need to get the element we want into element 7. Also record which byte
9551     // in the vector we should insert into.
9552     if (OtherElementsInOrder) {
9553       // If 2nd operand is undefined, we assume no shifts and no swapping.
9554       if (V2.isUndef()) {
9555         ShiftElts = 0;
9556         Swap = false;
9557       } else {
9558         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9559         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9560                          : BigEndianShifts[CurrentElement & 0xF];
9561         Swap = CurrentElement < BytesInVector;
9562       }
9563       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9564       FoundCandidate = true;
9565       break;
9566     }
9567   }
9568 
9569   if (!FoundCandidate)
9570     return SDValue();
9571 
9572   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9573   // optionally with VECSHL if shift is required.
9574   if (Swap)
9575     std::swap(V1, V2);
9576   if (V2.isUndef())
9577     V2 = V1;
9578   if (ShiftElts) {
9579     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9580                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9581     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9582                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9583   }
9584   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9585                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9586 }
9587 
9588 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9589 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9590 /// SDValue.
9591 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9592                                            SelectionDAG &DAG) const {
9593   const unsigned NumHalfWords = 8;
9594   const unsigned BytesInVector = NumHalfWords * 2;
9595   // Check that the shuffle is on half-words.
9596   if (!isNByteElemShuffleMask(N, 2, 1))
9597     return SDValue();
9598 
9599   bool IsLE = Subtarget.isLittleEndian();
9600   SDLoc dl(N);
9601   SDValue V1 = N->getOperand(0);
9602   SDValue V2 = N->getOperand(1);
9603   unsigned ShiftElts = 0, InsertAtByte = 0;
9604   bool Swap = false;
9605 
9606   // Shifts required to get the half-word we want at element 3.
9607   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9608   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9609 
9610   uint32_t Mask = 0;
9611   uint32_t OriginalOrderLow = 0x1234567;
9612   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9613   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9614   // 32-bit space, only need 4-bit nibbles per element.
9615   for (unsigned i = 0; i < NumHalfWords; ++i) {
9616     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9617     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9618   }
9619 
9620   // For each mask element, find out if we're just inserting something
9621   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9622   // from V2 into V1:
9623   //   X, 1, 2, 3, 4, 5, 6, 7
9624   //   0, X, 2, 3, 4, 5, 6, 7
9625   //   0, 1, X, 3, 4, 5, 6, 7
9626   //   0, 1, 2, X, 4, 5, 6, 7
9627   //   0, 1, 2, 3, X, 5, 6, 7
9628   //   0, 1, 2, 3, 4, X, 6, 7
9629   //   0, 1, 2, 3, 4, 5, X, 7
9630   //   0, 1, 2, 3, 4, 5, 6, X
9631   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9632 
9633   bool FoundCandidate = false;
9634   // Go through the mask of half-words to find an element that's being moved
9635   // from one vector to the other.
9636   for (unsigned i = 0; i < NumHalfWords; ++i) {
9637     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9638     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9639     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9640     uint32_t TargetOrder = 0x0;
9641 
9642     // If both vector operands for the shuffle are the same vector, the mask
9643     // will contain only elements from the first one and the second one will be
9644     // undef.
9645     if (V2.isUndef()) {
9646       ShiftElts = 0;
9647       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9648       TargetOrder = OriginalOrderLow;
9649       Swap = false;
9650       // Skip if not the correct element or mask of other elements don't equal
9651       // to our expected order.
9652       if (MaskOneElt == VINSERTHSrcElem &&
9653           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9654         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9655         FoundCandidate = true;
9656         break;
9657       }
9658     } else { // If both operands are defined.
9659       // Target order is [8,15] if the current mask is between [0,7].
9660       TargetOrder =
9661           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9662       // Skip if mask of other elements don't equal our expected order.
9663       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9664         // We only need the last 3 bits for the number of shifts.
9665         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9666                          : BigEndianShifts[MaskOneElt & 0x7];
9667         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9668         Swap = MaskOneElt < NumHalfWords;
9669         FoundCandidate = true;
9670         break;
9671       }
9672     }
9673   }
9674 
9675   if (!FoundCandidate)
9676     return SDValue();
9677 
9678   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9679   // optionally with VECSHL if shift is required.
9680   if (Swap)
9681     std::swap(V1, V2);
9682   if (V2.isUndef())
9683     V2 = V1;
9684   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9685   if (ShiftElts) {
9686     // Double ShiftElts because we're left shifting on v16i8 type.
9687     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9688                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9689     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9690     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9691                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9692     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9693   }
9694   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9695   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9696                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9697   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9698 }
9699 
9700 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9701 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9702 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9703 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9704 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9705   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9706   assert(Op.getValueType() == MVT::v1i128 &&
9707          "Only set v1i128 as custom, other type shouldn't reach here!");
9708   SDLoc dl(Op);
9709   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9710   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9711   unsigned SHLAmt = N1.getConstantOperandVal(0);
9712   if (SHLAmt % 8 == 0) {
9713     SmallVector<int, 16> Mask(16, 0);
9714     std::iota(Mask.begin(), Mask.end(), 0);
9715     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9716     if (SDValue Shuffle =
9717             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9718                                  DAG.getUNDEF(MVT::v16i8), Mask))
9719       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9720   }
9721   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9722   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9723                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9724   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9725                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9726   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9727   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9728 }
9729 
9730 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9731 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9732 /// return the code it can be lowered into.  Worst case, it can always be
9733 /// lowered into a vperm.
9734 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9735                                                SelectionDAG &DAG) const {
9736   SDLoc dl(Op);
9737   SDValue V1 = Op.getOperand(0);
9738   SDValue V2 = Op.getOperand(1);
9739   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9740 
9741   // Any nodes that were combined in the target-independent combiner prior
9742   // to vector legalization will not be sent to the target combine. Try to
9743   // combine it here.
9744   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9745     DAG.ReplaceAllUsesOfValueWith(Op, NewShuffle);
9746     Op = NewShuffle;
9747     SVOp = cast<ShuffleVectorSDNode>(Op);
9748   }
9749   EVT VT = Op.getValueType();
9750   bool isLittleEndian = Subtarget.isLittleEndian();
9751 
9752   unsigned ShiftElts, InsertAtByte;
9753   bool Swap = false;
9754 
9755   // If this is a load-and-splat, we can do that with a single instruction
9756   // in some cases. However if the load has multiple uses, we don't want to
9757   // combine it because that will just produce multiple loads.
9758   const SDValue *InputLoad = getNormalLoadInput(V1);
9759   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9760       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9761       InputLoad->hasOneUse()) {
9762     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9763     int SplatIdx =
9764       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9765 
9766     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9767     // For 4-byte load-and-splat, we need Power9.
9768     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9769       uint64_t Offset = 0;
9770       if (IsFourByte)
9771         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9772       else
9773         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9774 
9775       // If we are loading a partial vector, it does not make sense to adjust
9776       // the base pointer. This happens with (splat (s_to_v_permuted (ld))).
9777       if (LD->getMemoryVT().getSizeInBits() == (IsFourByte ? 32 : 64))
9778         Offset = 0;
9779       SDValue BasePtr = LD->getBasePtr();
9780       if (Offset != 0)
9781         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9782                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9783       SDValue Ops[] = {
9784         LD->getChain(),    // Chain
9785         BasePtr,           // BasePtr
9786         DAG.getValueType(Op.getValueType()) // VT
9787       };
9788       SDVTList VTL =
9789         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9790       SDValue LdSplt =
9791         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9792                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9793       if (LdSplt.getValueType() != SVOp->getValueType(0))
9794         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9795       return LdSplt;
9796     }
9797   }
9798   if (Subtarget.hasP9Vector() &&
9799       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9800                            isLittleEndian)) {
9801     if (Swap)
9802       std::swap(V1, V2);
9803     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9804     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9805     if (ShiftElts) {
9806       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9807                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9808       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9809                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9810       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9811     }
9812     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9813                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9814     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9815   }
9816 
9817   if (Subtarget.hasP9Altivec()) {
9818     SDValue NewISDNode;
9819     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9820       return NewISDNode;
9821 
9822     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9823       return NewISDNode;
9824   }
9825 
9826   if (Subtarget.hasVSX() &&
9827       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9828     if (Swap)
9829       std::swap(V1, V2);
9830     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9831     SDValue Conv2 =
9832         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9833 
9834     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9835                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9836     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9837   }
9838 
9839   if (Subtarget.hasVSX() &&
9840     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9841     if (Swap)
9842       std::swap(V1, V2);
9843     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9844     SDValue Conv2 =
9845         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9846 
9847     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9848                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9849     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9850   }
9851 
9852   if (Subtarget.hasP9Vector()) {
9853      if (PPC::isXXBRHShuffleMask(SVOp)) {
9854       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9855       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9856       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9857     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9858       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9859       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9860       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9861     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9862       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9863       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9864       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9865     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9866       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9867       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9868       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9869     }
9870   }
9871 
9872   if (Subtarget.hasVSX()) {
9873     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9874       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9875 
9876       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9877       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9878                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9879       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9880     }
9881 
9882     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9883     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9884       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9885       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9886       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9887     }
9888   }
9889 
9890   if (Subtarget.hasQPX()) {
9891     if (VT.getVectorNumElements() != 4)
9892       return SDValue();
9893 
9894     if (V2.isUndef()) V2 = V1;
9895 
9896     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9897     if (AlignIdx != -1) {
9898       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9899                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9900     } else if (SVOp->isSplat()) {
9901       int SplatIdx = SVOp->getSplatIndex();
9902       if (SplatIdx >= 4) {
9903         std::swap(V1, V2);
9904         SplatIdx -= 4;
9905       }
9906 
9907       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9908                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9909     }
9910 
9911     // Lower this into a qvgpci/qvfperm pair.
9912 
9913     // Compute the qvgpci literal
9914     unsigned idx = 0;
9915     for (unsigned i = 0; i < 4; ++i) {
9916       int m = SVOp->getMaskElt(i);
9917       unsigned mm = m >= 0 ? (unsigned) m : i;
9918       idx |= mm << (3-i)*3;
9919     }
9920 
9921     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9922                              DAG.getConstant(idx, dl, MVT::i32));
9923     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9924   }
9925 
9926   // Cases that are handled by instructions that take permute immediates
9927   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9928   // selected by the instruction selector.
9929   if (V2.isUndef()) {
9930     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9931         PPC::isSplatShuffleMask(SVOp, 2) ||
9932         PPC::isSplatShuffleMask(SVOp, 4) ||
9933         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9934         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9935         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9936         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9937         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9938         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9939         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9940         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9941         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9942         (Subtarget.hasP8Altivec() && (
9943          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9944          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9945          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9946       return Op;
9947     }
9948   }
9949 
9950   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9951   // and produce a fixed permutation.  If any of these match, do not lower to
9952   // VPERM.
9953   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9954   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9955       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9956       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9957       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9958       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9959       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9960       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9961       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9962       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9963       (Subtarget.hasP8Altivec() && (
9964        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9965        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9966        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9967     return Op;
9968 
9969   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9970   // perfect shuffle table to emit an optimal matching sequence.
9971   ArrayRef<int> PermMask = SVOp->getMask();
9972 
9973   unsigned PFIndexes[4];
9974   bool isFourElementShuffle = true;
9975   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9976     unsigned EltNo = 8;   // Start out undef.
9977     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9978       if (PermMask[i*4+j] < 0)
9979         continue;   // Undef, ignore it.
9980 
9981       unsigned ByteSource = PermMask[i*4+j];
9982       if ((ByteSource & 3) != j) {
9983         isFourElementShuffle = false;
9984         break;
9985       }
9986 
9987       if (EltNo == 8) {
9988         EltNo = ByteSource/4;
9989       } else if (EltNo != ByteSource/4) {
9990         isFourElementShuffle = false;
9991         break;
9992       }
9993     }
9994     PFIndexes[i] = EltNo;
9995   }
9996 
9997   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9998   // perfect shuffle vector to determine if it is cost effective to do this as
9999   // discrete instructions, or whether we should use a vperm.
10000   // For now, we skip this for little endian until such time as we have a
10001   // little-endian perfect shuffle table.
10002   if (isFourElementShuffle && !isLittleEndian) {
10003     // Compute the index in the perfect shuffle table.
10004     unsigned PFTableIndex =
10005       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10006 
10007     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10008     unsigned Cost  = (PFEntry >> 30);
10009 
10010     // Determining when to avoid vperm is tricky.  Many things affect the cost
10011     // of vperm, particularly how many times the perm mask needs to be computed.
10012     // For example, if the perm mask can be hoisted out of a loop or is already
10013     // used (perhaps because there are multiple permutes with the same shuffle
10014     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10015     // the loop requires an extra register.
10016     //
10017     // As a compromise, we only emit discrete instructions if the shuffle can be
10018     // generated in 3 or fewer operations.  When we have loop information
10019     // available, if this block is within a loop, we should avoid using vperm
10020     // for 3-operation perms and use a constant pool load instead.
10021     if (Cost < 3)
10022       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10023   }
10024 
10025   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10026   // vector that will get spilled to the constant pool.
10027   if (V2.isUndef()) V2 = V1;
10028 
10029   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10030   // that it is in input element units, not in bytes.  Convert now.
10031 
10032   // For little endian, the order of the input vectors is reversed, and
10033   // the permutation mask is complemented with respect to 31.  This is
10034   // necessary to produce proper semantics with the big-endian-biased vperm
10035   // instruction.
10036   EVT EltVT = V1.getValueType().getVectorElementType();
10037   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10038 
10039   SmallVector<SDValue, 16> ResultMask;
10040   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10041     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10042 
10043     for (unsigned j = 0; j != BytesPerElement; ++j)
10044       if (isLittleEndian)
10045         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10046                                              dl, MVT::i32));
10047       else
10048         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10049                                              MVT::i32));
10050   }
10051 
10052   ShufflesHandledWithVPERM++;
10053   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10054   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10055   LLVM_DEBUG(SVOp->dump());
10056   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10057   LLVM_DEBUG(VPermMask.dump());
10058 
10059   if (isLittleEndian)
10060     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10061                        V2, V1, VPermMask);
10062   else
10063     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10064                        V1, V2, VPermMask);
10065 }
10066 
10067 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10068 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10069 /// information about the intrinsic.
10070 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10071                                  bool &isDot, const PPCSubtarget &Subtarget) {
10072   unsigned IntrinsicID =
10073       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10074   CompareOpc = -1;
10075   isDot = false;
10076   switch (IntrinsicID) {
10077   default:
10078     return false;
10079   // Comparison predicates.
10080   case Intrinsic::ppc_altivec_vcmpbfp_p:
10081     CompareOpc = 966;
10082     isDot = true;
10083     break;
10084   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10085     CompareOpc = 198;
10086     isDot = true;
10087     break;
10088   case Intrinsic::ppc_altivec_vcmpequb_p:
10089     CompareOpc = 6;
10090     isDot = true;
10091     break;
10092   case Intrinsic::ppc_altivec_vcmpequh_p:
10093     CompareOpc = 70;
10094     isDot = true;
10095     break;
10096   case Intrinsic::ppc_altivec_vcmpequw_p:
10097     CompareOpc = 134;
10098     isDot = true;
10099     break;
10100   case Intrinsic::ppc_altivec_vcmpequd_p:
10101     if (Subtarget.hasP8Altivec()) {
10102       CompareOpc = 199;
10103       isDot = true;
10104     } else
10105       return false;
10106     break;
10107   case Intrinsic::ppc_altivec_vcmpneb_p:
10108   case Intrinsic::ppc_altivec_vcmpneh_p:
10109   case Intrinsic::ppc_altivec_vcmpnew_p:
10110   case Intrinsic::ppc_altivec_vcmpnezb_p:
10111   case Intrinsic::ppc_altivec_vcmpnezh_p:
10112   case Intrinsic::ppc_altivec_vcmpnezw_p:
10113     if (Subtarget.hasP9Altivec()) {
10114       switch (IntrinsicID) {
10115       default:
10116         llvm_unreachable("Unknown comparison intrinsic.");
10117       case Intrinsic::ppc_altivec_vcmpneb_p:
10118         CompareOpc = 7;
10119         break;
10120       case Intrinsic::ppc_altivec_vcmpneh_p:
10121         CompareOpc = 71;
10122         break;
10123       case Intrinsic::ppc_altivec_vcmpnew_p:
10124         CompareOpc = 135;
10125         break;
10126       case Intrinsic::ppc_altivec_vcmpnezb_p:
10127         CompareOpc = 263;
10128         break;
10129       case Intrinsic::ppc_altivec_vcmpnezh_p:
10130         CompareOpc = 327;
10131         break;
10132       case Intrinsic::ppc_altivec_vcmpnezw_p:
10133         CompareOpc = 391;
10134         break;
10135       }
10136       isDot = true;
10137     } else
10138       return false;
10139     break;
10140   case Intrinsic::ppc_altivec_vcmpgefp_p:
10141     CompareOpc = 454;
10142     isDot = true;
10143     break;
10144   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10145     CompareOpc = 710;
10146     isDot = true;
10147     break;
10148   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10149     CompareOpc = 774;
10150     isDot = true;
10151     break;
10152   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10153     CompareOpc = 838;
10154     isDot = true;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10157     CompareOpc = 902;
10158     isDot = true;
10159     break;
10160   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10161     if (Subtarget.hasP8Altivec()) {
10162       CompareOpc = 967;
10163       isDot = true;
10164     } else
10165       return false;
10166     break;
10167   case Intrinsic::ppc_altivec_vcmpgtub_p:
10168     CompareOpc = 518;
10169     isDot = true;
10170     break;
10171   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10172     CompareOpc = 582;
10173     isDot = true;
10174     break;
10175   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10176     CompareOpc = 646;
10177     isDot = true;
10178     break;
10179   case Intrinsic::ppc_altivec_vcmpgtud_p:
10180     if (Subtarget.hasP8Altivec()) {
10181       CompareOpc = 711;
10182       isDot = true;
10183     } else
10184       return false;
10185     break;
10186 
10187   // VSX predicate comparisons use the same infrastructure
10188   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10189   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10190   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10191   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10192   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10193   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10194     if (Subtarget.hasVSX()) {
10195       switch (IntrinsicID) {
10196       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10197         CompareOpc = 99;
10198         break;
10199       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10200         CompareOpc = 115;
10201         break;
10202       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10203         CompareOpc = 107;
10204         break;
10205       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10206         CompareOpc = 67;
10207         break;
10208       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10209         CompareOpc = 83;
10210         break;
10211       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10212         CompareOpc = 75;
10213         break;
10214       }
10215       isDot = true;
10216     } else
10217       return false;
10218     break;
10219 
10220   // Normal Comparisons.
10221   case Intrinsic::ppc_altivec_vcmpbfp:
10222     CompareOpc = 966;
10223     break;
10224   case Intrinsic::ppc_altivec_vcmpeqfp:
10225     CompareOpc = 198;
10226     break;
10227   case Intrinsic::ppc_altivec_vcmpequb:
10228     CompareOpc = 6;
10229     break;
10230   case Intrinsic::ppc_altivec_vcmpequh:
10231     CompareOpc = 70;
10232     break;
10233   case Intrinsic::ppc_altivec_vcmpequw:
10234     CompareOpc = 134;
10235     break;
10236   case Intrinsic::ppc_altivec_vcmpequd:
10237     if (Subtarget.hasP8Altivec())
10238       CompareOpc = 199;
10239     else
10240       return false;
10241     break;
10242   case Intrinsic::ppc_altivec_vcmpneb:
10243   case Intrinsic::ppc_altivec_vcmpneh:
10244   case Intrinsic::ppc_altivec_vcmpnew:
10245   case Intrinsic::ppc_altivec_vcmpnezb:
10246   case Intrinsic::ppc_altivec_vcmpnezh:
10247   case Intrinsic::ppc_altivec_vcmpnezw:
10248     if (Subtarget.hasP9Altivec())
10249       switch (IntrinsicID) {
10250       default:
10251         llvm_unreachable("Unknown comparison intrinsic.");
10252       case Intrinsic::ppc_altivec_vcmpneb:
10253         CompareOpc = 7;
10254         break;
10255       case Intrinsic::ppc_altivec_vcmpneh:
10256         CompareOpc = 71;
10257         break;
10258       case Intrinsic::ppc_altivec_vcmpnew:
10259         CompareOpc = 135;
10260         break;
10261       case Intrinsic::ppc_altivec_vcmpnezb:
10262         CompareOpc = 263;
10263         break;
10264       case Intrinsic::ppc_altivec_vcmpnezh:
10265         CompareOpc = 327;
10266         break;
10267       case Intrinsic::ppc_altivec_vcmpnezw:
10268         CompareOpc = 391;
10269         break;
10270       }
10271     else
10272       return false;
10273     break;
10274   case Intrinsic::ppc_altivec_vcmpgefp:
10275     CompareOpc = 454;
10276     break;
10277   case Intrinsic::ppc_altivec_vcmpgtfp:
10278     CompareOpc = 710;
10279     break;
10280   case Intrinsic::ppc_altivec_vcmpgtsb:
10281     CompareOpc = 774;
10282     break;
10283   case Intrinsic::ppc_altivec_vcmpgtsh:
10284     CompareOpc = 838;
10285     break;
10286   case Intrinsic::ppc_altivec_vcmpgtsw:
10287     CompareOpc = 902;
10288     break;
10289   case Intrinsic::ppc_altivec_vcmpgtsd:
10290     if (Subtarget.hasP8Altivec())
10291       CompareOpc = 967;
10292     else
10293       return false;
10294     break;
10295   case Intrinsic::ppc_altivec_vcmpgtub:
10296     CompareOpc = 518;
10297     break;
10298   case Intrinsic::ppc_altivec_vcmpgtuh:
10299     CompareOpc = 582;
10300     break;
10301   case Intrinsic::ppc_altivec_vcmpgtuw:
10302     CompareOpc = 646;
10303     break;
10304   case Intrinsic::ppc_altivec_vcmpgtud:
10305     if (Subtarget.hasP8Altivec())
10306       CompareOpc = 711;
10307     else
10308       return false;
10309     break;
10310   }
10311   return true;
10312 }
10313 
10314 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10315 /// lower, do it, otherwise return null.
10316 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10317                                                    SelectionDAG &DAG) const {
10318   unsigned IntrinsicID =
10319     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10320 
10321   SDLoc dl(Op);
10322 
10323   if (IntrinsicID == Intrinsic::thread_pointer) {
10324     // Reads the thread pointer register, used for __builtin_thread_pointer.
10325     if (Subtarget.isPPC64())
10326       return DAG.getRegister(PPC::X13, MVT::i64);
10327     return DAG.getRegister(PPC::R2, MVT::i32);
10328   }
10329 
10330   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10331   // opcode number of the comparison.
10332   int CompareOpc;
10333   bool isDot;
10334   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10335     return SDValue();    // Don't custom lower most intrinsics.
10336 
10337   // If this is a non-dot comparison, make the VCMP node and we are done.
10338   if (!isDot) {
10339     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10340                               Op.getOperand(1), Op.getOperand(2),
10341                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10342     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10343   }
10344 
10345   // Create the PPCISD altivec 'dot' comparison node.
10346   SDValue Ops[] = {
10347     Op.getOperand(2),  // LHS
10348     Op.getOperand(3),  // RHS
10349     DAG.getConstant(CompareOpc, dl, MVT::i32)
10350   };
10351   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10352   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10353 
10354   // Now that we have the comparison, emit a copy from the CR to a GPR.
10355   // This is flagged to the above dot comparison.
10356   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10357                                 DAG.getRegister(PPC::CR6, MVT::i32),
10358                                 CompNode.getValue(1));
10359 
10360   // Unpack the result based on how the target uses it.
10361   unsigned BitNo;   // Bit # of CR6.
10362   bool InvertBit;   // Invert result?
10363   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10364   default:  // Can't happen, don't crash on invalid number though.
10365   case 0:   // Return the value of the EQ bit of CR6.
10366     BitNo = 0; InvertBit = false;
10367     break;
10368   case 1:   // Return the inverted value of the EQ bit of CR6.
10369     BitNo = 0; InvertBit = true;
10370     break;
10371   case 2:   // Return the value of the LT bit of CR6.
10372     BitNo = 2; InvertBit = false;
10373     break;
10374   case 3:   // Return the inverted value of the LT bit of CR6.
10375     BitNo = 2; InvertBit = true;
10376     break;
10377   }
10378 
10379   // Shift the bit into the low position.
10380   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10381                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10382   // Isolate the bit.
10383   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10384                       DAG.getConstant(1, dl, MVT::i32));
10385 
10386   // If we are supposed to, toggle the bit.
10387   if (InvertBit)
10388     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10389                         DAG.getConstant(1, dl, MVT::i32));
10390   return Flags;
10391 }
10392 
10393 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10394                                                SelectionDAG &DAG) const {
10395   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10396   // the beginning of the argument list.
10397   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10398   SDLoc DL(Op);
10399   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10400   case Intrinsic::ppc_cfence: {
10401     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10402     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10403     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10404                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10405                                                   Op.getOperand(ArgStart + 1)),
10406                                       Op.getOperand(0)),
10407                    0);
10408   }
10409   default:
10410     break;
10411   }
10412   return SDValue();
10413 }
10414 
10415 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
10416   // Check for a DIV with the same operands as this REM.
10417   for (auto UI : Op.getOperand(1)->uses()) {
10418     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
10419         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
10420       if (UI->getOperand(0) == Op.getOperand(0) &&
10421           UI->getOperand(1) == Op.getOperand(1))
10422         return SDValue();
10423   }
10424   return Op;
10425 }
10426 
10427 // Lower scalar BSWAP64 to xxbrd.
10428 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10429   SDLoc dl(Op);
10430   // MTVSRDD
10431   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10432                    Op.getOperand(0));
10433   // XXBRD
10434   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10435   // MFVSRD
10436   int VectorIndex = 0;
10437   if (Subtarget.isLittleEndian())
10438     VectorIndex = 1;
10439   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10440                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10441   return Op;
10442 }
10443 
10444 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10445 // compared to a value that is atomically loaded (atomic loads zero-extend).
10446 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10447                                                 SelectionDAG &DAG) const {
10448   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10449          "Expecting an atomic compare-and-swap here.");
10450   SDLoc dl(Op);
10451   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10452   EVT MemVT = AtomicNode->getMemoryVT();
10453   if (MemVT.getSizeInBits() >= 32)
10454     return Op;
10455 
10456   SDValue CmpOp = Op.getOperand(2);
10457   // If this is already correctly zero-extended, leave it alone.
10458   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10459   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10460     return Op;
10461 
10462   // Clear the high bits of the compare operand.
10463   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10464   SDValue NewCmpOp =
10465     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10466                 DAG.getConstant(MaskVal, dl, MVT::i32));
10467 
10468   // Replace the existing compare operand with the properly zero-extended one.
10469   SmallVector<SDValue, 4> Ops;
10470   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10471     Ops.push_back(AtomicNode->getOperand(i));
10472   Ops[2] = NewCmpOp;
10473   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10474   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10475   auto NodeTy =
10476     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10477   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10478 }
10479 
10480 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10481                                                  SelectionDAG &DAG) const {
10482   SDLoc dl(Op);
10483   // Create a stack slot that is 16-byte aligned.
10484   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10485   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10486   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10487   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10488 
10489   // Store the input value into Value#0 of the stack slot.
10490   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10491                                MachinePointerInfo());
10492   // Load it out.
10493   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10494 }
10495 
10496 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10497                                                   SelectionDAG &DAG) const {
10498   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10499          "Should only be called for ISD::INSERT_VECTOR_ELT");
10500 
10501   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10502   // We have legal lowering for constant indices but not for variable ones.
10503   if (!C)
10504     return SDValue();
10505 
10506   EVT VT = Op.getValueType();
10507   SDLoc dl(Op);
10508   SDValue V1 = Op.getOperand(0);
10509   SDValue V2 = Op.getOperand(1);
10510   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10511   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10512     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10513     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10514     unsigned InsertAtElement = C->getZExtValue();
10515     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10516     if (Subtarget.isLittleEndian()) {
10517       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10518     }
10519     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10520                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10521   }
10522   return Op;
10523 }
10524 
10525 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10526                                                    SelectionDAG &DAG) const {
10527   SDLoc dl(Op);
10528   SDNode *N = Op.getNode();
10529 
10530   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
10531          "Unknown extract_vector_elt type");
10532 
10533   SDValue Value = N->getOperand(0);
10534 
10535   // The first part of this is like the store lowering except that we don't
10536   // need to track the chain.
10537 
10538   // The values are now known to be -1 (false) or 1 (true). To convert this
10539   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10540   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10541   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10542 
10543   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10544   // understand how to form the extending load.
10545   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10546 
10547   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10548 
10549   // Now convert to an integer and store.
10550   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10551     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10552     Value);
10553 
10554   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10555   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10556   MachinePointerInfo PtrInfo =
10557       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10558   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10559   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10560 
10561   SDValue StoreChain = DAG.getEntryNode();
10562   SDValue Ops[] = {StoreChain,
10563                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10564                    Value, FIdx};
10565   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10566 
10567   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10568     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10569 
10570   // Extract the value requested.
10571   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10572   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10573   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10574 
10575   SDValue IntVal =
10576       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10577 
10578   if (!Subtarget.useCRBits())
10579     return IntVal;
10580 
10581   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10582 }
10583 
10584 /// Lowering for QPX v4i1 loads
10585 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10586                                            SelectionDAG &DAG) const {
10587   SDLoc dl(Op);
10588   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10589   SDValue LoadChain = LN->getChain();
10590   SDValue BasePtr = LN->getBasePtr();
10591 
10592   if (Op.getValueType() == MVT::v4f64 ||
10593       Op.getValueType() == MVT::v4f32) {
10594     EVT MemVT = LN->getMemoryVT();
10595     unsigned Alignment = LN->getAlignment();
10596 
10597     // If this load is properly aligned, then it is legal.
10598     if (Alignment >= MemVT.getStoreSize())
10599       return Op;
10600 
10601     EVT ScalarVT = Op.getValueType().getScalarType(),
10602         ScalarMemVT = MemVT.getScalarType();
10603     unsigned Stride = ScalarMemVT.getStoreSize();
10604 
10605     SDValue Vals[4], LoadChains[4];
10606     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10607       SDValue Load;
10608       if (ScalarVT != ScalarMemVT)
10609         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10610                               BasePtr,
10611                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10612                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10613                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10614       else
10615         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10616                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10617                            MinAlign(Alignment, Idx * Stride),
10618                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10619 
10620       if (Idx == 0 && LN->isIndexed()) {
10621         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10622                "Unknown addressing mode on vector load");
10623         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10624                                   LN->getAddressingMode());
10625       }
10626 
10627       Vals[Idx] = Load;
10628       LoadChains[Idx] = Load.getValue(1);
10629 
10630       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10631                             DAG.getConstant(Stride, dl,
10632                                             BasePtr.getValueType()));
10633     }
10634 
10635     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10636     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10637 
10638     if (LN->isIndexed()) {
10639       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10640       return DAG.getMergeValues(RetOps, dl);
10641     }
10642 
10643     SDValue RetOps[] = { Value, TF };
10644     return DAG.getMergeValues(RetOps, dl);
10645   }
10646 
10647   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10648   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10649 
10650   // To lower v4i1 from a byte array, we load the byte elements of the
10651   // vector and then reuse the BUILD_VECTOR logic.
10652 
10653   SDValue VectElmts[4], VectElmtChains[4];
10654   for (unsigned i = 0; i < 4; ++i) {
10655     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10656     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10657 
10658     VectElmts[i] = DAG.getExtLoad(
10659         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10660         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10661         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10662     VectElmtChains[i] = VectElmts[i].getValue(1);
10663   }
10664 
10665   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10666   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10667 
10668   SDValue RVals[] = { Value, LoadChain };
10669   return DAG.getMergeValues(RVals, dl);
10670 }
10671 
10672 /// Lowering for QPX v4i1 stores
10673 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10674                                             SelectionDAG &DAG) const {
10675   SDLoc dl(Op);
10676   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10677   SDValue StoreChain = SN->getChain();
10678   SDValue BasePtr = SN->getBasePtr();
10679   SDValue Value = SN->getValue();
10680 
10681   if (Value.getValueType() == MVT::v4f64 ||
10682       Value.getValueType() == MVT::v4f32) {
10683     EVT MemVT = SN->getMemoryVT();
10684     unsigned Alignment = SN->getAlignment();
10685 
10686     // If this store is properly aligned, then it is legal.
10687     if (Alignment >= MemVT.getStoreSize())
10688       return Op;
10689 
10690     EVT ScalarVT = Value.getValueType().getScalarType(),
10691         ScalarMemVT = MemVT.getScalarType();
10692     unsigned Stride = ScalarMemVT.getStoreSize();
10693 
10694     SDValue Stores[4];
10695     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10696       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10697                                DAG.getVectorIdxConstant(Idx, dl));
10698       SDValue Store;
10699       if (ScalarVT != ScalarMemVT)
10700         Store =
10701             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10702                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10703                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10704                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10705       else
10706         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10707                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10708                              MinAlign(Alignment, Idx * Stride),
10709                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10710 
10711       if (Idx == 0 && SN->isIndexed()) {
10712         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10713                "Unknown addressing mode on vector store");
10714         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10715                                     SN->getAddressingMode());
10716       }
10717 
10718       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10719                             DAG.getConstant(Stride, dl,
10720                                             BasePtr.getValueType()));
10721       Stores[Idx] = Store;
10722     }
10723 
10724     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10725 
10726     if (SN->isIndexed()) {
10727       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10728       return DAG.getMergeValues(RetOps, dl);
10729     }
10730 
10731     return TF;
10732   }
10733 
10734   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10735   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10736 
10737   // The values are now known to be -1 (false) or 1 (true). To convert this
10738   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10739   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10740   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10741 
10742   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10743   // understand how to form the extending load.
10744   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10745 
10746   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10747 
10748   // Now convert to an integer and store.
10749   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10750     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10751     Value);
10752 
10753   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10754   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10755   MachinePointerInfo PtrInfo =
10756       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10757   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10758   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10759 
10760   SDValue Ops[] = {StoreChain,
10761                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10762                    Value, FIdx};
10763   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10764 
10765   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10766     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10767 
10768   // Move data into the byte array.
10769   SDValue Loads[4], LoadChains[4];
10770   for (unsigned i = 0; i < 4; ++i) {
10771     unsigned Offset = 4*i;
10772     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10773     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10774 
10775     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10776                            PtrInfo.getWithOffset(Offset));
10777     LoadChains[i] = Loads[i].getValue(1);
10778   }
10779 
10780   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10781 
10782   SDValue Stores[4];
10783   for (unsigned i = 0; i < 4; ++i) {
10784     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10785     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10786 
10787     Stores[i] = DAG.getTruncStore(
10788         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10789         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10790         SN->getAAInfo());
10791   }
10792 
10793   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10794 
10795   return StoreChain;
10796 }
10797 
10798 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10799   SDLoc dl(Op);
10800   if (Op.getValueType() == MVT::v4i32) {
10801     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10802 
10803     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10804     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10805 
10806     SDValue RHSSwap =   // = vrlw RHS, 16
10807       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10808 
10809     // Shrinkify inputs to v8i16.
10810     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10811     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10812     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10813 
10814     // Low parts multiplied together, generating 32-bit results (we ignore the
10815     // top parts).
10816     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10817                                         LHS, RHS, DAG, dl, MVT::v4i32);
10818 
10819     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10820                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10821     // Shift the high parts up 16 bits.
10822     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10823                               Neg16, DAG, dl);
10824     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10825   } else if (Op.getValueType() == MVT::v16i8) {
10826     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10827     bool isLittleEndian = Subtarget.isLittleEndian();
10828 
10829     // Multiply the even 8-bit parts, producing 16-bit sums.
10830     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10831                                            LHS, RHS, DAG, dl, MVT::v8i16);
10832     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10833 
10834     // Multiply the odd 8-bit parts, producing 16-bit sums.
10835     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10836                                           LHS, RHS, DAG, dl, MVT::v8i16);
10837     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10838 
10839     // Merge the results together.  Because vmuleub and vmuloub are
10840     // instructions with a big-endian bias, we must reverse the
10841     // element numbering and reverse the meaning of "odd" and "even"
10842     // when generating little endian code.
10843     int Ops[16];
10844     for (unsigned i = 0; i != 8; ++i) {
10845       if (isLittleEndian) {
10846         Ops[i*2  ] = 2*i;
10847         Ops[i*2+1] = 2*i+16;
10848       } else {
10849         Ops[i*2  ] = 2*i+1;
10850         Ops[i*2+1] = 2*i+1+16;
10851       }
10852     }
10853     if (isLittleEndian)
10854       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10855     else
10856       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10857   } else {
10858     llvm_unreachable("Unknown mul to lower!");
10859   }
10860 }
10861 
10862 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10863 
10864   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10865 
10866   EVT VT = Op.getValueType();
10867   assert(VT.isVector() &&
10868          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10869   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10870           VT == MVT::v16i8) &&
10871          "Unexpected vector element type!");
10872   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10873          "Current subtarget doesn't support smax v2i64!");
10874 
10875   // For vector abs, it can be lowered to:
10876   // abs x
10877   // ==>
10878   // y = -x
10879   // smax(x, y)
10880 
10881   SDLoc dl(Op);
10882   SDValue X = Op.getOperand(0);
10883   SDValue Zero = DAG.getConstant(0, dl, VT);
10884   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10885 
10886   // SMAX patch https://reviews.llvm.org/D47332
10887   // hasn't landed yet, so use intrinsic first here.
10888   // TODO: Should use SMAX directly once SMAX patch landed
10889   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10890   if (VT == MVT::v2i64)
10891     BifID = Intrinsic::ppc_altivec_vmaxsd;
10892   else if (VT == MVT::v8i16)
10893     BifID = Intrinsic::ppc_altivec_vmaxsh;
10894   else if (VT == MVT::v16i8)
10895     BifID = Intrinsic::ppc_altivec_vmaxsb;
10896 
10897   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10898 }
10899 
10900 // Custom lowering for fpext vf32 to v2f64
10901 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10902 
10903   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10904          "Should only be called for ISD::FP_EXTEND");
10905 
10906   // FIXME: handle extends from half precision float vectors on P9.
10907   // We only want to custom lower an extend from v2f32 to v2f64.
10908   if (Op.getValueType() != MVT::v2f64 ||
10909       Op.getOperand(0).getValueType() != MVT::v2f32)
10910     return SDValue();
10911 
10912   SDLoc dl(Op);
10913   SDValue Op0 = Op.getOperand(0);
10914 
10915   switch (Op0.getOpcode()) {
10916   default:
10917     return SDValue();
10918   case ISD::EXTRACT_SUBVECTOR: {
10919     assert(Op0.getNumOperands() == 2 &&
10920            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10921            "Node should have 2 operands with second one being a constant!");
10922 
10923     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10924       return SDValue();
10925 
10926     // Custom lower is only done for high or low doubleword.
10927     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10928     if (Idx % 2 != 0)
10929       return SDValue();
10930 
10931     // Since input is v4f32, at this point Idx is either 0 or 2.
10932     // Shift to get the doubleword position we want.
10933     int DWord = Idx >> 1;
10934 
10935     // High and low word positions are different on little endian.
10936     if (Subtarget.isLittleEndian())
10937       DWord ^= 0x1;
10938 
10939     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10940                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10941   }
10942   case ISD::FADD:
10943   case ISD::FMUL:
10944   case ISD::FSUB: {
10945     SDValue NewLoad[2];
10946     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10947       // Ensure both input are loads.
10948       SDValue LdOp = Op0.getOperand(i);
10949       if (LdOp.getOpcode() != ISD::LOAD)
10950         return SDValue();
10951       // Generate new load node.
10952       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10953       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10954       NewLoad[i] = DAG.getMemIntrinsicNode(
10955           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10956           LD->getMemoryVT(), LD->getMemOperand());
10957     }
10958     SDValue NewOp =
10959         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10960                     NewLoad[1], Op0.getNode()->getFlags());
10961     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10962                        DAG.getConstant(0, dl, MVT::i32));
10963   }
10964   case ISD::LOAD: {
10965     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10966     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10967     SDValue NewLd = DAG.getMemIntrinsicNode(
10968         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10969         LD->getMemoryVT(), LD->getMemOperand());
10970     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10971                        DAG.getConstant(0, dl, MVT::i32));
10972   }
10973   }
10974   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10975 }
10976 
10977 /// LowerOperation - Provide custom lowering hooks for some operations.
10978 ///
10979 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10980   switch (Op.getOpcode()) {
10981   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10982   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10983   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10984   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10985   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10986   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10987   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10988   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10989   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10990 
10991   // Variable argument lowering.
10992   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10993   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10994   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10995 
10996   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10997   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10998   case ISD::GET_DYNAMIC_AREA_OFFSET:
10999     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11000 
11001   // Exception handling lowering.
11002   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11003   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11004   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11005 
11006   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11007   case ISD::STORE:              return LowerSTORE(Op, DAG);
11008   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11009   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11010   case ISD::FP_TO_UINT:
11011   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11012   case ISD::UINT_TO_FP:
11013   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11014   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11015 
11016   // Lower 64-bit shifts.
11017   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11018   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11019   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11020 
11021   // Vector-related lowering.
11022   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11023   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11024   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11025   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11026   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11027   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11028   case ISD::MUL:                return LowerMUL(Op, DAG);
11029   case ISD::ABS:                return LowerABS(Op, DAG);
11030   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11031   case ISD::ROTL:               return LowerROTL(Op, DAG);
11032 
11033   // For counter-based loop handling.
11034   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11035 
11036   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11037 
11038   // Frame & Return address.
11039   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11040   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11041 
11042   case ISD::INTRINSIC_VOID:
11043     return LowerINTRINSIC_VOID(Op, DAG);
11044   case ISD::SREM:
11045   case ISD::UREM:
11046     return LowerREM(Op, DAG);
11047   case ISD::BSWAP:
11048     return LowerBSWAP(Op, DAG);
11049   case ISD::ATOMIC_CMP_SWAP:
11050     return LowerATOMIC_CMP_SWAP(Op, DAG);
11051   }
11052 }
11053 
11054 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11055                                            SmallVectorImpl<SDValue>&Results,
11056                                            SelectionDAG &DAG) const {
11057   SDLoc dl(N);
11058   switch (N->getOpcode()) {
11059   default:
11060     llvm_unreachable("Do not know how to custom type legalize this operation!");
11061   case ISD::READCYCLECOUNTER: {
11062     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11063     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11064 
11065     Results.push_back(
11066         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11067     Results.push_back(RTB.getValue(2));
11068     break;
11069   }
11070   case ISD::INTRINSIC_W_CHAIN: {
11071     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11072         Intrinsic::loop_decrement)
11073       break;
11074 
11075     assert(N->getValueType(0) == MVT::i1 &&
11076            "Unexpected result type for CTR decrement intrinsic");
11077     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11078                                  N->getValueType(0));
11079     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11080     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11081                                  N->getOperand(1));
11082 
11083     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11084     Results.push_back(NewInt.getValue(1));
11085     break;
11086   }
11087   case ISD::VAARG: {
11088     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11089       return;
11090 
11091     EVT VT = N->getValueType(0);
11092 
11093     if (VT == MVT::i64) {
11094       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11095 
11096       Results.push_back(NewNode);
11097       Results.push_back(NewNode.getValue(1));
11098     }
11099     return;
11100   }
11101   case ISD::FP_TO_SINT:
11102   case ISD::FP_TO_UINT:
11103     // LowerFP_TO_INT() can only handle f32 and f64.
11104     if (N->getOperand(0).getValueType() == MVT::ppcf128)
11105       return;
11106     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11107     return;
11108   case ISD::TRUNCATE: {
11109     EVT TrgVT = N->getValueType(0);
11110     EVT OpVT = N->getOperand(0).getValueType();
11111     if (TrgVT.isVector() &&
11112         isOperationCustom(N->getOpcode(), TrgVT) &&
11113         OpVT.getSizeInBits() <= 128 &&
11114         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
11115       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
11116     return;
11117   }
11118   case ISD::BITCAST:
11119     // Don't handle bitcast here.
11120     return;
11121   case ISD::FP_EXTEND:
11122     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11123     if (Lowered)
11124       Results.push_back(Lowered);
11125     return;
11126   }
11127 }
11128 
11129 //===----------------------------------------------------------------------===//
11130 //  Other Lowering Code
11131 //===----------------------------------------------------------------------===//
11132 
11133 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
11134   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11135   Function *Func = Intrinsic::getDeclaration(M, Id);
11136   return Builder.CreateCall(Func, {});
11137 }
11138 
11139 // The mappings for emitLeading/TrailingFence is taken from
11140 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11141 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11142                                                  Instruction *Inst,
11143                                                  AtomicOrdering Ord) const {
11144   if (Ord == AtomicOrdering::SequentiallyConsistent)
11145     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11146   if (isReleaseOrStronger(Ord))
11147     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11148   return nullptr;
11149 }
11150 
11151 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11152                                                   Instruction *Inst,
11153                                                   AtomicOrdering Ord) const {
11154   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11155     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11156     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11157     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11158     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11159       return Builder.CreateCall(
11160           Intrinsic::getDeclaration(
11161               Builder.GetInsertBlock()->getParent()->getParent(),
11162               Intrinsic::ppc_cfence, {Inst->getType()}),
11163           {Inst});
11164     // FIXME: Can use isync for rmw operation.
11165     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11166   }
11167   return nullptr;
11168 }
11169 
11170 MachineBasicBlock *
11171 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11172                                     unsigned AtomicSize,
11173                                     unsigned BinOpcode,
11174                                     unsigned CmpOpcode,
11175                                     unsigned CmpPred) const {
11176   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11177   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11178 
11179   auto LoadMnemonic = PPC::LDARX;
11180   auto StoreMnemonic = PPC::STDCX;
11181   switch (AtomicSize) {
11182   default:
11183     llvm_unreachable("Unexpected size of atomic entity");
11184   case 1:
11185     LoadMnemonic = PPC::LBARX;
11186     StoreMnemonic = PPC::STBCX;
11187     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11188     break;
11189   case 2:
11190     LoadMnemonic = PPC::LHARX;
11191     StoreMnemonic = PPC::STHCX;
11192     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11193     break;
11194   case 4:
11195     LoadMnemonic = PPC::LWARX;
11196     StoreMnemonic = PPC::STWCX;
11197     break;
11198   case 8:
11199     LoadMnemonic = PPC::LDARX;
11200     StoreMnemonic = PPC::STDCX;
11201     break;
11202   }
11203 
11204   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11205   MachineFunction *F = BB->getParent();
11206   MachineFunction::iterator It = ++BB->getIterator();
11207 
11208   Register dest = MI.getOperand(0).getReg();
11209   Register ptrA = MI.getOperand(1).getReg();
11210   Register ptrB = MI.getOperand(2).getReg();
11211   Register incr = MI.getOperand(3).getReg();
11212   DebugLoc dl = MI.getDebugLoc();
11213 
11214   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11215   MachineBasicBlock *loop2MBB =
11216     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11217   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11218   F->insert(It, loopMBB);
11219   if (CmpOpcode)
11220     F->insert(It, loop2MBB);
11221   F->insert(It, exitMBB);
11222   exitMBB->splice(exitMBB->begin(), BB,
11223                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11224   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11225 
11226   MachineRegisterInfo &RegInfo = F->getRegInfo();
11227   Register TmpReg = (!BinOpcode) ? incr :
11228     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11229                                            : &PPC::GPRCRegClass);
11230 
11231   //  thisMBB:
11232   //   ...
11233   //   fallthrough --> loopMBB
11234   BB->addSuccessor(loopMBB);
11235 
11236   //  loopMBB:
11237   //   l[wd]arx dest, ptr
11238   //   add r0, dest, incr
11239   //   st[wd]cx. r0, ptr
11240   //   bne- loopMBB
11241   //   fallthrough --> exitMBB
11242 
11243   // For max/min...
11244   //  loopMBB:
11245   //   l[wd]arx dest, ptr
11246   //   cmpl?[wd] incr, dest
11247   //   bgt exitMBB
11248   //  loop2MBB:
11249   //   st[wd]cx. dest, ptr
11250   //   bne- loopMBB
11251   //   fallthrough --> exitMBB
11252 
11253   BB = loopMBB;
11254   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11255     .addReg(ptrA).addReg(ptrB);
11256   if (BinOpcode)
11257     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11258   if (CmpOpcode) {
11259     // Signed comparisons of byte or halfword values must be sign-extended.
11260     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11261       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11262       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11263               ExtReg).addReg(dest);
11264       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11265         .addReg(incr).addReg(ExtReg);
11266     } else
11267       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11268         .addReg(incr).addReg(dest);
11269 
11270     BuildMI(BB, dl, TII->get(PPC::BCC))
11271       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11272     BB->addSuccessor(loop2MBB);
11273     BB->addSuccessor(exitMBB);
11274     BB = loop2MBB;
11275   }
11276   BuildMI(BB, dl, TII->get(StoreMnemonic))
11277     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11278   BuildMI(BB, dl, TII->get(PPC::BCC))
11279     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11280   BB->addSuccessor(loopMBB);
11281   BB->addSuccessor(exitMBB);
11282 
11283   //  exitMBB:
11284   //   ...
11285   BB = exitMBB;
11286   return BB;
11287 }
11288 
11289 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11290     MachineInstr &MI, MachineBasicBlock *BB,
11291     bool is8bit, // operation
11292     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11293   // If we support part-word atomic mnemonics, just use them
11294   if (Subtarget.hasPartwordAtomics())
11295     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11296                             CmpPred);
11297 
11298   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11299   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11300   // In 64 bit mode we have to use 64 bits for addresses, even though the
11301   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11302   // registers without caring whether they're 32 or 64, but here we're
11303   // doing actual arithmetic on the addresses.
11304   bool is64bit = Subtarget.isPPC64();
11305   bool isLittleEndian = Subtarget.isLittleEndian();
11306   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11307 
11308   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11309   MachineFunction *F = BB->getParent();
11310   MachineFunction::iterator It = ++BB->getIterator();
11311 
11312   Register dest = MI.getOperand(0).getReg();
11313   Register ptrA = MI.getOperand(1).getReg();
11314   Register ptrB = MI.getOperand(2).getReg();
11315   Register incr = MI.getOperand(3).getReg();
11316   DebugLoc dl = MI.getDebugLoc();
11317 
11318   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11319   MachineBasicBlock *loop2MBB =
11320       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11321   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11322   F->insert(It, loopMBB);
11323   if (CmpOpcode)
11324     F->insert(It, loop2MBB);
11325   F->insert(It, exitMBB);
11326   exitMBB->splice(exitMBB->begin(), BB,
11327                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11328   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11329 
11330   MachineRegisterInfo &RegInfo = F->getRegInfo();
11331   const TargetRegisterClass *RC =
11332       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11333   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11334 
11335   Register PtrReg = RegInfo.createVirtualRegister(RC);
11336   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11337   Register ShiftReg =
11338       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11339   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11340   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11341   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11342   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11343   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11344   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11345   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11346   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11347   Register Ptr1Reg;
11348   Register TmpReg =
11349       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11350 
11351   //  thisMBB:
11352   //   ...
11353   //   fallthrough --> loopMBB
11354   BB->addSuccessor(loopMBB);
11355 
11356   // The 4-byte load must be aligned, while a char or short may be
11357   // anywhere in the word.  Hence all this nasty bookkeeping code.
11358   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11359   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11360   //   xori shift, shift1, 24 [16]
11361   //   rlwinm ptr, ptr1, 0, 0, 29
11362   //   slw incr2, incr, shift
11363   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11364   //   slw mask, mask2, shift
11365   //  loopMBB:
11366   //   lwarx tmpDest, ptr
11367   //   add tmp, tmpDest, incr2
11368   //   andc tmp2, tmpDest, mask
11369   //   and tmp3, tmp, mask
11370   //   or tmp4, tmp3, tmp2
11371   //   stwcx. tmp4, ptr
11372   //   bne- loopMBB
11373   //   fallthrough --> exitMBB
11374   //   srw dest, tmpDest, shift
11375   if (ptrA != ZeroReg) {
11376     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11377     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11378         .addReg(ptrA)
11379         .addReg(ptrB);
11380   } else {
11381     Ptr1Reg = ptrB;
11382   }
11383   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11384   // mode.
11385   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11386       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11387       .addImm(3)
11388       .addImm(27)
11389       .addImm(is8bit ? 28 : 27);
11390   if (!isLittleEndian)
11391     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11392         .addReg(Shift1Reg)
11393         .addImm(is8bit ? 24 : 16);
11394   if (is64bit)
11395     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11396         .addReg(Ptr1Reg)
11397         .addImm(0)
11398         .addImm(61);
11399   else
11400     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11401         .addReg(Ptr1Reg)
11402         .addImm(0)
11403         .addImm(0)
11404         .addImm(29);
11405   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11406   if (is8bit)
11407     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11408   else {
11409     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11410     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11411         .addReg(Mask3Reg)
11412         .addImm(65535);
11413   }
11414   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11415       .addReg(Mask2Reg)
11416       .addReg(ShiftReg);
11417 
11418   BB = loopMBB;
11419   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11420       .addReg(ZeroReg)
11421       .addReg(PtrReg);
11422   if (BinOpcode)
11423     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11424         .addReg(Incr2Reg)
11425         .addReg(TmpDestReg);
11426   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11427       .addReg(TmpDestReg)
11428       .addReg(MaskReg);
11429   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11430   if (CmpOpcode) {
11431     // For unsigned comparisons, we can directly compare the shifted values.
11432     // For signed comparisons we shift and sign extend.
11433     Register SReg = RegInfo.createVirtualRegister(GPRC);
11434     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11435         .addReg(TmpDestReg)
11436         .addReg(MaskReg);
11437     unsigned ValueReg = SReg;
11438     unsigned CmpReg = Incr2Reg;
11439     if (CmpOpcode == PPC::CMPW) {
11440       ValueReg = RegInfo.createVirtualRegister(GPRC);
11441       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11442           .addReg(SReg)
11443           .addReg(ShiftReg);
11444       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11445       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11446           .addReg(ValueReg);
11447       ValueReg = ValueSReg;
11448       CmpReg = incr;
11449     }
11450     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11451         .addReg(CmpReg)
11452         .addReg(ValueReg);
11453     BuildMI(BB, dl, TII->get(PPC::BCC))
11454         .addImm(CmpPred)
11455         .addReg(PPC::CR0)
11456         .addMBB(exitMBB);
11457     BB->addSuccessor(loop2MBB);
11458     BB->addSuccessor(exitMBB);
11459     BB = loop2MBB;
11460   }
11461   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11462   BuildMI(BB, dl, TII->get(PPC::STWCX))
11463       .addReg(Tmp4Reg)
11464       .addReg(ZeroReg)
11465       .addReg(PtrReg);
11466   BuildMI(BB, dl, TII->get(PPC::BCC))
11467       .addImm(PPC::PRED_NE)
11468       .addReg(PPC::CR0)
11469       .addMBB(loopMBB);
11470   BB->addSuccessor(loopMBB);
11471   BB->addSuccessor(exitMBB);
11472 
11473   //  exitMBB:
11474   //   ...
11475   BB = exitMBB;
11476   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11477       .addReg(TmpDestReg)
11478       .addReg(ShiftReg);
11479   return BB;
11480 }
11481 
11482 llvm::MachineBasicBlock *
11483 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11484                                     MachineBasicBlock *MBB) const {
11485   DebugLoc DL = MI.getDebugLoc();
11486   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11487   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11488 
11489   MachineFunction *MF = MBB->getParent();
11490   MachineRegisterInfo &MRI = MF->getRegInfo();
11491 
11492   const BasicBlock *BB = MBB->getBasicBlock();
11493   MachineFunction::iterator I = ++MBB->getIterator();
11494 
11495   Register DstReg = MI.getOperand(0).getReg();
11496   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11497   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11498   Register mainDstReg = MRI.createVirtualRegister(RC);
11499   Register restoreDstReg = MRI.createVirtualRegister(RC);
11500 
11501   MVT PVT = getPointerTy(MF->getDataLayout());
11502   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11503          "Invalid Pointer Size!");
11504   // For v = setjmp(buf), we generate
11505   //
11506   // thisMBB:
11507   //  SjLjSetup mainMBB
11508   //  bl mainMBB
11509   //  v_restore = 1
11510   //  b sinkMBB
11511   //
11512   // mainMBB:
11513   //  buf[LabelOffset] = LR
11514   //  v_main = 0
11515   //
11516   // sinkMBB:
11517   //  v = phi(main, restore)
11518   //
11519 
11520   MachineBasicBlock *thisMBB = MBB;
11521   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11522   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11523   MF->insert(I, mainMBB);
11524   MF->insert(I, sinkMBB);
11525 
11526   MachineInstrBuilder MIB;
11527 
11528   // Transfer the remainder of BB and its successor edges to sinkMBB.
11529   sinkMBB->splice(sinkMBB->begin(), MBB,
11530                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11531   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11532 
11533   // Note that the structure of the jmp_buf used here is not compatible
11534   // with that used by libc, and is not designed to be. Specifically, it
11535   // stores only those 'reserved' registers that LLVM does not otherwise
11536   // understand how to spill. Also, by convention, by the time this
11537   // intrinsic is called, Clang has already stored the frame address in the
11538   // first slot of the buffer and stack address in the third. Following the
11539   // X86 target code, we'll store the jump address in the second slot. We also
11540   // need to save the TOC pointer (R2) to handle jumps between shared
11541   // libraries, and that will be stored in the fourth slot. The thread
11542   // identifier (R13) is not affected.
11543 
11544   // thisMBB:
11545   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11546   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11547   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11548 
11549   // Prepare IP either in reg.
11550   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11551   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11552   Register BufReg = MI.getOperand(1).getReg();
11553 
11554   if (Subtarget.is64BitELFABI()) {
11555     setUsesTOCBasePtr(*MBB->getParent());
11556     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11557               .addReg(PPC::X2)
11558               .addImm(TOCOffset)
11559               .addReg(BufReg)
11560               .cloneMemRefs(MI);
11561   }
11562 
11563   // Naked functions never have a base pointer, and so we use r1. For all
11564   // other functions, this decision must be delayed until during PEI.
11565   unsigned BaseReg;
11566   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11567     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11568   else
11569     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11570 
11571   MIB = BuildMI(*thisMBB, MI, DL,
11572                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11573             .addReg(BaseReg)
11574             .addImm(BPOffset)
11575             .addReg(BufReg)
11576             .cloneMemRefs(MI);
11577 
11578   // Setup
11579   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11580   MIB.addRegMask(TRI->getNoPreservedMask());
11581 
11582   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11583 
11584   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11585           .addMBB(mainMBB);
11586   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11587 
11588   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11589   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11590 
11591   // mainMBB:
11592   //  mainDstReg = 0
11593   MIB =
11594       BuildMI(mainMBB, DL,
11595               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11596 
11597   // Store IP
11598   if (Subtarget.isPPC64()) {
11599     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11600             .addReg(LabelReg)
11601             .addImm(LabelOffset)
11602             .addReg(BufReg);
11603   } else {
11604     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11605             .addReg(LabelReg)
11606             .addImm(LabelOffset)
11607             .addReg(BufReg);
11608   }
11609   MIB.cloneMemRefs(MI);
11610 
11611   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11612   mainMBB->addSuccessor(sinkMBB);
11613 
11614   // sinkMBB:
11615   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11616           TII->get(PPC::PHI), DstReg)
11617     .addReg(mainDstReg).addMBB(mainMBB)
11618     .addReg(restoreDstReg).addMBB(thisMBB);
11619 
11620   MI.eraseFromParent();
11621   return sinkMBB;
11622 }
11623 
11624 MachineBasicBlock *
11625 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11626                                      MachineBasicBlock *MBB) const {
11627   DebugLoc DL = MI.getDebugLoc();
11628   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11629 
11630   MachineFunction *MF = MBB->getParent();
11631   MachineRegisterInfo &MRI = MF->getRegInfo();
11632 
11633   MVT PVT = getPointerTy(MF->getDataLayout());
11634   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11635          "Invalid Pointer Size!");
11636 
11637   const TargetRegisterClass *RC =
11638     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11639   Register Tmp = MRI.createVirtualRegister(RC);
11640   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11641   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11642   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11643   unsigned BP =
11644       (PVT == MVT::i64)
11645           ? PPC::X30
11646           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11647                                                               : PPC::R30);
11648 
11649   MachineInstrBuilder MIB;
11650 
11651   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11652   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11653   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11654   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11655 
11656   Register BufReg = MI.getOperand(0).getReg();
11657 
11658   // Reload FP (the jumped-to function may not have had a
11659   // frame pointer, and if so, then its r31 will be restored
11660   // as necessary).
11661   if (PVT == MVT::i64) {
11662     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11663             .addImm(0)
11664             .addReg(BufReg);
11665   } else {
11666     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11667             .addImm(0)
11668             .addReg(BufReg);
11669   }
11670   MIB.cloneMemRefs(MI);
11671 
11672   // Reload IP
11673   if (PVT == MVT::i64) {
11674     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11675             .addImm(LabelOffset)
11676             .addReg(BufReg);
11677   } else {
11678     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11679             .addImm(LabelOffset)
11680             .addReg(BufReg);
11681   }
11682   MIB.cloneMemRefs(MI);
11683 
11684   // Reload SP
11685   if (PVT == MVT::i64) {
11686     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11687             .addImm(SPOffset)
11688             .addReg(BufReg);
11689   } else {
11690     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11691             .addImm(SPOffset)
11692             .addReg(BufReg);
11693   }
11694   MIB.cloneMemRefs(MI);
11695 
11696   // Reload BP
11697   if (PVT == MVT::i64) {
11698     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11699             .addImm(BPOffset)
11700             .addReg(BufReg);
11701   } else {
11702     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11703             .addImm(BPOffset)
11704             .addReg(BufReg);
11705   }
11706   MIB.cloneMemRefs(MI);
11707 
11708   // Reload TOC
11709   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11710     setUsesTOCBasePtr(*MBB->getParent());
11711     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11712               .addImm(TOCOffset)
11713               .addReg(BufReg)
11714               .cloneMemRefs(MI);
11715   }
11716 
11717   // Jump
11718   BuildMI(*MBB, MI, DL,
11719           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11720   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11721 
11722   MI.eraseFromParent();
11723   return MBB;
11724 }
11725 
11726 MachineBasicBlock *
11727 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11728                                                MachineBasicBlock *BB) const {
11729   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11730       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11731     if (Subtarget.is64BitELFABI() &&
11732         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11733         !Subtarget.isUsingPCRelativeCalls()) {
11734       // Call lowering should have added an r2 operand to indicate a dependence
11735       // on the TOC base pointer value. It can't however, because there is no
11736       // way to mark the dependence as implicit there, and so the stackmap code
11737       // will confuse it with a regular operand. Instead, add the dependence
11738       // here.
11739       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11740     }
11741 
11742     return emitPatchPoint(MI, BB);
11743   }
11744 
11745   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11746       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11747     return emitEHSjLjSetJmp(MI, BB);
11748   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11749              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11750     return emitEHSjLjLongJmp(MI, BB);
11751   }
11752 
11753   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11754 
11755   // To "insert" these instructions we actually have to insert their
11756   // control-flow patterns.
11757   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11758   MachineFunction::iterator It = ++BB->getIterator();
11759 
11760   MachineFunction *F = BB->getParent();
11761 
11762   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11763       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11764       MI.getOpcode() == PPC::SELECT_I8) {
11765     SmallVector<MachineOperand, 2> Cond;
11766     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11767         MI.getOpcode() == PPC::SELECT_CC_I8)
11768       Cond.push_back(MI.getOperand(4));
11769     else
11770       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11771     Cond.push_back(MI.getOperand(1));
11772 
11773     DebugLoc dl = MI.getDebugLoc();
11774     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11775                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11776   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11777              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11778              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11779              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11780              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11781              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11782              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11783              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11784              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11785              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11786              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11787              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11788              MI.getOpcode() == PPC::SELECT_F4 ||
11789              MI.getOpcode() == PPC::SELECT_F8 ||
11790              MI.getOpcode() == PPC::SELECT_F16 ||
11791              MI.getOpcode() == PPC::SELECT_QFRC ||
11792              MI.getOpcode() == PPC::SELECT_QSRC ||
11793              MI.getOpcode() == PPC::SELECT_QBRC ||
11794              MI.getOpcode() == PPC::SELECT_SPE ||
11795              MI.getOpcode() == PPC::SELECT_SPE4 ||
11796              MI.getOpcode() == PPC::SELECT_VRRC ||
11797              MI.getOpcode() == PPC::SELECT_VSFRC ||
11798              MI.getOpcode() == PPC::SELECT_VSSRC ||
11799              MI.getOpcode() == PPC::SELECT_VSRC) {
11800     // The incoming instruction knows the destination vreg to set, the
11801     // condition code register to branch on, the true/false values to
11802     // select between, and a branch opcode to use.
11803 
11804     //  thisMBB:
11805     //  ...
11806     //   TrueVal = ...
11807     //   cmpTY ccX, r1, r2
11808     //   bCC copy1MBB
11809     //   fallthrough --> copy0MBB
11810     MachineBasicBlock *thisMBB = BB;
11811     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11812     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11813     DebugLoc dl = MI.getDebugLoc();
11814     F->insert(It, copy0MBB);
11815     F->insert(It, sinkMBB);
11816 
11817     // Transfer the remainder of BB and its successor edges to sinkMBB.
11818     sinkMBB->splice(sinkMBB->begin(), BB,
11819                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11820     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11821 
11822     // Next, add the true and fallthrough blocks as its successors.
11823     BB->addSuccessor(copy0MBB);
11824     BB->addSuccessor(sinkMBB);
11825 
11826     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11827         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11828         MI.getOpcode() == PPC::SELECT_F16 ||
11829         MI.getOpcode() == PPC::SELECT_SPE4 ||
11830         MI.getOpcode() == PPC::SELECT_SPE ||
11831         MI.getOpcode() == PPC::SELECT_QFRC ||
11832         MI.getOpcode() == PPC::SELECT_QSRC ||
11833         MI.getOpcode() == PPC::SELECT_QBRC ||
11834         MI.getOpcode() == PPC::SELECT_VRRC ||
11835         MI.getOpcode() == PPC::SELECT_VSFRC ||
11836         MI.getOpcode() == PPC::SELECT_VSSRC ||
11837         MI.getOpcode() == PPC::SELECT_VSRC) {
11838       BuildMI(BB, dl, TII->get(PPC::BC))
11839           .addReg(MI.getOperand(1).getReg())
11840           .addMBB(sinkMBB);
11841     } else {
11842       unsigned SelectPred = MI.getOperand(4).getImm();
11843       BuildMI(BB, dl, TII->get(PPC::BCC))
11844           .addImm(SelectPred)
11845           .addReg(MI.getOperand(1).getReg())
11846           .addMBB(sinkMBB);
11847     }
11848 
11849     //  copy0MBB:
11850     //   %FalseValue = ...
11851     //   # fallthrough to sinkMBB
11852     BB = copy0MBB;
11853 
11854     // Update machine-CFG edges
11855     BB->addSuccessor(sinkMBB);
11856 
11857     //  sinkMBB:
11858     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11859     //  ...
11860     BB = sinkMBB;
11861     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11862         .addReg(MI.getOperand(3).getReg())
11863         .addMBB(copy0MBB)
11864         .addReg(MI.getOperand(2).getReg())
11865         .addMBB(thisMBB);
11866   } else if (MI.getOpcode() == PPC::ReadTB) {
11867     // To read the 64-bit time-base register on a 32-bit target, we read the
11868     // two halves. Should the counter have wrapped while it was being read, we
11869     // need to try again.
11870     // ...
11871     // readLoop:
11872     // mfspr Rx,TBU # load from TBU
11873     // mfspr Ry,TB  # load from TB
11874     // mfspr Rz,TBU # load from TBU
11875     // cmpw crX,Rx,Rz # check if 'old'='new'
11876     // bne readLoop   # branch if they're not equal
11877     // ...
11878 
11879     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11880     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11881     DebugLoc dl = MI.getDebugLoc();
11882     F->insert(It, readMBB);
11883     F->insert(It, sinkMBB);
11884 
11885     // Transfer the remainder of BB and its successor edges to sinkMBB.
11886     sinkMBB->splice(sinkMBB->begin(), BB,
11887                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11888     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11889 
11890     BB->addSuccessor(readMBB);
11891     BB = readMBB;
11892 
11893     MachineRegisterInfo &RegInfo = F->getRegInfo();
11894     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11895     Register LoReg = MI.getOperand(0).getReg();
11896     Register HiReg = MI.getOperand(1).getReg();
11897 
11898     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11899     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11900     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11901 
11902     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11903 
11904     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11905         .addReg(HiReg)
11906         .addReg(ReadAgainReg);
11907     BuildMI(BB, dl, TII->get(PPC::BCC))
11908         .addImm(PPC::PRED_NE)
11909         .addReg(CmpReg)
11910         .addMBB(readMBB);
11911 
11912     BB->addSuccessor(readMBB);
11913     BB->addSuccessor(sinkMBB);
11914   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11915     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11916   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11917     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11918   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11919     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11920   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11921     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11922 
11923   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11924     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11925   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11926     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11927   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11928     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11929   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11930     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11931 
11932   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11933     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11934   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11935     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11936   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11937     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11938   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11939     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11940 
11941   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11942     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11943   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11944     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11945   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11946     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11947   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11948     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11949 
11950   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11951     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11952   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11953     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11954   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11955     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11956   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11957     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11958 
11959   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11960     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11961   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11962     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11963   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11964     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11965   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11966     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11967 
11968   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11969     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11970   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11971     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11972   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11973     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11974   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11975     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11976 
11977   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11978     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11979   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11980     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11981   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11982     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11983   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11984     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11985 
11986   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11987     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11988   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11989     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11990   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11991     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11992   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11993     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11994 
11995   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11996     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11997   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11998     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11999   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12000     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12001   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12002     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12003 
12004   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12005     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12006   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12007     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12008   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12009     BB = EmitAtomicBinary(MI, BB, 4, 0);
12010   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12011     BB = EmitAtomicBinary(MI, BB, 8, 0);
12012   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12013            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12014            (Subtarget.hasPartwordAtomics() &&
12015             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12016            (Subtarget.hasPartwordAtomics() &&
12017             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12018     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12019 
12020     auto LoadMnemonic = PPC::LDARX;
12021     auto StoreMnemonic = PPC::STDCX;
12022     switch (MI.getOpcode()) {
12023     default:
12024       llvm_unreachable("Compare and swap of unknown size");
12025     case PPC::ATOMIC_CMP_SWAP_I8:
12026       LoadMnemonic = PPC::LBARX;
12027       StoreMnemonic = PPC::STBCX;
12028       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12029       break;
12030     case PPC::ATOMIC_CMP_SWAP_I16:
12031       LoadMnemonic = PPC::LHARX;
12032       StoreMnemonic = PPC::STHCX;
12033       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12034       break;
12035     case PPC::ATOMIC_CMP_SWAP_I32:
12036       LoadMnemonic = PPC::LWARX;
12037       StoreMnemonic = PPC::STWCX;
12038       break;
12039     case PPC::ATOMIC_CMP_SWAP_I64:
12040       LoadMnemonic = PPC::LDARX;
12041       StoreMnemonic = PPC::STDCX;
12042       break;
12043     }
12044     Register dest = MI.getOperand(0).getReg();
12045     Register ptrA = MI.getOperand(1).getReg();
12046     Register ptrB = MI.getOperand(2).getReg();
12047     Register oldval = MI.getOperand(3).getReg();
12048     Register newval = MI.getOperand(4).getReg();
12049     DebugLoc dl = MI.getDebugLoc();
12050 
12051     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12052     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12053     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12054     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12055     F->insert(It, loop1MBB);
12056     F->insert(It, loop2MBB);
12057     F->insert(It, midMBB);
12058     F->insert(It, exitMBB);
12059     exitMBB->splice(exitMBB->begin(), BB,
12060                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12061     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12062 
12063     //  thisMBB:
12064     //   ...
12065     //   fallthrough --> loopMBB
12066     BB->addSuccessor(loop1MBB);
12067 
12068     // loop1MBB:
12069     //   l[bhwd]arx dest, ptr
12070     //   cmp[wd] dest, oldval
12071     //   bne- midMBB
12072     // loop2MBB:
12073     //   st[bhwd]cx. newval, ptr
12074     //   bne- loopMBB
12075     //   b exitBB
12076     // midMBB:
12077     //   st[bhwd]cx. dest, ptr
12078     // exitBB:
12079     BB = loop1MBB;
12080     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12081     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12082         .addReg(oldval)
12083         .addReg(dest);
12084     BuildMI(BB, dl, TII->get(PPC::BCC))
12085         .addImm(PPC::PRED_NE)
12086         .addReg(PPC::CR0)
12087         .addMBB(midMBB);
12088     BB->addSuccessor(loop2MBB);
12089     BB->addSuccessor(midMBB);
12090 
12091     BB = loop2MBB;
12092     BuildMI(BB, dl, TII->get(StoreMnemonic))
12093         .addReg(newval)
12094         .addReg(ptrA)
12095         .addReg(ptrB);
12096     BuildMI(BB, dl, TII->get(PPC::BCC))
12097         .addImm(PPC::PRED_NE)
12098         .addReg(PPC::CR0)
12099         .addMBB(loop1MBB);
12100     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12101     BB->addSuccessor(loop1MBB);
12102     BB->addSuccessor(exitMBB);
12103 
12104     BB = midMBB;
12105     BuildMI(BB, dl, TII->get(StoreMnemonic))
12106         .addReg(dest)
12107         .addReg(ptrA)
12108         .addReg(ptrB);
12109     BB->addSuccessor(exitMBB);
12110 
12111     //  exitMBB:
12112     //   ...
12113     BB = exitMBB;
12114   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12115              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12116     // We must use 64-bit registers for addresses when targeting 64-bit,
12117     // since we're actually doing arithmetic on them.  Other registers
12118     // can be 32-bit.
12119     bool is64bit = Subtarget.isPPC64();
12120     bool isLittleEndian = Subtarget.isLittleEndian();
12121     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12122 
12123     Register dest = MI.getOperand(0).getReg();
12124     Register ptrA = MI.getOperand(1).getReg();
12125     Register ptrB = MI.getOperand(2).getReg();
12126     Register oldval = MI.getOperand(3).getReg();
12127     Register newval = MI.getOperand(4).getReg();
12128     DebugLoc dl = MI.getDebugLoc();
12129 
12130     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12131     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12132     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12133     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12134     F->insert(It, loop1MBB);
12135     F->insert(It, loop2MBB);
12136     F->insert(It, midMBB);
12137     F->insert(It, exitMBB);
12138     exitMBB->splice(exitMBB->begin(), BB,
12139                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12140     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12141 
12142     MachineRegisterInfo &RegInfo = F->getRegInfo();
12143     const TargetRegisterClass *RC =
12144         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12145     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12146 
12147     Register PtrReg = RegInfo.createVirtualRegister(RC);
12148     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12149     Register ShiftReg =
12150         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12151     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12152     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12153     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12154     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12155     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12156     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12157     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12158     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12159     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12160     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12161     Register Ptr1Reg;
12162     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12163     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12164     //  thisMBB:
12165     //   ...
12166     //   fallthrough --> loopMBB
12167     BB->addSuccessor(loop1MBB);
12168 
12169     // The 4-byte load must be aligned, while a char or short may be
12170     // anywhere in the word.  Hence all this nasty bookkeeping code.
12171     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12172     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12173     //   xori shift, shift1, 24 [16]
12174     //   rlwinm ptr, ptr1, 0, 0, 29
12175     //   slw newval2, newval, shift
12176     //   slw oldval2, oldval,shift
12177     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12178     //   slw mask, mask2, shift
12179     //   and newval3, newval2, mask
12180     //   and oldval3, oldval2, mask
12181     // loop1MBB:
12182     //   lwarx tmpDest, ptr
12183     //   and tmp, tmpDest, mask
12184     //   cmpw tmp, oldval3
12185     //   bne- midMBB
12186     // loop2MBB:
12187     //   andc tmp2, tmpDest, mask
12188     //   or tmp4, tmp2, newval3
12189     //   stwcx. tmp4, ptr
12190     //   bne- loop1MBB
12191     //   b exitBB
12192     // midMBB:
12193     //   stwcx. tmpDest, ptr
12194     // exitBB:
12195     //   srw dest, tmpDest, shift
12196     if (ptrA != ZeroReg) {
12197       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12198       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12199           .addReg(ptrA)
12200           .addReg(ptrB);
12201     } else {
12202       Ptr1Reg = ptrB;
12203     }
12204 
12205     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12206     // mode.
12207     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12208         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12209         .addImm(3)
12210         .addImm(27)
12211         .addImm(is8bit ? 28 : 27);
12212     if (!isLittleEndian)
12213       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12214           .addReg(Shift1Reg)
12215           .addImm(is8bit ? 24 : 16);
12216     if (is64bit)
12217       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12218           .addReg(Ptr1Reg)
12219           .addImm(0)
12220           .addImm(61);
12221     else
12222       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12223           .addReg(Ptr1Reg)
12224           .addImm(0)
12225           .addImm(0)
12226           .addImm(29);
12227     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12228         .addReg(newval)
12229         .addReg(ShiftReg);
12230     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12231         .addReg(oldval)
12232         .addReg(ShiftReg);
12233     if (is8bit)
12234       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12235     else {
12236       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12237       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12238           .addReg(Mask3Reg)
12239           .addImm(65535);
12240     }
12241     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12242         .addReg(Mask2Reg)
12243         .addReg(ShiftReg);
12244     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12245         .addReg(NewVal2Reg)
12246         .addReg(MaskReg);
12247     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12248         .addReg(OldVal2Reg)
12249         .addReg(MaskReg);
12250 
12251     BB = loop1MBB;
12252     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12253         .addReg(ZeroReg)
12254         .addReg(PtrReg);
12255     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12256         .addReg(TmpDestReg)
12257         .addReg(MaskReg);
12258     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12259         .addReg(TmpReg)
12260         .addReg(OldVal3Reg);
12261     BuildMI(BB, dl, TII->get(PPC::BCC))
12262         .addImm(PPC::PRED_NE)
12263         .addReg(PPC::CR0)
12264         .addMBB(midMBB);
12265     BB->addSuccessor(loop2MBB);
12266     BB->addSuccessor(midMBB);
12267 
12268     BB = loop2MBB;
12269     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12270         .addReg(TmpDestReg)
12271         .addReg(MaskReg);
12272     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12273         .addReg(Tmp2Reg)
12274         .addReg(NewVal3Reg);
12275     BuildMI(BB, dl, TII->get(PPC::STWCX))
12276         .addReg(Tmp4Reg)
12277         .addReg(ZeroReg)
12278         .addReg(PtrReg);
12279     BuildMI(BB, dl, TII->get(PPC::BCC))
12280         .addImm(PPC::PRED_NE)
12281         .addReg(PPC::CR0)
12282         .addMBB(loop1MBB);
12283     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12284     BB->addSuccessor(loop1MBB);
12285     BB->addSuccessor(exitMBB);
12286 
12287     BB = midMBB;
12288     BuildMI(BB, dl, TII->get(PPC::STWCX))
12289         .addReg(TmpDestReg)
12290         .addReg(ZeroReg)
12291         .addReg(PtrReg);
12292     BB->addSuccessor(exitMBB);
12293 
12294     //  exitMBB:
12295     //   ...
12296     BB = exitMBB;
12297     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12298         .addReg(TmpReg)
12299         .addReg(ShiftReg);
12300   } else if (MI.getOpcode() == PPC::FADDrtz) {
12301     // This pseudo performs an FADD with rounding mode temporarily forced
12302     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12303     // is not modeled at the SelectionDAG level.
12304     Register Dest = MI.getOperand(0).getReg();
12305     Register Src1 = MI.getOperand(1).getReg();
12306     Register Src2 = MI.getOperand(2).getReg();
12307     DebugLoc dl = MI.getDebugLoc();
12308 
12309     MachineRegisterInfo &RegInfo = F->getRegInfo();
12310     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12311 
12312     // Save FPSCR value.
12313     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12314 
12315     // Set rounding mode to round-to-zero.
12316     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
12317     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
12318 
12319     // Perform addition.
12320     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
12321 
12322     // Restore FPSCR value.
12323     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12324   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12325              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12326              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12327              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12328     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12329                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12330                           ? PPC::ANDI8_rec
12331                           : PPC::ANDI_rec;
12332     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12333                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12334 
12335     MachineRegisterInfo &RegInfo = F->getRegInfo();
12336     Register Dest = RegInfo.createVirtualRegister(
12337         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12338 
12339     DebugLoc Dl = MI.getDebugLoc();
12340     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12341         .addReg(MI.getOperand(1).getReg())
12342         .addImm(1);
12343     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12344             MI.getOperand(0).getReg())
12345         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12346   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12347     DebugLoc Dl = MI.getDebugLoc();
12348     MachineRegisterInfo &RegInfo = F->getRegInfo();
12349     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12350     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12351     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12352             MI.getOperand(0).getReg())
12353         .addReg(CRReg);
12354   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12355     DebugLoc Dl = MI.getDebugLoc();
12356     unsigned Imm = MI.getOperand(1).getImm();
12357     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12358     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12359             MI.getOperand(0).getReg())
12360         .addReg(PPC::CR0EQ);
12361   } else if (MI.getOpcode() == PPC::SETRNDi) {
12362     DebugLoc dl = MI.getDebugLoc();
12363     Register OldFPSCRReg = MI.getOperand(0).getReg();
12364 
12365     // Save FPSCR value.
12366     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12367 
12368     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12369     // the following settings:
12370     //   00 Round to nearest
12371     //   01 Round to 0
12372     //   10 Round to +inf
12373     //   11 Round to -inf
12374 
12375     // When the operand is immediate, using the two least significant bits of
12376     // the immediate to set the bits 62:63 of FPSCR.
12377     unsigned Mode = MI.getOperand(1).getImm();
12378     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12379       .addImm(31);
12380 
12381     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12382       .addImm(30);
12383   } else if (MI.getOpcode() == PPC::SETRND) {
12384     DebugLoc dl = MI.getDebugLoc();
12385 
12386     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12387     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12388     // If the target doesn't have DirectMove, we should use stack to do the
12389     // conversion, because the target doesn't have the instructions like mtvsrd
12390     // or mfvsrd to do this conversion directly.
12391     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12392       if (Subtarget.hasDirectMove()) {
12393         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12394           .addReg(SrcReg);
12395       } else {
12396         // Use stack to do the register copy.
12397         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12398         MachineRegisterInfo &RegInfo = F->getRegInfo();
12399         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12400         if (RC == &PPC::F8RCRegClass) {
12401           // Copy register from F8RCRegClass to G8RCRegclass.
12402           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12403                  "Unsupported RegClass.");
12404 
12405           StoreOp = PPC::STFD;
12406           LoadOp = PPC::LD;
12407         } else {
12408           // Copy register from G8RCRegClass to F8RCRegclass.
12409           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12410                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12411                  "Unsupported RegClass.");
12412         }
12413 
12414         MachineFrameInfo &MFI = F->getFrameInfo();
12415         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12416 
12417         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12418             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12419             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12420             MFI.getObjectAlign(FrameIdx));
12421 
12422         // Store the SrcReg into the stack.
12423         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12424           .addReg(SrcReg)
12425           .addImm(0)
12426           .addFrameIndex(FrameIdx)
12427           .addMemOperand(MMOStore);
12428 
12429         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12430             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12431             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12432             MFI.getObjectAlign(FrameIdx));
12433 
12434         // Load from the stack where SrcReg is stored, and save to DestReg,
12435         // so we have done the RegClass conversion from RegClass::SrcReg to
12436         // RegClass::DestReg.
12437         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12438           .addImm(0)
12439           .addFrameIndex(FrameIdx)
12440           .addMemOperand(MMOLoad);
12441       }
12442     };
12443 
12444     Register OldFPSCRReg = MI.getOperand(0).getReg();
12445 
12446     // Save FPSCR value.
12447     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12448 
12449     // When the operand is gprc register, use two least significant bits of the
12450     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12451     //
12452     // copy OldFPSCRTmpReg, OldFPSCRReg
12453     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12454     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12455     // copy NewFPSCRReg, NewFPSCRTmpReg
12456     // mtfsf 255, NewFPSCRReg
12457     MachineOperand SrcOp = MI.getOperand(1);
12458     MachineRegisterInfo &RegInfo = F->getRegInfo();
12459     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12460 
12461     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12462 
12463     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12464     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12465 
12466     // The first operand of INSERT_SUBREG should be a register which has
12467     // subregisters, we only care about its RegClass, so we should use an
12468     // IMPLICIT_DEF register.
12469     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12470     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12471       .addReg(ImDefReg)
12472       .add(SrcOp)
12473       .addImm(1);
12474 
12475     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12476     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12477       .addReg(OldFPSCRTmpReg)
12478       .addReg(ExtSrcReg)
12479       .addImm(0)
12480       .addImm(62);
12481 
12482     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12483     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12484 
12485     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12486     // bits of FPSCR.
12487     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12488       .addImm(255)
12489       .addReg(NewFPSCRReg)
12490       .addImm(0)
12491       .addImm(0);
12492   } else {
12493     llvm_unreachable("Unexpected instr type to insert");
12494   }
12495 
12496   MI.eraseFromParent(); // The pseudo instruction is gone now.
12497   return BB;
12498 }
12499 
12500 //===----------------------------------------------------------------------===//
12501 // Target Optimization Hooks
12502 //===----------------------------------------------------------------------===//
12503 
12504 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12505   // For the estimates, convergence is quadratic, so we essentially double the
12506   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12507   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12508   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12509   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12510   if (VT.getScalarType() == MVT::f64)
12511     RefinementSteps++;
12512   return RefinementSteps;
12513 }
12514 
12515 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12516                                            int Enabled, int &RefinementSteps,
12517                                            bool &UseOneConstNR,
12518                                            bool Reciprocal) const {
12519   EVT VT = Operand.getValueType();
12520   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12521       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12522       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12523       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12524       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12525       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12526     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12527       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12528 
12529     // The Newton-Raphson computation with a single constant does not provide
12530     // enough accuracy on some CPUs.
12531     UseOneConstNR = !Subtarget.needsTwoConstNR();
12532     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12533   }
12534   return SDValue();
12535 }
12536 
12537 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12538                                             int Enabled,
12539                                             int &RefinementSteps) const {
12540   EVT VT = Operand.getValueType();
12541   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12542       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12543       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12544       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12545       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12546       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12547     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12548       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12549     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12550   }
12551   return SDValue();
12552 }
12553 
12554 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12555   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12556   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12557   // enabled for division), this functionality is redundant with the default
12558   // combiner logic (once the division -> reciprocal/multiply transformation
12559   // has taken place). As a result, this matters more for older cores than for
12560   // newer ones.
12561 
12562   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12563   // reciprocal if there are two or more FDIVs (for embedded cores with only
12564   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12565   switch (Subtarget.getCPUDirective()) {
12566   default:
12567     return 3;
12568   case PPC::DIR_440:
12569   case PPC::DIR_A2:
12570   case PPC::DIR_E500:
12571   case PPC::DIR_E500mc:
12572   case PPC::DIR_E5500:
12573     return 2;
12574   }
12575 }
12576 
12577 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12578 // collapsed, and so we need to look through chains of them.
12579 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12580                                      int64_t& Offset, SelectionDAG &DAG) {
12581   if (DAG.isBaseWithConstantOffset(Loc)) {
12582     Base = Loc.getOperand(0);
12583     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12584 
12585     // The base might itself be a base plus an offset, and if so, accumulate
12586     // that as well.
12587     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12588   }
12589 }
12590 
12591 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12592                             unsigned Bytes, int Dist,
12593                             SelectionDAG &DAG) {
12594   if (VT.getSizeInBits() / 8 != Bytes)
12595     return false;
12596 
12597   SDValue BaseLoc = Base->getBasePtr();
12598   if (Loc.getOpcode() == ISD::FrameIndex) {
12599     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12600       return false;
12601     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12602     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12603     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12604     int FS  = MFI.getObjectSize(FI);
12605     int BFS = MFI.getObjectSize(BFI);
12606     if (FS != BFS || FS != (int)Bytes) return false;
12607     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12608   }
12609 
12610   SDValue Base1 = Loc, Base2 = BaseLoc;
12611   int64_t Offset1 = 0, Offset2 = 0;
12612   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12613   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12614   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12615     return true;
12616 
12617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12618   const GlobalValue *GV1 = nullptr;
12619   const GlobalValue *GV2 = nullptr;
12620   Offset1 = 0;
12621   Offset2 = 0;
12622   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12623   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12624   if (isGA1 && isGA2 && GV1 == GV2)
12625     return Offset1 == (Offset2 + Dist*Bytes);
12626   return false;
12627 }
12628 
12629 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12630 // not enforce equality of the chain operands.
12631 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12632                             unsigned Bytes, int Dist,
12633                             SelectionDAG &DAG) {
12634   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12635     EVT VT = LS->getMemoryVT();
12636     SDValue Loc = LS->getBasePtr();
12637     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12638   }
12639 
12640   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12641     EVT VT;
12642     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12643     default: return false;
12644     case Intrinsic::ppc_qpx_qvlfd:
12645     case Intrinsic::ppc_qpx_qvlfda:
12646       VT = MVT::v4f64;
12647       break;
12648     case Intrinsic::ppc_qpx_qvlfs:
12649     case Intrinsic::ppc_qpx_qvlfsa:
12650       VT = MVT::v4f32;
12651       break;
12652     case Intrinsic::ppc_qpx_qvlfcd:
12653     case Intrinsic::ppc_qpx_qvlfcda:
12654       VT = MVT::v2f64;
12655       break;
12656     case Intrinsic::ppc_qpx_qvlfcs:
12657     case Intrinsic::ppc_qpx_qvlfcsa:
12658       VT = MVT::v2f32;
12659       break;
12660     case Intrinsic::ppc_qpx_qvlfiwa:
12661     case Intrinsic::ppc_qpx_qvlfiwz:
12662     case Intrinsic::ppc_altivec_lvx:
12663     case Intrinsic::ppc_altivec_lvxl:
12664     case Intrinsic::ppc_vsx_lxvw4x:
12665     case Intrinsic::ppc_vsx_lxvw4x_be:
12666       VT = MVT::v4i32;
12667       break;
12668     case Intrinsic::ppc_vsx_lxvd2x:
12669     case Intrinsic::ppc_vsx_lxvd2x_be:
12670       VT = MVT::v2f64;
12671       break;
12672     case Intrinsic::ppc_altivec_lvebx:
12673       VT = MVT::i8;
12674       break;
12675     case Intrinsic::ppc_altivec_lvehx:
12676       VT = MVT::i16;
12677       break;
12678     case Intrinsic::ppc_altivec_lvewx:
12679       VT = MVT::i32;
12680       break;
12681     }
12682 
12683     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12684   }
12685 
12686   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12687     EVT VT;
12688     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12689     default: return false;
12690     case Intrinsic::ppc_qpx_qvstfd:
12691     case Intrinsic::ppc_qpx_qvstfda:
12692       VT = MVT::v4f64;
12693       break;
12694     case Intrinsic::ppc_qpx_qvstfs:
12695     case Intrinsic::ppc_qpx_qvstfsa:
12696       VT = MVT::v4f32;
12697       break;
12698     case Intrinsic::ppc_qpx_qvstfcd:
12699     case Intrinsic::ppc_qpx_qvstfcda:
12700       VT = MVT::v2f64;
12701       break;
12702     case Intrinsic::ppc_qpx_qvstfcs:
12703     case Intrinsic::ppc_qpx_qvstfcsa:
12704       VT = MVT::v2f32;
12705       break;
12706     case Intrinsic::ppc_qpx_qvstfiw:
12707     case Intrinsic::ppc_qpx_qvstfiwa:
12708     case Intrinsic::ppc_altivec_stvx:
12709     case Intrinsic::ppc_altivec_stvxl:
12710     case Intrinsic::ppc_vsx_stxvw4x:
12711       VT = MVT::v4i32;
12712       break;
12713     case Intrinsic::ppc_vsx_stxvd2x:
12714       VT = MVT::v2f64;
12715       break;
12716     case Intrinsic::ppc_vsx_stxvw4x_be:
12717       VT = MVT::v4i32;
12718       break;
12719     case Intrinsic::ppc_vsx_stxvd2x_be:
12720       VT = MVT::v2f64;
12721       break;
12722     case Intrinsic::ppc_altivec_stvebx:
12723       VT = MVT::i8;
12724       break;
12725     case Intrinsic::ppc_altivec_stvehx:
12726       VT = MVT::i16;
12727       break;
12728     case Intrinsic::ppc_altivec_stvewx:
12729       VT = MVT::i32;
12730       break;
12731     }
12732 
12733     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12734   }
12735 
12736   return false;
12737 }
12738 
12739 // Return true is there is a nearyby consecutive load to the one provided
12740 // (regardless of alignment). We search up and down the chain, looking though
12741 // token factors and other loads (but nothing else). As a result, a true result
12742 // indicates that it is safe to create a new consecutive load adjacent to the
12743 // load provided.
12744 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12745   SDValue Chain = LD->getChain();
12746   EVT VT = LD->getMemoryVT();
12747 
12748   SmallSet<SDNode *, 16> LoadRoots;
12749   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12750   SmallSet<SDNode *, 16> Visited;
12751 
12752   // First, search up the chain, branching to follow all token-factor operands.
12753   // If we find a consecutive load, then we're done, otherwise, record all
12754   // nodes just above the top-level loads and token factors.
12755   while (!Queue.empty()) {
12756     SDNode *ChainNext = Queue.pop_back_val();
12757     if (!Visited.insert(ChainNext).second)
12758       continue;
12759 
12760     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12761       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12762         return true;
12763 
12764       if (!Visited.count(ChainLD->getChain().getNode()))
12765         Queue.push_back(ChainLD->getChain().getNode());
12766     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12767       for (const SDUse &O : ChainNext->ops())
12768         if (!Visited.count(O.getNode()))
12769           Queue.push_back(O.getNode());
12770     } else
12771       LoadRoots.insert(ChainNext);
12772   }
12773 
12774   // Second, search down the chain, starting from the top-level nodes recorded
12775   // in the first phase. These top-level nodes are the nodes just above all
12776   // loads and token factors. Starting with their uses, recursively look though
12777   // all loads (just the chain uses) and token factors to find a consecutive
12778   // load.
12779   Visited.clear();
12780   Queue.clear();
12781 
12782   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12783        IE = LoadRoots.end(); I != IE; ++I) {
12784     Queue.push_back(*I);
12785 
12786     while (!Queue.empty()) {
12787       SDNode *LoadRoot = Queue.pop_back_val();
12788       if (!Visited.insert(LoadRoot).second)
12789         continue;
12790 
12791       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12792         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12793           return true;
12794 
12795       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12796            UE = LoadRoot->use_end(); UI != UE; ++UI)
12797         if (((isa<MemSDNode>(*UI) &&
12798             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12799             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12800           Queue.push_back(*UI);
12801     }
12802   }
12803 
12804   return false;
12805 }
12806 
12807 /// This function is called when we have proved that a SETCC node can be replaced
12808 /// by subtraction (and other supporting instructions) so that the result of
12809 /// comparison is kept in a GPR instead of CR. This function is purely for
12810 /// codegen purposes and has some flags to guide the codegen process.
12811 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12812                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12813   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12814 
12815   // Zero extend the operands to the largest legal integer. Originally, they
12816   // must be of a strictly smaller size.
12817   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12818                          DAG.getConstant(Size, DL, MVT::i32));
12819   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12820                          DAG.getConstant(Size, DL, MVT::i32));
12821 
12822   // Swap if needed. Depends on the condition code.
12823   if (Swap)
12824     std::swap(Op0, Op1);
12825 
12826   // Subtract extended integers.
12827   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12828 
12829   // Move the sign bit to the least significant position and zero out the rest.
12830   // Now the least significant bit carries the result of original comparison.
12831   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12832                              DAG.getConstant(Size - 1, DL, MVT::i32));
12833   auto Final = Shifted;
12834 
12835   // Complement the result if needed. Based on the condition code.
12836   if (Complement)
12837     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12838                         DAG.getConstant(1, DL, MVT::i64));
12839 
12840   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12841 }
12842 
12843 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12844                                                   DAGCombinerInfo &DCI) const {
12845   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12846 
12847   SelectionDAG &DAG = DCI.DAG;
12848   SDLoc DL(N);
12849 
12850   // Size of integers being compared has a critical role in the following
12851   // analysis, so we prefer to do this when all types are legal.
12852   if (!DCI.isAfterLegalizeDAG())
12853     return SDValue();
12854 
12855   // If all users of SETCC extend its value to a legal integer type
12856   // then we replace SETCC with a subtraction
12857   for (SDNode::use_iterator UI = N->use_begin(),
12858        UE = N->use_end(); UI != UE; ++UI) {
12859     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12860       return SDValue();
12861   }
12862 
12863   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12864   auto OpSize = N->getOperand(0).getValueSizeInBits();
12865 
12866   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12867 
12868   if (OpSize < Size) {
12869     switch (CC) {
12870     default: break;
12871     case ISD::SETULT:
12872       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12873     case ISD::SETULE:
12874       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12875     case ISD::SETUGT:
12876       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12877     case ISD::SETUGE:
12878       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12879     }
12880   }
12881 
12882   return SDValue();
12883 }
12884 
12885 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12886                                                   DAGCombinerInfo &DCI) const {
12887   SelectionDAG &DAG = DCI.DAG;
12888   SDLoc dl(N);
12889 
12890   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12891   // If we're tracking CR bits, we need to be careful that we don't have:
12892   //   trunc(binary-ops(zext(x), zext(y)))
12893   // or
12894   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12895   // such that we're unnecessarily moving things into GPRs when it would be
12896   // better to keep them in CR bits.
12897 
12898   // Note that trunc here can be an actual i1 trunc, or can be the effective
12899   // truncation that comes from a setcc or select_cc.
12900   if (N->getOpcode() == ISD::TRUNCATE &&
12901       N->getValueType(0) != MVT::i1)
12902     return SDValue();
12903 
12904   if (N->getOperand(0).getValueType() != MVT::i32 &&
12905       N->getOperand(0).getValueType() != MVT::i64)
12906     return SDValue();
12907 
12908   if (N->getOpcode() == ISD::SETCC ||
12909       N->getOpcode() == ISD::SELECT_CC) {
12910     // If we're looking at a comparison, then we need to make sure that the
12911     // high bits (all except for the first) don't matter the result.
12912     ISD::CondCode CC =
12913       cast<CondCodeSDNode>(N->getOperand(
12914         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12915     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12916 
12917     if (ISD::isSignedIntSetCC(CC)) {
12918       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12919           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12920         return SDValue();
12921     } else if (ISD::isUnsignedIntSetCC(CC)) {
12922       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12923                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12924           !DAG.MaskedValueIsZero(N->getOperand(1),
12925                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12926         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12927                                              : SDValue());
12928     } else {
12929       // This is neither a signed nor an unsigned comparison, just make sure
12930       // that the high bits are equal.
12931       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12932       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12933 
12934       // We don't really care about what is known about the first bit (if
12935       // anything), so clear it in all masks prior to comparing them.
12936       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12937       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12938 
12939       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12940         return SDValue();
12941     }
12942   }
12943 
12944   // We now know that the higher-order bits are irrelevant, we just need to
12945   // make sure that all of the intermediate operations are bit operations, and
12946   // all inputs are extensions.
12947   if (N->getOperand(0).getOpcode() != ISD::AND &&
12948       N->getOperand(0).getOpcode() != ISD::OR  &&
12949       N->getOperand(0).getOpcode() != ISD::XOR &&
12950       N->getOperand(0).getOpcode() != ISD::SELECT &&
12951       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12952       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12953       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12954       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12955       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12956     return SDValue();
12957 
12958   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12959       N->getOperand(1).getOpcode() != ISD::AND &&
12960       N->getOperand(1).getOpcode() != ISD::OR  &&
12961       N->getOperand(1).getOpcode() != ISD::XOR &&
12962       N->getOperand(1).getOpcode() != ISD::SELECT &&
12963       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12964       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12965       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12966       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12967       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12968     return SDValue();
12969 
12970   SmallVector<SDValue, 4> Inputs;
12971   SmallVector<SDValue, 8> BinOps, PromOps;
12972   SmallPtrSet<SDNode *, 16> Visited;
12973 
12974   for (unsigned i = 0; i < 2; ++i) {
12975     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12976           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12977           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12978           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12979         isa<ConstantSDNode>(N->getOperand(i)))
12980       Inputs.push_back(N->getOperand(i));
12981     else
12982       BinOps.push_back(N->getOperand(i));
12983 
12984     if (N->getOpcode() == ISD::TRUNCATE)
12985       break;
12986   }
12987 
12988   // Visit all inputs, collect all binary operations (and, or, xor and
12989   // select) that are all fed by extensions.
12990   while (!BinOps.empty()) {
12991     SDValue BinOp = BinOps.back();
12992     BinOps.pop_back();
12993 
12994     if (!Visited.insert(BinOp.getNode()).second)
12995       continue;
12996 
12997     PromOps.push_back(BinOp);
12998 
12999     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13000       // The condition of the select is not promoted.
13001       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13002         continue;
13003       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13004         continue;
13005 
13006       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13007             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13008             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13009            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13010           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13011         Inputs.push_back(BinOp.getOperand(i));
13012       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13013                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13014                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13015                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13016                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13017                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13018                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13019                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13020                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13021         BinOps.push_back(BinOp.getOperand(i));
13022       } else {
13023         // We have an input that is not an extension or another binary
13024         // operation; we'll abort this transformation.
13025         return SDValue();
13026       }
13027     }
13028   }
13029 
13030   // Make sure that this is a self-contained cluster of operations (which
13031   // is not quite the same thing as saying that everything has only one
13032   // use).
13033   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13034     if (isa<ConstantSDNode>(Inputs[i]))
13035       continue;
13036 
13037     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13038                               UE = Inputs[i].getNode()->use_end();
13039          UI != UE; ++UI) {
13040       SDNode *User = *UI;
13041       if (User != N && !Visited.count(User))
13042         return SDValue();
13043 
13044       // Make sure that we're not going to promote the non-output-value
13045       // operand(s) or SELECT or SELECT_CC.
13046       // FIXME: Although we could sometimes handle this, and it does occur in
13047       // practice that one of the condition inputs to the select is also one of
13048       // the outputs, we currently can't deal with this.
13049       if (User->getOpcode() == ISD::SELECT) {
13050         if (User->getOperand(0) == Inputs[i])
13051           return SDValue();
13052       } else if (User->getOpcode() == ISD::SELECT_CC) {
13053         if (User->getOperand(0) == Inputs[i] ||
13054             User->getOperand(1) == Inputs[i])
13055           return SDValue();
13056       }
13057     }
13058   }
13059 
13060   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13061     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13062                               UE = PromOps[i].getNode()->use_end();
13063          UI != UE; ++UI) {
13064       SDNode *User = *UI;
13065       if (User != N && !Visited.count(User))
13066         return SDValue();
13067 
13068       // Make sure that we're not going to promote the non-output-value
13069       // operand(s) or SELECT or SELECT_CC.
13070       // FIXME: Although we could sometimes handle this, and it does occur in
13071       // practice that one of the condition inputs to the select is also one of
13072       // the outputs, we currently can't deal with this.
13073       if (User->getOpcode() == ISD::SELECT) {
13074         if (User->getOperand(0) == PromOps[i])
13075           return SDValue();
13076       } else if (User->getOpcode() == ISD::SELECT_CC) {
13077         if (User->getOperand(0) == PromOps[i] ||
13078             User->getOperand(1) == PromOps[i])
13079           return SDValue();
13080       }
13081     }
13082   }
13083 
13084   // Replace all inputs with the extension operand.
13085   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13086     // Constants may have users outside the cluster of to-be-promoted nodes,
13087     // and so we need to replace those as we do the promotions.
13088     if (isa<ConstantSDNode>(Inputs[i]))
13089       continue;
13090     else
13091       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13092   }
13093 
13094   std::list<HandleSDNode> PromOpHandles;
13095   for (auto &PromOp : PromOps)
13096     PromOpHandles.emplace_back(PromOp);
13097 
13098   // Replace all operations (these are all the same, but have a different
13099   // (i1) return type). DAG.getNode will validate that the types of
13100   // a binary operator match, so go through the list in reverse so that
13101   // we've likely promoted both operands first. Any intermediate truncations or
13102   // extensions disappear.
13103   while (!PromOpHandles.empty()) {
13104     SDValue PromOp = PromOpHandles.back().getValue();
13105     PromOpHandles.pop_back();
13106 
13107     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13108         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13109         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13110         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13111       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13112           PromOp.getOperand(0).getValueType() != MVT::i1) {
13113         // The operand is not yet ready (see comment below).
13114         PromOpHandles.emplace_front(PromOp);
13115         continue;
13116       }
13117 
13118       SDValue RepValue = PromOp.getOperand(0);
13119       if (isa<ConstantSDNode>(RepValue))
13120         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13121 
13122       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13123       continue;
13124     }
13125 
13126     unsigned C;
13127     switch (PromOp.getOpcode()) {
13128     default:             C = 0; break;
13129     case ISD::SELECT:    C = 1; break;
13130     case ISD::SELECT_CC: C = 2; break;
13131     }
13132 
13133     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13134          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13135         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13136          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13137       // The to-be-promoted operands of this node have not yet been
13138       // promoted (this should be rare because we're going through the
13139       // list backward, but if one of the operands has several users in
13140       // this cluster of to-be-promoted nodes, it is possible).
13141       PromOpHandles.emplace_front(PromOp);
13142       continue;
13143     }
13144 
13145     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13146                                 PromOp.getNode()->op_end());
13147 
13148     // If there are any constant inputs, make sure they're replaced now.
13149     for (unsigned i = 0; i < 2; ++i)
13150       if (isa<ConstantSDNode>(Ops[C+i]))
13151         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13152 
13153     DAG.ReplaceAllUsesOfValueWith(PromOp,
13154       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13155   }
13156 
13157   // Now we're left with the initial truncation itself.
13158   if (N->getOpcode() == ISD::TRUNCATE)
13159     return N->getOperand(0);
13160 
13161   // Otherwise, this is a comparison. The operands to be compared have just
13162   // changed type (to i1), but everything else is the same.
13163   return SDValue(N, 0);
13164 }
13165 
13166 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13167                                                   DAGCombinerInfo &DCI) const {
13168   SelectionDAG &DAG = DCI.DAG;
13169   SDLoc dl(N);
13170 
13171   // If we're tracking CR bits, we need to be careful that we don't have:
13172   //   zext(binary-ops(trunc(x), trunc(y)))
13173   // or
13174   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13175   // such that we're unnecessarily moving things into CR bits that can more
13176   // efficiently stay in GPRs. Note that if we're not certain that the high
13177   // bits are set as required by the final extension, we still may need to do
13178   // some masking to get the proper behavior.
13179 
13180   // This same functionality is important on PPC64 when dealing with
13181   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13182   // the return values of functions. Because it is so similar, it is handled
13183   // here as well.
13184 
13185   if (N->getValueType(0) != MVT::i32 &&
13186       N->getValueType(0) != MVT::i64)
13187     return SDValue();
13188 
13189   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13190         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13191     return SDValue();
13192 
13193   if (N->getOperand(0).getOpcode() != ISD::AND &&
13194       N->getOperand(0).getOpcode() != ISD::OR  &&
13195       N->getOperand(0).getOpcode() != ISD::XOR &&
13196       N->getOperand(0).getOpcode() != ISD::SELECT &&
13197       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13198     return SDValue();
13199 
13200   SmallVector<SDValue, 4> Inputs;
13201   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13202   SmallPtrSet<SDNode *, 16> Visited;
13203 
13204   // Visit all inputs, collect all binary operations (and, or, xor and
13205   // select) that are all fed by truncations.
13206   while (!BinOps.empty()) {
13207     SDValue BinOp = BinOps.back();
13208     BinOps.pop_back();
13209 
13210     if (!Visited.insert(BinOp.getNode()).second)
13211       continue;
13212 
13213     PromOps.push_back(BinOp);
13214 
13215     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13216       // The condition of the select is not promoted.
13217       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13218         continue;
13219       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13220         continue;
13221 
13222       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13223           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13224         Inputs.push_back(BinOp.getOperand(i));
13225       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13226                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13227                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13228                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13229                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13230         BinOps.push_back(BinOp.getOperand(i));
13231       } else {
13232         // We have an input that is not a truncation or another binary
13233         // operation; we'll abort this transformation.
13234         return SDValue();
13235       }
13236     }
13237   }
13238 
13239   // The operands of a select that must be truncated when the select is
13240   // promoted because the operand is actually part of the to-be-promoted set.
13241   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13242 
13243   // Make sure that this is a self-contained cluster of operations (which
13244   // is not quite the same thing as saying that everything has only one
13245   // use).
13246   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13247     if (isa<ConstantSDNode>(Inputs[i]))
13248       continue;
13249 
13250     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13251                               UE = Inputs[i].getNode()->use_end();
13252          UI != UE; ++UI) {
13253       SDNode *User = *UI;
13254       if (User != N && !Visited.count(User))
13255         return SDValue();
13256 
13257       // If we're going to promote the non-output-value operand(s) or SELECT or
13258       // SELECT_CC, record them for truncation.
13259       if (User->getOpcode() == ISD::SELECT) {
13260         if (User->getOperand(0) == Inputs[i])
13261           SelectTruncOp[0].insert(std::make_pair(User,
13262                                     User->getOperand(0).getValueType()));
13263       } else if (User->getOpcode() == ISD::SELECT_CC) {
13264         if (User->getOperand(0) == Inputs[i])
13265           SelectTruncOp[0].insert(std::make_pair(User,
13266                                     User->getOperand(0).getValueType()));
13267         if (User->getOperand(1) == Inputs[i])
13268           SelectTruncOp[1].insert(std::make_pair(User,
13269                                     User->getOperand(1).getValueType()));
13270       }
13271     }
13272   }
13273 
13274   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13275     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13276                               UE = PromOps[i].getNode()->use_end();
13277          UI != UE; ++UI) {
13278       SDNode *User = *UI;
13279       if (User != N && !Visited.count(User))
13280         return SDValue();
13281 
13282       // If we're going to promote the non-output-value operand(s) or SELECT or
13283       // SELECT_CC, record them for truncation.
13284       if (User->getOpcode() == ISD::SELECT) {
13285         if (User->getOperand(0) == PromOps[i])
13286           SelectTruncOp[0].insert(std::make_pair(User,
13287                                     User->getOperand(0).getValueType()));
13288       } else if (User->getOpcode() == ISD::SELECT_CC) {
13289         if (User->getOperand(0) == PromOps[i])
13290           SelectTruncOp[0].insert(std::make_pair(User,
13291                                     User->getOperand(0).getValueType()));
13292         if (User->getOperand(1) == PromOps[i])
13293           SelectTruncOp[1].insert(std::make_pair(User,
13294                                     User->getOperand(1).getValueType()));
13295       }
13296     }
13297   }
13298 
13299   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13300   bool ReallyNeedsExt = false;
13301   if (N->getOpcode() != ISD::ANY_EXTEND) {
13302     // If all of the inputs are not already sign/zero extended, then
13303     // we'll still need to do that at the end.
13304     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13305       if (isa<ConstantSDNode>(Inputs[i]))
13306         continue;
13307 
13308       unsigned OpBits =
13309         Inputs[i].getOperand(0).getValueSizeInBits();
13310       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13311 
13312       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13313            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13314                                   APInt::getHighBitsSet(OpBits,
13315                                                         OpBits-PromBits))) ||
13316           (N->getOpcode() == ISD::SIGN_EXTEND &&
13317            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13318              (OpBits-(PromBits-1)))) {
13319         ReallyNeedsExt = true;
13320         break;
13321       }
13322     }
13323   }
13324 
13325   // Replace all inputs, either with the truncation operand, or a
13326   // truncation or extension to the final output type.
13327   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13328     // Constant inputs need to be replaced with the to-be-promoted nodes that
13329     // use them because they might have users outside of the cluster of
13330     // promoted nodes.
13331     if (isa<ConstantSDNode>(Inputs[i]))
13332       continue;
13333 
13334     SDValue InSrc = Inputs[i].getOperand(0);
13335     if (Inputs[i].getValueType() == N->getValueType(0))
13336       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13337     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13338       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13339         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13340     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13341       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13342         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13343     else
13344       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13345         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13346   }
13347 
13348   std::list<HandleSDNode> PromOpHandles;
13349   for (auto &PromOp : PromOps)
13350     PromOpHandles.emplace_back(PromOp);
13351 
13352   // Replace all operations (these are all the same, but have a different
13353   // (promoted) return type). DAG.getNode will validate that the types of
13354   // a binary operator match, so go through the list in reverse so that
13355   // we've likely promoted both operands first.
13356   while (!PromOpHandles.empty()) {
13357     SDValue PromOp = PromOpHandles.back().getValue();
13358     PromOpHandles.pop_back();
13359 
13360     unsigned C;
13361     switch (PromOp.getOpcode()) {
13362     default:             C = 0; break;
13363     case ISD::SELECT:    C = 1; break;
13364     case ISD::SELECT_CC: C = 2; break;
13365     }
13366 
13367     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13368          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13369         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13370          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13371       // The to-be-promoted operands of this node have not yet been
13372       // promoted (this should be rare because we're going through the
13373       // list backward, but if one of the operands has several users in
13374       // this cluster of to-be-promoted nodes, it is possible).
13375       PromOpHandles.emplace_front(PromOp);
13376       continue;
13377     }
13378 
13379     // For SELECT and SELECT_CC nodes, we do a similar check for any
13380     // to-be-promoted comparison inputs.
13381     if (PromOp.getOpcode() == ISD::SELECT ||
13382         PromOp.getOpcode() == ISD::SELECT_CC) {
13383       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13384            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13385           (SelectTruncOp[1].count(PromOp.getNode()) &&
13386            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13387         PromOpHandles.emplace_front(PromOp);
13388         continue;
13389       }
13390     }
13391 
13392     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13393                                 PromOp.getNode()->op_end());
13394 
13395     // If this node has constant inputs, then they'll need to be promoted here.
13396     for (unsigned i = 0; i < 2; ++i) {
13397       if (!isa<ConstantSDNode>(Ops[C+i]))
13398         continue;
13399       if (Ops[C+i].getValueType() == N->getValueType(0))
13400         continue;
13401 
13402       if (N->getOpcode() == ISD::SIGN_EXTEND)
13403         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13404       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13405         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13406       else
13407         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13408     }
13409 
13410     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13411     // truncate them again to the original value type.
13412     if (PromOp.getOpcode() == ISD::SELECT ||
13413         PromOp.getOpcode() == ISD::SELECT_CC) {
13414       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13415       if (SI0 != SelectTruncOp[0].end())
13416         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13417       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13418       if (SI1 != SelectTruncOp[1].end())
13419         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13420     }
13421 
13422     DAG.ReplaceAllUsesOfValueWith(PromOp,
13423       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13424   }
13425 
13426   // Now we're left with the initial extension itself.
13427   if (!ReallyNeedsExt)
13428     return N->getOperand(0);
13429 
13430   // To zero extend, just mask off everything except for the first bit (in the
13431   // i1 case).
13432   if (N->getOpcode() == ISD::ZERO_EXTEND)
13433     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13434                        DAG.getConstant(APInt::getLowBitsSet(
13435                                          N->getValueSizeInBits(0), PromBits),
13436                                        dl, N->getValueType(0)));
13437 
13438   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13439          "Invalid extension type");
13440   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13441   SDValue ShiftCst =
13442       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13443   return DAG.getNode(
13444       ISD::SRA, dl, N->getValueType(0),
13445       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13446       ShiftCst);
13447 }
13448 
13449 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13450                                         DAGCombinerInfo &DCI) const {
13451   assert(N->getOpcode() == ISD::SETCC &&
13452          "Should be called with a SETCC node");
13453 
13454   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13455   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13456     SDValue LHS = N->getOperand(0);
13457     SDValue RHS = N->getOperand(1);
13458 
13459     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13460     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13461         LHS.hasOneUse())
13462       std::swap(LHS, RHS);
13463 
13464     // x == 0-y --> x+y == 0
13465     // x != 0-y --> x+y != 0
13466     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13467         RHS.hasOneUse()) {
13468       SDLoc DL(N);
13469       SelectionDAG &DAG = DCI.DAG;
13470       EVT VT = N->getValueType(0);
13471       EVT OpVT = LHS.getValueType();
13472       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13473       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13474     }
13475   }
13476 
13477   return DAGCombineTruncBoolExt(N, DCI);
13478 }
13479 
13480 // Is this an extending load from an f32 to an f64?
13481 static bool isFPExtLoad(SDValue Op) {
13482   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13483     return LD->getExtensionType() == ISD::EXTLOAD &&
13484       Op.getValueType() == MVT::f64;
13485   return false;
13486 }
13487 
13488 /// Reduces the number of fp-to-int conversion when building a vector.
13489 ///
13490 /// If this vector is built out of floating to integer conversions,
13491 /// transform it to a vector built out of floating point values followed by a
13492 /// single floating to integer conversion of the vector.
13493 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13494 /// becomes (fptosi (build_vector ($A, $B, ...)))
13495 SDValue PPCTargetLowering::
13496 combineElementTruncationToVectorTruncation(SDNode *N,
13497                                            DAGCombinerInfo &DCI) const {
13498   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13499          "Should be called with a BUILD_VECTOR node");
13500 
13501   SelectionDAG &DAG = DCI.DAG;
13502   SDLoc dl(N);
13503 
13504   SDValue FirstInput = N->getOperand(0);
13505   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13506          "The input operand must be an fp-to-int conversion.");
13507 
13508   // This combine happens after legalization so the fp_to_[su]i nodes are
13509   // already converted to PPCSISD nodes.
13510   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13511   if (FirstConversion == PPCISD::FCTIDZ ||
13512       FirstConversion == PPCISD::FCTIDUZ ||
13513       FirstConversion == PPCISD::FCTIWZ ||
13514       FirstConversion == PPCISD::FCTIWUZ) {
13515     bool IsSplat = true;
13516     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13517       FirstConversion == PPCISD::FCTIWUZ;
13518     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13519     SmallVector<SDValue, 4> Ops;
13520     EVT TargetVT = N->getValueType(0);
13521     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13522       SDValue NextOp = N->getOperand(i);
13523       if (NextOp.getOpcode() != PPCISD::MFVSR)
13524         return SDValue();
13525       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13526       if (NextConversion != FirstConversion)
13527         return SDValue();
13528       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13529       // This is not valid if the input was originally double precision. It is
13530       // also not profitable to do unless this is an extending load in which
13531       // case doing this combine will allow us to combine consecutive loads.
13532       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13533         return SDValue();
13534       if (N->getOperand(i) != FirstInput)
13535         IsSplat = false;
13536     }
13537 
13538     // If this is a splat, we leave it as-is since there will be only a single
13539     // fp-to-int conversion followed by a splat of the integer. This is better
13540     // for 32-bit and smaller ints and neutral for 64-bit ints.
13541     if (IsSplat)
13542       return SDValue();
13543 
13544     // Now that we know we have the right type of node, get its operands
13545     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13546       SDValue In = N->getOperand(i).getOperand(0);
13547       if (Is32Bit) {
13548         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13549         // here, we know that all inputs are extending loads so this is safe).
13550         if (In.isUndef())
13551           Ops.push_back(DAG.getUNDEF(SrcVT));
13552         else {
13553           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13554                                       MVT::f32, In.getOperand(0),
13555                                       DAG.getIntPtrConstant(1, dl));
13556           Ops.push_back(Trunc);
13557         }
13558       } else
13559         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13560     }
13561 
13562     unsigned Opcode;
13563     if (FirstConversion == PPCISD::FCTIDZ ||
13564         FirstConversion == PPCISD::FCTIWZ)
13565       Opcode = ISD::FP_TO_SINT;
13566     else
13567       Opcode = ISD::FP_TO_UINT;
13568 
13569     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13570     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13571     return DAG.getNode(Opcode, dl, TargetVT, BV);
13572   }
13573   return SDValue();
13574 }
13575 
13576 /// Reduce the number of loads when building a vector.
13577 ///
13578 /// Building a vector out of multiple loads can be converted to a load
13579 /// of the vector type if the loads are consecutive. If the loads are
13580 /// consecutive but in descending order, a shuffle is added at the end
13581 /// to reorder the vector.
13582 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13583   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13584          "Should be called with a BUILD_VECTOR node");
13585 
13586   SDLoc dl(N);
13587 
13588   // Return early for non byte-sized type, as they can't be consecutive.
13589   if (!N->getValueType(0).getVectorElementType().isByteSized())
13590     return SDValue();
13591 
13592   bool InputsAreConsecutiveLoads = true;
13593   bool InputsAreReverseConsecutive = true;
13594   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13595   SDValue FirstInput = N->getOperand(0);
13596   bool IsRoundOfExtLoad = false;
13597 
13598   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13599       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13600     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13601     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13602   }
13603   // Not a build vector of (possibly fp_rounded) loads.
13604   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13605       N->getNumOperands() == 1)
13606     return SDValue();
13607 
13608   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13609     // If any inputs are fp_round(extload), they all must be.
13610     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13611       return SDValue();
13612 
13613     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13614       N->getOperand(i);
13615     if (NextInput.getOpcode() != ISD::LOAD)
13616       return SDValue();
13617 
13618     SDValue PreviousInput =
13619       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13620     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13621     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13622 
13623     // If any inputs are fp_round(extload), they all must be.
13624     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13625       return SDValue();
13626 
13627     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13628       InputsAreConsecutiveLoads = false;
13629     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13630       InputsAreReverseConsecutive = false;
13631 
13632     // Exit early if the loads are neither consecutive nor reverse consecutive.
13633     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13634       return SDValue();
13635   }
13636 
13637   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13638          "The loads cannot be both consecutive and reverse consecutive.");
13639 
13640   SDValue FirstLoadOp =
13641     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13642   SDValue LastLoadOp =
13643     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13644                        N->getOperand(N->getNumOperands()-1);
13645 
13646   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13647   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13648   if (InputsAreConsecutiveLoads) {
13649     assert(LD1 && "Input needs to be a LoadSDNode.");
13650     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13651                        LD1->getBasePtr(), LD1->getPointerInfo(),
13652                        LD1->getAlignment());
13653   }
13654   if (InputsAreReverseConsecutive) {
13655     assert(LDL && "Input needs to be a LoadSDNode.");
13656     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13657                                LDL->getBasePtr(), LDL->getPointerInfo(),
13658                                LDL->getAlignment());
13659     SmallVector<int, 16> Ops;
13660     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13661       Ops.push_back(i);
13662 
13663     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13664                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13665   }
13666   return SDValue();
13667 }
13668 
13669 // This function adds the required vector_shuffle needed to get
13670 // the elements of the vector extract in the correct position
13671 // as specified by the CorrectElems encoding.
13672 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13673                                       SDValue Input, uint64_t Elems,
13674                                       uint64_t CorrectElems) {
13675   SDLoc dl(N);
13676 
13677   unsigned NumElems = Input.getValueType().getVectorNumElements();
13678   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13679 
13680   // Knowing the element indices being extracted from the original
13681   // vector and the order in which they're being inserted, just put
13682   // them at element indices required for the instruction.
13683   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13684     if (DAG.getDataLayout().isLittleEndian())
13685       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13686     else
13687       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13688     CorrectElems = CorrectElems >> 8;
13689     Elems = Elems >> 8;
13690   }
13691 
13692   SDValue Shuffle =
13693       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13694                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13695 
13696   EVT VT = N->getValueType(0);
13697   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13698 
13699   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13700                                Input.getValueType().getVectorElementType(),
13701                                VT.getVectorNumElements());
13702   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13703                      DAG.getValueType(ExtVT));
13704 }
13705 
13706 // Look for build vector patterns where input operands come from sign
13707 // extended vector_extract elements of specific indices. If the correct indices
13708 // aren't used, add a vector shuffle to fix up the indices and create
13709 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13710 // during instruction selection.
13711 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13712   // This array encodes the indices that the vector sign extend instructions
13713   // extract from when extending from one type to another for both BE and LE.
13714   // The right nibble of each byte corresponds to the LE incides.
13715   // and the left nibble of each byte corresponds to the BE incides.
13716   // For example: 0x3074B8FC  byte->word
13717   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13718   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13719   // For example: 0x000070F8  byte->double word
13720   // For LE: the allowed indices are: 0x0,0x8
13721   // For BE: the allowed indices are: 0x7,0xF
13722   uint64_t TargetElems[] = {
13723       0x3074B8FC, // b->w
13724       0x000070F8, // b->d
13725       0x10325476, // h->w
13726       0x00003074, // h->d
13727       0x00001032, // w->d
13728   };
13729 
13730   uint64_t Elems = 0;
13731   int Index;
13732   SDValue Input;
13733 
13734   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13735     if (!Op)
13736       return false;
13737     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13738         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13739       return false;
13740 
13741     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13742     // of the right width.
13743     SDValue Extract = Op.getOperand(0);
13744     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13745       Extract = Extract.getOperand(0);
13746     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13747       return false;
13748 
13749     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13750     if (!ExtOp)
13751       return false;
13752 
13753     Index = ExtOp->getZExtValue();
13754     if (Input && Input != Extract.getOperand(0))
13755       return false;
13756 
13757     if (!Input)
13758       Input = Extract.getOperand(0);
13759 
13760     Elems = Elems << 8;
13761     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13762     Elems |= Index;
13763 
13764     return true;
13765   };
13766 
13767   // If the build vector operands aren't sign extended vector extracts,
13768   // of the same input vector, then return.
13769   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13770     if (!isSExtOfVecExtract(N->getOperand(i))) {
13771       return SDValue();
13772     }
13773   }
13774 
13775   // If the vector extract indicies are not correct, add the appropriate
13776   // vector_shuffle.
13777   int TgtElemArrayIdx;
13778   int InputSize = Input.getValueType().getScalarSizeInBits();
13779   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13780   if (InputSize + OutputSize == 40)
13781     TgtElemArrayIdx = 0;
13782   else if (InputSize + OutputSize == 72)
13783     TgtElemArrayIdx = 1;
13784   else if (InputSize + OutputSize == 48)
13785     TgtElemArrayIdx = 2;
13786   else if (InputSize + OutputSize == 80)
13787     TgtElemArrayIdx = 3;
13788   else if (InputSize + OutputSize == 96)
13789     TgtElemArrayIdx = 4;
13790   else
13791     return SDValue();
13792 
13793   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13794   CorrectElems = DAG.getDataLayout().isLittleEndian()
13795                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13796                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13797   if (Elems != CorrectElems) {
13798     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13799   }
13800 
13801   // Regular lowering will catch cases where a shuffle is not needed.
13802   return SDValue();
13803 }
13804 
13805 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13806                                                  DAGCombinerInfo &DCI) const {
13807   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13808          "Should be called with a BUILD_VECTOR node");
13809 
13810   SelectionDAG &DAG = DCI.DAG;
13811   SDLoc dl(N);
13812 
13813   if (!Subtarget.hasVSX())
13814     return SDValue();
13815 
13816   // The target independent DAG combiner will leave a build_vector of
13817   // float-to-int conversions intact. We can generate MUCH better code for
13818   // a float-to-int conversion of a vector of floats.
13819   SDValue FirstInput = N->getOperand(0);
13820   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13821     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13822     if (Reduced)
13823       return Reduced;
13824   }
13825 
13826   // If we're building a vector out of consecutive loads, just load that
13827   // vector type.
13828   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13829   if (Reduced)
13830     return Reduced;
13831 
13832   // If we're building a vector out of extended elements from another vector
13833   // we have P9 vector integer extend instructions. The code assumes legal
13834   // input types (i.e. it can't handle things like v4i16) so do not run before
13835   // legalization.
13836   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13837     Reduced = combineBVOfVecSExt(N, DAG);
13838     if (Reduced)
13839       return Reduced;
13840   }
13841 
13842 
13843   if (N->getValueType(0) != MVT::v2f64)
13844     return SDValue();
13845 
13846   // Looking for:
13847   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13848   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13849       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13850     return SDValue();
13851   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13852       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13853     return SDValue();
13854   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13855     return SDValue();
13856 
13857   SDValue Ext1 = FirstInput.getOperand(0);
13858   SDValue Ext2 = N->getOperand(1).getOperand(0);
13859   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13860      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13861     return SDValue();
13862 
13863   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13864   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13865   if (!Ext1Op || !Ext2Op)
13866     return SDValue();
13867   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13868       Ext1.getOperand(0) != Ext2.getOperand(0))
13869     return SDValue();
13870 
13871   int FirstElem = Ext1Op->getZExtValue();
13872   int SecondElem = Ext2Op->getZExtValue();
13873   int SubvecIdx;
13874   if (FirstElem == 0 && SecondElem == 1)
13875     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13876   else if (FirstElem == 2 && SecondElem == 3)
13877     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13878   else
13879     return SDValue();
13880 
13881   SDValue SrcVec = Ext1.getOperand(0);
13882   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13883     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13884   return DAG.getNode(NodeType, dl, MVT::v2f64,
13885                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13886 }
13887 
13888 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13889                                               DAGCombinerInfo &DCI) const {
13890   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13891           N->getOpcode() == ISD::UINT_TO_FP) &&
13892          "Need an int -> FP conversion node here");
13893 
13894   if (useSoftFloat() || !Subtarget.has64BitSupport())
13895     return SDValue();
13896 
13897   SelectionDAG &DAG = DCI.DAG;
13898   SDLoc dl(N);
13899   SDValue Op(N, 0);
13900 
13901   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13902   // from the hardware.
13903   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13904     return SDValue();
13905   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13906       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13907     return SDValue();
13908 
13909   SDValue FirstOperand(Op.getOperand(0));
13910   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13911     (FirstOperand.getValueType() == MVT::i8 ||
13912      FirstOperand.getValueType() == MVT::i16);
13913   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13914     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13915     bool DstDouble = Op.getValueType() == MVT::f64;
13916     unsigned ConvOp = Signed ?
13917       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13918       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13919     SDValue WidthConst =
13920       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13921                             dl, false);
13922     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13923     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13924     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13925                                          DAG.getVTList(MVT::f64, MVT::Other),
13926                                          Ops, MVT::i8, LDN->getMemOperand());
13927 
13928     // For signed conversion, we need to sign-extend the value in the VSR
13929     if (Signed) {
13930       SDValue ExtOps[] = { Ld, WidthConst };
13931       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13932       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13933     } else
13934       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13935   }
13936 
13937 
13938   // For i32 intermediate values, unfortunately, the conversion functions
13939   // leave the upper 32 bits of the value are undefined. Within the set of
13940   // scalar instructions, we have no method for zero- or sign-extending the
13941   // value. Thus, we cannot handle i32 intermediate values here.
13942   if (Op.getOperand(0).getValueType() == MVT::i32)
13943     return SDValue();
13944 
13945   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13946          "UINT_TO_FP is supported only with FPCVT");
13947 
13948   // If we have FCFIDS, then use it when converting to single-precision.
13949   // Otherwise, convert to double-precision and then round.
13950   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13951                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13952                                                             : PPCISD::FCFIDS)
13953                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13954                                                             : PPCISD::FCFID);
13955   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13956                   ? MVT::f32
13957                   : MVT::f64;
13958 
13959   // If we're converting from a float, to an int, and back to a float again,
13960   // then we don't need the store/load pair at all.
13961   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13962        Subtarget.hasFPCVT()) ||
13963       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13964     SDValue Src = Op.getOperand(0).getOperand(0);
13965     if (Src.getValueType() == MVT::f32) {
13966       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13967       DCI.AddToWorklist(Src.getNode());
13968     } else if (Src.getValueType() != MVT::f64) {
13969       // Make sure that we don't pick up a ppc_fp128 source value.
13970       return SDValue();
13971     }
13972 
13973     unsigned FCTOp =
13974       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13975                                                         PPCISD::FCTIDUZ;
13976 
13977     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13978     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13979 
13980     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13981       FP = DAG.getNode(ISD::FP_ROUND, dl,
13982                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13983       DCI.AddToWorklist(FP.getNode());
13984     }
13985 
13986     return FP;
13987   }
13988 
13989   return SDValue();
13990 }
13991 
13992 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13993 // builtins) into loads with swaps.
13994 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13995                                               DAGCombinerInfo &DCI) const {
13996   SelectionDAG &DAG = DCI.DAG;
13997   SDLoc dl(N);
13998   SDValue Chain;
13999   SDValue Base;
14000   MachineMemOperand *MMO;
14001 
14002   switch (N->getOpcode()) {
14003   default:
14004     llvm_unreachable("Unexpected opcode for little endian VSX load");
14005   case ISD::LOAD: {
14006     LoadSDNode *LD = cast<LoadSDNode>(N);
14007     Chain = LD->getChain();
14008     Base = LD->getBasePtr();
14009     MMO = LD->getMemOperand();
14010     // If the MMO suggests this isn't a load of a full vector, leave
14011     // things alone.  For a built-in, we have to make the change for
14012     // correctness, so if there is a size problem that will be a bug.
14013     if (MMO->getSize() < 16)
14014       return SDValue();
14015     break;
14016   }
14017   case ISD::INTRINSIC_W_CHAIN: {
14018     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14019     Chain = Intrin->getChain();
14020     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14021     // us what we want. Get operand 2 instead.
14022     Base = Intrin->getOperand(2);
14023     MMO = Intrin->getMemOperand();
14024     break;
14025   }
14026   }
14027 
14028   MVT VecTy = N->getValueType(0).getSimpleVT();
14029 
14030   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14031   // aligned and the type is a vector with elements up to 4 bytes
14032   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14033       VecTy.getScalarSizeInBits() <= 32) {
14034     return SDValue();
14035   }
14036 
14037   SDValue LoadOps[] = { Chain, Base };
14038   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14039                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14040                                          LoadOps, MVT::v2f64, MMO);
14041 
14042   DCI.AddToWorklist(Load.getNode());
14043   Chain = Load.getValue(1);
14044   SDValue Swap = DAG.getNode(
14045       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14046   DCI.AddToWorklist(Swap.getNode());
14047 
14048   // Add a bitcast if the resulting load type doesn't match v2f64.
14049   if (VecTy != MVT::v2f64) {
14050     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14051     DCI.AddToWorklist(N.getNode());
14052     // Package {bitcast value, swap's chain} to match Load's shape.
14053     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14054                        N, Swap.getValue(1));
14055   }
14056 
14057   return Swap;
14058 }
14059 
14060 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14061 // builtins) into stores with swaps.
14062 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14063                                                DAGCombinerInfo &DCI) const {
14064   SelectionDAG &DAG = DCI.DAG;
14065   SDLoc dl(N);
14066   SDValue Chain;
14067   SDValue Base;
14068   unsigned SrcOpnd;
14069   MachineMemOperand *MMO;
14070 
14071   switch (N->getOpcode()) {
14072   default:
14073     llvm_unreachable("Unexpected opcode for little endian VSX store");
14074   case ISD::STORE: {
14075     StoreSDNode *ST = cast<StoreSDNode>(N);
14076     Chain = ST->getChain();
14077     Base = ST->getBasePtr();
14078     MMO = ST->getMemOperand();
14079     SrcOpnd = 1;
14080     // If the MMO suggests this isn't a store of a full vector, leave
14081     // things alone.  For a built-in, we have to make the change for
14082     // correctness, so if there is a size problem that will be a bug.
14083     if (MMO->getSize() < 16)
14084       return SDValue();
14085     break;
14086   }
14087   case ISD::INTRINSIC_VOID: {
14088     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14089     Chain = Intrin->getChain();
14090     // Intrin->getBasePtr() oddly does not get what we want.
14091     Base = Intrin->getOperand(3);
14092     MMO = Intrin->getMemOperand();
14093     SrcOpnd = 2;
14094     break;
14095   }
14096   }
14097 
14098   SDValue Src = N->getOperand(SrcOpnd);
14099   MVT VecTy = Src.getValueType().getSimpleVT();
14100 
14101   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14102   // aligned and the type is a vector with elements up to 4 bytes
14103   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14104       VecTy.getScalarSizeInBits() <= 32) {
14105     return SDValue();
14106   }
14107 
14108   // All stores are done as v2f64 and possible bit cast.
14109   if (VecTy != MVT::v2f64) {
14110     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14111     DCI.AddToWorklist(Src.getNode());
14112   }
14113 
14114   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14115                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14116   DCI.AddToWorklist(Swap.getNode());
14117   Chain = Swap.getValue(1);
14118   SDValue StoreOps[] = { Chain, Swap, Base };
14119   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14120                                           DAG.getVTList(MVT::Other),
14121                                           StoreOps, VecTy, MMO);
14122   DCI.AddToWorklist(Store.getNode());
14123   return Store;
14124 }
14125 
14126 // Handle DAG combine for STORE (FP_TO_INT F).
14127 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14128                                                DAGCombinerInfo &DCI) const {
14129 
14130   SelectionDAG &DAG = DCI.DAG;
14131   SDLoc dl(N);
14132   unsigned Opcode = N->getOperand(1).getOpcode();
14133 
14134   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14135          && "Not a FP_TO_INT Instruction!");
14136 
14137   SDValue Val = N->getOperand(1).getOperand(0);
14138   EVT Op1VT = N->getOperand(1).getValueType();
14139   EVT ResVT = Val.getValueType();
14140 
14141   // Floating point types smaller than 32 bits are not legal on Power.
14142   if (ResVT.getScalarSizeInBits() < 32)
14143     return SDValue();
14144 
14145   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14146   bool ValidTypeForStoreFltAsInt =
14147         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14148          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14149 
14150   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14151       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14152     return SDValue();
14153 
14154   // Extend f32 values to f64
14155   if (ResVT.getScalarSizeInBits() == 32) {
14156     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14157     DCI.AddToWorklist(Val.getNode());
14158   }
14159 
14160   // Set signed or unsigned conversion opcode.
14161   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14162                           PPCISD::FP_TO_SINT_IN_VSR :
14163                           PPCISD::FP_TO_UINT_IN_VSR;
14164 
14165   Val = DAG.getNode(ConvOpcode,
14166                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14167   DCI.AddToWorklist(Val.getNode());
14168 
14169   // Set number of bytes being converted.
14170   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14171   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14172                     DAG.getIntPtrConstant(ByteSize, dl, false),
14173                     DAG.getValueType(Op1VT) };
14174 
14175   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14176           DAG.getVTList(MVT::Other), Ops,
14177           cast<StoreSDNode>(N)->getMemoryVT(),
14178           cast<StoreSDNode>(N)->getMemOperand());
14179 
14180   DCI.AddToWorklist(Val.getNode());
14181   return Val;
14182 }
14183 
14184 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14185   // Check that the source of the element keeps flipping
14186   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14187   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14188   for (int i = 1, e = Mask.size(); i < e; i++) {
14189     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14190       return false;
14191     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14192       return false;
14193     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14194   }
14195   return true;
14196 }
14197 
14198 static bool isSplatBV(SDValue Op) {
14199   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14200     return false;
14201   SDValue FirstOp;
14202 
14203   // Find first non-undef input.
14204   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14205     FirstOp = Op.getOperand(i);
14206     if (!FirstOp.isUndef())
14207       break;
14208   }
14209 
14210   // All inputs are undef or the same as the first non-undef input.
14211   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14212     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14213       return false;
14214   return true;
14215 }
14216 
14217 static SDValue isScalarToVec(SDValue Op) {
14218   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14219     return Op;
14220   if (Op.getOpcode() != ISD::BITCAST)
14221     return SDValue();
14222   Op = Op.getOperand(0);
14223   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14224     return Op;
14225   return SDValue();
14226 }
14227 
14228 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14229                                             int LHSMaxIdx, int RHSMinIdx,
14230                                             int RHSMaxIdx, int HalfVec) {
14231   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14232     int Idx = ShuffV[i];
14233     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14234       ShuffV[i] += HalfVec;
14235   }
14236   return;
14237 }
14238 
14239 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14240 // the original is:
14241 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14242 // In such a case, just change the shuffle mask to extract the element
14243 // from the permuted index.
14244 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14245   SDLoc dl(OrigSToV);
14246   EVT VT = OrigSToV.getValueType();
14247   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14248          "Expecting a SCALAR_TO_VECTOR here");
14249   SDValue Input = OrigSToV.getOperand(0);
14250 
14251   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14252     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14253     SDValue OrigVector = Input.getOperand(0);
14254 
14255     // Can't handle non-const element indices or different vector types
14256     // for the input to the extract and the output of the scalar_to_vector.
14257     if (Idx && VT == OrigVector.getValueType()) {
14258       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14259       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14260       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14261     }
14262   }
14263   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14264                      OrigSToV.getOperand(0));
14265 }
14266 
14267 // On little endian subtargets, combine shuffles such as:
14268 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14269 // into:
14270 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14271 // because the latter can be matched to a single instruction merge.
14272 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14273 // to put the value into element zero. Adjust the shuffle mask so that the
14274 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14275 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14276                                                 SelectionDAG &DAG) const {
14277   SDValue LHS = SVN->getOperand(0);
14278   SDValue RHS = SVN->getOperand(1);
14279   auto Mask = SVN->getMask();
14280   int NumElts = LHS.getValueType().getVectorNumElements();
14281   SDValue Res(SVN, 0);
14282   SDLoc dl(SVN);
14283 
14284   // None of these combines are useful on big endian systems since the ISA
14285   // already has a big endian bias.
14286   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14287     return Res;
14288 
14289   // If this is not a shuffle of a shuffle and the first element comes from
14290   // the second vector, canonicalize to the commuted form. This will make it
14291   // more likely to match one of the single instruction patterns.
14292   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14293       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14294     std::swap(LHS, RHS);
14295     Res = DAG.getCommutedVectorShuffle(*SVN);
14296     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14297   }
14298 
14299   // Adjust the shuffle mask if either input vector comes from a
14300   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14301   // form (to prevent the need for a swap).
14302   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14303   SDValue SToVLHS = isScalarToVec(LHS);
14304   SDValue SToVRHS = isScalarToVec(RHS);
14305   if (SToVLHS || SToVRHS) {
14306     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14307                             : SToVRHS.getValueType().getVectorNumElements();
14308     int NumEltsOut = ShuffV.size();
14309 
14310     // Initially assume that neither input is permuted. These will be adjusted
14311     // accordingly if either input is.
14312     int LHSMaxIdx = -1;
14313     int RHSMinIdx = -1;
14314     int RHSMaxIdx = -1;
14315     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14316 
14317     // Get the permuted scalar to vector nodes for the source(s) that come from
14318     // ISD::SCALAR_TO_VECTOR.
14319     if (SToVLHS) {
14320       // Set up the values for the shuffle vector fixup.
14321       LHSMaxIdx = NumEltsOut / NumEltsIn;
14322       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14323       if (SToVLHS.getValueType() != LHS.getValueType())
14324         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14325       LHS = SToVLHS;
14326     }
14327     if (SToVRHS) {
14328       RHSMinIdx = NumEltsOut;
14329       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14330       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14331       if (SToVRHS.getValueType() != RHS.getValueType())
14332         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14333       RHS = SToVRHS;
14334     }
14335 
14336     // Fix up the shuffle mask to reflect where the desired element actually is.
14337     // The minimum and maximum indices that correspond to element zero for both
14338     // the LHS and RHS are computed and will control which shuffle mask entries
14339     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14340     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14341     // HalfVec to refer to the corresponding element in the permuted vector.
14342     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14343                                     HalfVec);
14344     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14345 
14346     // We may have simplified away the shuffle. We won't be able to do anything
14347     // further with it here.
14348     if (!isa<ShuffleVectorSDNode>(Res))
14349       return Res;
14350     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14351   }
14352 
14353   // The common case after we commuted the shuffle is that the RHS is a splat
14354   // and we have elements coming in from the splat at indices that are not
14355   // conducive to using a merge.
14356   // Example:
14357   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14358   if (!isSplatBV(RHS))
14359     return Res;
14360 
14361   // We are looking for a mask such that all even elements are from
14362   // one vector and all odd elements from the other.
14363   if (!isAlternatingShuffMask(Mask, NumElts))
14364     return Res;
14365 
14366   // Adjust the mask so we are pulling in the same index from the splat
14367   // as the index from the interesting vector in consecutive elements.
14368   // Example (even elements from first vector):
14369   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14370   if (Mask[0] < NumElts)
14371     for (int i = 1, e = Mask.size(); i < e; i += 2)
14372       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14373   // Example (odd elements from first vector):
14374   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14375   else
14376     for (int i = 0, e = Mask.size(); i < e; i += 2)
14377       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14378 
14379   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14380   return Res;
14381 }
14382 
14383 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14384                                                 LSBaseSDNode *LSBase,
14385                                                 DAGCombinerInfo &DCI) const {
14386   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14387         "Not a reverse memop pattern!");
14388 
14389   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14390     auto Mask = SVN->getMask();
14391     int i = 0;
14392     auto I = Mask.rbegin();
14393     auto E = Mask.rend();
14394 
14395     for (; I != E; ++I) {
14396       if (*I != i)
14397         return false;
14398       i++;
14399     }
14400     return true;
14401   };
14402 
14403   SelectionDAG &DAG = DCI.DAG;
14404   EVT VT = SVN->getValueType(0);
14405 
14406   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14407     return SDValue();
14408 
14409   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14410   // See comment in PPCVSXSwapRemoval.cpp.
14411   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14412   if (!Subtarget.hasP9Vector())
14413     return SDValue();
14414 
14415   if(!IsElementReverse(SVN))
14416     return SDValue();
14417 
14418   if (LSBase->getOpcode() == ISD::LOAD) {
14419     SDLoc dl(SVN);
14420     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14421     return DAG.getMemIntrinsicNode(
14422         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14423         LSBase->getMemoryVT(), LSBase->getMemOperand());
14424   }
14425 
14426   if (LSBase->getOpcode() == ISD::STORE) {
14427     SDLoc dl(LSBase);
14428     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14429                           LSBase->getBasePtr()};
14430     return DAG.getMemIntrinsicNode(
14431         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14432         LSBase->getMemoryVT(), LSBase->getMemOperand());
14433   }
14434 
14435   llvm_unreachable("Expected a load or store node here");
14436 }
14437 
14438 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14439                                              DAGCombinerInfo &DCI) const {
14440   SelectionDAG &DAG = DCI.DAG;
14441   SDLoc dl(N);
14442   switch (N->getOpcode()) {
14443   default: break;
14444   case ISD::ADD:
14445     return combineADD(N, DCI);
14446   case ISD::SHL:
14447     return combineSHL(N, DCI);
14448   case ISD::SRA:
14449     return combineSRA(N, DCI);
14450   case ISD::SRL:
14451     return combineSRL(N, DCI);
14452   case ISD::MUL:
14453     return combineMUL(N, DCI);
14454   case ISD::FMA:
14455   case PPCISD::FNMSUB:
14456     return combineFMALike(N, DCI);
14457   case PPCISD::SHL:
14458     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14459         return N->getOperand(0);
14460     break;
14461   case PPCISD::SRL:
14462     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14463         return N->getOperand(0);
14464     break;
14465   case PPCISD::SRA:
14466     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14467       if (C->isNullValue() ||   //  0 >>s V -> 0.
14468           C->isAllOnesValue())    // -1 >>s V -> -1.
14469         return N->getOperand(0);
14470     }
14471     break;
14472   case ISD::SIGN_EXTEND:
14473   case ISD::ZERO_EXTEND:
14474   case ISD::ANY_EXTEND:
14475     return DAGCombineExtBoolTrunc(N, DCI);
14476   case ISD::TRUNCATE:
14477     return combineTRUNCATE(N, DCI);
14478   case ISD::SETCC:
14479     if (SDValue CSCC = combineSetCC(N, DCI))
14480       return CSCC;
14481     LLVM_FALLTHROUGH;
14482   case ISD::SELECT_CC:
14483     return DAGCombineTruncBoolExt(N, DCI);
14484   case ISD::SINT_TO_FP:
14485   case ISD::UINT_TO_FP:
14486     return combineFPToIntToFP(N, DCI);
14487   case ISD::VECTOR_SHUFFLE:
14488     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14489       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14490       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14491     }
14492     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14493   case ISD::STORE: {
14494 
14495     EVT Op1VT = N->getOperand(1).getValueType();
14496     unsigned Opcode = N->getOperand(1).getOpcode();
14497 
14498     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14499       SDValue Val= combineStoreFPToInt(N, DCI);
14500       if (Val)
14501         return Val;
14502     }
14503 
14504     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14505       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14506       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14507       if (Val)
14508         return Val;
14509     }
14510 
14511     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14512     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14513         N->getOperand(1).getNode()->hasOneUse() &&
14514         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14515          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14516 
14517       // STBRX can only handle simple types and it makes no sense to store less
14518       // two bytes in byte-reversed order.
14519       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14520       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14521         break;
14522 
14523       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14524       // Do an any-extend to 32-bits if this is a half-word input.
14525       if (BSwapOp.getValueType() == MVT::i16)
14526         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14527 
14528       // If the type of BSWAP operand is wider than stored memory width
14529       // it need to be shifted to the right side before STBRX.
14530       if (Op1VT.bitsGT(mVT)) {
14531         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14532         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14533                               DAG.getConstant(Shift, dl, MVT::i32));
14534         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14535         if (Op1VT == MVT::i64)
14536           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14537       }
14538 
14539       SDValue Ops[] = {
14540         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14541       };
14542       return
14543         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14544                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14545                                 cast<StoreSDNode>(N)->getMemOperand());
14546     }
14547 
14548     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14549     // So it can increase the chance of CSE constant construction.
14550     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14551         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14552       // Need to sign-extended to 64-bits to handle negative values.
14553       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14554       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14555                                     MemVT.getSizeInBits());
14556       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14557 
14558       // DAG.getTruncStore() can't be used here because it doesn't accept
14559       // the general (base + offset) addressing mode.
14560       // So we use UpdateNodeOperands and setTruncatingStore instead.
14561       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14562                              N->getOperand(3));
14563       cast<StoreSDNode>(N)->setTruncatingStore(true);
14564       return SDValue(N, 0);
14565     }
14566 
14567     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14568     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14569     if (Op1VT.isSimple()) {
14570       MVT StoreVT = Op1VT.getSimpleVT();
14571       if (Subtarget.needsSwapsForVSXMemOps() &&
14572           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14573            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14574         return expandVSXStoreForLE(N, DCI);
14575     }
14576     break;
14577   }
14578   case ISD::LOAD: {
14579     LoadSDNode *LD = cast<LoadSDNode>(N);
14580     EVT VT = LD->getValueType(0);
14581 
14582     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14583     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14584     if (VT.isSimple()) {
14585       MVT LoadVT = VT.getSimpleVT();
14586       if (Subtarget.needsSwapsForVSXMemOps() &&
14587           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14588            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14589         return expandVSXLoadForLE(N, DCI);
14590     }
14591 
14592     // We sometimes end up with a 64-bit integer load, from which we extract
14593     // two single-precision floating-point numbers. This happens with
14594     // std::complex<float>, and other similar structures, because of the way we
14595     // canonicalize structure copies. However, if we lack direct moves,
14596     // then the final bitcasts from the extracted integer values to the
14597     // floating-point numbers turn into store/load pairs. Even with direct moves,
14598     // just loading the two floating-point numbers is likely better.
14599     auto ReplaceTwoFloatLoad = [&]() {
14600       if (VT != MVT::i64)
14601         return false;
14602 
14603       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14604           LD->isVolatile())
14605         return false;
14606 
14607       //  We're looking for a sequence like this:
14608       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14609       //      t16: i64 = srl t13, Constant:i32<32>
14610       //    t17: i32 = truncate t16
14611       //  t18: f32 = bitcast t17
14612       //    t19: i32 = truncate t13
14613       //  t20: f32 = bitcast t19
14614 
14615       if (!LD->hasNUsesOfValue(2, 0))
14616         return false;
14617 
14618       auto UI = LD->use_begin();
14619       while (UI.getUse().getResNo() != 0) ++UI;
14620       SDNode *Trunc = *UI++;
14621       while (UI.getUse().getResNo() != 0) ++UI;
14622       SDNode *RightShift = *UI;
14623       if (Trunc->getOpcode() != ISD::TRUNCATE)
14624         std::swap(Trunc, RightShift);
14625 
14626       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14627           Trunc->getValueType(0) != MVT::i32 ||
14628           !Trunc->hasOneUse())
14629         return false;
14630       if (RightShift->getOpcode() != ISD::SRL ||
14631           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14632           RightShift->getConstantOperandVal(1) != 32 ||
14633           !RightShift->hasOneUse())
14634         return false;
14635 
14636       SDNode *Trunc2 = *RightShift->use_begin();
14637       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14638           Trunc2->getValueType(0) != MVT::i32 ||
14639           !Trunc2->hasOneUse())
14640         return false;
14641 
14642       SDNode *Bitcast = *Trunc->use_begin();
14643       SDNode *Bitcast2 = *Trunc2->use_begin();
14644 
14645       if (Bitcast->getOpcode() != ISD::BITCAST ||
14646           Bitcast->getValueType(0) != MVT::f32)
14647         return false;
14648       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14649           Bitcast2->getValueType(0) != MVT::f32)
14650         return false;
14651 
14652       if (Subtarget.isLittleEndian())
14653         std::swap(Bitcast, Bitcast2);
14654 
14655       // Bitcast has the second float (in memory-layout order) and Bitcast2
14656       // has the first one.
14657 
14658       SDValue BasePtr = LD->getBasePtr();
14659       if (LD->isIndexed()) {
14660         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14661                "Non-pre-inc AM on PPC?");
14662         BasePtr =
14663           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14664                       LD->getOffset());
14665       }
14666 
14667       auto MMOFlags =
14668           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14669       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14670                                       LD->getPointerInfo(), LD->getAlignment(),
14671                                       MMOFlags, LD->getAAInfo());
14672       SDValue AddPtr =
14673         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14674                     BasePtr, DAG.getIntPtrConstant(4, dl));
14675       SDValue FloatLoad2 = DAG.getLoad(
14676           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14677           LD->getPointerInfo().getWithOffset(4),
14678           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14679 
14680       if (LD->isIndexed()) {
14681         // Note that DAGCombine should re-form any pre-increment load(s) from
14682         // what is produced here if that makes sense.
14683         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14684       }
14685 
14686       DCI.CombineTo(Bitcast2, FloatLoad);
14687       DCI.CombineTo(Bitcast, FloatLoad2);
14688 
14689       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14690                                     SDValue(FloatLoad2.getNode(), 1));
14691       return true;
14692     };
14693 
14694     if (ReplaceTwoFloatLoad())
14695       return SDValue(N, 0);
14696 
14697     EVT MemVT = LD->getMemoryVT();
14698     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14699     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
14700     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
14701     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
14702     if (LD->isUnindexed() && VT.isVector() &&
14703         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14704           // P8 and later hardware should just use LOAD.
14705           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
14706                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
14707          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
14708           LD->getAlignment() >= ScalarABIAlignment)) &&
14709         LD->getAlignment() < ABIAlignment) {
14710       // This is a type-legal unaligned Altivec or QPX load.
14711       SDValue Chain = LD->getChain();
14712       SDValue Ptr = LD->getBasePtr();
14713       bool isLittleEndian = Subtarget.isLittleEndian();
14714 
14715       // This implements the loading of unaligned vectors as described in
14716       // the venerable Apple Velocity Engine overview. Specifically:
14717       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14718       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14719       //
14720       // The general idea is to expand a sequence of one or more unaligned
14721       // loads into an alignment-based permutation-control instruction (lvsl
14722       // or lvsr), a series of regular vector loads (which always truncate
14723       // their input address to an aligned address), and a series of
14724       // permutations.  The results of these permutations are the requested
14725       // loaded values.  The trick is that the last "extra" load is not taken
14726       // from the address you might suspect (sizeof(vector) bytes after the
14727       // last requested load), but rather sizeof(vector) - 1 bytes after the
14728       // last requested vector. The point of this is to avoid a page fault if
14729       // the base address happened to be aligned. This works because if the
14730       // base address is aligned, then adding less than a full vector length
14731       // will cause the last vector in the sequence to be (re)loaded.
14732       // Otherwise, the next vector will be fetched as you might suspect was
14733       // necessary.
14734 
14735       // We might be able to reuse the permutation generation from
14736       // a different base address offset from this one by an aligned amount.
14737       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14738       // optimization later.
14739       Intrinsic::ID Intr, IntrLD, IntrPerm;
14740       MVT PermCntlTy, PermTy, LDTy;
14741       if (Subtarget.hasAltivec()) {
14742         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
14743                                  Intrinsic::ppc_altivec_lvsl;
14744         IntrLD = Intrinsic::ppc_altivec_lvx;
14745         IntrPerm = Intrinsic::ppc_altivec_vperm;
14746         PermCntlTy = MVT::v16i8;
14747         PermTy = MVT::v4i32;
14748         LDTy = MVT::v4i32;
14749       } else {
14750         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
14751                                        Intrinsic::ppc_qpx_qvlpcls;
14752         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
14753                                        Intrinsic::ppc_qpx_qvlfs;
14754         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
14755         PermCntlTy = MVT::v4f64;
14756         PermTy = MVT::v4f64;
14757         LDTy = MemVT.getSimpleVT();
14758       }
14759 
14760       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14761 
14762       // Create the new MMO for the new base load. It is like the original MMO,
14763       // but represents an area in memory almost twice the vector size centered
14764       // on the original address. If the address is unaligned, we might start
14765       // reading up to (sizeof(vector)-1) bytes below the address of the
14766       // original unaligned load.
14767       MachineFunction &MF = DAG.getMachineFunction();
14768       MachineMemOperand *BaseMMO =
14769         MF.getMachineMemOperand(LD->getMemOperand(),
14770                                 -(long)MemVT.getStoreSize()+1,
14771                                 2*MemVT.getStoreSize()-1);
14772 
14773       // Create the new base load.
14774       SDValue LDXIntID =
14775           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14776       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14777       SDValue BaseLoad =
14778         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14779                                 DAG.getVTList(PermTy, MVT::Other),
14780                                 BaseLoadOps, LDTy, BaseMMO);
14781 
14782       // Note that the value of IncOffset (which is provided to the next
14783       // load's pointer info offset value, and thus used to calculate the
14784       // alignment), and the value of IncValue (which is actually used to
14785       // increment the pointer value) are different! This is because we
14786       // require the next load to appear to be aligned, even though it
14787       // is actually offset from the base pointer by a lesser amount.
14788       int IncOffset = VT.getSizeInBits() / 8;
14789       int IncValue = IncOffset;
14790 
14791       // Walk (both up and down) the chain looking for another load at the real
14792       // (aligned) offset (the alignment of the other load does not matter in
14793       // this case). If found, then do not use the offset reduction trick, as
14794       // that will prevent the loads from being later combined (as they would
14795       // otherwise be duplicates).
14796       if (!findConsecutiveLoad(LD, DAG))
14797         --IncValue;
14798 
14799       SDValue Increment =
14800           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14801       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14802 
14803       MachineMemOperand *ExtraMMO =
14804         MF.getMachineMemOperand(LD->getMemOperand(),
14805                                 1, 2*MemVT.getStoreSize()-1);
14806       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14807       SDValue ExtraLoad =
14808         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14809                                 DAG.getVTList(PermTy, MVT::Other),
14810                                 ExtraLoadOps, LDTy, ExtraMMO);
14811 
14812       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14813         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14814 
14815       // Because vperm has a big-endian bias, we must reverse the order
14816       // of the input vectors and complement the permute control vector
14817       // when generating little endian code.  We have already handled the
14818       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14819       // and ExtraLoad here.
14820       SDValue Perm;
14821       if (isLittleEndian)
14822         Perm = BuildIntrinsicOp(IntrPerm,
14823                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14824       else
14825         Perm = BuildIntrinsicOp(IntrPerm,
14826                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14827 
14828       if (VT != PermTy)
14829         Perm = Subtarget.hasAltivec() ?
14830                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14831                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14832                                DAG.getTargetConstant(1, dl, MVT::i64));
14833                                // second argument is 1 because this rounding
14834                                // is always exact.
14835 
14836       // The output of the permutation is our loaded result, the TokenFactor is
14837       // our new chain.
14838       DCI.CombineTo(N, Perm, TF);
14839       return SDValue(N, 0);
14840     }
14841     }
14842     break;
14843     case ISD::INTRINSIC_WO_CHAIN: {
14844       bool isLittleEndian = Subtarget.isLittleEndian();
14845       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14846       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14847                                            : Intrinsic::ppc_altivec_lvsl);
14848       if ((IID == Intr ||
14849            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14850            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14851         N->getOperand(1)->getOpcode() == ISD::ADD) {
14852         SDValue Add = N->getOperand(1);
14853 
14854         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14855                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14856 
14857         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14858                                   APInt::getAllOnesValue(Bits /* alignment */)
14859                                       .zext(Add.getScalarValueSizeInBits()))) {
14860           SDNode *BasePtr = Add->getOperand(0).getNode();
14861           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14862                                     UE = BasePtr->use_end();
14863                UI != UE; ++UI) {
14864             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14865                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14866               // We've found another LVSL/LVSR, and this address is an aligned
14867               // multiple of that one. The results will be the same, so use the
14868               // one we've just found instead.
14869 
14870               return SDValue(*UI, 0);
14871             }
14872           }
14873         }
14874 
14875         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14876           SDNode *BasePtr = Add->getOperand(0).getNode();
14877           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14878                UE = BasePtr->use_end(); UI != UE; ++UI) {
14879             if (UI->getOpcode() == ISD::ADD &&
14880                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14881                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14882                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14883                 (1ULL << Bits) == 0) {
14884               SDNode *OtherAdd = *UI;
14885               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14886                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14887                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14888                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14889                   return SDValue(*VI, 0);
14890                 }
14891               }
14892             }
14893           }
14894         }
14895       }
14896 
14897       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14898       // Expose the vabsduw/h/b opportunity for down stream
14899       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14900           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14901            IID == Intrinsic::ppc_altivec_vmaxsh ||
14902            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14903         SDValue V1 = N->getOperand(1);
14904         SDValue V2 = N->getOperand(2);
14905         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14906              V1.getSimpleValueType() == MVT::v8i16 ||
14907              V1.getSimpleValueType() == MVT::v16i8) &&
14908             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14909           // (0-a, a)
14910           if (V1.getOpcode() == ISD::SUB &&
14911               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14912               V1.getOperand(1) == V2) {
14913             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14914           }
14915           // (a, 0-a)
14916           if (V2.getOpcode() == ISD::SUB &&
14917               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14918               V2.getOperand(1) == V1) {
14919             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14920           }
14921           // (x-y, y-x)
14922           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14923               V1.getOperand(0) == V2.getOperand(1) &&
14924               V1.getOperand(1) == V2.getOperand(0)) {
14925             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14926           }
14927         }
14928       }
14929     }
14930 
14931     break;
14932   case ISD::INTRINSIC_W_CHAIN:
14933     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14934     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14935     if (Subtarget.needsSwapsForVSXMemOps()) {
14936       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14937       default:
14938         break;
14939       case Intrinsic::ppc_vsx_lxvw4x:
14940       case Intrinsic::ppc_vsx_lxvd2x:
14941         return expandVSXLoadForLE(N, DCI);
14942       }
14943     }
14944     break;
14945   case ISD::INTRINSIC_VOID:
14946     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14947     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14948     if (Subtarget.needsSwapsForVSXMemOps()) {
14949       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14950       default:
14951         break;
14952       case Intrinsic::ppc_vsx_stxvw4x:
14953       case Intrinsic::ppc_vsx_stxvd2x:
14954         return expandVSXStoreForLE(N, DCI);
14955       }
14956     }
14957     break;
14958   case ISD::BSWAP:
14959     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14960     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14961         N->getOperand(0).hasOneUse() &&
14962         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14963          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14964           N->getValueType(0) == MVT::i64))) {
14965       SDValue Load = N->getOperand(0);
14966       LoadSDNode *LD = cast<LoadSDNode>(Load);
14967       // Create the byte-swapping load.
14968       SDValue Ops[] = {
14969         LD->getChain(),    // Chain
14970         LD->getBasePtr(),  // Ptr
14971         DAG.getValueType(N->getValueType(0)) // VT
14972       };
14973       SDValue BSLoad =
14974         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14975                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14976                                               MVT::i64 : MVT::i32, MVT::Other),
14977                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14978 
14979       // If this is an i16 load, insert the truncate.
14980       SDValue ResVal = BSLoad;
14981       if (N->getValueType(0) == MVT::i16)
14982         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14983 
14984       // First, combine the bswap away.  This makes the value produced by the
14985       // load dead.
14986       DCI.CombineTo(N, ResVal);
14987 
14988       // Next, combine the load away, we give it a bogus result value but a real
14989       // chain result.  The result value is dead because the bswap is dead.
14990       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14991 
14992       // Return N so it doesn't get rechecked!
14993       return SDValue(N, 0);
14994     }
14995     break;
14996   case PPCISD::VCMP:
14997     // If a VCMPo node already exists with exactly the same operands as this
14998     // node, use its result instead of this node (VCMPo computes both a CR6 and
14999     // a normal output).
15000     //
15001     if (!N->getOperand(0).hasOneUse() &&
15002         !N->getOperand(1).hasOneUse() &&
15003         !N->getOperand(2).hasOneUse()) {
15004 
15005       // Scan all of the users of the LHS, looking for VCMPo's that match.
15006       SDNode *VCMPoNode = nullptr;
15007 
15008       SDNode *LHSN = N->getOperand(0).getNode();
15009       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15010            UI != E; ++UI)
15011         if (UI->getOpcode() == PPCISD::VCMPo &&
15012             UI->getOperand(1) == N->getOperand(1) &&
15013             UI->getOperand(2) == N->getOperand(2) &&
15014             UI->getOperand(0) == N->getOperand(0)) {
15015           VCMPoNode = *UI;
15016           break;
15017         }
15018 
15019       // If there is no VCMPo node, or if the flag value has a single use, don't
15020       // transform this.
15021       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
15022         break;
15023 
15024       // Look at the (necessarily single) use of the flag value.  If it has a
15025       // chain, this transformation is more complex.  Note that multiple things
15026       // could use the value result, which we should ignore.
15027       SDNode *FlagUser = nullptr;
15028       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
15029            FlagUser == nullptr; ++UI) {
15030         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
15031         SDNode *User = *UI;
15032         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15033           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
15034             FlagUser = User;
15035             break;
15036           }
15037         }
15038       }
15039 
15040       // If the user is a MFOCRF instruction, we know this is safe.
15041       // Otherwise we give up for right now.
15042       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15043         return SDValue(VCMPoNode, 0);
15044     }
15045     break;
15046   case ISD::BRCOND: {
15047     SDValue Cond = N->getOperand(1);
15048     SDValue Target = N->getOperand(2);
15049 
15050     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15051         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15052           Intrinsic::loop_decrement) {
15053 
15054       // We now need to make the intrinsic dead (it cannot be instruction
15055       // selected).
15056       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15057       assert(Cond.getNode()->hasOneUse() &&
15058              "Counter decrement has more than one use");
15059 
15060       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15061                          N->getOperand(0), Target);
15062     }
15063   }
15064   break;
15065   case ISD::BR_CC: {
15066     // If this is a branch on an altivec predicate comparison, lower this so
15067     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15068     // lowering is done pre-legalize, because the legalizer lowers the predicate
15069     // compare down to code that is difficult to reassemble.
15070     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15071     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15072 
15073     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15074     // value. If so, pass-through the AND to get to the intrinsic.
15075     if (LHS.getOpcode() == ISD::AND &&
15076         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15077         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15078           Intrinsic::loop_decrement &&
15079         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15080         !isNullConstant(LHS.getOperand(1)))
15081       LHS = LHS.getOperand(0);
15082 
15083     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15084         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15085           Intrinsic::loop_decrement &&
15086         isa<ConstantSDNode>(RHS)) {
15087       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15088              "Counter decrement comparison is not EQ or NE");
15089 
15090       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15091       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15092                     (CC == ISD::SETNE && !Val);
15093 
15094       // We now need to make the intrinsic dead (it cannot be instruction
15095       // selected).
15096       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15097       assert(LHS.getNode()->hasOneUse() &&
15098              "Counter decrement has more than one use");
15099 
15100       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15101                          N->getOperand(0), N->getOperand(4));
15102     }
15103 
15104     int CompareOpc;
15105     bool isDot;
15106 
15107     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15108         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15109         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15110       assert(isDot && "Can't compare against a vector result!");
15111 
15112       // If this is a comparison against something other than 0/1, then we know
15113       // that the condition is never/always true.
15114       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15115       if (Val != 0 && Val != 1) {
15116         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15117           return N->getOperand(0);
15118         // Always !=, turn it into an unconditional branch.
15119         return DAG.getNode(ISD::BR, dl, MVT::Other,
15120                            N->getOperand(0), N->getOperand(4));
15121       }
15122 
15123       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15124 
15125       // Create the PPCISD altivec 'dot' comparison node.
15126       SDValue Ops[] = {
15127         LHS.getOperand(2),  // LHS of compare
15128         LHS.getOperand(3),  // RHS of compare
15129         DAG.getConstant(CompareOpc, dl, MVT::i32)
15130       };
15131       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15132       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15133 
15134       // Unpack the result based on how the target uses it.
15135       PPC::Predicate CompOpc;
15136       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15137       default:  // Can't happen, don't crash on invalid number though.
15138       case 0:   // Branch on the value of the EQ bit of CR6.
15139         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15140         break;
15141       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15142         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15143         break;
15144       case 2:   // Branch on the value of the LT bit of CR6.
15145         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15146         break;
15147       case 3:   // Branch on the inverted value of the LT bit of CR6.
15148         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15149         break;
15150       }
15151 
15152       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15153                          DAG.getConstant(CompOpc, dl, MVT::i32),
15154                          DAG.getRegister(PPC::CR6, MVT::i32),
15155                          N->getOperand(4), CompNode.getValue(1));
15156     }
15157     break;
15158   }
15159   case ISD::BUILD_VECTOR:
15160     return DAGCombineBuildVector(N, DCI);
15161   case ISD::ABS:
15162     return combineABS(N, DCI);
15163   case ISD::VSELECT:
15164     return combineVSelect(N, DCI);
15165   }
15166 
15167   return SDValue();
15168 }
15169 
15170 SDValue
15171 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15172                                  SelectionDAG &DAG,
15173                                  SmallVectorImpl<SDNode *> &Created) const {
15174   // fold (sdiv X, pow2)
15175   EVT VT = N->getValueType(0);
15176   if (VT == MVT::i64 && !Subtarget.isPPC64())
15177     return SDValue();
15178   if ((VT != MVT::i32 && VT != MVT::i64) ||
15179       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15180     return SDValue();
15181 
15182   SDLoc DL(N);
15183   SDValue N0 = N->getOperand(0);
15184 
15185   bool IsNegPow2 = (-Divisor).isPowerOf2();
15186   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15187   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15188 
15189   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15190   Created.push_back(Op.getNode());
15191 
15192   if (IsNegPow2) {
15193     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15194     Created.push_back(Op.getNode());
15195   }
15196 
15197   return Op;
15198 }
15199 
15200 //===----------------------------------------------------------------------===//
15201 // Inline Assembly Support
15202 //===----------------------------------------------------------------------===//
15203 
15204 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15205                                                       KnownBits &Known,
15206                                                       const APInt &DemandedElts,
15207                                                       const SelectionDAG &DAG,
15208                                                       unsigned Depth) const {
15209   Known.resetAll();
15210   switch (Op.getOpcode()) {
15211   default: break;
15212   case PPCISD::LBRX: {
15213     // lhbrx is known to have the top bits cleared out.
15214     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15215       Known.Zero = 0xFFFF0000;
15216     break;
15217   }
15218   case ISD::INTRINSIC_WO_CHAIN: {
15219     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15220     default: break;
15221     case Intrinsic::ppc_altivec_vcmpbfp_p:
15222     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15223     case Intrinsic::ppc_altivec_vcmpequb_p:
15224     case Intrinsic::ppc_altivec_vcmpequh_p:
15225     case Intrinsic::ppc_altivec_vcmpequw_p:
15226     case Intrinsic::ppc_altivec_vcmpequd_p:
15227     case Intrinsic::ppc_altivec_vcmpgefp_p:
15228     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15229     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15230     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15231     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15232     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15233     case Intrinsic::ppc_altivec_vcmpgtub_p:
15234     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15235     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15236     case Intrinsic::ppc_altivec_vcmpgtud_p:
15237       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15238       break;
15239     }
15240   }
15241   }
15242 }
15243 
15244 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15245   switch (Subtarget.getCPUDirective()) {
15246   default: break;
15247   case PPC::DIR_970:
15248   case PPC::DIR_PWR4:
15249   case PPC::DIR_PWR5:
15250   case PPC::DIR_PWR5X:
15251   case PPC::DIR_PWR6:
15252   case PPC::DIR_PWR6X:
15253   case PPC::DIR_PWR7:
15254   case PPC::DIR_PWR8:
15255   case PPC::DIR_PWR9:
15256   case PPC::DIR_PWR10:
15257   case PPC::DIR_PWR_FUTURE: {
15258     if (!ML)
15259       break;
15260 
15261     if (!DisableInnermostLoopAlign32) {
15262       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15263       // so that we can decrease cache misses and branch-prediction misses.
15264       // Actual alignment of the loop will depend on the hotness check and other
15265       // logic in alignBlocks.
15266       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15267         return Align(32);
15268     }
15269 
15270     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15271 
15272     // For small loops (between 5 and 8 instructions), align to a 32-byte
15273     // boundary so that the entire loop fits in one instruction-cache line.
15274     uint64_t LoopSize = 0;
15275     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15276       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15277         LoopSize += TII->getInstSizeInBytes(*J);
15278         if (LoopSize > 32)
15279           break;
15280       }
15281 
15282     if (LoopSize > 16 && LoopSize <= 32)
15283       return Align(32);
15284 
15285     break;
15286   }
15287   }
15288 
15289   return TargetLowering::getPrefLoopAlignment(ML);
15290 }
15291 
15292 /// getConstraintType - Given a constraint, return the type of
15293 /// constraint it is for this target.
15294 PPCTargetLowering::ConstraintType
15295 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15296   if (Constraint.size() == 1) {
15297     switch (Constraint[0]) {
15298     default: break;
15299     case 'b':
15300     case 'r':
15301     case 'f':
15302     case 'd':
15303     case 'v':
15304     case 'y':
15305       return C_RegisterClass;
15306     case 'Z':
15307       // FIXME: While Z does indicate a memory constraint, it specifically
15308       // indicates an r+r address (used in conjunction with the 'y' modifier
15309       // in the replacement string). Currently, we're forcing the base
15310       // register to be r0 in the asm printer (which is interpreted as zero)
15311       // and forming the complete address in the second register. This is
15312       // suboptimal.
15313       return C_Memory;
15314     }
15315   } else if (Constraint == "wc") { // individual CR bits.
15316     return C_RegisterClass;
15317   } else if (Constraint == "wa" || Constraint == "wd" ||
15318              Constraint == "wf" || Constraint == "ws" ||
15319              Constraint == "wi" || Constraint == "ww") {
15320     return C_RegisterClass; // VSX registers.
15321   }
15322   return TargetLowering::getConstraintType(Constraint);
15323 }
15324 
15325 /// Examine constraint type and operand type and determine a weight value.
15326 /// This object must already have been set up with the operand type
15327 /// and the current alternative constraint selected.
15328 TargetLowering::ConstraintWeight
15329 PPCTargetLowering::getSingleConstraintMatchWeight(
15330     AsmOperandInfo &info, const char *constraint) const {
15331   ConstraintWeight weight = CW_Invalid;
15332   Value *CallOperandVal = info.CallOperandVal;
15333     // If we don't have a value, we can't do a match,
15334     // but allow it at the lowest weight.
15335   if (!CallOperandVal)
15336     return CW_Default;
15337   Type *type = CallOperandVal->getType();
15338 
15339   // Look at the constraint type.
15340   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15341     return CW_Register; // an individual CR bit.
15342   else if ((StringRef(constraint) == "wa" ||
15343             StringRef(constraint) == "wd" ||
15344             StringRef(constraint) == "wf") &&
15345            type->isVectorTy())
15346     return CW_Register;
15347   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15348     return CW_Register; // just hold 64-bit integers data.
15349   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15350     return CW_Register;
15351   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15352     return CW_Register;
15353 
15354   switch (*constraint) {
15355   default:
15356     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15357     break;
15358   case 'b':
15359     if (type->isIntegerTy())
15360       weight = CW_Register;
15361     break;
15362   case 'f':
15363     if (type->isFloatTy())
15364       weight = CW_Register;
15365     break;
15366   case 'd':
15367     if (type->isDoubleTy())
15368       weight = CW_Register;
15369     break;
15370   case 'v':
15371     if (type->isVectorTy())
15372       weight = CW_Register;
15373     break;
15374   case 'y':
15375     weight = CW_Register;
15376     break;
15377   case 'Z':
15378     weight = CW_Memory;
15379     break;
15380   }
15381   return weight;
15382 }
15383 
15384 std::pair<unsigned, const TargetRegisterClass *>
15385 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15386                                                 StringRef Constraint,
15387                                                 MVT VT) const {
15388   if (Constraint.size() == 1) {
15389     // GCC RS6000 Constraint Letters
15390     switch (Constraint[0]) {
15391     case 'b':   // R1-R31
15392       if (VT == MVT::i64 && Subtarget.isPPC64())
15393         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15394       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15395     case 'r':   // R0-R31
15396       if (VT == MVT::i64 && Subtarget.isPPC64())
15397         return std::make_pair(0U, &PPC::G8RCRegClass);
15398       return std::make_pair(0U, &PPC::GPRCRegClass);
15399     // 'd' and 'f' constraints are both defined to be "the floating point
15400     // registers", where one is for 32-bit and the other for 64-bit. We don't
15401     // really care overly much here so just give them all the same reg classes.
15402     case 'd':
15403     case 'f':
15404       if (Subtarget.hasSPE()) {
15405         if (VT == MVT::f32 || VT == MVT::i32)
15406           return std::make_pair(0U, &PPC::GPRCRegClass);
15407         if (VT == MVT::f64 || VT == MVT::i64)
15408           return std::make_pair(0U, &PPC::SPERCRegClass);
15409       } else {
15410         if (VT == MVT::f32 || VT == MVT::i32)
15411           return std::make_pair(0U, &PPC::F4RCRegClass);
15412         if (VT == MVT::f64 || VT == MVT::i64)
15413           return std::make_pair(0U, &PPC::F8RCRegClass);
15414         if (VT == MVT::v4f64 && Subtarget.hasQPX())
15415           return std::make_pair(0U, &PPC::QFRCRegClass);
15416         if (VT == MVT::v4f32 && Subtarget.hasQPX())
15417           return std::make_pair(0U, &PPC::QSRCRegClass);
15418       }
15419       break;
15420     case 'v':
15421       if (VT == MVT::v4f64 && Subtarget.hasQPX())
15422         return std::make_pair(0U, &PPC::QFRCRegClass);
15423       if (VT == MVT::v4f32 && Subtarget.hasQPX())
15424         return std::make_pair(0U, &PPC::QSRCRegClass);
15425       if (Subtarget.hasAltivec())
15426         return std::make_pair(0U, &PPC::VRRCRegClass);
15427       break;
15428     case 'y':   // crrc
15429       return std::make_pair(0U, &PPC::CRRCRegClass);
15430     }
15431   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15432     // An individual CR bit.
15433     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15434   } else if ((Constraint == "wa" || Constraint == "wd" ||
15435              Constraint == "wf" || Constraint == "wi") &&
15436              Subtarget.hasVSX()) {
15437     return std::make_pair(0U, &PPC::VSRCRegClass);
15438   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15439     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15440       return std::make_pair(0U, &PPC::VSSRCRegClass);
15441     else
15442       return std::make_pair(0U, &PPC::VSFRCRegClass);
15443   }
15444 
15445   // If we name a VSX register, we can't defer to the base class because it
15446   // will not recognize the correct register (their names will be VSL{0-31}
15447   // and V{0-31} so they won't match). So we match them here.
15448   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15449     int VSNum = atoi(Constraint.data() + 3);
15450     assert(VSNum >= 0 && VSNum <= 63 &&
15451            "Attempted to access a vsr out of range");
15452     if (VSNum < 32)
15453       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15454     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15455   }
15456   std::pair<unsigned, const TargetRegisterClass *> R =
15457       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15458 
15459   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15460   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15461   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15462   // register.
15463   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15464   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15465   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15466       PPC::GPRCRegClass.contains(R.first))
15467     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15468                             PPC::sub_32, &PPC::G8RCRegClass),
15469                           &PPC::G8RCRegClass);
15470 
15471   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15472   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15473     R.first = PPC::CR0;
15474     R.second = &PPC::CRRCRegClass;
15475   }
15476 
15477   return R;
15478 }
15479 
15480 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15481 /// vector.  If it is invalid, don't add anything to Ops.
15482 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15483                                                      std::string &Constraint,
15484                                                      std::vector<SDValue>&Ops,
15485                                                      SelectionDAG &DAG) const {
15486   SDValue Result;
15487 
15488   // Only support length 1 constraints.
15489   if (Constraint.length() > 1) return;
15490 
15491   char Letter = Constraint[0];
15492   switch (Letter) {
15493   default: break;
15494   case 'I':
15495   case 'J':
15496   case 'K':
15497   case 'L':
15498   case 'M':
15499   case 'N':
15500   case 'O':
15501   case 'P': {
15502     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15503     if (!CST) return; // Must be an immediate to match.
15504     SDLoc dl(Op);
15505     int64_t Value = CST->getSExtValue();
15506     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15507                          // numbers are printed as such.
15508     switch (Letter) {
15509     default: llvm_unreachable("Unknown constraint letter!");
15510     case 'I':  // "I" is a signed 16-bit constant.
15511       if (isInt<16>(Value))
15512         Result = DAG.getTargetConstant(Value, dl, TCVT);
15513       break;
15514     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15515       if (isShiftedUInt<16, 16>(Value))
15516         Result = DAG.getTargetConstant(Value, dl, TCVT);
15517       break;
15518     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15519       if (isShiftedInt<16, 16>(Value))
15520         Result = DAG.getTargetConstant(Value, dl, TCVT);
15521       break;
15522     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15523       if (isUInt<16>(Value))
15524         Result = DAG.getTargetConstant(Value, dl, TCVT);
15525       break;
15526     case 'M':  // "M" is a constant that is greater than 31.
15527       if (Value > 31)
15528         Result = DAG.getTargetConstant(Value, dl, TCVT);
15529       break;
15530     case 'N':  // "N" is a positive constant that is an exact power of two.
15531       if (Value > 0 && isPowerOf2_64(Value))
15532         Result = DAG.getTargetConstant(Value, dl, TCVT);
15533       break;
15534     case 'O':  // "O" is the constant zero.
15535       if (Value == 0)
15536         Result = DAG.getTargetConstant(Value, dl, TCVT);
15537       break;
15538     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15539       if (isInt<16>(-Value))
15540         Result = DAG.getTargetConstant(Value, dl, TCVT);
15541       break;
15542     }
15543     break;
15544   }
15545   }
15546 
15547   if (Result.getNode()) {
15548     Ops.push_back(Result);
15549     return;
15550   }
15551 
15552   // Handle standard constraint letters.
15553   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15554 }
15555 
15556 // isLegalAddressingMode - Return true if the addressing mode represented
15557 // by AM is legal for this target, for a load/store of the specified type.
15558 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15559                                               const AddrMode &AM, Type *Ty,
15560                                               unsigned AS, Instruction *I) const {
15561   // PPC does not allow r+i addressing modes for vectors!
15562   if (Ty->isVectorTy() && AM.BaseOffs != 0)
15563     return false;
15564 
15565   // PPC allows a sign-extended 16-bit immediate field.
15566   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15567     return false;
15568 
15569   // No global is ever allowed as a base.
15570   if (AM.BaseGV)
15571     return false;
15572 
15573   // PPC only support r+r,
15574   switch (AM.Scale) {
15575   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15576     break;
15577   case 1:
15578     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15579       return false;
15580     // Otherwise we have r+r or r+i.
15581     break;
15582   case 2:
15583     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15584       return false;
15585     // Allow 2*r as r+r.
15586     break;
15587   default:
15588     // No other scales are supported.
15589     return false;
15590   }
15591 
15592   return true;
15593 }
15594 
15595 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15596                                            SelectionDAG &DAG) const {
15597   MachineFunction &MF = DAG.getMachineFunction();
15598   MachineFrameInfo &MFI = MF.getFrameInfo();
15599   MFI.setReturnAddressIsTaken(true);
15600 
15601   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15602     return SDValue();
15603 
15604   SDLoc dl(Op);
15605   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15606 
15607   // Make sure the function does not optimize away the store of the RA to
15608   // the stack.
15609   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15610   FuncInfo->setLRStoreRequired();
15611   bool isPPC64 = Subtarget.isPPC64();
15612   auto PtrVT = getPointerTy(MF.getDataLayout());
15613 
15614   if (Depth > 0) {
15615     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15616     SDValue Offset =
15617         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15618                         isPPC64 ? MVT::i64 : MVT::i32);
15619     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15620                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15621                        MachinePointerInfo());
15622   }
15623 
15624   // Just load the return address off the stack.
15625   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15626   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15627                      MachinePointerInfo());
15628 }
15629 
15630 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15631                                           SelectionDAG &DAG) const {
15632   SDLoc dl(Op);
15633   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15634 
15635   MachineFunction &MF = DAG.getMachineFunction();
15636   MachineFrameInfo &MFI = MF.getFrameInfo();
15637   MFI.setFrameAddressIsTaken(true);
15638 
15639   EVT PtrVT = getPointerTy(MF.getDataLayout());
15640   bool isPPC64 = PtrVT == MVT::i64;
15641 
15642   // Naked functions never have a frame pointer, and so we use r1. For all
15643   // other functions, this decision must be delayed until during PEI.
15644   unsigned FrameReg;
15645   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15646     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15647   else
15648     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15649 
15650   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15651                                          PtrVT);
15652   while (Depth--)
15653     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15654                             FrameAddr, MachinePointerInfo());
15655   return FrameAddr;
15656 }
15657 
15658 // FIXME? Maybe this could be a TableGen attribute on some registers and
15659 // this table could be generated automatically from RegInfo.
15660 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15661                                               const MachineFunction &MF) const {
15662   bool isPPC64 = Subtarget.isPPC64();
15663 
15664   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15665   if (!is64Bit && VT != LLT::scalar(32))
15666     report_fatal_error("Invalid register global variable type");
15667 
15668   Register Reg = StringSwitch<Register>(RegName)
15669                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15670                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15671                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15672                      .Default(Register());
15673 
15674   if (Reg)
15675     return Reg;
15676   report_fatal_error("Invalid register name global variable");
15677 }
15678 
15679 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15680   // 32-bit SVR4 ABI access everything as got-indirect.
15681   if (Subtarget.is32BitELFABI())
15682     return true;
15683 
15684   // AIX accesses everything indirectly through the TOC, which is similar to
15685   // the GOT.
15686   if (Subtarget.isAIXABI())
15687     return true;
15688 
15689   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15690   // If it is small or large code model, module locals are accessed
15691   // indirectly by loading their address from .toc/.got.
15692   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15693     return true;
15694 
15695   // JumpTable and BlockAddress are accessed as got-indirect.
15696   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15697     return true;
15698 
15699   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15700     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15701 
15702   return false;
15703 }
15704 
15705 bool
15706 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15707   // The PowerPC target isn't yet aware of offsets.
15708   return false;
15709 }
15710 
15711 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15712                                            const CallInst &I,
15713                                            MachineFunction &MF,
15714                                            unsigned Intrinsic) const {
15715   switch (Intrinsic) {
15716   case Intrinsic::ppc_qpx_qvlfd:
15717   case Intrinsic::ppc_qpx_qvlfs:
15718   case Intrinsic::ppc_qpx_qvlfcd:
15719   case Intrinsic::ppc_qpx_qvlfcs:
15720   case Intrinsic::ppc_qpx_qvlfiwa:
15721   case Intrinsic::ppc_qpx_qvlfiwz:
15722   case Intrinsic::ppc_altivec_lvx:
15723   case Intrinsic::ppc_altivec_lvxl:
15724   case Intrinsic::ppc_altivec_lvebx:
15725   case Intrinsic::ppc_altivec_lvehx:
15726   case Intrinsic::ppc_altivec_lvewx:
15727   case Intrinsic::ppc_vsx_lxvd2x:
15728   case Intrinsic::ppc_vsx_lxvw4x: {
15729     EVT VT;
15730     switch (Intrinsic) {
15731     case Intrinsic::ppc_altivec_lvebx:
15732       VT = MVT::i8;
15733       break;
15734     case Intrinsic::ppc_altivec_lvehx:
15735       VT = MVT::i16;
15736       break;
15737     case Intrinsic::ppc_altivec_lvewx:
15738       VT = MVT::i32;
15739       break;
15740     case Intrinsic::ppc_vsx_lxvd2x:
15741       VT = MVT::v2f64;
15742       break;
15743     case Intrinsic::ppc_qpx_qvlfd:
15744       VT = MVT::v4f64;
15745       break;
15746     case Intrinsic::ppc_qpx_qvlfs:
15747       VT = MVT::v4f32;
15748       break;
15749     case Intrinsic::ppc_qpx_qvlfcd:
15750       VT = MVT::v2f64;
15751       break;
15752     case Intrinsic::ppc_qpx_qvlfcs:
15753       VT = MVT::v2f32;
15754       break;
15755     default:
15756       VT = MVT::v4i32;
15757       break;
15758     }
15759 
15760     Info.opc = ISD::INTRINSIC_W_CHAIN;
15761     Info.memVT = VT;
15762     Info.ptrVal = I.getArgOperand(0);
15763     Info.offset = -VT.getStoreSize()+1;
15764     Info.size = 2*VT.getStoreSize()-1;
15765     Info.align = Align(1);
15766     Info.flags = MachineMemOperand::MOLoad;
15767     return true;
15768   }
15769   case Intrinsic::ppc_qpx_qvlfda:
15770   case Intrinsic::ppc_qpx_qvlfsa:
15771   case Intrinsic::ppc_qpx_qvlfcda:
15772   case Intrinsic::ppc_qpx_qvlfcsa:
15773   case Intrinsic::ppc_qpx_qvlfiwaa:
15774   case Intrinsic::ppc_qpx_qvlfiwza: {
15775     EVT VT;
15776     switch (Intrinsic) {
15777     case Intrinsic::ppc_qpx_qvlfda:
15778       VT = MVT::v4f64;
15779       break;
15780     case Intrinsic::ppc_qpx_qvlfsa:
15781       VT = MVT::v4f32;
15782       break;
15783     case Intrinsic::ppc_qpx_qvlfcda:
15784       VT = MVT::v2f64;
15785       break;
15786     case Intrinsic::ppc_qpx_qvlfcsa:
15787       VT = MVT::v2f32;
15788       break;
15789     default:
15790       VT = MVT::v4i32;
15791       break;
15792     }
15793 
15794     Info.opc = ISD::INTRINSIC_W_CHAIN;
15795     Info.memVT = VT;
15796     Info.ptrVal = I.getArgOperand(0);
15797     Info.offset = 0;
15798     Info.size = VT.getStoreSize();
15799     Info.align = Align(1);
15800     Info.flags = MachineMemOperand::MOLoad;
15801     return true;
15802   }
15803   case Intrinsic::ppc_qpx_qvstfd:
15804   case Intrinsic::ppc_qpx_qvstfs:
15805   case Intrinsic::ppc_qpx_qvstfcd:
15806   case Intrinsic::ppc_qpx_qvstfcs:
15807   case Intrinsic::ppc_qpx_qvstfiw:
15808   case Intrinsic::ppc_altivec_stvx:
15809   case Intrinsic::ppc_altivec_stvxl:
15810   case Intrinsic::ppc_altivec_stvebx:
15811   case Intrinsic::ppc_altivec_stvehx:
15812   case Intrinsic::ppc_altivec_stvewx:
15813   case Intrinsic::ppc_vsx_stxvd2x:
15814   case Intrinsic::ppc_vsx_stxvw4x: {
15815     EVT VT;
15816     switch (Intrinsic) {
15817     case Intrinsic::ppc_altivec_stvebx:
15818       VT = MVT::i8;
15819       break;
15820     case Intrinsic::ppc_altivec_stvehx:
15821       VT = MVT::i16;
15822       break;
15823     case Intrinsic::ppc_altivec_stvewx:
15824       VT = MVT::i32;
15825       break;
15826     case Intrinsic::ppc_vsx_stxvd2x:
15827       VT = MVT::v2f64;
15828       break;
15829     case Intrinsic::ppc_qpx_qvstfd:
15830       VT = MVT::v4f64;
15831       break;
15832     case Intrinsic::ppc_qpx_qvstfs:
15833       VT = MVT::v4f32;
15834       break;
15835     case Intrinsic::ppc_qpx_qvstfcd:
15836       VT = MVT::v2f64;
15837       break;
15838     case Intrinsic::ppc_qpx_qvstfcs:
15839       VT = MVT::v2f32;
15840       break;
15841     default:
15842       VT = MVT::v4i32;
15843       break;
15844     }
15845 
15846     Info.opc = ISD::INTRINSIC_VOID;
15847     Info.memVT = VT;
15848     Info.ptrVal = I.getArgOperand(1);
15849     Info.offset = -VT.getStoreSize()+1;
15850     Info.size = 2*VT.getStoreSize()-1;
15851     Info.align = Align(1);
15852     Info.flags = MachineMemOperand::MOStore;
15853     return true;
15854   }
15855   case Intrinsic::ppc_qpx_qvstfda:
15856   case Intrinsic::ppc_qpx_qvstfsa:
15857   case Intrinsic::ppc_qpx_qvstfcda:
15858   case Intrinsic::ppc_qpx_qvstfcsa:
15859   case Intrinsic::ppc_qpx_qvstfiwa: {
15860     EVT VT;
15861     switch (Intrinsic) {
15862     case Intrinsic::ppc_qpx_qvstfda:
15863       VT = MVT::v4f64;
15864       break;
15865     case Intrinsic::ppc_qpx_qvstfsa:
15866       VT = MVT::v4f32;
15867       break;
15868     case Intrinsic::ppc_qpx_qvstfcda:
15869       VT = MVT::v2f64;
15870       break;
15871     case Intrinsic::ppc_qpx_qvstfcsa:
15872       VT = MVT::v2f32;
15873       break;
15874     default:
15875       VT = MVT::v4i32;
15876       break;
15877     }
15878 
15879     Info.opc = ISD::INTRINSIC_VOID;
15880     Info.memVT = VT;
15881     Info.ptrVal = I.getArgOperand(1);
15882     Info.offset = 0;
15883     Info.size = VT.getStoreSize();
15884     Info.align = Align(1);
15885     Info.flags = MachineMemOperand::MOStore;
15886     return true;
15887   }
15888   default:
15889     break;
15890   }
15891 
15892   return false;
15893 }
15894 
15895 /// It returns EVT::Other if the type should be determined using generic
15896 /// target-independent logic.
15897 EVT PPCTargetLowering::getOptimalMemOpType(
15898     const MemOp &Op, const AttributeList &FuncAttributes) const {
15899   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15900     // When expanding a memset, require at least two QPX instructions to cover
15901     // the cost of loading the value to be stored from the constant pool.
15902     if (Subtarget.hasQPX() && Op.size() >= 32 &&
15903         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
15904         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15905       return MVT::v4f64;
15906     }
15907 
15908     // We should use Altivec/VSX loads and stores when available. For unaligned
15909     // addresses, unaligned VSX loads are only fast starting with the P8.
15910     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15911         (Op.isAligned(Align(16)) ||
15912          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15913       return MVT::v4i32;
15914   }
15915 
15916   if (Subtarget.isPPC64()) {
15917     return MVT::i64;
15918   }
15919 
15920   return MVT::i32;
15921 }
15922 
15923 /// Returns true if it is beneficial to convert a load of a constant
15924 /// to just the constant itself.
15925 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15926                                                           Type *Ty) const {
15927   assert(Ty->isIntegerTy());
15928 
15929   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15930   return !(BitSize == 0 || BitSize > 64);
15931 }
15932 
15933 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15934   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15935     return false;
15936   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15937   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15938   return NumBits1 == 64 && NumBits2 == 32;
15939 }
15940 
15941 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15942   if (!VT1.isInteger() || !VT2.isInteger())
15943     return false;
15944   unsigned NumBits1 = VT1.getSizeInBits();
15945   unsigned NumBits2 = VT2.getSizeInBits();
15946   return NumBits1 == 64 && NumBits2 == 32;
15947 }
15948 
15949 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15950   // Generally speaking, zexts are not free, but they are free when they can be
15951   // folded with other operations.
15952   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15953     EVT MemVT = LD->getMemoryVT();
15954     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15955          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15956         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15957          LD->getExtensionType() == ISD::ZEXTLOAD))
15958       return true;
15959   }
15960 
15961   // FIXME: Add other cases...
15962   //  - 32-bit shifts with a zext to i64
15963   //  - zext after ctlz, bswap, etc.
15964   //  - zext after and by a constant mask
15965 
15966   return TargetLowering::isZExtFree(Val, VT2);
15967 }
15968 
15969 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15970   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15971          "invalid fpext types");
15972   // Extending to float128 is not free.
15973   if (DestVT == MVT::f128)
15974     return false;
15975   return true;
15976 }
15977 
15978 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15979   return isInt<16>(Imm) || isUInt<16>(Imm);
15980 }
15981 
15982 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15983   return isInt<16>(Imm) || isUInt<16>(Imm);
15984 }
15985 
15986 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15987                                                        unsigned,
15988                                                        unsigned,
15989                                                        MachineMemOperand::Flags,
15990                                                        bool *Fast) const {
15991   if (DisablePPCUnaligned)
15992     return false;
15993 
15994   // PowerPC supports unaligned memory access for simple non-vector types.
15995   // Although accessing unaligned addresses is not as efficient as accessing
15996   // aligned addresses, it is generally more efficient than manual expansion,
15997   // and generally only traps for software emulation when crossing page
15998   // boundaries.
15999 
16000   if (!VT.isSimple())
16001     return false;
16002 
16003   if (VT.isFloatingPoint() && !VT.isVector() &&
16004       !Subtarget.allowsUnalignedFPAccess())
16005     return false;
16006 
16007   if (VT.getSimpleVT().isVector()) {
16008     if (Subtarget.hasVSX()) {
16009       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16010           VT != MVT::v4f32 && VT != MVT::v4i32)
16011         return false;
16012     } else {
16013       return false;
16014     }
16015   }
16016 
16017   if (VT == MVT::ppcf128)
16018     return false;
16019 
16020   if (Fast)
16021     *Fast = true;
16022 
16023   return true;
16024 }
16025 
16026 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16027                                                    EVT VT) const {
16028   return isFMAFasterThanFMulAndFAdd(
16029       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16030 }
16031 
16032 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16033                                                    Type *Ty) const {
16034   switch (Ty->getScalarType()->getTypeID()) {
16035   case Type::FloatTyID:
16036   case Type::DoubleTyID:
16037     return true;
16038   case Type::FP128TyID:
16039     return EnableQuadPrecision && Subtarget.hasP9Vector();
16040   default:
16041     return false;
16042   }
16043 }
16044 
16045 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
16046 // FIXME: add more patterns which are profitable to hoist.
16047 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16048   if (I->getOpcode() != Instruction::FMul)
16049     return true;
16050 
16051   if (!I->hasOneUse())
16052     return true;
16053 
16054   Instruction *User = I->user_back();
16055   assert(User && "A single use instruction with no uses.");
16056 
16057   if (User->getOpcode() != Instruction::FSub &&
16058       User->getOpcode() != Instruction::FAdd)
16059     return true;
16060 
16061   const TargetOptions &Options = getTargetMachine().Options;
16062   const Function *F = I->getFunction();
16063   const DataLayout &DL = F->getParent()->getDataLayout();
16064   Type *Ty = User->getOperand(0)->getType();
16065 
16066   return !(
16067       isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16068       isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16069       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16070 }
16071 
16072 const MCPhysReg *
16073 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16074   // LR is a callee-save register, but we must treat it as clobbered by any call
16075   // site. Hence we include LR in the scratch registers, which are in turn added
16076   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16077   // to CTR, which is used by any indirect call.
16078   static const MCPhysReg ScratchRegs[] = {
16079     PPC::X12, PPC::LR8, PPC::CTR8, 0
16080   };
16081 
16082   return ScratchRegs;
16083 }
16084 
16085 Register PPCTargetLowering::getExceptionPointerRegister(
16086     const Constant *PersonalityFn) const {
16087   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16088 }
16089 
16090 Register PPCTargetLowering::getExceptionSelectorRegister(
16091     const Constant *PersonalityFn) const {
16092   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16093 }
16094 
16095 bool
16096 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16097                      EVT VT , unsigned DefinedValues) const {
16098   if (VT == MVT::v2i64)
16099     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16100 
16101   if (Subtarget.hasVSX() || Subtarget.hasQPX())
16102     return true;
16103 
16104   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16105 }
16106 
16107 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16108   if (DisableILPPref || Subtarget.enableMachineScheduler())
16109     return TargetLowering::getSchedulingPreference(N);
16110 
16111   return Sched::ILP;
16112 }
16113 
16114 // Create a fast isel object.
16115 FastISel *
16116 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16117                                   const TargetLibraryInfo *LibInfo) const {
16118   return PPC::createFastISel(FuncInfo, LibInfo);
16119 }
16120 
16121 // 'Inverted' means the FMA opcode after negating one multiplicand.
16122 // For example, (fma -a b c) = (fnmsub a b c)
16123 static unsigned invertFMAOpcode(unsigned Opc) {
16124   switch (Opc) {
16125   default:
16126     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16127   case ISD::FMA:
16128     return PPCISD::FNMSUB;
16129   case PPCISD::FNMSUB:
16130     return ISD::FMA;
16131   }
16132 }
16133 
16134 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16135                                                 bool LegalOps, bool OptForSize,
16136                                                 NegatibleCost &Cost,
16137                                                 unsigned Depth) const {
16138   if (Depth > SelectionDAG::MaxRecursionDepth)
16139     return SDValue();
16140 
16141   unsigned Opc = Op.getOpcode();
16142   EVT VT = Op.getValueType();
16143   SDNodeFlags Flags = Op.getNode()->getFlags();
16144 
16145   switch (Opc) {
16146   case PPCISD::FNMSUB:
16147     // TODO: QPX subtarget is deprecated. No transformation here.
16148     if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX())
16149       break;
16150 
16151     const TargetOptions &Options = getTargetMachine().Options;
16152     SDValue N0 = Op.getOperand(0);
16153     SDValue N1 = Op.getOperand(1);
16154     SDValue N2 = Op.getOperand(2);
16155     SDLoc Loc(Op);
16156 
16157     NegatibleCost N2Cost = NegatibleCost::Expensive;
16158     SDValue NegN2 =
16159         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16160 
16161     if (!NegN2)
16162       return SDValue();
16163 
16164     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16165     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16166     // These transformations may change sign of zeroes. For example,
16167     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16168     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16169       // Try and choose the cheaper one to negate.
16170       NegatibleCost N0Cost = NegatibleCost::Expensive;
16171       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16172                                            N0Cost, Depth + 1);
16173 
16174       NegatibleCost N1Cost = NegatibleCost::Expensive;
16175       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16176                                            N1Cost, Depth + 1);
16177 
16178       if (NegN0 && N0Cost <= N1Cost) {
16179         Cost = std::min(N0Cost, N2Cost);
16180         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16181       } else if (NegN1) {
16182         Cost = std::min(N1Cost, N2Cost);
16183         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16184       }
16185     }
16186 
16187     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16188     if (isOperationLegal(ISD::FMA, VT)) {
16189       Cost = N2Cost;
16190       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16191     }
16192 
16193     break;
16194   }
16195 
16196   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16197                                               Cost, Depth);
16198 }
16199 
16200 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16201 bool PPCTargetLowering::useLoadStackGuardNode() const {
16202   if (!Subtarget.isTargetLinux())
16203     return TargetLowering::useLoadStackGuardNode();
16204   return true;
16205 }
16206 
16207 // Override to disable global variable loading on Linux.
16208 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16209   if (!Subtarget.isTargetLinux())
16210     return TargetLowering::insertSSPDeclarations(M);
16211 }
16212 
16213 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16214                                      bool ForCodeSize) const {
16215   if (!VT.isSimple() || !Subtarget.hasVSX())
16216     return false;
16217 
16218   switch(VT.getSimpleVT().SimpleTy) {
16219   default:
16220     // For FP types that are currently not supported by PPC backend, return
16221     // false. Examples: f16, f80.
16222     return false;
16223   case MVT::f32:
16224   case MVT::f64:
16225   case MVT::ppcf128:
16226     return Imm.isPosZero();
16227   }
16228 }
16229 
16230 // For vector shift operation op, fold
16231 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16232 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16233                                   SelectionDAG &DAG) {
16234   SDValue N0 = N->getOperand(0);
16235   SDValue N1 = N->getOperand(1);
16236   EVT VT = N0.getValueType();
16237   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16238   unsigned Opcode = N->getOpcode();
16239   unsigned TargetOpcode;
16240 
16241   switch (Opcode) {
16242   default:
16243     llvm_unreachable("Unexpected shift operation");
16244   case ISD::SHL:
16245     TargetOpcode = PPCISD::SHL;
16246     break;
16247   case ISD::SRL:
16248     TargetOpcode = PPCISD::SRL;
16249     break;
16250   case ISD::SRA:
16251     TargetOpcode = PPCISD::SRA;
16252     break;
16253   }
16254 
16255   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16256       N1->getOpcode() == ISD::AND)
16257     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16258       if (Mask->getZExtValue() == OpSizeInBits - 1)
16259         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16260 
16261   return SDValue();
16262 }
16263 
16264 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16265   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16266     return Value;
16267 
16268   SDValue N0 = N->getOperand(0);
16269   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16270   if (!Subtarget.isISA3_0() ||
16271       N0.getOpcode() != ISD::SIGN_EXTEND ||
16272       N0.getOperand(0).getValueType() != MVT::i32 ||
16273       CN1 == nullptr || N->getValueType(0) != MVT::i64)
16274     return SDValue();
16275 
16276   // We can't save an operation here if the value is already extended, and
16277   // the existing shift is easier to combine.
16278   SDValue ExtsSrc = N0.getOperand(0);
16279   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16280       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16281     return SDValue();
16282 
16283   SDLoc DL(N0);
16284   SDValue ShiftBy = SDValue(CN1, 0);
16285   // We want the shift amount to be i32 on the extswli, but the shift could
16286   // have an i64.
16287   if (ShiftBy.getValueType() == MVT::i64)
16288     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16289 
16290   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16291                          ShiftBy);
16292 }
16293 
16294 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16295   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16296     return Value;
16297 
16298   return SDValue();
16299 }
16300 
16301 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16302   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16303     return Value;
16304 
16305   return SDValue();
16306 }
16307 
16308 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16309 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16310 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16311 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16312 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16313                                  const PPCSubtarget &Subtarget) {
16314   if (!Subtarget.isPPC64())
16315     return SDValue();
16316 
16317   SDValue LHS = N->getOperand(0);
16318   SDValue RHS = N->getOperand(1);
16319 
16320   auto isZextOfCompareWithConstant = [](SDValue Op) {
16321     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16322         Op.getValueType() != MVT::i64)
16323       return false;
16324 
16325     SDValue Cmp = Op.getOperand(0);
16326     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16327         Cmp.getOperand(0).getValueType() != MVT::i64)
16328       return false;
16329 
16330     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16331       int64_t NegConstant = 0 - Constant->getSExtValue();
16332       // Due to the limitations of the addi instruction,
16333       // -C is required to be [-32768, 32767].
16334       return isInt<16>(NegConstant);
16335     }
16336 
16337     return false;
16338   };
16339 
16340   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16341   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16342 
16343   // If there is a pattern, canonicalize a zext operand to the RHS.
16344   if (LHSHasPattern && !RHSHasPattern)
16345     std::swap(LHS, RHS);
16346   else if (!LHSHasPattern && !RHSHasPattern)
16347     return SDValue();
16348 
16349   SDLoc DL(N);
16350   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16351   SDValue Cmp = RHS.getOperand(0);
16352   SDValue Z = Cmp.getOperand(0);
16353   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16354 
16355   assert(Constant && "Constant Should not be a null pointer.");
16356   int64_t NegConstant = 0 - Constant->getSExtValue();
16357 
16358   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16359   default: break;
16360   case ISD::SETNE: {
16361     //                                 when C == 0
16362     //                             --> addze X, (addic Z, -1).carry
16363     //                            /
16364     // add X, (zext(setne Z, C))--
16365     //                            \    when -32768 <= -C <= 32767 && C != 0
16366     //                             --> addze X, (addic (addi Z, -C), -1).carry
16367     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16368                               DAG.getConstant(NegConstant, DL, MVT::i64));
16369     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16370     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16371                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16372     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16373                        SDValue(Addc.getNode(), 1));
16374     }
16375   case ISD::SETEQ: {
16376     //                                 when C == 0
16377     //                             --> addze X, (subfic Z, 0).carry
16378     //                            /
16379     // add X, (zext(sete  Z, C))--
16380     //                            \    when -32768 <= -C <= 32767 && C != 0
16381     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16382     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16383                               DAG.getConstant(NegConstant, DL, MVT::i64));
16384     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16385     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16386                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16387     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16388                        SDValue(Subc.getNode(), 1));
16389     }
16390   }
16391 
16392   return SDValue();
16393 }
16394 
16395 // Transform
16396 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16397 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16398 // In this case both C1 and C2 must be known constants.
16399 // C1+C2 must fit into a 34 bit signed integer.
16400 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16401                                           const PPCSubtarget &Subtarget) {
16402   if (!Subtarget.isUsingPCRelativeCalls())
16403     return SDValue();
16404 
16405   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16406   // If we find that node try to cast the Global Address and the Constant.
16407   SDValue LHS = N->getOperand(0);
16408   SDValue RHS = N->getOperand(1);
16409 
16410   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16411     std::swap(LHS, RHS);
16412 
16413   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16414     return SDValue();
16415 
16416   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16417   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16418   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16419 
16420   // Check that both casts succeeded.
16421   if (!GSDN || !ConstNode)
16422     return SDValue();
16423 
16424   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16425   SDLoc DL(GSDN);
16426 
16427   // The signed int offset needs to fit in 34 bits.
16428   if (!isInt<34>(NewOffset))
16429     return SDValue();
16430 
16431   // The new global address is a copy of the old global address except
16432   // that it has the updated Offset.
16433   SDValue GA =
16434       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16435                                  NewOffset, GSDN->getTargetFlags());
16436   SDValue MatPCRel =
16437       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16438   return MatPCRel;
16439 }
16440 
16441 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16442   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16443     return Value;
16444 
16445   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16446     return Value;
16447 
16448   return SDValue();
16449 }
16450 
16451 // Detect TRUNCATE operations on bitcasts of float128 values.
16452 // What we are looking for here is the situtation where we extract a subset
16453 // of bits from a 128 bit float.
16454 // This can be of two forms:
16455 // 1) BITCAST of f128 feeding TRUNCATE
16456 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16457 // The reason this is required is because we do not have a legal i128 type
16458 // and so we want to prevent having to store the f128 and then reload part
16459 // of it.
16460 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16461                                            DAGCombinerInfo &DCI) const {
16462   // If we are using CRBits then try that first.
16463   if (Subtarget.useCRBits()) {
16464     // Check if CRBits did anything and return that if it did.
16465     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16466       return CRTruncValue;
16467   }
16468 
16469   SDLoc dl(N);
16470   SDValue Op0 = N->getOperand(0);
16471 
16472   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16473   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16474     EVT VT = N->getValueType(0);
16475     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16476       return SDValue();
16477     SDValue Sub = Op0.getOperand(0);
16478     if (Sub.getOpcode() == ISD::SUB) {
16479       SDValue SubOp0 = Sub.getOperand(0);
16480       SDValue SubOp1 = Sub.getOperand(1);
16481       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16482           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16483         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16484                                SubOp1.getOperand(0),
16485                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16486       }
16487     }
16488   }
16489 
16490   // Looking for a truncate of i128 to i64.
16491   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16492     return SDValue();
16493 
16494   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16495 
16496   // SRL feeding TRUNCATE.
16497   if (Op0.getOpcode() == ISD::SRL) {
16498     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16499     // The right shift has to be by 64 bits.
16500     if (!ConstNode || ConstNode->getZExtValue() != 64)
16501       return SDValue();
16502 
16503     // Switch the element number to extract.
16504     EltToExtract = EltToExtract ? 0 : 1;
16505     // Update Op0 past the SRL.
16506     Op0 = Op0.getOperand(0);
16507   }
16508 
16509   // BITCAST feeding a TRUNCATE possibly via SRL.
16510   if (Op0.getOpcode() == ISD::BITCAST &&
16511       Op0.getValueType() == MVT::i128 &&
16512       Op0.getOperand(0).getValueType() == MVT::f128) {
16513     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16514     return DCI.DAG.getNode(
16515         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16516         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16517   }
16518   return SDValue();
16519 }
16520 
16521 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16522   SelectionDAG &DAG = DCI.DAG;
16523 
16524   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16525   if (!ConstOpOrElement)
16526     return SDValue();
16527 
16528   // An imul is usually smaller than the alternative sequence for legal type.
16529   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16530       isOperationLegal(ISD::MUL, N->getValueType(0)))
16531     return SDValue();
16532 
16533   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16534     switch (this->Subtarget.getCPUDirective()) {
16535     default:
16536       // TODO: enhance the condition for subtarget before pwr8
16537       return false;
16538     case PPC::DIR_PWR8:
16539       //  type        mul     add    shl
16540       // scalar        4       1      1
16541       // vector        7       2      2
16542       return true;
16543     case PPC::DIR_PWR9:
16544     case PPC::DIR_PWR10:
16545     case PPC::DIR_PWR_FUTURE:
16546       //  type        mul     add    shl
16547       // scalar        5       2      2
16548       // vector        7       2      2
16549 
16550       // The cycle RATIO of related operations are showed as a table above.
16551       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16552       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16553       // are 4, it is always profitable; but for 3 instrs patterns
16554       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16555       // So we should only do it for vector type.
16556       return IsAddOne && IsNeg ? VT.isVector() : true;
16557     }
16558   };
16559 
16560   EVT VT = N->getValueType(0);
16561   SDLoc DL(N);
16562 
16563   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16564   bool IsNeg = MulAmt.isNegative();
16565   APInt MulAmtAbs = MulAmt.abs();
16566 
16567   if ((MulAmtAbs - 1).isPowerOf2()) {
16568     // (mul x, 2^N + 1) => (add (shl x, N), x)
16569     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16570 
16571     if (!IsProfitable(IsNeg, true, VT))
16572       return SDValue();
16573 
16574     SDValue Op0 = N->getOperand(0);
16575     SDValue Op1 =
16576         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16577                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16578     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16579 
16580     if (!IsNeg)
16581       return Res;
16582 
16583     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16584   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16585     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16586     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16587 
16588     if (!IsProfitable(IsNeg, false, VT))
16589       return SDValue();
16590 
16591     SDValue Op0 = N->getOperand(0);
16592     SDValue Op1 =
16593         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16594                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16595 
16596     if (!IsNeg)
16597       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16598     else
16599       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16600 
16601   } else {
16602     return SDValue();
16603   }
16604 }
16605 
16606 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16607 // in combiner since we need to check SD flags and other subtarget features.
16608 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16609                                           DAGCombinerInfo &DCI) const {
16610   SDValue N0 = N->getOperand(0);
16611   SDValue N1 = N->getOperand(1);
16612   SDValue N2 = N->getOperand(2);
16613   SDNodeFlags Flags = N->getFlags();
16614   EVT VT = N->getValueType(0);
16615   SelectionDAG &DAG = DCI.DAG;
16616   const TargetOptions &Options = getTargetMachine().Options;
16617   unsigned Opc = N->getOpcode();
16618   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16619   bool LegalOps = !DCI.isBeforeLegalizeOps();
16620   SDLoc Loc(N);
16621 
16622   // TODO: QPX subtarget is deprecated. No transformation here.
16623   if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT))
16624     return SDValue();
16625 
16626   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16627   // since (fnmsub a b c)=-0 while c-ab=+0.
16628   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16629     return SDValue();
16630 
16631   // (fma (fneg a) b c) => (fnmsub a b c)
16632   // (fnmsub (fneg a) b c) => (fma a b c)
16633   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16634     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16635 
16636   // (fma a (fneg b) c) => (fnmsub a b c)
16637   // (fnmsub a (fneg b) c) => (fma a b c)
16638   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16639     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16640 
16641   return SDValue();
16642 }
16643 
16644 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16645   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16646   if (!Subtarget.is64BitELFABI())
16647     return false;
16648 
16649   // If not a tail call then no need to proceed.
16650   if (!CI->isTailCall())
16651     return false;
16652 
16653   // If sibling calls have been disabled and tail-calls aren't guaranteed
16654   // there is no reason to duplicate.
16655   auto &TM = getTargetMachine();
16656   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16657     return false;
16658 
16659   // Can't tail call a function called indirectly, or if it has variadic args.
16660   const Function *Callee = CI->getCalledFunction();
16661   if (!Callee || Callee->isVarArg())
16662     return false;
16663 
16664   // Make sure the callee and caller calling conventions are eligible for tco.
16665   const Function *Caller = CI->getParent()->getParent();
16666   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16667                                            CI->getCallingConv()))
16668       return false;
16669 
16670   // If the function is local then we have a good chance at tail-calling it
16671   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16672 }
16673 
16674 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16675   if (!Subtarget.hasVSX())
16676     return false;
16677   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16678     return true;
16679   return VT == MVT::f32 || VT == MVT::f64 ||
16680     VT == MVT::v4f32 || VT == MVT::v2f64;
16681 }
16682 
16683 bool PPCTargetLowering::
16684 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16685   const Value *Mask = AndI.getOperand(1);
16686   // If the mask is suitable for andi. or andis. we should sink the and.
16687   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16688     // Can't handle constants wider than 64-bits.
16689     if (CI->getBitWidth() > 64)
16690       return false;
16691     int64_t ConstVal = CI->getZExtValue();
16692     return isUInt<16>(ConstVal) ||
16693       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16694   }
16695 
16696   // For non-constant masks, we can always use the record-form and.
16697   return true;
16698 }
16699 
16700 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16701 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16702 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16703 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16704 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16705 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16706   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16707   assert(Subtarget.hasP9Altivec() &&
16708          "Only combine this when P9 altivec supported!");
16709   EVT VT = N->getValueType(0);
16710   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16711     return SDValue();
16712 
16713   SelectionDAG &DAG = DCI.DAG;
16714   SDLoc dl(N);
16715   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16716     // Even for signed integers, if it's known to be positive (as signed
16717     // integer) due to zero-extended inputs.
16718     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16719     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16720     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16721          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16722         (SubOpcd1 == ISD::ZERO_EXTEND ||
16723          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16724       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16725                          N->getOperand(0)->getOperand(0),
16726                          N->getOperand(0)->getOperand(1),
16727                          DAG.getTargetConstant(0, dl, MVT::i32));
16728     }
16729 
16730     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16731     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16732         N->getOperand(0).hasOneUse()) {
16733       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16734                          N->getOperand(0)->getOperand(0),
16735                          N->getOperand(0)->getOperand(1),
16736                          DAG.getTargetConstant(1, dl, MVT::i32));
16737     }
16738   }
16739 
16740   return SDValue();
16741 }
16742 
16743 // For type v4i32/v8ii16/v16i8, transform
16744 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16745 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16746 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16747 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16748 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16749                                           DAGCombinerInfo &DCI) const {
16750   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16751   assert(Subtarget.hasP9Altivec() &&
16752          "Only combine this when P9 altivec supported!");
16753 
16754   SelectionDAG &DAG = DCI.DAG;
16755   SDLoc dl(N);
16756   SDValue Cond = N->getOperand(0);
16757   SDValue TrueOpnd = N->getOperand(1);
16758   SDValue FalseOpnd = N->getOperand(2);
16759   EVT VT = N->getOperand(1).getValueType();
16760 
16761   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16762       FalseOpnd.getOpcode() != ISD::SUB)
16763     return SDValue();
16764 
16765   // ABSD only available for type v4i32/v8i16/v16i8
16766   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16767     return SDValue();
16768 
16769   // At least to save one more dependent computation
16770   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16771     return SDValue();
16772 
16773   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16774 
16775   // Can only handle unsigned comparison here
16776   switch (CC) {
16777   default:
16778     return SDValue();
16779   case ISD::SETUGT:
16780   case ISD::SETUGE:
16781     break;
16782   case ISD::SETULT:
16783   case ISD::SETULE:
16784     std::swap(TrueOpnd, FalseOpnd);
16785     break;
16786   }
16787 
16788   SDValue CmpOpnd1 = Cond.getOperand(0);
16789   SDValue CmpOpnd2 = Cond.getOperand(1);
16790 
16791   // SETCC CmpOpnd1 CmpOpnd2 cond
16792   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16793   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16794   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16795       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16796       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16797       FalseOpnd.getOperand(1) == CmpOpnd1) {
16798     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16799                        CmpOpnd1, CmpOpnd2,
16800                        DAG.getTargetConstant(0, dl, MVT::i32));
16801   }
16802 
16803   return SDValue();
16804 }
16805