1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126 
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
171 
172   // PowerPC has pre-inc load and store's.
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
177   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
182   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
183   if (!Subtarget.hasSPE()) {
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
185     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
187     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
188   }
189 
190   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
191   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192   for (MVT VT : ScalarIntVTs) {
193     setOperationAction(ISD::ADDC, VT, Legal);
194     setOperationAction(ISD::ADDE, VT, Legal);
195     setOperationAction(ISD::SUBC, VT, Legal);
196     setOperationAction(ISD::SUBE, VT, Legal);
197   }
198 
199   if (Subtarget.useCRBits()) {
200     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201 
202     if (isPPC64 || Subtarget.hasFPCVT()) {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
204       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
205                          isPPC64 ? MVT::i64 : MVT::i32);
206       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
207       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
208                         isPPC64 ? MVT::i64 : MVT::i32);
209     } else {
210       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
211       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
212     }
213 
214     // PowerPC does not support direct load/store of condition registers.
215     setOperationAction(ISD::LOAD, MVT::i1, Custom);
216     setOperationAction(ISD::STORE, MVT::i1, Custom);
217 
218     // FIXME: Remove this once the ANDI glue bug is fixed:
219     if (ANDIGlueBug)
220       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
221 
222     for (MVT VT : MVT::integer_valuetypes()) {
223       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225       setTruncStoreAction(VT, MVT::i1, Expand);
226     }
227 
228     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
229   }
230 
231   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
232   // PPC (the libcall is not available).
233   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
234   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
235 
236   // We do not currently implement these libm ops for PowerPC.
237   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
238   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
239   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
240   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
241   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
242   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
243 
244   // PowerPC has no SREM/UREM instructions unless we are on P9
245   // On P9 we may use a hardware instruction to compute the remainder.
246   // The instructions are not legalized directly because in the cases where the
247   // result of both the remainder and the division is required it is more
248   // efficient to compute the remainder from the result of the division rather
249   // than use the remainder instruction.
250   if (Subtarget.isISA3_0()) {
251     setOperationAction(ISD::SREM, MVT::i32, Custom);
252     setOperationAction(ISD::UREM, MVT::i32, Custom);
253     setOperationAction(ISD::SREM, MVT::i64, Custom);
254     setOperationAction(ISD::UREM, MVT::i64, Custom);
255   } else {
256     setOperationAction(ISD::SREM, MVT::i32, Expand);
257     setOperationAction(ISD::UREM, MVT::i32, Expand);
258     setOperationAction(ISD::SREM, MVT::i64, Expand);
259     setOperationAction(ISD::UREM, MVT::i64, Expand);
260   }
261 
262   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
263   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
265   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
269   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
270   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
271 
272   // We don't support sin/cos/sqrt/fmod/pow
273   setOperationAction(ISD::FSIN , MVT::f64, Expand);
274   setOperationAction(ISD::FCOS , MVT::f64, Expand);
275   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
276   setOperationAction(ISD::FREM , MVT::f64, Expand);
277   setOperationAction(ISD::FPOW , MVT::f64, Expand);
278   setOperationAction(ISD::FSIN , MVT::f32, Expand);
279   setOperationAction(ISD::FCOS , MVT::f32, Expand);
280   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
281   setOperationAction(ISD::FREM , MVT::f32, Expand);
282   setOperationAction(ISD::FPOW , MVT::f32, Expand);
283   if (Subtarget.hasSPE()) {
284     setOperationAction(ISD::FMA  , MVT::f64, Expand);
285     setOperationAction(ISD::FMA  , MVT::f32, Expand);
286   } else {
287     setOperationAction(ISD::FMA  , MVT::f64, Legal);
288     setOperationAction(ISD::FMA  , MVT::f32, Legal);
289   }
290 
291   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
292 
293   // If we're enabling GP optimizations, use hardware square root
294   if (!Subtarget.hasFSQRT() &&
295       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
296         Subtarget.hasFRE()))
297     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
298 
299   if (!Subtarget.hasFSQRT() &&
300       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
301         Subtarget.hasFRES()))
302     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
303 
304   if (Subtarget.hasFCPSGN()) {
305     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
306     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
307   } else {
308     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
309     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
310   }
311 
312   if (Subtarget.hasFPRND()) {
313     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
314     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
315     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
316     setOperationAction(ISD::FROUND, MVT::f64, Legal);
317 
318     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
319     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
320     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
321     setOperationAction(ISD::FROUND, MVT::f32, Legal);
322   }
323 
324   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
325   // to speed up scalar BSWAP64.
326   // CTPOP or CTTZ were introduced in P8/P9 respectively
327   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
328   if (Subtarget.hasP9Vector())
329     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
330   else
331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332   if (Subtarget.isISA3_0()) {
333     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
334     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
335   } else {
336     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
337     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
338   }
339 
340   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
341     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
342     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
343   } else {
344     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
345     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
346   }
347 
348   // PowerPC does not have ROTR
349   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
350   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
351 
352   if (!Subtarget.useCRBits()) {
353     // PowerPC does not have Select
354     setOperationAction(ISD::SELECT, MVT::i32, Expand);
355     setOperationAction(ISD::SELECT, MVT::i64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f32, Expand);
357     setOperationAction(ISD::SELECT, MVT::f64, Expand);
358   }
359 
360   // PowerPC wants to turn select_cc of FP into fsel when possible.
361   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
362   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
363 
364   // PowerPC wants to optimize integer setcc a bit
365   if (!Subtarget.useCRBits())
366     setOperationAction(ISD::SETCC, MVT::i32, Custom);
367 
368   // PowerPC does not have BRCOND which requires SetCC
369   if (!Subtarget.useCRBits())
370     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
371 
372   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
373 
374   if (Subtarget.hasSPE()) {
375     // SPE has built-in conversions
376     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
379   } else {
380     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
381     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382 
383     // PowerPC does not have [U|S]INT_TO_FP
384     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
385     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
386   }
387 
388   if (Subtarget.hasDirectMove() && isPPC64) {
389     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
391     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
392     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
393     if (TM.Options.UnsafeFPMath) {
394       setOperationAction(ISD::LRINT, MVT::f64, Legal);
395       setOperationAction(ISD::LRINT, MVT::f32, Legal);
396       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
397       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
398       setOperationAction(ISD::LROUND, MVT::f64, Legal);
399       setOperationAction(ISD::LROUND, MVT::f32, Legal);
400       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
401       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
402     }
403   } else {
404     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
405     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
406     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
407     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
408   }
409 
410   // We cannot sextinreg(i1).  Expand to shifts.
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
412 
413   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
414   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
415   // support continuation, user-level threading, and etc.. As a result, no
416   // other SjLj exception interfaces are implemented and please don't build
417   // your own exception handling based on them.
418   // LLVM/Clang supports zero-cost DWARF exception handling.
419   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
420   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
421 
422   // We want to legalize GlobalAddress and ConstantPool nodes into the
423   // appropriate instructions to materialize the address.
424   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
425   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
426   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
427   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
428   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
429   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
430   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
431   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
432   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
433   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
434 
435   // TRAP is legal.
436   setOperationAction(ISD::TRAP, MVT::Other, Legal);
437 
438   // TRAMPOLINE is custom lowered.
439   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
440   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
441 
442   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
443   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
444 
445   if (Subtarget.is64BitELFABI()) {
446     // VAARG always uses double-word chunks, so promote anything smaller.
447     setOperationAction(ISD::VAARG, MVT::i1, Promote);
448     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
449     setOperationAction(ISD::VAARG, MVT::i8, Promote);
450     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
451     setOperationAction(ISD::VAARG, MVT::i16, Promote);
452     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
453     setOperationAction(ISD::VAARG, MVT::i32, Promote);
454     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
455     setOperationAction(ISD::VAARG, MVT::Other, Expand);
456   } else if (Subtarget.is32BitELFABI()) {
457     // VAARG is custom lowered with the 32-bit SVR4 ABI.
458     setOperationAction(ISD::VAARG, MVT::Other, Custom);
459     setOperationAction(ISD::VAARG, MVT::i64, Custom);
460   } else
461     setOperationAction(ISD::VAARG, MVT::Other, Expand);
462 
463   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
464   if (Subtarget.is32BitELFABI())
465     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
466   else
467     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
468 
469   // Use the default implementation.
470   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
471   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
472   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
473   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
474   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
475   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
476   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
477   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
478   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
479 
480   // We want to custom lower some of our intrinsics.
481   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
482 
483   // To handle counter-based loop conditions.
484   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
485 
486   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
487   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
488   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
489   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
490 
491   // Comparisons that require checking two conditions.
492   if (Subtarget.hasSPE()) {
493     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
494     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
495     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
496     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
497   }
498   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
499   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
500   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
501   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
502   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
503   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
504   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
505   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
506   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
507   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
508   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
509   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
510 
511   if (Subtarget.has64BitSupport()) {
512     // They also have instructions for converting between i64 and fp.
513     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
514     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
515     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
516     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
517     // This is just the low 32 bits of a (signed) fp->i64 conversion.
518     // We cannot do this with Promote because i64 is not a legal type.
519     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
520 
521     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
522       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
523   } else {
524     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
525     if (Subtarget.hasSPE())
526       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
527     else
528       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
529   }
530 
531   // With the instructions enabled under FPCVT, we can do everything.
532   if (Subtarget.hasFPCVT()) {
533     if (Subtarget.has64BitSupport()) {
534       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
535       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
536       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
537       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
538     }
539 
540     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
541     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
542     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
543     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
544   }
545 
546   if (Subtarget.use64BitRegs()) {
547     // 64-bit PowerPC implementations can support i64 types directly
548     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
549     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
550     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
551     // 64-bit PowerPC wants to expand i128 shifts itself.
552     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
553     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
554     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
555   } else {
556     // 32-bit PowerPC wants to expand i64 shifts itself.
557     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
558     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
559     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
560   }
561 
562   if (Subtarget.hasVSX()) {
563     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
564     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
565     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
566     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
567   }
568 
569   if (Subtarget.hasAltivec()) {
570     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
571       setOperationAction(ISD::SADDSAT, VT, Legal);
572       setOperationAction(ISD::SSUBSAT, VT, Legal);
573       setOperationAction(ISD::UADDSAT, VT, Legal);
574       setOperationAction(ISD::USUBSAT, VT, Legal);
575     }
576     // First set operation action for all vector types to expand. Then we
577     // will selectively turn on ones that can be effectively codegen'd.
578     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
579       // add/sub are legal for all supported vector VT's.
580       setOperationAction(ISD::ADD, VT, Legal);
581       setOperationAction(ISD::SUB, VT, Legal);
582 
583       // For v2i64, these are only valid with P8Vector. This is corrected after
584       // the loop.
585       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
586         setOperationAction(ISD::SMAX, VT, Legal);
587         setOperationAction(ISD::SMIN, VT, Legal);
588         setOperationAction(ISD::UMAX, VT, Legal);
589         setOperationAction(ISD::UMIN, VT, Legal);
590       }
591       else {
592         setOperationAction(ISD::SMAX, VT, Expand);
593         setOperationAction(ISD::SMIN, VT, Expand);
594         setOperationAction(ISD::UMAX, VT, Expand);
595         setOperationAction(ISD::UMIN, VT, Expand);
596       }
597 
598       if (Subtarget.hasVSX()) {
599         setOperationAction(ISD::FMAXNUM, VT, Legal);
600         setOperationAction(ISD::FMINNUM, VT, Legal);
601       }
602 
603       // Vector instructions introduced in P8
604       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
605         setOperationAction(ISD::CTPOP, VT, Legal);
606         setOperationAction(ISD::CTLZ, VT, Legal);
607       }
608       else {
609         setOperationAction(ISD::CTPOP, VT, Expand);
610         setOperationAction(ISD::CTLZ, VT, Expand);
611       }
612 
613       // Vector instructions introduced in P9
614       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
615         setOperationAction(ISD::CTTZ, VT, Legal);
616       else
617         setOperationAction(ISD::CTTZ, VT, Expand);
618 
619       // We promote all shuffles to v16i8.
620       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
621       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
622 
623       // We promote all non-typed operations to v4i32.
624       setOperationAction(ISD::AND   , VT, Promote);
625       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
626       setOperationAction(ISD::OR    , VT, Promote);
627       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
628       setOperationAction(ISD::XOR   , VT, Promote);
629       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
630       setOperationAction(ISD::LOAD  , VT, Promote);
631       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
632       setOperationAction(ISD::SELECT, VT, Promote);
633       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
634       setOperationAction(ISD::VSELECT, VT, Legal);
635       setOperationAction(ISD::SELECT_CC, VT, Promote);
636       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
637       setOperationAction(ISD::STORE, VT, Promote);
638       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
639 
640       // No other operations are legal.
641       setOperationAction(ISD::MUL , VT, Expand);
642       setOperationAction(ISD::SDIV, VT, Expand);
643       setOperationAction(ISD::SREM, VT, Expand);
644       setOperationAction(ISD::UDIV, VT, Expand);
645       setOperationAction(ISD::UREM, VT, Expand);
646       setOperationAction(ISD::FDIV, VT, Expand);
647       setOperationAction(ISD::FREM, VT, Expand);
648       setOperationAction(ISD::FNEG, VT, Expand);
649       setOperationAction(ISD::FSQRT, VT, Expand);
650       setOperationAction(ISD::FLOG, VT, Expand);
651       setOperationAction(ISD::FLOG10, VT, Expand);
652       setOperationAction(ISD::FLOG2, VT, Expand);
653       setOperationAction(ISD::FEXP, VT, Expand);
654       setOperationAction(ISD::FEXP2, VT, Expand);
655       setOperationAction(ISD::FSIN, VT, Expand);
656       setOperationAction(ISD::FCOS, VT, Expand);
657       setOperationAction(ISD::FABS, VT, Expand);
658       setOperationAction(ISD::FFLOOR, VT, Expand);
659       setOperationAction(ISD::FCEIL,  VT, Expand);
660       setOperationAction(ISD::FTRUNC, VT, Expand);
661       setOperationAction(ISD::FRINT,  VT, Expand);
662       setOperationAction(ISD::FNEARBYINT, VT, Expand);
663       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
664       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
665       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
666       setOperationAction(ISD::MULHU, VT, Expand);
667       setOperationAction(ISD::MULHS, VT, Expand);
668       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
669       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
670       setOperationAction(ISD::UDIVREM, VT, Expand);
671       setOperationAction(ISD::SDIVREM, VT, Expand);
672       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
673       setOperationAction(ISD::FPOW, VT, Expand);
674       setOperationAction(ISD::BSWAP, VT, Expand);
675       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
676       setOperationAction(ISD::ROTL, VT, Expand);
677       setOperationAction(ISD::ROTR, VT, Expand);
678 
679       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
680         setTruncStoreAction(VT, InnerVT, Expand);
681         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
682         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
683         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
684       }
685     }
686     if (!Subtarget.hasP8Vector()) {
687       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
688       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
689       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
690       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
691     }
692 
693     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
694       setOperationAction(ISD::ABS, VT, Custom);
695 
696     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
697     // with merges, splats, etc.
698     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
699 
700     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
701     // are cheap, so handle them before they get expanded to scalar.
702     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
703     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
704     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
705     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
706     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
707 
708     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
709     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
710     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
711     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
712     setOperationAction(ISD::SELECT, MVT::v4i32,
713                        Subtarget.useCRBits() ? Legal : Expand);
714     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
715     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
716     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
717     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
718     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
719     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
720     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
721     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
722     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
723 
724     // Without hasP8Altivec set, v2i64 SMAX isn't available.
725     // But ABS custom lowering requires SMAX support.
726     if (!Subtarget.hasP8Altivec())
727       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
728 
729     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
730     if (Subtarget.hasAltivec())
731       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
732         setOperationAction(ISD::ROTL, VT, Legal);
733     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
734     if (Subtarget.hasP8Altivec())
735       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
736 
737     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
738     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
739     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
740     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
741 
742     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
743     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
744 
745     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
746       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
747       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
748     }
749 
750     if (Subtarget.hasP8Altivec())
751       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
752     else
753       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
754 
755     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
756     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
757 
758     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
759     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
760 
761     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
762     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
763     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
764     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
765 
766     // Altivec does not contain unordered floating-point compare instructions
767     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
768     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
769     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
770     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
771 
772     if (Subtarget.hasVSX()) {
773       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
774       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
775       if (Subtarget.hasP8Vector()) {
776         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
777         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
778       }
779       if (Subtarget.hasDirectMove() && isPPC64) {
780         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
781         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
782         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
783         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
784         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
785         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
786         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
787         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
788       }
789       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
790 
791       // The nearbyint variants are not allowed to raise the inexact exception
792       // so we can only code-gen them with unsafe math.
793       if (TM.Options.UnsafeFPMath) {
794         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
795         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
796       }
797 
798       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
799       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
800       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
801       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
802       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
803       setOperationAction(ISD::FROUND, MVT::f64, Legal);
804 
805       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
806       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
807       setOperationAction(ISD::FROUND, MVT::f32, Legal);
808 
809       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
810       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
811 
812       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
813       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
814 
815       // Share the Altivec comparison restrictions.
816       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
817       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
818       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
819       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
820 
821       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
822       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
823 
824       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
825 
826       if (Subtarget.hasP8Vector())
827         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
828 
829       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
830 
831       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
832       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
833       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
834 
835       if (Subtarget.hasP8Altivec()) {
836         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
837         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
838         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
839 
840         // 128 bit shifts can be accomplished via 3 instructions for SHL and
841         // SRL, but not for SRA because of the instructions available:
842         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
843         // doing
844         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
845         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
846         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
847 
848         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
849       }
850       else {
851         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
852         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
853         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
854 
855         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
856 
857         // VSX v2i64 only supports non-arithmetic operations.
858         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
859         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
860       }
861 
862       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
863       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
864       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
865       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
866 
867       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
868 
869       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
870       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
871       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
872       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
873 
874       // Custom handling for partial vectors of integers converted to
875       // floating point. We already have optimal handling for v2i32 through
876       // the DAG combine, so those aren't necessary.
877       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
878       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
879       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
880       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
881       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
882       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
883       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
884       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
885 
886       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
887       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
888       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
889       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
890       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
891       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
892 
893       if (Subtarget.hasDirectMove())
894         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
895       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
896 
897       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
898     }
899 
900     if (Subtarget.hasP8Altivec()) {
901       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
902       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
903     }
904 
905     if (Subtarget.hasP9Vector()) {
906       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
907       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
908 
909       // 128 bit shifts can be accomplished via 3 instructions for SHL and
910       // SRL, but not for SRA because of the instructions available:
911       // VS{RL} and VS{RL}O.
912       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
913       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
914       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
915 
916       if (EnableQuadPrecision) {
917         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
918         setOperationAction(ISD::FADD, MVT::f128, Legal);
919         setOperationAction(ISD::FSUB, MVT::f128, Legal);
920         setOperationAction(ISD::FDIV, MVT::f128, Legal);
921         setOperationAction(ISD::FMUL, MVT::f128, Legal);
922         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
923         // No extending loads to f128 on PPC.
924         for (MVT FPT : MVT::fp_valuetypes())
925           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
926         setOperationAction(ISD::FMA, MVT::f128, Legal);
927         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
928         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
929         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
930         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
931         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
932         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
933 
934         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
935         setOperationAction(ISD::FRINT, MVT::f128, Legal);
936         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
937         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
938         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
939         setOperationAction(ISD::FROUND, MVT::f128, Legal);
940 
941         setOperationAction(ISD::SELECT, MVT::f128, Expand);
942         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
943         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
944         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
945         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
946         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
947         // No implementation for these ops for PowerPC.
948         setOperationAction(ISD::FSIN , MVT::f128, Expand);
949         setOperationAction(ISD::FCOS , MVT::f128, Expand);
950         setOperationAction(ISD::FPOW, MVT::f128, Expand);
951         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
952         setOperationAction(ISD::FREM, MVT::f128, Expand);
953       }
954       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
955       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
956       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
957       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
958       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
959     }
960 
961     if (Subtarget.hasP9Altivec()) {
962       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
963       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
964 
965       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
966       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
967       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
968       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
969       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
970       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
971       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
972     }
973   }
974 
975   if (Subtarget.hasQPX()) {
976     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
977     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
978     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
979     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
980 
981     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
982     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
983 
984     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
985     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
986 
987     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
988     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
989 
990     if (!Subtarget.useCRBits())
991       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
992     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
993 
994     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
995     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
996     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
997     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
998     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
999     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1000     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1001 
1002     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1003     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1004 
1005     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1006     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1007 
1008     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1009     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1010     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1011     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1012     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1013     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1014     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1015     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1016     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1017     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1018 
1019     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1020     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1021 
1022     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1023     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1024 
1025     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1026 
1027     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1028     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1029     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1030     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1031 
1032     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1033     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1034 
1035     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1036     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1037 
1038     if (!Subtarget.useCRBits())
1039       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1040     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1041 
1042     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1043     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1044     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1045     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1046     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1047     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1048     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1049 
1050     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1051     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1052 
1053     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1054     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1055     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1056     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1057     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1058     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1059     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1060     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1061     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1062     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1063 
1064     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1065     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1066 
1067     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1068     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1069 
1070     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1071 
1072     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1073     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1074     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1075 
1076     if (!Subtarget.useCRBits())
1077       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1078     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1079 
1080     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1081     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1082 
1083     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1084     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1085     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1086     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1087     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1088     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1089     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1090 
1091     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1092     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1093 
1094     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1095 
1096     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1097     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1098     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1099     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1100 
1101     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1102     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1103     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1104     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1105 
1106     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1107     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1108 
1109     // These need to set FE_INEXACT, and so cannot be vectorized here.
1110     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1111     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1112 
1113     if (TM.Options.UnsafeFPMath) {
1114       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1115       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1116 
1117       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1118       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1119     } else {
1120       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1121       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1122 
1123       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1124       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1125     }
1126   }
1127 
1128   if (Subtarget.has64BitSupport())
1129     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1130 
1131   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1132 
1133   if (!isPPC64) {
1134     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1135     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1136   }
1137 
1138   setBooleanContents(ZeroOrOneBooleanContent);
1139 
1140   if (Subtarget.hasAltivec()) {
1141     // Altivec instructions set fields to all zeros or all ones.
1142     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1143   }
1144 
1145   if (!isPPC64) {
1146     // These libcalls are not available in 32-bit.
1147     setLibcallName(RTLIB::SHL_I128, nullptr);
1148     setLibcallName(RTLIB::SRL_I128, nullptr);
1149     setLibcallName(RTLIB::SRA_I128, nullptr);
1150   }
1151 
1152   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1153 
1154   // We have target-specific dag combine patterns for the following nodes:
1155   setTargetDAGCombine(ISD::ADD);
1156   setTargetDAGCombine(ISD::SHL);
1157   setTargetDAGCombine(ISD::SRA);
1158   setTargetDAGCombine(ISD::SRL);
1159   setTargetDAGCombine(ISD::MUL);
1160   setTargetDAGCombine(ISD::SINT_TO_FP);
1161   setTargetDAGCombine(ISD::BUILD_VECTOR);
1162   if (Subtarget.hasFPCVT())
1163     setTargetDAGCombine(ISD::UINT_TO_FP);
1164   setTargetDAGCombine(ISD::LOAD);
1165   setTargetDAGCombine(ISD::STORE);
1166   setTargetDAGCombine(ISD::BR_CC);
1167   if (Subtarget.useCRBits())
1168     setTargetDAGCombine(ISD::BRCOND);
1169   setTargetDAGCombine(ISD::BSWAP);
1170   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1171   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1172   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1173 
1174   setTargetDAGCombine(ISD::SIGN_EXTEND);
1175   setTargetDAGCombine(ISD::ZERO_EXTEND);
1176   setTargetDAGCombine(ISD::ANY_EXTEND);
1177 
1178   setTargetDAGCombine(ISD::TRUNCATE);
1179   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1180 
1181 
1182   if (Subtarget.useCRBits()) {
1183     setTargetDAGCombine(ISD::TRUNCATE);
1184     setTargetDAGCombine(ISD::SETCC);
1185     setTargetDAGCombine(ISD::SELECT_CC);
1186   }
1187 
1188   // Use reciprocal estimates.
1189   if (TM.Options.UnsafeFPMath) {
1190     setTargetDAGCombine(ISD::FDIV);
1191     setTargetDAGCombine(ISD::FSQRT);
1192   }
1193 
1194   if (Subtarget.hasP9Altivec()) {
1195     setTargetDAGCombine(ISD::ABS);
1196     setTargetDAGCombine(ISD::VSELECT);
1197   }
1198 
1199   if (EnableQuadPrecision) {
1200     setLibcallName(RTLIB::LOG_F128, "logf128");
1201     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1202     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1203     setLibcallName(RTLIB::EXP_F128, "expf128");
1204     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1205     setLibcallName(RTLIB::SIN_F128, "sinf128");
1206     setLibcallName(RTLIB::COS_F128, "cosf128");
1207     setLibcallName(RTLIB::POW_F128, "powf128");
1208     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1209     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1210     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1211     setLibcallName(RTLIB::REM_F128, "fmodf128");
1212   }
1213 
1214   // With 32 condition bits, we don't need to sink (and duplicate) compares
1215   // aggressively in CodeGenPrep.
1216   if (Subtarget.useCRBits()) {
1217     setHasMultipleConditionRegisters();
1218     setJumpIsExpensive();
1219   }
1220 
1221   setMinFunctionAlignment(Align(4));
1222 
1223   switch (Subtarget.getCPUDirective()) {
1224   default: break;
1225   case PPC::DIR_970:
1226   case PPC::DIR_A2:
1227   case PPC::DIR_E500:
1228   case PPC::DIR_E500mc:
1229   case PPC::DIR_E5500:
1230   case PPC::DIR_PWR4:
1231   case PPC::DIR_PWR5:
1232   case PPC::DIR_PWR5X:
1233   case PPC::DIR_PWR6:
1234   case PPC::DIR_PWR6X:
1235   case PPC::DIR_PWR7:
1236   case PPC::DIR_PWR8:
1237   case PPC::DIR_PWR9:
1238   case PPC::DIR_PWR_FUTURE:
1239     setPrefLoopAlignment(Align(16));
1240     setPrefFunctionAlignment(Align(16));
1241     break;
1242   }
1243 
1244   if (Subtarget.enableMachineScheduler())
1245     setSchedulingPreference(Sched::Source);
1246   else
1247     setSchedulingPreference(Sched::Hybrid);
1248 
1249   computeRegisterProperties(STI.getRegisterInfo());
1250 
1251   // The Freescale cores do better with aggressive inlining of memcpy and
1252   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1253   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1254       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1255     MaxStoresPerMemset = 32;
1256     MaxStoresPerMemsetOptSize = 16;
1257     MaxStoresPerMemcpy = 32;
1258     MaxStoresPerMemcpyOptSize = 8;
1259     MaxStoresPerMemmove = 32;
1260     MaxStoresPerMemmoveOptSize = 8;
1261   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1262     // The A2 also benefits from (very) aggressive inlining of memcpy and
1263     // friends. The overhead of a the function call, even when warm, can be
1264     // over one hundred cycles.
1265     MaxStoresPerMemset = 128;
1266     MaxStoresPerMemcpy = 128;
1267     MaxStoresPerMemmove = 128;
1268     MaxLoadsPerMemcmp = 128;
1269   } else {
1270     MaxLoadsPerMemcmp = 8;
1271     MaxLoadsPerMemcmpOptSize = 4;
1272   }
1273 }
1274 
1275 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1276 /// the desired ByVal argument alignment.
1277 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1278                              unsigned MaxMaxAlign) {
1279   if (MaxAlign == MaxMaxAlign)
1280     return;
1281   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1282     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1283       MaxAlign = 32;
1284     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1285       MaxAlign = 16;
1286   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1287     unsigned EltAlign = 0;
1288     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1289     if (EltAlign > MaxAlign)
1290       MaxAlign = EltAlign;
1291   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1292     for (auto *EltTy : STy->elements()) {
1293       unsigned EltAlign = 0;
1294       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1295       if (EltAlign > MaxAlign)
1296         MaxAlign = EltAlign;
1297       if (MaxAlign == MaxMaxAlign)
1298         break;
1299     }
1300   }
1301 }
1302 
1303 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1304 /// function arguments in the caller parameter area.
1305 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1306                                                   const DataLayout &DL) const {
1307   // 16byte and wider vectors are passed on 16byte boundary.
1308   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1309   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1310   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1311     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1312   return Align;
1313 }
1314 
1315 bool PPCTargetLowering::useSoftFloat() const {
1316   return Subtarget.useSoftFloat();
1317 }
1318 
1319 bool PPCTargetLowering::hasSPE() const {
1320   return Subtarget.hasSPE();
1321 }
1322 
1323 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1324   return VT.isScalarInteger();
1325 }
1326 
1327 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1328   switch ((PPCISD::NodeType)Opcode) {
1329   case PPCISD::FIRST_NUMBER:    break;
1330   case PPCISD::FSEL:            return "PPCISD::FSEL";
1331   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1332   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1333   case PPCISD::FCFID:           return "PPCISD::FCFID";
1334   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1335   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1336   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1337   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1338   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1339   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1340   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1341   case PPCISD::FP_TO_UINT_IN_VSR:
1342                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1343   case PPCISD::FP_TO_SINT_IN_VSR:
1344                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1345   case PPCISD::FRE:             return "PPCISD::FRE";
1346   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1347   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1348   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1349   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1350   case PPCISD::VPERM:           return "PPCISD::VPERM";
1351   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1352   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1353   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1354   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1355   case PPCISD::CMPB:            return "PPCISD::CMPB";
1356   case PPCISD::Hi:              return "PPCISD::Hi";
1357   case PPCISD::Lo:              return "PPCISD::Lo";
1358   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1359   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1360   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1361   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1362   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1363   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1364   case PPCISD::SRL:             return "PPCISD::SRL";
1365   case PPCISD::SRA:             return "PPCISD::SRA";
1366   case PPCISD::SHL:             return "PPCISD::SHL";
1367   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1368   case PPCISD::CALL:            return "PPCISD::CALL";
1369   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1370   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1371   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1372   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1373   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1374   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1375   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1376   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1377   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1378   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1379   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1380   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1381   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1382   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1383   case PPCISD::ANDI_rec_1_EQ_BIT:
1384     return "PPCISD::ANDI_rec_1_EQ_BIT";
1385   case PPCISD::ANDI_rec_1_GT_BIT:
1386     return "PPCISD::ANDI_rec_1_GT_BIT";
1387   case PPCISD::VCMP:            return "PPCISD::VCMP";
1388   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1389   case PPCISD::LBRX:            return "PPCISD::LBRX";
1390   case PPCISD::STBRX:           return "PPCISD::STBRX";
1391   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1392   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1393   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1394   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1395   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1396   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1397   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1398   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1399   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1400   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1401   case PPCISD::ST_VSR_SCAL_INT:
1402                                 return "PPCISD::ST_VSR_SCAL_INT";
1403   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1404   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1405   case PPCISD::BDZ:             return "PPCISD::BDZ";
1406   case PPCISD::MFFS:            return "PPCISD::MFFS";
1407   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1408   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1409   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1410   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1411   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1412   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1413   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1414   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1415   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1416   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1417   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1418   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1419   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1420   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1421   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1422   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1423   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1424   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1425   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1426   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1427   case PPCISD::SC:              return "PPCISD::SC";
1428   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1429   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1430   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1431   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1432   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1433   case PPCISD::VABSD:           return "PPCISD::VABSD";
1434   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1435   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1436   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1437   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1438   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1439   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1440   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1441   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1442   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1443   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1444   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1445   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1446   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1447   }
1448   return nullptr;
1449 }
1450 
1451 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1452                                           EVT VT) const {
1453   if (!VT.isVector())
1454     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1455 
1456   if (Subtarget.hasQPX())
1457     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1458 
1459   return VT.changeVectorElementTypeToInteger();
1460 }
1461 
1462 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1463   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1464   return true;
1465 }
1466 
1467 //===----------------------------------------------------------------------===//
1468 // Node matching predicates, for use by the tblgen matching code.
1469 //===----------------------------------------------------------------------===//
1470 
1471 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1472 static bool isFloatingPointZero(SDValue Op) {
1473   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1474     return CFP->getValueAPF().isZero();
1475   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1476     // Maybe this has already been legalized into the constant pool?
1477     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1478       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1479         return CFP->getValueAPF().isZero();
1480   }
1481   return false;
1482 }
1483 
1484 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1485 /// true if Op is undef or if it matches the specified value.
1486 static bool isConstantOrUndef(int Op, int Val) {
1487   return Op < 0 || Op == Val;
1488 }
1489 
1490 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1491 /// VPKUHUM instruction.
1492 /// The ShuffleKind distinguishes between big-endian operations with
1493 /// two different inputs (0), either-endian operations with two identical
1494 /// inputs (1), and little-endian operations with two different inputs (2).
1495 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1496 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1497                                SelectionDAG &DAG) {
1498   bool IsLE = DAG.getDataLayout().isLittleEndian();
1499   if (ShuffleKind == 0) {
1500     if (IsLE)
1501       return false;
1502     for (unsigned i = 0; i != 16; ++i)
1503       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1504         return false;
1505   } else if (ShuffleKind == 2) {
1506     if (!IsLE)
1507       return false;
1508     for (unsigned i = 0; i != 16; ++i)
1509       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1510         return false;
1511   } else if (ShuffleKind == 1) {
1512     unsigned j = IsLE ? 0 : 1;
1513     for (unsigned i = 0; i != 8; ++i)
1514       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1515           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1516         return false;
1517   }
1518   return true;
1519 }
1520 
1521 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1522 /// VPKUWUM instruction.
1523 /// The ShuffleKind distinguishes between big-endian operations with
1524 /// two different inputs (0), either-endian operations with two identical
1525 /// inputs (1), and little-endian operations with two different inputs (2).
1526 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1527 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1528                                SelectionDAG &DAG) {
1529   bool IsLE = DAG.getDataLayout().isLittleEndian();
1530   if (ShuffleKind == 0) {
1531     if (IsLE)
1532       return false;
1533     for (unsigned i = 0; i != 16; i += 2)
1534       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1535           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1536         return false;
1537   } else if (ShuffleKind == 2) {
1538     if (!IsLE)
1539       return false;
1540     for (unsigned i = 0; i != 16; i += 2)
1541       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1542           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1543         return false;
1544   } else if (ShuffleKind == 1) {
1545     unsigned j = IsLE ? 0 : 2;
1546     for (unsigned i = 0; i != 8; i += 2)
1547       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1548           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1549           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1550           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1551         return false;
1552   }
1553   return true;
1554 }
1555 
1556 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1557 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1558 /// current subtarget.
1559 ///
1560 /// The ShuffleKind distinguishes between big-endian operations with
1561 /// two different inputs (0), either-endian operations with two identical
1562 /// inputs (1), and little-endian operations with two different inputs (2).
1563 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1564 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1565                                SelectionDAG &DAG) {
1566   const PPCSubtarget& Subtarget =
1567       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1568   if (!Subtarget.hasP8Vector())
1569     return false;
1570 
1571   bool IsLE = DAG.getDataLayout().isLittleEndian();
1572   if (ShuffleKind == 0) {
1573     if (IsLE)
1574       return false;
1575     for (unsigned i = 0; i != 16; i += 4)
1576       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1577           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1578           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1579           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1580         return false;
1581   } else if (ShuffleKind == 2) {
1582     if (!IsLE)
1583       return false;
1584     for (unsigned i = 0; i != 16; i += 4)
1585       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1586           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1587           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1588           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1589         return false;
1590   } else if (ShuffleKind == 1) {
1591     unsigned j = IsLE ? 0 : 4;
1592     for (unsigned i = 0; i != 8; i += 4)
1593       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1594           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1595           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1596           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1597           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1598           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1599           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1600           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1601         return false;
1602   }
1603   return true;
1604 }
1605 
1606 /// isVMerge - Common function, used to match vmrg* shuffles.
1607 ///
1608 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1609                      unsigned LHSStart, unsigned RHSStart) {
1610   if (N->getValueType(0) != MVT::v16i8)
1611     return false;
1612   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1613          "Unsupported merge size!");
1614 
1615   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1616     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1617       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1618                              LHSStart+j+i*UnitSize) ||
1619           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1620                              RHSStart+j+i*UnitSize))
1621         return false;
1622     }
1623   return true;
1624 }
1625 
1626 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1627 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1628 /// The ShuffleKind distinguishes between big-endian merges with two
1629 /// different inputs (0), either-endian merges with two identical inputs (1),
1630 /// and little-endian merges with two different inputs (2).  For the latter,
1631 /// the input operands are swapped (see PPCInstrAltivec.td).
1632 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1633                              unsigned ShuffleKind, SelectionDAG &DAG) {
1634   if (DAG.getDataLayout().isLittleEndian()) {
1635     if (ShuffleKind == 1) // unary
1636       return isVMerge(N, UnitSize, 0, 0);
1637     else if (ShuffleKind == 2) // swapped
1638       return isVMerge(N, UnitSize, 0, 16);
1639     else
1640       return false;
1641   } else {
1642     if (ShuffleKind == 1) // unary
1643       return isVMerge(N, UnitSize, 8, 8);
1644     else if (ShuffleKind == 0) // normal
1645       return isVMerge(N, UnitSize, 8, 24);
1646     else
1647       return false;
1648   }
1649 }
1650 
1651 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1652 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1653 /// The ShuffleKind distinguishes between big-endian merges with two
1654 /// different inputs (0), either-endian merges with two identical inputs (1),
1655 /// and little-endian merges with two different inputs (2).  For the latter,
1656 /// the input operands are swapped (see PPCInstrAltivec.td).
1657 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1658                              unsigned ShuffleKind, SelectionDAG &DAG) {
1659   if (DAG.getDataLayout().isLittleEndian()) {
1660     if (ShuffleKind == 1) // unary
1661       return isVMerge(N, UnitSize, 8, 8);
1662     else if (ShuffleKind == 2) // swapped
1663       return isVMerge(N, UnitSize, 8, 24);
1664     else
1665       return false;
1666   } else {
1667     if (ShuffleKind == 1) // unary
1668       return isVMerge(N, UnitSize, 0, 0);
1669     else if (ShuffleKind == 0) // normal
1670       return isVMerge(N, UnitSize, 0, 16);
1671     else
1672       return false;
1673   }
1674 }
1675 
1676 /**
1677  * Common function used to match vmrgew and vmrgow shuffles
1678  *
1679  * The indexOffset determines whether to look for even or odd words in
1680  * the shuffle mask. This is based on the of the endianness of the target
1681  * machine.
1682  *   - Little Endian:
1683  *     - Use offset of 0 to check for odd elements
1684  *     - Use offset of 4 to check for even elements
1685  *   - Big Endian:
1686  *     - Use offset of 0 to check for even elements
1687  *     - Use offset of 4 to check for odd elements
1688  * A detailed description of the vector element ordering for little endian and
1689  * big endian can be found at
1690  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1691  * Targeting your applications - what little endian and big endian IBM XL C/C++
1692  * compiler differences mean to you
1693  *
1694  * The mask to the shuffle vector instruction specifies the indices of the
1695  * elements from the two input vectors to place in the result. The elements are
1696  * numbered in array-access order, starting with the first vector. These vectors
1697  * are always of type v16i8, thus each vector will contain 16 elements of size
1698  * 8. More info on the shuffle vector can be found in the
1699  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1700  * Language Reference.
1701  *
1702  * The RHSStartValue indicates whether the same input vectors are used (unary)
1703  * or two different input vectors are used, based on the following:
1704  *   - If the instruction uses the same vector for both inputs, the range of the
1705  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1706  *     be 0.
1707  *   - If the instruction has two different vectors then the range of the
1708  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1709  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1710  *     to 31 specify elements in the second vector).
1711  *
1712  * \param[in] N The shuffle vector SD Node to analyze
1713  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1714  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1715  * vector to the shuffle_vector instruction
1716  * \return true iff this shuffle vector represents an even or odd word merge
1717  */
1718 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1719                      unsigned RHSStartValue) {
1720   if (N->getValueType(0) != MVT::v16i8)
1721     return false;
1722 
1723   for (unsigned i = 0; i < 2; ++i)
1724     for (unsigned j = 0; j < 4; ++j)
1725       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1726                              i*RHSStartValue+j+IndexOffset) ||
1727           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1728                              i*RHSStartValue+j+IndexOffset+8))
1729         return false;
1730   return true;
1731 }
1732 
1733 /**
1734  * Determine if the specified shuffle mask is suitable for the vmrgew or
1735  * vmrgow instructions.
1736  *
1737  * \param[in] N The shuffle vector SD Node to analyze
1738  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1739  * \param[in] ShuffleKind Identify the type of merge:
1740  *   - 0 = big-endian merge with two different inputs;
1741  *   - 1 = either-endian merge with two identical inputs;
1742  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1743  *     little-endian merges).
1744  * \param[in] DAG The current SelectionDAG
1745  * \return true iff this shuffle mask
1746  */
1747 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1748                               unsigned ShuffleKind, SelectionDAG &DAG) {
1749   if (DAG.getDataLayout().isLittleEndian()) {
1750     unsigned indexOffset = CheckEven ? 4 : 0;
1751     if (ShuffleKind == 1) // Unary
1752       return isVMerge(N, indexOffset, 0);
1753     else if (ShuffleKind == 2) // swapped
1754       return isVMerge(N, indexOffset, 16);
1755     else
1756       return false;
1757   }
1758   else {
1759     unsigned indexOffset = CheckEven ? 0 : 4;
1760     if (ShuffleKind == 1) // Unary
1761       return isVMerge(N, indexOffset, 0);
1762     else if (ShuffleKind == 0) // Normal
1763       return isVMerge(N, indexOffset, 16);
1764     else
1765       return false;
1766   }
1767   return false;
1768 }
1769 
1770 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1771 /// amount, otherwise return -1.
1772 /// The ShuffleKind distinguishes between big-endian operations with two
1773 /// different inputs (0), either-endian operations with two identical inputs
1774 /// (1), and little-endian operations with two different inputs (2).  For the
1775 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1776 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1777                              SelectionDAG &DAG) {
1778   if (N->getValueType(0) != MVT::v16i8)
1779     return -1;
1780 
1781   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1782 
1783   // Find the first non-undef value in the shuffle mask.
1784   unsigned i;
1785   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1786     /*search*/;
1787 
1788   if (i == 16) return -1;  // all undef.
1789 
1790   // Otherwise, check to see if the rest of the elements are consecutively
1791   // numbered from this value.
1792   unsigned ShiftAmt = SVOp->getMaskElt(i);
1793   if (ShiftAmt < i) return -1;
1794 
1795   ShiftAmt -= i;
1796   bool isLE = DAG.getDataLayout().isLittleEndian();
1797 
1798   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1799     // Check the rest of the elements to see if they are consecutive.
1800     for (++i; i != 16; ++i)
1801       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1802         return -1;
1803   } else if (ShuffleKind == 1) {
1804     // Check the rest of the elements to see if they are consecutive.
1805     for (++i; i != 16; ++i)
1806       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1807         return -1;
1808   } else
1809     return -1;
1810 
1811   if (isLE)
1812     ShiftAmt = 16 - ShiftAmt;
1813 
1814   return ShiftAmt;
1815 }
1816 
1817 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1818 /// specifies a splat of a single element that is suitable for input to
1819 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1820 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1821   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1822          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1823 
1824   // The consecutive indices need to specify an element, not part of two
1825   // different elements.  So abandon ship early if this isn't the case.
1826   if (N->getMaskElt(0) % EltSize != 0)
1827     return false;
1828 
1829   // This is a splat operation if each element of the permute is the same, and
1830   // if the value doesn't reference the second vector.
1831   unsigned ElementBase = N->getMaskElt(0);
1832 
1833   // FIXME: Handle UNDEF elements too!
1834   if (ElementBase >= 16)
1835     return false;
1836 
1837   // Check that the indices are consecutive, in the case of a multi-byte element
1838   // splatted with a v16i8 mask.
1839   for (unsigned i = 1; i != EltSize; ++i)
1840     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1841       return false;
1842 
1843   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1844     if (N->getMaskElt(i) < 0) continue;
1845     for (unsigned j = 0; j != EltSize; ++j)
1846       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1847         return false;
1848   }
1849   return true;
1850 }
1851 
1852 /// Check that the mask is shuffling N byte elements. Within each N byte
1853 /// element of the mask, the indices could be either in increasing or
1854 /// decreasing order as long as they are consecutive.
1855 /// \param[in] N the shuffle vector SD Node to analyze
1856 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1857 /// Word/DoubleWord/QuadWord).
1858 /// \param[in] StepLen the delta indices number among the N byte element, if
1859 /// the mask is in increasing/decreasing order then it is 1/-1.
1860 /// \return true iff the mask is shuffling N byte elements.
1861 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1862                                    int StepLen) {
1863   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1864          "Unexpected element width.");
1865   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1866 
1867   unsigned NumOfElem = 16 / Width;
1868   unsigned MaskVal[16]; //  Width is never greater than 16
1869   for (unsigned i = 0; i < NumOfElem; ++i) {
1870     MaskVal[0] = N->getMaskElt(i * Width);
1871     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1872       return false;
1873     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1874       return false;
1875     }
1876 
1877     for (unsigned int j = 1; j < Width; ++j) {
1878       MaskVal[j] = N->getMaskElt(i * Width + j);
1879       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1880         return false;
1881       }
1882     }
1883   }
1884 
1885   return true;
1886 }
1887 
1888 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1889                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1890   if (!isNByteElemShuffleMask(N, 4, 1))
1891     return false;
1892 
1893   // Now we look at mask elements 0,4,8,12
1894   unsigned M0 = N->getMaskElt(0) / 4;
1895   unsigned M1 = N->getMaskElt(4) / 4;
1896   unsigned M2 = N->getMaskElt(8) / 4;
1897   unsigned M3 = N->getMaskElt(12) / 4;
1898   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1899   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1900 
1901   // Below, let H and L be arbitrary elements of the shuffle mask
1902   // where H is in the range [4,7] and L is in the range [0,3].
1903   // H, 1, 2, 3 or L, 5, 6, 7
1904   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1905       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1906     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1907     InsertAtByte = IsLE ? 12 : 0;
1908     Swap = M0 < 4;
1909     return true;
1910   }
1911   // 0, H, 2, 3 or 4, L, 6, 7
1912   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1913       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1914     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1915     InsertAtByte = IsLE ? 8 : 4;
1916     Swap = M1 < 4;
1917     return true;
1918   }
1919   // 0, 1, H, 3 or 4, 5, L, 7
1920   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1921       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1922     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1923     InsertAtByte = IsLE ? 4 : 8;
1924     Swap = M2 < 4;
1925     return true;
1926   }
1927   // 0, 1, 2, H or 4, 5, 6, L
1928   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1929       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1930     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1931     InsertAtByte = IsLE ? 0 : 12;
1932     Swap = M3 < 4;
1933     return true;
1934   }
1935 
1936   // If both vector operands for the shuffle are the same vector, the mask will
1937   // contain only elements from the first one and the second one will be undef.
1938   if (N->getOperand(1).isUndef()) {
1939     ShiftElts = 0;
1940     Swap = true;
1941     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1942     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1943       InsertAtByte = IsLE ? 12 : 0;
1944       return true;
1945     }
1946     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1947       InsertAtByte = IsLE ? 8 : 4;
1948       return true;
1949     }
1950     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1951       InsertAtByte = IsLE ? 4 : 8;
1952       return true;
1953     }
1954     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1955       InsertAtByte = IsLE ? 0 : 12;
1956       return true;
1957     }
1958   }
1959 
1960   return false;
1961 }
1962 
1963 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1964                                bool &Swap, bool IsLE) {
1965   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1966   // Ensure each byte index of the word is consecutive.
1967   if (!isNByteElemShuffleMask(N, 4, 1))
1968     return false;
1969 
1970   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1971   unsigned M0 = N->getMaskElt(0) / 4;
1972   unsigned M1 = N->getMaskElt(4) / 4;
1973   unsigned M2 = N->getMaskElt(8) / 4;
1974   unsigned M3 = N->getMaskElt(12) / 4;
1975 
1976   // If both vector operands for the shuffle are the same vector, the mask will
1977   // contain only elements from the first one and the second one will be undef.
1978   if (N->getOperand(1).isUndef()) {
1979     assert(M0 < 4 && "Indexing into an undef vector?");
1980     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1981       return false;
1982 
1983     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1984     Swap = false;
1985     return true;
1986   }
1987 
1988   // Ensure each word index of the ShuffleVector Mask is consecutive.
1989   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1990     return false;
1991 
1992   if (IsLE) {
1993     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1994       // Input vectors don't need to be swapped if the leading element
1995       // of the result is one of the 3 left elements of the second vector
1996       // (or if there is no shift to be done at all).
1997       Swap = false;
1998       ShiftElts = (8 - M0) % 8;
1999     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2000       // Input vectors need to be swapped if the leading element
2001       // of the result is one of the 3 left elements of the first vector
2002       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2003       Swap = true;
2004       ShiftElts = (4 - M0) % 4;
2005     }
2006 
2007     return true;
2008   } else {                                          // BE
2009     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2010       // Input vectors don't need to be swapped if the leading element
2011       // of the result is one of the 4 elements of the first vector.
2012       Swap = false;
2013       ShiftElts = M0;
2014     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2015       // Input vectors need to be swapped if the leading element
2016       // of the result is one of the 4 elements of the right vector.
2017       Swap = true;
2018       ShiftElts = M0 - 4;
2019     }
2020 
2021     return true;
2022   }
2023 }
2024 
2025 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2026   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2027 
2028   if (!isNByteElemShuffleMask(N, Width, -1))
2029     return false;
2030 
2031   for (int i = 0; i < 16; i += Width)
2032     if (N->getMaskElt(i) != i + Width - 1)
2033       return false;
2034 
2035   return true;
2036 }
2037 
2038 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2039   return isXXBRShuffleMaskHelper(N, 2);
2040 }
2041 
2042 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2043   return isXXBRShuffleMaskHelper(N, 4);
2044 }
2045 
2046 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2047   return isXXBRShuffleMaskHelper(N, 8);
2048 }
2049 
2050 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2051   return isXXBRShuffleMaskHelper(N, 16);
2052 }
2053 
2054 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2055 /// if the inputs to the instruction should be swapped and set \p DM to the
2056 /// value for the immediate.
2057 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2058 /// AND element 0 of the result comes from the first input (LE) or second input
2059 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2060 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2061 /// mask.
2062 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2063                                bool &Swap, bool IsLE) {
2064   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2065 
2066   // Ensure each byte index of the double word is consecutive.
2067   if (!isNByteElemShuffleMask(N, 8, 1))
2068     return false;
2069 
2070   unsigned M0 = N->getMaskElt(0) / 8;
2071   unsigned M1 = N->getMaskElt(8) / 8;
2072   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2073 
2074   // If both vector operands for the shuffle are the same vector, the mask will
2075   // contain only elements from the first one and the second one will be undef.
2076   if (N->getOperand(1).isUndef()) {
2077     if ((M0 | M1) < 2) {
2078       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2079       Swap = false;
2080       return true;
2081     } else
2082       return false;
2083   }
2084 
2085   if (IsLE) {
2086     if (M0 > 1 && M1 < 2) {
2087       Swap = false;
2088     } else if (M0 < 2 && M1 > 1) {
2089       M0 = (M0 + 2) % 4;
2090       M1 = (M1 + 2) % 4;
2091       Swap = true;
2092     } else
2093       return false;
2094 
2095     // Note: if control flow comes here that means Swap is already set above
2096     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2097     return true;
2098   } else { // BE
2099     if (M0 < 2 && M1 > 1) {
2100       Swap = false;
2101     } else if (M0 > 1 && M1 < 2) {
2102       M0 = (M0 + 2) % 4;
2103       M1 = (M1 + 2) % 4;
2104       Swap = true;
2105     } else
2106       return false;
2107 
2108     // Note: if control flow comes here that means Swap is already set above
2109     DM = (M0 << 1) + (M1 & 1);
2110     return true;
2111   }
2112 }
2113 
2114 
2115 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2116 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2117 /// elements are counted from the left of the vector register).
2118 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2119                                          SelectionDAG &DAG) {
2120   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2121   assert(isSplatShuffleMask(SVOp, EltSize));
2122   if (DAG.getDataLayout().isLittleEndian())
2123     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2124   else
2125     return SVOp->getMaskElt(0) / EltSize;
2126 }
2127 
2128 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2129 /// by using a vspltis[bhw] instruction of the specified element size, return
2130 /// the constant being splatted.  The ByteSize field indicates the number of
2131 /// bytes of each element [124] -> [bhw].
2132 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2133   SDValue OpVal(nullptr, 0);
2134 
2135   // If ByteSize of the splat is bigger than the element size of the
2136   // build_vector, then we have a case where we are checking for a splat where
2137   // multiple elements of the buildvector are folded together into a single
2138   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2139   unsigned EltSize = 16/N->getNumOperands();
2140   if (EltSize < ByteSize) {
2141     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2142     SDValue UniquedVals[4];
2143     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2144 
2145     // See if all of the elements in the buildvector agree across.
2146     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2147       if (N->getOperand(i).isUndef()) continue;
2148       // If the element isn't a constant, bail fully out.
2149       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2150 
2151       if (!UniquedVals[i&(Multiple-1)].getNode())
2152         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2153       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2154         return SDValue();  // no match.
2155     }
2156 
2157     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2158     // either constant or undef values that are identical for each chunk.  See
2159     // if these chunks can form into a larger vspltis*.
2160 
2161     // Check to see if all of the leading entries are either 0 or -1.  If
2162     // neither, then this won't fit into the immediate field.
2163     bool LeadingZero = true;
2164     bool LeadingOnes = true;
2165     for (unsigned i = 0; i != Multiple-1; ++i) {
2166       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2167 
2168       LeadingZero &= isNullConstant(UniquedVals[i]);
2169       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2170     }
2171     // Finally, check the least significant entry.
2172     if (LeadingZero) {
2173       if (!UniquedVals[Multiple-1].getNode())
2174         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2175       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2176       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2177         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2178     }
2179     if (LeadingOnes) {
2180       if (!UniquedVals[Multiple-1].getNode())
2181         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2182       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2183       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2184         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2185     }
2186 
2187     return SDValue();
2188   }
2189 
2190   // Check to see if this buildvec has a single non-undef value in its elements.
2191   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2192     if (N->getOperand(i).isUndef()) continue;
2193     if (!OpVal.getNode())
2194       OpVal = N->getOperand(i);
2195     else if (OpVal != N->getOperand(i))
2196       return SDValue();
2197   }
2198 
2199   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2200 
2201   unsigned ValSizeInBytes = EltSize;
2202   uint64_t Value = 0;
2203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2204     Value = CN->getZExtValue();
2205   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2206     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2207     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2208   }
2209 
2210   // If the splat value is larger than the element value, then we can never do
2211   // this splat.  The only case that we could fit the replicated bits into our
2212   // immediate field for would be zero, and we prefer to use vxor for it.
2213   if (ValSizeInBytes < ByteSize) return SDValue();
2214 
2215   // If the element value is larger than the splat value, check if it consists
2216   // of a repeated bit pattern of size ByteSize.
2217   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2218     return SDValue();
2219 
2220   // Properly sign extend the value.
2221   int MaskVal = SignExtend32(Value, ByteSize * 8);
2222 
2223   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2224   if (MaskVal == 0) return SDValue();
2225 
2226   // Finally, if this value fits in a 5 bit sext field, return it
2227   if (SignExtend32<5>(MaskVal) == MaskVal)
2228     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2229   return SDValue();
2230 }
2231 
2232 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2233 /// amount, otherwise return -1.
2234 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2235   EVT VT = N->getValueType(0);
2236   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2237     return -1;
2238 
2239   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2240 
2241   // Find the first non-undef value in the shuffle mask.
2242   unsigned i;
2243   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2244     /*search*/;
2245 
2246   if (i == 4) return -1;  // all undef.
2247 
2248   // Otherwise, check to see if the rest of the elements are consecutively
2249   // numbered from this value.
2250   unsigned ShiftAmt = SVOp->getMaskElt(i);
2251   if (ShiftAmt < i) return -1;
2252   ShiftAmt -= i;
2253 
2254   // Check the rest of the elements to see if they are consecutive.
2255   for (++i; i != 4; ++i)
2256     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2257       return -1;
2258 
2259   return ShiftAmt;
2260 }
2261 
2262 //===----------------------------------------------------------------------===//
2263 //  Addressing Mode Selection
2264 //===----------------------------------------------------------------------===//
2265 
2266 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2267 /// or 64-bit immediate, and if the value can be accurately represented as a
2268 /// sign extension from a 16-bit value.  If so, this returns true and the
2269 /// immediate.
2270 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2271   if (!isa<ConstantSDNode>(N))
2272     return false;
2273 
2274   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2275   if (N->getValueType(0) == MVT::i32)
2276     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2277   else
2278     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2279 }
2280 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2281   return isIntS16Immediate(Op.getNode(), Imm);
2282 }
2283 
2284 
2285 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2286 /// be represented as an indexed [r+r] operation.
2287 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2288                                                SDValue &Index,
2289                                                SelectionDAG &DAG) const {
2290   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2291       UI != E; ++UI) {
2292     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2293       if (Memop->getMemoryVT() == MVT::f64) {
2294           Base = N.getOperand(0);
2295           Index = N.getOperand(1);
2296           return true;
2297       }
2298     }
2299   }
2300   return false;
2301 }
2302 
2303 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2304 /// can be represented as an indexed [r+r] operation.  Returns false if it
2305 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2306 /// non-zero and N can be represented by a base register plus a signed 16-bit
2307 /// displacement, make a more precise judgement by checking (displacement % \p
2308 /// EncodingAlignment).
2309 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2310                                             SDValue &Index, SelectionDAG &DAG,
2311                                             unsigned EncodingAlignment) const {
2312   int16_t imm = 0;
2313   if (N.getOpcode() == ISD::ADD) {
2314     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2315     // SPE load/store can only handle 8-bit offsets.
2316     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2317         return true;
2318     if (isIntS16Immediate(N.getOperand(1), imm) &&
2319         (!EncodingAlignment || !(imm % EncodingAlignment)))
2320       return false; // r+i
2321     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2322       return false;    // r+i
2323 
2324     Base = N.getOperand(0);
2325     Index = N.getOperand(1);
2326     return true;
2327   } else if (N.getOpcode() == ISD::OR) {
2328     if (isIntS16Immediate(N.getOperand(1), imm) &&
2329         (!EncodingAlignment || !(imm % EncodingAlignment)))
2330       return false; // r+i can fold it if we can.
2331 
2332     // If this is an or of disjoint bitfields, we can codegen this as an add
2333     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2334     // disjoint.
2335     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2336 
2337     if (LHSKnown.Zero.getBoolValue()) {
2338       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2339       // If all of the bits are known zero on the LHS or RHS, the add won't
2340       // carry.
2341       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2342         Base = N.getOperand(0);
2343         Index = N.getOperand(1);
2344         return true;
2345       }
2346     }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 // If we happen to be doing an i64 load or store into a stack slot that has
2353 // less than a 4-byte alignment, then the frame-index elimination may need to
2354 // use an indexed load or store instruction (because the offset may not be a
2355 // multiple of 4). The extra register needed to hold the offset comes from the
2356 // register scavenger, and it is possible that the scavenger will need to use
2357 // an emergency spill slot. As a result, we need to make sure that a spill slot
2358 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2359 // stack slot.
2360 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2361   // FIXME: This does not handle the LWA case.
2362   if (VT != MVT::i64)
2363     return;
2364 
2365   // NOTE: We'll exclude negative FIs here, which come from argument
2366   // lowering, because there are no known test cases triggering this problem
2367   // using packed structures (or similar). We can remove this exclusion if
2368   // we find such a test case. The reason why this is so test-case driven is
2369   // because this entire 'fixup' is only to prevent crashes (from the
2370   // register scavenger) on not-really-valid inputs. For example, if we have:
2371   //   %a = alloca i1
2372   //   %b = bitcast i1* %a to i64*
2373   //   store i64* a, i64 b
2374   // then the store should really be marked as 'align 1', but is not. If it
2375   // were marked as 'align 1' then the indexed form would have been
2376   // instruction-selected initially, and the problem this 'fixup' is preventing
2377   // won't happen regardless.
2378   if (FrameIdx < 0)
2379     return;
2380 
2381   MachineFunction &MF = DAG.getMachineFunction();
2382   MachineFrameInfo &MFI = MF.getFrameInfo();
2383 
2384   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2385   if (Align >= 4)
2386     return;
2387 
2388   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2389   FuncInfo->setHasNonRISpills();
2390 }
2391 
2392 /// Returns true if the address N can be represented by a base register plus
2393 /// a signed 16-bit displacement [r+imm], and if it is not better
2394 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2395 /// displacements that are multiples of that value.
2396 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2397                                             SDValue &Base,
2398                                             SelectionDAG &DAG,
2399                                             unsigned EncodingAlignment) const {
2400   // FIXME dl should come from parent load or store, not from address
2401   SDLoc dl(N);
2402   // If this can be more profitably realized as r+r, fail.
2403   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2404     return false;
2405 
2406   if (N.getOpcode() == ISD::ADD) {
2407     int16_t imm = 0;
2408     if (isIntS16Immediate(N.getOperand(1), imm) &&
2409         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2410       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2411       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2412         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2413         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2414       } else {
2415         Base = N.getOperand(0);
2416       }
2417       return true; // [r+i]
2418     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2419       // Match LOAD (ADD (X, Lo(G))).
2420       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2421              && "Cannot handle constant offsets yet!");
2422       Disp = N.getOperand(1).getOperand(0);  // The global address.
2423       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2424              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2425              Disp.getOpcode() == ISD::TargetConstantPool ||
2426              Disp.getOpcode() == ISD::TargetJumpTable);
2427       Base = N.getOperand(0);
2428       return true;  // [&g+r]
2429     }
2430   } else if (N.getOpcode() == ISD::OR) {
2431     int16_t imm = 0;
2432     if (isIntS16Immediate(N.getOperand(1), imm) &&
2433         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2434       // If this is an or of disjoint bitfields, we can codegen this as an add
2435       // (for better address arithmetic) if the LHS and RHS of the OR are
2436       // provably disjoint.
2437       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2438 
2439       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2440         // If all of the bits are known zero on the LHS or RHS, the add won't
2441         // carry.
2442         if (FrameIndexSDNode *FI =
2443               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2444           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2445           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2446         } else {
2447           Base = N.getOperand(0);
2448         }
2449         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2450         return true;
2451       }
2452     }
2453   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2454     // Loading from a constant address.
2455 
2456     // If this address fits entirely in a 16-bit sext immediate field, codegen
2457     // this as "d, 0"
2458     int16_t Imm;
2459     if (isIntS16Immediate(CN, Imm) &&
2460         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2461       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2462       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2463                              CN->getValueType(0));
2464       return true;
2465     }
2466 
2467     // Handle 32-bit sext immediates with LIS + addr mode.
2468     if ((CN->getValueType(0) == MVT::i32 ||
2469          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2470         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2471       int Addr = (int)CN->getZExtValue();
2472 
2473       // Otherwise, break this down into an LIS + disp.
2474       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2475 
2476       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2477                                    MVT::i32);
2478       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2479       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2480       return true;
2481     }
2482   }
2483 
2484   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2485   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2486     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2487     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2488   } else
2489     Base = N;
2490   return true;      // [r+0]
2491 }
2492 
2493 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2494 /// represented as an indexed [r+r] operation.
2495 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2496                                                 SDValue &Index,
2497                                                 SelectionDAG &DAG) const {
2498   // Check to see if we can easily represent this as an [r+r] address.  This
2499   // will fail if it thinks that the address is more profitably represented as
2500   // reg+imm, e.g. where imm = 0.
2501   if (SelectAddressRegReg(N, Base, Index, DAG))
2502     return true;
2503 
2504   // If the address is the result of an add, we will utilize the fact that the
2505   // address calculation includes an implicit add.  However, we can reduce
2506   // register pressure if we do not materialize a constant just for use as the
2507   // index register.  We only get rid of the add if it is not an add of a
2508   // value and a 16-bit signed constant and both have a single use.
2509   int16_t imm = 0;
2510   if (N.getOpcode() == ISD::ADD &&
2511       (!isIntS16Immediate(N.getOperand(1), imm) ||
2512        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2513     Base = N.getOperand(0);
2514     Index = N.getOperand(1);
2515     return true;
2516   }
2517 
2518   // Otherwise, do it the hard way, using R0 as the base register.
2519   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2520                          N.getValueType());
2521   Index = N;
2522   return true;
2523 }
2524 
2525 /// Returns true if we should use a direct load into vector instruction
2526 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2527 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2528 
2529   // If there are any other uses other than scalar to vector, then we should
2530   // keep it as a scalar load -> direct move pattern to prevent multiple
2531   // loads.
2532   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2533   if (!LD)
2534     return false;
2535 
2536   EVT MemVT = LD->getMemoryVT();
2537   if (!MemVT.isSimple())
2538     return false;
2539   switch(MemVT.getSimpleVT().SimpleTy) {
2540   case MVT::i64:
2541     break;
2542   case MVT::i32:
2543     if (!ST.hasP8Vector())
2544       return false;
2545     break;
2546   case MVT::i16:
2547   case MVT::i8:
2548     if (!ST.hasP9Vector())
2549       return false;
2550     break;
2551   default:
2552     return false;
2553   }
2554 
2555   SDValue LoadedVal(N, 0);
2556   if (!LoadedVal.hasOneUse())
2557     return false;
2558 
2559   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2560        UI != UE; ++UI)
2561     if (UI.getUse().get().getResNo() == 0 &&
2562         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2563       return false;
2564 
2565   return true;
2566 }
2567 
2568 /// getPreIndexedAddressParts - returns true by value, base pointer and
2569 /// offset pointer and addressing mode by reference if the node's address
2570 /// can be legally represented as pre-indexed load / store address.
2571 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2572                                                   SDValue &Offset,
2573                                                   ISD::MemIndexedMode &AM,
2574                                                   SelectionDAG &DAG) const {
2575   if (DisablePPCPreinc) return false;
2576 
2577   bool isLoad = true;
2578   SDValue Ptr;
2579   EVT VT;
2580   unsigned Alignment;
2581   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2582     Ptr = LD->getBasePtr();
2583     VT = LD->getMemoryVT();
2584     Alignment = LD->getAlignment();
2585   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2586     Ptr = ST->getBasePtr();
2587     VT  = ST->getMemoryVT();
2588     Alignment = ST->getAlignment();
2589     isLoad = false;
2590   } else
2591     return false;
2592 
2593   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2594   // instructions because we can fold these into a more efficient instruction
2595   // instead, (such as LXSD).
2596   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2597     return false;
2598   }
2599 
2600   // PowerPC doesn't have preinc load/store instructions for vectors (except
2601   // for QPX, which does have preinc r+r forms).
2602   if (VT.isVector()) {
2603     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2604       return false;
2605     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2606       AM = ISD::PRE_INC;
2607       return true;
2608     }
2609   }
2610 
2611   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2612     // Common code will reject creating a pre-inc form if the base pointer
2613     // is a frame index, or if N is a store and the base pointer is either
2614     // the same as or a predecessor of the value being stored.  Check for
2615     // those situations here, and try with swapped Base/Offset instead.
2616     bool Swap = false;
2617 
2618     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2619       Swap = true;
2620     else if (!isLoad) {
2621       SDValue Val = cast<StoreSDNode>(N)->getValue();
2622       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2623         Swap = true;
2624     }
2625 
2626     if (Swap)
2627       std::swap(Base, Offset);
2628 
2629     AM = ISD::PRE_INC;
2630     return true;
2631   }
2632 
2633   // LDU/STU can only handle immediates that are a multiple of 4.
2634   if (VT != MVT::i64) {
2635     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2636       return false;
2637   } else {
2638     // LDU/STU need an address with at least 4-byte alignment.
2639     if (Alignment < 4)
2640       return false;
2641 
2642     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2643       return false;
2644   }
2645 
2646   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2647     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2648     // sext i32 to i64 when addr mode is r+i.
2649     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2650         LD->getExtensionType() == ISD::SEXTLOAD &&
2651         isa<ConstantSDNode>(Offset))
2652       return false;
2653   }
2654 
2655   AM = ISD::PRE_INC;
2656   return true;
2657 }
2658 
2659 //===----------------------------------------------------------------------===//
2660 //  LowerOperation implementation
2661 //===----------------------------------------------------------------------===//
2662 
2663 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2664 /// and LoOpFlags to the target MO flags.
2665 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2666                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2667                                const GlobalValue *GV = nullptr) {
2668   HiOpFlags = PPCII::MO_HA;
2669   LoOpFlags = PPCII::MO_LO;
2670 
2671   // Don't use the pic base if not in PIC relocation model.
2672   if (IsPIC) {
2673     HiOpFlags |= PPCII::MO_PIC_FLAG;
2674     LoOpFlags |= PPCII::MO_PIC_FLAG;
2675   }
2676 }
2677 
2678 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2679                              SelectionDAG &DAG) {
2680   SDLoc DL(HiPart);
2681   EVT PtrVT = HiPart.getValueType();
2682   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2683 
2684   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2685   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2686 
2687   // With PIC, the first instruction is actually "GR+hi(&G)".
2688   if (isPIC)
2689     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2690                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2691 
2692   // Generate non-pic code that has direct accesses to the constant pool.
2693   // The address of the global is just (hi(&g)+lo(&g)).
2694   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2695 }
2696 
2697 static void setUsesTOCBasePtr(MachineFunction &MF) {
2698   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2699   FuncInfo->setUsesTOCBasePtr();
2700 }
2701 
2702 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2703   setUsesTOCBasePtr(DAG.getMachineFunction());
2704 }
2705 
2706 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2707                                        SDValue GA) const {
2708   const bool Is64Bit = Subtarget.isPPC64();
2709   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2710   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2711                         : Subtarget.isAIXABI()
2712                               ? DAG.getRegister(PPC::R2, VT)
2713                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2714   SDValue Ops[] = { GA, Reg };
2715   return DAG.getMemIntrinsicNode(
2716       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2717       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2718       MachineMemOperand::MOLoad);
2719 }
2720 
2721 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2722                                              SelectionDAG &DAG) const {
2723   EVT PtrVT = Op.getValueType();
2724   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2725   const Constant *C = CP->getConstVal();
2726 
2727   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2728   // The actual address of the GlobalValue is stored in the TOC.
2729   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2730     setUsesTOCBasePtr(DAG);
2731     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2732     return getTOCEntry(DAG, SDLoc(CP), GA);
2733   }
2734 
2735   unsigned MOHiFlag, MOLoFlag;
2736   bool IsPIC = isPositionIndependent();
2737   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2738 
2739   if (IsPIC && Subtarget.isSVR4ABI()) {
2740     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2741                                            PPCII::MO_PIC_FLAG);
2742     return getTOCEntry(DAG, SDLoc(CP), GA);
2743   }
2744 
2745   SDValue CPIHi =
2746     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2747   SDValue CPILo =
2748     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2749   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2750 }
2751 
2752 // For 64-bit PowerPC, prefer the more compact relative encodings.
2753 // This trades 32 bits per jump table entry for one or two instructions
2754 // on the jump site.
2755 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2756   if (isJumpTableRelative())
2757     return MachineJumpTableInfo::EK_LabelDifference32;
2758 
2759   return TargetLowering::getJumpTableEncoding();
2760 }
2761 
2762 bool PPCTargetLowering::isJumpTableRelative() const {
2763   if (UseAbsoluteJumpTables)
2764     return false;
2765   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2766     return true;
2767   return TargetLowering::isJumpTableRelative();
2768 }
2769 
2770 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2771                                                     SelectionDAG &DAG) const {
2772   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2773     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2774 
2775   switch (getTargetMachine().getCodeModel()) {
2776   case CodeModel::Small:
2777   case CodeModel::Medium:
2778     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2779   default:
2780     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2781                        getPointerTy(DAG.getDataLayout()));
2782   }
2783 }
2784 
2785 const MCExpr *
2786 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2787                                                 unsigned JTI,
2788                                                 MCContext &Ctx) const {
2789   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2790     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2791 
2792   switch (getTargetMachine().getCodeModel()) {
2793   case CodeModel::Small:
2794   case CodeModel::Medium:
2795     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2796   default:
2797     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2798   }
2799 }
2800 
2801 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2802   EVT PtrVT = Op.getValueType();
2803   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2804 
2805   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2806   // The actual address of the GlobalValue is stored in the TOC.
2807   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2808     setUsesTOCBasePtr(DAG);
2809     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2810     return getTOCEntry(DAG, SDLoc(JT), GA);
2811   }
2812 
2813   unsigned MOHiFlag, MOLoFlag;
2814   bool IsPIC = isPositionIndependent();
2815   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2816 
2817   if (IsPIC && Subtarget.isSVR4ABI()) {
2818     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2819                                         PPCII::MO_PIC_FLAG);
2820     return getTOCEntry(DAG, SDLoc(GA), GA);
2821   }
2822 
2823   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2824   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2825   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2826 }
2827 
2828 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2829                                              SelectionDAG &DAG) const {
2830   EVT PtrVT = Op.getValueType();
2831   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2832   const BlockAddress *BA = BASDN->getBlockAddress();
2833 
2834   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2835   // The actual BlockAddress is stored in the TOC.
2836   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2837     setUsesTOCBasePtr(DAG);
2838     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2839     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2840   }
2841 
2842   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2843   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2844     return getTOCEntry(
2845         DAG, SDLoc(BASDN),
2846         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2847 
2848   unsigned MOHiFlag, MOLoFlag;
2849   bool IsPIC = isPositionIndependent();
2850   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2851   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2852   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2853   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2854 }
2855 
2856 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2857                                               SelectionDAG &DAG) const {
2858   // FIXME: TLS addresses currently use medium model code sequences,
2859   // which is the most useful form.  Eventually support for small and
2860   // large models could be added if users need it, at the cost of
2861   // additional complexity.
2862   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2863   if (DAG.getTarget().useEmulatedTLS())
2864     return LowerToTLSEmulatedModel(GA, DAG);
2865 
2866   SDLoc dl(GA);
2867   const GlobalValue *GV = GA->getGlobal();
2868   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2869   bool is64bit = Subtarget.isPPC64();
2870   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2871   PICLevel::Level picLevel = M->getPICLevel();
2872 
2873   const TargetMachine &TM = getTargetMachine();
2874   TLSModel::Model Model = TM.getTLSModel(GV);
2875 
2876   if (Model == TLSModel::LocalExec) {
2877     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2878                                                PPCII::MO_TPREL_HA);
2879     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2880                                                PPCII::MO_TPREL_LO);
2881     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2882                              : DAG.getRegister(PPC::R2, MVT::i32);
2883 
2884     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2885     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2886   }
2887 
2888   if (Model == TLSModel::InitialExec) {
2889     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2890     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2891                                                 PPCII::MO_TLS);
2892     SDValue GOTPtr;
2893     if (is64bit) {
2894       setUsesTOCBasePtr(DAG);
2895       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2896       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2897                            PtrVT, GOTReg, TGA);
2898     } else {
2899       if (!TM.isPositionIndependent())
2900         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2901       else if (picLevel == PICLevel::SmallPIC)
2902         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2903       else
2904         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2905     }
2906     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2907                                    PtrVT, TGA, GOTPtr);
2908     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2909   }
2910 
2911   if (Model == TLSModel::GeneralDynamic) {
2912     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2913     SDValue GOTPtr;
2914     if (is64bit) {
2915       setUsesTOCBasePtr(DAG);
2916       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2917       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2918                                    GOTReg, TGA);
2919     } else {
2920       if (picLevel == PICLevel::SmallPIC)
2921         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2922       else
2923         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2924     }
2925     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2926                        GOTPtr, TGA, TGA);
2927   }
2928 
2929   if (Model == TLSModel::LocalDynamic) {
2930     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2931     SDValue GOTPtr;
2932     if (is64bit) {
2933       setUsesTOCBasePtr(DAG);
2934       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2935       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2936                            GOTReg, TGA);
2937     } else {
2938       if (picLevel == PICLevel::SmallPIC)
2939         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2940       else
2941         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2942     }
2943     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2944                                   PtrVT, GOTPtr, TGA, TGA);
2945     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2946                                       PtrVT, TLSAddr, TGA);
2947     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2948   }
2949 
2950   llvm_unreachable("Unknown TLS model!");
2951 }
2952 
2953 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2954                                               SelectionDAG &DAG) const {
2955   EVT PtrVT = Op.getValueType();
2956   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2957   SDLoc DL(GSDN);
2958   const GlobalValue *GV = GSDN->getGlobal();
2959 
2960   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2961   // The actual address of the GlobalValue is stored in the TOC.
2962   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2963     setUsesTOCBasePtr(DAG);
2964     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2965     return getTOCEntry(DAG, DL, GA);
2966   }
2967 
2968   unsigned MOHiFlag, MOLoFlag;
2969   bool IsPIC = isPositionIndependent();
2970   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2971 
2972   if (IsPIC && Subtarget.isSVR4ABI()) {
2973     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2974                                             GSDN->getOffset(),
2975                                             PPCII::MO_PIC_FLAG);
2976     return getTOCEntry(DAG, DL, GA);
2977   }
2978 
2979   SDValue GAHi =
2980     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2981   SDValue GALo =
2982     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2983 
2984   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2985 }
2986 
2987 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2988   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2989   SDLoc dl(Op);
2990 
2991   if (Op.getValueType() == MVT::v2i64) {
2992     // When the operands themselves are v2i64 values, we need to do something
2993     // special because VSX has no underlying comparison operations for these.
2994     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2995       // Equality can be handled by casting to the legal type for Altivec
2996       // comparisons, everything else needs to be expanded.
2997       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2998         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2999                  DAG.getSetCC(dl, MVT::v4i32,
3000                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3001                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3002                    CC));
3003       }
3004 
3005       return SDValue();
3006     }
3007 
3008     // We handle most of these in the usual way.
3009     return Op;
3010   }
3011 
3012   // If we're comparing for equality to zero, expose the fact that this is
3013   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3014   // fold the new nodes.
3015   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3016     return V;
3017 
3018   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3019     // Leave comparisons against 0 and -1 alone for now, since they're usually
3020     // optimized.  FIXME: revisit this when we can custom lower all setcc
3021     // optimizations.
3022     if (C->isAllOnesValue() || C->isNullValue())
3023       return SDValue();
3024   }
3025 
3026   // If we have an integer seteq/setne, turn it into a compare against zero
3027   // by xor'ing the rhs with the lhs, which is faster than setting a
3028   // condition register, reading it back out, and masking the correct bit.  The
3029   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3030   // the result to other bit-twiddling opportunities.
3031   EVT LHSVT = Op.getOperand(0).getValueType();
3032   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3033     EVT VT = Op.getValueType();
3034     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3035                                 Op.getOperand(1));
3036     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3037   }
3038   return SDValue();
3039 }
3040 
3041 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3042   SDNode *Node = Op.getNode();
3043   EVT VT = Node->getValueType(0);
3044   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3045   SDValue InChain = Node->getOperand(0);
3046   SDValue VAListPtr = Node->getOperand(1);
3047   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3048   SDLoc dl(Node);
3049 
3050   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3051 
3052   // gpr_index
3053   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3054                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3055   InChain = GprIndex.getValue(1);
3056 
3057   if (VT == MVT::i64) {
3058     // Check if GprIndex is even
3059     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3060                                  DAG.getConstant(1, dl, MVT::i32));
3061     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3062                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3063     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3064                                           DAG.getConstant(1, dl, MVT::i32));
3065     // Align GprIndex to be even if it isn't
3066     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3067                            GprIndex);
3068   }
3069 
3070   // fpr index is 1 byte after gpr
3071   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3072                                DAG.getConstant(1, dl, MVT::i32));
3073 
3074   // fpr
3075   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3076                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3077   InChain = FprIndex.getValue(1);
3078 
3079   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3080                                        DAG.getConstant(8, dl, MVT::i32));
3081 
3082   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3083                                         DAG.getConstant(4, dl, MVT::i32));
3084 
3085   // areas
3086   SDValue OverflowArea =
3087       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3088   InChain = OverflowArea.getValue(1);
3089 
3090   SDValue RegSaveArea =
3091       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3092   InChain = RegSaveArea.getValue(1);
3093 
3094   // select overflow_area if index > 8
3095   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3096                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3097 
3098   // adjustment constant gpr_index * 4/8
3099   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3100                                     VT.isInteger() ? GprIndex : FprIndex,
3101                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3102                                                     MVT::i32));
3103 
3104   // OurReg = RegSaveArea + RegConstant
3105   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3106                                RegConstant);
3107 
3108   // Floating types are 32 bytes into RegSaveArea
3109   if (VT.isFloatingPoint())
3110     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3111                          DAG.getConstant(32, dl, MVT::i32));
3112 
3113   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3114   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3115                                    VT.isInteger() ? GprIndex : FprIndex,
3116                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3117                                                    MVT::i32));
3118 
3119   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3120                               VT.isInteger() ? VAListPtr : FprPtr,
3121                               MachinePointerInfo(SV), MVT::i8);
3122 
3123   // determine if we should load from reg_save_area or overflow_area
3124   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3125 
3126   // increase overflow_area by 4/8 if gpr/fpr > 8
3127   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3128                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3129                                           dl, MVT::i32));
3130 
3131   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3132                              OverflowAreaPlusN);
3133 
3134   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3135                               MachinePointerInfo(), MVT::i32);
3136 
3137   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3138 }
3139 
3140 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3141   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3142 
3143   // We have to copy the entire va_list struct:
3144   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3145   return DAG.getMemcpy(Op.getOperand(0), Op,
3146                        Op.getOperand(1), Op.getOperand(2),
3147                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3148                        false, MachinePointerInfo(), MachinePointerInfo());
3149 }
3150 
3151 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3152                                                   SelectionDAG &DAG) const {
3153   if (Subtarget.isAIXABI())
3154     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3155 
3156   return Op.getOperand(0);
3157 }
3158 
3159 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3160                                                 SelectionDAG &DAG) const {
3161   if (Subtarget.isAIXABI())
3162     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3163 
3164   SDValue Chain = Op.getOperand(0);
3165   SDValue Trmp = Op.getOperand(1); // trampoline
3166   SDValue FPtr = Op.getOperand(2); // nested function
3167   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3168   SDLoc dl(Op);
3169 
3170   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3171   bool isPPC64 = (PtrVT == MVT::i64);
3172   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3173 
3174   TargetLowering::ArgListTy Args;
3175   TargetLowering::ArgListEntry Entry;
3176 
3177   Entry.Ty = IntPtrTy;
3178   Entry.Node = Trmp; Args.push_back(Entry);
3179 
3180   // TrampSize == (isPPC64 ? 48 : 40);
3181   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3182                                isPPC64 ? MVT::i64 : MVT::i32);
3183   Args.push_back(Entry);
3184 
3185   Entry.Node = FPtr; Args.push_back(Entry);
3186   Entry.Node = Nest; Args.push_back(Entry);
3187 
3188   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3189   TargetLowering::CallLoweringInfo CLI(DAG);
3190   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3191       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3192       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3193 
3194   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3195   return CallResult.second;
3196 }
3197 
3198 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3199   MachineFunction &MF = DAG.getMachineFunction();
3200   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3201   EVT PtrVT = getPointerTy(MF.getDataLayout());
3202 
3203   SDLoc dl(Op);
3204 
3205   if (Subtarget.isPPC64()) {
3206     // vastart just stores the address of the VarArgsFrameIndex slot into the
3207     // memory location argument.
3208     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3209     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3210     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3211                         MachinePointerInfo(SV));
3212   }
3213 
3214   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3215   // We suppose the given va_list is already allocated.
3216   //
3217   // typedef struct {
3218   //  char gpr;     /* index into the array of 8 GPRs
3219   //                 * stored in the register save area
3220   //                 * gpr=0 corresponds to r3,
3221   //                 * gpr=1 to r4, etc.
3222   //                 */
3223   //  char fpr;     /* index into the array of 8 FPRs
3224   //                 * stored in the register save area
3225   //                 * fpr=0 corresponds to f1,
3226   //                 * fpr=1 to f2, etc.
3227   //                 */
3228   //  char *overflow_arg_area;
3229   //                /* location on stack that holds
3230   //                 * the next overflow argument
3231   //                 */
3232   //  char *reg_save_area;
3233   //               /* where r3:r10 and f1:f8 (if saved)
3234   //                * are stored
3235   //                */
3236   // } va_list[1];
3237 
3238   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3239   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3240   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3241                                             PtrVT);
3242   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3243                                  PtrVT);
3244 
3245   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3246   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3247 
3248   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3249   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3250 
3251   uint64_t FPROffset = 1;
3252   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3253 
3254   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3255 
3256   // Store first byte : number of int regs
3257   SDValue firstStore =
3258       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3259                         MachinePointerInfo(SV), MVT::i8);
3260   uint64_t nextOffset = FPROffset;
3261   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3262                                   ConstFPROffset);
3263 
3264   // Store second byte : number of float regs
3265   SDValue secondStore =
3266       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3267                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3268   nextOffset += StackOffset;
3269   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3270 
3271   // Store second word : arguments given on stack
3272   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3273                                     MachinePointerInfo(SV, nextOffset));
3274   nextOffset += FrameOffset;
3275   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3276 
3277   // Store third word : arguments given in registers
3278   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3279                       MachinePointerInfo(SV, nextOffset));
3280 }
3281 
3282 /// FPR - The set of FP registers that should be allocated for arguments
3283 /// on Darwin and AIX.
3284 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3285                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3286                                 PPC::F11, PPC::F12, PPC::F13};
3287 
3288 /// QFPR - The set of QPX registers that should be allocated for arguments.
3289 static const MCPhysReg QFPR[] = {
3290     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3291     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3292 
3293 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3294 /// the stack.
3295 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3296                                        unsigned PtrByteSize) {
3297   unsigned ArgSize = ArgVT.getStoreSize();
3298   if (Flags.isByVal())
3299     ArgSize = Flags.getByValSize();
3300 
3301   // Round up to multiples of the pointer size, except for array members,
3302   // which are always packed.
3303   if (!Flags.isInConsecutiveRegs())
3304     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3305 
3306   return ArgSize;
3307 }
3308 
3309 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3310 /// on the stack.
3311 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3312                                             ISD::ArgFlagsTy Flags,
3313                                             unsigned PtrByteSize) {
3314   unsigned Align = PtrByteSize;
3315 
3316   // Altivec parameters are padded to a 16 byte boundary.
3317   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3318       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3319       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3320       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3321     Align = 16;
3322   // QPX vector types stored in double-precision are padded to a 32 byte
3323   // boundary.
3324   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3325     Align = 32;
3326 
3327   // ByVal parameters are aligned as requested.
3328   if (Flags.isByVal()) {
3329     unsigned BVAlign = Flags.getByValAlign();
3330     if (BVAlign > PtrByteSize) {
3331       if (BVAlign % PtrByteSize != 0)
3332           llvm_unreachable(
3333             "ByVal alignment is not a multiple of the pointer size");
3334 
3335       Align = BVAlign;
3336     }
3337   }
3338 
3339   // Array members are always packed to their original alignment.
3340   if (Flags.isInConsecutiveRegs()) {
3341     // If the array member was split into multiple registers, the first
3342     // needs to be aligned to the size of the full type.  (Except for
3343     // ppcf128, which is only aligned as its f64 components.)
3344     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3345       Align = OrigVT.getStoreSize();
3346     else
3347       Align = ArgVT.getStoreSize();
3348   }
3349 
3350   return Align;
3351 }
3352 
3353 /// CalculateStackSlotUsed - Return whether this argument will use its
3354 /// stack slot (instead of being passed in registers).  ArgOffset,
3355 /// AvailableFPRs, and AvailableVRs must hold the current argument
3356 /// position, and will be updated to account for this argument.
3357 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3358                                    ISD::ArgFlagsTy Flags,
3359                                    unsigned PtrByteSize,
3360                                    unsigned LinkageSize,
3361                                    unsigned ParamAreaSize,
3362                                    unsigned &ArgOffset,
3363                                    unsigned &AvailableFPRs,
3364                                    unsigned &AvailableVRs, bool HasQPX) {
3365   bool UseMemory = false;
3366 
3367   // Respect alignment of argument on the stack.
3368   unsigned Align =
3369     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3370   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3371   // If there's no space left in the argument save area, we must
3372   // use memory (this check also catches zero-sized arguments).
3373   if (ArgOffset >= LinkageSize + ParamAreaSize)
3374     UseMemory = true;
3375 
3376   // Allocate argument on the stack.
3377   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3378   if (Flags.isInConsecutiveRegsLast())
3379     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3380   // If we overran the argument save area, we must use memory
3381   // (this check catches arguments passed partially in memory)
3382   if (ArgOffset > LinkageSize + ParamAreaSize)
3383     UseMemory = true;
3384 
3385   // However, if the argument is actually passed in an FPR or a VR,
3386   // we don't use memory after all.
3387   if (!Flags.isByVal()) {
3388     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3389         // QPX registers overlap with the scalar FP registers.
3390         (HasQPX && (ArgVT == MVT::v4f32 ||
3391                     ArgVT == MVT::v4f64 ||
3392                     ArgVT == MVT::v4i1)))
3393       if (AvailableFPRs > 0) {
3394         --AvailableFPRs;
3395         return false;
3396       }
3397     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3398         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3399         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3400         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3401       if (AvailableVRs > 0) {
3402         --AvailableVRs;
3403         return false;
3404       }
3405   }
3406 
3407   return UseMemory;
3408 }
3409 
3410 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3411 /// ensure minimum alignment required for target.
3412 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3413                                      unsigned NumBytes) {
3414   unsigned TargetAlign = Lowering->getStackAlignment();
3415   unsigned AlignMask = TargetAlign - 1;
3416   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3417   return NumBytes;
3418 }
3419 
3420 SDValue PPCTargetLowering::LowerFormalArguments(
3421     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3422     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3423     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3424   if (Subtarget.isAIXABI())
3425     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3426                                     InVals);
3427   if (Subtarget.is64BitELFABI())
3428     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3429                                        InVals);
3430   if (Subtarget.is32BitELFABI())
3431     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3432                                        InVals);
3433 
3434   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3435                                      InVals);
3436 }
3437 
3438 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3439     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3440     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3441     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3442 
3443   // 32-bit SVR4 ABI Stack Frame Layout:
3444   //              +-----------------------------------+
3445   //        +-->  |            Back chain             |
3446   //        |     +-----------------------------------+
3447   //        |     | Floating-point register save area |
3448   //        |     +-----------------------------------+
3449   //        |     |    General register save area     |
3450   //        |     +-----------------------------------+
3451   //        |     |          CR save word             |
3452   //        |     +-----------------------------------+
3453   //        |     |         VRSAVE save word          |
3454   //        |     +-----------------------------------+
3455   //        |     |         Alignment padding         |
3456   //        |     +-----------------------------------+
3457   //        |     |     Vector register save area     |
3458   //        |     +-----------------------------------+
3459   //        |     |       Local variable space        |
3460   //        |     +-----------------------------------+
3461   //        |     |        Parameter list area        |
3462   //        |     +-----------------------------------+
3463   //        |     |           LR save word            |
3464   //        |     +-----------------------------------+
3465   // SP-->  +---  |            Back chain             |
3466   //              +-----------------------------------+
3467   //
3468   // Specifications:
3469   //   System V Application Binary Interface PowerPC Processor Supplement
3470   //   AltiVec Technology Programming Interface Manual
3471 
3472   MachineFunction &MF = DAG.getMachineFunction();
3473   MachineFrameInfo &MFI = MF.getFrameInfo();
3474   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3475 
3476   EVT PtrVT = getPointerTy(MF.getDataLayout());
3477   // Potential tail calls could cause overwriting of argument stack slots.
3478   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3479                        (CallConv == CallingConv::Fast));
3480   unsigned PtrByteSize = 4;
3481 
3482   // Assign locations to all of the incoming arguments.
3483   SmallVector<CCValAssign, 16> ArgLocs;
3484   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3485                  *DAG.getContext());
3486 
3487   // Reserve space for the linkage area on the stack.
3488   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3489   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3490   if (useSoftFloat())
3491     CCInfo.PreAnalyzeFormalArguments(Ins);
3492 
3493   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3494   CCInfo.clearWasPPCF128();
3495 
3496   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3497     CCValAssign &VA = ArgLocs[i];
3498 
3499     // Arguments stored in registers.
3500     if (VA.isRegLoc()) {
3501       const TargetRegisterClass *RC;
3502       EVT ValVT = VA.getValVT();
3503 
3504       switch (ValVT.getSimpleVT().SimpleTy) {
3505         default:
3506           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3507         case MVT::i1:
3508         case MVT::i32:
3509           RC = &PPC::GPRCRegClass;
3510           break;
3511         case MVT::f32:
3512           if (Subtarget.hasP8Vector())
3513             RC = &PPC::VSSRCRegClass;
3514           else if (Subtarget.hasSPE())
3515             RC = &PPC::GPRCRegClass;
3516           else
3517             RC = &PPC::F4RCRegClass;
3518           break;
3519         case MVT::f64:
3520           if (Subtarget.hasVSX())
3521             RC = &PPC::VSFRCRegClass;
3522           else if (Subtarget.hasSPE())
3523             // SPE passes doubles in GPR pairs.
3524             RC = &PPC::GPRCRegClass;
3525           else
3526             RC = &PPC::F8RCRegClass;
3527           break;
3528         case MVT::v16i8:
3529         case MVT::v8i16:
3530         case MVT::v4i32:
3531           RC = &PPC::VRRCRegClass;
3532           break;
3533         case MVT::v4f32:
3534           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3535           break;
3536         case MVT::v2f64:
3537         case MVT::v2i64:
3538           RC = &PPC::VRRCRegClass;
3539           break;
3540         case MVT::v4f64:
3541           RC = &PPC::QFRCRegClass;
3542           break;
3543         case MVT::v4i1:
3544           RC = &PPC::QBRCRegClass;
3545           break;
3546       }
3547 
3548       SDValue ArgValue;
3549       // Transform the arguments stored in physical registers into
3550       // virtual ones.
3551       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3552         assert(i + 1 < e && "No second half of double precision argument");
3553         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3554         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3555         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3556         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3557         if (!Subtarget.isLittleEndian())
3558           std::swap (ArgValueLo, ArgValueHi);
3559         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3560                                ArgValueHi);
3561       } else {
3562         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3563         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3564                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3565         if (ValVT == MVT::i1)
3566           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3567       }
3568 
3569       InVals.push_back(ArgValue);
3570     } else {
3571       // Argument stored in memory.
3572       assert(VA.isMemLoc());
3573 
3574       // Get the extended size of the argument type in stack
3575       unsigned ArgSize = VA.getLocVT().getStoreSize();
3576       // Get the actual size of the argument type
3577       unsigned ObjSize = VA.getValVT().getStoreSize();
3578       unsigned ArgOffset = VA.getLocMemOffset();
3579       // Stack objects in PPC32 are right justified.
3580       ArgOffset += ArgSize - ObjSize;
3581       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3582 
3583       // Create load nodes to retrieve arguments from the stack.
3584       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3585       InVals.push_back(
3586           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3587     }
3588   }
3589 
3590   // Assign locations to all of the incoming aggregate by value arguments.
3591   // Aggregates passed by value are stored in the local variable space of the
3592   // caller's stack frame, right above the parameter list area.
3593   SmallVector<CCValAssign, 16> ByValArgLocs;
3594   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3595                       ByValArgLocs, *DAG.getContext());
3596 
3597   // Reserve stack space for the allocations in CCInfo.
3598   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3599 
3600   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3601 
3602   // Area that is at least reserved in the caller of this function.
3603   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3604   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3605 
3606   // Set the size that is at least reserved in caller of this function.  Tail
3607   // call optimized function's reserved stack space needs to be aligned so that
3608   // taking the difference between two stack areas will result in an aligned
3609   // stack.
3610   MinReservedArea =
3611       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3612   FuncInfo->setMinReservedArea(MinReservedArea);
3613 
3614   SmallVector<SDValue, 8> MemOps;
3615 
3616   // If the function takes variable number of arguments, make a frame index for
3617   // the start of the first vararg value... for expansion of llvm.va_start.
3618   if (isVarArg) {
3619     static const MCPhysReg GPArgRegs[] = {
3620       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3621       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3622     };
3623     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3624 
3625     static const MCPhysReg FPArgRegs[] = {
3626       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3627       PPC::F8
3628     };
3629     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3630 
3631     if (useSoftFloat() || hasSPE())
3632        NumFPArgRegs = 0;
3633 
3634     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3635     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3636 
3637     // Make room for NumGPArgRegs and NumFPArgRegs.
3638     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3639                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3640 
3641     FuncInfo->setVarArgsStackOffset(
3642       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3643                             CCInfo.getNextStackOffset(), true));
3644 
3645     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3646     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3647 
3648     // The fixed integer arguments of a variadic function are stored to the
3649     // VarArgsFrameIndex on the stack so that they may be loaded by
3650     // dereferencing the result of va_next.
3651     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3652       // Get an existing live-in vreg, or add a new one.
3653       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3654       if (!VReg)
3655         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3656 
3657       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3658       SDValue Store =
3659           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3660       MemOps.push_back(Store);
3661       // Increment the address by four for the next argument to store
3662       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3663       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3664     }
3665 
3666     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3667     // is set.
3668     // The double arguments are stored to the VarArgsFrameIndex
3669     // on the stack.
3670     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3671       // Get an existing live-in vreg, or add a new one.
3672       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3673       if (!VReg)
3674         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3675 
3676       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3677       SDValue Store =
3678           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3679       MemOps.push_back(Store);
3680       // Increment the address by eight for the next argument to store
3681       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3682                                          PtrVT);
3683       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3684     }
3685   }
3686 
3687   if (!MemOps.empty())
3688     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3689 
3690   return Chain;
3691 }
3692 
3693 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3694 // value to MVT::i64 and then truncate to the correct register size.
3695 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3696                                              EVT ObjectVT, SelectionDAG &DAG,
3697                                              SDValue ArgVal,
3698                                              const SDLoc &dl) const {
3699   if (Flags.isSExt())
3700     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3701                          DAG.getValueType(ObjectVT));
3702   else if (Flags.isZExt())
3703     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3704                          DAG.getValueType(ObjectVT));
3705 
3706   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3707 }
3708 
3709 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3710     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3711     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3712     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3713   // TODO: add description of PPC stack frame format, or at least some docs.
3714   //
3715   bool isELFv2ABI = Subtarget.isELFv2ABI();
3716   bool isLittleEndian = Subtarget.isLittleEndian();
3717   MachineFunction &MF = DAG.getMachineFunction();
3718   MachineFrameInfo &MFI = MF.getFrameInfo();
3719   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3720 
3721   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3722          "fastcc not supported on varargs functions");
3723 
3724   EVT PtrVT = getPointerTy(MF.getDataLayout());
3725   // Potential tail calls could cause overwriting of argument stack slots.
3726   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3727                        (CallConv == CallingConv::Fast));
3728   unsigned PtrByteSize = 8;
3729   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3730 
3731   static const MCPhysReg GPR[] = {
3732     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3733     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3734   };
3735   static const MCPhysReg VR[] = {
3736     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3737     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3738   };
3739 
3740   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3741   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3742   const unsigned Num_VR_Regs  = array_lengthof(VR);
3743   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3744 
3745   // Do a first pass over the arguments to determine whether the ABI
3746   // guarantees that our caller has allocated the parameter save area
3747   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3748   // in the ELFv2 ABI, it is true if this is a vararg function or if
3749   // any parameter is located in a stack slot.
3750 
3751   bool HasParameterArea = !isELFv2ABI || isVarArg;
3752   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3753   unsigned NumBytes = LinkageSize;
3754   unsigned AvailableFPRs = Num_FPR_Regs;
3755   unsigned AvailableVRs = Num_VR_Regs;
3756   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3757     if (Ins[i].Flags.isNest())
3758       continue;
3759 
3760     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3761                                PtrByteSize, LinkageSize, ParamAreaSize,
3762                                NumBytes, AvailableFPRs, AvailableVRs,
3763                                Subtarget.hasQPX()))
3764       HasParameterArea = true;
3765   }
3766 
3767   // Add DAG nodes to load the arguments or copy them out of registers.  On
3768   // entry to a function on PPC, the arguments start after the linkage area,
3769   // although the first ones are often in registers.
3770 
3771   unsigned ArgOffset = LinkageSize;
3772   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3773   unsigned &QFPR_idx = FPR_idx;
3774   SmallVector<SDValue, 8> MemOps;
3775   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3776   unsigned CurArgIdx = 0;
3777   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3778     SDValue ArgVal;
3779     bool needsLoad = false;
3780     EVT ObjectVT = Ins[ArgNo].VT;
3781     EVT OrigVT = Ins[ArgNo].ArgVT;
3782     unsigned ObjSize = ObjectVT.getStoreSize();
3783     unsigned ArgSize = ObjSize;
3784     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3785     if (Ins[ArgNo].isOrigArg()) {
3786       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3787       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3788     }
3789     // We re-align the argument offset for each argument, except when using the
3790     // fast calling convention, when we need to make sure we do that only when
3791     // we'll actually use a stack slot.
3792     unsigned CurArgOffset, Align;
3793     auto ComputeArgOffset = [&]() {
3794       /* Respect alignment of argument on the stack.  */
3795       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3796       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3797       CurArgOffset = ArgOffset;
3798     };
3799 
3800     if (CallConv != CallingConv::Fast) {
3801       ComputeArgOffset();
3802 
3803       /* Compute GPR index associated with argument offset.  */
3804       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3805       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3806     }
3807 
3808     // FIXME the codegen can be much improved in some cases.
3809     // We do not have to keep everything in memory.
3810     if (Flags.isByVal()) {
3811       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3812 
3813       if (CallConv == CallingConv::Fast)
3814         ComputeArgOffset();
3815 
3816       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3817       ObjSize = Flags.getByValSize();
3818       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3819       // Empty aggregate parameters do not take up registers.  Examples:
3820       //   struct { } a;
3821       //   union  { } b;
3822       //   int c[0];
3823       // etc.  However, we have to provide a place-holder in InVals, so
3824       // pretend we have an 8-byte item at the current address for that
3825       // purpose.
3826       if (!ObjSize) {
3827         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3828         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3829         InVals.push_back(FIN);
3830         continue;
3831       }
3832 
3833       // Create a stack object covering all stack doublewords occupied
3834       // by the argument.  If the argument is (fully or partially) on
3835       // the stack, or if the argument is fully in registers but the
3836       // caller has allocated the parameter save anyway, we can refer
3837       // directly to the caller's stack frame.  Otherwise, create a
3838       // local copy in our own frame.
3839       int FI;
3840       if (HasParameterArea ||
3841           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3842         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3843       else
3844         FI = MFI.CreateStackObject(ArgSize, Align, false);
3845       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3846 
3847       // Handle aggregates smaller than 8 bytes.
3848       if (ObjSize < PtrByteSize) {
3849         // The value of the object is its address, which differs from the
3850         // address of the enclosing doubleword on big-endian systems.
3851         SDValue Arg = FIN;
3852         if (!isLittleEndian) {
3853           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3854           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3855         }
3856         InVals.push_back(Arg);
3857 
3858         if (GPR_idx != Num_GPR_Regs) {
3859           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3860           FuncInfo->addLiveInAttr(VReg, Flags);
3861           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3862           SDValue Store;
3863 
3864           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3865             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3866                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3867             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3868                                       MachinePointerInfo(&*FuncArg), ObjType);
3869           } else {
3870             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3871             // store the whole register as-is to the parameter save area
3872             // slot.
3873             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3874                                  MachinePointerInfo(&*FuncArg));
3875           }
3876 
3877           MemOps.push_back(Store);
3878         }
3879         // Whether we copied from a register or not, advance the offset
3880         // into the parameter save area by a full doubleword.
3881         ArgOffset += PtrByteSize;
3882         continue;
3883       }
3884 
3885       // The value of the object is its address, which is the address of
3886       // its first stack doubleword.
3887       InVals.push_back(FIN);
3888 
3889       // Store whatever pieces of the object are in registers to memory.
3890       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3891         if (GPR_idx == Num_GPR_Regs)
3892           break;
3893 
3894         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3895         FuncInfo->addLiveInAttr(VReg, Flags);
3896         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3897         SDValue Addr = FIN;
3898         if (j) {
3899           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3900           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3901         }
3902         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3903                                      MachinePointerInfo(&*FuncArg, j));
3904         MemOps.push_back(Store);
3905         ++GPR_idx;
3906       }
3907       ArgOffset += ArgSize;
3908       continue;
3909     }
3910 
3911     switch (ObjectVT.getSimpleVT().SimpleTy) {
3912     default: llvm_unreachable("Unhandled argument type!");
3913     case MVT::i1:
3914     case MVT::i32:
3915     case MVT::i64:
3916       if (Flags.isNest()) {
3917         // The 'nest' parameter, if any, is passed in R11.
3918         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3919         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3920 
3921         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3922           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3923 
3924         break;
3925       }
3926 
3927       // These can be scalar arguments or elements of an integer array type
3928       // passed directly.  Clang may use those instead of "byval" aggregate
3929       // types to avoid forcing arguments to memory unnecessarily.
3930       if (GPR_idx != Num_GPR_Regs) {
3931         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3932         FuncInfo->addLiveInAttr(VReg, Flags);
3933         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3934 
3935         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3936           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3937           // value to MVT::i64 and then truncate to the correct register size.
3938           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3939       } else {
3940         if (CallConv == CallingConv::Fast)
3941           ComputeArgOffset();
3942 
3943         needsLoad = true;
3944         ArgSize = PtrByteSize;
3945       }
3946       if (CallConv != CallingConv::Fast || needsLoad)
3947         ArgOffset += 8;
3948       break;
3949 
3950     case MVT::f32:
3951     case MVT::f64:
3952       // These can be scalar arguments or elements of a float array type
3953       // passed directly.  The latter are used to implement ELFv2 homogenous
3954       // float aggregates.
3955       if (FPR_idx != Num_FPR_Regs) {
3956         unsigned VReg;
3957 
3958         if (ObjectVT == MVT::f32)
3959           VReg = MF.addLiveIn(FPR[FPR_idx],
3960                               Subtarget.hasP8Vector()
3961                                   ? &PPC::VSSRCRegClass
3962                                   : &PPC::F4RCRegClass);
3963         else
3964           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3965                                                 ? &PPC::VSFRCRegClass
3966                                                 : &PPC::F8RCRegClass);
3967 
3968         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3969         ++FPR_idx;
3970       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3971         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3972         // once we support fp <-> gpr moves.
3973 
3974         // This can only ever happen in the presence of f32 array types,
3975         // since otherwise we never run out of FPRs before running out
3976         // of GPRs.
3977         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3978         FuncInfo->addLiveInAttr(VReg, Flags);
3979         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3980 
3981         if (ObjectVT == MVT::f32) {
3982           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3983             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3984                                  DAG.getConstant(32, dl, MVT::i32));
3985           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3986         }
3987 
3988         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3989       } else {
3990         if (CallConv == CallingConv::Fast)
3991           ComputeArgOffset();
3992 
3993         needsLoad = true;
3994       }
3995 
3996       // When passing an array of floats, the array occupies consecutive
3997       // space in the argument area; only round up to the next doubleword
3998       // at the end of the array.  Otherwise, each float takes 8 bytes.
3999       if (CallConv != CallingConv::Fast || needsLoad) {
4000         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4001         ArgOffset += ArgSize;
4002         if (Flags.isInConsecutiveRegsLast())
4003           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4004       }
4005       break;
4006     case MVT::v4f32:
4007     case MVT::v4i32:
4008     case MVT::v8i16:
4009     case MVT::v16i8:
4010     case MVT::v2f64:
4011     case MVT::v2i64:
4012     case MVT::v1i128:
4013     case MVT::f128:
4014       if (!Subtarget.hasQPX()) {
4015         // These can be scalar arguments or elements of a vector array type
4016         // passed directly.  The latter are used to implement ELFv2 homogenous
4017         // vector aggregates.
4018         if (VR_idx != Num_VR_Regs) {
4019           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4020           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4021           ++VR_idx;
4022         } else {
4023           if (CallConv == CallingConv::Fast)
4024             ComputeArgOffset();
4025           needsLoad = true;
4026         }
4027         if (CallConv != CallingConv::Fast || needsLoad)
4028           ArgOffset += 16;
4029         break;
4030       } // not QPX
4031 
4032       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4033              "Invalid QPX parameter type");
4034       LLVM_FALLTHROUGH;
4035 
4036     case MVT::v4f64:
4037     case MVT::v4i1:
4038       // QPX vectors are treated like their scalar floating-point subregisters
4039       // (except that they're larger).
4040       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4041       if (QFPR_idx != Num_QFPR_Regs) {
4042         const TargetRegisterClass *RC;
4043         switch (ObjectVT.getSimpleVT().SimpleTy) {
4044         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4045         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4046         default:         RC = &PPC::QBRCRegClass; break;
4047         }
4048 
4049         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4050         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4051         ++QFPR_idx;
4052       } else {
4053         if (CallConv == CallingConv::Fast)
4054           ComputeArgOffset();
4055         needsLoad = true;
4056       }
4057       if (CallConv != CallingConv::Fast || needsLoad)
4058         ArgOffset += Sz;
4059       break;
4060     }
4061 
4062     // We need to load the argument to a virtual register if we determined
4063     // above that we ran out of physical registers of the appropriate type.
4064     if (needsLoad) {
4065       if (ObjSize < ArgSize && !isLittleEndian)
4066         CurArgOffset += ArgSize - ObjSize;
4067       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4068       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4069       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4070     }
4071 
4072     InVals.push_back(ArgVal);
4073   }
4074 
4075   // Area that is at least reserved in the caller of this function.
4076   unsigned MinReservedArea;
4077   if (HasParameterArea)
4078     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4079   else
4080     MinReservedArea = LinkageSize;
4081 
4082   // Set the size that is at least reserved in caller of this function.  Tail
4083   // call optimized functions' reserved stack space needs to be aligned so that
4084   // taking the difference between two stack areas will result in an aligned
4085   // stack.
4086   MinReservedArea =
4087       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4088   FuncInfo->setMinReservedArea(MinReservedArea);
4089 
4090   // If the function takes variable number of arguments, make a frame index for
4091   // the start of the first vararg value... for expansion of llvm.va_start.
4092   if (isVarArg) {
4093     int Depth = ArgOffset;
4094 
4095     FuncInfo->setVarArgsFrameIndex(
4096       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4097     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4098 
4099     // If this function is vararg, store any remaining integer argument regs
4100     // to their spots on the stack so that they may be loaded by dereferencing
4101     // the result of va_next.
4102     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4103          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4104       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4105       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4106       SDValue Store =
4107           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4108       MemOps.push_back(Store);
4109       // Increment the address by four for the next argument to store
4110       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4111       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4112     }
4113   }
4114 
4115   if (!MemOps.empty())
4116     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4117 
4118   return Chain;
4119 }
4120 
4121 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4122     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4123     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4124     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4125   // TODO: add description of PPC stack frame format, or at least some docs.
4126   //
4127   MachineFunction &MF = DAG.getMachineFunction();
4128   MachineFrameInfo &MFI = MF.getFrameInfo();
4129   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4130 
4131   EVT PtrVT = getPointerTy(MF.getDataLayout());
4132   bool isPPC64 = PtrVT == MVT::i64;
4133   // Potential tail calls could cause overwriting of argument stack slots.
4134   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4135                        (CallConv == CallingConv::Fast));
4136   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4137   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4138   unsigned ArgOffset = LinkageSize;
4139   // Area that is at least reserved in caller of this function.
4140   unsigned MinReservedArea = ArgOffset;
4141 
4142   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4143     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4144     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4145   };
4146   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4147     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4148     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4149   };
4150   static const MCPhysReg VR[] = {
4151     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4152     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4153   };
4154 
4155   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4156   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4157   const unsigned Num_VR_Regs  = array_lengthof( VR);
4158 
4159   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4160 
4161   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4162 
4163   // In 32-bit non-varargs functions, the stack space for vectors is after the
4164   // stack space for non-vectors.  We do not use this space unless we have
4165   // too many vectors to fit in registers, something that only occurs in
4166   // constructed examples:), but we have to walk the arglist to figure
4167   // that out...for the pathological case, compute VecArgOffset as the
4168   // start of the vector parameter area.  Computing VecArgOffset is the
4169   // entire point of the following loop.
4170   unsigned VecArgOffset = ArgOffset;
4171   if (!isVarArg && !isPPC64) {
4172     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4173          ++ArgNo) {
4174       EVT ObjectVT = Ins[ArgNo].VT;
4175       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4176 
4177       if (Flags.isByVal()) {
4178         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4179         unsigned ObjSize = Flags.getByValSize();
4180         unsigned ArgSize =
4181                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4182         VecArgOffset += ArgSize;
4183         continue;
4184       }
4185 
4186       switch(ObjectVT.getSimpleVT().SimpleTy) {
4187       default: llvm_unreachable("Unhandled argument type!");
4188       case MVT::i1:
4189       case MVT::i32:
4190       case MVT::f32:
4191         VecArgOffset += 4;
4192         break;
4193       case MVT::i64:  // PPC64
4194       case MVT::f64:
4195         // FIXME: We are guaranteed to be !isPPC64 at this point.
4196         // Does MVT::i64 apply?
4197         VecArgOffset += 8;
4198         break;
4199       case MVT::v4f32:
4200       case MVT::v4i32:
4201       case MVT::v8i16:
4202       case MVT::v16i8:
4203         // Nothing to do, we're only looking at Nonvector args here.
4204         break;
4205       }
4206     }
4207   }
4208   // We've found where the vector parameter area in memory is.  Skip the
4209   // first 12 parameters; these don't use that memory.
4210   VecArgOffset = ((VecArgOffset+15)/16)*16;
4211   VecArgOffset += 12*16;
4212 
4213   // Add DAG nodes to load the arguments or copy them out of registers.  On
4214   // entry to a function on PPC, the arguments start after the linkage area,
4215   // although the first ones are often in registers.
4216 
4217   SmallVector<SDValue, 8> MemOps;
4218   unsigned nAltivecParamsAtEnd = 0;
4219   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4220   unsigned CurArgIdx = 0;
4221   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4222     SDValue ArgVal;
4223     bool needsLoad = false;
4224     EVT ObjectVT = Ins[ArgNo].VT;
4225     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4226     unsigned ArgSize = ObjSize;
4227     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4228     if (Ins[ArgNo].isOrigArg()) {
4229       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4230       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4231     }
4232     unsigned CurArgOffset = ArgOffset;
4233 
4234     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4235     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4236         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4237       if (isVarArg || isPPC64) {
4238         MinReservedArea = ((MinReservedArea+15)/16)*16;
4239         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4240                                                   Flags,
4241                                                   PtrByteSize);
4242       } else  nAltivecParamsAtEnd++;
4243     } else
4244       // Calculate min reserved area.
4245       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4246                                                 Flags,
4247                                                 PtrByteSize);
4248 
4249     // FIXME the codegen can be much improved in some cases.
4250     // We do not have to keep everything in memory.
4251     if (Flags.isByVal()) {
4252       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4253 
4254       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4255       ObjSize = Flags.getByValSize();
4256       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4257       // Objects of size 1 and 2 are right justified, everything else is
4258       // left justified.  This means the memory address is adjusted forwards.
4259       if (ObjSize==1 || ObjSize==2) {
4260         CurArgOffset = CurArgOffset + (4 - ObjSize);
4261       }
4262       // The value of the object is its address.
4263       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4264       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4265       InVals.push_back(FIN);
4266       if (ObjSize==1 || ObjSize==2) {
4267         if (GPR_idx != Num_GPR_Regs) {
4268           unsigned VReg;
4269           if (isPPC64)
4270             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4271           else
4272             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4273           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4274           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4275           SDValue Store =
4276               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4277                                 MachinePointerInfo(&*FuncArg), ObjType);
4278           MemOps.push_back(Store);
4279           ++GPR_idx;
4280         }
4281 
4282         ArgOffset += PtrByteSize;
4283 
4284         continue;
4285       }
4286       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4287         // Store whatever pieces of the object are in registers
4288         // to memory.  ArgOffset will be the address of the beginning
4289         // of the object.
4290         if (GPR_idx != Num_GPR_Regs) {
4291           unsigned VReg;
4292           if (isPPC64)
4293             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4294           else
4295             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4296           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4297           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4298           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4299           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4300                                        MachinePointerInfo(&*FuncArg, j));
4301           MemOps.push_back(Store);
4302           ++GPR_idx;
4303           ArgOffset += PtrByteSize;
4304         } else {
4305           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4306           break;
4307         }
4308       }
4309       continue;
4310     }
4311 
4312     switch (ObjectVT.getSimpleVT().SimpleTy) {
4313     default: llvm_unreachable("Unhandled argument type!");
4314     case MVT::i1:
4315     case MVT::i32:
4316       if (!isPPC64) {
4317         if (GPR_idx != Num_GPR_Regs) {
4318           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4319           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4320 
4321           if (ObjectVT == MVT::i1)
4322             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4323 
4324           ++GPR_idx;
4325         } else {
4326           needsLoad = true;
4327           ArgSize = PtrByteSize;
4328         }
4329         // All int arguments reserve stack space in the Darwin ABI.
4330         ArgOffset += PtrByteSize;
4331         break;
4332       }
4333       LLVM_FALLTHROUGH;
4334     case MVT::i64:  // PPC64
4335       if (GPR_idx != Num_GPR_Regs) {
4336         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4337         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4338 
4339         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4340           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4341           // value to MVT::i64 and then truncate to the correct register size.
4342           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4343 
4344         ++GPR_idx;
4345       } else {
4346         needsLoad = true;
4347         ArgSize = PtrByteSize;
4348       }
4349       // All int arguments reserve stack space in the Darwin ABI.
4350       ArgOffset += 8;
4351       break;
4352 
4353     case MVT::f32:
4354     case MVT::f64:
4355       // Every 4 bytes of argument space consumes one of the GPRs available for
4356       // argument passing.
4357       if (GPR_idx != Num_GPR_Regs) {
4358         ++GPR_idx;
4359         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4360           ++GPR_idx;
4361       }
4362       if (FPR_idx != Num_FPR_Regs) {
4363         unsigned VReg;
4364 
4365         if (ObjectVT == MVT::f32)
4366           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4367         else
4368           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4369 
4370         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4371         ++FPR_idx;
4372       } else {
4373         needsLoad = true;
4374       }
4375 
4376       // All FP arguments reserve stack space in the Darwin ABI.
4377       ArgOffset += isPPC64 ? 8 : ObjSize;
4378       break;
4379     case MVT::v4f32:
4380     case MVT::v4i32:
4381     case MVT::v8i16:
4382     case MVT::v16i8:
4383       // Note that vector arguments in registers don't reserve stack space,
4384       // except in varargs functions.
4385       if (VR_idx != Num_VR_Regs) {
4386         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4387         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4388         if (isVarArg) {
4389           while ((ArgOffset % 16) != 0) {
4390             ArgOffset += PtrByteSize;
4391             if (GPR_idx != Num_GPR_Regs)
4392               GPR_idx++;
4393           }
4394           ArgOffset += 16;
4395           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4396         }
4397         ++VR_idx;
4398       } else {
4399         if (!isVarArg && !isPPC64) {
4400           // Vectors go after all the nonvectors.
4401           CurArgOffset = VecArgOffset;
4402           VecArgOffset += 16;
4403         } else {
4404           // Vectors are aligned.
4405           ArgOffset = ((ArgOffset+15)/16)*16;
4406           CurArgOffset = ArgOffset;
4407           ArgOffset += 16;
4408         }
4409         needsLoad = true;
4410       }
4411       break;
4412     }
4413 
4414     // We need to load the argument to a virtual register if we determined above
4415     // that we ran out of physical registers of the appropriate type.
4416     if (needsLoad) {
4417       int FI = MFI.CreateFixedObject(ObjSize,
4418                                      CurArgOffset + (ArgSize - ObjSize),
4419                                      isImmutable);
4420       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4421       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4422     }
4423 
4424     InVals.push_back(ArgVal);
4425   }
4426 
4427   // Allow for Altivec parameters at the end, if needed.
4428   if (nAltivecParamsAtEnd) {
4429     MinReservedArea = ((MinReservedArea+15)/16)*16;
4430     MinReservedArea += 16*nAltivecParamsAtEnd;
4431   }
4432 
4433   // Area that is at least reserved in the caller of this function.
4434   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4435 
4436   // Set the size that is at least reserved in caller of this function.  Tail
4437   // call optimized functions' reserved stack space needs to be aligned so that
4438   // taking the difference between two stack areas will result in an aligned
4439   // stack.
4440   MinReservedArea =
4441       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4442   FuncInfo->setMinReservedArea(MinReservedArea);
4443 
4444   // If the function takes variable number of arguments, make a frame index for
4445   // the start of the first vararg value... for expansion of llvm.va_start.
4446   if (isVarArg) {
4447     int Depth = ArgOffset;
4448 
4449     FuncInfo->setVarArgsFrameIndex(
4450       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4451                             Depth, true));
4452     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4453 
4454     // If this function is vararg, store any remaining integer argument regs
4455     // to their spots on the stack so that they may be loaded by dereferencing
4456     // the result of va_next.
4457     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4458       unsigned VReg;
4459 
4460       if (isPPC64)
4461         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4462       else
4463         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4464 
4465       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4466       SDValue Store =
4467           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4468       MemOps.push_back(Store);
4469       // Increment the address by four for the next argument to store
4470       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4471       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4472     }
4473   }
4474 
4475   if (!MemOps.empty())
4476     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4477 
4478   return Chain;
4479 }
4480 
4481 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4482 /// adjusted to accommodate the arguments for the tailcall.
4483 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4484                                    unsigned ParamSize) {
4485 
4486   if (!isTailCall) return 0;
4487 
4488   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4489   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4490   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4491   // Remember only if the new adjustment is bigger.
4492   if (SPDiff < FI->getTailCallSPDelta())
4493     FI->setTailCallSPDelta(SPDiff);
4494 
4495   return SPDiff;
4496 }
4497 
4498 static bool isFunctionGlobalAddress(SDValue Callee);
4499 
4500 static bool
4501 callsShareTOCBase(const Function *Caller, SDValue Callee,
4502                     const TargetMachine &TM) {
4503    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4504    // don't have enough information to determine if the caller and calle share
4505    // the same  TOC base, so we have to pessimistically assume they don't for
4506    // correctness.
4507    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4508    if (!G)
4509      return false;
4510 
4511    const GlobalValue *GV = G->getGlobal();
4512   // The medium and large code models are expected to provide a sufficiently
4513   // large TOC to provide all data addressing needs of a module with a
4514   // single TOC. Since each module will be addressed with a single TOC then we
4515   // only need to check that caller and callee don't cross dso boundaries.
4516   if (CodeModel::Medium == TM.getCodeModel() ||
4517       CodeModel::Large == TM.getCodeModel())
4518     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4519 
4520   // Otherwise we need to ensure callee and caller are in the same section,
4521   // since the linker may allocate multiple TOCs, and we don't know which
4522   // sections will belong to the same TOC base.
4523 
4524   if (!GV->isStrongDefinitionForLinker())
4525     return false;
4526 
4527   // Any explicitly-specified sections and section prefixes must also match.
4528   // Also, if we're using -ffunction-sections, then each function is always in
4529   // a different section (the same is true for COMDAT functions).
4530   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4531       GV->getSection() != Caller->getSection())
4532     return false;
4533   if (const auto *F = dyn_cast<Function>(GV)) {
4534     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4535       return false;
4536   }
4537 
4538   // If the callee might be interposed, then we can't assume the ultimate call
4539   // target will be in the same section. Even in cases where we can assume that
4540   // interposition won't happen, in any case where the linker might insert a
4541   // stub to allow for interposition, we must generate code as though
4542   // interposition might occur. To understand why this matters, consider a
4543   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4544   // in the same section, but a is in a different module (i.e. has a different
4545   // TOC base pointer). If the linker allows for interposition between b and c,
4546   // then it will generate a stub for the call edge between b and c which will
4547   // save the TOC pointer into the designated stack slot allocated by b. If we
4548   // return true here, and therefore allow a tail call between b and c, that
4549   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4550   // pointer into the stack slot allocated by a (where the a -> b stub saved
4551   // a's TOC base pointer). If we're not considering a tail call, but rather,
4552   // whether a nop is needed after the call instruction in b, because the linker
4553   // will insert a stub, it might complain about a missing nop if we omit it
4554   // (although many don't complain in this case).
4555   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4556     return false;
4557 
4558   return true;
4559 }
4560 
4561 static bool
4562 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4563                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4564   assert(Subtarget.is64BitELFABI());
4565 
4566   const unsigned PtrByteSize = 8;
4567   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4568 
4569   static const MCPhysReg GPR[] = {
4570     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4571     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4572   };
4573   static const MCPhysReg VR[] = {
4574     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4575     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4576   };
4577 
4578   const unsigned NumGPRs = array_lengthof(GPR);
4579   const unsigned NumFPRs = 13;
4580   const unsigned NumVRs = array_lengthof(VR);
4581   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4582 
4583   unsigned NumBytes = LinkageSize;
4584   unsigned AvailableFPRs = NumFPRs;
4585   unsigned AvailableVRs = NumVRs;
4586 
4587   for (const ISD::OutputArg& Param : Outs) {
4588     if (Param.Flags.isNest()) continue;
4589 
4590     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4591                                PtrByteSize, LinkageSize, ParamAreaSize,
4592                                NumBytes, AvailableFPRs, AvailableVRs,
4593                                Subtarget.hasQPX()))
4594       return true;
4595   }
4596   return false;
4597 }
4598 
4599 static bool
4600 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4601   if (CS.arg_size() != CallerFn->arg_size())
4602     return false;
4603 
4604   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4605   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4606   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4607 
4608   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4609     const Value* CalleeArg = *CalleeArgIter;
4610     const Value* CallerArg = &(*CallerArgIter);
4611     if (CalleeArg == CallerArg)
4612       continue;
4613 
4614     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4615     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4616     //      }
4617     // 1st argument of callee is undef and has the same type as caller.
4618     if (CalleeArg->getType() == CallerArg->getType() &&
4619         isa<UndefValue>(CalleeArg))
4620       continue;
4621 
4622     return false;
4623   }
4624 
4625   return true;
4626 }
4627 
4628 // Returns true if TCO is possible between the callers and callees
4629 // calling conventions.
4630 static bool
4631 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4632                                     CallingConv::ID CalleeCC) {
4633   // Tail calls are possible with fastcc and ccc.
4634   auto isTailCallableCC  = [] (CallingConv::ID CC){
4635       return  CC == CallingConv::C || CC == CallingConv::Fast;
4636   };
4637   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4638     return false;
4639 
4640   // We can safely tail call both fastcc and ccc callees from a c calling
4641   // convention caller. If the caller is fastcc, we may have less stack space
4642   // than a non-fastcc caller with the same signature so disable tail-calls in
4643   // that case.
4644   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4645 }
4646 
4647 bool
4648 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4649                                     SDValue Callee,
4650                                     CallingConv::ID CalleeCC,
4651                                     ImmutableCallSite CS,
4652                                     bool isVarArg,
4653                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4654                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4655                                     SelectionDAG& DAG) const {
4656   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4657 
4658   if (DisableSCO && !TailCallOpt) return false;
4659 
4660   // Variadic argument functions are not supported.
4661   if (isVarArg) return false;
4662 
4663   auto &Caller = DAG.getMachineFunction().getFunction();
4664   // Check that the calling conventions are compatible for tco.
4665   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4666     return false;
4667 
4668   // Caller contains any byval parameter is not supported.
4669   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4670     return false;
4671 
4672   // Callee contains any byval parameter is not supported, too.
4673   // Note: This is a quick work around, because in some cases, e.g.
4674   // caller's stack size > callee's stack size, we are still able to apply
4675   // sibling call optimization. For example, gcc is able to do SCO for caller1
4676   // in the following example, but not for caller2.
4677   //   struct test {
4678   //     long int a;
4679   //     char ary[56];
4680   //   } gTest;
4681   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4682   //     b->a = v.a;
4683   //     return 0;
4684   //   }
4685   //   void caller1(struct test a, struct test c, struct test *b) {
4686   //     callee(gTest, b); }
4687   //   void caller2(struct test *b) { callee(gTest, b); }
4688   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4689     return false;
4690 
4691   // If callee and caller use different calling conventions, we cannot pass
4692   // parameters on stack since offsets for the parameter area may be different.
4693   if (Caller.getCallingConv() != CalleeCC &&
4694       needStackSlotPassParameters(Subtarget, Outs))
4695     return false;
4696 
4697   // No TCO/SCO on indirect call because Caller have to restore its TOC
4698   if (!isFunctionGlobalAddress(Callee) &&
4699       !isa<ExternalSymbolSDNode>(Callee))
4700     return false;
4701 
4702   // If the caller and callee potentially have different TOC bases then we
4703   // cannot tail call since we need to restore the TOC pointer after the call.
4704   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4705   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4706     return false;
4707 
4708   // TCO allows altering callee ABI, so we don't have to check further.
4709   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4710     return true;
4711 
4712   if (DisableSCO) return false;
4713 
4714   // If callee use the same argument list that caller is using, then we can
4715   // apply SCO on this case. If it is not, then we need to check if callee needs
4716   // stack for passing arguments.
4717   if (!hasSameArgumentList(&Caller, CS) &&
4718       needStackSlotPassParameters(Subtarget, Outs)) {
4719     return false;
4720   }
4721 
4722   return true;
4723 }
4724 
4725 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4726 /// for tail call optimization. Targets which want to do tail call
4727 /// optimization should implement this function.
4728 bool
4729 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4730                                                      CallingConv::ID CalleeCC,
4731                                                      bool isVarArg,
4732                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4733                                                      SelectionDAG& DAG) const {
4734   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4735     return false;
4736 
4737   // Variable argument functions are not supported.
4738   if (isVarArg)
4739     return false;
4740 
4741   MachineFunction &MF = DAG.getMachineFunction();
4742   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4743   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4744     // Functions containing by val parameters are not supported.
4745     for (unsigned i = 0; i != Ins.size(); i++) {
4746        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4747        if (Flags.isByVal()) return false;
4748     }
4749 
4750     // Non-PIC/GOT tail calls are supported.
4751     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4752       return true;
4753 
4754     // At the moment we can only do local tail calls (in same module, hidden
4755     // or protected) if we are generating PIC.
4756     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4757       return G->getGlobal()->hasHiddenVisibility()
4758           || G->getGlobal()->hasProtectedVisibility();
4759   }
4760 
4761   return false;
4762 }
4763 
4764 /// isCallCompatibleAddress - Return the immediate to use if the specified
4765 /// 32-bit value is representable in the immediate field of a BxA instruction.
4766 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4767   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4768   if (!C) return nullptr;
4769 
4770   int Addr = C->getZExtValue();
4771   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4772       SignExtend32<26>(Addr) != Addr)
4773     return nullptr;  // Top 6 bits have to be sext of immediate.
4774 
4775   return DAG
4776       .getConstant(
4777           (int)C->getZExtValue() >> 2, SDLoc(Op),
4778           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4779       .getNode();
4780 }
4781 
4782 namespace {
4783 
4784 struct TailCallArgumentInfo {
4785   SDValue Arg;
4786   SDValue FrameIdxOp;
4787   int FrameIdx = 0;
4788 
4789   TailCallArgumentInfo() = default;
4790 };
4791 
4792 } // end anonymous namespace
4793 
4794 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4795 static void StoreTailCallArgumentsToStackSlot(
4796     SelectionDAG &DAG, SDValue Chain,
4797     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4798     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4799   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4800     SDValue Arg = TailCallArgs[i].Arg;
4801     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4802     int FI = TailCallArgs[i].FrameIdx;
4803     // Store relative to framepointer.
4804     MemOpChains.push_back(DAG.getStore(
4805         Chain, dl, Arg, FIN,
4806         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4807   }
4808 }
4809 
4810 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4811 /// the appropriate stack slot for the tail call optimized function call.
4812 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4813                                              SDValue OldRetAddr, SDValue OldFP,
4814                                              int SPDiff, const SDLoc &dl) {
4815   if (SPDiff) {
4816     // Calculate the new stack slot for the return address.
4817     MachineFunction &MF = DAG.getMachineFunction();
4818     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4819     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4820     bool isPPC64 = Subtarget.isPPC64();
4821     int SlotSize = isPPC64 ? 8 : 4;
4822     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4823     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4824                                                          NewRetAddrLoc, true);
4825     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4826     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4827     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4828                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4829   }
4830   return Chain;
4831 }
4832 
4833 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4834 /// the position of the argument.
4835 static void
4836 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4837                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4838                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4839   int Offset = ArgOffset + SPDiff;
4840   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4841   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4842   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4843   SDValue FIN = DAG.getFrameIndex(FI, VT);
4844   TailCallArgumentInfo Info;
4845   Info.Arg = Arg;
4846   Info.FrameIdxOp = FIN;
4847   Info.FrameIdx = FI;
4848   TailCallArguments.push_back(Info);
4849 }
4850 
4851 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4852 /// stack slot. Returns the chain as result and the loaded frame pointers in
4853 /// LROpOut/FPOpout. Used when tail calling.
4854 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4855     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4856     SDValue &FPOpOut, const SDLoc &dl) const {
4857   if (SPDiff) {
4858     // Load the LR and FP stack slot for later adjusting.
4859     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4860     LROpOut = getReturnAddrFrameIndex(DAG);
4861     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4862     Chain = SDValue(LROpOut.getNode(), 1);
4863   }
4864   return Chain;
4865 }
4866 
4867 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4868 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4869 /// specified by the specific parameter attribute. The copy will be passed as
4870 /// a byval function parameter.
4871 /// Sometimes what we are copying is the end of a larger object, the part that
4872 /// does not fit in registers.
4873 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4874                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4875                                          SelectionDAG &DAG, const SDLoc &dl) {
4876   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4877   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4878                        false, false, false, MachinePointerInfo(),
4879                        MachinePointerInfo());
4880 }
4881 
4882 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4883 /// tail calls.
4884 static void LowerMemOpCallTo(
4885     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4886     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4887     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4888     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4889   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4890   if (!isTailCall) {
4891     if (isVector) {
4892       SDValue StackPtr;
4893       if (isPPC64)
4894         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4895       else
4896         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4897       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4898                            DAG.getConstant(ArgOffset, dl, PtrVT));
4899     }
4900     MemOpChains.push_back(
4901         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4902     // Calculate and remember argument location.
4903   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4904                                   TailCallArguments);
4905 }
4906 
4907 static void
4908 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4909                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4910                 SDValue FPOp,
4911                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4912   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4913   // might overwrite each other in case of tail call optimization.
4914   SmallVector<SDValue, 8> MemOpChains2;
4915   // Do not flag preceding copytoreg stuff together with the following stuff.
4916   InFlag = SDValue();
4917   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4918                                     MemOpChains2, dl);
4919   if (!MemOpChains2.empty())
4920     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4921 
4922   // Store the return address to the appropriate stack slot.
4923   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4924 
4925   // Emit callseq_end just before tailcall node.
4926   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4927                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4928   InFlag = Chain.getValue(1);
4929 }
4930 
4931 // Is this global address that of a function that can be called by name? (as
4932 // opposed to something that must hold a descriptor for an indirect call).
4933 static bool isFunctionGlobalAddress(SDValue Callee) {
4934   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4935     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4936         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4937       return false;
4938 
4939     return G->getGlobal()->getValueType()->isFunctionTy();
4940   }
4941 
4942   return false;
4943 }
4944 
4945 SDValue PPCTargetLowering::LowerCallResult(
4946     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4947     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4948     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4949   SmallVector<CCValAssign, 16> RVLocs;
4950   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4951                     *DAG.getContext());
4952 
4953   CCRetInfo.AnalyzeCallResult(
4954       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4955                ? RetCC_PPC_Cold
4956                : RetCC_PPC);
4957 
4958   // Copy all of the result registers out of their specified physreg.
4959   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4960     CCValAssign &VA = RVLocs[i];
4961     assert(VA.isRegLoc() && "Can only return in registers!");
4962 
4963     SDValue Val;
4964 
4965     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4966       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4967                                       InFlag);
4968       Chain = Lo.getValue(1);
4969       InFlag = Lo.getValue(2);
4970       VA = RVLocs[++i]; // skip ahead to next loc
4971       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4972                                       InFlag);
4973       Chain = Hi.getValue(1);
4974       InFlag = Hi.getValue(2);
4975       if (!Subtarget.isLittleEndian())
4976         std::swap (Lo, Hi);
4977       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
4978     } else {
4979       Val = DAG.getCopyFromReg(Chain, dl,
4980                                VA.getLocReg(), VA.getLocVT(), InFlag);
4981       Chain = Val.getValue(1);
4982       InFlag = Val.getValue(2);
4983     }
4984 
4985     switch (VA.getLocInfo()) {
4986     default: llvm_unreachable("Unknown loc info!");
4987     case CCValAssign::Full: break;
4988     case CCValAssign::AExt:
4989       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4990       break;
4991     case CCValAssign::ZExt:
4992       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4993                         DAG.getValueType(VA.getValVT()));
4994       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4995       break;
4996     case CCValAssign::SExt:
4997       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4998                         DAG.getValueType(VA.getValVT()));
4999       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5000       break;
5001     }
5002 
5003     InVals.push_back(Val);
5004   }
5005 
5006   return Chain;
5007 }
5008 
5009 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5010                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5011   // PatchPoint calls are not indirect.
5012   if (isPatchPoint)
5013     return false;
5014 
5015   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5016     return false;
5017 
5018   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5019   // becuase the immediate function pointer points to a descriptor instead of
5020   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5021   // pointer immediate points to the global entry point, while the BLA would
5022   // need to jump to the local entry point (see rL211174).
5023   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5024       isBLACompatibleAddress(Callee, DAG))
5025     return false;
5026 
5027   return true;
5028 }
5029 
5030 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint,
5031                               bool isTailCall, const Function &Caller,
5032                               const SDValue &Callee,
5033                               const PPCSubtarget &Subtarget,
5034                               const TargetMachine &TM) {
5035   if (isTailCall)
5036     return PPCISD::TC_RETURN;
5037 
5038   // This is a call through a function pointer.
5039   if (isIndirectCall) {
5040     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5041     // indirect calls. The save of the caller's TOC pointer to the stack will be
5042     // inserted into the DAG as part of call lowering. The restore of the TOC
5043     // pointer is modeled by using a pseudo instruction for the call opcode that
5044     // represents the 2 instruction sequence of an indirect branch and link,
5045     // immediately followed by a load of the TOC pointer from the the stack save
5046     // slot into gpr2.
5047     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5048       return PPCISD::BCTRL_LOAD_TOC;
5049 
5050     // An indirect call that does not need a TOC restore.
5051     return PPCISD::BCTRL;
5052   }
5053 
5054   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5055   // immediately following the call instruction if the caller and callee may
5056   // have different TOC bases. At link time if the linker determines the calls
5057   // may not share a TOC base, the call is redirected to a trampoline inserted
5058   // by the linker. The trampoline will (among other things) save the callers
5059   // TOC pointer at an ABI designated offset in the linkage area and the linker
5060   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5061   // into gpr2.
5062   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5063     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5064                                                   : PPCISD::CALL_NOP;
5065 
5066   return PPCISD::CALL;
5067 }
5068 
5069 static bool isValidAIXExternalSymSDNode(StringRef SymName) {
5070   return StringSwitch<bool>(SymName)
5071       .Cases("__divdi3", "__fixunsdfdi", "__floatundidf", "__floatundisf",
5072              "__moddi3", "__udivdi3", "__umoddi3", true)
5073       .Cases("ceil", "floor", "memcpy", "memmove", "memset", "round", true)
5074       .Default(false);
5075 }
5076 
5077 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5078                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5079   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5080     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5081       return SDValue(Dest, 0);
5082 
5083   // Returns true if the callee is local, and false otherwise.
5084   auto isLocalCallee = [&]() {
5085     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5086     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5087     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5088 
5089     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5090            !dyn_cast_or_null<GlobalIFunc>(GV);
5091   };
5092 
5093   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5094   // a static relocation model causes some versions of GNU LD (2.17.50, at
5095   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5096   // built with secure-PLT.
5097   bool UsePlt =
5098       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5099       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5100 
5101   // On AIX, direct function calls reference the symbol for the function's
5102   // entry point, which is named by prepending a "." before the function's
5103   // C-linkage name.
5104   const auto getAIXFuncEntryPointSymbolSDNode =
5105       [&](StringRef FuncName, bool IsDeclaration,
5106           const XCOFF::StorageClass &SC) {
5107         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5108 
5109         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5110             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5111 
5112         if (IsDeclaration && !S->hasContainingCsect()) {
5113           // On AIX, an undefined symbol needs to be associated with a
5114           // MCSectionXCOFF to get the correct storage mapping class.
5115           // In this case, XCOFF::XMC_PR.
5116           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5117               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5118               SectionKind::getMetadata());
5119           S->setContainingCsect(Sec);
5120         }
5121 
5122         MVT PtrVT =
5123             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5124         return DAG.getMCSymbol(S, PtrVT);
5125       };
5126 
5127   if (isFunctionGlobalAddress(Callee)) {
5128     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5129     const GlobalValue *GV = G->getGlobal();
5130 
5131     if (!Subtarget.isAIXABI())
5132       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5133                                         UsePlt ? PPCII::MO_PLT : 0);
5134 
5135     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5136     const GlobalObject *GO = cast<GlobalObject>(GV);
5137     const XCOFF::StorageClass SC =
5138         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5139     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5140                                             SC);
5141   }
5142 
5143   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5144     const char *SymName = S->getSymbol();
5145     if (!Subtarget.isAIXABI())
5146       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5147                                          UsePlt ? PPCII::MO_PLT : 0);
5148 
5149     // If there exists a user-declared function whose name is the same as the
5150     // ExternalSymbol's, then we pick up the user-declared version.
5151     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5152     if (const Function *F =
5153             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5154       const XCOFF::StorageClass SC =
5155           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5156       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5157                                               SC);
5158     }
5159 
5160     // TODO: Remove this when the support for ExternalSymbolSDNode is complete.
5161     if (isValidAIXExternalSymSDNode(SymName)) {
5162       return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5163     }
5164 
5165     report_fatal_error("Unexpected ExternalSymbolSDNode: " + Twine(SymName));
5166   }
5167 
5168   // No transformation needed.
5169   assert(Callee.getNode() && "What no callee?");
5170   return Callee;
5171 }
5172 
5173 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5174   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5175          "Expected a CALLSEQ_STARTSDNode.");
5176 
5177   // The last operand is the chain, except when the node has glue. If the node
5178   // has glue, then the last operand is the glue, and the chain is the second
5179   // last operand.
5180   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5181   if (LastValue.getValueType() != MVT::Glue)
5182     return LastValue;
5183 
5184   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5185 }
5186 
5187 // Creates the node that moves a functions address into the count register
5188 // to prepare for an indirect call instruction.
5189 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5190                                 SDValue &Glue, SDValue &Chain,
5191                                 const SDLoc &dl) {
5192   SDValue MTCTROps[] = {Chain, Callee, Glue};
5193   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5194   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5195                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5196   // The glue is the second value produced.
5197   Glue = Chain.getValue(1);
5198 }
5199 
5200 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5201                                           SDValue &Glue, SDValue &Chain,
5202                                           SDValue CallSeqStart,
5203                                           ImmutableCallSite CS, const SDLoc &dl,
5204                                           bool hasNest,
5205                                           const PPCSubtarget &Subtarget) {
5206   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5207   // entry point, but to the function descriptor (the function entry point
5208   // address is part of the function descriptor though).
5209   // The function descriptor is a three doubleword structure with the
5210   // following fields: function entry point, TOC base address and
5211   // environment pointer.
5212   // Thus for a call through a function pointer, the following actions need
5213   // to be performed:
5214   //   1. Save the TOC of the caller in the TOC save area of its stack
5215   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5216   //   2. Load the address of the function entry point from the function
5217   //      descriptor.
5218   //   3. Load the TOC of the callee from the function descriptor into r2.
5219   //   4. Load the environment pointer from the function descriptor into
5220   //      r11.
5221   //   5. Branch to the function entry point address.
5222   //   6. On return of the callee, the TOC of the caller needs to be
5223   //      restored (this is done in FinishCall()).
5224   //
5225   // The loads are scheduled at the beginning of the call sequence, and the
5226   // register copies are flagged together to ensure that no other
5227   // operations can be scheduled in between. E.g. without flagging the
5228   // copies together, a TOC access in the caller could be scheduled between
5229   // the assignment of the callee TOC and the branch to the callee, which leads
5230   // to incorrect code.
5231 
5232   // Start by loading the function address from the descriptor.
5233   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5234   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5235                       ? (MachineMemOperand::MODereferenceable |
5236                          MachineMemOperand::MOInvariant)
5237                       : MachineMemOperand::MONone;
5238 
5239   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5240 
5241   // Registers used in building the DAG.
5242   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5243   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5244 
5245   // Offsets of descriptor members.
5246   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5247   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5248 
5249   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5250   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5251 
5252   // One load for the functions entry point address.
5253   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5254                                     Alignment, MMOFlags);
5255 
5256   // One for loading the TOC anchor for the module that contains the called
5257   // function.
5258   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5259   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5260   SDValue TOCPtr =
5261       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5262                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5263 
5264   // One for loading the environment pointer.
5265   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5266   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5267   SDValue LoadEnvPtr =
5268       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5269                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5270 
5271 
5272   // Then copy the newly loaded TOC anchor to the TOC pointer.
5273   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5274   Chain = TOCVal.getValue(0);
5275   Glue = TOCVal.getValue(1);
5276 
5277   // If the function call has an explicit 'nest' parameter, it takes the
5278   // place of the environment pointer.
5279   assert((!hasNest || !Subtarget.isAIXABI()) &&
5280          "Nest parameter is not supported on AIX.");
5281   if (!hasNest) {
5282     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5283     Chain = EnvVal.getValue(0);
5284     Glue = EnvVal.getValue(1);
5285   }
5286 
5287   // The rest of the indirect call sequence is the same as the non-descriptor
5288   // DAG.
5289   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5290 }
5291 
5292 static void
5293 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv,
5294                   const SDLoc &dl, bool isTailCall, bool isVarArg,
5295                   bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5296                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5297                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5298                   const PPCSubtarget &Subtarget, bool isIndirect) {
5299   const bool IsPPC64 = Subtarget.isPPC64();
5300   // MVT for a general purpose register.
5301   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5302 
5303   // First operand is always the chain.
5304   Ops.push_back(Chain);
5305 
5306   // If it's a direct call pass the callee as the second operand.
5307   if (!isIndirect)
5308     Ops.push_back(Callee);
5309   else {
5310     assert(!isPatchPoint && "Patch point call are not indirect.");
5311 
5312     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5313     // on the stack (this would have been done in `LowerCall_64SVR4` or
5314     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5315     // represents both the indirect branch and a load that restores the TOC
5316     // pointer from the linkage area. The operand for the TOC restore is an add
5317     // of the TOC save offset to the stack pointer. This must be the second
5318     // operand: after the chain input but before any other variadic arguments.
5319     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5320       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5321 
5322       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5323       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5324       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5325       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5326       Ops.push_back(AddTOC);
5327     }
5328 
5329     // Add the register used for the environment pointer.
5330     if (Subtarget.usesFunctionDescriptors() && !hasNest)
5331       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5332                                     RegVT));
5333 
5334 
5335     // Add CTR register as callee so a bctr can be emitted later.
5336     if (isTailCall)
5337       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5338   }
5339 
5340   // If this is a tail call add stack pointer delta.
5341   if (isTailCall)
5342     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5343 
5344   // Add argument registers to the end of the list so that they are known live
5345   // into the call.
5346   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5347     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5348                                   RegsToPass[i].second.getValueType()));
5349 
5350   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5351   // no way to mark dependencies as implicit here.
5352   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5353   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint)
5354     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5355 
5356   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5357   if (isVarArg && Subtarget.is32BitELFABI())
5358     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5359 
5360   // Add a register mask operand representing the call-preserved registers.
5361   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5362   const uint32_t *Mask =
5363       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5364   assert(Mask && "Missing call preserved mask for calling convention");
5365   Ops.push_back(DAG.getRegisterMask(Mask));
5366 
5367   // If the glue is valid, it is the last operand.
5368   if (Glue.getNode())
5369     Ops.push_back(Glue);
5370 }
5371 
5372 SDValue PPCTargetLowering::FinishCall(
5373     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5374     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5375     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5376     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5377     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5378     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5379 
5380   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5381     setUsesTOCBasePtr(DAG);
5382 
5383   const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint);
5384   unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall,
5385                                    DAG.getMachineFunction().getFunction(),
5386                                    Callee, Subtarget, DAG.getTarget());
5387 
5388   if (!isIndirect)
5389     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5390   else if (Subtarget.usesFunctionDescriptors())
5391     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5392                                   dl, hasNest, Subtarget);
5393   else
5394     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5395 
5396   // Build the operand list for the call instruction.
5397   SmallVector<SDValue, 8> Ops;
5398   buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5399                     hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff,
5400                     Subtarget, isIndirect);
5401 
5402   // Emit tail call.
5403   if (isTailCall) {
5404     assert(((Callee.getOpcode() == ISD::Register &&
5405              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5406             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5407             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5408             isa<ConstantSDNode>(Callee)) &&
5409            "Expecting a global address, external symbol, absolute value or "
5410            "register");
5411     assert(CallOpc == PPCISD::TC_RETURN &&
5412            "Unexpected call opcode for a tail call.");
5413     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5414     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5415   }
5416 
5417   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5418   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5419   Glue = Chain.getValue(1);
5420 
5421   // When performing tail call optimization the callee pops its arguments off
5422   // the stack. Account for this here so these bytes can be pushed back on in
5423   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5424   int BytesCalleePops = (CallConv == CallingConv::Fast &&
5425                          getTargetMachine().Options.GuaranteedTailCallOpt)
5426                             ? NumBytes
5427                             : 0;
5428 
5429   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5430                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5431                              Glue, dl);
5432   Glue = Chain.getValue(1);
5433 
5434   return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals);
5435 }
5436 
5437 SDValue
5438 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5439                              SmallVectorImpl<SDValue> &InVals) const {
5440   SelectionDAG &DAG                     = CLI.DAG;
5441   SDLoc &dl                             = CLI.DL;
5442   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5443   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5444   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5445   SDValue Chain                         = CLI.Chain;
5446   SDValue Callee                        = CLI.Callee;
5447   bool &isTailCall                      = CLI.IsTailCall;
5448   CallingConv::ID CallConv              = CLI.CallConv;
5449   bool isVarArg                         = CLI.IsVarArg;
5450   bool isPatchPoint                     = CLI.IsPatchPoint;
5451   ImmutableCallSite CS                  = CLI.CS;
5452 
5453   if (isTailCall) {
5454     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5455       isTailCall = false;
5456     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5457       isTailCall =
5458         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5459                                                  isVarArg, Outs, Ins, DAG);
5460     else
5461       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5462                                                      Ins, DAG);
5463     if (isTailCall) {
5464       ++NumTailCalls;
5465       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5466         ++NumSiblingCalls;
5467 
5468       assert(isa<GlobalAddressSDNode>(Callee) &&
5469              "Callee should be an llvm::Function object.");
5470       LLVM_DEBUG(
5471           const GlobalValue *GV =
5472               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5473           const unsigned Width =
5474               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5475           dbgs() << "TCO caller: "
5476                  << left_justify(DAG.getMachineFunction().getName(), Width)
5477                  << ", callee linkage: " << GV->getVisibility() << ", "
5478                  << GV->getLinkage() << "\n");
5479     }
5480   }
5481 
5482   if (!isTailCall && CS && CS.isMustTailCall())
5483     report_fatal_error("failed to perform tail call elimination on a call "
5484                        "site marked musttail");
5485 
5486   // When long calls (i.e. indirect calls) are always used, calls are always
5487   // made via function pointer. If we have a function name, first translate it
5488   // into a pointer.
5489   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5490       !isTailCall)
5491     Callee = LowerGlobalAddress(Callee, DAG);
5492 
5493   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5494     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5495                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5496                             dl, DAG, InVals, CS);
5497 
5498   if (Subtarget.isSVR4ABI())
5499     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5500                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5501                             dl, DAG, InVals, CS);
5502 
5503   if (Subtarget.isAIXABI())
5504     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5505                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5506                          dl, DAG, InVals, CS);
5507 
5508   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5509                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5510                           dl, DAG, InVals, CS);
5511 }
5512 
5513 SDValue PPCTargetLowering::LowerCall_32SVR4(
5514     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5515     bool isTailCall, bool isPatchPoint,
5516     const SmallVectorImpl<ISD::OutputArg> &Outs,
5517     const SmallVectorImpl<SDValue> &OutVals,
5518     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5519     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5520     ImmutableCallSite CS) const {
5521   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5522   // of the 32-bit SVR4 ABI stack frame layout.
5523 
5524   assert((CallConv == CallingConv::C ||
5525           CallConv == CallingConv::Cold ||
5526           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5527 
5528   unsigned PtrByteSize = 4;
5529 
5530   MachineFunction &MF = DAG.getMachineFunction();
5531 
5532   // Mark this function as potentially containing a function that contains a
5533   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5534   // and restoring the callers stack pointer in this functions epilog. This is
5535   // done because by tail calling the called function might overwrite the value
5536   // in this function's (MF) stack pointer stack slot 0(SP).
5537   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5538       CallConv == CallingConv::Fast)
5539     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5540 
5541   // Count how many bytes are to be pushed on the stack, including the linkage
5542   // area, parameter list area and the part of the local variable space which
5543   // contains copies of aggregates which are passed by value.
5544 
5545   // Assign locations to all of the outgoing arguments.
5546   SmallVector<CCValAssign, 16> ArgLocs;
5547   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5548 
5549   // Reserve space for the linkage area on the stack.
5550   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5551                        PtrByteSize);
5552   if (useSoftFloat())
5553     CCInfo.PreAnalyzeCallOperands(Outs);
5554 
5555   if (isVarArg) {
5556     // Handle fixed and variable vector arguments differently.
5557     // Fixed vector arguments go into registers as long as registers are
5558     // available. Variable vector arguments always go into memory.
5559     unsigned NumArgs = Outs.size();
5560 
5561     for (unsigned i = 0; i != NumArgs; ++i) {
5562       MVT ArgVT = Outs[i].VT;
5563       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5564       bool Result;
5565 
5566       if (Outs[i].IsFixed) {
5567         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5568                                CCInfo);
5569       } else {
5570         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5571                                       ArgFlags, CCInfo);
5572       }
5573 
5574       if (Result) {
5575 #ifndef NDEBUG
5576         errs() << "Call operand #" << i << " has unhandled type "
5577              << EVT(ArgVT).getEVTString() << "\n";
5578 #endif
5579         llvm_unreachable(nullptr);
5580       }
5581     }
5582   } else {
5583     // All arguments are treated the same.
5584     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5585   }
5586   CCInfo.clearWasPPCF128();
5587 
5588   // Assign locations to all of the outgoing aggregate by value arguments.
5589   SmallVector<CCValAssign, 16> ByValArgLocs;
5590   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5591 
5592   // Reserve stack space for the allocations in CCInfo.
5593   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5594 
5595   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5596 
5597   // Size of the linkage area, parameter list area and the part of the local
5598   // space variable where copies of aggregates which are passed by value are
5599   // stored.
5600   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5601 
5602   // Calculate by how many bytes the stack has to be adjusted in case of tail
5603   // call optimization.
5604   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5605 
5606   // Adjust the stack pointer for the new arguments...
5607   // These operations are automatically eliminated by the prolog/epilog pass
5608   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5609   SDValue CallSeqStart = Chain;
5610 
5611   // Load the return address and frame pointer so it can be moved somewhere else
5612   // later.
5613   SDValue LROp, FPOp;
5614   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5615 
5616   // Set up a copy of the stack pointer for use loading and storing any
5617   // arguments that may not fit in the registers available for argument
5618   // passing.
5619   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5620 
5621   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5622   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5623   SmallVector<SDValue, 8> MemOpChains;
5624 
5625   bool seenFloatArg = false;
5626   // Walk the register/memloc assignments, inserting copies/loads.
5627   // i - Tracks the index into the list of registers allocated for the call
5628   // RealArgIdx - Tracks the index into the list of actual function arguments
5629   // j - Tracks the index into the list of byval arguments
5630   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5631        i != e;
5632        ++i, ++RealArgIdx) {
5633     CCValAssign &VA = ArgLocs[i];
5634     SDValue Arg = OutVals[RealArgIdx];
5635     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5636 
5637     if (Flags.isByVal()) {
5638       // Argument is an aggregate which is passed by value, thus we need to
5639       // create a copy of it in the local variable space of the current stack
5640       // frame (which is the stack frame of the caller) and pass the address of
5641       // this copy to the callee.
5642       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5643       CCValAssign &ByValVA = ByValArgLocs[j++];
5644       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5645 
5646       // Memory reserved in the local variable space of the callers stack frame.
5647       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5648 
5649       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5650       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5651                            StackPtr, PtrOff);
5652 
5653       // Create a copy of the argument in the local area of the current
5654       // stack frame.
5655       SDValue MemcpyCall =
5656         CreateCopyOfByValArgument(Arg, PtrOff,
5657                                   CallSeqStart.getNode()->getOperand(0),
5658                                   Flags, DAG, dl);
5659 
5660       // This must go outside the CALLSEQ_START..END.
5661       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5662                                                      SDLoc(MemcpyCall));
5663       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5664                              NewCallSeqStart.getNode());
5665       Chain = CallSeqStart = NewCallSeqStart;
5666 
5667       // Pass the address of the aggregate copy on the stack either in a
5668       // physical register or in the parameter list area of the current stack
5669       // frame to the callee.
5670       Arg = PtrOff;
5671     }
5672 
5673     // When useCRBits() is true, there can be i1 arguments.
5674     // It is because getRegisterType(MVT::i1) => MVT::i1,
5675     // and for other integer types getRegisterType() => MVT::i32.
5676     // Extend i1 and ensure callee will get i32.
5677     if (Arg.getValueType() == MVT::i1)
5678       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5679                         dl, MVT::i32, Arg);
5680 
5681     if (VA.isRegLoc()) {
5682       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5683       // Put argument in a physical register.
5684       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5685         bool IsLE = Subtarget.isLittleEndian();
5686         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5687                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5688         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5689         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5690                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5691         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5692                              SVal.getValue(0)));
5693       } else
5694         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5695     } else {
5696       // Put argument in the parameter list area of the current stack frame.
5697       assert(VA.isMemLoc());
5698       unsigned LocMemOffset = VA.getLocMemOffset();
5699 
5700       if (!isTailCall) {
5701         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5702         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5703                              StackPtr, PtrOff);
5704 
5705         MemOpChains.push_back(
5706             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5707       } else {
5708         // Calculate and remember argument location.
5709         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5710                                  TailCallArguments);
5711       }
5712     }
5713   }
5714 
5715   if (!MemOpChains.empty())
5716     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5717 
5718   // Build a sequence of copy-to-reg nodes chained together with token chain
5719   // and flag operands which copy the outgoing args into the appropriate regs.
5720   SDValue InFlag;
5721   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5722     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5723                              RegsToPass[i].second, InFlag);
5724     InFlag = Chain.getValue(1);
5725   }
5726 
5727   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5728   // registers.
5729   if (isVarArg) {
5730     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5731     SDValue Ops[] = { Chain, InFlag };
5732 
5733     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5734                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5735 
5736     InFlag = Chain.getValue(1);
5737   }
5738 
5739   if (isTailCall)
5740     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5741                     TailCallArguments);
5742 
5743   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5744                     /* unused except on PPC64 ELFv1 */ false, DAG,
5745                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5746                     NumBytes, Ins, InVals, CS);
5747 }
5748 
5749 // Copy an argument into memory, being careful to do this outside the
5750 // call sequence for the call to which the argument belongs.
5751 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5752     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5753     SelectionDAG &DAG, const SDLoc &dl) const {
5754   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5755                         CallSeqStart.getNode()->getOperand(0),
5756                         Flags, DAG, dl);
5757   // The MEMCPY must go outside the CALLSEQ_START..END.
5758   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5759   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5760                                                  SDLoc(MemcpyCall));
5761   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5762                          NewCallSeqStart.getNode());
5763   return NewCallSeqStart;
5764 }
5765 
5766 SDValue PPCTargetLowering::LowerCall_64SVR4(
5767     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5768     bool isTailCall, bool isPatchPoint,
5769     const SmallVectorImpl<ISD::OutputArg> &Outs,
5770     const SmallVectorImpl<SDValue> &OutVals,
5771     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5772     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5773     ImmutableCallSite CS) const {
5774   bool isELFv2ABI = Subtarget.isELFv2ABI();
5775   bool isLittleEndian = Subtarget.isLittleEndian();
5776   unsigned NumOps = Outs.size();
5777   bool hasNest = false;
5778   bool IsSibCall = false;
5779 
5780   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5781   unsigned PtrByteSize = 8;
5782 
5783   MachineFunction &MF = DAG.getMachineFunction();
5784 
5785   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5786     IsSibCall = true;
5787 
5788   // Mark this function as potentially containing a function that contains a
5789   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5790   // and restoring the callers stack pointer in this functions epilog. This is
5791   // done because by tail calling the called function might overwrite the value
5792   // in this function's (MF) stack pointer stack slot 0(SP).
5793   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5794       CallConv == CallingConv::Fast)
5795     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5796 
5797   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5798          "fastcc not supported on varargs functions");
5799 
5800   // Count how many bytes are to be pushed on the stack, including the linkage
5801   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5802   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5803   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5804   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5805   unsigned NumBytes = LinkageSize;
5806   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5807   unsigned &QFPR_idx = FPR_idx;
5808 
5809   static const MCPhysReg GPR[] = {
5810     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5811     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5812   };
5813   static const MCPhysReg VR[] = {
5814     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5815     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5816   };
5817 
5818   const unsigned NumGPRs = array_lengthof(GPR);
5819   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5820   const unsigned NumVRs  = array_lengthof(VR);
5821   const unsigned NumQFPRs = NumFPRs;
5822 
5823   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5824   // can be passed to the callee in registers.
5825   // For the fast calling convention, there is another check below.
5826   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5827   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5828   if (!HasParameterArea) {
5829     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5830     unsigned AvailableFPRs = NumFPRs;
5831     unsigned AvailableVRs = NumVRs;
5832     unsigned NumBytesTmp = NumBytes;
5833     for (unsigned i = 0; i != NumOps; ++i) {
5834       if (Outs[i].Flags.isNest()) continue;
5835       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5836                                 PtrByteSize, LinkageSize, ParamAreaSize,
5837                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5838                                 Subtarget.hasQPX()))
5839         HasParameterArea = true;
5840     }
5841   }
5842 
5843   // When using the fast calling convention, we don't provide backing for
5844   // arguments that will be in registers.
5845   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5846 
5847   // Avoid allocating parameter area for fastcc functions if all the arguments
5848   // can be passed in the registers.
5849   if (CallConv == CallingConv::Fast)
5850     HasParameterArea = false;
5851 
5852   // Add up all the space actually used.
5853   for (unsigned i = 0; i != NumOps; ++i) {
5854     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5855     EVT ArgVT = Outs[i].VT;
5856     EVT OrigVT = Outs[i].ArgVT;
5857 
5858     if (Flags.isNest())
5859       continue;
5860 
5861     if (CallConv == CallingConv::Fast) {
5862       if (Flags.isByVal()) {
5863         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5864         if (NumGPRsUsed > NumGPRs)
5865           HasParameterArea = true;
5866       } else {
5867         switch (ArgVT.getSimpleVT().SimpleTy) {
5868         default: llvm_unreachable("Unexpected ValueType for argument!");
5869         case MVT::i1:
5870         case MVT::i32:
5871         case MVT::i64:
5872           if (++NumGPRsUsed <= NumGPRs)
5873             continue;
5874           break;
5875         case MVT::v4i32:
5876         case MVT::v8i16:
5877         case MVT::v16i8:
5878         case MVT::v2f64:
5879         case MVT::v2i64:
5880         case MVT::v1i128:
5881         case MVT::f128:
5882           if (++NumVRsUsed <= NumVRs)
5883             continue;
5884           break;
5885         case MVT::v4f32:
5886           // When using QPX, this is handled like a FP register, otherwise, it
5887           // is an Altivec register.
5888           if (Subtarget.hasQPX()) {
5889             if (++NumFPRsUsed <= NumFPRs)
5890               continue;
5891           } else {
5892             if (++NumVRsUsed <= NumVRs)
5893               continue;
5894           }
5895           break;
5896         case MVT::f32:
5897         case MVT::f64:
5898         case MVT::v4f64: // QPX
5899         case MVT::v4i1:  // QPX
5900           if (++NumFPRsUsed <= NumFPRs)
5901             continue;
5902           break;
5903         }
5904         HasParameterArea = true;
5905       }
5906     }
5907 
5908     /* Respect alignment of argument on the stack.  */
5909     unsigned Align =
5910       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5911     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5912 
5913     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5914     if (Flags.isInConsecutiveRegsLast())
5915       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5916   }
5917 
5918   unsigned NumBytesActuallyUsed = NumBytes;
5919 
5920   // In the old ELFv1 ABI,
5921   // the prolog code of the callee may store up to 8 GPR argument registers to
5922   // the stack, allowing va_start to index over them in memory if its varargs.
5923   // Because we cannot tell if this is needed on the caller side, we have to
5924   // conservatively assume that it is needed.  As such, make sure we have at
5925   // least enough stack space for the caller to store the 8 GPRs.
5926   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5927   // really requires memory operands, e.g. a vararg function.
5928   if (HasParameterArea)
5929     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5930   else
5931     NumBytes = LinkageSize;
5932 
5933   // Tail call needs the stack to be aligned.
5934   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5935       CallConv == CallingConv::Fast)
5936     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5937 
5938   int SPDiff = 0;
5939 
5940   // Calculate by how many bytes the stack has to be adjusted in case of tail
5941   // call optimization.
5942   if (!IsSibCall)
5943     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5944 
5945   // To protect arguments on the stack from being clobbered in a tail call,
5946   // force all the loads to happen before doing any other lowering.
5947   if (isTailCall)
5948     Chain = DAG.getStackArgumentTokenFactor(Chain);
5949 
5950   // Adjust the stack pointer for the new arguments...
5951   // These operations are automatically eliminated by the prolog/epilog pass
5952   if (!IsSibCall)
5953     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5954   SDValue CallSeqStart = Chain;
5955 
5956   // Load the return address and frame pointer so it can be move somewhere else
5957   // later.
5958   SDValue LROp, FPOp;
5959   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5960 
5961   // Set up a copy of the stack pointer for use loading and storing any
5962   // arguments that may not fit in the registers available for argument
5963   // passing.
5964   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5965 
5966   // Figure out which arguments are going to go in registers, and which in
5967   // memory.  Also, if this is a vararg function, floating point operations
5968   // must be stored to our stack, and loaded into integer regs as well, if
5969   // any integer regs are available for argument passing.
5970   unsigned ArgOffset = LinkageSize;
5971 
5972   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5973   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5974 
5975   SmallVector<SDValue, 8> MemOpChains;
5976   for (unsigned i = 0; i != NumOps; ++i) {
5977     SDValue Arg = OutVals[i];
5978     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5979     EVT ArgVT = Outs[i].VT;
5980     EVT OrigVT = Outs[i].ArgVT;
5981 
5982     // PtrOff will be used to store the current argument to the stack if a
5983     // register cannot be found for it.
5984     SDValue PtrOff;
5985 
5986     // We re-align the argument offset for each argument, except when using the
5987     // fast calling convention, when we need to make sure we do that only when
5988     // we'll actually use a stack slot.
5989     auto ComputePtrOff = [&]() {
5990       /* Respect alignment of argument on the stack.  */
5991       unsigned Align =
5992         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5993       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5994 
5995       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5996 
5997       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5998     };
5999 
6000     if (CallConv != CallingConv::Fast) {
6001       ComputePtrOff();
6002 
6003       /* Compute GPR index associated with argument offset.  */
6004       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6005       GPR_idx = std::min(GPR_idx, NumGPRs);
6006     }
6007 
6008     // Promote integers to 64-bit values.
6009     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6010       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6011       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6012       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6013     }
6014 
6015     // FIXME memcpy is used way more than necessary.  Correctness first.
6016     // Note: "by value" is code for passing a structure by value, not
6017     // basic types.
6018     if (Flags.isByVal()) {
6019       // Note: Size includes alignment padding, so
6020       //   struct x { short a; char b; }
6021       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6022       // These are the proper values we need for right-justifying the
6023       // aggregate in a parameter register.
6024       unsigned Size = Flags.getByValSize();
6025 
6026       // An empty aggregate parameter takes up no storage and no
6027       // registers.
6028       if (Size == 0)
6029         continue;
6030 
6031       if (CallConv == CallingConv::Fast)
6032         ComputePtrOff();
6033 
6034       // All aggregates smaller than 8 bytes must be passed right-justified.
6035       if (Size==1 || Size==2 || Size==4) {
6036         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6037         if (GPR_idx != NumGPRs) {
6038           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6039                                         MachinePointerInfo(), VT);
6040           MemOpChains.push_back(Load.getValue(1));
6041           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6042 
6043           ArgOffset += PtrByteSize;
6044           continue;
6045         }
6046       }
6047 
6048       if (GPR_idx == NumGPRs && Size < 8) {
6049         SDValue AddPtr = PtrOff;
6050         if (!isLittleEndian) {
6051           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6052                                           PtrOff.getValueType());
6053           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6054         }
6055         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6056                                                           CallSeqStart,
6057                                                           Flags, DAG, dl);
6058         ArgOffset += PtrByteSize;
6059         continue;
6060       }
6061       // Copy entire object into memory.  There are cases where gcc-generated
6062       // code assumes it is there, even if it could be put entirely into
6063       // registers.  (This is not what the doc says.)
6064 
6065       // FIXME: The above statement is likely due to a misunderstanding of the
6066       // documents.  All arguments must be copied into the parameter area BY
6067       // THE CALLEE in the event that the callee takes the address of any
6068       // formal argument.  That has not yet been implemented.  However, it is
6069       // reasonable to use the stack area as a staging area for the register
6070       // load.
6071 
6072       // Skip this for small aggregates, as we will use the same slot for a
6073       // right-justified copy, below.
6074       if (Size >= 8)
6075         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6076                                                           CallSeqStart,
6077                                                           Flags, DAG, dl);
6078 
6079       // When a register is available, pass a small aggregate right-justified.
6080       if (Size < 8 && GPR_idx != NumGPRs) {
6081         // The easiest way to get this right-justified in a register
6082         // is to copy the structure into the rightmost portion of a
6083         // local variable slot, then load the whole slot into the
6084         // register.
6085         // FIXME: The memcpy seems to produce pretty awful code for
6086         // small aggregates, particularly for packed ones.
6087         // FIXME: It would be preferable to use the slot in the
6088         // parameter save area instead of a new local variable.
6089         SDValue AddPtr = PtrOff;
6090         if (!isLittleEndian) {
6091           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6092           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6093         }
6094         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6095                                                           CallSeqStart,
6096                                                           Flags, DAG, dl);
6097 
6098         // Load the slot into the register.
6099         SDValue Load =
6100             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6101         MemOpChains.push_back(Load.getValue(1));
6102         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6103 
6104         // Done with this argument.
6105         ArgOffset += PtrByteSize;
6106         continue;
6107       }
6108 
6109       // For aggregates larger than PtrByteSize, copy the pieces of the
6110       // object that fit into registers from the parameter save area.
6111       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6112         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6113         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6114         if (GPR_idx != NumGPRs) {
6115           SDValue Load =
6116               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6117           MemOpChains.push_back(Load.getValue(1));
6118           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6119           ArgOffset += PtrByteSize;
6120         } else {
6121           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6122           break;
6123         }
6124       }
6125       continue;
6126     }
6127 
6128     switch (Arg.getSimpleValueType().SimpleTy) {
6129     default: llvm_unreachable("Unexpected ValueType for argument!");
6130     case MVT::i1:
6131     case MVT::i32:
6132     case MVT::i64:
6133       if (Flags.isNest()) {
6134         // The 'nest' parameter, if any, is passed in R11.
6135         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6136         hasNest = true;
6137         break;
6138       }
6139 
6140       // These can be scalar arguments or elements of an integer array type
6141       // passed directly.  Clang may use those instead of "byval" aggregate
6142       // types to avoid forcing arguments to memory unnecessarily.
6143       if (GPR_idx != NumGPRs) {
6144         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6145       } else {
6146         if (CallConv == CallingConv::Fast)
6147           ComputePtrOff();
6148 
6149         assert(HasParameterArea &&
6150                "Parameter area must exist to pass an argument in memory.");
6151         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6152                          true, isTailCall, false, MemOpChains,
6153                          TailCallArguments, dl);
6154         if (CallConv == CallingConv::Fast)
6155           ArgOffset += PtrByteSize;
6156       }
6157       if (CallConv != CallingConv::Fast)
6158         ArgOffset += PtrByteSize;
6159       break;
6160     case MVT::f32:
6161     case MVT::f64: {
6162       // These can be scalar arguments or elements of a float array type
6163       // passed directly.  The latter are used to implement ELFv2 homogenous
6164       // float aggregates.
6165 
6166       // Named arguments go into FPRs first, and once they overflow, the
6167       // remaining arguments go into GPRs and then the parameter save area.
6168       // Unnamed arguments for vararg functions always go to GPRs and
6169       // then the parameter save area.  For now, put all arguments to vararg
6170       // routines always in both locations (FPR *and* GPR or stack slot).
6171       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6172       bool NeededLoad = false;
6173 
6174       // First load the argument into the next available FPR.
6175       if (FPR_idx != NumFPRs)
6176         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6177 
6178       // Next, load the argument into GPR or stack slot if needed.
6179       if (!NeedGPROrStack)
6180         ;
6181       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6182         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6183         // once we support fp <-> gpr moves.
6184 
6185         // In the non-vararg case, this can only ever happen in the
6186         // presence of f32 array types, since otherwise we never run
6187         // out of FPRs before running out of GPRs.
6188         SDValue ArgVal;
6189 
6190         // Double values are always passed in a single GPR.
6191         if (Arg.getValueType() != MVT::f32) {
6192           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6193 
6194         // Non-array float values are extended and passed in a GPR.
6195         } else if (!Flags.isInConsecutiveRegs()) {
6196           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6197           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6198 
6199         // If we have an array of floats, we collect every odd element
6200         // together with its predecessor into one GPR.
6201         } else if (ArgOffset % PtrByteSize != 0) {
6202           SDValue Lo, Hi;
6203           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6204           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6205           if (!isLittleEndian)
6206             std::swap(Lo, Hi);
6207           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6208 
6209         // The final element, if even, goes into the first half of a GPR.
6210         } else if (Flags.isInConsecutiveRegsLast()) {
6211           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6212           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6213           if (!isLittleEndian)
6214             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6215                                  DAG.getConstant(32, dl, MVT::i32));
6216 
6217         // Non-final even elements are skipped; they will be handled
6218         // together the with subsequent argument on the next go-around.
6219         } else
6220           ArgVal = SDValue();
6221 
6222         if (ArgVal.getNode())
6223           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6224       } else {
6225         if (CallConv == CallingConv::Fast)
6226           ComputePtrOff();
6227 
6228         // Single-precision floating-point values are mapped to the
6229         // second (rightmost) word of the stack doubleword.
6230         if (Arg.getValueType() == MVT::f32 &&
6231             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6232           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6233           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6234         }
6235 
6236         assert(HasParameterArea &&
6237                "Parameter area must exist to pass an argument in memory.");
6238         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6239                          true, isTailCall, false, MemOpChains,
6240                          TailCallArguments, dl);
6241 
6242         NeededLoad = true;
6243       }
6244       // When passing an array of floats, the array occupies consecutive
6245       // space in the argument area; only round up to the next doubleword
6246       // at the end of the array.  Otherwise, each float takes 8 bytes.
6247       if (CallConv != CallingConv::Fast || NeededLoad) {
6248         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6249                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6250         if (Flags.isInConsecutiveRegsLast())
6251           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6252       }
6253       break;
6254     }
6255     case MVT::v4f32:
6256     case MVT::v4i32:
6257     case MVT::v8i16:
6258     case MVT::v16i8:
6259     case MVT::v2f64:
6260     case MVT::v2i64:
6261     case MVT::v1i128:
6262     case MVT::f128:
6263       if (!Subtarget.hasQPX()) {
6264       // These can be scalar arguments or elements of a vector array type
6265       // passed directly.  The latter are used to implement ELFv2 homogenous
6266       // vector aggregates.
6267 
6268       // For a varargs call, named arguments go into VRs or on the stack as
6269       // usual; unnamed arguments always go to the stack or the corresponding
6270       // GPRs when within range.  For now, we always put the value in both
6271       // locations (or even all three).
6272       if (isVarArg) {
6273         assert(HasParameterArea &&
6274                "Parameter area must exist if we have a varargs call.");
6275         // We could elide this store in the case where the object fits
6276         // entirely in R registers.  Maybe later.
6277         SDValue Store =
6278             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6279         MemOpChains.push_back(Store);
6280         if (VR_idx != NumVRs) {
6281           SDValue Load =
6282               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6283           MemOpChains.push_back(Load.getValue(1));
6284           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6285         }
6286         ArgOffset += 16;
6287         for (unsigned i=0; i<16; i+=PtrByteSize) {
6288           if (GPR_idx == NumGPRs)
6289             break;
6290           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6291                                    DAG.getConstant(i, dl, PtrVT));
6292           SDValue Load =
6293               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6294           MemOpChains.push_back(Load.getValue(1));
6295           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6296         }
6297         break;
6298       }
6299 
6300       // Non-varargs Altivec params go into VRs or on the stack.
6301       if (VR_idx != NumVRs) {
6302         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6303       } else {
6304         if (CallConv == CallingConv::Fast)
6305           ComputePtrOff();
6306 
6307         assert(HasParameterArea &&
6308                "Parameter area must exist to pass an argument in memory.");
6309         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6310                          true, isTailCall, true, MemOpChains,
6311                          TailCallArguments, dl);
6312         if (CallConv == CallingConv::Fast)
6313           ArgOffset += 16;
6314       }
6315 
6316       if (CallConv != CallingConv::Fast)
6317         ArgOffset += 16;
6318       break;
6319       } // not QPX
6320 
6321       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6322              "Invalid QPX parameter type");
6323 
6324       LLVM_FALLTHROUGH;
6325     case MVT::v4f64:
6326     case MVT::v4i1: {
6327       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6328       if (isVarArg) {
6329         assert(HasParameterArea &&
6330                "Parameter area must exist if we have a varargs call.");
6331         // We could elide this store in the case where the object fits
6332         // entirely in R registers.  Maybe later.
6333         SDValue Store =
6334             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6335         MemOpChains.push_back(Store);
6336         if (QFPR_idx != NumQFPRs) {
6337           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6338                                      PtrOff, MachinePointerInfo());
6339           MemOpChains.push_back(Load.getValue(1));
6340           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6341         }
6342         ArgOffset += (IsF32 ? 16 : 32);
6343         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6344           if (GPR_idx == NumGPRs)
6345             break;
6346           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6347                                    DAG.getConstant(i, dl, PtrVT));
6348           SDValue Load =
6349               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6350           MemOpChains.push_back(Load.getValue(1));
6351           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6352         }
6353         break;
6354       }
6355 
6356       // Non-varargs QPX params go into registers or on the stack.
6357       if (QFPR_idx != NumQFPRs) {
6358         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6359       } else {
6360         if (CallConv == CallingConv::Fast)
6361           ComputePtrOff();
6362 
6363         assert(HasParameterArea &&
6364                "Parameter area must exist to pass an argument in memory.");
6365         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6366                          true, isTailCall, true, MemOpChains,
6367                          TailCallArguments, dl);
6368         if (CallConv == CallingConv::Fast)
6369           ArgOffset += (IsF32 ? 16 : 32);
6370       }
6371 
6372       if (CallConv != CallingConv::Fast)
6373         ArgOffset += (IsF32 ? 16 : 32);
6374       break;
6375       }
6376     }
6377   }
6378 
6379   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6380          "mismatch in size of parameter area");
6381   (void)NumBytesActuallyUsed;
6382 
6383   if (!MemOpChains.empty())
6384     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6385 
6386   // Check if this is an indirect call (MTCTR/BCTRL).
6387   // See prepareDescriptorIndirectCall and buildCallOperands for more
6388   // information about calls through function pointers in the 64-bit SVR4 ABI.
6389   if (!isTailCall && !isPatchPoint &&
6390       !isFunctionGlobalAddress(Callee) &&
6391       !isa<ExternalSymbolSDNode>(Callee)) {
6392     // Load r2 into a virtual register and store it to the TOC save area.
6393     setUsesTOCBasePtr(DAG);
6394     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6395     // TOC save area offset.
6396     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6397     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6398     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6399     Chain = DAG.getStore(
6400         Val.getValue(1), dl, Val, AddPtr,
6401         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6402     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6403     // This does not mean the MTCTR instruction must use R12; it's easier
6404     // to model this as an extra parameter, so do that.
6405     if (isELFv2ABI && !isPatchPoint)
6406       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6407   }
6408 
6409   // Build a sequence of copy-to-reg nodes chained together with token chain
6410   // and flag operands which copy the outgoing args into the appropriate regs.
6411   SDValue InFlag;
6412   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6413     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6414                              RegsToPass[i].second, InFlag);
6415     InFlag = Chain.getValue(1);
6416   }
6417 
6418   if (isTailCall && !IsSibCall)
6419     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6420                     TailCallArguments);
6421 
6422   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6423                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6424                     SPDiff, NumBytes, Ins, InVals, CS);
6425 }
6426 
6427 SDValue PPCTargetLowering::LowerCall_Darwin(
6428     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6429     bool isTailCall, bool isPatchPoint,
6430     const SmallVectorImpl<ISD::OutputArg> &Outs,
6431     const SmallVectorImpl<SDValue> &OutVals,
6432     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6433     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6434     ImmutableCallSite CS) const {
6435   unsigned NumOps = Outs.size();
6436 
6437   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6438   bool isPPC64 = PtrVT == MVT::i64;
6439   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6440 
6441   MachineFunction &MF = DAG.getMachineFunction();
6442 
6443   // Mark this function as potentially containing a function that contains a
6444   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6445   // and restoring the callers stack pointer in this functions epilog. This is
6446   // done because by tail calling the called function might overwrite the value
6447   // in this function's (MF) stack pointer stack slot 0(SP).
6448   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6449       CallConv == CallingConv::Fast)
6450     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6451 
6452   // Count how many bytes are to be pushed on the stack, including the linkage
6453   // area, and parameter passing area.  We start with 24/48 bytes, which is
6454   // prereserved space for [SP][CR][LR][3 x unused].
6455   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6456   unsigned NumBytes = LinkageSize;
6457 
6458   // Add up all the space actually used.
6459   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6460   // they all go in registers, but we must reserve stack space for them for
6461   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6462   // assigned stack space in order, with padding so Altivec parameters are
6463   // 16-byte aligned.
6464   unsigned nAltivecParamsAtEnd = 0;
6465   for (unsigned i = 0; i != NumOps; ++i) {
6466     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6467     EVT ArgVT = Outs[i].VT;
6468     // Varargs Altivec parameters are padded to a 16 byte boundary.
6469     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6470         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6471         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6472       if (!isVarArg && !isPPC64) {
6473         // Non-varargs Altivec parameters go after all the non-Altivec
6474         // parameters; handle those later so we know how much padding we need.
6475         nAltivecParamsAtEnd++;
6476         continue;
6477       }
6478       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6479       NumBytes = ((NumBytes+15)/16)*16;
6480     }
6481     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6482   }
6483 
6484   // Allow for Altivec parameters at the end, if needed.
6485   if (nAltivecParamsAtEnd) {
6486     NumBytes = ((NumBytes+15)/16)*16;
6487     NumBytes += 16*nAltivecParamsAtEnd;
6488   }
6489 
6490   // The prolog code of the callee may store up to 8 GPR argument registers to
6491   // the stack, allowing va_start to index over them in memory if its varargs.
6492   // Because we cannot tell if this is needed on the caller side, we have to
6493   // conservatively assume that it is needed.  As such, make sure we have at
6494   // least enough stack space for the caller to store the 8 GPRs.
6495   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6496 
6497   // Tail call needs the stack to be aligned.
6498   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6499       CallConv == CallingConv::Fast)
6500     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6501 
6502   // Calculate by how many bytes the stack has to be adjusted in case of tail
6503   // call optimization.
6504   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6505 
6506   // To protect arguments on the stack from being clobbered in a tail call,
6507   // force all the loads to happen before doing any other lowering.
6508   if (isTailCall)
6509     Chain = DAG.getStackArgumentTokenFactor(Chain);
6510 
6511   // Adjust the stack pointer for the new arguments...
6512   // These operations are automatically eliminated by the prolog/epilog pass
6513   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6514   SDValue CallSeqStart = Chain;
6515 
6516   // Load the return address and frame pointer so it can be move somewhere else
6517   // later.
6518   SDValue LROp, FPOp;
6519   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6520 
6521   // Set up a copy of the stack pointer for use loading and storing any
6522   // arguments that may not fit in the registers available for argument
6523   // passing.
6524   SDValue StackPtr;
6525   if (isPPC64)
6526     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6527   else
6528     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6529 
6530   // Figure out which arguments are going to go in registers, and which in
6531   // memory.  Also, if this is a vararg function, floating point operations
6532   // must be stored to our stack, and loaded into integer regs as well, if
6533   // any integer regs are available for argument passing.
6534   unsigned ArgOffset = LinkageSize;
6535   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6536 
6537   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6538     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6539     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6540   };
6541   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6542     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6543     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6544   };
6545   static const MCPhysReg VR[] = {
6546     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6547     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6548   };
6549   const unsigned NumGPRs = array_lengthof(GPR_32);
6550   const unsigned NumFPRs = 13;
6551   const unsigned NumVRs  = array_lengthof(VR);
6552 
6553   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6554 
6555   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6556   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6557 
6558   SmallVector<SDValue, 8> MemOpChains;
6559   for (unsigned i = 0; i != NumOps; ++i) {
6560     SDValue Arg = OutVals[i];
6561     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6562 
6563     // PtrOff will be used to store the current argument to the stack if a
6564     // register cannot be found for it.
6565     SDValue PtrOff;
6566 
6567     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6568 
6569     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6570 
6571     // On PPC64, promote integers to 64-bit values.
6572     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6573       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6574       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6575       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6576     }
6577 
6578     // FIXME memcpy is used way more than necessary.  Correctness first.
6579     // Note: "by value" is code for passing a structure by value, not
6580     // basic types.
6581     if (Flags.isByVal()) {
6582       unsigned Size = Flags.getByValSize();
6583       // Very small objects are passed right-justified.  Everything else is
6584       // passed left-justified.
6585       if (Size==1 || Size==2) {
6586         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6587         if (GPR_idx != NumGPRs) {
6588           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6589                                         MachinePointerInfo(), VT);
6590           MemOpChains.push_back(Load.getValue(1));
6591           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6592 
6593           ArgOffset += PtrByteSize;
6594         } else {
6595           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6596                                           PtrOff.getValueType());
6597           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6598           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6599                                                             CallSeqStart,
6600                                                             Flags, DAG, dl);
6601           ArgOffset += PtrByteSize;
6602         }
6603         continue;
6604       }
6605       // Copy entire object into memory.  There are cases where gcc-generated
6606       // code assumes it is there, even if it could be put entirely into
6607       // registers.  (This is not what the doc says.)
6608       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6609                                                         CallSeqStart,
6610                                                         Flags, DAG, dl);
6611 
6612       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6613       // copy the pieces of the object that fit into registers from the
6614       // parameter save area.
6615       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6616         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6617         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6618         if (GPR_idx != NumGPRs) {
6619           SDValue Load =
6620               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6621           MemOpChains.push_back(Load.getValue(1));
6622           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6623           ArgOffset += PtrByteSize;
6624         } else {
6625           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6626           break;
6627         }
6628       }
6629       continue;
6630     }
6631 
6632     switch (Arg.getSimpleValueType().SimpleTy) {
6633     default: llvm_unreachable("Unexpected ValueType for argument!");
6634     case MVT::i1:
6635     case MVT::i32:
6636     case MVT::i64:
6637       if (GPR_idx != NumGPRs) {
6638         if (Arg.getValueType() == MVT::i1)
6639           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6640 
6641         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6642       } else {
6643         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6644                          isPPC64, isTailCall, false, MemOpChains,
6645                          TailCallArguments, dl);
6646       }
6647       ArgOffset += PtrByteSize;
6648       break;
6649     case MVT::f32:
6650     case MVT::f64:
6651       if (FPR_idx != NumFPRs) {
6652         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6653 
6654         if (isVarArg) {
6655           SDValue Store =
6656               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6657           MemOpChains.push_back(Store);
6658 
6659           // Float varargs are always shadowed in available integer registers
6660           if (GPR_idx != NumGPRs) {
6661             SDValue Load =
6662                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6663             MemOpChains.push_back(Load.getValue(1));
6664             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6665           }
6666           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6667             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6668             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6669             SDValue Load =
6670                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6671             MemOpChains.push_back(Load.getValue(1));
6672             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6673           }
6674         } else {
6675           // If we have any FPRs remaining, we may also have GPRs remaining.
6676           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6677           // GPRs.
6678           if (GPR_idx != NumGPRs)
6679             ++GPR_idx;
6680           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6681               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6682             ++GPR_idx;
6683         }
6684       } else
6685         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6686                          isPPC64, isTailCall, false, MemOpChains,
6687                          TailCallArguments, dl);
6688       if (isPPC64)
6689         ArgOffset += 8;
6690       else
6691         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6692       break;
6693     case MVT::v4f32:
6694     case MVT::v4i32:
6695     case MVT::v8i16:
6696     case MVT::v16i8:
6697       if (isVarArg) {
6698         // These go aligned on the stack, or in the corresponding R registers
6699         // when within range.  The Darwin PPC ABI doc claims they also go in
6700         // V registers; in fact gcc does this only for arguments that are
6701         // prototyped, not for those that match the ...  We do it for all
6702         // arguments, seems to work.
6703         while (ArgOffset % 16 !=0) {
6704           ArgOffset += PtrByteSize;
6705           if (GPR_idx != NumGPRs)
6706             GPR_idx++;
6707         }
6708         // We could elide this store in the case where the object fits
6709         // entirely in R registers.  Maybe later.
6710         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6711                              DAG.getConstant(ArgOffset, dl, PtrVT));
6712         SDValue Store =
6713             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6714         MemOpChains.push_back(Store);
6715         if (VR_idx != NumVRs) {
6716           SDValue Load =
6717               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6718           MemOpChains.push_back(Load.getValue(1));
6719           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6720         }
6721         ArgOffset += 16;
6722         for (unsigned i=0; i<16; i+=PtrByteSize) {
6723           if (GPR_idx == NumGPRs)
6724             break;
6725           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6726                                    DAG.getConstant(i, dl, PtrVT));
6727           SDValue Load =
6728               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6729           MemOpChains.push_back(Load.getValue(1));
6730           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6731         }
6732         break;
6733       }
6734 
6735       // Non-varargs Altivec params generally go in registers, but have
6736       // stack space allocated at the end.
6737       if (VR_idx != NumVRs) {
6738         // Doesn't have GPR space allocated.
6739         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6740       } else if (nAltivecParamsAtEnd==0) {
6741         // We are emitting Altivec params in order.
6742         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6743                          isPPC64, isTailCall, true, MemOpChains,
6744                          TailCallArguments, dl);
6745         ArgOffset += 16;
6746       }
6747       break;
6748     }
6749   }
6750   // If all Altivec parameters fit in registers, as they usually do,
6751   // they get stack space following the non-Altivec parameters.  We
6752   // don't track this here because nobody below needs it.
6753   // If there are more Altivec parameters than fit in registers emit
6754   // the stores here.
6755   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6756     unsigned j = 0;
6757     // Offset is aligned; skip 1st 12 params which go in V registers.
6758     ArgOffset = ((ArgOffset+15)/16)*16;
6759     ArgOffset += 12*16;
6760     for (unsigned i = 0; i != NumOps; ++i) {
6761       SDValue Arg = OutVals[i];
6762       EVT ArgType = Outs[i].VT;
6763       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6764           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6765         if (++j > NumVRs) {
6766           SDValue PtrOff;
6767           // We are emitting Altivec params in order.
6768           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6769                            isPPC64, isTailCall, true, MemOpChains,
6770                            TailCallArguments, dl);
6771           ArgOffset += 16;
6772         }
6773       }
6774     }
6775   }
6776 
6777   if (!MemOpChains.empty())
6778     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6779 
6780   // On Darwin, R12 must contain the address of an indirect callee.  This does
6781   // not mean the MTCTR instruction must use R12; it's easier to model this as
6782   // an extra parameter, so do that.
6783   if (!isTailCall &&
6784       !isFunctionGlobalAddress(Callee) &&
6785       !isa<ExternalSymbolSDNode>(Callee) &&
6786       !isBLACompatibleAddress(Callee, DAG))
6787     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6788                                                    PPC::R12), Callee));
6789 
6790   // Build a sequence of copy-to-reg nodes chained together with token chain
6791   // and flag operands which copy the outgoing args into the appropriate regs.
6792   SDValue InFlag;
6793   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6794     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6795                              RegsToPass[i].second, InFlag);
6796     InFlag = Chain.getValue(1);
6797   }
6798 
6799   if (isTailCall)
6800     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6801                     TailCallArguments);
6802 
6803   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6804                     /* unused except on PPC64 ELFv1 */ false, DAG,
6805                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6806                     NumBytes, Ins, InVals, CS);
6807 }
6808 
6809 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6810                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6811                    CCState &State) {
6812 
6813   if (ValVT == MVT::f128)
6814     report_fatal_error("f128 is unimplemented on AIX.");
6815 
6816   if (ArgFlags.isByVal())
6817     report_fatal_error("Passing structure by value is unimplemented.");
6818 
6819   if (ArgFlags.isNest())
6820     report_fatal_error("Nest arguments are unimplemented.");
6821 
6822   if (ValVT.isVector() || LocVT.isVector())
6823     report_fatal_error("Vector arguments are unimplemented on AIX.");
6824 
6825   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6826       State.getMachineFunction().getSubtarget());
6827   const bool IsPPC64 = Subtarget.isPPC64();
6828   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6829 
6830   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6831                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6832                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6833   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6834                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6835                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6836 
6837   // Arguments always reserve parameter save area.
6838   switch (ValVT.SimpleTy) {
6839   default:
6840     report_fatal_error("Unhandled value type for argument.");
6841   case MVT::i64:
6842     // i64 arguments should have been split to i32 for PPC32.
6843     assert(IsPPC64 && "PPC32 should have split i64 values.");
6844     LLVM_FALLTHROUGH;
6845   case MVT::i1:
6846   case MVT::i32:
6847     State.AllocateStack(PtrByteSize, PtrByteSize);
6848     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6849       MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6850       // Promote integers if needed.
6851       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6852         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6853                                     : CCValAssign::LocInfo::ZExt;
6854       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6855     }
6856     else
6857       report_fatal_error("Handling of placing parameters on the stack is "
6858                          "unimplemented!");
6859     return false;
6860 
6861   case MVT::f32:
6862   case MVT::f64: {
6863     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6864     const unsigned StoreSize = LocVT.getStoreSize();
6865     // Floats are always 4-byte aligned in the PSA on AIX.
6866     // This includes f64 in 64-bit mode for ABI compatibility.
6867     State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6868     if (unsigned Reg = State.AllocateReg(FPR))
6869       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6870     else
6871       report_fatal_error("Handling of placing parameters on the stack is "
6872                          "unimplemented!");
6873 
6874     // AIX requires that GPRs are reserved for float arguments.
6875     // Successfully reserved GPRs are only initialized for vararg calls.
6876     MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6877     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6878       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6879         if (State.isVarArg()) {
6880           // Custom handling is required for:
6881           //   f64 in PPC32 needs to be split into 2 GPRs.
6882           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6883           State.addLoc(
6884               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6885         }
6886       } else if (State.isVarArg()) {
6887         report_fatal_error("Handling of placing parameters on the stack is "
6888                            "unimplemented!");
6889       }
6890     }
6891 
6892     return false;
6893   }
6894   }
6895   return true;
6896 }
6897 
6898 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6899                                                     bool IsPPC64) {
6900   assert((IsPPC64 || SVT != MVT::i64) &&
6901          "i64 should have been split for 32-bit codegen.");
6902 
6903   switch (SVT) {
6904   default:
6905     report_fatal_error("Unexpected value type for formal argument");
6906   case MVT::i1:
6907   case MVT::i32:
6908   case MVT::i64:
6909     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6910   case MVT::f32:
6911     return &PPC::F4RCRegClass;
6912   case MVT::f64:
6913     return &PPC::F8RCRegClass;
6914   }
6915 }
6916 
6917 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6918                                         SelectionDAG &DAG, SDValue ArgValue,
6919                                         MVT LocVT, const SDLoc &dl) {
6920   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6921   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6922 
6923   if (Flags.isSExt())
6924     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6925                            DAG.getValueType(ValVT));
6926   else if (Flags.isZExt())
6927     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6928                            DAG.getValueType(ValVT));
6929 
6930   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6931 }
6932 
6933 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6934     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6935     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6936     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6937 
6938   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6939           CallConv == CallingConv::Fast) &&
6940          "Unexpected calling convention!");
6941 
6942   if (isVarArg)
6943     report_fatal_error("This call type is unimplemented on AIX.");
6944 
6945   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6946     report_fatal_error("Tail call support is unimplemented on AIX.");
6947 
6948   if (useSoftFloat())
6949     report_fatal_error("Soft float support is unimplemented on AIX.");
6950 
6951   const PPCSubtarget &Subtarget =
6952       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6953   if (Subtarget.hasQPX())
6954     report_fatal_error("QPX support is not supported on AIX.");
6955 
6956   const bool IsPPC64 = Subtarget.isPPC64();
6957   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6958 
6959   // Assign locations to all of the incoming arguments.
6960   SmallVector<CCValAssign, 16> ArgLocs;
6961   MachineFunction &MF = DAG.getMachineFunction();
6962   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6963 
6964   // Reserve space for the linkage area on the stack.
6965   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6966   // On AIX a minimum of 8 words is saved to the parameter save area.
6967   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
6968   CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
6969   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6970 
6971   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
6972     CCValAssign &VA = ArgLocs[i];
6973     SDValue ArgValue;
6974     ISD::ArgFlagsTy Flags = Ins[i].Flags;
6975     if (VA.isRegLoc()) {
6976       EVT ValVT = VA.getValVT();
6977       MVT LocVT = VA.getLocVT();
6978       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
6979       unsigned VReg =
6980           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6981       ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6982       if (ValVT.isScalarInteger() &&
6983           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
6984         ArgValue =
6985             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
6986       }
6987       InVals.push_back(ArgValue);
6988     } else {
6989       report_fatal_error("Handling of formal arguments on the stack is "
6990                          "unimplemented!");
6991     }
6992   }
6993 
6994   // Area that is at least reserved in the caller of this function.
6995   unsigned MinReservedArea = CCInfo.getNextStackOffset();
6996 
6997   // Set the size that is at least reserved in caller of this function. Tail
6998   // call optimized function's reserved stack space needs to be aligned so
6999   // that taking the difference between two stack areas will result in an
7000   // aligned stack.
7001   MinReservedArea =
7002       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
7003   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7004   FuncInfo->setMinReservedArea(MinReservedArea);
7005 
7006   return Chain;
7007 }
7008 
7009 SDValue PPCTargetLowering::LowerCall_AIX(
7010     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
7011     bool isTailCall, bool isPatchPoint,
7012     const SmallVectorImpl<ISD::OutputArg> &Outs,
7013     const SmallVectorImpl<SDValue> &OutVals,
7014     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7015     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7016     ImmutableCallSite CS) const {
7017 
7018   assert((CallConv == CallingConv::C ||
7019           CallConv == CallingConv::Cold ||
7020           CallConv == CallingConv::Fast) && "Unexpected calling convention!");
7021 
7022   if (isPatchPoint)
7023     report_fatal_error("This call type is unimplemented on AIX.");
7024 
7025   const PPCSubtarget& Subtarget =
7026       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7027   if (Subtarget.hasQPX())
7028     report_fatal_error("QPX is not supported on AIX.");
7029   if (Subtarget.hasAltivec())
7030     report_fatal_error("Altivec support is unimplemented on AIX.");
7031 
7032   MachineFunction &MF = DAG.getMachineFunction();
7033   SmallVector<CCValAssign, 16> ArgLocs;
7034   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7035 
7036   // Reserve space for the linkage save area (LSA) on the stack.
7037   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7038   //   [SP][CR][LR][2 x reserved][TOC].
7039   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7040   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7041   const bool IsPPC64 = Subtarget.isPPC64();
7042   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7043   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7044   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7045 
7046   // The prolog code of the callee may store up to 8 GPR argument registers to
7047   // the stack, allowing va_start to index over them in memory if the callee
7048   // is variadic.
7049   // Because we cannot tell if this is needed on the caller side, we have to
7050   // conservatively assume that it is needed.  As such, make sure we have at
7051   // least enough stack space for the caller to store the 8 GPRs.
7052   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7053   const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
7054 
7055   // Adjust the stack pointer for the new arguments...
7056   // These operations are automatically eliminated by the prolog/epilog pass.
7057   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7058   SDValue CallSeqStart = Chain;
7059 
7060   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7061 
7062   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7063     CCValAssign &VA = ArgLocs[I++];
7064 
7065     if (VA.isMemLoc())
7066       report_fatal_error("Handling of placing parameters on the stack is "
7067                          "unimplemented!");
7068     if (!VA.isRegLoc())
7069       report_fatal_error(
7070           "Unexpected non-register location for function call argument.");
7071 
7072     SDValue Arg = OutVals[VA.getValNo()];
7073 
7074     if (!VA.needsCustom()) {
7075       switch (VA.getLocInfo()) {
7076       default:
7077         report_fatal_error("Unexpected argument extension type.");
7078       case CCValAssign::Full:
7079         break;
7080       case CCValAssign::ZExt:
7081         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7082         break;
7083       case CCValAssign::SExt:
7084         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7085         break;
7086       }
7087       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7088 
7089       continue;
7090     }
7091 
7092     // Custom handling is used for GPR initializations for vararg float
7093     // arguments.
7094     assert(isVarArg && VA.getValVT().isFloatingPoint() &&
7095            VA.getLocVT().isInteger() &&
7096            "Unexpected custom register handling for calling convention.");
7097 
7098     SDValue ArgAsInt =
7099         DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg);
7100 
7101     if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize())
7102       // f32 in 32-bit GPR
7103       // f64 in 64-bit GPR
7104       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7105     else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits())
7106       // f32 in 64-bit GPR.
7107       RegsToPass.push_back(std::make_pair(
7108           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT())));
7109     else {
7110       // f64 in two 32-bit GPRs
7111       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7112       assert(Arg.getValueType() == MVT::f64 && isVarArg && !IsPPC64 &&
7113              "Unexpected custom register for argument!");
7114       CCValAssign &GPR1 = VA;
7115       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7116                                      DAG.getConstant(32, dl, MVT::i8));
7117       RegsToPass.push_back(std::make_pair(
7118           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7119       assert(I != E && "A second custom GPR is expected!");
7120       CCValAssign &GPR2 = ArgLocs[I++];
7121       assert(GPR2.isRegLoc() && GPR2.getValNo() == GPR1.getValNo() &&
7122              GPR2.needsCustom() && "A second custom GPR is expected!");
7123       RegsToPass.push_back(std::make_pair(
7124           GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7125     }
7126   }
7127 
7128   // For indirect calls, we need to save the TOC base to the stack for
7129   // restoration after the call.
7130   if (!isTailCall && !isPatchPoint &&
7131       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) {
7132     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7133     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7134     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7135     const unsigned TOCSaveOffset =
7136         Subtarget.getFrameLowering()->getTOCSaveOffset();
7137 
7138     setUsesTOCBasePtr(DAG);
7139     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7140     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7141     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7142     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7143     Chain = DAG.getStore(
7144         Val.getValue(1), dl, Val, AddPtr,
7145         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7146   }
7147 
7148   // Build a sequence of copy-to-reg nodes chained together with token chain
7149   // and flag operands which copy the outgoing args into the appropriate regs.
7150   SDValue InFlag;
7151   for (auto Reg : RegsToPass) {
7152     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7153     InFlag = Chain.getValue(1);
7154   }
7155 
7156   const int SPDiff = 0;
7157   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
7158                     /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
7159                     InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
7160                     InVals, CS);
7161 }
7162 
7163 bool
7164 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7165                                   MachineFunction &MF, bool isVarArg,
7166                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7167                                   LLVMContext &Context) const {
7168   SmallVector<CCValAssign, 16> RVLocs;
7169   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7170   return CCInfo.CheckReturn(
7171       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7172                 ? RetCC_PPC_Cold
7173                 : RetCC_PPC);
7174 }
7175 
7176 SDValue
7177 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7178                                bool isVarArg,
7179                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7180                                const SmallVectorImpl<SDValue> &OutVals,
7181                                const SDLoc &dl, SelectionDAG &DAG) const {
7182   SmallVector<CCValAssign, 16> RVLocs;
7183   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7184                  *DAG.getContext());
7185   CCInfo.AnalyzeReturn(Outs,
7186                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7187                            ? RetCC_PPC_Cold
7188                            : RetCC_PPC);
7189 
7190   SDValue Flag;
7191   SmallVector<SDValue, 4> RetOps(1, Chain);
7192 
7193   // Copy the result values into the output registers.
7194   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7195     CCValAssign &VA = RVLocs[i];
7196     assert(VA.isRegLoc() && "Can only return in registers!");
7197 
7198     SDValue Arg = OutVals[RealResIdx];
7199 
7200     switch (VA.getLocInfo()) {
7201     default: llvm_unreachable("Unknown loc info!");
7202     case CCValAssign::Full: break;
7203     case CCValAssign::AExt:
7204       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7205       break;
7206     case CCValAssign::ZExt:
7207       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7208       break;
7209     case CCValAssign::SExt:
7210       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7211       break;
7212     }
7213     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7214       bool isLittleEndian = Subtarget.isLittleEndian();
7215       // Legalize ret f64 -> ret 2 x i32.
7216       SDValue SVal =
7217           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7218                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7219       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7220       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7221       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7222                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7223       Flag = Chain.getValue(1);
7224       VA = RVLocs[++i]; // skip ahead to next loc
7225       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7226     } else
7227       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7228     Flag = Chain.getValue(1);
7229     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7230   }
7231 
7232   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7233   const MCPhysReg *I =
7234     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7235   if (I) {
7236     for (; *I; ++I) {
7237 
7238       if (PPC::G8RCRegClass.contains(*I))
7239         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7240       else if (PPC::F8RCRegClass.contains(*I))
7241         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7242       else if (PPC::CRRCRegClass.contains(*I))
7243         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7244       else if (PPC::VRRCRegClass.contains(*I))
7245         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7246       else
7247         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7248     }
7249   }
7250 
7251   RetOps[0] = Chain;  // Update chain.
7252 
7253   // Add the flag if we have it.
7254   if (Flag.getNode())
7255     RetOps.push_back(Flag);
7256 
7257   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7258 }
7259 
7260 SDValue
7261 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7262                                                 SelectionDAG &DAG) const {
7263   SDLoc dl(Op);
7264 
7265   // Get the correct type for integers.
7266   EVT IntVT = Op.getValueType();
7267 
7268   // Get the inputs.
7269   SDValue Chain = Op.getOperand(0);
7270   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7271   // Build a DYNAREAOFFSET node.
7272   SDValue Ops[2] = {Chain, FPSIdx};
7273   SDVTList VTs = DAG.getVTList(IntVT);
7274   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7275 }
7276 
7277 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7278                                              SelectionDAG &DAG) const {
7279   // When we pop the dynamic allocation we need to restore the SP link.
7280   SDLoc dl(Op);
7281 
7282   // Get the correct type for pointers.
7283   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7284 
7285   // Construct the stack pointer operand.
7286   bool isPPC64 = Subtarget.isPPC64();
7287   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7288   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7289 
7290   // Get the operands for the STACKRESTORE.
7291   SDValue Chain = Op.getOperand(0);
7292   SDValue SaveSP = Op.getOperand(1);
7293 
7294   // Load the old link SP.
7295   SDValue LoadLinkSP =
7296       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7297 
7298   // Restore the stack pointer.
7299   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7300 
7301   // Store the old link SP.
7302   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7303 }
7304 
7305 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7306   MachineFunction &MF = DAG.getMachineFunction();
7307   bool isPPC64 = Subtarget.isPPC64();
7308   EVT PtrVT = getPointerTy(MF.getDataLayout());
7309 
7310   // Get current frame pointer save index.  The users of this index will be
7311   // primarily DYNALLOC instructions.
7312   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7313   int RASI = FI->getReturnAddrSaveIndex();
7314 
7315   // If the frame pointer save index hasn't been defined yet.
7316   if (!RASI) {
7317     // Find out what the fix offset of the frame pointer save area.
7318     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7319     // Allocate the frame index for frame pointer save area.
7320     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7321     // Save the result.
7322     FI->setReturnAddrSaveIndex(RASI);
7323   }
7324   return DAG.getFrameIndex(RASI, PtrVT);
7325 }
7326 
7327 SDValue
7328 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7329   MachineFunction &MF = DAG.getMachineFunction();
7330   bool isPPC64 = Subtarget.isPPC64();
7331   EVT PtrVT = getPointerTy(MF.getDataLayout());
7332 
7333   // Get current frame pointer save index.  The users of this index will be
7334   // primarily DYNALLOC instructions.
7335   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7336   int FPSI = FI->getFramePointerSaveIndex();
7337 
7338   // If the frame pointer save index hasn't been defined yet.
7339   if (!FPSI) {
7340     // Find out what the fix offset of the frame pointer save area.
7341     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7342     // Allocate the frame index for frame pointer save area.
7343     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7344     // Save the result.
7345     FI->setFramePointerSaveIndex(FPSI);
7346   }
7347   return DAG.getFrameIndex(FPSI, PtrVT);
7348 }
7349 
7350 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7351                                                    SelectionDAG &DAG) const {
7352   // Get the inputs.
7353   SDValue Chain = Op.getOperand(0);
7354   SDValue Size  = Op.getOperand(1);
7355   SDLoc dl(Op);
7356 
7357   // Get the correct type for pointers.
7358   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7359   // Negate the size.
7360   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7361                                 DAG.getConstant(0, dl, PtrVT), Size);
7362   // Construct a node for the frame pointer save index.
7363   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7364   // Build a DYNALLOC node.
7365   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7366   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7367   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7368 }
7369 
7370 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7371                                                      SelectionDAG &DAG) const {
7372   MachineFunction &MF = DAG.getMachineFunction();
7373 
7374   bool isPPC64 = Subtarget.isPPC64();
7375   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7376 
7377   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7378   return DAG.getFrameIndex(FI, PtrVT);
7379 }
7380 
7381 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7382                                                SelectionDAG &DAG) const {
7383   SDLoc DL(Op);
7384   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7385                      DAG.getVTList(MVT::i32, MVT::Other),
7386                      Op.getOperand(0), Op.getOperand(1));
7387 }
7388 
7389 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7390                                                 SelectionDAG &DAG) const {
7391   SDLoc DL(Op);
7392   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7393                      Op.getOperand(0), Op.getOperand(1));
7394 }
7395 
7396 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7397   if (Op.getValueType().isVector())
7398     return LowerVectorLoad(Op, DAG);
7399 
7400   assert(Op.getValueType() == MVT::i1 &&
7401          "Custom lowering only for i1 loads");
7402 
7403   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7404 
7405   SDLoc dl(Op);
7406   LoadSDNode *LD = cast<LoadSDNode>(Op);
7407 
7408   SDValue Chain = LD->getChain();
7409   SDValue BasePtr = LD->getBasePtr();
7410   MachineMemOperand *MMO = LD->getMemOperand();
7411 
7412   SDValue NewLD =
7413       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7414                      BasePtr, MVT::i8, MMO);
7415   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7416 
7417   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7418   return DAG.getMergeValues(Ops, dl);
7419 }
7420 
7421 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7422   if (Op.getOperand(1).getValueType().isVector())
7423     return LowerVectorStore(Op, DAG);
7424 
7425   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7426          "Custom lowering only for i1 stores");
7427 
7428   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7429 
7430   SDLoc dl(Op);
7431   StoreSDNode *ST = cast<StoreSDNode>(Op);
7432 
7433   SDValue Chain = ST->getChain();
7434   SDValue BasePtr = ST->getBasePtr();
7435   SDValue Value = ST->getValue();
7436   MachineMemOperand *MMO = ST->getMemOperand();
7437 
7438   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7439                       Value);
7440   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7441 }
7442 
7443 // FIXME: Remove this once the ANDI glue bug is fixed:
7444 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7445   assert(Op.getValueType() == MVT::i1 &&
7446          "Custom lowering only for i1 results");
7447 
7448   SDLoc DL(Op);
7449   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7450 }
7451 
7452 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7453                                                SelectionDAG &DAG) const {
7454 
7455   // Implements a vector truncate that fits in a vector register as a shuffle.
7456   // We want to legalize vector truncates down to where the source fits in
7457   // a vector register (and target is therefore smaller than vector register
7458   // size).  At that point legalization will try to custom lower the sub-legal
7459   // result and get here - where we can contain the truncate as a single target
7460   // operation.
7461 
7462   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7463   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7464   //
7465   // We will implement it for big-endian ordering as this (where x denotes
7466   // undefined):
7467   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7468   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7469   //
7470   // The same operation in little-endian ordering will be:
7471   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7472   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7473 
7474   assert(Op.getValueType().isVector() && "Vector type expected.");
7475 
7476   SDLoc DL(Op);
7477   SDValue N1 = Op.getOperand(0);
7478   unsigned SrcSize = N1.getValueType().getSizeInBits();
7479   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7480   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7481 
7482   EVT TrgVT = Op.getValueType();
7483   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7484   EVT EltVT = TrgVT.getVectorElementType();
7485   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7486   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7487 
7488   // First list the elements we want to keep.
7489   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7490   SmallVector<int, 16> ShuffV;
7491   if (Subtarget.isLittleEndian())
7492     for (unsigned i = 0; i < TrgNumElts; ++i)
7493       ShuffV.push_back(i * SizeMult);
7494   else
7495     for (unsigned i = 1; i <= TrgNumElts; ++i)
7496       ShuffV.push_back(i * SizeMult - 1);
7497 
7498   // Populate the remaining elements with undefs.
7499   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7500     // ShuffV.push_back(i + WideNumElts);
7501     ShuffV.push_back(WideNumElts + 1);
7502 
7503   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7504   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7505 }
7506 
7507 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7508 /// possible.
7509 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7510   // Not FP? Not a fsel.
7511   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7512       !Op.getOperand(2).getValueType().isFloatingPoint())
7513     return Op;
7514 
7515   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7516   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7517   // We might be able to do better than this under some circumstances, but in
7518   // general, fsel-based lowering of select is a finite-math-only optimization.
7519   // For more information, see section F.3 of the 2.06 ISA specification.
7520   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7521   // presence of infinities.
7522   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7523     return Op;
7524   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7525 
7526   EVT ResVT = Op.getValueType();
7527   EVT CmpVT = Op.getOperand(0).getValueType();
7528   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7529   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7530   SDLoc dl(Op);
7531 
7532   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7533     switch (CC) {
7534     default:
7535       // Not a min/max but with finite math, we may still be able to use fsel.
7536       if (HasNoInfs && HasNoNaNs)
7537         break;
7538       return Op;
7539     case ISD::SETOGT:
7540     case ISD::SETGT:
7541       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7542     case ISD::SETOLT:
7543     case ISD::SETLT:
7544       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7545     }
7546   }
7547 
7548   // TODO: Propagate flags from the select rather than global settings.
7549   SDNodeFlags Flags;
7550   Flags.setNoInfs(true);
7551   Flags.setNoNaNs(true);
7552 
7553   // If the RHS of the comparison is a 0.0, we don't need to do the
7554   // subtraction at all.
7555   SDValue Sel1;
7556   if (isFloatingPointZero(RHS))
7557     switch (CC) {
7558     default: break;       // SETUO etc aren't handled by fsel.
7559     case ISD::SETNE:
7560       std::swap(TV, FV);
7561       LLVM_FALLTHROUGH;
7562     case ISD::SETEQ:
7563       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7564         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7565       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7566       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7567         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7568       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7569                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7570     case ISD::SETULT:
7571     case ISD::SETLT:
7572       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7573       LLVM_FALLTHROUGH;
7574     case ISD::SETOGE:
7575     case ISD::SETGE:
7576       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7577         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7578       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7579     case ISD::SETUGT:
7580     case ISD::SETGT:
7581       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7582       LLVM_FALLTHROUGH;
7583     case ISD::SETOLE:
7584     case ISD::SETLE:
7585       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7586         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7587       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7588                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7589     }
7590 
7591   SDValue Cmp;
7592   switch (CC) {
7593   default: break;       // SETUO etc aren't handled by fsel.
7594   case ISD::SETNE:
7595     std::swap(TV, FV);
7596     LLVM_FALLTHROUGH;
7597   case ISD::SETEQ:
7598     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7599     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7600       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7601     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7602     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7603       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7604     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7605                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7606   case ISD::SETULT:
7607   case ISD::SETLT:
7608     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7609     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7610       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7611     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7612   case ISD::SETOGE:
7613   case ISD::SETGE:
7614     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7615     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7616       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7617     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7618   case ISD::SETUGT:
7619   case ISD::SETGT:
7620     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7621     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7622       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7623     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7624   case ISD::SETOLE:
7625   case ISD::SETLE:
7626     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7627     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7628       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7629     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7630   }
7631   return Op;
7632 }
7633 
7634 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7635                                                SelectionDAG &DAG,
7636                                                const SDLoc &dl) const {
7637   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7638   SDValue Src = Op.getOperand(0);
7639   if (Src.getValueType() == MVT::f32)
7640     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7641 
7642   SDValue Tmp;
7643   switch (Op.getSimpleValueType().SimpleTy) {
7644   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7645   case MVT::i32:
7646     Tmp = DAG.getNode(
7647         Op.getOpcode() == ISD::FP_TO_SINT
7648             ? PPCISD::FCTIWZ
7649             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7650         dl, MVT::f64, Src);
7651     break;
7652   case MVT::i64:
7653     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7654            "i64 FP_TO_UINT is supported only with FPCVT");
7655     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7656                                                         PPCISD::FCTIDUZ,
7657                       dl, MVT::f64, Src);
7658     break;
7659   }
7660 
7661   // Convert the FP value to an int value through memory.
7662   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7663     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7664   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7665   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7666   MachinePointerInfo MPI =
7667       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7668 
7669   // Emit a store to the stack slot.
7670   SDValue Chain;
7671   if (i32Stack) {
7672     MachineFunction &MF = DAG.getMachineFunction();
7673     MachineMemOperand *MMO =
7674       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7675     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7676     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7677               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7678   } else
7679     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7680 
7681   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7682   // add in a bias on big endian.
7683   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7684     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7685                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7686     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7687   }
7688 
7689   RLI.Chain = Chain;
7690   RLI.Ptr = FIPtr;
7691   RLI.MPI = MPI;
7692 }
7693 
7694 /// Custom lowers floating point to integer conversions to use
7695 /// the direct move instructions available in ISA 2.07 to avoid the
7696 /// need for load/store combinations.
7697 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7698                                                     SelectionDAG &DAG,
7699                                                     const SDLoc &dl) const {
7700   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7701   SDValue Src = Op.getOperand(0);
7702 
7703   if (Src.getValueType() == MVT::f32)
7704     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7705 
7706   SDValue Tmp;
7707   switch (Op.getSimpleValueType().SimpleTy) {
7708   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7709   case MVT::i32:
7710     Tmp = DAG.getNode(
7711         Op.getOpcode() == ISD::FP_TO_SINT
7712             ? PPCISD::FCTIWZ
7713             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7714         dl, MVT::f64, Src);
7715     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7716     break;
7717   case MVT::i64:
7718     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7719            "i64 FP_TO_UINT is supported only with FPCVT");
7720     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7721                                                         PPCISD::FCTIDUZ,
7722                       dl, MVT::f64, Src);
7723     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7724     break;
7725   }
7726   return Tmp;
7727 }
7728 
7729 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7730                                           const SDLoc &dl) const {
7731 
7732   // FP to INT conversions are legal for f128.
7733   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7734     return Op;
7735 
7736   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7737   // PPC (the libcall is not available).
7738   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7739     if (Op.getValueType() == MVT::i32) {
7740       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7741         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7742                                  MVT::f64, Op.getOperand(0),
7743                                  DAG.getIntPtrConstant(0, dl));
7744         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7745                                  MVT::f64, Op.getOperand(0),
7746                                  DAG.getIntPtrConstant(1, dl));
7747 
7748         // Add the two halves of the long double in round-to-zero mode.
7749         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7750 
7751         // Now use a smaller FP_TO_SINT.
7752         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7753       }
7754       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7755         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7756         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7757         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7758         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7759         // FIXME: generated code sucks.
7760         // TODO: Are there fast-math-flags to propagate to this FSUB?
7761         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7762                                    Op.getOperand(0), Tmp);
7763         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7764         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7765                            DAG.getConstant(0x80000000, dl, MVT::i32));
7766         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7767                                     Op.getOperand(0));
7768         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7769                                ISD::SETGE);
7770       }
7771     }
7772 
7773     return SDValue();
7774   }
7775 
7776   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7777     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7778 
7779   ReuseLoadInfo RLI;
7780   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7781 
7782   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7783                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7784 }
7785 
7786 // We're trying to insert a regular store, S, and then a load, L. If the
7787 // incoming value, O, is a load, we might just be able to have our load use the
7788 // address used by O. However, we don't know if anything else will store to
7789 // that address before we can load from it. To prevent this situation, we need
7790 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7791 // the same chain operand as O, we create a token factor from the chain results
7792 // of O and L, and we replace all uses of O's chain result with that token
7793 // factor (see spliceIntoChain below for this last part).
7794 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7795                                             ReuseLoadInfo &RLI,
7796                                             SelectionDAG &DAG,
7797                                             ISD::LoadExtType ET) const {
7798   SDLoc dl(Op);
7799   if (ET == ISD::NON_EXTLOAD &&
7800       (Op.getOpcode() == ISD::FP_TO_UINT ||
7801        Op.getOpcode() == ISD::FP_TO_SINT) &&
7802       isOperationLegalOrCustom(Op.getOpcode(),
7803                                Op.getOperand(0).getValueType())) {
7804 
7805     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7806     return true;
7807   }
7808 
7809   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7810   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7811       LD->isNonTemporal())
7812     return false;
7813   if (LD->getMemoryVT() != MemVT)
7814     return false;
7815 
7816   RLI.Ptr = LD->getBasePtr();
7817   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7818     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7819            "Non-pre-inc AM on PPC?");
7820     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7821                           LD->getOffset());
7822   }
7823 
7824   RLI.Chain = LD->getChain();
7825   RLI.MPI = LD->getPointerInfo();
7826   RLI.IsDereferenceable = LD->isDereferenceable();
7827   RLI.IsInvariant = LD->isInvariant();
7828   RLI.Alignment = LD->getAlignment();
7829   RLI.AAInfo = LD->getAAInfo();
7830   RLI.Ranges = LD->getRanges();
7831 
7832   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7833   return true;
7834 }
7835 
7836 // Given the head of the old chain, ResChain, insert a token factor containing
7837 // it and NewResChain, and make users of ResChain now be users of that token
7838 // factor.
7839 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7840 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7841                                         SDValue NewResChain,
7842                                         SelectionDAG &DAG) const {
7843   if (!ResChain)
7844     return;
7845 
7846   SDLoc dl(NewResChain);
7847 
7848   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7849                            NewResChain, DAG.getUNDEF(MVT::Other));
7850   assert(TF.getNode() != NewResChain.getNode() &&
7851          "A new TF really is required here");
7852 
7853   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7854   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7855 }
7856 
7857 /// Analyze profitability of direct move
7858 /// prefer float load to int load plus direct move
7859 /// when there is no integer use of int load
7860 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7861   SDNode *Origin = Op.getOperand(0).getNode();
7862   if (Origin->getOpcode() != ISD::LOAD)
7863     return true;
7864 
7865   // If there is no LXSIBZX/LXSIHZX, like Power8,
7866   // prefer direct move if the memory size is 1 or 2 bytes.
7867   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7868   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7869     return true;
7870 
7871   for (SDNode::use_iterator UI = Origin->use_begin(),
7872                             UE = Origin->use_end();
7873        UI != UE; ++UI) {
7874 
7875     // Only look at the users of the loaded value.
7876     if (UI.getUse().get().getResNo() != 0)
7877       continue;
7878 
7879     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7880         UI->getOpcode() != ISD::UINT_TO_FP)
7881       return true;
7882   }
7883 
7884   return false;
7885 }
7886 
7887 /// Custom lowers integer to floating point conversions to use
7888 /// the direct move instructions available in ISA 2.07 to avoid the
7889 /// need for load/store combinations.
7890 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7891                                                     SelectionDAG &DAG,
7892                                                     const SDLoc &dl) const {
7893   assert((Op.getValueType() == MVT::f32 ||
7894           Op.getValueType() == MVT::f64) &&
7895          "Invalid floating point type as target of conversion");
7896   assert(Subtarget.hasFPCVT() &&
7897          "Int to FP conversions with direct moves require FPCVT");
7898   SDValue FP;
7899   SDValue Src = Op.getOperand(0);
7900   bool SinglePrec = Op.getValueType() == MVT::f32;
7901   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7902   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7903   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7904                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7905 
7906   if (WordInt) {
7907     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7908                      dl, MVT::f64, Src);
7909     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7910   }
7911   else {
7912     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7913     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7914   }
7915 
7916   return FP;
7917 }
7918 
7919 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7920 
7921   EVT VecVT = Vec.getValueType();
7922   assert(VecVT.isVector() && "Expected a vector type.");
7923   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7924 
7925   EVT EltVT = VecVT.getVectorElementType();
7926   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7927   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7928 
7929   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7930   SmallVector<SDValue, 16> Ops(NumConcat);
7931   Ops[0] = Vec;
7932   SDValue UndefVec = DAG.getUNDEF(VecVT);
7933   for (unsigned i = 1; i < NumConcat; ++i)
7934     Ops[i] = UndefVec;
7935 
7936   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7937 }
7938 
7939 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7940                                                 const SDLoc &dl) const {
7941 
7942   unsigned Opc = Op.getOpcode();
7943   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7944          "Unexpected conversion type");
7945   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7946          "Supports conversions to v2f64/v4f32 only.");
7947 
7948   bool SignedConv = Opc == ISD::SINT_TO_FP;
7949   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7950 
7951   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7952   EVT WideVT = Wide.getValueType();
7953   unsigned WideNumElts = WideVT.getVectorNumElements();
7954   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7955 
7956   SmallVector<int, 16> ShuffV;
7957   for (unsigned i = 0; i < WideNumElts; ++i)
7958     ShuffV.push_back(i + WideNumElts);
7959 
7960   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7961   int SaveElts = FourEltRes ? 4 : 2;
7962   if (Subtarget.isLittleEndian())
7963     for (int i = 0; i < SaveElts; i++)
7964       ShuffV[i * Stride] = i;
7965   else
7966     for (int i = 1; i <= SaveElts; i++)
7967       ShuffV[i * Stride - 1] = i - 1;
7968 
7969   SDValue ShuffleSrc2 =
7970       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7971   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7972   unsigned ExtendOp =
7973       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7974 
7975   SDValue Extend;
7976   if (!Subtarget.hasP9Altivec() && SignedConv) {
7977     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7978     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7979                          DAG.getValueType(Op.getOperand(0).getValueType()));
7980   } else
7981     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7982 
7983   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7984 }
7985 
7986 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7987                                           SelectionDAG &DAG) const {
7988   SDLoc dl(Op);
7989 
7990   EVT InVT = Op.getOperand(0).getValueType();
7991   EVT OutVT = Op.getValueType();
7992   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7993       isOperationCustom(Op.getOpcode(), InVT))
7994     return LowerINT_TO_FPVector(Op, DAG, dl);
7995 
7996   // Conversions to f128 are legal.
7997   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7998     return Op;
7999 
8000   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8001     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8002       return SDValue();
8003 
8004     SDValue Value = Op.getOperand(0);
8005     // The values are now known to be -1 (false) or 1 (true). To convert this
8006     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8007     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8008     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8009 
8010     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8011 
8012     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8013 
8014     if (Op.getValueType() != MVT::v4f64)
8015       Value = DAG.getNode(ISD::FP_ROUND, dl,
8016                           Op.getValueType(), Value,
8017                           DAG.getIntPtrConstant(1, dl));
8018     return Value;
8019   }
8020 
8021   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8022   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8023     return SDValue();
8024 
8025   if (Op.getOperand(0).getValueType() == MVT::i1)
8026     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8027                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8028                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8029 
8030   // If we have direct moves, we can do all the conversion, skip the store/load
8031   // however, without FPCVT we can't do most conversions.
8032   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8033       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8034     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8035 
8036   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8037          "UINT_TO_FP is supported only with FPCVT");
8038 
8039   // If we have FCFIDS, then use it when converting to single-precision.
8040   // Otherwise, convert to double-precision and then round.
8041   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8042                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8043                                                             : PPCISD::FCFIDS)
8044                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8045                                                             : PPCISD::FCFID);
8046   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8047                   ? MVT::f32
8048                   : MVT::f64;
8049 
8050   if (Op.getOperand(0).getValueType() == MVT::i64) {
8051     SDValue SINT = Op.getOperand(0);
8052     // When converting to single-precision, we actually need to convert
8053     // to double-precision first and then round to single-precision.
8054     // To avoid double-rounding effects during that operation, we have
8055     // to prepare the input operand.  Bits that might be truncated when
8056     // converting to double-precision are replaced by a bit that won't
8057     // be lost at this stage, but is below the single-precision rounding
8058     // position.
8059     //
8060     // However, if -enable-unsafe-fp-math is in effect, accept double
8061     // rounding to avoid the extra overhead.
8062     if (Op.getValueType() == MVT::f32 &&
8063         !Subtarget.hasFPCVT() &&
8064         !DAG.getTarget().Options.UnsafeFPMath) {
8065 
8066       // Twiddle input to make sure the low 11 bits are zero.  (If this
8067       // is the case, we are guaranteed the value will fit into the 53 bit
8068       // mantissa of an IEEE double-precision value without rounding.)
8069       // If any of those low 11 bits were not zero originally, make sure
8070       // bit 12 (value 2048) is set instead, so that the final rounding
8071       // to single-precision gets the correct result.
8072       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8073                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8074       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8075                           Round, DAG.getConstant(2047, dl, MVT::i64));
8076       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8077       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8078                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8079 
8080       // However, we cannot use that value unconditionally: if the magnitude
8081       // of the input value is small, the bit-twiddling we did above might
8082       // end up visibly changing the output.  Fortunately, in that case, we
8083       // don't need to twiddle bits since the original input will convert
8084       // exactly to double-precision floating-point already.  Therefore,
8085       // construct a conditional to use the original value if the top 11
8086       // bits are all sign-bit copies, and use the rounded value computed
8087       // above otherwise.
8088       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8089                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8090       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8091                          Cond, DAG.getConstant(1, dl, MVT::i64));
8092       Cond = DAG.getSetCC(dl, MVT::i32,
8093                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8094 
8095       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8096     }
8097 
8098     ReuseLoadInfo RLI;
8099     SDValue Bits;
8100 
8101     MachineFunction &MF = DAG.getMachineFunction();
8102     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8103       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8104                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8105       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8106     } else if (Subtarget.hasLFIWAX() &&
8107                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8108       MachineMemOperand *MMO =
8109         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8110                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8111       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8112       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8113                                      DAG.getVTList(MVT::f64, MVT::Other),
8114                                      Ops, MVT::i32, MMO);
8115       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8116     } else if (Subtarget.hasFPCVT() &&
8117                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8118       MachineMemOperand *MMO =
8119         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8120                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8121       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8122       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8123                                      DAG.getVTList(MVT::f64, MVT::Other),
8124                                      Ops, MVT::i32, MMO);
8125       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8126     } else if (((Subtarget.hasLFIWAX() &&
8127                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8128                 (Subtarget.hasFPCVT() &&
8129                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8130                SINT.getOperand(0).getValueType() == MVT::i32) {
8131       MachineFrameInfo &MFI = MF.getFrameInfo();
8132       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8133 
8134       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8135       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8136 
8137       SDValue Store =
8138           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8139                        MachinePointerInfo::getFixedStack(
8140                            DAG.getMachineFunction(), FrameIdx));
8141 
8142       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8143              "Expected an i32 store");
8144 
8145       RLI.Ptr = FIdx;
8146       RLI.Chain = Store;
8147       RLI.MPI =
8148           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8149       RLI.Alignment = 4;
8150 
8151       MachineMemOperand *MMO =
8152         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8153                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8154       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8155       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8156                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8157                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8158                                      Ops, MVT::i32, MMO);
8159     } else
8160       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8161 
8162     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8163 
8164     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8165       FP = DAG.getNode(ISD::FP_ROUND, dl,
8166                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8167     return FP;
8168   }
8169 
8170   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8171          "Unhandled INT_TO_FP type in custom expander!");
8172   // Since we only generate this in 64-bit mode, we can take advantage of
8173   // 64-bit registers.  In particular, sign extend the input value into the
8174   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8175   // then lfd it and fcfid it.
8176   MachineFunction &MF = DAG.getMachineFunction();
8177   MachineFrameInfo &MFI = MF.getFrameInfo();
8178   EVT PtrVT = getPointerTy(MF.getDataLayout());
8179 
8180   SDValue Ld;
8181   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8182     ReuseLoadInfo RLI;
8183     bool ReusingLoad;
8184     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8185                                             DAG))) {
8186       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8187       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8188 
8189       SDValue Store =
8190           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8191                        MachinePointerInfo::getFixedStack(
8192                            DAG.getMachineFunction(), FrameIdx));
8193 
8194       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8195              "Expected an i32 store");
8196 
8197       RLI.Ptr = FIdx;
8198       RLI.Chain = Store;
8199       RLI.MPI =
8200           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8201       RLI.Alignment = 4;
8202     }
8203 
8204     MachineMemOperand *MMO =
8205       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8206                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8207     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8208     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8209                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8210                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8211                                  Ops, MVT::i32, MMO);
8212     if (ReusingLoad)
8213       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8214   } else {
8215     assert(Subtarget.isPPC64() &&
8216            "i32->FP without LFIWAX supported only on PPC64");
8217 
8218     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8219     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8220 
8221     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8222                                 Op.getOperand(0));
8223 
8224     // STD the extended value into the stack slot.
8225     SDValue Store = DAG.getStore(
8226         DAG.getEntryNode(), dl, Ext64, FIdx,
8227         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8228 
8229     // Load the value as a double.
8230     Ld = DAG.getLoad(
8231         MVT::f64, dl, Store, FIdx,
8232         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8233   }
8234 
8235   // FCFID it and return it.
8236   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8237   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8238     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8239                      DAG.getIntPtrConstant(0, dl));
8240   return FP;
8241 }
8242 
8243 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8244                                             SelectionDAG &DAG) const {
8245   SDLoc dl(Op);
8246   /*
8247    The rounding mode is in bits 30:31 of FPSR, and has the following
8248    settings:
8249      00 Round to nearest
8250      01 Round to 0
8251      10 Round to +inf
8252      11 Round to -inf
8253 
8254   FLT_ROUNDS, on the other hand, expects the following:
8255     -1 Undefined
8256      0 Round to 0
8257      1 Round to nearest
8258      2 Round to +inf
8259      3 Round to -inf
8260 
8261   To perform the conversion, we do:
8262     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8263   */
8264 
8265   MachineFunction &MF = DAG.getMachineFunction();
8266   EVT VT = Op.getValueType();
8267   EVT PtrVT = getPointerTy(MF.getDataLayout());
8268 
8269   // Save FP Control Word to register
8270   EVT NodeTys[] = {
8271     MVT::f64,    // return register
8272     MVT::Glue    // unused in this context
8273   };
8274   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
8275 
8276   // Save FP register to stack slot
8277   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8278   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8279   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
8280                                MachinePointerInfo());
8281 
8282   // Load FP Control Word from low 32 bits of stack slot.
8283   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8284   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8285   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
8286 
8287   // Transform as necessary
8288   SDValue CWD1 =
8289     DAG.getNode(ISD::AND, dl, MVT::i32,
8290                 CWD, DAG.getConstant(3, dl, MVT::i32));
8291   SDValue CWD2 =
8292     DAG.getNode(ISD::SRL, dl, MVT::i32,
8293                 DAG.getNode(ISD::AND, dl, MVT::i32,
8294                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8295                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8296                             DAG.getConstant(3, dl, MVT::i32)),
8297                 DAG.getConstant(1, dl, MVT::i32));
8298 
8299   SDValue RetVal =
8300     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8301 
8302   return DAG.getNode((VT.getSizeInBits() < 16 ?
8303                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8304 }
8305 
8306 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8307   EVT VT = Op.getValueType();
8308   unsigned BitWidth = VT.getSizeInBits();
8309   SDLoc dl(Op);
8310   assert(Op.getNumOperands() == 3 &&
8311          VT == Op.getOperand(1).getValueType() &&
8312          "Unexpected SHL!");
8313 
8314   // Expand into a bunch of logical ops.  Note that these ops
8315   // depend on the PPC behavior for oversized shift amounts.
8316   SDValue Lo = Op.getOperand(0);
8317   SDValue Hi = Op.getOperand(1);
8318   SDValue Amt = Op.getOperand(2);
8319   EVT AmtVT = Amt.getValueType();
8320 
8321   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8322                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8323   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8324   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8325   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8326   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8327                              DAG.getConstant(-BitWidth, dl, AmtVT));
8328   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8329   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8330   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8331   SDValue OutOps[] = { OutLo, OutHi };
8332   return DAG.getMergeValues(OutOps, dl);
8333 }
8334 
8335 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8336   EVT VT = Op.getValueType();
8337   SDLoc dl(Op);
8338   unsigned BitWidth = VT.getSizeInBits();
8339   assert(Op.getNumOperands() == 3 &&
8340          VT == Op.getOperand(1).getValueType() &&
8341          "Unexpected SRL!");
8342 
8343   // Expand into a bunch of logical ops.  Note that these ops
8344   // depend on the PPC behavior for oversized shift amounts.
8345   SDValue Lo = Op.getOperand(0);
8346   SDValue Hi = Op.getOperand(1);
8347   SDValue Amt = Op.getOperand(2);
8348   EVT AmtVT = Amt.getValueType();
8349 
8350   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8351                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8352   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8353   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8354   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8355   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8356                              DAG.getConstant(-BitWidth, dl, AmtVT));
8357   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8358   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8359   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8360   SDValue OutOps[] = { OutLo, OutHi };
8361   return DAG.getMergeValues(OutOps, dl);
8362 }
8363 
8364 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8365   SDLoc dl(Op);
8366   EVT VT = Op.getValueType();
8367   unsigned BitWidth = VT.getSizeInBits();
8368   assert(Op.getNumOperands() == 3 &&
8369          VT == Op.getOperand(1).getValueType() &&
8370          "Unexpected SRA!");
8371 
8372   // Expand into a bunch of logical ops, followed by a select_cc.
8373   SDValue Lo = Op.getOperand(0);
8374   SDValue Hi = Op.getOperand(1);
8375   SDValue Amt = Op.getOperand(2);
8376   EVT AmtVT = Amt.getValueType();
8377 
8378   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8379                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8380   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8381   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8382   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8383   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8384                              DAG.getConstant(-BitWidth, dl, AmtVT));
8385   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8386   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8387   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8388                                   Tmp4, Tmp6, ISD::SETLE);
8389   SDValue OutOps[] = { OutLo, OutHi };
8390   return DAG.getMergeValues(OutOps, dl);
8391 }
8392 
8393 //===----------------------------------------------------------------------===//
8394 // Vector related lowering.
8395 //
8396 
8397 /// BuildSplatI - Build a canonical splati of Val with an element size of
8398 /// SplatSize.  Cast the result to VT.
8399 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8400                            SelectionDAG &DAG, const SDLoc &dl) {
8401   static const MVT VTys[] = { // canonical VT to use for each size.
8402     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8403   };
8404 
8405   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8406 
8407   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8408   if (Val == -1)
8409     SplatSize = 1;
8410 
8411   EVT CanonicalVT = VTys[SplatSize-1];
8412 
8413   // Build a canonical splat for this value.
8414   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8415 }
8416 
8417 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8418 /// specified intrinsic ID.
8419 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8420                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8421   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8422   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8423                      DAG.getConstant(IID, dl, MVT::i32), Op);
8424 }
8425 
8426 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8427 /// specified intrinsic ID.
8428 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8429                                 SelectionDAG &DAG, const SDLoc &dl,
8430                                 EVT DestVT = MVT::Other) {
8431   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8432   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8433                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8434 }
8435 
8436 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8437 /// specified intrinsic ID.
8438 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8439                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8440                                 EVT DestVT = MVT::Other) {
8441   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8442   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8443                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8444 }
8445 
8446 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8447 /// amount.  The result has the specified value type.
8448 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8449                            SelectionDAG &DAG, const SDLoc &dl) {
8450   // Force LHS/RHS to be the right type.
8451   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8452   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8453 
8454   int Ops[16];
8455   for (unsigned i = 0; i != 16; ++i)
8456     Ops[i] = i + Amt;
8457   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8458   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8459 }
8460 
8461 /// Do we have an efficient pattern in a .td file for this node?
8462 ///
8463 /// \param V - pointer to the BuildVectorSDNode being matched
8464 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8465 ///
8466 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8467 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8468 /// the opposite is true (expansion is beneficial) are:
8469 /// - The node builds a vector out of integers that are not 32 or 64-bits
8470 /// - The node builds a vector out of constants
8471 /// - The node is a "load-and-splat"
8472 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8473 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8474                                             bool HasDirectMove,
8475                                             bool HasP8Vector) {
8476   EVT VecVT = V->getValueType(0);
8477   bool RightType = VecVT == MVT::v2f64 ||
8478     (HasP8Vector && VecVT == MVT::v4f32) ||
8479     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8480   if (!RightType)
8481     return false;
8482 
8483   bool IsSplat = true;
8484   bool IsLoad = false;
8485   SDValue Op0 = V->getOperand(0);
8486 
8487   // This function is called in a block that confirms the node is not a constant
8488   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8489   // different constants.
8490   if (V->isConstant())
8491     return false;
8492   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8493     if (V->getOperand(i).isUndef())
8494       return false;
8495     // We want to expand nodes that represent load-and-splat even if the
8496     // loaded value is a floating point truncation or conversion to int.
8497     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8498         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8499          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8500         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8501          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8502         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8503          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8504       IsLoad = true;
8505     // If the operands are different or the input is not a load and has more
8506     // uses than just this BV node, then it isn't a splat.
8507     if (V->getOperand(i) != Op0 ||
8508         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8509       IsSplat = false;
8510   }
8511   return !(IsSplat && IsLoad);
8512 }
8513 
8514 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8515 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8516 
8517   SDLoc dl(Op);
8518   SDValue Op0 = Op->getOperand(0);
8519 
8520   if (!EnableQuadPrecision ||
8521       (Op.getValueType() != MVT::f128 ) ||
8522       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8523       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8524       (Op0.getOperand(1).getValueType() != MVT::i64))
8525     return SDValue();
8526 
8527   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8528                      Op0.getOperand(1));
8529 }
8530 
8531 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8532   const SDValue *InputLoad = &Op;
8533   if (InputLoad->getOpcode() == ISD::BITCAST)
8534     InputLoad = &InputLoad->getOperand(0);
8535   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8536     InputLoad = &InputLoad->getOperand(0);
8537   if (InputLoad->getOpcode() != ISD::LOAD)
8538     return nullptr;
8539   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8540   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8541 }
8542 
8543 // If this is a case we can't handle, return null and let the default
8544 // expansion code take care of it.  If we CAN select this case, and if it
8545 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8546 // this case more efficiently than a constant pool load, lower it to the
8547 // sequence of ops that should be used.
8548 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8549                                              SelectionDAG &DAG) const {
8550   SDLoc dl(Op);
8551   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8552   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8553 
8554   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8555     // We first build an i32 vector, load it into a QPX register,
8556     // then convert it to a floating-point vector and compare it
8557     // to a zero vector to get the boolean result.
8558     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8559     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8560     MachinePointerInfo PtrInfo =
8561         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8562     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8563     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8564 
8565     assert(BVN->getNumOperands() == 4 &&
8566       "BUILD_VECTOR for v4i1 does not have 4 operands");
8567 
8568     bool IsConst = true;
8569     for (unsigned i = 0; i < 4; ++i) {
8570       if (BVN->getOperand(i).isUndef()) continue;
8571       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8572         IsConst = false;
8573         break;
8574       }
8575     }
8576 
8577     if (IsConst) {
8578       Constant *One =
8579         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8580       Constant *NegOne =
8581         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8582 
8583       Constant *CV[4];
8584       for (unsigned i = 0; i < 4; ++i) {
8585         if (BVN->getOperand(i).isUndef())
8586           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8587         else if (isNullConstant(BVN->getOperand(i)))
8588           CV[i] = NegOne;
8589         else
8590           CV[i] = One;
8591       }
8592 
8593       Constant *CP = ConstantVector::get(CV);
8594       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8595                                           16 /* alignment */);
8596 
8597       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8598       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8599       return DAG.getMemIntrinsicNode(
8600           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8601           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8602     }
8603 
8604     SmallVector<SDValue, 4> Stores;
8605     for (unsigned i = 0; i < 4; ++i) {
8606       if (BVN->getOperand(i).isUndef()) continue;
8607 
8608       unsigned Offset = 4*i;
8609       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8610       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8611 
8612       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8613       if (StoreSize > 4) {
8614         Stores.push_back(
8615             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8616                               PtrInfo.getWithOffset(Offset), MVT::i32));
8617       } else {
8618         SDValue StoreValue = BVN->getOperand(i);
8619         if (StoreSize < 4)
8620           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8621 
8622         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8623                                       PtrInfo.getWithOffset(Offset)));
8624       }
8625     }
8626 
8627     SDValue StoreChain;
8628     if (!Stores.empty())
8629       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8630     else
8631       StoreChain = DAG.getEntryNode();
8632 
8633     // Now load from v4i32 into the QPX register; this will extend it to
8634     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8635     // is typed as v4f64 because the QPX register integer states are not
8636     // explicitly represented.
8637 
8638     SDValue Ops[] = {StoreChain,
8639                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8640                      FIdx};
8641     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8642 
8643     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8644       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8645     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8646       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8647       LoadedVect);
8648 
8649     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8650 
8651     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8652   }
8653 
8654   // All other QPX vectors are handled by generic code.
8655   if (Subtarget.hasQPX())
8656     return SDValue();
8657 
8658   // Check if this is a splat of a constant value.
8659   APInt APSplatBits, APSplatUndef;
8660   unsigned SplatBitSize;
8661   bool HasAnyUndefs;
8662   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8663                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8664       SplatBitSize > 32) {
8665 
8666     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8667     // Handle load-and-splat patterns as we have instructions that will do this
8668     // in one go.
8669     if (InputLoad && DAG.isSplatValue(Op, true)) {
8670       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8671 
8672       // We have handling for 4 and 8 byte elements.
8673       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8674 
8675       // Checking for a single use of this load, we have to check for vector
8676       // width (128 bits) / ElementSize uses (since each operand of the
8677       // BUILD_VECTOR is a separate use of the value.
8678       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8679           ((Subtarget.hasVSX() && ElementSize == 64) ||
8680            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8681         SDValue Ops[] = {
8682           LD->getChain(),    // Chain
8683           LD->getBasePtr(),  // Ptr
8684           DAG.getValueType(Op.getValueType()) // VT
8685         };
8686         return
8687           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8688                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8689                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8690       }
8691     }
8692 
8693     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8694     // lowered to VSX instructions under certain conditions.
8695     // Without VSX, there is no pattern more efficient than expanding the node.
8696     if (Subtarget.hasVSX() &&
8697         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8698                                         Subtarget.hasP8Vector()))
8699       return Op;
8700     return SDValue();
8701   }
8702 
8703   unsigned SplatBits = APSplatBits.getZExtValue();
8704   unsigned SplatUndef = APSplatUndef.getZExtValue();
8705   unsigned SplatSize = SplatBitSize / 8;
8706 
8707   // First, handle single instruction cases.
8708 
8709   // All zeros?
8710   if (SplatBits == 0) {
8711     // Canonicalize all zero vectors to be v4i32.
8712     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8713       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8714       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8715     }
8716     return Op;
8717   }
8718 
8719   // We have XXSPLTIB for constant splats one byte wide
8720   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8721   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8722   if (Subtarget.hasP9Vector() && SplatSize == 1)
8723     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8724 
8725   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8726   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8727                     (32-SplatBitSize));
8728   if (SextVal >= -16 && SextVal <= 15)
8729     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8730 
8731   // Two instruction sequences.
8732 
8733   // If this value is in the range [-32,30] and is even, use:
8734   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8735   // If this value is in the range [17,31] and is odd, use:
8736   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8737   // If this value is in the range [-31,-17] and is odd, use:
8738   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8739   // Note the last two are three-instruction sequences.
8740   if (SextVal >= -32 && SextVal <= 31) {
8741     // To avoid having these optimizations undone by constant folding,
8742     // we convert to a pseudo that will be expanded later into one of
8743     // the above forms.
8744     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8745     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8746               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8747     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8748     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8749     if (VT == Op.getValueType())
8750       return RetVal;
8751     else
8752       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8753   }
8754 
8755   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8756   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8757   // for fneg/fabs.
8758   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8759     // Make -1 and vspltisw -1:
8760     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8761 
8762     // Make the VSLW intrinsic, computing 0x8000_0000.
8763     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8764                                    OnesV, DAG, dl);
8765 
8766     // xor by OnesV to invert it.
8767     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8768     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8769   }
8770 
8771   // Check to see if this is a wide variety of vsplti*, binop self cases.
8772   static const signed char SplatCsts[] = {
8773     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8774     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8775   };
8776 
8777   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8778     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8779     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8780     int i = SplatCsts[idx];
8781 
8782     // Figure out what shift amount will be used by altivec if shifted by i in
8783     // this splat size.
8784     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8785 
8786     // vsplti + shl self.
8787     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8788       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8789       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8790         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8791         Intrinsic::ppc_altivec_vslw
8792       };
8793       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8794       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8795     }
8796 
8797     // vsplti + srl self.
8798     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8799       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8800       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8801         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8802         Intrinsic::ppc_altivec_vsrw
8803       };
8804       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8805       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8806     }
8807 
8808     // vsplti + sra self.
8809     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8810       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8811       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8812         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8813         Intrinsic::ppc_altivec_vsraw
8814       };
8815       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8816       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8817     }
8818 
8819     // vsplti + rol self.
8820     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8821                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8822       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8823       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8824         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8825         Intrinsic::ppc_altivec_vrlw
8826       };
8827       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8828       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8829     }
8830 
8831     // t = vsplti c, result = vsldoi t, t, 1
8832     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8833       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8834       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8835       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8836     }
8837     // t = vsplti c, result = vsldoi t, t, 2
8838     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8839       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8840       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8841       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8842     }
8843     // t = vsplti c, result = vsldoi t, t, 3
8844     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8845       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8846       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8847       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8848     }
8849   }
8850 
8851   return SDValue();
8852 }
8853 
8854 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8855 /// the specified operations to build the shuffle.
8856 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8857                                       SDValue RHS, SelectionDAG &DAG,
8858                                       const SDLoc &dl) {
8859   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8860   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8861   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8862 
8863   enum {
8864     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8865     OP_VMRGHW,
8866     OP_VMRGLW,
8867     OP_VSPLTISW0,
8868     OP_VSPLTISW1,
8869     OP_VSPLTISW2,
8870     OP_VSPLTISW3,
8871     OP_VSLDOI4,
8872     OP_VSLDOI8,
8873     OP_VSLDOI12
8874   };
8875 
8876   if (OpNum == OP_COPY) {
8877     if (LHSID == (1*9+2)*9+3) return LHS;
8878     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8879     return RHS;
8880   }
8881 
8882   SDValue OpLHS, OpRHS;
8883   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8884   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8885 
8886   int ShufIdxs[16];
8887   switch (OpNum) {
8888   default: llvm_unreachable("Unknown i32 permute!");
8889   case OP_VMRGHW:
8890     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8891     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8892     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8893     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8894     break;
8895   case OP_VMRGLW:
8896     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8897     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8898     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8899     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8900     break;
8901   case OP_VSPLTISW0:
8902     for (unsigned i = 0; i != 16; ++i)
8903       ShufIdxs[i] = (i&3)+0;
8904     break;
8905   case OP_VSPLTISW1:
8906     for (unsigned i = 0; i != 16; ++i)
8907       ShufIdxs[i] = (i&3)+4;
8908     break;
8909   case OP_VSPLTISW2:
8910     for (unsigned i = 0; i != 16; ++i)
8911       ShufIdxs[i] = (i&3)+8;
8912     break;
8913   case OP_VSPLTISW3:
8914     for (unsigned i = 0; i != 16; ++i)
8915       ShufIdxs[i] = (i&3)+12;
8916     break;
8917   case OP_VSLDOI4:
8918     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8919   case OP_VSLDOI8:
8920     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8921   case OP_VSLDOI12:
8922     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8923   }
8924   EVT VT = OpLHS.getValueType();
8925   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8926   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8927   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8928   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8929 }
8930 
8931 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8932 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8933 /// SDValue.
8934 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8935                                            SelectionDAG &DAG) const {
8936   const unsigned BytesInVector = 16;
8937   bool IsLE = Subtarget.isLittleEndian();
8938   SDLoc dl(N);
8939   SDValue V1 = N->getOperand(0);
8940   SDValue V2 = N->getOperand(1);
8941   unsigned ShiftElts = 0, InsertAtByte = 0;
8942   bool Swap = false;
8943 
8944   // Shifts required to get the byte we want at element 7.
8945   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8946                                    0, 15, 14, 13, 12, 11, 10, 9};
8947   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8948                                 1, 2,  3,  4,  5,  6,  7,  8};
8949 
8950   ArrayRef<int> Mask = N->getMask();
8951   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8952 
8953   // For each mask element, find out if we're just inserting something
8954   // from V2 into V1 or vice versa.
8955   // Possible permutations inserting an element from V2 into V1:
8956   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8957   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8958   //   ...
8959   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8960   // Inserting from V1 into V2 will be similar, except mask range will be
8961   // [16,31].
8962 
8963   bool FoundCandidate = false;
8964   // If both vector operands for the shuffle are the same vector, the mask
8965   // will contain only elements from the first one and the second one will be
8966   // undef.
8967   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8968   // Go through the mask of half-words to find an element that's being moved
8969   // from one vector to the other.
8970   for (unsigned i = 0; i < BytesInVector; ++i) {
8971     unsigned CurrentElement = Mask[i];
8972     // If 2nd operand is undefined, we should only look for element 7 in the
8973     // Mask.
8974     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8975       continue;
8976 
8977     bool OtherElementsInOrder = true;
8978     // Examine the other elements in the Mask to see if they're in original
8979     // order.
8980     for (unsigned j = 0; j < BytesInVector; ++j) {
8981       if (j == i)
8982         continue;
8983       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8984       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8985       // in which we always assume we're always picking from the 1st operand.
8986       int MaskOffset =
8987           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8988       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8989         OtherElementsInOrder = false;
8990         break;
8991       }
8992     }
8993     // If other elements are in original order, we record the number of shifts
8994     // we need to get the element we want into element 7. Also record which byte
8995     // in the vector we should insert into.
8996     if (OtherElementsInOrder) {
8997       // If 2nd operand is undefined, we assume no shifts and no swapping.
8998       if (V2.isUndef()) {
8999         ShiftElts = 0;
9000         Swap = false;
9001       } else {
9002         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9003         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9004                          : BigEndianShifts[CurrentElement & 0xF];
9005         Swap = CurrentElement < BytesInVector;
9006       }
9007       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9008       FoundCandidate = true;
9009       break;
9010     }
9011   }
9012 
9013   if (!FoundCandidate)
9014     return SDValue();
9015 
9016   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9017   // optionally with VECSHL if shift is required.
9018   if (Swap)
9019     std::swap(V1, V2);
9020   if (V2.isUndef())
9021     V2 = V1;
9022   if (ShiftElts) {
9023     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9024                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9025     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9026                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9027   }
9028   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9029                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9030 }
9031 
9032 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9033 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9034 /// SDValue.
9035 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9036                                            SelectionDAG &DAG) const {
9037   const unsigned NumHalfWords = 8;
9038   const unsigned BytesInVector = NumHalfWords * 2;
9039   // Check that the shuffle is on half-words.
9040   if (!isNByteElemShuffleMask(N, 2, 1))
9041     return SDValue();
9042 
9043   bool IsLE = Subtarget.isLittleEndian();
9044   SDLoc dl(N);
9045   SDValue V1 = N->getOperand(0);
9046   SDValue V2 = N->getOperand(1);
9047   unsigned ShiftElts = 0, InsertAtByte = 0;
9048   bool Swap = false;
9049 
9050   // Shifts required to get the half-word we want at element 3.
9051   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9052   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9053 
9054   uint32_t Mask = 0;
9055   uint32_t OriginalOrderLow = 0x1234567;
9056   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9057   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9058   // 32-bit space, only need 4-bit nibbles per element.
9059   for (unsigned i = 0; i < NumHalfWords; ++i) {
9060     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9061     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9062   }
9063 
9064   // For each mask element, find out if we're just inserting something
9065   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9066   // from V2 into V1:
9067   //   X, 1, 2, 3, 4, 5, 6, 7
9068   //   0, X, 2, 3, 4, 5, 6, 7
9069   //   0, 1, X, 3, 4, 5, 6, 7
9070   //   0, 1, 2, X, 4, 5, 6, 7
9071   //   0, 1, 2, 3, X, 5, 6, 7
9072   //   0, 1, 2, 3, 4, X, 6, 7
9073   //   0, 1, 2, 3, 4, 5, X, 7
9074   //   0, 1, 2, 3, 4, 5, 6, X
9075   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9076 
9077   bool FoundCandidate = false;
9078   // Go through the mask of half-words to find an element that's being moved
9079   // from one vector to the other.
9080   for (unsigned i = 0; i < NumHalfWords; ++i) {
9081     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9082     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9083     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9084     uint32_t TargetOrder = 0x0;
9085 
9086     // If both vector operands for the shuffle are the same vector, the mask
9087     // will contain only elements from the first one and the second one will be
9088     // undef.
9089     if (V2.isUndef()) {
9090       ShiftElts = 0;
9091       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9092       TargetOrder = OriginalOrderLow;
9093       Swap = false;
9094       // Skip if not the correct element or mask of other elements don't equal
9095       // to our expected order.
9096       if (MaskOneElt == VINSERTHSrcElem &&
9097           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9098         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9099         FoundCandidate = true;
9100         break;
9101       }
9102     } else { // If both operands are defined.
9103       // Target order is [8,15] if the current mask is between [0,7].
9104       TargetOrder =
9105           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9106       // Skip if mask of other elements don't equal our expected order.
9107       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9108         // We only need the last 3 bits for the number of shifts.
9109         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9110                          : BigEndianShifts[MaskOneElt & 0x7];
9111         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9112         Swap = MaskOneElt < NumHalfWords;
9113         FoundCandidate = true;
9114         break;
9115       }
9116     }
9117   }
9118 
9119   if (!FoundCandidate)
9120     return SDValue();
9121 
9122   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9123   // optionally with VECSHL if shift is required.
9124   if (Swap)
9125     std::swap(V1, V2);
9126   if (V2.isUndef())
9127     V2 = V1;
9128   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9129   if (ShiftElts) {
9130     // Double ShiftElts because we're left shifting on v16i8 type.
9131     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9132                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9133     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9134     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9135                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9136     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9137   }
9138   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9139   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9140                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9141   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9142 }
9143 
9144 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9145 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9146 /// return the code it can be lowered into.  Worst case, it can always be
9147 /// lowered into a vperm.
9148 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9149                                                SelectionDAG &DAG) const {
9150   SDLoc dl(Op);
9151   SDValue V1 = Op.getOperand(0);
9152   SDValue V2 = Op.getOperand(1);
9153   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9154   EVT VT = Op.getValueType();
9155   bool isLittleEndian = Subtarget.isLittleEndian();
9156 
9157   unsigned ShiftElts, InsertAtByte;
9158   bool Swap = false;
9159 
9160   // If this is a load-and-splat, we can do that with a single instruction
9161   // in some cases. However if the load has multiple uses, we don't want to
9162   // combine it because that will just produce multiple loads.
9163   const SDValue *InputLoad = getNormalLoadInput(V1);
9164   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9165       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9166       InputLoad->hasOneUse()) {
9167     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9168     int SplatIdx =
9169       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9170 
9171     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9172     // For 4-byte load-and-splat, we need Power9.
9173     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9174       uint64_t Offset = 0;
9175       if (IsFourByte)
9176         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9177       else
9178         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9179       SDValue BasePtr = LD->getBasePtr();
9180       if (Offset != 0)
9181         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9182                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9183       SDValue Ops[] = {
9184         LD->getChain(),    // Chain
9185         BasePtr,           // BasePtr
9186         DAG.getValueType(Op.getValueType()) // VT
9187       };
9188       SDVTList VTL =
9189         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9190       SDValue LdSplt =
9191         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9192                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9193       if (LdSplt.getValueType() != SVOp->getValueType(0))
9194         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9195       return LdSplt;
9196     }
9197   }
9198   if (Subtarget.hasP9Vector() &&
9199       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9200                            isLittleEndian)) {
9201     if (Swap)
9202       std::swap(V1, V2);
9203     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9204     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9205     if (ShiftElts) {
9206       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9207                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9208       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9209                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9210       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9211     }
9212     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9213                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9214     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9215   }
9216 
9217   if (Subtarget.hasP9Altivec()) {
9218     SDValue NewISDNode;
9219     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9220       return NewISDNode;
9221 
9222     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9223       return NewISDNode;
9224   }
9225 
9226   if (Subtarget.hasVSX() &&
9227       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9228     if (Swap)
9229       std::swap(V1, V2);
9230     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9231     SDValue Conv2 =
9232         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9233 
9234     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9235                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9236     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9237   }
9238 
9239   if (Subtarget.hasVSX() &&
9240     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9241     if (Swap)
9242       std::swap(V1, V2);
9243     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9244     SDValue Conv2 =
9245         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9246 
9247     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9248                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9249     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9250   }
9251 
9252   if (Subtarget.hasP9Vector()) {
9253      if (PPC::isXXBRHShuffleMask(SVOp)) {
9254       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9255       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9256       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9257     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9258       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9259       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9260       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9261     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9262       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9263       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9264       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9265     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9266       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9267       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9268       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9269     }
9270   }
9271 
9272   if (Subtarget.hasVSX()) {
9273     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9274       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9275 
9276       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9277       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9278                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9279       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9280     }
9281 
9282     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9283     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9284       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9285       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9286       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9287     }
9288   }
9289 
9290   if (Subtarget.hasQPX()) {
9291     if (VT.getVectorNumElements() != 4)
9292       return SDValue();
9293 
9294     if (V2.isUndef()) V2 = V1;
9295 
9296     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9297     if (AlignIdx != -1) {
9298       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9299                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9300     } else if (SVOp->isSplat()) {
9301       int SplatIdx = SVOp->getSplatIndex();
9302       if (SplatIdx >= 4) {
9303         std::swap(V1, V2);
9304         SplatIdx -= 4;
9305       }
9306 
9307       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9308                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9309     }
9310 
9311     // Lower this into a qvgpci/qvfperm pair.
9312 
9313     // Compute the qvgpci literal
9314     unsigned idx = 0;
9315     for (unsigned i = 0; i < 4; ++i) {
9316       int m = SVOp->getMaskElt(i);
9317       unsigned mm = m >= 0 ? (unsigned) m : i;
9318       idx |= mm << (3-i)*3;
9319     }
9320 
9321     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9322                              DAG.getConstant(idx, dl, MVT::i32));
9323     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9324   }
9325 
9326   // Cases that are handled by instructions that take permute immediates
9327   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9328   // selected by the instruction selector.
9329   if (V2.isUndef()) {
9330     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9331         PPC::isSplatShuffleMask(SVOp, 2) ||
9332         PPC::isSplatShuffleMask(SVOp, 4) ||
9333         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9334         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9335         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9336         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9337         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9338         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9339         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9340         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9341         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9342         (Subtarget.hasP8Altivec() && (
9343          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9344          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9345          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9346       return Op;
9347     }
9348   }
9349 
9350   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9351   // and produce a fixed permutation.  If any of these match, do not lower to
9352   // VPERM.
9353   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9354   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9355       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9356       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9357       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9358       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9359       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9360       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9361       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9362       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9363       (Subtarget.hasP8Altivec() && (
9364        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9365        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9366        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9367     return Op;
9368 
9369   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9370   // perfect shuffle table to emit an optimal matching sequence.
9371   ArrayRef<int> PermMask = SVOp->getMask();
9372 
9373   unsigned PFIndexes[4];
9374   bool isFourElementShuffle = true;
9375   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9376     unsigned EltNo = 8;   // Start out undef.
9377     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9378       if (PermMask[i*4+j] < 0)
9379         continue;   // Undef, ignore it.
9380 
9381       unsigned ByteSource = PermMask[i*4+j];
9382       if ((ByteSource & 3) != j) {
9383         isFourElementShuffle = false;
9384         break;
9385       }
9386 
9387       if (EltNo == 8) {
9388         EltNo = ByteSource/4;
9389       } else if (EltNo != ByteSource/4) {
9390         isFourElementShuffle = false;
9391         break;
9392       }
9393     }
9394     PFIndexes[i] = EltNo;
9395   }
9396 
9397   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9398   // perfect shuffle vector to determine if it is cost effective to do this as
9399   // discrete instructions, or whether we should use a vperm.
9400   // For now, we skip this for little endian until such time as we have a
9401   // little-endian perfect shuffle table.
9402   if (isFourElementShuffle && !isLittleEndian) {
9403     // Compute the index in the perfect shuffle table.
9404     unsigned PFTableIndex =
9405       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9406 
9407     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9408     unsigned Cost  = (PFEntry >> 30);
9409 
9410     // Determining when to avoid vperm is tricky.  Many things affect the cost
9411     // of vperm, particularly how many times the perm mask needs to be computed.
9412     // For example, if the perm mask can be hoisted out of a loop or is already
9413     // used (perhaps because there are multiple permutes with the same shuffle
9414     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9415     // the loop requires an extra register.
9416     //
9417     // As a compromise, we only emit discrete instructions if the shuffle can be
9418     // generated in 3 or fewer operations.  When we have loop information
9419     // available, if this block is within a loop, we should avoid using vperm
9420     // for 3-operation perms and use a constant pool load instead.
9421     if (Cost < 3)
9422       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9423   }
9424 
9425   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9426   // vector that will get spilled to the constant pool.
9427   if (V2.isUndef()) V2 = V1;
9428 
9429   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9430   // that it is in input element units, not in bytes.  Convert now.
9431 
9432   // For little endian, the order of the input vectors is reversed, and
9433   // the permutation mask is complemented with respect to 31.  This is
9434   // necessary to produce proper semantics with the big-endian-biased vperm
9435   // instruction.
9436   EVT EltVT = V1.getValueType().getVectorElementType();
9437   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9438 
9439   SmallVector<SDValue, 16> ResultMask;
9440   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9441     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9442 
9443     for (unsigned j = 0; j != BytesPerElement; ++j)
9444       if (isLittleEndian)
9445         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9446                                              dl, MVT::i32));
9447       else
9448         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9449                                              MVT::i32));
9450   }
9451 
9452   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9453   if (isLittleEndian)
9454     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9455                        V2, V1, VPermMask);
9456   else
9457     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9458                        V1, V2, VPermMask);
9459 }
9460 
9461 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9462 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9463 /// information about the intrinsic.
9464 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9465                                  bool &isDot, const PPCSubtarget &Subtarget) {
9466   unsigned IntrinsicID =
9467       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9468   CompareOpc = -1;
9469   isDot = false;
9470   switch (IntrinsicID) {
9471   default:
9472     return false;
9473   // Comparison predicates.
9474   case Intrinsic::ppc_altivec_vcmpbfp_p:
9475     CompareOpc = 966;
9476     isDot = true;
9477     break;
9478   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9479     CompareOpc = 198;
9480     isDot = true;
9481     break;
9482   case Intrinsic::ppc_altivec_vcmpequb_p:
9483     CompareOpc = 6;
9484     isDot = true;
9485     break;
9486   case Intrinsic::ppc_altivec_vcmpequh_p:
9487     CompareOpc = 70;
9488     isDot = true;
9489     break;
9490   case Intrinsic::ppc_altivec_vcmpequw_p:
9491     CompareOpc = 134;
9492     isDot = true;
9493     break;
9494   case Intrinsic::ppc_altivec_vcmpequd_p:
9495     if (Subtarget.hasP8Altivec()) {
9496       CompareOpc = 199;
9497       isDot = true;
9498     } else
9499       return false;
9500     break;
9501   case Intrinsic::ppc_altivec_vcmpneb_p:
9502   case Intrinsic::ppc_altivec_vcmpneh_p:
9503   case Intrinsic::ppc_altivec_vcmpnew_p:
9504   case Intrinsic::ppc_altivec_vcmpnezb_p:
9505   case Intrinsic::ppc_altivec_vcmpnezh_p:
9506   case Intrinsic::ppc_altivec_vcmpnezw_p:
9507     if (Subtarget.hasP9Altivec()) {
9508       switch (IntrinsicID) {
9509       default:
9510         llvm_unreachable("Unknown comparison intrinsic.");
9511       case Intrinsic::ppc_altivec_vcmpneb_p:
9512         CompareOpc = 7;
9513         break;
9514       case Intrinsic::ppc_altivec_vcmpneh_p:
9515         CompareOpc = 71;
9516         break;
9517       case Intrinsic::ppc_altivec_vcmpnew_p:
9518         CompareOpc = 135;
9519         break;
9520       case Intrinsic::ppc_altivec_vcmpnezb_p:
9521         CompareOpc = 263;
9522         break;
9523       case Intrinsic::ppc_altivec_vcmpnezh_p:
9524         CompareOpc = 327;
9525         break;
9526       case Intrinsic::ppc_altivec_vcmpnezw_p:
9527         CompareOpc = 391;
9528         break;
9529       }
9530       isDot = true;
9531     } else
9532       return false;
9533     break;
9534   case Intrinsic::ppc_altivec_vcmpgefp_p:
9535     CompareOpc = 454;
9536     isDot = true;
9537     break;
9538   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9539     CompareOpc = 710;
9540     isDot = true;
9541     break;
9542   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9543     CompareOpc = 774;
9544     isDot = true;
9545     break;
9546   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9547     CompareOpc = 838;
9548     isDot = true;
9549     break;
9550   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9551     CompareOpc = 902;
9552     isDot = true;
9553     break;
9554   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9555     if (Subtarget.hasP8Altivec()) {
9556       CompareOpc = 967;
9557       isDot = true;
9558     } else
9559       return false;
9560     break;
9561   case Intrinsic::ppc_altivec_vcmpgtub_p:
9562     CompareOpc = 518;
9563     isDot = true;
9564     break;
9565   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9566     CompareOpc = 582;
9567     isDot = true;
9568     break;
9569   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9570     CompareOpc = 646;
9571     isDot = true;
9572     break;
9573   case Intrinsic::ppc_altivec_vcmpgtud_p:
9574     if (Subtarget.hasP8Altivec()) {
9575       CompareOpc = 711;
9576       isDot = true;
9577     } else
9578       return false;
9579     break;
9580 
9581   // VSX predicate comparisons use the same infrastructure
9582   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9583   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9584   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9585   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9586   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9587   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9588     if (Subtarget.hasVSX()) {
9589       switch (IntrinsicID) {
9590       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9591         CompareOpc = 99;
9592         break;
9593       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9594         CompareOpc = 115;
9595         break;
9596       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9597         CompareOpc = 107;
9598         break;
9599       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9600         CompareOpc = 67;
9601         break;
9602       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9603         CompareOpc = 83;
9604         break;
9605       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9606         CompareOpc = 75;
9607         break;
9608       }
9609       isDot = true;
9610     } else
9611       return false;
9612     break;
9613 
9614   // Normal Comparisons.
9615   case Intrinsic::ppc_altivec_vcmpbfp:
9616     CompareOpc = 966;
9617     break;
9618   case Intrinsic::ppc_altivec_vcmpeqfp:
9619     CompareOpc = 198;
9620     break;
9621   case Intrinsic::ppc_altivec_vcmpequb:
9622     CompareOpc = 6;
9623     break;
9624   case Intrinsic::ppc_altivec_vcmpequh:
9625     CompareOpc = 70;
9626     break;
9627   case Intrinsic::ppc_altivec_vcmpequw:
9628     CompareOpc = 134;
9629     break;
9630   case Intrinsic::ppc_altivec_vcmpequd:
9631     if (Subtarget.hasP8Altivec())
9632       CompareOpc = 199;
9633     else
9634       return false;
9635     break;
9636   case Intrinsic::ppc_altivec_vcmpneb:
9637   case Intrinsic::ppc_altivec_vcmpneh:
9638   case Intrinsic::ppc_altivec_vcmpnew:
9639   case Intrinsic::ppc_altivec_vcmpnezb:
9640   case Intrinsic::ppc_altivec_vcmpnezh:
9641   case Intrinsic::ppc_altivec_vcmpnezw:
9642     if (Subtarget.hasP9Altivec())
9643       switch (IntrinsicID) {
9644       default:
9645         llvm_unreachable("Unknown comparison intrinsic.");
9646       case Intrinsic::ppc_altivec_vcmpneb:
9647         CompareOpc = 7;
9648         break;
9649       case Intrinsic::ppc_altivec_vcmpneh:
9650         CompareOpc = 71;
9651         break;
9652       case Intrinsic::ppc_altivec_vcmpnew:
9653         CompareOpc = 135;
9654         break;
9655       case Intrinsic::ppc_altivec_vcmpnezb:
9656         CompareOpc = 263;
9657         break;
9658       case Intrinsic::ppc_altivec_vcmpnezh:
9659         CompareOpc = 327;
9660         break;
9661       case Intrinsic::ppc_altivec_vcmpnezw:
9662         CompareOpc = 391;
9663         break;
9664       }
9665     else
9666       return false;
9667     break;
9668   case Intrinsic::ppc_altivec_vcmpgefp:
9669     CompareOpc = 454;
9670     break;
9671   case Intrinsic::ppc_altivec_vcmpgtfp:
9672     CompareOpc = 710;
9673     break;
9674   case Intrinsic::ppc_altivec_vcmpgtsb:
9675     CompareOpc = 774;
9676     break;
9677   case Intrinsic::ppc_altivec_vcmpgtsh:
9678     CompareOpc = 838;
9679     break;
9680   case Intrinsic::ppc_altivec_vcmpgtsw:
9681     CompareOpc = 902;
9682     break;
9683   case Intrinsic::ppc_altivec_vcmpgtsd:
9684     if (Subtarget.hasP8Altivec())
9685       CompareOpc = 967;
9686     else
9687       return false;
9688     break;
9689   case Intrinsic::ppc_altivec_vcmpgtub:
9690     CompareOpc = 518;
9691     break;
9692   case Intrinsic::ppc_altivec_vcmpgtuh:
9693     CompareOpc = 582;
9694     break;
9695   case Intrinsic::ppc_altivec_vcmpgtuw:
9696     CompareOpc = 646;
9697     break;
9698   case Intrinsic::ppc_altivec_vcmpgtud:
9699     if (Subtarget.hasP8Altivec())
9700       CompareOpc = 711;
9701     else
9702       return false;
9703     break;
9704   }
9705   return true;
9706 }
9707 
9708 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9709 /// lower, do it, otherwise return null.
9710 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9711                                                    SelectionDAG &DAG) const {
9712   unsigned IntrinsicID =
9713     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9714 
9715   SDLoc dl(Op);
9716 
9717   if (IntrinsicID == Intrinsic::thread_pointer) {
9718     // Reads the thread pointer register, used for __builtin_thread_pointer.
9719     if (Subtarget.isPPC64())
9720       return DAG.getRegister(PPC::X13, MVT::i64);
9721     return DAG.getRegister(PPC::R2, MVT::i32);
9722   }
9723 
9724   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9725   // opcode number of the comparison.
9726   int CompareOpc;
9727   bool isDot;
9728   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9729     return SDValue();    // Don't custom lower most intrinsics.
9730 
9731   // If this is a non-dot comparison, make the VCMP node and we are done.
9732   if (!isDot) {
9733     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9734                               Op.getOperand(1), Op.getOperand(2),
9735                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9736     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9737   }
9738 
9739   // Create the PPCISD altivec 'dot' comparison node.
9740   SDValue Ops[] = {
9741     Op.getOperand(2),  // LHS
9742     Op.getOperand(3),  // RHS
9743     DAG.getConstant(CompareOpc, dl, MVT::i32)
9744   };
9745   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9746   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9747 
9748   // Now that we have the comparison, emit a copy from the CR to a GPR.
9749   // This is flagged to the above dot comparison.
9750   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9751                                 DAG.getRegister(PPC::CR6, MVT::i32),
9752                                 CompNode.getValue(1));
9753 
9754   // Unpack the result based on how the target uses it.
9755   unsigned BitNo;   // Bit # of CR6.
9756   bool InvertBit;   // Invert result?
9757   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9758   default:  // Can't happen, don't crash on invalid number though.
9759   case 0:   // Return the value of the EQ bit of CR6.
9760     BitNo = 0; InvertBit = false;
9761     break;
9762   case 1:   // Return the inverted value of the EQ bit of CR6.
9763     BitNo = 0; InvertBit = true;
9764     break;
9765   case 2:   // Return the value of the LT bit of CR6.
9766     BitNo = 2; InvertBit = false;
9767     break;
9768   case 3:   // Return the inverted value of the LT bit of CR6.
9769     BitNo = 2; InvertBit = true;
9770     break;
9771   }
9772 
9773   // Shift the bit into the low position.
9774   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9775                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9776   // Isolate the bit.
9777   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9778                       DAG.getConstant(1, dl, MVT::i32));
9779 
9780   // If we are supposed to, toggle the bit.
9781   if (InvertBit)
9782     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9783                         DAG.getConstant(1, dl, MVT::i32));
9784   return Flags;
9785 }
9786 
9787 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9788                                                SelectionDAG &DAG) const {
9789   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9790   // the beginning of the argument list.
9791   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9792   SDLoc DL(Op);
9793   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9794   case Intrinsic::ppc_cfence: {
9795     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9796     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9797     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9798                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9799                                                   Op.getOperand(ArgStart + 1)),
9800                                       Op.getOperand(0)),
9801                    0);
9802   }
9803   default:
9804     break;
9805   }
9806   return SDValue();
9807 }
9808 
9809 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9810   // Check for a DIV with the same operands as this REM.
9811   for (auto UI : Op.getOperand(1)->uses()) {
9812     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9813         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9814       if (UI->getOperand(0) == Op.getOperand(0) &&
9815           UI->getOperand(1) == Op.getOperand(1))
9816         return SDValue();
9817   }
9818   return Op;
9819 }
9820 
9821 // Lower scalar BSWAP64 to xxbrd.
9822 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9823   SDLoc dl(Op);
9824   // MTVSRDD
9825   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9826                    Op.getOperand(0));
9827   // XXBRD
9828   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9829   // MFVSRD
9830   int VectorIndex = 0;
9831   if (Subtarget.isLittleEndian())
9832     VectorIndex = 1;
9833   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9834                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9835   return Op;
9836 }
9837 
9838 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9839 // compared to a value that is atomically loaded (atomic loads zero-extend).
9840 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9841                                                 SelectionDAG &DAG) const {
9842   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9843          "Expecting an atomic compare-and-swap here.");
9844   SDLoc dl(Op);
9845   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9846   EVT MemVT = AtomicNode->getMemoryVT();
9847   if (MemVT.getSizeInBits() >= 32)
9848     return Op;
9849 
9850   SDValue CmpOp = Op.getOperand(2);
9851   // If this is already correctly zero-extended, leave it alone.
9852   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9853   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9854     return Op;
9855 
9856   // Clear the high bits of the compare operand.
9857   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9858   SDValue NewCmpOp =
9859     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9860                 DAG.getConstant(MaskVal, dl, MVT::i32));
9861 
9862   // Replace the existing compare operand with the properly zero-extended one.
9863   SmallVector<SDValue, 4> Ops;
9864   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9865     Ops.push_back(AtomicNode->getOperand(i));
9866   Ops[2] = NewCmpOp;
9867   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9868   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9869   auto NodeTy =
9870     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9871   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9872 }
9873 
9874 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9875                                                  SelectionDAG &DAG) const {
9876   SDLoc dl(Op);
9877   // Create a stack slot that is 16-byte aligned.
9878   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9879   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9880   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9881   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9882 
9883   // Store the input value into Value#0 of the stack slot.
9884   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9885                                MachinePointerInfo());
9886   // Load it out.
9887   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9888 }
9889 
9890 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9891                                                   SelectionDAG &DAG) const {
9892   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9893          "Should only be called for ISD::INSERT_VECTOR_ELT");
9894 
9895   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9896   // We have legal lowering for constant indices but not for variable ones.
9897   if (!C)
9898     return SDValue();
9899 
9900   EVT VT = Op.getValueType();
9901   SDLoc dl(Op);
9902   SDValue V1 = Op.getOperand(0);
9903   SDValue V2 = Op.getOperand(1);
9904   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9905   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9906     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9907     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9908     unsigned InsertAtElement = C->getZExtValue();
9909     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9910     if (Subtarget.isLittleEndian()) {
9911       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9912     }
9913     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9914                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9915   }
9916   return Op;
9917 }
9918 
9919 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9920                                                    SelectionDAG &DAG) const {
9921   SDLoc dl(Op);
9922   SDNode *N = Op.getNode();
9923 
9924   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9925          "Unknown extract_vector_elt type");
9926 
9927   SDValue Value = N->getOperand(0);
9928 
9929   // The first part of this is like the store lowering except that we don't
9930   // need to track the chain.
9931 
9932   // The values are now known to be -1 (false) or 1 (true). To convert this
9933   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9934   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9935   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9936 
9937   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9938   // understand how to form the extending load.
9939   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9940 
9941   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9942 
9943   // Now convert to an integer and store.
9944   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9945     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9946     Value);
9947 
9948   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9949   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9950   MachinePointerInfo PtrInfo =
9951       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9952   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9953   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9954 
9955   SDValue StoreChain = DAG.getEntryNode();
9956   SDValue Ops[] = {StoreChain,
9957                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9958                    Value, FIdx};
9959   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9960 
9961   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9962     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9963 
9964   // Extract the value requested.
9965   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9966   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9967   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9968 
9969   SDValue IntVal =
9970       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9971 
9972   if (!Subtarget.useCRBits())
9973     return IntVal;
9974 
9975   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9976 }
9977 
9978 /// Lowering for QPX v4i1 loads
9979 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9980                                            SelectionDAG &DAG) const {
9981   SDLoc dl(Op);
9982   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9983   SDValue LoadChain = LN->getChain();
9984   SDValue BasePtr = LN->getBasePtr();
9985 
9986   if (Op.getValueType() == MVT::v4f64 ||
9987       Op.getValueType() == MVT::v4f32) {
9988     EVT MemVT = LN->getMemoryVT();
9989     unsigned Alignment = LN->getAlignment();
9990 
9991     // If this load is properly aligned, then it is legal.
9992     if (Alignment >= MemVT.getStoreSize())
9993       return Op;
9994 
9995     EVT ScalarVT = Op.getValueType().getScalarType(),
9996         ScalarMemVT = MemVT.getScalarType();
9997     unsigned Stride = ScalarMemVT.getStoreSize();
9998 
9999     SDValue Vals[4], LoadChains[4];
10000     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10001       SDValue Load;
10002       if (ScalarVT != ScalarMemVT)
10003         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10004                               BasePtr,
10005                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10006                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10007                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10008       else
10009         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10010                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10011                            MinAlign(Alignment, Idx * Stride),
10012                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10013 
10014       if (Idx == 0 && LN->isIndexed()) {
10015         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10016                "Unknown addressing mode on vector load");
10017         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10018                                   LN->getAddressingMode());
10019       }
10020 
10021       Vals[Idx] = Load;
10022       LoadChains[Idx] = Load.getValue(1);
10023 
10024       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10025                             DAG.getConstant(Stride, dl,
10026                                             BasePtr.getValueType()));
10027     }
10028 
10029     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10030     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10031 
10032     if (LN->isIndexed()) {
10033       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10034       return DAG.getMergeValues(RetOps, dl);
10035     }
10036 
10037     SDValue RetOps[] = { Value, TF };
10038     return DAG.getMergeValues(RetOps, dl);
10039   }
10040 
10041   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10042   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10043 
10044   // To lower v4i1 from a byte array, we load the byte elements of the
10045   // vector and then reuse the BUILD_VECTOR logic.
10046 
10047   SDValue VectElmts[4], VectElmtChains[4];
10048   for (unsigned i = 0; i < 4; ++i) {
10049     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10050     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10051 
10052     VectElmts[i] = DAG.getExtLoad(
10053         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10054         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10055         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10056     VectElmtChains[i] = VectElmts[i].getValue(1);
10057   }
10058 
10059   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10060   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10061 
10062   SDValue RVals[] = { Value, LoadChain };
10063   return DAG.getMergeValues(RVals, dl);
10064 }
10065 
10066 /// Lowering for QPX v4i1 stores
10067 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10068                                             SelectionDAG &DAG) const {
10069   SDLoc dl(Op);
10070   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10071   SDValue StoreChain = SN->getChain();
10072   SDValue BasePtr = SN->getBasePtr();
10073   SDValue Value = SN->getValue();
10074 
10075   if (Value.getValueType() == MVT::v4f64 ||
10076       Value.getValueType() == MVT::v4f32) {
10077     EVT MemVT = SN->getMemoryVT();
10078     unsigned Alignment = SN->getAlignment();
10079 
10080     // If this store is properly aligned, then it is legal.
10081     if (Alignment >= MemVT.getStoreSize())
10082       return Op;
10083 
10084     EVT ScalarVT = Value.getValueType().getScalarType(),
10085         ScalarMemVT = MemVT.getScalarType();
10086     unsigned Stride = ScalarMemVT.getStoreSize();
10087 
10088     SDValue Stores[4];
10089     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10090       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10091                                DAG.getVectorIdxConstant(Idx, dl));
10092       SDValue Store;
10093       if (ScalarVT != ScalarMemVT)
10094         Store =
10095             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10096                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10097                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10098                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10099       else
10100         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10101                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10102                              MinAlign(Alignment, Idx * Stride),
10103                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10104 
10105       if (Idx == 0 && SN->isIndexed()) {
10106         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10107                "Unknown addressing mode on vector store");
10108         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10109                                     SN->getAddressingMode());
10110       }
10111 
10112       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10113                             DAG.getConstant(Stride, dl,
10114                                             BasePtr.getValueType()));
10115       Stores[Idx] = Store;
10116     }
10117 
10118     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10119 
10120     if (SN->isIndexed()) {
10121       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10122       return DAG.getMergeValues(RetOps, dl);
10123     }
10124 
10125     return TF;
10126   }
10127 
10128   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10129   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10130 
10131   // The values are now known to be -1 (false) or 1 (true). To convert this
10132   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10133   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10134   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10135 
10136   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10137   // understand how to form the extending load.
10138   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10139 
10140   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10141 
10142   // Now convert to an integer and store.
10143   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10144     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10145     Value);
10146 
10147   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10148   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10149   MachinePointerInfo PtrInfo =
10150       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10151   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10152   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10153 
10154   SDValue Ops[] = {StoreChain,
10155                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10156                    Value, FIdx};
10157   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10158 
10159   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10160     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10161 
10162   // Move data into the byte array.
10163   SDValue Loads[4], LoadChains[4];
10164   for (unsigned i = 0; i < 4; ++i) {
10165     unsigned Offset = 4*i;
10166     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10167     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10168 
10169     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10170                            PtrInfo.getWithOffset(Offset));
10171     LoadChains[i] = Loads[i].getValue(1);
10172   }
10173 
10174   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10175 
10176   SDValue Stores[4];
10177   for (unsigned i = 0; i < 4; ++i) {
10178     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10179     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10180 
10181     Stores[i] = DAG.getTruncStore(
10182         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10183         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10184         SN->getAAInfo());
10185   }
10186 
10187   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10188 
10189   return StoreChain;
10190 }
10191 
10192 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10193   SDLoc dl(Op);
10194   if (Op.getValueType() == MVT::v4i32) {
10195     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10196 
10197     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10198     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10199 
10200     SDValue RHSSwap =   // = vrlw RHS, 16
10201       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10202 
10203     // Shrinkify inputs to v8i16.
10204     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10205     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10206     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10207 
10208     // Low parts multiplied together, generating 32-bit results (we ignore the
10209     // top parts).
10210     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10211                                         LHS, RHS, DAG, dl, MVT::v4i32);
10212 
10213     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10214                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10215     // Shift the high parts up 16 bits.
10216     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10217                               Neg16, DAG, dl);
10218     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10219   } else if (Op.getValueType() == MVT::v8i16) {
10220     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10221 
10222     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10223 
10224     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10225                             LHS, RHS, Zero, DAG, dl);
10226   } else if (Op.getValueType() == MVT::v16i8) {
10227     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10228     bool isLittleEndian = Subtarget.isLittleEndian();
10229 
10230     // Multiply the even 8-bit parts, producing 16-bit sums.
10231     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10232                                            LHS, RHS, DAG, dl, MVT::v8i16);
10233     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10234 
10235     // Multiply the odd 8-bit parts, producing 16-bit sums.
10236     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10237                                           LHS, RHS, DAG, dl, MVT::v8i16);
10238     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10239 
10240     // Merge the results together.  Because vmuleub and vmuloub are
10241     // instructions with a big-endian bias, we must reverse the
10242     // element numbering and reverse the meaning of "odd" and "even"
10243     // when generating little endian code.
10244     int Ops[16];
10245     for (unsigned i = 0; i != 8; ++i) {
10246       if (isLittleEndian) {
10247         Ops[i*2  ] = 2*i;
10248         Ops[i*2+1] = 2*i+16;
10249       } else {
10250         Ops[i*2  ] = 2*i+1;
10251         Ops[i*2+1] = 2*i+1+16;
10252       }
10253     }
10254     if (isLittleEndian)
10255       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10256     else
10257       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10258   } else {
10259     llvm_unreachable("Unknown mul to lower!");
10260   }
10261 }
10262 
10263 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10264 
10265   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10266 
10267   EVT VT = Op.getValueType();
10268   assert(VT.isVector() &&
10269          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10270   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10271           VT == MVT::v16i8) &&
10272          "Unexpected vector element type!");
10273   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10274          "Current subtarget doesn't support smax v2i64!");
10275 
10276   // For vector abs, it can be lowered to:
10277   // abs x
10278   // ==>
10279   // y = -x
10280   // smax(x, y)
10281 
10282   SDLoc dl(Op);
10283   SDValue X = Op.getOperand(0);
10284   SDValue Zero = DAG.getConstant(0, dl, VT);
10285   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10286 
10287   // SMAX patch https://reviews.llvm.org/D47332
10288   // hasn't landed yet, so use intrinsic first here.
10289   // TODO: Should use SMAX directly once SMAX patch landed
10290   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10291   if (VT == MVT::v2i64)
10292     BifID = Intrinsic::ppc_altivec_vmaxsd;
10293   else if (VT == MVT::v8i16)
10294     BifID = Intrinsic::ppc_altivec_vmaxsh;
10295   else if (VT == MVT::v16i8)
10296     BifID = Intrinsic::ppc_altivec_vmaxsb;
10297 
10298   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10299 }
10300 
10301 // Custom lowering for fpext vf32 to v2f64
10302 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10303 
10304   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10305          "Should only be called for ISD::FP_EXTEND");
10306 
10307   // We only want to custom lower an extend from v2f32 to v2f64.
10308   if (Op.getValueType() != MVT::v2f64 ||
10309       Op.getOperand(0).getValueType() != MVT::v2f32)
10310     return SDValue();
10311 
10312   SDLoc dl(Op);
10313   SDValue Op0 = Op.getOperand(0);
10314 
10315   switch (Op0.getOpcode()) {
10316   default:
10317     return SDValue();
10318   case ISD::EXTRACT_SUBVECTOR: {
10319     assert(Op0.getNumOperands() == 2 &&
10320            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10321            "Node should have 2 operands with second one being a constant!");
10322 
10323     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10324       return SDValue();
10325 
10326     // Custom lower is only done for high or low doubleword.
10327     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10328     if (Idx % 2 != 0)
10329       return SDValue();
10330 
10331     // Since input is v4f32, at this point Idx is either 0 or 2.
10332     // Shift to get the doubleword position we want.
10333     int DWord = Idx >> 1;
10334 
10335     // High and low word positions are different on little endian.
10336     if (Subtarget.isLittleEndian())
10337       DWord ^= 0x1;
10338 
10339     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10340                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10341   }
10342   case ISD::FADD:
10343   case ISD::FMUL:
10344   case ISD::FSUB: {
10345     SDValue NewLoad[2];
10346     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10347       // Ensure both input are loads.
10348       SDValue LdOp = Op0.getOperand(i);
10349       if (LdOp.getOpcode() != ISD::LOAD)
10350         return SDValue();
10351       // Generate new load node.
10352       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10353       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10354       NewLoad[i] = DAG.getMemIntrinsicNode(
10355           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10356           LD->getMemoryVT(), LD->getMemOperand());
10357     }
10358     SDValue NewOp =
10359         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10360                     NewLoad[1], Op0.getNode()->getFlags());
10361     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10362                        DAG.getConstant(0, dl, MVT::i32));
10363   }
10364   case ISD::LOAD: {
10365     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10366     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10367     SDValue NewLd = DAG.getMemIntrinsicNode(
10368         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10369         LD->getMemoryVT(), LD->getMemOperand());
10370     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10371                        DAG.getConstant(0, dl, MVT::i32));
10372   }
10373   }
10374   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10375 }
10376 
10377 /// LowerOperation - Provide custom lowering hooks for some operations.
10378 ///
10379 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10380   switch (Op.getOpcode()) {
10381   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10382   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10383   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10384   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10385   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10386   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10387   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10388   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10389   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10390 
10391   // Variable argument lowering.
10392   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10393   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10394   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10395 
10396   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10397   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10398   case ISD::GET_DYNAMIC_AREA_OFFSET:
10399     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10400 
10401   // Exception handling lowering.
10402   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10403   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10404   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10405 
10406   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10407   case ISD::STORE:              return LowerSTORE(Op, DAG);
10408   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10409   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10410   case ISD::FP_TO_UINT:
10411   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10412   case ISD::UINT_TO_FP:
10413   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10414   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10415 
10416   // Lower 64-bit shifts.
10417   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10418   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10419   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10420 
10421   // Vector-related lowering.
10422   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10423   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10424   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10425   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10426   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10427   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10428   case ISD::MUL:                return LowerMUL(Op, DAG);
10429   case ISD::ABS:                return LowerABS(Op, DAG);
10430   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10431 
10432   // For counter-based loop handling.
10433   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10434 
10435   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10436 
10437   // Frame & Return address.
10438   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10439   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10440 
10441   case ISD::INTRINSIC_VOID:
10442     return LowerINTRINSIC_VOID(Op, DAG);
10443   case ISD::SREM:
10444   case ISD::UREM:
10445     return LowerREM(Op, DAG);
10446   case ISD::BSWAP:
10447     return LowerBSWAP(Op, DAG);
10448   case ISD::ATOMIC_CMP_SWAP:
10449     return LowerATOMIC_CMP_SWAP(Op, DAG);
10450   }
10451 }
10452 
10453 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10454                                            SmallVectorImpl<SDValue>&Results,
10455                                            SelectionDAG &DAG) const {
10456   SDLoc dl(N);
10457   switch (N->getOpcode()) {
10458   default:
10459     llvm_unreachable("Do not know how to custom type legalize this operation!");
10460   case ISD::READCYCLECOUNTER: {
10461     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10462     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10463 
10464     Results.push_back(RTB);
10465     Results.push_back(RTB.getValue(1));
10466     Results.push_back(RTB.getValue(2));
10467     break;
10468   }
10469   case ISD::INTRINSIC_W_CHAIN: {
10470     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10471         Intrinsic::loop_decrement)
10472       break;
10473 
10474     assert(N->getValueType(0) == MVT::i1 &&
10475            "Unexpected result type for CTR decrement intrinsic");
10476     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10477                                  N->getValueType(0));
10478     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10479     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10480                                  N->getOperand(1));
10481 
10482     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10483     Results.push_back(NewInt.getValue(1));
10484     break;
10485   }
10486   case ISD::VAARG: {
10487     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10488       return;
10489 
10490     EVT VT = N->getValueType(0);
10491 
10492     if (VT == MVT::i64) {
10493       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10494 
10495       Results.push_back(NewNode);
10496       Results.push_back(NewNode.getValue(1));
10497     }
10498     return;
10499   }
10500   case ISD::FP_TO_SINT:
10501   case ISD::FP_TO_UINT:
10502     // LowerFP_TO_INT() can only handle f32 and f64.
10503     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10504       return;
10505     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10506     return;
10507   case ISD::TRUNCATE: {
10508     EVT TrgVT = N->getValueType(0);
10509     EVT OpVT = N->getOperand(0).getValueType();
10510     if (TrgVT.isVector() &&
10511         isOperationCustom(N->getOpcode(), TrgVT) &&
10512         OpVT.getSizeInBits() <= 128 &&
10513         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10514       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10515     return;
10516   }
10517   case ISD::BITCAST:
10518     // Don't handle bitcast here.
10519     return;
10520   }
10521 }
10522 
10523 //===----------------------------------------------------------------------===//
10524 //  Other Lowering Code
10525 //===----------------------------------------------------------------------===//
10526 
10527 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10528   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10529   Function *Func = Intrinsic::getDeclaration(M, Id);
10530   return Builder.CreateCall(Func, {});
10531 }
10532 
10533 // The mappings for emitLeading/TrailingFence is taken from
10534 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10535 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10536                                                  Instruction *Inst,
10537                                                  AtomicOrdering Ord) const {
10538   if (Ord == AtomicOrdering::SequentiallyConsistent)
10539     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10540   if (isReleaseOrStronger(Ord))
10541     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10542   return nullptr;
10543 }
10544 
10545 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10546                                                   Instruction *Inst,
10547                                                   AtomicOrdering Ord) const {
10548   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10549     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10550     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10551     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10552     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10553       return Builder.CreateCall(
10554           Intrinsic::getDeclaration(
10555               Builder.GetInsertBlock()->getParent()->getParent(),
10556               Intrinsic::ppc_cfence, {Inst->getType()}),
10557           {Inst});
10558     // FIXME: Can use isync for rmw operation.
10559     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10560   }
10561   return nullptr;
10562 }
10563 
10564 MachineBasicBlock *
10565 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10566                                     unsigned AtomicSize,
10567                                     unsigned BinOpcode,
10568                                     unsigned CmpOpcode,
10569                                     unsigned CmpPred) const {
10570   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10571   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10572 
10573   auto LoadMnemonic = PPC::LDARX;
10574   auto StoreMnemonic = PPC::STDCX;
10575   switch (AtomicSize) {
10576   default:
10577     llvm_unreachable("Unexpected size of atomic entity");
10578   case 1:
10579     LoadMnemonic = PPC::LBARX;
10580     StoreMnemonic = PPC::STBCX;
10581     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10582     break;
10583   case 2:
10584     LoadMnemonic = PPC::LHARX;
10585     StoreMnemonic = PPC::STHCX;
10586     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10587     break;
10588   case 4:
10589     LoadMnemonic = PPC::LWARX;
10590     StoreMnemonic = PPC::STWCX;
10591     break;
10592   case 8:
10593     LoadMnemonic = PPC::LDARX;
10594     StoreMnemonic = PPC::STDCX;
10595     break;
10596   }
10597 
10598   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10599   MachineFunction *F = BB->getParent();
10600   MachineFunction::iterator It = ++BB->getIterator();
10601 
10602   Register dest = MI.getOperand(0).getReg();
10603   Register ptrA = MI.getOperand(1).getReg();
10604   Register ptrB = MI.getOperand(2).getReg();
10605   Register incr = MI.getOperand(3).getReg();
10606   DebugLoc dl = MI.getDebugLoc();
10607 
10608   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10609   MachineBasicBlock *loop2MBB =
10610     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10611   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10612   F->insert(It, loopMBB);
10613   if (CmpOpcode)
10614     F->insert(It, loop2MBB);
10615   F->insert(It, exitMBB);
10616   exitMBB->splice(exitMBB->begin(), BB,
10617                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10618   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10619 
10620   MachineRegisterInfo &RegInfo = F->getRegInfo();
10621   Register TmpReg = (!BinOpcode) ? incr :
10622     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10623                                            : &PPC::GPRCRegClass);
10624 
10625   //  thisMBB:
10626   //   ...
10627   //   fallthrough --> loopMBB
10628   BB->addSuccessor(loopMBB);
10629 
10630   //  loopMBB:
10631   //   l[wd]arx dest, ptr
10632   //   add r0, dest, incr
10633   //   st[wd]cx. r0, ptr
10634   //   bne- loopMBB
10635   //   fallthrough --> exitMBB
10636 
10637   // For max/min...
10638   //  loopMBB:
10639   //   l[wd]arx dest, ptr
10640   //   cmpl?[wd] incr, dest
10641   //   bgt exitMBB
10642   //  loop2MBB:
10643   //   st[wd]cx. dest, ptr
10644   //   bne- loopMBB
10645   //   fallthrough --> exitMBB
10646 
10647   BB = loopMBB;
10648   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10649     .addReg(ptrA).addReg(ptrB);
10650   if (BinOpcode)
10651     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10652   if (CmpOpcode) {
10653     // Signed comparisons of byte or halfword values must be sign-extended.
10654     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10655       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10656       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10657               ExtReg).addReg(dest);
10658       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10659         .addReg(incr).addReg(ExtReg);
10660     } else
10661       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10662         .addReg(incr).addReg(dest);
10663 
10664     BuildMI(BB, dl, TII->get(PPC::BCC))
10665       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10666     BB->addSuccessor(loop2MBB);
10667     BB->addSuccessor(exitMBB);
10668     BB = loop2MBB;
10669   }
10670   BuildMI(BB, dl, TII->get(StoreMnemonic))
10671     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10672   BuildMI(BB, dl, TII->get(PPC::BCC))
10673     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10674   BB->addSuccessor(loopMBB);
10675   BB->addSuccessor(exitMBB);
10676 
10677   //  exitMBB:
10678   //   ...
10679   BB = exitMBB;
10680   return BB;
10681 }
10682 
10683 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10684     MachineInstr &MI, MachineBasicBlock *BB,
10685     bool is8bit, // operation
10686     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10687   // If we support part-word atomic mnemonics, just use them
10688   if (Subtarget.hasPartwordAtomics())
10689     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10690                             CmpPred);
10691 
10692   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10693   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10694   // In 64 bit mode we have to use 64 bits for addresses, even though the
10695   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10696   // registers without caring whether they're 32 or 64, but here we're
10697   // doing actual arithmetic on the addresses.
10698   bool is64bit = Subtarget.isPPC64();
10699   bool isLittleEndian = Subtarget.isLittleEndian();
10700   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10701 
10702   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10703   MachineFunction *F = BB->getParent();
10704   MachineFunction::iterator It = ++BB->getIterator();
10705 
10706   Register dest = MI.getOperand(0).getReg();
10707   Register ptrA = MI.getOperand(1).getReg();
10708   Register ptrB = MI.getOperand(2).getReg();
10709   Register incr = MI.getOperand(3).getReg();
10710   DebugLoc dl = MI.getDebugLoc();
10711 
10712   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10713   MachineBasicBlock *loop2MBB =
10714       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10715   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10716   F->insert(It, loopMBB);
10717   if (CmpOpcode)
10718     F->insert(It, loop2MBB);
10719   F->insert(It, exitMBB);
10720   exitMBB->splice(exitMBB->begin(), BB,
10721                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10722   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10723 
10724   MachineRegisterInfo &RegInfo = F->getRegInfo();
10725   const TargetRegisterClass *RC =
10726       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10727   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10728 
10729   Register PtrReg = RegInfo.createVirtualRegister(RC);
10730   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10731   Register ShiftReg =
10732       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10733   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10734   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10735   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10736   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10737   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10738   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10739   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10740   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10741   Register Ptr1Reg;
10742   Register TmpReg =
10743       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10744 
10745   //  thisMBB:
10746   //   ...
10747   //   fallthrough --> loopMBB
10748   BB->addSuccessor(loopMBB);
10749 
10750   // The 4-byte load must be aligned, while a char or short may be
10751   // anywhere in the word.  Hence all this nasty bookkeeping code.
10752   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10753   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10754   //   xori shift, shift1, 24 [16]
10755   //   rlwinm ptr, ptr1, 0, 0, 29
10756   //   slw incr2, incr, shift
10757   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10758   //   slw mask, mask2, shift
10759   //  loopMBB:
10760   //   lwarx tmpDest, ptr
10761   //   add tmp, tmpDest, incr2
10762   //   andc tmp2, tmpDest, mask
10763   //   and tmp3, tmp, mask
10764   //   or tmp4, tmp3, tmp2
10765   //   stwcx. tmp4, ptr
10766   //   bne- loopMBB
10767   //   fallthrough --> exitMBB
10768   //   srw dest, tmpDest, shift
10769   if (ptrA != ZeroReg) {
10770     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10771     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10772         .addReg(ptrA)
10773         .addReg(ptrB);
10774   } else {
10775     Ptr1Reg = ptrB;
10776   }
10777   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10778   // mode.
10779   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10780       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10781       .addImm(3)
10782       .addImm(27)
10783       .addImm(is8bit ? 28 : 27);
10784   if (!isLittleEndian)
10785     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10786         .addReg(Shift1Reg)
10787         .addImm(is8bit ? 24 : 16);
10788   if (is64bit)
10789     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10790         .addReg(Ptr1Reg)
10791         .addImm(0)
10792         .addImm(61);
10793   else
10794     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10795         .addReg(Ptr1Reg)
10796         .addImm(0)
10797         .addImm(0)
10798         .addImm(29);
10799   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10800   if (is8bit)
10801     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10802   else {
10803     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10804     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10805         .addReg(Mask3Reg)
10806         .addImm(65535);
10807   }
10808   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10809       .addReg(Mask2Reg)
10810       .addReg(ShiftReg);
10811 
10812   BB = loopMBB;
10813   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10814       .addReg(ZeroReg)
10815       .addReg(PtrReg);
10816   if (BinOpcode)
10817     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10818         .addReg(Incr2Reg)
10819         .addReg(TmpDestReg);
10820   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10821       .addReg(TmpDestReg)
10822       .addReg(MaskReg);
10823   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10824   if (CmpOpcode) {
10825     // For unsigned comparisons, we can directly compare the shifted values.
10826     // For signed comparisons we shift and sign extend.
10827     Register SReg = RegInfo.createVirtualRegister(GPRC);
10828     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10829         .addReg(TmpDestReg)
10830         .addReg(MaskReg);
10831     unsigned ValueReg = SReg;
10832     unsigned CmpReg = Incr2Reg;
10833     if (CmpOpcode == PPC::CMPW) {
10834       ValueReg = RegInfo.createVirtualRegister(GPRC);
10835       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10836           .addReg(SReg)
10837           .addReg(ShiftReg);
10838       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10839       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10840           .addReg(ValueReg);
10841       ValueReg = ValueSReg;
10842       CmpReg = incr;
10843     }
10844     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10845         .addReg(CmpReg)
10846         .addReg(ValueReg);
10847     BuildMI(BB, dl, TII->get(PPC::BCC))
10848         .addImm(CmpPred)
10849         .addReg(PPC::CR0)
10850         .addMBB(exitMBB);
10851     BB->addSuccessor(loop2MBB);
10852     BB->addSuccessor(exitMBB);
10853     BB = loop2MBB;
10854   }
10855   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10856   BuildMI(BB, dl, TII->get(PPC::STWCX))
10857       .addReg(Tmp4Reg)
10858       .addReg(ZeroReg)
10859       .addReg(PtrReg);
10860   BuildMI(BB, dl, TII->get(PPC::BCC))
10861       .addImm(PPC::PRED_NE)
10862       .addReg(PPC::CR0)
10863       .addMBB(loopMBB);
10864   BB->addSuccessor(loopMBB);
10865   BB->addSuccessor(exitMBB);
10866 
10867   //  exitMBB:
10868   //   ...
10869   BB = exitMBB;
10870   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10871       .addReg(TmpDestReg)
10872       .addReg(ShiftReg);
10873   return BB;
10874 }
10875 
10876 llvm::MachineBasicBlock *
10877 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10878                                     MachineBasicBlock *MBB) const {
10879   DebugLoc DL = MI.getDebugLoc();
10880   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10881   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10882 
10883   MachineFunction *MF = MBB->getParent();
10884   MachineRegisterInfo &MRI = MF->getRegInfo();
10885 
10886   const BasicBlock *BB = MBB->getBasicBlock();
10887   MachineFunction::iterator I = ++MBB->getIterator();
10888 
10889   Register DstReg = MI.getOperand(0).getReg();
10890   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10891   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10892   Register mainDstReg = MRI.createVirtualRegister(RC);
10893   Register restoreDstReg = MRI.createVirtualRegister(RC);
10894 
10895   MVT PVT = getPointerTy(MF->getDataLayout());
10896   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10897          "Invalid Pointer Size!");
10898   // For v = setjmp(buf), we generate
10899   //
10900   // thisMBB:
10901   //  SjLjSetup mainMBB
10902   //  bl mainMBB
10903   //  v_restore = 1
10904   //  b sinkMBB
10905   //
10906   // mainMBB:
10907   //  buf[LabelOffset] = LR
10908   //  v_main = 0
10909   //
10910   // sinkMBB:
10911   //  v = phi(main, restore)
10912   //
10913 
10914   MachineBasicBlock *thisMBB = MBB;
10915   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10916   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10917   MF->insert(I, mainMBB);
10918   MF->insert(I, sinkMBB);
10919 
10920   MachineInstrBuilder MIB;
10921 
10922   // Transfer the remainder of BB and its successor edges to sinkMBB.
10923   sinkMBB->splice(sinkMBB->begin(), MBB,
10924                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10925   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10926 
10927   // Note that the structure of the jmp_buf used here is not compatible
10928   // with that used by libc, and is not designed to be. Specifically, it
10929   // stores only those 'reserved' registers that LLVM does not otherwise
10930   // understand how to spill. Also, by convention, by the time this
10931   // intrinsic is called, Clang has already stored the frame address in the
10932   // first slot of the buffer and stack address in the third. Following the
10933   // X86 target code, we'll store the jump address in the second slot. We also
10934   // need to save the TOC pointer (R2) to handle jumps between shared
10935   // libraries, and that will be stored in the fourth slot. The thread
10936   // identifier (R13) is not affected.
10937 
10938   // thisMBB:
10939   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10940   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10941   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10942 
10943   // Prepare IP either in reg.
10944   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10945   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10946   Register BufReg = MI.getOperand(1).getReg();
10947 
10948   if (Subtarget.is64BitELFABI()) {
10949     setUsesTOCBasePtr(*MBB->getParent());
10950     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10951               .addReg(PPC::X2)
10952               .addImm(TOCOffset)
10953               .addReg(BufReg)
10954               .cloneMemRefs(MI);
10955   }
10956 
10957   // Naked functions never have a base pointer, and so we use r1. For all
10958   // other functions, this decision must be delayed until during PEI.
10959   unsigned BaseReg;
10960   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10961     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10962   else
10963     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10964 
10965   MIB = BuildMI(*thisMBB, MI, DL,
10966                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10967             .addReg(BaseReg)
10968             .addImm(BPOffset)
10969             .addReg(BufReg)
10970             .cloneMemRefs(MI);
10971 
10972   // Setup
10973   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10974   MIB.addRegMask(TRI->getNoPreservedMask());
10975 
10976   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10977 
10978   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10979           .addMBB(mainMBB);
10980   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10981 
10982   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10983   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10984 
10985   // mainMBB:
10986   //  mainDstReg = 0
10987   MIB =
10988       BuildMI(mainMBB, DL,
10989               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10990 
10991   // Store IP
10992   if (Subtarget.isPPC64()) {
10993     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10994             .addReg(LabelReg)
10995             .addImm(LabelOffset)
10996             .addReg(BufReg);
10997   } else {
10998     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10999             .addReg(LabelReg)
11000             .addImm(LabelOffset)
11001             .addReg(BufReg);
11002   }
11003   MIB.cloneMemRefs(MI);
11004 
11005   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11006   mainMBB->addSuccessor(sinkMBB);
11007 
11008   // sinkMBB:
11009   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11010           TII->get(PPC::PHI), DstReg)
11011     .addReg(mainDstReg).addMBB(mainMBB)
11012     .addReg(restoreDstReg).addMBB(thisMBB);
11013 
11014   MI.eraseFromParent();
11015   return sinkMBB;
11016 }
11017 
11018 MachineBasicBlock *
11019 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11020                                      MachineBasicBlock *MBB) const {
11021   DebugLoc DL = MI.getDebugLoc();
11022   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11023 
11024   MachineFunction *MF = MBB->getParent();
11025   MachineRegisterInfo &MRI = MF->getRegInfo();
11026 
11027   MVT PVT = getPointerTy(MF->getDataLayout());
11028   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11029          "Invalid Pointer Size!");
11030 
11031   const TargetRegisterClass *RC =
11032     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11033   Register Tmp = MRI.createVirtualRegister(RC);
11034   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11035   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11036   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11037   unsigned BP =
11038       (PVT == MVT::i64)
11039           ? PPC::X30
11040           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11041                                                               : PPC::R30);
11042 
11043   MachineInstrBuilder MIB;
11044 
11045   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11046   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11047   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11048   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11049 
11050   Register BufReg = MI.getOperand(0).getReg();
11051 
11052   // Reload FP (the jumped-to function may not have had a
11053   // frame pointer, and if so, then its r31 will be restored
11054   // as necessary).
11055   if (PVT == MVT::i64) {
11056     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11057             .addImm(0)
11058             .addReg(BufReg);
11059   } else {
11060     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11061             .addImm(0)
11062             .addReg(BufReg);
11063   }
11064   MIB.cloneMemRefs(MI);
11065 
11066   // Reload IP
11067   if (PVT == MVT::i64) {
11068     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11069             .addImm(LabelOffset)
11070             .addReg(BufReg);
11071   } else {
11072     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11073             .addImm(LabelOffset)
11074             .addReg(BufReg);
11075   }
11076   MIB.cloneMemRefs(MI);
11077 
11078   // Reload SP
11079   if (PVT == MVT::i64) {
11080     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11081             .addImm(SPOffset)
11082             .addReg(BufReg);
11083   } else {
11084     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11085             .addImm(SPOffset)
11086             .addReg(BufReg);
11087   }
11088   MIB.cloneMemRefs(MI);
11089 
11090   // Reload BP
11091   if (PVT == MVT::i64) {
11092     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11093             .addImm(BPOffset)
11094             .addReg(BufReg);
11095   } else {
11096     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11097             .addImm(BPOffset)
11098             .addReg(BufReg);
11099   }
11100   MIB.cloneMemRefs(MI);
11101 
11102   // Reload TOC
11103   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11104     setUsesTOCBasePtr(*MBB->getParent());
11105     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11106               .addImm(TOCOffset)
11107               .addReg(BufReg)
11108               .cloneMemRefs(MI);
11109   }
11110 
11111   // Jump
11112   BuildMI(*MBB, MI, DL,
11113           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11114   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11115 
11116   MI.eraseFromParent();
11117   return MBB;
11118 }
11119 
11120 MachineBasicBlock *
11121 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11122                                                MachineBasicBlock *BB) const {
11123   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11124       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11125     if (Subtarget.is64BitELFABI() &&
11126         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11127       // Call lowering should have added an r2 operand to indicate a dependence
11128       // on the TOC base pointer value. It can't however, because there is no
11129       // way to mark the dependence as implicit there, and so the stackmap code
11130       // will confuse it with a regular operand. Instead, add the dependence
11131       // here.
11132       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11133     }
11134 
11135     return emitPatchPoint(MI, BB);
11136   }
11137 
11138   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11139       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11140     return emitEHSjLjSetJmp(MI, BB);
11141   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11142              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11143     return emitEHSjLjLongJmp(MI, BB);
11144   }
11145 
11146   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11147 
11148   // To "insert" these instructions we actually have to insert their
11149   // control-flow patterns.
11150   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11151   MachineFunction::iterator It = ++BB->getIterator();
11152 
11153   MachineFunction *F = BB->getParent();
11154 
11155   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11156       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11157       MI.getOpcode() == PPC::SELECT_I8) {
11158     SmallVector<MachineOperand, 2> Cond;
11159     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11160         MI.getOpcode() == PPC::SELECT_CC_I8)
11161       Cond.push_back(MI.getOperand(4));
11162     else
11163       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11164     Cond.push_back(MI.getOperand(1));
11165 
11166     DebugLoc dl = MI.getDebugLoc();
11167     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11168                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11169   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11170              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11171              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11172              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11173              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11174              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11175              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11176              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11177              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11178              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11179              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11180              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11181              MI.getOpcode() == PPC::SELECT_F4 ||
11182              MI.getOpcode() == PPC::SELECT_F8 ||
11183              MI.getOpcode() == PPC::SELECT_F16 ||
11184              MI.getOpcode() == PPC::SELECT_QFRC ||
11185              MI.getOpcode() == PPC::SELECT_QSRC ||
11186              MI.getOpcode() == PPC::SELECT_QBRC ||
11187              MI.getOpcode() == PPC::SELECT_SPE ||
11188              MI.getOpcode() == PPC::SELECT_SPE4 ||
11189              MI.getOpcode() == PPC::SELECT_VRRC ||
11190              MI.getOpcode() == PPC::SELECT_VSFRC ||
11191              MI.getOpcode() == PPC::SELECT_VSSRC ||
11192              MI.getOpcode() == PPC::SELECT_VSRC) {
11193     // The incoming instruction knows the destination vreg to set, the
11194     // condition code register to branch on, the true/false values to
11195     // select between, and a branch opcode to use.
11196 
11197     //  thisMBB:
11198     //  ...
11199     //   TrueVal = ...
11200     //   cmpTY ccX, r1, r2
11201     //   bCC copy1MBB
11202     //   fallthrough --> copy0MBB
11203     MachineBasicBlock *thisMBB = BB;
11204     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11205     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11206     DebugLoc dl = MI.getDebugLoc();
11207     F->insert(It, copy0MBB);
11208     F->insert(It, sinkMBB);
11209 
11210     // Transfer the remainder of BB and its successor edges to sinkMBB.
11211     sinkMBB->splice(sinkMBB->begin(), BB,
11212                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11213     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11214 
11215     // Next, add the true and fallthrough blocks as its successors.
11216     BB->addSuccessor(copy0MBB);
11217     BB->addSuccessor(sinkMBB);
11218 
11219     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11220         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11221         MI.getOpcode() == PPC::SELECT_F16 ||
11222         MI.getOpcode() == PPC::SELECT_SPE4 ||
11223         MI.getOpcode() == PPC::SELECT_SPE ||
11224         MI.getOpcode() == PPC::SELECT_QFRC ||
11225         MI.getOpcode() == PPC::SELECT_QSRC ||
11226         MI.getOpcode() == PPC::SELECT_QBRC ||
11227         MI.getOpcode() == PPC::SELECT_VRRC ||
11228         MI.getOpcode() == PPC::SELECT_VSFRC ||
11229         MI.getOpcode() == PPC::SELECT_VSSRC ||
11230         MI.getOpcode() == PPC::SELECT_VSRC) {
11231       BuildMI(BB, dl, TII->get(PPC::BC))
11232           .addReg(MI.getOperand(1).getReg())
11233           .addMBB(sinkMBB);
11234     } else {
11235       unsigned SelectPred = MI.getOperand(4).getImm();
11236       BuildMI(BB, dl, TII->get(PPC::BCC))
11237           .addImm(SelectPred)
11238           .addReg(MI.getOperand(1).getReg())
11239           .addMBB(sinkMBB);
11240     }
11241 
11242     //  copy0MBB:
11243     //   %FalseValue = ...
11244     //   # fallthrough to sinkMBB
11245     BB = copy0MBB;
11246 
11247     // Update machine-CFG edges
11248     BB->addSuccessor(sinkMBB);
11249 
11250     //  sinkMBB:
11251     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11252     //  ...
11253     BB = sinkMBB;
11254     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11255         .addReg(MI.getOperand(3).getReg())
11256         .addMBB(copy0MBB)
11257         .addReg(MI.getOperand(2).getReg())
11258         .addMBB(thisMBB);
11259   } else if (MI.getOpcode() == PPC::ReadTB) {
11260     // To read the 64-bit time-base register on a 32-bit target, we read the
11261     // two halves. Should the counter have wrapped while it was being read, we
11262     // need to try again.
11263     // ...
11264     // readLoop:
11265     // mfspr Rx,TBU # load from TBU
11266     // mfspr Ry,TB  # load from TB
11267     // mfspr Rz,TBU # load from TBU
11268     // cmpw crX,Rx,Rz # check if 'old'='new'
11269     // bne readLoop   # branch if they're not equal
11270     // ...
11271 
11272     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11273     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11274     DebugLoc dl = MI.getDebugLoc();
11275     F->insert(It, readMBB);
11276     F->insert(It, sinkMBB);
11277 
11278     // Transfer the remainder of BB and its successor edges to sinkMBB.
11279     sinkMBB->splice(sinkMBB->begin(), BB,
11280                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11281     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11282 
11283     BB->addSuccessor(readMBB);
11284     BB = readMBB;
11285 
11286     MachineRegisterInfo &RegInfo = F->getRegInfo();
11287     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11288     Register LoReg = MI.getOperand(0).getReg();
11289     Register HiReg = MI.getOperand(1).getReg();
11290 
11291     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11292     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11293     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11294 
11295     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11296 
11297     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11298         .addReg(HiReg)
11299         .addReg(ReadAgainReg);
11300     BuildMI(BB, dl, TII->get(PPC::BCC))
11301         .addImm(PPC::PRED_NE)
11302         .addReg(CmpReg)
11303         .addMBB(readMBB);
11304 
11305     BB->addSuccessor(readMBB);
11306     BB->addSuccessor(sinkMBB);
11307   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11308     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11309   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11310     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11312     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11313   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11314     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11315 
11316   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11317     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11318   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11319     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11321     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11322   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11323     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11324 
11325   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11326     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11327   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11328     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11330     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11331   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11332     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11333 
11334   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11335     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11336   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11337     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11339     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11340   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11341     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11342 
11343   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11344     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11345   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11346     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11347   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11348     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11349   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11350     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11351 
11352   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11353     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11354   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11355     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11356   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11357     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11358   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11359     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11360 
11361   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11362     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11363   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11364     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11365   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11366     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11367   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11368     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11369 
11370   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11371     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11372   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11373     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11374   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11375     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11376   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11377     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11378 
11379   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11380     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11381   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11382     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11383   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11384     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11385   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11386     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11387 
11388   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11389     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11390   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11391     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11392   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11393     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11394   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11395     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11396 
11397   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11398     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11399   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11400     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11401   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11402     BB = EmitAtomicBinary(MI, BB, 4, 0);
11403   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11404     BB = EmitAtomicBinary(MI, BB, 8, 0);
11405   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11406            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11407            (Subtarget.hasPartwordAtomics() &&
11408             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11409            (Subtarget.hasPartwordAtomics() &&
11410             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11411     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11412 
11413     auto LoadMnemonic = PPC::LDARX;
11414     auto StoreMnemonic = PPC::STDCX;
11415     switch (MI.getOpcode()) {
11416     default:
11417       llvm_unreachable("Compare and swap of unknown size");
11418     case PPC::ATOMIC_CMP_SWAP_I8:
11419       LoadMnemonic = PPC::LBARX;
11420       StoreMnemonic = PPC::STBCX;
11421       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11422       break;
11423     case PPC::ATOMIC_CMP_SWAP_I16:
11424       LoadMnemonic = PPC::LHARX;
11425       StoreMnemonic = PPC::STHCX;
11426       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11427       break;
11428     case PPC::ATOMIC_CMP_SWAP_I32:
11429       LoadMnemonic = PPC::LWARX;
11430       StoreMnemonic = PPC::STWCX;
11431       break;
11432     case PPC::ATOMIC_CMP_SWAP_I64:
11433       LoadMnemonic = PPC::LDARX;
11434       StoreMnemonic = PPC::STDCX;
11435       break;
11436     }
11437     Register dest = MI.getOperand(0).getReg();
11438     Register ptrA = MI.getOperand(1).getReg();
11439     Register ptrB = MI.getOperand(2).getReg();
11440     Register oldval = MI.getOperand(3).getReg();
11441     Register newval = MI.getOperand(4).getReg();
11442     DebugLoc dl = MI.getDebugLoc();
11443 
11444     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11445     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11446     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11447     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11448     F->insert(It, loop1MBB);
11449     F->insert(It, loop2MBB);
11450     F->insert(It, midMBB);
11451     F->insert(It, exitMBB);
11452     exitMBB->splice(exitMBB->begin(), BB,
11453                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11454     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11455 
11456     //  thisMBB:
11457     //   ...
11458     //   fallthrough --> loopMBB
11459     BB->addSuccessor(loop1MBB);
11460 
11461     // loop1MBB:
11462     //   l[bhwd]arx dest, ptr
11463     //   cmp[wd] dest, oldval
11464     //   bne- midMBB
11465     // loop2MBB:
11466     //   st[bhwd]cx. newval, ptr
11467     //   bne- loopMBB
11468     //   b exitBB
11469     // midMBB:
11470     //   st[bhwd]cx. dest, ptr
11471     // exitBB:
11472     BB = loop1MBB;
11473     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11474     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11475         .addReg(oldval)
11476         .addReg(dest);
11477     BuildMI(BB, dl, TII->get(PPC::BCC))
11478         .addImm(PPC::PRED_NE)
11479         .addReg(PPC::CR0)
11480         .addMBB(midMBB);
11481     BB->addSuccessor(loop2MBB);
11482     BB->addSuccessor(midMBB);
11483 
11484     BB = loop2MBB;
11485     BuildMI(BB, dl, TII->get(StoreMnemonic))
11486         .addReg(newval)
11487         .addReg(ptrA)
11488         .addReg(ptrB);
11489     BuildMI(BB, dl, TII->get(PPC::BCC))
11490         .addImm(PPC::PRED_NE)
11491         .addReg(PPC::CR0)
11492         .addMBB(loop1MBB);
11493     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11494     BB->addSuccessor(loop1MBB);
11495     BB->addSuccessor(exitMBB);
11496 
11497     BB = midMBB;
11498     BuildMI(BB, dl, TII->get(StoreMnemonic))
11499         .addReg(dest)
11500         .addReg(ptrA)
11501         .addReg(ptrB);
11502     BB->addSuccessor(exitMBB);
11503 
11504     //  exitMBB:
11505     //   ...
11506     BB = exitMBB;
11507   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11508              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11509     // We must use 64-bit registers for addresses when targeting 64-bit,
11510     // since we're actually doing arithmetic on them.  Other registers
11511     // can be 32-bit.
11512     bool is64bit = Subtarget.isPPC64();
11513     bool isLittleEndian = Subtarget.isLittleEndian();
11514     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11515 
11516     Register dest = MI.getOperand(0).getReg();
11517     Register ptrA = MI.getOperand(1).getReg();
11518     Register ptrB = MI.getOperand(2).getReg();
11519     Register oldval = MI.getOperand(3).getReg();
11520     Register newval = MI.getOperand(4).getReg();
11521     DebugLoc dl = MI.getDebugLoc();
11522 
11523     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11524     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11525     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11526     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11527     F->insert(It, loop1MBB);
11528     F->insert(It, loop2MBB);
11529     F->insert(It, midMBB);
11530     F->insert(It, exitMBB);
11531     exitMBB->splice(exitMBB->begin(), BB,
11532                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11533     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11534 
11535     MachineRegisterInfo &RegInfo = F->getRegInfo();
11536     const TargetRegisterClass *RC =
11537         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11538     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11539 
11540     Register PtrReg = RegInfo.createVirtualRegister(RC);
11541     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11542     Register ShiftReg =
11543         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11544     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11545     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11546     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11547     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11548     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11549     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11550     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11551     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11552     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11553     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11554     Register Ptr1Reg;
11555     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11556     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11557     //  thisMBB:
11558     //   ...
11559     //   fallthrough --> loopMBB
11560     BB->addSuccessor(loop1MBB);
11561 
11562     // The 4-byte load must be aligned, while a char or short may be
11563     // anywhere in the word.  Hence all this nasty bookkeeping code.
11564     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11565     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11566     //   xori shift, shift1, 24 [16]
11567     //   rlwinm ptr, ptr1, 0, 0, 29
11568     //   slw newval2, newval, shift
11569     //   slw oldval2, oldval,shift
11570     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11571     //   slw mask, mask2, shift
11572     //   and newval3, newval2, mask
11573     //   and oldval3, oldval2, mask
11574     // loop1MBB:
11575     //   lwarx tmpDest, ptr
11576     //   and tmp, tmpDest, mask
11577     //   cmpw tmp, oldval3
11578     //   bne- midMBB
11579     // loop2MBB:
11580     //   andc tmp2, tmpDest, mask
11581     //   or tmp4, tmp2, newval3
11582     //   stwcx. tmp4, ptr
11583     //   bne- loop1MBB
11584     //   b exitBB
11585     // midMBB:
11586     //   stwcx. tmpDest, ptr
11587     // exitBB:
11588     //   srw dest, tmpDest, shift
11589     if (ptrA != ZeroReg) {
11590       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11591       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11592           .addReg(ptrA)
11593           .addReg(ptrB);
11594     } else {
11595       Ptr1Reg = ptrB;
11596     }
11597 
11598     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11599     // mode.
11600     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11601         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11602         .addImm(3)
11603         .addImm(27)
11604         .addImm(is8bit ? 28 : 27);
11605     if (!isLittleEndian)
11606       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11607           .addReg(Shift1Reg)
11608           .addImm(is8bit ? 24 : 16);
11609     if (is64bit)
11610       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11611           .addReg(Ptr1Reg)
11612           .addImm(0)
11613           .addImm(61);
11614     else
11615       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11616           .addReg(Ptr1Reg)
11617           .addImm(0)
11618           .addImm(0)
11619           .addImm(29);
11620     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11621         .addReg(newval)
11622         .addReg(ShiftReg);
11623     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11624         .addReg(oldval)
11625         .addReg(ShiftReg);
11626     if (is8bit)
11627       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11628     else {
11629       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11630       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11631           .addReg(Mask3Reg)
11632           .addImm(65535);
11633     }
11634     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11635         .addReg(Mask2Reg)
11636         .addReg(ShiftReg);
11637     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11638         .addReg(NewVal2Reg)
11639         .addReg(MaskReg);
11640     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11641         .addReg(OldVal2Reg)
11642         .addReg(MaskReg);
11643 
11644     BB = loop1MBB;
11645     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11646         .addReg(ZeroReg)
11647         .addReg(PtrReg);
11648     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11649         .addReg(TmpDestReg)
11650         .addReg(MaskReg);
11651     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11652         .addReg(TmpReg)
11653         .addReg(OldVal3Reg);
11654     BuildMI(BB, dl, TII->get(PPC::BCC))
11655         .addImm(PPC::PRED_NE)
11656         .addReg(PPC::CR0)
11657         .addMBB(midMBB);
11658     BB->addSuccessor(loop2MBB);
11659     BB->addSuccessor(midMBB);
11660 
11661     BB = loop2MBB;
11662     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11663         .addReg(TmpDestReg)
11664         .addReg(MaskReg);
11665     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11666         .addReg(Tmp2Reg)
11667         .addReg(NewVal3Reg);
11668     BuildMI(BB, dl, TII->get(PPC::STWCX))
11669         .addReg(Tmp4Reg)
11670         .addReg(ZeroReg)
11671         .addReg(PtrReg);
11672     BuildMI(BB, dl, TII->get(PPC::BCC))
11673         .addImm(PPC::PRED_NE)
11674         .addReg(PPC::CR0)
11675         .addMBB(loop1MBB);
11676     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11677     BB->addSuccessor(loop1MBB);
11678     BB->addSuccessor(exitMBB);
11679 
11680     BB = midMBB;
11681     BuildMI(BB, dl, TII->get(PPC::STWCX))
11682         .addReg(TmpDestReg)
11683         .addReg(ZeroReg)
11684         .addReg(PtrReg);
11685     BB->addSuccessor(exitMBB);
11686 
11687     //  exitMBB:
11688     //   ...
11689     BB = exitMBB;
11690     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11691         .addReg(TmpReg)
11692         .addReg(ShiftReg);
11693   } else if (MI.getOpcode() == PPC::FADDrtz) {
11694     // This pseudo performs an FADD with rounding mode temporarily forced
11695     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11696     // is not modeled at the SelectionDAG level.
11697     Register Dest = MI.getOperand(0).getReg();
11698     Register Src1 = MI.getOperand(1).getReg();
11699     Register Src2 = MI.getOperand(2).getReg();
11700     DebugLoc dl = MI.getDebugLoc();
11701 
11702     MachineRegisterInfo &RegInfo = F->getRegInfo();
11703     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11704 
11705     // Save FPSCR value.
11706     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11707 
11708     // Set rounding mode to round-to-zero.
11709     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11710     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11711 
11712     // Perform addition.
11713     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11714 
11715     // Restore FPSCR value.
11716     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11717   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11718              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11719              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11720              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11721     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11722                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11723                           ? PPC::ANDI8_rec
11724                           : PPC::ANDI_rec;
11725     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11726                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11727 
11728     MachineRegisterInfo &RegInfo = F->getRegInfo();
11729     Register Dest = RegInfo.createVirtualRegister(
11730         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11731 
11732     DebugLoc Dl = MI.getDebugLoc();
11733     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11734         .addReg(MI.getOperand(1).getReg())
11735         .addImm(1);
11736     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11737             MI.getOperand(0).getReg())
11738         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11739   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11740     DebugLoc Dl = MI.getDebugLoc();
11741     MachineRegisterInfo &RegInfo = F->getRegInfo();
11742     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11743     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11744     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11745             MI.getOperand(0).getReg())
11746         .addReg(CRReg);
11747   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11748     DebugLoc Dl = MI.getDebugLoc();
11749     unsigned Imm = MI.getOperand(1).getImm();
11750     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11751     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11752             MI.getOperand(0).getReg())
11753         .addReg(PPC::CR0EQ);
11754   } else if (MI.getOpcode() == PPC::SETRNDi) {
11755     DebugLoc dl = MI.getDebugLoc();
11756     Register OldFPSCRReg = MI.getOperand(0).getReg();
11757 
11758     // Save FPSCR value.
11759     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11760 
11761     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11762     // the following settings:
11763     //   00 Round to nearest
11764     //   01 Round to 0
11765     //   10 Round to +inf
11766     //   11 Round to -inf
11767 
11768     // When the operand is immediate, using the two least significant bits of
11769     // the immediate to set the bits 62:63 of FPSCR.
11770     unsigned Mode = MI.getOperand(1).getImm();
11771     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11772       .addImm(31);
11773 
11774     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11775       .addImm(30);
11776   } else if (MI.getOpcode() == PPC::SETRND) {
11777     DebugLoc dl = MI.getDebugLoc();
11778 
11779     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11780     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11781     // If the target doesn't have DirectMove, we should use stack to do the
11782     // conversion, because the target doesn't have the instructions like mtvsrd
11783     // or mfvsrd to do this conversion directly.
11784     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11785       if (Subtarget.hasDirectMove()) {
11786         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11787           .addReg(SrcReg);
11788       } else {
11789         // Use stack to do the register copy.
11790         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11791         MachineRegisterInfo &RegInfo = F->getRegInfo();
11792         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11793         if (RC == &PPC::F8RCRegClass) {
11794           // Copy register from F8RCRegClass to G8RCRegclass.
11795           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11796                  "Unsupported RegClass.");
11797 
11798           StoreOp = PPC::STFD;
11799           LoadOp = PPC::LD;
11800         } else {
11801           // Copy register from G8RCRegClass to F8RCRegclass.
11802           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11803                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11804                  "Unsupported RegClass.");
11805         }
11806 
11807         MachineFrameInfo &MFI = F->getFrameInfo();
11808         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11809 
11810         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11811           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11812           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11813           MFI.getObjectAlignment(FrameIdx));
11814 
11815         // Store the SrcReg into the stack.
11816         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11817           .addReg(SrcReg)
11818           .addImm(0)
11819           .addFrameIndex(FrameIdx)
11820           .addMemOperand(MMOStore);
11821 
11822         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11823           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11824           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11825           MFI.getObjectAlignment(FrameIdx));
11826 
11827         // Load from the stack where SrcReg is stored, and save to DestReg,
11828         // so we have done the RegClass conversion from RegClass::SrcReg to
11829         // RegClass::DestReg.
11830         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11831           .addImm(0)
11832           .addFrameIndex(FrameIdx)
11833           .addMemOperand(MMOLoad);
11834       }
11835     };
11836 
11837     Register OldFPSCRReg = MI.getOperand(0).getReg();
11838 
11839     // Save FPSCR value.
11840     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11841 
11842     // When the operand is gprc register, use two least significant bits of the
11843     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11844     //
11845     // copy OldFPSCRTmpReg, OldFPSCRReg
11846     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11847     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11848     // copy NewFPSCRReg, NewFPSCRTmpReg
11849     // mtfsf 255, NewFPSCRReg
11850     MachineOperand SrcOp = MI.getOperand(1);
11851     MachineRegisterInfo &RegInfo = F->getRegInfo();
11852     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11853 
11854     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11855 
11856     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11857     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11858 
11859     // The first operand of INSERT_SUBREG should be a register which has
11860     // subregisters, we only care about its RegClass, so we should use an
11861     // IMPLICIT_DEF register.
11862     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11863     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11864       .addReg(ImDefReg)
11865       .add(SrcOp)
11866       .addImm(1);
11867 
11868     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11869     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11870       .addReg(OldFPSCRTmpReg)
11871       .addReg(ExtSrcReg)
11872       .addImm(0)
11873       .addImm(62);
11874 
11875     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11876     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11877 
11878     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11879     // bits of FPSCR.
11880     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11881       .addImm(255)
11882       .addReg(NewFPSCRReg)
11883       .addImm(0)
11884       .addImm(0);
11885   } else {
11886     llvm_unreachable("Unexpected instr type to insert");
11887   }
11888 
11889   MI.eraseFromParent(); // The pseudo instruction is gone now.
11890   return BB;
11891 }
11892 
11893 //===----------------------------------------------------------------------===//
11894 // Target Optimization Hooks
11895 //===----------------------------------------------------------------------===//
11896 
11897 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11898   // For the estimates, convergence is quadratic, so we essentially double the
11899   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11900   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11901   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11902   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11903   if (VT.getScalarType() == MVT::f64)
11904     RefinementSteps++;
11905   return RefinementSteps;
11906 }
11907 
11908 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11909                                            int Enabled, int &RefinementSteps,
11910                                            bool &UseOneConstNR,
11911                                            bool Reciprocal) const {
11912   EVT VT = Operand.getValueType();
11913   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11914       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11915       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11916       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11917       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11918       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11919     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11920       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11921 
11922     // The Newton-Raphson computation with a single constant does not provide
11923     // enough accuracy on some CPUs.
11924     UseOneConstNR = !Subtarget.needsTwoConstNR();
11925     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11926   }
11927   return SDValue();
11928 }
11929 
11930 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11931                                             int Enabled,
11932                                             int &RefinementSteps) const {
11933   EVT VT = Operand.getValueType();
11934   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11935       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11936       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11937       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11938       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11939       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11940     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11941       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11942     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11943   }
11944   return SDValue();
11945 }
11946 
11947 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11948   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11949   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11950   // enabled for division), this functionality is redundant with the default
11951   // combiner logic (once the division -> reciprocal/multiply transformation
11952   // has taken place). As a result, this matters more for older cores than for
11953   // newer ones.
11954 
11955   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11956   // reciprocal if there are two or more FDIVs (for embedded cores with only
11957   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11958   switch (Subtarget.getCPUDirective()) {
11959   default:
11960     return 3;
11961   case PPC::DIR_440:
11962   case PPC::DIR_A2:
11963   case PPC::DIR_E500:
11964   case PPC::DIR_E500mc:
11965   case PPC::DIR_E5500:
11966     return 2;
11967   }
11968 }
11969 
11970 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11971 // collapsed, and so we need to look through chains of them.
11972 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11973                                      int64_t& Offset, SelectionDAG &DAG) {
11974   if (DAG.isBaseWithConstantOffset(Loc)) {
11975     Base = Loc.getOperand(0);
11976     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11977 
11978     // The base might itself be a base plus an offset, and if so, accumulate
11979     // that as well.
11980     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11981   }
11982 }
11983 
11984 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11985                             unsigned Bytes, int Dist,
11986                             SelectionDAG &DAG) {
11987   if (VT.getSizeInBits() / 8 != Bytes)
11988     return false;
11989 
11990   SDValue BaseLoc = Base->getBasePtr();
11991   if (Loc.getOpcode() == ISD::FrameIndex) {
11992     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11993       return false;
11994     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11995     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11996     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11997     int FS  = MFI.getObjectSize(FI);
11998     int BFS = MFI.getObjectSize(BFI);
11999     if (FS != BFS || FS != (int)Bytes) return false;
12000     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12001   }
12002 
12003   SDValue Base1 = Loc, Base2 = BaseLoc;
12004   int64_t Offset1 = 0, Offset2 = 0;
12005   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12006   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12007   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12008     return true;
12009 
12010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12011   const GlobalValue *GV1 = nullptr;
12012   const GlobalValue *GV2 = nullptr;
12013   Offset1 = 0;
12014   Offset2 = 0;
12015   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12016   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12017   if (isGA1 && isGA2 && GV1 == GV2)
12018     return Offset1 == (Offset2 + Dist*Bytes);
12019   return false;
12020 }
12021 
12022 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12023 // not enforce equality of the chain operands.
12024 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12025                             unsigned Bytes, int Dist,
12026                             SelectionDAG &DAG) {
12027   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12028     EVT VT = LS->getMemoryVT();
12029     SDValue Loc = LS->getBasePtr();
12030     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12031   }
12032 
12033   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12034     EVT VT;
12035     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12036     default: return false;
12037     case Intrinsic::ppc_qpx_qvlfd:
12038     case Intrinsic::ppc_qpx_qvlfda:
12039       VT = MVT::v4f64;
12040       break;
12041     case Intrinsic::ppc_qpx_qvlfs:
12042     case Intrinsic::ppc_qpx_qvlfsa:
12043       VT = MVT::v4f32;
12044       break;
12045     case Intrinsic::ppc_qpx_qvlfcd:
12046     case Intrinsic::ppc_qpx_qvlfcda:
12047       VT = MVT::v2f64;
12048       break;
12049     case Intrinsic::ppc_qpx_qvlfcs:
12050     case Intrinsic::ppc_qpx_qvlfcsa:
12051       VT = MVT::v2f32;
12052       break;
12053     case Intrinsic::ppc_qpx_qvlfiwa:
12054     case Intrinsic::ppc_qpx_qvlfiwz:
12055     case Intrinsic::ppc_altivec_lvx:
12056     case Intrinsic::ppc_altivec_lvxl:
12057     case Intrinsic::ppc_vsx_lxvw4x:
12058     case Intrinsic::ppc_vsx_lxvw4x_be:
12059       VT = MVT::v4i32;
12060       break;
12061     case Intrinsic::ppc_vsx_lxvd2x:
12062     case Intrinsic::ppc_vsx_lxvd2x_be:
12063       VT = MVT::v2f64;
12064       break;
12065     case Intrinsic::ppc_altivec_lvebx:
12066       VT = MVT::i8;
12067       break;
12068     case Intrinsic::ppc_altivec_lvehx:
12069       VT = MVT::i16;
12070       break;
12071     case Intrinsic::ppc_altivec_lvewx:
12072       VT = MVT::i32;
12073       break;
12074     }
12075 
12076     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12077   }
12078 
12079   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12080     EVT VT;
12081     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12082     default: return false;
12083     case Intrinsic::ppc_qpx_qvstfd:
12084     case Intrinsic::ppc_qpx_qvstfda:
12085       VT = MVT::v4f64;
12086       break;
12087     case Intrinsic::ppc_qpx_qvstfs:
12088     case Intrinsic::ppc_qpx_qvstfsa:
12089       VT = MVT::v4f32;
12090       break;
12091     case Intrinsic::ppc_qpx_qvstfcd:
12092     case Intrinsic::ppc_qpx_qvstfcda:
12093       VT = MVT::v2f64;
12094       break;
12095     case Intrinsic::ppc_qpx_qvstfcs:
12096     case Intrinsic::ppc_qpx_qvstfcsa:
12097       VT = MVT::v2f32;
12098       break;
12099     case Intrinsic::ppc_qpx_qvstfiw:
12100     case Intrinsic::ppc_qpx_qvstfiwa:
12101     case Intrinsic::ppc_altivec_stvx:
12102     case Intrinsic::ppc_altivec_stvxl:
12103     case Intrinsic::ppc_vsx_stxvw4x:
12104       VT = MVT::v4i32;
12105       break;
12106     case Intrinsic::ppc_vsx_stxvd2x:
12107       VT = MVT::v2f64;
12108       break;
12109     case Intrinsic::ppc_vsx_stxvw4x_be:
12110       VT = MVT::v4i32;
12111       break;
12112     case Intrinsic::ppc_vsx_stxvd2x_be:
12113       VT = MVT::v2f64;
12114       break;
12115     case Intrinsic::ppc_altivec_stvebx:
12116       VT = MVT::i8;
12117       break;
12118     case Intrinsic::ppc_altivec_stvehx:
12119       VT = MVT::i16;
12120       break;
12121     case Intrinsic::ppc_altivec_stvewx:
12122       VT = MVT::i32;
12123       break;
12124     }
12125 
12126     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12127   }
12128 
12129   return false;
12130 }
12131 
12132 // Return true is there is a nearyby consecutive load to the one provided
12133 // (regardless of alignment). We search up and down the chain, looking though
12134 // token factors and other loads (but nothing else). As a result, a true result
12135 // indicates that it is safe to create a new consecutive load adjacent to the
12136 // load provided.
12137 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12138   SDValue Chain = LD->getChain();
12139   EVT VT = LD->getMemoryVT();
12140 
12141   SmallSet<SDNode *, 16> LoadRoots;
12142   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12143   SmallSet<SDNode *, 16> Visited;
12144 
12145   // First, search up the chain, branching to follow all token-factor operands.
12146   // If we find a consecutive load, then we're done, otherwise, record all
12147   // nodes just above the top-level loads and token factors.
12148   while (!Queue.empty()) {
12149     SDNode *ChainNext = Queue.pop_back_val();
12150     if (!Visited.insert(ChainNext).second)
12151       continue;
12152 
12153     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12154       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12155         return true;
12156 
12157       if (!Visited.count(ChainLD->getChain().getNode()))
12158         Queue.push_back(ChainLD->getChain().getNode());
12159     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12160       for (const SDUse &O : ChainNext->ops())
12161         if (!Visited.count(O.getNode()))
12162           Queue.push_back(O.getNode());
12163     } else
12164       LoadRoots.insert(ChainNext);
12165   }
12166 
12167   // Second, search down the chain, starting from the top-level nodes recorded
12168   // in the first phase. These top-level nodes are the nodes just above all
12169   // loads and token factors. Starting with their uses, recursively look though
12170   // all loads (just the chain uses) and token factors to find a consecutive
12171   // load.
12172   Visited.clear();
12173   Queue.clear();
12174 
12175   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12176        IE = LoadRoots.end(); I != IE; ++I) {
12177     Queue.push_back(*I);
12178 
12179     while (!Queue.empty()) {
12180       SDNode *LoadRoot = Queue.pop_back_val();
12181       if (!Visited.insert(LoadRoot).second)
12182         continue;
12183 
12184       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12185         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12186           return true;
12187 
12188       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12189            UE = LoadRoot->use_end(); UI != UE; ++UI)
12190         if (((isa<MemSDNode>(*UI) &&
12191             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12192             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12193           Queue.push_back(*UI);
12194     }
12195   }
12196 
12197   return false;
12198 }
12199 
12200 /// This function is called when we have proved that a SETCC node can be replaced
12201 /// by subtraction (and other supporting instructions) so that the result of
12202 /// comparison is kept in a GPR instead of CR. This function is purely for
12203 /// codegen purposes and has some flags to guide the codegen process.
12204 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12205                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12206   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12207 
12208   // Zero extend the operands to the largest legal integer. Originally, they
12209   // must be of a strictly smaller size.
12210   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12211                          DAG.getConstant(Size, DL, MVT::i32));
12212   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12213                          DAG.getConstant(Size, DL, MVT::i32));
12214 
12215   // Swap if needed. Depends on the condition code.
12216   if (Swap)
12217     std::swap(Op0, Op1);
12218 
12219   // Subtract extended integers.
12220   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12221 
12222   // Move the sign bit to the least significant position and zero out the rest.
12223   // Now the least significant bit carries the result of original comparison.
12224   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12225                              DAG.getConstant(Size - 1, DL, MVT::i32));
12226   auto Final = Shifted;
12227 
12228   // Complement the result if needed. Based on the condition code.
12229   if (Complement)
12230     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12231                         DAG.getConstant(1, DL, MVT::i64));
12232 
12233   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12234 }
12235 
12236 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12237                                                   DAGCombinerInfo &DCI) const {
12238   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12239 
12240   SelectionDAG &DAG = DCI.DAG;
12241   SDLoc DL(N);
12242 
12243   // Size of integers being compared has a critical role in the following
12244   // analysis, so we prefer to do this when all types are legal.
12245   if (!DCI.isAfterLegalizeDAG())
12246     return SDValue();
12247 
12248   // If all users of SETCC extend its value to a legal integer type
12249   // then we replace SETCC with a subtraction
12250   for (SDNode::use_iterator UI = N->use_begin(),
12251        UE = N->use_end(); UI != UE; ++UI) {
12252     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12253       return SDValue();
12254   }
12255 
12256   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12257   auto OpSize = N->getOperand(0).getValueSizeInBits();
12258 
12259   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12260 
12261   if (OpSize < Size) {
12262     switch (CC) {
12263     default: break;
12264     case ISD::SETULT:
12265       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12266     case ISD::SETULE:
12267       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12268     case ISD::SETUGT:
12269       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12270     case ISD::SETUGE:
12271       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12272     }
12273   }
12274 
12275   return SDValue();
12276 }
12277 
12278 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12279                                                   DAGCombinerInfo &DCI) const {
12280   SelectionDAG &DAG = DCI.DAG;
12281   SDLoc dl(N);
12282 
12283   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12284   // If we're tracking CR bits, we need to be careful that we don't have:
12285   //   trunc(binary-ops(zext(x), zext(y)))
12286   // or
12287   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12288   // such that we're unnecessarily moving things into GPRs when it would be
12289   // better to keep them in CR bits.
12290 
12291   // Note that trunc here can be an actual i1 trunc, or can be the effective
12292   // truncation that comes from a setcc or select_cc.
12293   if (N->getOpcode() == ISD::TRUNCATE &&
12294       N->getValueType(0) != MVT::i1)
12295     return SDValue();
12296 
12297   if (N->getOperand(0).getValueType() != MVT::i32 &&
12298       N->getOperand(0).getValueType() != MVT::i64)
12299     return SDValue();
12300 
12301   if (N->getOpcode() == ISD::SETCC ||
12302       N->getOpcode() == ISD::SELECT_CC) {
12303     // If we're looking at a comparison, then we need to make sure that the
12304     // high bits (all except for the first) don't matter the result.
12305     ISD::CondCode CC =
12306       cast<CondCodeSDNode>(N->getOperand(
12307         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12308     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12309 
12310     if (ISD::isSignedIntSetCC(CC)) {
12311       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12312           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12313         return SDValue();
12314     } else if (ISD::isUnsignedIntSetCC(CC)) {
12315       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12316                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12317           !DAG.MaskedValueIsZero(N->getOperand(1),
12318                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12319         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12320                                              : SDValue());
12321     } else {
12322       // This is neither a signed nor an unsigned comparison, just make sure
12323       // that the high bits are equal.
12324       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12325       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12326 
12327       // We don't really care about what is known about the first bit (if
12328       // anything), so clear it in all masks prior to comparing them.
12329       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12330       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12331 
12332       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12333         return SDValue();
12334     }
12335   }
12336 
12337   // We now know that the higher-order bits are irrelevant, we just need to
12338   // make sure that all of the intermediate operations are bit operations, and
12339   // all inputs are extensions.
12340   if (N->getOperand(0).getOpcode() != ISD::AND &&
12341       N->getOperand(0).getOpcode() != ISD::OR  &&
12342       N->getOperand(0).getOpcode() != ISD::XOR &&
12343       N->getOperand(0).getOpcode() != ISD::SELECT &&
12344       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12345       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12346       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12347       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12348       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12349     return SDValue();
12350 
12351   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12352       N->getOperand(1).getOpcode() != ISD::AND &&
12353       N->getOperand(1).getOpcode() != ISD::OR  &&
12354       N->getOperand(1).getOpcode() != ISD::XOR &&
12355       N->getOperand(1).getOpcode() != ISD::SELECT &&
12356       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12357       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12358       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12359       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12360       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12361     return SDValue();
12362 
12363   SmallVector<SDValue, 4> Inputs;
12364   SmallVector<SDValue, 8> BinOps, PromOps;
12365   SmallPtrSet<SDNode *, 16> Visited;
12366 
12367   for (unsigned i = 0; i < 2; ++i) {
12368     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12369           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12370           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12371           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12372         isa<ConstantSDNode>(N->getOperand(i)))
12373       Inputs.push_back(N->getOperand(i));
12374     else
12375       BinOps.push_back(N->getOperand(i));
12376 
12377     if (N->getOpcode() == ISD::TRUNCATE)
12378       break;
12379   }
12380 
12381   // Visit all inputs, collect all binary operations (and, or, xor and
12382   // select) that are all fed by extensions.
12383   while (!BinOps.empty()) {
12384     SDValue BinOp = BinOps.back();
12385     BinOps.pop_back();
12386 
12387     if (!Visited.insert(BinOp.getNode()).second)
12388       continue;
12389 
12390     PromOps.push_back(BinOp);
12391 
12392     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12393       // The condition of the select is not promoted.
12394       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12395         continue;
12396       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12397         continue;
12398 
12399       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12400             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12401             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12402            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12403           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12404         Inputs.push_back(BinOp.getOperand(i));
12405       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12406                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12407                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12408                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12409                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12410                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12411                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12412                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12413                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12414         BinOps.push_back(BinOp.getOperand(i));
12415       } else {
12416         // We have an input that is not an extension or another binary
12417         // operation; we'll abort this transformation.
12418         return SDValue();
12419       }
12420     }
12421   }
12422 
12423   // Make sure that this is a self-contained cluster of operations (which
12424   // is not quite the same thing as saying that everything has only one
12425   // use).
12426   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12427     if (isa<ConstantSDNode>(Inputs[i]))
12428       continue;
12429 
12430     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12431                               UE = Inputs[i].getNode()->use_end();
12432          UI != UE; ++UI) {
12433       SDNode *User = *UI;
12434       if (User != N && !Visited.count(User))
12435         return SDValue();
12436 
12437       // Make sure that we're not going to promote the non-output-value
12438       // operand(s) or SELECT or SELECT_CC.
12439       // FIXME: Although we could sometimes handle this, and it does occur in
12440       // practice that one of the condition inputs to the select is also one of
12441       // the outputs, we currently can't deal with this.
12442       if (User->getOpcode() == ISD::SELECT) {
12443         if (User->getOperand(0) == Inputs[i])
12444           return SDValue();
12445       } else if (User->getOpcode() == ISD::SELECT_CC) {
12446         if (User->getOperand(0) == Inputs[i] ||
12447             User->getOperand(1) == Inputs[i])
12448           return SDValue();
12449       }
12450     }
12451   }
12452 
12453   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12454     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12455                               UE = PromOps[i].getNode()->use_end();
12456          UI != UE; ++UI) {
12457       SDNode *User = *UI;
12458       if (User != N && !Visited.count(User))
12459         return SDValue();
12460 
12461       // Make sure that we're not going to promote the non-output-value
12462       // operand(s) or SELECT or SELECT_CC.
12463       // FIXME: Although we could sometimes handle this, and it does occur in
12464       // practice that one of the condition inputs to the select is also one of
12465       // the outputs, we currently can't deal with this.
12466       if (User->getOpcode() == ISD::SELECT) {
12467         if (User->getOperand(0) == PromOps[i])
12468           return SDValue();
12469       } else if (User->getOpcode() == ISD::SELECT_CC) {
12470         if (User->getOperand(0) == PromOps[i] ||
12471             User->getOperand(1) == PromOps[i])
12472           return SDValue();
12473       }
12474     }
12475   }
12476 
12477   // Replace all inputs with the extension operand.
12478   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12479     // Constants may have users outside the cluster of to-be-promoted nodes,
12480     // and so we need to replace those as we do the promotions.
12481     if (isa<ConstantSDNode>(Inputs[i]))
12482       continue;
12483     else
12484       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12485   }
12486 
12487   std::list<HandleSDNode> PromOpHandles;
12488   for (auto &PromOp : PromOps)
12489     PromOpHandles.emplace_back(PromOp);
12490 
12491   // Replace all operations (these are all the same, but have a different
12492   // (i1) return type). DAG.getNode will validate that the types of
12493   // a binary operator match, so go through the list in reverse so that
12494   // we've likely promoted both operands first. Any intermediate truncations or
12495   // extensions disappear.
12496   while (!PromOpHandles.empty()) {
12497     SDValue PromOp = PromOpHandles.back().getValue();
12498     PromOpHandles.pop_back();
12499 
12500     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12501         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12502         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12503         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12504       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12505           PromOp.getOperand(0).getValueType() != MVT::i1) {
12506         // The operand is not yet ready (see comment below).
12507         PromOpHandles.emplace_front(PromOp);
12508         continue;
12509       }
12510 
12511       SDValue RepValue = PromOp.getOperand(0);
12512       if (isa<ConstantSDNode>(RepValue))
12513         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12514 
12515       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12516       continue;
12517     }
12518 
12519     unsigned C;
12520     switch (PromOp.getOpcode()) {
12521     default:             C = 0; break;
12522     case ISD::SELECT:    C = 1; break;
12523     case ISD::SELECT_CC: C = 2; break;
12524     }
12525 
12526     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12527          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12528         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12529          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12530       // The to-be-promoted operands of this node have not yet been
12531       // promoted (this should be rare because we're going through the
12532       // list backward, but if one of the operands has several users in
12533       // this cluster of to-be-promoted nodes, it is possible).
12534       PromOpHandles.emplace_front(PromOp);
12535       continue;
12536     }
12537 
12538     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12539                                 PromOp.getNode()->op_end());
12540 
12541     // If there are any constant inputs, make sure they're replaced now.
12542     for (unsigned i = 0; i < 2; ++i)
12543       if (isa<ConstantSDNode>(Ops[C+i]))
12544         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12545 
12546     DAG.ReplaceAllUsesOfValueWith(PromOp,
12547       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12548   }
12549 
12550   // Now we're left with the initial truncation itself.
12551   if (N->getOpcode() == ISD::TRUNCATE)
12552     return N->getOperand(0);
12553 
12554   // Otherwise, this is a comparison. The operands to be compared have just
12555   // changed type (to i1), but everything else is the same.
12556   return SDValue(N, 0);
12557 }
12558 
12559 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12560                                                   DAGCombinerInfo &DCI) const {
12561   SelectionDAG &DAG = DCI.DAG;
12562   SDLoc dl(N);
12563 
12564   // If we're tracking CR bits, we need to be careful that we don't have:
12565   //   zext(binary-ops(trunc(x), trunc(y)))
12566   // or
12567   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12568   // such that we're unnecessarily moving things into CR bits that can more
12569   // efficiently stay in GPRs. Note that if we're not certain that the high
12570   // bits are set as required by the final extension, we still may need to do
12571   // some masking to get the proper behavior.
12572 
12573   // This same functionality is important on PPC64 when dealing with
12574   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12575   // the return values of functions. Because it is so similar, it is handled
12576   // here as well.
12577 
12578   if (N->getValueType(0) != MVT::i32 &&
12579       N->getValueType(0) != MVT::i64)
12580     return SDValue();
12581 
12582   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12583         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12584     return SDValue();
12585 
12586   if (N->getOperand(0).getOpcode() != ISD::AND &&
12587       N->getOperand(0).getOpcode() != ISD::OR  &&
12588       N->getOperand(0).getOpcode() != ISD::XOR &&
12589       N->getOperand(0).getOpcode() != ISD::SELECT &&
12590       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12591     return SDValue();
12592 
12593   SmallVector<SDValue, 4> Inputs;
12594   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12595   SmallPtrSet<SDNode *, 16> Visited;
12596 
12597   // Visit all inputs, collect all binary operations (and, or, xor and
12598   // select) that are all fed by truncations.
12599   while (!BinOps.empty()) {
12600     SDValue BinOp = BinOps.back();
12601     BinOps.pop_back();
12602 
12603     if (!Visited.insert(BinOp.getNode()).second)
12604       continue;
12605 
12606     PromOps.push_back(BinOp);
12607 
12608     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12609       // The condition of the select is not promoted.
12610       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12611         continue;
12612       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12613         continue;
12614 
12615       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12616           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12617         Inputs.push_back(BinOp.getOperand(i));
12618       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12619                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12620                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12621                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12622                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12623         BinOps.push_back(BinOp.getOperand(i));
12624       } else {
12625         // We have an input that is not a truncation or another binary
12626         // operation; we'll abort this transformation.
12627         return SDValue();
12628       }
12629     }
12630   }
12631 
12632   // The operands of a select that must be truncated when the select is
12633   // promoted because the operand is actually part of the to-be-promoted set.
12634   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12635 
12636   // Make sure that this is a self-contained cluster of operations (which
12637   // is not quite the same thing as saying that everything has only one
12638   // use).
12639   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12640     if (isa<ConstantSDNode>(Inputs[i]))
12641       continue;
12642 
12643     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12644                               UE = Inputs[i].getNode()->use_end();
12645          UI != UE; ++UI) {
12646       SDNode *User = *UI;
12647       if (User != N && !Visited.count(User))
12648         return SDValue();
12649 
12650       // If we're going to promote the non-output-value operand(s) or SELECT or
12651       // SELECT_CC, record them for truncation.
12652       if (User->getOpcode() == ISD::SELECT) {
12653         if (User->getOperand(0) == Inputs[i])
12654           SelectTruncOp[0].insert(std::make_pair(User,
12655                                     User->getOperand(0).getValueType()));
12656       } else if (User->getOpcode() == ISD::SELECT_CC) {
12657         if (User->getOperand(0) == Inputs[i])
12658           SelectTruncOp[0].insert(std::make_pair(User,
12659                                     User->getOperand(0).getValueType()));
12660         if (User->getOperand(1) == Inputs[i])
12661           SelectTruncOp[1].insert(std::make_pair(User,
12662                                     User->getOperand(1).getValueType()));
12663       }
12664     }
12665   }
12666 
12667   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12668     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12669                               UE = PromOps[i].getNode()->use_end();
12670          UI != UE; ++UI) {
12671       SDNode *User = *UI;
12672       if (User != N && !Visited.count(User))
12673         return SDValue();
12674 
12675       // If we're going to promote the non-output-value operand(s) or SELECT or
12676       // SELECT_CC, record them for truncation.
12677       if (User->getOpcode() == ISD::SELECT) {
12678         if (User->getOperand(0) == PromOps[i])
12679           SelectTruncOp[0].insert(std::make_pair(User,
12680                                     User->getOperand(0).getValueType()));
12681       } else if (User->getOpcode() == ISD::SELECT_CC) {
12682         if (User->getOperand(0) == PromOps[i])
12683           SelectTruncOp[0].insert(std::make_pair(User,
12684                                     User->getOperand(0).getValueType()));
12685         if (User->getOperand(1) == PromOps[i])
12686           SelectTruncOp[1].insert(std::make_pair(User,
12687                                     User->getOperand(1).getValueType()));
12688       }
12689     }
12690   }
12691 
12692   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12693   bool ReallyNeedsExt = false;
12694   if (N->getOpcode() != ISD::ANY_EXTEND) {
12695     // If all of the inputs are not already sign/zero extended, then
12696     // we'll still need to do that at the end.
12697     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12698       if (isa<ConstantSDNode>(Inputs[i]))
12699         continue;
12700 
12701       unsigned OpBits =
12702         Inputs[i].getOperand(0).getValueSizeInBits();
12703       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12704 
12705       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12706            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12707                                   APInt::getHighBitsSet(OpBits,
12708                                                         OpBits-PromBits))) ||
12709           (N->getOpcode() == ISD::SIGN_EXTEND &&
12710            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12711              (OpBits-(PromBits-1)))) {
12712         ReallyNeedsExt = true;
12713         break;
12714       }
12715     }
12716   }
12717 
12718   // Replace all inputs, either with the truncation operand, or a
12719   // truncation or extension to the final output type.
12720   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12721     // Constant inputs need to be replaced with the to-be-promoted nodes that
12722     // use them because they might have users outside of the cluster of
12723     // promoted nodes.
12724     if (isa<ConstantSDNode>(Inputs[i]))
12725       continue;
12726 
12727     SDValue InSrc = Inputs[i].getOperand(0);
12728     if (Inputs[i].getValueType() == N->getValueType(0))
12729       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12730     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12731       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12732         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12733     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12734       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12735         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12736     else
12737       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12738         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12739   }
12740 
12741   std::list<HandleSDNode> PromOpHandles;
12742   for (auto &PromOp : PromOps)
12743     PromOpHandles.emplace_back(PromOp);
12744 
12745   // Replace all operations (these are all the same, but have a different
12746   // (promoted) return type). DAG.getNode will validate that the types of
12747   // a binary operator match, so go through the list in reverse so that
12748   // we've likely promoted both operands first.
12749   while (!PromOpHandles.empty()) {
12750     SDValue PromOp = PromOpHandles.back().getValue();
12751     PromOpHandles.pop_back();
12752 
12753     unsigned C;
12754     switch (PromOp.getOpcode()) {
12755     default:             C = 0; break;
12756     case ISD::SELECT:    C = 1; break;
12757     case ISD::SELECT_CC: C = 2; break;
12758     }
12759 
12760     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12761          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12762         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12763          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12764       // The to-be-promoted operands of this node have not yet been
12765       // promoted (this should be rare because we're going through the
12766       // list backward, but if one of the operands has several users in
12767       // this cluster of to-be-promoted nodes, it is possible).
12768       PromOpHandles.emplace_front(PromOp);
12769       continue;
12770     }
12771 
12772     // For SELECT and SELECT_CC nodes, we do a similar check for any
12773     // to-be-promoted comparison inputs.
12774     if (PromOp.getOpcode() == ISD::SELECT ||
12775         PromOp.getOpcode() == ISD::SELECT_CC) {
12776       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12777            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12778           (SelectTruncOp[1].count(PromOp.getNode()) &&
12779            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12780         PromOpHandles.emplace_front(PromOp);
12781         continue;
12782       }
12783     }
12784 
12785     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12786                                 PromOp.getNode()->op_end());
12787 
12788     // If this node has constant inputs, then they'll need to be promoted here.
12789     for (unsigned i = 0; i < 2; ++i) {
12790       if (!isa<ConstantSDNode>(Ops[C+i]))
12791         continue;
12792       if (Ops[C+i].getValueType() == N->getValueType(0))
12793         continue;
12794 
12795       if (N->getOpcode() == ISD::SIGN_EXTEND)
12796         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12797       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12798         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12799       else
12800         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12801     }
12802 
12803     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12804     // truncate them again to the original value type.
12805     if (PromOp.getOpcode() == ISD::SELECT ||
12806         PromOp.getOpcode() == ISD::SELECT_CC) {
12807       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12808       if (SI0 != SelectTruncOp[0].end())
12809         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12810       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12811       if (SI1 != SelectTruncOp[1].end())
12812         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12813     }
12814 
12815     DAG.ReplaceAllUsesOfValueWith(PromOp,
12816       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12817   }
12818 
12819   // Now we're left with the initial extension itself.
12820   if (!ReallyNeedsExt)
12821     return N->getOperand(0);
12822 
12823   // To zero extend, just mask off everything except for the first bit (in the
12824   // i1 case).
12825   if (N->getOpcode() == ISD::ZERO_EXTEND)
12826     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12827                        DAG.getConstant(APInt::getLowBitsSet(
12828                                          N->getValueSizeInBits(0), PromBits),
12829                                        dl, N->getValueType(0)));
12830 
12831   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12832          "Invalid extension type");
12833   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12834   SDValue ShiftCst =
12835       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12836   return DAG.getNode(
12837       ISD::SRA, dl, N->getValueType(0),
12838       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12839       ShiftCst);
12840 }
12841 
12842 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12843                                         DAGCombinerInfo &DCI) const {
12844   assert(N->getOpcode() == ISD::SETCC &&
12845          "Should be called with a SETCC node");
12846 
12847   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12848   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12849     SDValue LHS = N->getOperand(0);
12850     SDValue RHS = N->getOperand(1);
12851 
12852     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12853     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12854         LHS.hasOneUse())
12855       std::swap(LHS, RHS);
12856 
12857     // x == 0-y --> x+y == 0
12858     // x != 0-y --> x+y != 0
12859     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12860         RHS.hasOneUse()) {
12861       SDLoc DL(N);
12862       SelectionDAG &DAG = DCI.DAG;
12863       EVT VT = N->getValueType(0);
12864       EVT OpVT = LHS.getValueType();
12865       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12866       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12867     }
12868   }
12869 
12870   return DAGCombineTruncBoolExt(N, DCI);
12871 }
12872 
12873 // Is this an extending load from an f32 to an f64?
12874 static bool isFPExtLoad(SDValue Op) {
12875   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12876     return LD->getExtensionType() == ISD::EXTLOAD &&
12877       Op.getValueType() == MVT::f64;
12878   return false;
12879 }
12880 
12881 /// Reduces the number of fp-to-int conversion when building a vector.
12882 ///
12883 /// If this vector is built out of floating to integer conversions,
12884 /// transform it to a vector built out of floating point values followed by a
12885 /// single floating to integer conversion of the vector.
12886 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12887 /// becomes (fptosi (build_vector ($A, $B, ...)))
12888 SDValue PPCTargetLowering::
12889 combineElementTruncationToVectorTruncation(SDNode *N,
12890                                            DAGCombinerInfo &DCI) const {
12891   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12892          "Should be called with a BUILD_VECTOR node");
12893 
12894   SelectionDAG &DAG = DCI.DAG;
12895   SDLoc dl(N);
12896 
12897   SDValue FirstInput = N->getOperand(0);
12898   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12899          "The input operand must be an fp-to-int conversion.");
12900 
12901   // This combine happens after legalization so the fp_to_[su]i nodes are
12902   // already converted to PPCSISD nodes.
12903   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12904   if (FirstConversion == PPCISD::FCTIDZ ||
12905       FirstConversion == PPCISD::FCTIDUZ ||
12906       FirstConversion == PPCISD::FCTIWZ ||
12907       FirstConversion == PPCISD::FCTIWUZ) {
12908     bool IsSplat = true;
12909     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12910       FirstConversion == PPCISD::FCTIWUZ;
12911     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12912     SmallVector<SDValue, 4> Ops;
12913     EVT TargetVT = N->getValueType(0);
12914     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12915       SDValue NextOp = N->getOperand(i);
12916       if (NextOp.getOpcode() != PPCISD::MFVSR)
12917         return SDValue();
12918       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12919       if (NextConversion != FirstConversion)
12920         return SDValue();
12921       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12922       // This is not valid if the input was originally double precision. It is
12923       // also not profitable to do unless this is an extending load in which
12924       // case doing this combine will allow us to combine consecutive loads.
12925       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12926         return SDValue();
12927       if (N->getOperand(i) != FirstInput)
12928         IsSplat = false;
12929     }
12930 
12931     // If this is a splat, we leave it as-is since there will be only a single
12932     // fp-to-int conversion followed by a splat of the integer. This is better
12933     // for 32-bit and smaller ints and neutral for 64-bit ints.
12934     if (IsSplat)
12935       return SDValue();
12936 
12937     // Now that we know we have the right type of node, get its operands
12938     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12939       SDValue In = N->getOperand(i).getOperand(0);
12940       if (Is32Bit) {
12941         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12942         // here, we know that all inputs are extending loads so this is safe).
12943         if (In.isUndef())
12944           Ops.push_back(DAG.getUNDEF(SrcVT));
12945         else {
12946           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12947                                       MVT::f32, In.getOperand(0),
12948                                       DAG.getIntPtrConstant(1, dl));
12949           Ops.push_back(Trunc);
12950         }
12951       } else
12952         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12953     }
12954 
12955     unsigned Opcode;
12956     if (FirstConversion == PPCISD::FCTIDZ ||
12957         FirstConversion == PPCISD::FCTIWZ)
12958       Opcode = ISD::FP_TO_SINT;
12959     else
12960       Opcode = ISD::FP_TO_UINT;
12961 
12962     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12963     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12964     return DAG.getNode(Opcode, dl, TargetVT, BV);
12965   }
12966   return SDValue();
12967 }
12968 
12969 /// Reduce the number of loads when building a vector.
12970 ///
12971 /// Building a vector out of multiple loads can be converted to a load
12972 /// of the vector type if the loads are consecutive. If the loads are
12973 /// consecutive but in descending order, a shuffle is added at the end
12974 /// to reorder the vector.
12975 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12976   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12977          "Should be called with a BUILD_VECTOR node");
12978 
12979   SDLoc dl(N);
12980 
12981   // Return early for non byte-sized type, as they can't be consecutive.
12982   if (!N->getValueType(0).getVectorElementType().isByteSized())
12983     return SDValue();
12984 
12985   bool InputsAreConsecutiveLoads = true;
12986   bool InputsAreReverseConsecutive = true;
12987   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12988   SDValue FirstInput = N->getOperand(0);
12989   bool IsRoundOfExtLoad = false;
12990 
12991   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12992       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12993     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12994     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12995   }
12996   // Not a build vector of (possibly fp_rounded) loads.
12997   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12998       N->getNumOperands() == 1)
12999     return SDValue();
13000 
13001   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13002     // If any inputs are fp_round(extload), they all must be.
13003     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13004       return SDValue();
13005 
13006     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13007       N->getOperand(i);
13008     if (NextInput.getOpcode() != ISD::LOAD)
13009       return SDValue();
13010 
13011     SDValue PreviousInput =
13012       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13013     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13014     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13015 
13016     // If any inputs are fp_round(extload), they all must be.
13017     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13018       return SDValue();
13019 
13020     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13021       InputsAreConsecutiveLoads = false;
13022     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13023       InputsAreReverseConsecutive = false;
13024 
13025     // Exit early if the loads are neither consecutive nor reverse consecutive.
13026     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13027       return SDValue();
13028   }
13029 
13030   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13031          "The loads cannot be both consecutive and reverse consecutive.");
13032 
13033   SDValue FirstLoadOp =
13034     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13035   SDValue LastLoadOp =
13036     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13037                        N->getOperand(N->getNumOperands()-1);
13038 
13039   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13040   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13041   if (InputsAreConsecutiveLoads) {
13042     assert(LD1 && "Input needs to be a LoadSDNode.");
13043     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13044                        LD1->getBasePtr(), LD1->getPointerInfo(),
13045                        LD1->getAlignment());
13046   }
13047   if (InputsAreReverseConsecutive) {
13048     assert(LDL && "Input needs to be a LoadSDNode.");
13049     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13050                                LDL->getBasePtr(), LDL->getPointerInfo(),
13051                                LDL->getAlignment());
13052     SmallVector<int, 16> Ops;
13053     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13054       Ops.push_back(i);
13055 
13056     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13057                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13058   }
13059   return SDValue();
13060 }
13061 
13062 // This function adds the required vector_shuffle needed to get
13063 // the elements of the vector extract in the correct position
13064 // as specified by the CorrectElems encoding.
13065 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13066                                       SDValue Input, uint64_t Elems,
13067                                       uint64_t CorrectElems) {
13068   SDLoc dl(N);
13069 
13070   unsigned NumElems = Input.getValueType().getVectorNumElements();
13071   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13072 
13073   // Knowing the element indices being extracted from the original
13074   // vector and the order in which they're being inserted, just put
13075   // them at element indices required for the instruction.
13076   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13077     if (DAG.getDataLayout().isLittleEndian())
13078       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13079     else
13080       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13081     CorrectElems = CorrectElems >> 8;
13082     Elems = Elems >> 8;
13083   }
13084 
13085   SDValue Shuffle =
13086       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13087                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13088 
13089   EVT Ty = N->getValueType(0);
13090   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13091   return BV;
13092 }
13093 
13094 // Look for build vector patterns where input operands come from sign
13095 // extended vector_extract elements of specific indices. If the correct indices
13096 // aren't used, add a vector shuffle to fix up the indices and create a new
13097 // PPCISD:SExtVElems node which selects the vector sign extend instructions
13098 // during instruction selection.
13099 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13100   // This array encodes the indices that the vector sign extend instructions
13101   // extract from when extending from one type to another for both BE and LE.
13102   // The right nibble of each byte corresponds to the LE incides.
13103   // and the left nibble of each byte corresponds to the BE incides.
13104   // For example: 0x3074B8FC  byte->word
13105   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13106   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13107   // For example: 0x000070F8  byte->double word
13108   // For LE: the allowed indices are: 0x0,0x8
13109   // For BE: the allowed indices are: 0x7,0xF
13110   uint64_t TargetElems[] = {
13111       0x3074B8FC, // b->w
13112       0x000070F8, // b->d
13113       0x10325476, // h->w
13114       0x00003074, // h->d
13115       0x00001032, // w->d
13116   };
13117 
13118   uint64_t Elems = 0;
13119   int Index;
13120   SDValue Input;
13121 
13122   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13123     if (!Op)
13124       return false;
13125     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13126         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13127       return false;
13128 
13129     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13130     // of the right width.
13131     SDValue Extract = Op.getOperand(0);
13132     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13133       Extract = Extract.getOperand(0);
13134     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13135       return false;
13136 
13137     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13138     if (!ExtOp)
13139       return false;
13140 
13141     Index = ExtOp->getZExtValue();
13142     if (Input && Input != Extract.getOperand(0))
13143       return false;
13144 
13145     if (!Input)
13146       Input = Extract.getOperand(0);
13147 
13148     Elems = Elems << 8;
13149     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13150     Elems |= Index;
13151 
13152     return true;
13153   };
13154 
13155   // If the build vector operands aren't sign extended vector extracts,
13156   // of the same input vector, then return.
13157   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13158     if (!isSExtOfVecExtract(N->getOperand(i))) {
13159       return SDValue();
13160     }
13161   }
13162 
13163   // If the vector extract indicies are not correct, add the appropriate
13164   // vector_shuffle.
13165   int TgtElemArrayIdx;
13166   int InputSize = Input.getValueType().getScalarSizeInBits();
13167   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13168   if (InputSize + OutputSize == 40)
13169     TgtElemArrayIdx = 0;
13170   else if (InputSize + OutputSize == 72)
13171     TgtElemArrayIdx = 1;
13172   else if (InputSize + OutputSize == 48)
13173     TgtElemArrayIdx = 2;
13174   else if (InputSize + OutputSize == 80)
13175     TgtElemArrayIdx = 3;
13176   else if (InputSize + OutputSize == 96)
13177     TgtElemArrayIdx = 4;
13178   else
13179     return SDValue();
13180 
13181   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13182   CorrectElems = DAG.getDataLayout().isLittleEndian()
13183                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13184                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13185   if (Elems != CorrectElems) {
13186     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13187   }
13188 
13189   // Regular lowering will catch cases where a shuffle is not needed.
13190   return SDValue();
13191 }
13192 
13193 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13194                                                  DAGCombinerInfo &DCI) const {
13195   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13196          "Should be called with a BUILD_VECTOR node");
13197 
13198   SelectionDAG &DAG = DCI.DAG;
13199   SDLoc dl(N);
13200 
13201   if (!Subtarget.hasVSX())
13202     return SDValue();
13203 
13204   // The target independent DAG combiner will leave a build_vector of
13205   // float-to-int conversions intact. We can generate MUCH better code for
13206   // a float-to-int conversion of a vector of floats.
13207   SDValue FirstInput = N->getOperand(0);
13208   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13209     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13210     if (Reduced)
13211       return Reduced;
13212   }
13213 
13214   // If we're building a vector out of consecutive loads, just load that
13215   // vector type.
13216   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13217   if (Reduced)
13218     return Reduced;
13219 
13220   // If we're building a vector out of extended elements from another vector
13221   // we have P9 vector integer extend instructions. The code assumes legal
13222   // input types (i.e. it can't handle things like v4i16) so do not run before
13223   // legalization.
13224   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13225     Reduced = combineBVOfVecSExt(N, DAG);
13226     if (Reduced)
13227       return Reduced;
13228   }
13229 
13230 
13231   if (N->getValueType(0) != MVT::v2f64)
13232     return SDValue();
13233 
13234   // Looking for:
13235   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13236   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13237       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13238     return SDValue();
13239   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13240       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13241     return SDValue();
13242   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13243     return SDValue();
13244 
13245   SDValue Ext1 = FirstInput.getOperand(0);
13246   SDValue Ext2 = N->getOperand(1).getOperand(0);
13247   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13248      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13249     return SDValue();
13250 
13251   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13252   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13253   if (!Ext1Op || !Ext2Op)
13254     return SDValue();
13255   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13256       Ext1.getOperand(0) != Ext2.getOperand(0))
13257     return SDValue();
13258 
13259   int FirstElem = Ext1Op->getZExtValue();
13260   int SecondElem = Ext2Op->getZExtValue();
13261   int SubvecIdx;
13262   if (FirstElem == 0 && SecondElem == 1)
13263     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13264   else if (FirstElem == 2 && SecondElem == 3)
13265     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13266   else
13267     return SDValue();
13268 
13269   SDValue SrcVec = Ext1.getOperand(0);
13270   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13271     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13272   return DAG.getNode(NodeType, dl, MVT::v2f64,
13273                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13274 }
13275 
13276 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13277                                               DAGCombinerInfo &DCI) const {
13278   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13279           N->getOpcode() == ISD::UINT_TO_FP) &&
13280          "Need an int -> FP conversion node here");
13281 
13282   if (useSoftFloat() || !Subtarget.has64BitSupport())
13283     return SDValue();
13284 
13285   SelectionDAG &DAG = DCI.DAG;
13286   SDLoc dl(N);
13287   SDValue Op(N, 0);
13288 
13289   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13290   // from the hardware.
13291   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13292     return SDValue();
13293   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13294       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13295     return SDValue();
13296 
13297   SDValue FirstOperand(Op.getOperand(0));
13298   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13299     (FirstOperand.getValueType() == MVT::i8 ||
13300      FirstOperand.getValueType() == MVT::i16);
13301   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13302     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13303     bool DstDouble = Op.getValueType() == MVT::f64;
13304     unsigned ConvOp = Signed ?
13305       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13306       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13307     SDValue WidthConst =
13308       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13309                             dl, false);
13310     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13311     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13312     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13313                                          DAG.getVTList(MVT::f64, MVT::Other),
13314                                          Ops, MVT::i8, LDN->getMemOperand());
13315 
13316     // For signed conversion, we need to sign-extend the value in the VSR
13317     if (Signed) {
13318       SDValue ExtOps[] = { Ld, WidthConst };
13319       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13320       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13321     } else
13322       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13323   }
13324 
13325 
13326   // For i32 intermediate values, unfortunately, the conversion functions
13327   // leave the upper 32 bits of the value are undefined. Within the set of
13328   // scalar instructions, we have no method for zero- or sign-extending the
13329   // value. Thus, we cannot handle i32 intermediate values here.
13330   if (Op.getOperand(0).getValueType() == MVT::i32)
13331     return SDValue();
13332 
13333   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13334          "UINT_TO_FP is supported only with FPCVT");
13335 
13336   // If we have FCFIDS, then use it when converting to single-precision.
13337   // Otherwise, convert to double-precision and then round.
13338   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13339                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13340                                                             : PPCISD::FCFIDS)
13341                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13342                                                             : PPCISD::FCFID);
13343   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13344                   ? MVT::f32
13345                   : MVT::f64;
13346 
13347   // If we're converting from a float, to an int, and back to a float again,
13348   // then we don't need the store/load pair at all.
13349   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13350        Subtarget.hasFPCVT()) ||
13351       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13352     SDValue Src = Op.getOperand(0).getOperand(0);
13353     if (Src.getValueType() == MVT::f32) {
13354       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13355       DCI.AddToWorklist(Src.getNode());
13356     } else if (Src.getValueType() != MVT::f64) {
13357       // Make sure that we don't pick up a ppc_fp128 source value.
13358       return SDValue();
13359     }
13360 
13361     unsigned FCTOp =
13362       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13363                                                         PPCISD::FCTIDUZ;
13364 
13365     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13366     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13367 
13368     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13369       FP = DAG.getNode(ISD::FP_ROUND, dl,
13370                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13371       DCI.AddToWorklist(FP.getNode());
13372     }
13373 
13374     return FP;
13375   }
13376 
13377   return SDValue();
13378 }
13379 
13380 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13381 // builtins) into loads with swaps.
13382 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13383                                               DAGCombinerInfo &DCI) const {
13384   SelectionDAG &DAG = DCI.DAG;
13385   SDLoc dl(N);
13386   SDValue Chain;
13387   SDValue Base;
13388   MachineMemOperand *MMO;
13389 
13390   switch (N->getOpcode()) {
13391   default:
13392     llvm_unreachable("Unexpected opcode for little endian VSX load");
13393   case ISD::LOAD: {
13394     LoadSDNode *LD = cast<LoadSDNode>(N);
13395     Chain = LD->getChain();
13396     Base = LD->getBasePtr();
13397     MMO = LD->getMemOperand();
13398     // If the MMO suggests this isn't a load of a full vector, leave
13399     // things alone.  For a built-in, we have to make the change for
13400     // correctness, so if there is a size problem that will be a bug.
13401     if (MMO->getSize() < 16)
13402       return SDValue();
13403     break;
13404   }
13405   case ISD::INTRINSIC_W_CHAIN: {
13406     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13407     Chain = Intrin->getChain();
13408     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13409     // us what we want. Get operand 2 instead.
13410     Base = Intrin->getOperand(2);
13411     MMO = Intrin->getMemOperand();
13412     break;
13413   }
13414   }
13415 
13416   MVT VecTy = N->getValueType(0).getSimpleVT();
13417 
13418   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13419   // aligned and the type is a vector with elements up to 4 bytes
13420   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13421       && VecTy.getScalarSizeInBits() <= 32 ) {
13422     return SDValue();
13423   }
13424 
13425   SDValue LoadOps[] = { Chain, Base };
13426   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13427                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13428                                          LoadOps, MVT::v2f64, MMO);
13429 
13430   DCI.AddToWorklist(Load.getNode());
13431   Chain = Load.getValue(1);
13432   SDValue Swap = DAG.getNode(
13433       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13434   DCI.AddToWorklist(Swap.getNode());
13435 
13436   // Add a bitcast if the resulting load type doesn't match v2f64.
13437   if (VecTy != MVT::v2f64) {
13438     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13439     DCI.AddToWorklist(N.getNode());
13440     // Package {bitcast value, swap's chain} to match Load's shape.
13441     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13442                        N, Swap.getValue(1));
13443   }
13444 
13445   return Swap;
13446 }
13447 
13448 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13449 // builtins) into stores with swaps.
13450 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13451                                                DAGCombinerInfo &DCI) const {
13452   SelectionDAG &DAG = DCI.DAG;
13453   SDLoc dl(N);
13454   SDValue Chain;
13455   SDValue Base;
13456   unsigned SrcOpnd;
13457   MachineMemOperand *MMO;
13458 
13459   switch (N->getOpcode()) {
13460   default:
13461     llvm_unreachable("Unexpected opcode for little endian VSX store");
13462   case ISD::STORE: {
13463     StoreSDNode *ST = cast<StoreSDNode>(N);
13464     Chain = ST->getChain();
13465     Base = ST->getBasePtr();
13466     MMO = ST->getMemOperand();
13467     SrcOpnd = 1;
13468     // If the MMO suggests this isn't a store of a full vector, leave
13469     // things alone.  For a built-in, we have to make the change for
13470     // correctness, so if there is a size problem that will be a bug.
13471     if (MMO->getSize() < 16)
13472       return SDValue();
13473     break;
13474   }
13475   case ISD::INTRINSIC_VOID: {
13476     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13477     Chain = Intrin->getChain();
13478     // Intrin->getBasePtr() oddly does not get what we want.
13479     Base = Intrin->getOperand(3);
13480     MMO = Intrin->getMemOperand();
13481     SrcOpnd = 2;
13482     break;
13483   }
13484   }
13485 
13486   SDValue Src = N->getOperand(SrcOpnd);
13487   MVT VecTy = Src.getValueType().getSimpleVT();
13488 
13489   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13490   // aligned and the type is a vector with elements up to 4 bytes
13491   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13492       && VecTy.getScalarSizeInBits() <= 32 ) {
13493     return SDValue();
13494   }
13495 
13496   // All stores are done as v2f64 and possible bit cast.
13497   if (VecTy != MVT::v2f64) {
13498     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13499     DCI.AddToWorklist(Src.getNode());
13500   }
13501 
13502   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13503                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13504   DCI.AddToWorklist(Swap.getNode());
13505   Chain = Swap.getValue(1);
13506   SDValue StoreOps[] = { Chain, Swap, Base };
13507   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13508                                           DAG.getVTList(MVT::Other),
13509                                           StoreOps, VecTy, MMO);
13510   DCI.AddToWorklist(Store.getNode());
13511   return Store;
13512 }
13513 
13514 // Handle DAG combine for STORE (FP_TO_INT F).
13515 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13516                                                DAGCombinerInfo &DCI) const {
13517 
13518   SelectionDAG &DAG = DCI.DAG;
13519   SDLoc dl(N);
13520   unsigned Opcode = N->getOperand(1).getOpcode();
13521 
13522   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13523          && "Not a FP_TO_INT Instruction!");
13524 
13525   SDValue Val = N->getOperand(1).getOperand(0);
13526   EVT Op1VT = N->getOperand(1).getValueType();
13527   EVT ResVT = Val.getValueType();
13528 
13529   // Floating point types smaller than 32 bits are not legal on Power.
13530   if (ResVT.getScalarSizeInBits() < 32)
13531     return SDValue();
13532 
13533   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13534   bool ValidTypeForStoreFltAsInt =
13535         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13536          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13537 
13538   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13539       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13540     return SDValue();
13541 
13542   // Extend f32 values to f64
13543   if (ResVT.getScalarSizeInBits() == 32) {
13544     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13545     DCI.AddToWorklist(Val.getNode());
13546   }
13547 
13548   // Set signed or unsigned conversion opcode.
13549   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13550                           PPCISD::FP_TO_SINT_IN_VSR :
13551                           PPCISD::FP_TO_UINT_IN_VSR;
13552 
13553   Val = DAG.getNode(ConvOpcode,
13554                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13555   DCI.AddToWorklist(Val.getNode());
13556 
13557   // Set number of bytes being converted.
13558   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13559   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13560                     DAG.getIntPtrConstant(ByteSize, dl, false),
13561                     DAG.getValueType(Op1VT) };
13562 
13563   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13564           DAG.getVTList(MVT::Other), Ops,
13565           cast<StoreSDNode>(N)->getMemoryVT(),
13566           cast<StoreSDNode>(N)->getMemOperand());
13567 
13568   DCI.AddToWorklist(Val.getNode());
13569   return Val;
13570 }
13571 
13572 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13573                                                 LSBaseSDNode *LSBase,
13574                                                 DAGCombinerInfo &DCI) const {
13575   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13576         "Not a reverse memop pattern!");
13577 
13578   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13579     auto Mask = SVN->getMask();
13580     int i = 0;
13581     auto I = Mask.rbegin();
13582     auto E = Mask.rend();
13583 
13584     for (; I != E; ++I) {
13585       if (*I != i)
13586         return false;
13587       i++;
13588     }
13589     return true;
13590   };
13591 
13592   SelectionDAG &DAG = DCI.DAG;
13593   EVT VT = SVN->getValueType(0);
13594 
13595   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13596     return SDValue();
13597 
13598   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13599   // See comment in PPCVSXSwapRemoval.cpp.
13600   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13601   if (!Subtarget.hasP9Vector())
13602     return SDValue();
13603 
13604   if(!IsElementReverse(SVN))
13605     return SDValue();
13606 
13607   if (LSBase->getOpcode() == ISD::LOAD) {
13608     SDLoc dl(SVN);
13609     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13610     return DAG.getMemIntrinsicNode(
13611         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13612         LSBase->getMemoryVT(), LSBase->getMemOperand());
13613   }
13614 
13615   if (LSBase->getOpcode() == ISD::STORE) {
13616     SDLoc dl(LSBase);
13617     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13618                           LSBase->getBasePtr()};
13619     return DAG.getMemIntrinsicNode(
13620         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13621         LSBase->getMemoryVT(), LSBase->getMemOperand());
13622   }
13623 
13624   llvm_unreachable("Expected a load or store node here");
13625 }
13626 
13627 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13628                                              DAGCombinerInfo &DCI) const {
13629   SelectionDAG &DAG = DCI.DAG;
13630   SDLoc dl(N);
13631   switch (N->getOpcode()) {
13632   default: break;
13633   case ISD::ADD:
13634     return combineADD(N, DCI);
13635   case ISD::SHL:
13636     return combineSHL(N, DCI);
13637   case ISD::SRA:
13638     return combineSRA(N, DCI);
13639   case ISD::SRL:
13640     return combineSRL(N, DCI);
13641   case ISD::MUL:
13642     return combineMUL(N, DCI);
13643   case PPCISD::SHL:
13644     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13645         return N->getOperand(0);
13646     break;
13647   case PPCISD::SRL:
13648     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13649         return N->getOperand(0);
13650     break;
13651   case PPCISD::SRA:
13652     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13653       if (C->isNullValue() ||   //  0 >>s V -> 0.
13654           C->isAllOnesValue())    // -1 >>s V -> -1.
13655         return N->getOperand(0);
13656     }
13657     break;
13658   case ISD::SIGN_EXTEND:
13659   case ISD::ZERO_EXTEND:
13660   case ISD::ANY_EXTEND:
13661     return DAGCombineExtBoolTrunc(N, DCI);
13662   case ISD::TRUNCATE:
13663     return combineTRUNCATE(N, DCI);
13664   case ISD::SETCC:
13665     if (SDValue CSCC = combineSetCC(N, DCI))
13666       return CSCC;
13667     LLVM_FALLTHROUGH;
13668   case ISD::SELECT_CC:
13669     return DAGCombineTruncBoolExt(N, DCI);
13670   case ISD::SINT_TO_FP:
13671   case ISD::UINT_TO_FP:
13672     return combineFPToIntToFP(N, DCI);
13673   case ISD::VECTOR_SHUFFLE:
13674     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13675       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13676       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13677     }
13678     break;
13679   case ISD::STORE: {
13680 
13681     EVT Op1VT = N->getOperand(1).getValueType();
13682     unsigned Opcode = N->getOperand(1).getOpcode();
13683 
13684     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13685       SDValue Val= combineStoreFPToInt(N, DCI);
13686       if (Val)
13687         return Val;
13688     }
13689 
13690     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13691       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13692       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13693       if (Val)
13694         return Val;
13695     }
13696 
13697     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13698     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13699         N->getOperand(1).getNode()->hasOneUse() &&
13700         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13701          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13702 
13703       // STBRX can only handle simple types and it makes no sense to store less
13704       // two bytes in byte-reversed order.
13705       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13706       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13707         break;
13708 
13709       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13710       // Do an any-extend to 32-bits if this is a half-word input.
13711       if (BSwapOp.getValueType() == MVT::i16)
13712         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13713 
13714       // If the type of BSWAP operand is wider than stored memory width
13715       // it need to be shifted to the right side before STBRX.
13716       if (Op1VT.bitsGT(mVT)) {
13717         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13718         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13719                               DAG.getConstant(Shift, dl, MVT::i32));
13720         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13721         if (Op1VT == MVT::i64)
13722           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13723       }
13724 
13725       SDValue Ops[] = {
13726         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13727       };
13728       return
13729         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13730                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13731                                 cast<StoreSDNode>(N)->getMemOperand());
13732     }
13733 
13734     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13735     // So it can increase the chance of CSE constant construction.
13736     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13737         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13738       // Need to sign-extended to 64-bits to handle negative values.
13739       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13740       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13741                                     MemVT.getSizeInBits());
13742       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13743 
13744       // DAG.getTruncStore() can't be used here because it doesn't accept
13745       // the general (base + offset) addressing mode.
13746       // So we use UpdateNodeOperands and setTruncatingStore instead.
13747       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13748                              N->getOperand(3));
13749       cast<StoreSDNode>(N)->setTruncatingStore(true);
13750       return SDValue(N, 0);
13751     }
13752 
13753     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13754     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13755     if (Op1VT.isSimple()) {
13756       MVT StoreVT = Op1VT.getSimpleVT();
13757       if (Subtarget.needsSwapsForVSXMemOps() &&
13758           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13759            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13760         return expandVSXStoreForLE(N, DCI);
13761     }
13762     break;
13763   }
13764   case ISD::LOAD: {
13765     LoadSDNode *LD = cast<LoadSDNode>(N);
13766     EVT VT = LD->getValueType(0);
13767 
13768     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13769     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13770     if (VT.isSimple()) {
13771       MVT LoadVT = VT.getSimpleVT();
13772       if (Subtarget.needsSwapsForVSXMemOps() &&
13773           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13774            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13775         return expandVSXLoadForLE(N, DCI);
13776     }
13777 
13778     // We sometimes end up with a 64-bit integer load, from which we extract
13779     // two single-precision floating-point numbers. This happens with
13780     // std::complex<float>, and other similar structures, because of the way we
13781     // canonicalize structure copies. However, if we lack direct moves,
13782     // then the final bitcasts from the extracted integer values to the
13783     // floating-point numbers turn into store/load pairs. Even with direct moves,
13784     // just loading the two floating-point numbers is likely better.
13785     auto ReplaceTwoFloatLoad = [&]() {
13786       if (VT != MVT::i64)
13787         return false;
13788 
13789       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13790           LD->isVolatile())
13791         return false;
13792 
13793       //  We're looking for a sequence like this:
13794       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13795       //      t16: i64 = srl t13, Constant:i32<32>
13796       //    t17: i32 = truncate t16
13797       //  t18: f32 = bitcast t17
13798       //    t19: i32 = truncate t13
13799       //  t20: f32 = bitcast t19
13800 
13801       if (!LD->hasNUsesOfValue(2, 0))
13802         return false;
13803 
13804       auto UI = LD->use_begin();
13805       while (UI.getUse().getResNo() != 0) ++UI;
13806       SDNode *Trunc = *UI++;
13807       while (UI.getUse().getResNo() != 0) ++UI;
13808       SDNode *RightShift = *UI;
13809       if (Trunc->getOpcode() != ISD::TRUNCATE)
13810         std::swap(Trunc, RightShift);
13811 
13812       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13813           Trunc->getValueType(0) != MVT::i32 ||
13814           !Trunc->hasOneUse())
13815         return false;
13816       if (RightShift->getOpcode() != ISD::SRL ||
13817           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13818           RightShift->getConstantOperandVal(1) != 32 ||
13819           !RightShift->hasOneUse())
13820         return false;
13821 
13822       SDNode *Trunc2 = *RightShift->use_begin();
13823       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13824           Trunc2->getValueType(0) != MVT::i32 ||
13825           !Trunc2->hasOneUse())
13826         return false;
13827 
13828       SDNode *Bitcast = *Trunc->use_begin();
13829       SDNode *Bitcast2 = *Trunc2->use_begin();
13830 
13831       if (Bitcast->getOpcode() != ISD::BITCAST ||
13832           Bitcast->getValueType(0) != MVT::f32)
13833         return false;
13834       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13835           Bitcast2->getValueType(0) != MVT::f32)
13836         return false;
13837 
13838       if (Subtarget.isLittleEndian())
13839         std::swap(Bitcast, Bitcast2);
13840 
13841       // Bitcast has the second float (in memory-layout order) and Bitcast2
13842       // has the first one.
13843 
13844       SDValue BasePtr = LD->getBasePtr();
13845       if (LD->isIndexed()) {
13846         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13847                "Non-pre-inc AM on PPC?");
13848         BasePtr =
13849           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13850                       LD->getOffset());
13851       }
13852 
13853       auto MMOFlags =
13854           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13855       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13856                                       LD->getPointerInfo(), LD->getAlignment(),
13857                                       MMOFlags, LD->getAAInfo());
13858       SDValue AddPtr =
13859         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13860                     BasePtr, DAG.getIntPtrConstant(4, dl));
13861       SDValue FloatLoad2 = DAG.getLoad(
13862           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13863           LD->getPointerInfo().getWithOffset(4),
13864           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13865 
13866       if (LD->isIndexed()) {
13867         // Note that DAGCombine should re-form any pre-increment load(s) from
13868         // what is produced here if that makes sense.
13869         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13870       }
13871 
13872       DCI.CombineTo(Bitcast2, FloatLoad);
13873       DCI.CombineTo(Bitcast, FloatLoad2);
13874 
13875       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13876                                     SDValue(FloatLoad2.getNode(), 1));
13877       return true;
13878     };
13879 
13880     if (ReplaceTwoFloatLoad())
13881       return SDValue(N, 0);
13882 
13883     EVT MemVT = LD->getMemoryVT();
13884     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13885     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13886     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13887     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13888     if (LD->isUnindexed() && VT.isVector() &&
13889         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13890           // P8 and later hardware should just use LOAD.
13891           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13892                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13893          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13894           LD->getAlignment() >= ScalarABIAlignment)) &&
13895         LD->getAlignment() < ABIAlignment) {
13896       // This is a type-legal unaligned Altivec or QPX load.
13897       SDValue Chain = LD->getChain();
13898       SDValue Ptr = LD->getBasePtr();
13899       bool isLittleEndian = Subtarget.isLittleEndian();
13900 
13901       // This implements the loading of unaligned vectors as described in
13902       // the venerable Apple Velocity Engine overview. Specifically:
13903       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13904       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13905       //
13906       // The general idea is to expand a sequence of one or more unaligned
13907       // loads into an alignment-based permutation-control instruction (lvsl
13908       // or lvsr), a series of regular vector loads (which always truncate
13909       // their input address to an aligned address), and a series of
13910       // permutations.  The results of these permutations are the requested
13911       // loaded values.  The trick is that the last "extra" load is not taken
13912       // from the address you might suspect (sizeof(vector) bytes after the
13913       // last requested load), but rather sizeof(vector) - 1 bytes after the
13914       // last requested vector. The point of this is to avoid a page fault if
13915       // the base address happened to be aligned. This works because if the
13916       // base address is aligned, then adding less than a full vector length
13917       // will cause the last vector in the sequence to be (re)loaded.
13918       // Otherwise, the next vector will be fetched as you might suspect was
13919       // necessary.
13920 
13921       // We might be able to reuse the permutation generation from
13922       // a different base address offset from this one by an aligned amount.
13923       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13924       // optimization later.
13925       Intrinsic::ID Intr, IntrLD, IntrPerm;
13926       MVT PermCntlTy, PermTy, LDTy;
13927       if (Subtarget.hasAltivec()) {
13928         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13929                                  Intrinsic::ppc_altivec_lvsl;
13930         IntrLD = Intrinsic::ppc_altivec_lvx;
13931         IntrPerm = Intrinsic::ppc_altivec_vperm;
13932         PermCntlTy = MVT::v16i8;
13933         PermTy = MVT::v4i32;
13934         LDTy = MVT::v4i32;
13935       } else {
13936         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13937                                        Intrinsic::ppc_qpx_qvlpcls;
13938         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13939                                        Intrinsic::ppc_qpx_qvlfs;
13940         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13941         PermCntlTy = MVT::v4f64;
13942         PermTy = MVT::v4f64;
13943         LDTy = MemVT.getSimpleVT();
13944       }
13945 
13946       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13947 
13948       // Create the new MMO for the new base load. It is like the original MMO,
13949       // but represents an area in memory almost twice the vector size centered
13950       // on the original address. If the address is unaligned, we might start
13951       // reading up to (sizeof(vector)-1) bytes below the address of the
13952       // original unaligned load.
13953       MachineFunction &MF = DAG.getMachineFunction();
13954       MachineMemOperand *BaseMMO =
13955         MF.getMachineMemOperand(LD->getMemOperand(),
13956                                 -(long)MemVT.getStoreSize()+1,
13957                                 2*MemVT.getStoreSize()-1);
13958 
13959       // Create the new base load.
13960       SDValue LDXIntID =
13961           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13962       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13963       SDValue BaseLoad =
13964         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13965                                 DAG.getVTList(PermTy, MVT::Other),
13966                                 BaseLoadOps, LDTy, BaseMMO);
13967 
13968       // Note that the value of IncOffset (which is provided to the next
13969       // load's pointer info offset value, and thus used to calculate the
13970       // alignment), and the value of IncValue (which is actually used to
13971       // increment the pointer value) are different! This is because we
13972       // require the next load to appear to be aligned, even though it
13973       // is actually offset from the base pointer by a lesser amount.
13974       int IncOffset = VT.getSizeInBits() / 8;
13975       int IncValue = IncOffset;
13976 
13977       // Walk (both up and down) the chain looking for another load at the real
13978       // (aligned) offset (the alignment of the other load does not matter in
13979       // this case). If found, then do not use the offset reduction trick, as
13980       // that will prevent the loads from being later combined (as they would
13981       // otherwise be duplicates).
13982       if (!findConsecutiveLoad(LD, DAG))
13983         --IncValue;
13984 
13985       SDValue Increment =
13986           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13987       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13988 
13989       MachineMemOperand *ExtraMMO =
13990         MF.getMachineMemOperand(LD->getMemOperand(),
13991                                 1, 2*MemVT.getStoreSize()-1);
13992       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13993       SDValue ExtraLoad =
13994         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13995                                 DAG.getVTList(PermTy, MVT::Other),
13996                                 ExtraLoadOps, LDTy, ExtraMMO);
13997 
13998       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13999         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14000 
14001       // Because vperm has a big-endian bias, we must reverse the order
14002       // of the input vectors and complement the permute control vector
14003       // when generating little endian code.  We have already handled the
14004       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14005       // and ExtraLoad here.
14006       SDValue Perm;
14007       if (isLittleEndian)
14008         Perm = BuildIntrinsicOp(IntrPerm,
14009                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14010       else
14011         Perm = BuildIntrinsicOp(IntrPerm,
14012                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14013 
14014       if (VT != PermTy)
14015         Perm = Subtarget.hasAltivec() ?
14016                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14017                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14018                                DAG.getTargetConstant(1, dl, MVT::i64));
14019                                // second argument is 1 because this rounding
14020                                // is always exact.
14021 
14022       // The output of the permutation is our loaded result, the TokenFactor is
14023       // our new chain.
14024       DCI.CombineTo(N, Perm, TF);
14025       return SDValue(N, 0);
14026     }
14027     }
14028     break;
14029     case ISD::INTRINSIC_WO_CHAIN: {
14030       bool isLittleEndian = Subtarget.isLittleEndian();
14031       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14032       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14033                                            : Intrinsic::ppc_altivec_lvsl);
14034       if ((IID == Intr ||
14035            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14036            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14037         N->getOperand(1)->getOpcode() == ISD::ADD) {
14038         SDValue Add = N->getOperand(1);
14039 
14040         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14041                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14042 
14043         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14044                                   APInt::getAllOnesValue(Bits /* alignment */)
14045                                       .zext(Add.getScalarValueSizeInBits()))) {
14046           SDNode *BasePtr = Add->getOperand(0).getNode();
14047           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14048                                     UE = BasePtr->use_end();
14049                UI != UE; ++UI) {
14050             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14051                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14052               // We've found another LVSL/LVSR, and this address is an aligned
14053               // multiple of that one. The results will be the same, so use the
14054               // one we've just found instead.
14055 
14056               return SDValue(*UI, 0);
14057             }
14058           }
14059         }
14060 
14061         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14062           SDNode *BasePtr = Add->getOperand(0).getNode();
14063           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14064                UE = BasePtr->use_end(); UI != UE; ++UI) {
14065             if (UI->getOpcode() == ISD::ADD &&
14066                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14067                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14068                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14069                 (1ULL << Bits) == 0) {
14070               SDNode *OtherAdd = *UI;
14071               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14072                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14073                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14074                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14075                   return SDValue(*VI, 0);
14076                 }
14077               }
14078             }
14079           }
14080         }
14081       }
14082 
14083       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14084       // Expose the vabsduw/h/b opportunity for down stream
14085       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14086           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14087            IID == Intrinsic::ppc_altivec_vmaxsh ||
14088            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14089         SDValue V1 = N->getOperand(1);
14090         SDValue V2 = N->getOperand(2);
14091         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14092              V1.getSimpleValueType() == MVT::v8i16 ||
14093              V1.getSimpleValueType() == MVT::v16i8) &&
14094             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14095           // (0-a, a)
14096           if (V1.getOpcode() == ISD::SUB &&
14097               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14098               V1.getOperand(1) == V2) {
14099             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14100           }
14101           // (a, 0-a)
14102           if (V2.getOpcode() == ISD::SUB &&
14103               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14104               V2.getOperand(1) == V1) {
14105             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14106           }
14107           // (x-y, y-x)
14108           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14109               V1.getOperand(0) == V2.getOperand(1) &&
14110               V1.getOperand(1) == V2.getOperand(0)) {
14111             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14112           }
14113         }
14114       }
14115     }
14116 
14117     break;
14118   case ISD::INTRINSIC_W_CHAIN:
14119     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14120     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14121     if (Subtarget.needsSwapsForVSXMemOps()) {
14122       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14123       default:
14124         break;
14125       case Intrinsic::ppc_vsx_lxvw4x:
14126       case Intrinsic::ppc_vsx_lxvd2x:
14127         return expandVSXLoadForLE(N, DCI);
14128       }
14129     }
14130     break;
14131   case ISD::INTRINSIC_VOID:
14132     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14133     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14134     if (Subtarget.needsSwapsForVSXMemOps()) {
14135       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14136       default:
14137         break;
14138       case Intrinsic::ppc_vsx_stxvw4x:
14139       case Intrinsic::ppc_vsx_stxvd2x:
14140         return expandVSXStoreForLE(N, DCI);
14141       }
14142     }
14143     break;
14144   case ISD::BSWAP:
14145     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14146     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14147         N->getOperand(0).hasOneUse() &&
14148         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14149          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14150           N->getValueType(0) == MVT::i64))) {
14151       SDValue Load = N->getOperand(0);
14152       LoadSDNode *LD = cast<LoadSDNode>(Load);
14153       // Create the byte-swapping load.
14154       SDValue Ops[] = {
14155         LD->getChain(),    // Chain
14156         LD->getBasePtr(),  // Ptr
14157         DAG.getValueType(N->getValueType(0)) // VT
14158       };
14159       SDValue BSLoad =
14160         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14161                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14162                                               MVT::i64 : MVT::i32, MVT::Other),
14163                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14164 
14165       // If this is an i16 load, insert the truncate.
14166       SDValue ResVal = BSLoad;
14167       if (N->getValueType(0) == MVT::i16)
14168         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14169 
14170       // First, combine the bswap away.  This makes the value produced by the
14171       // load dead.
14172       DCI.CombineTo(N, ResVal);
14173 
14174       // Next, combine the load away, we give it a bogus result value but a real
14175       // chain result.  The result value is dead because the bswap is dead.
14176       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14177 
14178       // Return N so it doesn't get rechecked!
14179       return SDValue(N, 0);
14180     }
14181     break;
14182   case PPCISD::VCMP:
14183     // If a VCMPo node already exists with exactly the same operands as this
14184     // node, use its result instead of this node (VCMPo computes both a CR6 and
14185     // a normal output).
14186     //
14187     if (!N->getOperand(0).hasOneUse() &&
14188         !N->getOperand(1).hasOneUse() &&
14189         !N->getOperand(2).hasOneUse()) {
14190 
14191       // Scan all of the users of the LHS, looking for VCMPo's that match.
14192       SDNode *VCMPoNode = nullptr;
14193 
14194       SDNode *LHSN = N->getOperand(0).getNode();
14195       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14196            UI != E; ++UI)
14197         if (UI->getOpcode() == PPCISD::VCMPo &&
14198             UI->getOperand(1) == N->getOperand(1) &&
14199             UI->getOperand(2) == N->getOperand(2) &&
14200             UI->getOperand(0) == N->getOperand(0)) {
14201           VCMPoNode = *UI;
14202           break;
14203         }
14204 
14205       // If there is no VCMPo node, or if the flag value has a single use, don't
14206       // transform this.
14207       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14208         break;
14209 
14210       // Look at the (necessarily single) use of the flag value.  If it has a
14211       // chain, this transformation is more complex.  Note that multiple things
14212       // could use the value result, which we should ignore.
14213       SDNode *FlagUser = nullptr;
14214       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14215            FlagUser == nullptr; ++UI) {
14216         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14217         SDNode *User = *UI;
14218         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14219           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14220             FlagUser = User;
14221             break;
14222           }
14223         }
14224       }
14225 
14226       // If the user is a MFOCRF instruction, we know this is safe.
14227       // Otherwise we give up for right now.
14228       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14229         return SDValue(VCMPoNode, 0);
14230     }
14231     break;
14232   case ISD::BRCOND: {
14233     SDValue Cond = N->getOperand(1);
14234     SDValue Target = N->getOperand(2);
14235 
14236     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14237         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14238           Intrinsic::loop_decrement) {
14239 
14240       // We now need to make the intrinsic dead (it cannot be instruction
14241       // selected).
14242       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14243       assert(Cond.getNode()->hasOneUse() &&
14244              "Counter decrement has more than one use");
14245 
14246       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14247                          N->getOperand(0), Target);
14248     }
14249   }
14250   break;
14251   case ISD::BR_CC: {
14252     // If this is a branch on an altivec predicate comparison, lower this so
14253     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14254     // lowering is done pre-legalize, because the legalizer lowers the predicate
14255     // compare down to code that is difficult to reassemble.
14256     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14257     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14258 
14259     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14260     // value. If so, pass-through the AND to get to the intrinsic.
14261     if (LHS.getOpcode() == ISD::AND &&
14262         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14263         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14264           Intrinsic::loop_decrement &&
14265         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14266         !isNullConstant(LHS.getOperand(1)))
14267       LHS = LHS.getOperand(0);
14268 
14269     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14270         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14271           Intrinsic::loop_decrement &&
14272         isa<ConstantSDNode>(RHS)) {
14273       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14274              "Counter decrement comparison is not EQ or NE");
14275 
14276       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14277       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14278                     (CC == ISD::SETNE && !Val);
14279 
14280       // We now need to make the intrinsic dead (it cannot be instruction
14281       // selected).
14282       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14283       assert(LHS.getNode()->hasOneUse() &&
14284              "Counter decrement has more than one use");
14285 
14286       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14287                          N->getOperand(0), N->getOperand(4));
14288     }
14289 
14290     int CompareOpc;
14291     bool isDot;
14292 
14293     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14294         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14295         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14296       assert(isDot && "Can't compare against a vector result!");
14297 
14298       // If this is a comparison against something other than 0/1, then we know
14299       // that the condition is never/always true.
14300       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14301       if (Val != 0 && Val != 1) {
14302         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14303           return N->getOperand(0);
14304         // Always !=, turn it into an unconditional branch.
14305         return DAG.getNode(ISD::BR, dl, MVT::Other,
14306                            N->getOperand(0), N->getOperand(4));
14307       }
14308 
14309       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14310 
14311       // Create the PPCISD altivec 'dot' comparison node.
14312       SDValue Ops[] = {
14313         LHS.getOperand(2),  // LHS of compare
14314         LHS.getOperand(3),  // RHS of compare
14315         DAG.getConstant(CompareOpc, dl, MVT::i32)
14316       };
14317       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14318       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14319 
14320       // Unpack the result based on how the target uses it.
14321       PPC::Predicate CompOpc;
14322       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14323       default:  // Can't happen, don't crash on invalid number though.
14324       case 0:   // Branch on the value of the EQ bit of CR6.
14325         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14326         break;
14327       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14328         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14329         break;
14330       case 2:   // Branch on the value of the LT bit of CR6.
14331         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14332         break;
14333       case 3:   // Branch on the inverted value of the LT bit of CR6.
14334         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14335         break;
14336       }
14337 
14338       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14339                          DAG.getConstant(CompOpc, dl, MVT::i32),
14340                          DAG.getRegister(PPC::CR6, MVT::i32),
14341                          N->getOperand(4), CompNode.getValue(1));
14342     }
14343     break;
14344   }
14345   case ISD::BUILD_VECTOR:
14346     return DAGCombineBuildVector(N, DCI);
14347   case ISD::ABS:
14348     return combineABS(N, DCI);
14349   case ISD::VSELECT:
14350     return combineVSelect(N, DCI);
14351   }
14352 
14353   return SDValue();
14354 }
14355 
14356 SDValue
14357 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14358                                  SelectionDAG &DAG,
14359                                  SmallVectorImpl<SDNode *> &Created) const {
14360   // fold (sdiv X, pow2)
14361   EVT VT = N->getValueType(0);
14362   if (VT == MVT::i64 && !Subtarget.isPPC64())
14363     return SDValue();
14364   if ((VT != MVT::i32 && VT != MVT::i64) ||
14365       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14366     return SDValue();
14367 
14368   SDLoc DL(N);
14369   SDValue N0 = N->getOperand(0);
14370 
14371   bool IsNegPow2 = (-Divisor).isPowerOf2();
14372   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14373   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14374 
14375   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14376   Created.push_back(Op.getNode());
14377 
14378   if (IsNegPow2) {
14379     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14380     Created.push_back(Op.getNode());
14381   }
14382 
14383   return Op;
14384 }
14385 
14386 //===----------------------------------------------------------------------===//
14387 // Inline Assembly Support
14388 //===----------------------------------------------------------------------===//
14389 
14390 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14391                                                       KnownBits &Known,
14392                                                       const APInt &DemandedElts,
14393                                                       const SelectionDAG &DAG,
14394                                                       unsigned Depth) const {
14395   Known.resetAll();
14396   switch (Op.getOpcode()) {
14397   default: break;
14398   case PPCISD::LBRX: {
14399     // lhbrx is known to have the top bits cleared out.
14400     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14401       Known.Zero = 0xFFFF0000;
14402     break;
14403   }
14404   case ISD::INTRINSIC_WO_CHAIN: {
14405     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14406     default: break;
14407     case Intrinsic::ppc_altivec_vcmpbfp_p:
14408     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14409     case Intrinsic::ppc_altivec_vcmpequb_p:
14410     case Intrinsic::ppc_altivec_vcmpequh_p:
14411     case Intrinsic::ppc_altivec_vcmpequw_p:
14412     case Intrinsic::ppc_altivec_vcmpequd_p:
14413     case Intrinsic::ppc_altivec_vcmpgefp_p:
14414     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14415     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14416     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14417     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14418     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14419     case Intrinsic::ppc_altivec_vcmpgtub_p:
14420     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14421     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14422     case Intrinsic::ppc_altivec_vcmpgtud_p:
14423       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14424       break;
14425     }
14426   }
14427   }
14428 }
14429 
14430 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14431   switch (Subtarget.getCPUDirective()) {
14432   default: break;
14433   case PPC::DIR_970:
14434   case PPC::DIR_PWR4:
14435   case PPC::DIR_PWR5:
14436   case PPC::DIR_PWR5X:
14437   case PPC::DIR_PWR6:
14438   case PPC::DIR_PWR6X:
14439   case PPC::DIR_PWR7:
14440   case PPC::DIR_PWR8:
14441   case PPC::DIR_PWR9:
14442   case PPC::DIR_PWR_FUTURE: {
14443     if (!ML)
14444       break;
14445 
14446     if (!DisableInnermostLoopAlign32) {
14447       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14448       // so that we can decrease cache misses and branch-prediction misses.
14449       // Actual alignment of the loop will depend on the hotness check and other
14450       // logic in alignBlocks.
14451       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14452         return Align(32);
14453     }
14454 
14455     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14456 
14457     // For small loops (between 5 and 8 instructions), align to a 32-byte
14458     // boundary so that the entire loop fits in one instruction-cache line.
14459     uint64_t LoopSize = 0;
14460     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14461       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14462         LoopSize += TII->getInstSizeInBytes(*J);
14463         if (LoopSize > 32)
14464           break;
14465       }
14466 
14467     if (LoopSize > 16 && LoopSize <= 32)
14468       return Align(32);
14469 
14470     break;
14471   }
14472   }
14473 
14474   return TargetLowering::getPrefLoopAlignment(ML);
14475 }
14476 
14477 /// getConstraintType - Given a constraint, return the type of
14478 /// constraint it is for this target.
14479 PPCTargetLowering::ConstraintType
14480 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14481   if (Constraint.size() == 1) {
14482     switch (Constraint[0]) {
14483     default: break;
14484     case 'b':
14485     case 'r':
14486     case 'f':
14487     case 'd':
14488     case 'v':
14489     case 'y':
14490       return C_RegisterClass;
14491     case 'Z':
14492       // FIXME: While Z does indicate a memory constraint, it specifically
14493       // indicates an r+r address (used in conjunction with the 'y' modifier
14494       // in the replacement string). Currently, we're forcing the base
14495       // register to be r0 in the asm printer (which is interpreted as zero)
14496       // and forming the complete address in the second register. This is
14497       // suboptimal.
14498       return C_Memory;
14499     }
14500   } else if (Constraint == "wc") { // individual CR bits.
14501     return C_RegisterClass;
14502   } else if (Constraint == "wa" || Constraint == "wd" ||
14503              Constraint == "wf" || Constraint == "ws" ||
14504              Constraint == "wi" || Constraint == "ww") {
14505     return C_RegisterClass; // VSX registers.
14506   }
14507   return TargetLowering::getConstraintType(Constraint);
14508 }
14509 
14510 /// Examine constraint type and operand type and determine a weight value.
14511 /// This object must already have been set up with the operand type
14512 /// and the current alternative constraint selected.
14513 TargetLowering::ConstraintWeight
14514 PPCTargetLowering::getSingleConstraintMatchWeight(
14515     AsmOperandInfo &info, const char *constraint) const {
14516   ConstraintWeight weight = CW_Invalid;
14517   Value *CallOperandVal = info.CallOperandVal;
14518     // If we don't have a value, we can't do a match,
14519     // but allow it at the lowest weight.
14520   if (!CallOperandVal)
14521     return CW_Default;
14522   Type *type = CallOperandVal->getType();
14523 
14524   // Look at the constraint type.
14525   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14526     return CW_Register; // an individual CR bit.
14527   else if ((StringRef(constraint) == "wa" ||
14528             StringRef(constraint) == "wd" ||
14529             StringRef(constraint) == "wf") &&
14530            type->isVectorTy())
14531     return CW_Register;
14532   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14533     return CW_Register; // just hold 64-bit integers data.
14534   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14535     return CW_Register;
14536   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14537     return CW_Register;
14538 
14539   switch (*constraint) {
14540   default:
14541     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14542     break;
14543   case 'b':
14544     if (type->isIntegerTy())
14545       weight = CW_Register;
14546     break;
14547   case 'f':
14548     if (type->isFloatTy())
14549       weight = CW_Register;
14550     break;
14551   case 'd':
14552     if (type->isDoubleTy())
14553       weight = CW_Register;
14554     break;
14555   case 'v':
14556     if (type->isVectorTy())
14557       weight = CW_Register;
14558     break;
14559   case 'y':
14560     weight = CW_Register;
14561     break;
14562   case 'Z':
14563     weight = CW_Memory;
14564     break;
14565   }
14566   return weight;
14567 }
14568 
14569 std::pair<unsigned, const TargetRegisterClass *>
14570 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14571                                                 StringRef Constraint,
14572                                                 MVT VT) const {
14573   if (Constraint.size() == 1) {
14574     // GCC RS6000 Constraint Letters
14575     switch (Constraint[0]) {
14576     case 'b':   // R1-R31
14577       if (VT == MVT::i64 && Subtarget.isPPC64())
14578         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14579       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14580     case 'r':   // R0-R31
14581       if (VT == MVT::i64 && Subtarget.isPPC64())
14582         return std::make_pair(0U, &PPC::G8RCRegClass);
14583       return std::make_pair(0U, &PPC::GPRCRegClass);
14584     // 'd' and 'f' constraints are both defined to be "the floating point
14585     // registers", where one is for 32-bit and the other for 64-bit. We don't
14586     // really care overly much here so just give them all the same reg classes.
14587     case 'd':
14588     case 'f':
14589       if (Subtarget.hasSPE()) {
14590         if (VT == MVT::f32 || VT == MVT::i32)
14591           return std::make_pair(0U, &PPC::GPRCRegClass);
14592         if (VT == MVT::f64 || VT == MVT::i64)
14593           return std::make_pair(0U, &PPC::SPERCRegClass);
14594       } else {
14595         if (VT == MVT::f32 || VT == MVT::i32)
14596           return std::make_pair(0U, &PPC::F4RCRegClass);
14597         if (VT == MVT::f64 || VT == MVT::i64)
14598           return std::make_pair(0U, &PPC::F8RCRegClass);
14599         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14600           return std::make_pair(0U, &PPC::QFRCRegClass);
14601         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14602           return std::make_pair(0U, &PPC::QSRCRegClass);
14603       }
14604       break;
14605     case 'v':
14606       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14607         return std::make_pair(0U, &PPC::QFRCRegClass);
14608       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14609         return std::make_pair(0U, &PPC::QSRCRegClass);
14610       if (Subtarget.hasAltivec())
14611         return std::make_pair(0U, &PPC::VRRCRegClass);
14612       break;
14613     case 'y':   // crrc
14614       return std::make_pair(0U, &PPC::CRRCRegClass);
14615     }
14616   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14617     // An individual CR bit.
14618     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14619   } else if ((Constraint == "wa" || Constraint == "wd" ||
14620              Constraint == "wf" || Constraint == "wi") &&
14621              Subtarget.hasVSX()) {
14622     return std::make_pair(0U, &PPC::VSRCRegClass);
14623   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14624     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14625       return std::make_pair(0U, &PPC::VSSRCRegClass);
14626     else
14627       return std::make_pair(0U, &PPC::VSFRCRegClass);
14628   }
14629 
14630   // If we name a VSX register, we can't defer to the base class because it
14631   // will not recognize the correct register (their names will be VSL{0-31}
14632   // and V{0-31} so they won't match). So we match them here.
14633   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14634     int VSNum = atoi(Constraint.data() + 3);
14635     assert(VSNum >= 0 && VSNum <= 63 &&
14636            "Attempted to access a vsr out of range");
14637     if (VSNum < 32)
14638       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14639     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14640   }
14641   std::pair<unsigned, const TargetRegisterClass *> R =
14642       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14643 
14644   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14645   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14646   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14647   // register.
14648   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14649   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14650   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14651       PPC::GPRCRegClass.contains(R.first))
14652     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14653                             PPC::sub_32, &PPC::G8RCRegClass),
14654                           &PPC::G8RCRegClass);
14655 
14656   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14657   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14658     R.first = PPC::CR0;
14659     R.second = &PPC::CRRCRegClass;
14660   }
14661 
14662   return R;
14663 }
14664 
14665 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14666 /// vector.  If it is invalid, don't add anything to Ops.
14667 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14668                                                      std::string &Constraint,
14669                                                      std::vector<SDValue>&Ops,
14670                                                      SelectionDAG &DAG) const {
14671   SDValue Result;
14672 
14673   // Only support length 1 constraints.
14674   if (Constraint.length() > 1) return;
14675 
14676   char Letter = Constraint[0];
14677   switch (Letter) {
14678   default: break;
14679   case 'I':
14680   case 'J':
14681   case 'K':
14682   case 'L':
14683   case 'M':
14684   case 'N':
14685   case 'O':
14686   case 'P': {
14687     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14688     if (!CST) return; // Must be an immediate to match.
14689     SDLoc dl(Op);
14690     int64_t Value = CST->getSExtValue();
14691     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14692                          // numbers are printed as such.
14693     switch (Letter) {
14694     default: llvm_unreachable("Unknown constraint letter!");
14695     case 'I':  // "I" is a signed 16-bit constant.
14696       if (isInt<16>(Value))
14697         Result = DAG.getTargetConstant(Value, dl, TCVT);
14698       break;
14699     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14700       if (isShiftedUInt<16, 16>(Value))
14701         Result = DAG.getTargetConstant(Value, dl, TCVT);
14702       break;
14703     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14704       if (isShiftedInt<16, 16>(Value))
14705         Result = DAG.getTargetConstant(Value, dl, TCVT);
14706       break;
14707     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14708       if (isUInt<16>(Value))
14709         Result = DAG.getTargetConstant(Value, dl, TCVT);
14710       break;
14711     case 'M':  // "M" is a constant that is greater than 31.
14712       if (Value > 31)
14713         Result = DAG.getTargetConstant(Value, dl, TCVT);
14714       break;
14715     case 'N':  // "N" is a positive constant that is an exact power of two.
14716       if (Value > 0 && isPowerOf2_64(Value))
14717         Result = DAG.getTargetConstant(Value, dl, TCVT);
14718       break;
14719     case 'O':  // "O" is the constant zero.
14720       if (Value == 0)
14721         Result = DAG.getTargetConstant(Value, dl, TCVT);
14722       break;
14723     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14724       if (isInt<16>(-Value))
14725         Result = DAG.getTargetConstant(Value, dl, TCVT);
14726       break;
14727     }
14728     break;
14729   }
14730   }
14731 
14732   if (Result.getNode()) {
14733     Ops.push_back(Result);
14734     return;
14735   }
14736 
14737   // Handle standard constraint letters.
14738   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14739 }
14740 
14741 // isLegalAddressingMode - Return true if the addressing mode represented
14742 // by AM is legal for this target, for a load/store of the specified type.
14743 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14744                                               const AddrMode &AM, Type *Ty,
14745                                               unsigned AS, Instruction *I) const {
14746   // PPC does not allow r+i addressing modes for vectors!
14747   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14748     return false;
14749 
14750   // PPC allows a sign-extended 16-bit immediate field.
14751   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14752     return false;
14753 
14754   // No global is ever allowed as a base.
14755   if (AM.BaseGV)
14756     return false;
14757 
14758   // PPC only support r+r,
14759   switch (AM.Scale) {
14760   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14761     break;
14762   case 1:
14763     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14764       return false;
14765     // Otherwise we have r+r or r+i.
14766     break;
14767   case 2:
14768     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14769       return false;
14770     // Allow 2*r as r+r.
14771     break;
14772   default:
14773     // No other scales are supported.
14774     return false;
14775   }
14776 
14777   return true;
14778 }
14779 
14780 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14781                                            SelectionDAG &DAG) const {
14782   MachineFunction &MF = DAG.getMachineFunction();
14783   MachineFrameInfo &MFI = MF.getFrameInfo();
14784   MFI.setReturnAddressIsTaken(true);
14785 
14786   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14787     return SDValue();
14788 
14789   SDLoc dl(Op);
14790   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14791 
14792   // Make sure the function does not optimize away the store of the RA to
14793   // the stack.
14794   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14795   FuncInfo->setLRStoreRequired();
14796   bool isPPC64 = Subtarget.isPPC64();
14797   auto PtrVT = getPointerTy(MF.getDataLayout());
14798 
14799   if (Depth > 0) {
14800     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14801     SDValue Offset =
14802         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14803                         isPPC64 ? MVT::i64 : MVT::i32);
14804     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14805                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14806                        MachinePointerInfo());
14807   }
14808 
14809   // Just load the return address off the stack.
14810   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14811   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14812                      MachinePointerInfo());
14813 }
14814 
14815 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14816                                           SelectionDAG &DAG) const {
14817   SDLoc dl(Op);
14818   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14819 
14820   MachineFunction &MF = DAG.getMachineFunction();
14821   MachineFrameInfo &MFI = MF.getFrameInfo();
14822   MFI.setFrameAddressIsTaken(true);
14823 
14824   EVT PtrVT = getPointerTy(MF.getDataLayout());
14825   bool isPPC64 = PtrVT == MVT::i64;
14826 
14827   // Naked functions never have a frame pointer, and so we use r1. For all
14828   // other functions, this decision must be delayed until during PEI.
14829   unsigned FrameReg;
14830   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14831     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14832   else
14833     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14834 
14835   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14836                                          PtrVT);
14837   while (Depth--)
14838     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14839                             FrameAddr, MachinePointerInfo());
14840   return FrameAddr;
14841 }
14842 
14843 // FIXME? Maybe this could be a TableGen attribute on some registers and
14844 // this table could be generated automatically from RegInfo.
14845 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
14846                                               const MachineFunction &MF) const {
14847   bool isPPC64 = Subtarget.isPPC64();
14848 
14849   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
14850   if (!is64Bit && VT != LLT::scalar(32))
14851     report_fatal_error("Invalid register global variable type");
14852 
14853   Register Reg = StringSwitch<Register>(RegName)
14854                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14855                      .Case("r2", isPPC64 ? Register() : PPC::R2)
14856                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
14857                      .Default(Register());
14858 
14859   if (Reg)
14860     return Reg;
14861   report_fatal_error("Invalid register name global variable");
14862 }
14863 
14864 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14865   // 32-bit SVR4 ABI access everything as got-indirect.
14866   if (Subtarget.is32BitELFABI())
14867     return true;
14868 
14869   // AIX accesses everything indirectly through the TOC, which is similar to
14870   // the GOT.
14871   if (Subtarget.isAIXABI())
14872     return true;
14873 
14874   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14875   // If it is small or large code model, module locals are accessed
14876   // indirectly by loading their address from .toc/.got.
14877   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14878     return true;
14879 
14880   // JumpTable and BlockAddress are accessed as got-indirect.
14881   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14882     return true;
14883 
14884   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14885     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14886 
14887   return false;
14888 }
14889 
14890 bool
14891 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14892   // The PowerPC target isn't yet aware of offsets.
14893   return false;
14894 }
14895 
14896 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14897                                            const CallInst &I,
14898                                            MachineFunction &MF,
14899                                            unsigned Intrinsic) const {
14900   switch (Intrinsic) {
14901   case Intrinsic::ppc_qpx_qvlfd:
14902   case Intrinsic::ppc_qpx_qvlfs:
14903   case Intrinsic::ppc_qpx_qvlfcd:
14904   case Intrinsic::ppc_qpx_qvlfcs:
14905   case Intrinsic::ppc_qpx_qvlfiwa:
14906   case Intrinsic::ppc_qpx_qvlfiwz:
14907   case Intrinsic::ppc_altivec_lvx:
14908   case Intrinsic::ppc_altivec_lvxl:
14909   case Intrinsic::ppc_altivec_lvebx:
14910   case Intrinsic::ppc_altivec_lvehx:
14911   case Intrinsic::ppc_altivec_lvewx:
14912   case Intrinsic::ppc_vsx_lxvd2x:
14913   case Intrinsic::ppc_vsx_lxvw4x: {
14914     EVT VT;
14915     switch (Intrinsic) {
14916     case Intrinsic::ppc_altivec_lvebx:
14917       VT = MVT::i8;
14918       break;
14919     case Intrinsic::ppc_altivec_lvehx:
14920       VT = MVT::i16;
14921       break;
14922     case Intrinsic::ppc_altivec_lvewx:
14923       VT = MVT::i32;
14924       break;
14925     case Intrinsic::ppc_vsx_lxvd2x:
14926       VT = MVT::v2f64;
14927       break;
14928     case Intrinsic::ppc_qpx_qvlfd:
14929       VT = MVT::v4f64;
14930       break;
14931     case Intrinsic::ppc_qpx_qvlfs:
14932       VT = MVT::v4f32;
14933       break;
14934     case Intrinsic::ppc_qpx_qvlfcd:
14935       VT = MVT::v2f64;
14936       break;
14937     case Intrinsic::ppc_qpx_qvlfcs:
14938       VT = MVT::v2f32;
14939       break;
14940     default:
14941       VT = MVT::v4i32;
14942       break;
14943     }
14944 
14945     Info.opc = ISD::INTRINSIC_W_CHAIN;
14946     Info.memVT = VT;
14947     Info.ptrVal = I.getArgOperand(0);
14948     Info.offset = -VT.getStoreSize()+1;
14949     Info.size = 2*VT.getStoreSize()-1;
14950     Info.align = Align::None();
14951     Info.flags = MachineMemOperand::MOLoad;
14952     return true;
14953   }
14954   case Intrinsic::ppc_qpx_qvlfda:
14955   case Intrinsic::ppc_qpx_qvlfsa:
14956   case Intrinsic::ppc_qpx_qvlfcda:
14957   case Intrinsic::ppc_qpx_qvlfcsa:
14958   case Intrinsic::ppc_qpx_qvlfiwaa:
14959   case Intrinsic::ppc_qpx_qvlfiwza: {
14960     EVT VT;
14961     switch (Intrinsic) {
14962     case Intrinsic::ppc_qpx_qvlfda:
14963       VT = MVT::v4f64;
14964       break;
14965     case Intrinsic::ppc_qpx_qvlfsa:
14966       VT = MVT::v4f32;
14967       break;
14968     case Intrinsic::ppc_qpx_qvlfcda:
14969       VT = MVT::v2f64;
14970       break;
14971     case Intrinsic::ppc_qpx_qvlfcsa:
14972       VT = MVT::v2f32;
14973       break;
14974     default:
14975       VT = MVT::v4i32;
14976       break;
14977     }
14978 
14979     Info.opc = ISD::INTRINSIC_W_CHAIN;
14980     Info.memVT = VT;
14981     Info.ptrVal = I.getArgOperand(0);
14982     Info.offset = 0;
14983     Info.size = VT.getStoreSize();
14984     Info.align = Align::None();
14985     Info.flags = MachineMemOperand::MOLoad;
14986     return true;
14987   }
14988   case Intrinsic::ppc_qpx_qvstfd:
14989   case Intrinsic::ppc_qpx_qvstfs:
14990   case Intrinsic::ppc_qpx_qvstfcd:
14991   case Intrinsic::ppc_qpx_qvstfcs:
14992   case Intrinsic::ppc_qpx_qvstfiw:
14993   case Intrinsic::ppc_altivec_stvx:
14994   case Intrinsic::ppc_altivec_stvxl:
14995   case Intrinsic::ppc_altivec_stvebx:
14996   case Intrinsic::ppc_altivec_stvehx:
14997   case Intrinsic::ppc_altivec_stvewx:
14998   case Intrinsic::ppc_vsx_stxvd2x:
14999   case Intrinsic::ppc_vsx_stxvw4x: {
15000     EVT VT;
15001     switch (Intrinsic) {
15002     case Intrinsic::ppc_altivec_stvebx:
15003       VT = MVT::i8;
15004       break;
15005     case Intrinsic::ppc_altivec_stvehx:
15006       VT = MVT::i16;
15007       break;
15008     case Intrinsic::ppc_altivec_stvewx:
15009       VT = MVT::i32;
15010       break;
15011     case Intrinsic::ppc_vsx_stxvd2x:
15012       VT = MVT::v2f64;
15013       break;
15014     case Intrinsic::ppc_qpx_qvstfd:
15015       VT = MVT::v4f64;
15016       break;
15017     case Intrinsic::ppc_qpx_qvstfs:
15018       VT = MVT::v4f32;
15019       break;
15020     case Intrinsic::ppc_qpx_qvstfcd:
15021       VT = MVT::v2f64;
15022       break;
15023     case Intrinsic::ppc_qpx_qvstfcs:
15024       VT = MVT::v2f32;
15025       break;
15026     default:
15027       VT = MVT::v4i32;
15028       break;
15029     }
15030 
15031     Info.opc = ISD::INTRINSIC_VOID;
15032     Info.memVT = VT;
15033     Info.ptrVal = I.getArgOperand(1);
15034     Info.offset = -VT.getStoreSize()+1;
15035     Info.size = 2*VT.getStoreSize()-1;
15036     Info.align = Align::None();
15037     Info.flags = MachineMemOperand::MOStore;
15038     return true;
15039   }
15040   case Intrinsic::ppc_qpx_qvstfda:
15041   case Intrinsic::ppc_qpx_qvstfsa:
15042   case Intrinsic::ppc_qpx_qvstfcda:
15043   case Intrinsic::ppc_qpx_qvstfcsa:
15044   case Intrinsic::ppc_qpx_qvstfiwa: {
15045     EVT VT;
15046     switch (Intrinsic) {
15047     case Intrinsic::ppc_qpx_qvstfda:
15048       VT = MVT::v4f64;
15049       break;
15050     case Intrinsic::ppc_qpx_qvstfsa:
15051       VT = MVT::v4f32;
15052       break;
15053     case Intrinsic::ppc_qpx_qvstfcda:
15054       VT = MVT::v2f64;
15055       break;
15056     case Intrinsic::ppc_qpx_qvstfcsa:
15057       VT = MVT::v2f32;
15058       break;
15059     default:
15060       VT = MVT::v4i32;
15061       break;
15062     }
15063 
15064     Info.opc = ISD::INTRINSIC_VOID;
15065     Info.memVT = VT;
15066     Info.ptrVal = I.getArgOperand(1);
15067     Info.offset = 0;
15068     Info.size = VT.getStoreSize();
15069     Info.align = Align::None();
15070     Info.flags = MachineMemOperand::MOStore;
15071     return true;
15072   }
15073   default:
15074     break;
15075   }
15076 
15077   return false;
15078 }
15079 
15080 /// getOptimalMemOpType - Returns the target specific optimal type for load
15081 /// and store operations as a result of memset, memcpy, and memmove
15082 /// lowering. If DstAlign is zero that means it's safe to destination
15083 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
15084 /// means there isn't a need to check it against alignment requirement,
15085 /// probably because the source does not need to be loaded. If 'IsMemset' is
15086 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
15087 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
15088 /// source is constant so it does not need to be loaded.
15089 /// It returns EVT::Other if the type should be determined using generic
15090 /// target-independent logic.
15091 EVT PPCTargetLowering::getOptimalMemOpType(
15092     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
15093     bool ZeroMemset, bool MemcpyStrSrc,
15094     const AttributeList &FuncAttributes) const {
15095   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15096     // When expanding a memset, require at least two QPX instructions to cover
15097     // the cost of loading the value to be stored from the constant pool.
15098     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
15099        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
15100         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15101       return MVT::v4f64;
15102     }
15103 
15104     // We should use Altivec/VSX loads and stores when available. For unaligned
15105     // addresses, unaligned VSX loads are only fast starting with the P8.
15106     if (Subtarget.hasAltivec() && Size >= 16 &&
15107         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
15108          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15109       return MVT::v4i32;
15110   }
15111 
15112   if (Subtarget.isPPC64()) {
15113     return MVT::i64;
15114   }
15115 
15116   return MVT::i32;
15117 }
15118 
15119 /// Returns true if it is beneficial to convert a load of a constant
15120 /// to just the constant itself.
15121 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15122                                                           Type *Ty) const {
15123   assert(Ty->isIntegerTy());
15124 
15125   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15126   return !(BitSize == 0 || BitSize > 64);
15127 }
15128 
15129 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15130   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15131     return false;
15132   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15133   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15134   return NumBits1 == 64 && NumBits2 == 32;
15135 }
15136 
15137 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15138   if (!VT1.isInteger() || !VT2.isInteger())
15139     return false;
15140   unsigned NumBits1 = VT1.getSizeInBits();
15141   unsigned NumBits2 = VT2.getSizeInBits();
15142   return NumBits1 == 64 && NumBits2 == 32;
15143 }
15144 
15145 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15146   // Generally speaking, zexts are not free, but they are free when they can be
15147   // folded with other operations.
15148   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15149     EVT MemVT = LD->getMemoryVT();
15150     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15151          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15152         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15153          LD->getExtensionType() == ISD::ZEXTLOAD))
15154       return true;
15155   }
15156 
15157   // FIXME: Add other cases...
15158   //  - 32-bit shifts with a zext to i64
15159   //  - zext after ctlz, bswap, etc.
15160   //  - zext after and by a constant mask
15161 
15162   return TargetLowering::isZExtFree(Val, VT2);
15163 }
15164 
15165 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15166   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15167          "invalid fpext types");
15168   // Extending to float128 is not free.
15169   if (DestVT == MVT::f128)
15170     return false;
15171   return true;
15172 }
15173 
15174 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15175   return isInt<16>(Imm) || isUInt<16>(Imm);
15176 }
15177 
15178 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15179   return isInt<16>(Imm) || isUInt<16>(Imm);
15180 }
15181 
15182 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15183                                                        unsigned,
15184                                                        unsigned,
15185                                                        MachineMemOperand::Flags,
15186                                                        bool *Fast) const {
15187   if (DisablePPCUnaligned)
15188     return false;
15189 
15190   // PowerPC supports unaligned memory access for simple non-vector types.
15191   // Although accessing unaligned addresses is not as efficient as accessing
15192   // aligned addresses, it is generally more efficient than manual expansion,
15193   // and generally only traps for software emulation when crossing page
15194   // boundaries.
15195 
15196   if (!VT.isSimple())
15197     return false;
15198 
15199   if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess())
15200     return false;
15201 
15202   if (VT.getSimpleVT().isVector()) {
15203     if (Subtarget.hasVSX()) {
15204       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15205           VT != MVT::v4f32 && VT != MVT::v4i32)
15206         return false;
15207     } else {
15208       return false;
15209     }
15210   }
15211 
15212   if (VT == MVT::ppcf128)
15213     return false;
15214 
15215   if (Fast)
15216     *Fast = true;
15217 
15218   return true;
15219 }
15220 
15221 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15222                                                    EVT VT) const {
15223   VT = VT.getScalarType();
15224 
15225   if (!VT.isSimple())
15226     return false;
15227 
15228   switch (VT.getSimpleVT().SimpleTy) {
15229   case MVT::f32:
15230   case MVT::f64:
15231     return true;
15232   case MVT::f128:
15233     return (EnableQuadPrecision && Subtarget.hasP9Vector());
15234   default:
15235     break;
15236   }
15237 
15238   return false;
15239 }
15240 
15241 const MCPhysReg *
15242 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15243   // LR is a callee-save register, but we must treat it as clobbered by any call
15244   // site. Hence we include LR in the scratch registers, which are in turn added
15245   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15246   // to CTR, which is used by any indirect call.
15247   static const MCPhysReg ScratchRegs[] = {
15248     PPC::X12, PPC::LR8, PPC::CTR8, 0
15249   };
15250 
15251   return ScratchRegs;
15252 }
15253 
15254 unsigned PPCTargetLowering::getExceptionPointerRegister(
15255     const Constant *PersonalityFn) const {
15256   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15257 }
15258 
15259 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15260     const Constant *PersonalityFn) const {
15261   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15262 }
15263 
15264 bool
15265 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15266                      EVT VT , unsigned DefinedValues) const {
15267   if (VT == MVT::v2i64)
15268     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15269 
15270   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15271     return true;
15272 
15273   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15274 }
15275 
15276 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15277   if (DisableILPPref || Subtarget.enableMachineScheduler())
15278     return TargetLowering::getSchedulingPreference(N);
15279 
15280   return Sched::ILP;
15281 }
15282 
15283 // Create a fast isel object.
15284 FastISel *
15285 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15286                                   const TargetLibraryInfo *LibInfo) const {
15287   return PPC::createFastISel(FuncInfo, LibInfo);
15288 }
15289 
15290 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15291   if (!Subtarget.isPPC64()) return;
15292 
15293   // Update IsSplitCSR in PPCFunctionInfo
15294   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15295   PFI->setIsSplitCSR(true);
15296 }
15297 
15298 void PPCTargetLowering::insertCopiesSplitCSR(
15299   MachineBasicBlock *Entry,
15300   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15301   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15302   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15303   if (!IStart)
15304     return;
15305 
15306   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15307   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15308   MachineBasicBlock::iterator MBBI = Entry->begin();
15309   for (const MCPhysReg *I = IStart; *I; ++I) {
15310     const TargetRegisterClass *RC = nullptr;
15311     if (PPC::G8RCRegClass.contains(*I))
15312       RC = &PPC::G8RCRegClass;
15313     else if (PPC::F8RCRegClass.contains(*I))
15314       RC = &PPC::F8RCRegClass;
15315     else if (PPC::CRRCRegClass.contains(*I))
15316       RC = &PPC::CRRCRegClass;
15317     else if (PPC::VRRCRegClass.contains(*I))
15318       RC = &PPC::VRRCRegClass;
15319     else
15320       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15321 
15322     Register NewVR = MRI->createVirtualRegister(RC);
15323     // Create copy from CSR to a virtual register.
15324     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15325     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15326     // nounwind. If we want to generalize this later, we may need to emit
15327     // CFI pseudo-instructions.
15328     assert(Entry->getParent()->getFunction().hasFnAttribute(
15329              Attribute::NoUnwind) &&
15330            "Function should be nounwind in insertCopiesSplitCSR!");
15331     Entry->addLiveIn(*I);
15332     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15333       .addReg(*I);
15334 
15335     // Insert the copy-back instructions right before the terminator.
15336     for (auto *Exit : Exits)
15337       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15338               TII->get(TargetOpcode::COPY), *I)
15339         .addReg(NewVR);
15340   }
15341 }
15342 
15343 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15344 bool PPCTargetLowering::useLoadStackGuardNode() const {
15345   if (!Subtarget.isTargetLinux())
15346     return TargetLowering::useLoadStackGuardNode();
15347   return true;
15348 }
15349 
15350 // Override to disable global variable loading on Linux.
15351 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15352   if (!Subtarget.isTargetLinux())
15353     return TargetLowering::insertSSPDeclarations(M);
15354 }
15355 
15356 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15357                                      bool ForCodeSize) const {
15358   if (!VT.isSimple() || !Subtarget.hasVSX())
15359     return false;
15360 
15361   switch(VT.getSimpleVT().SimpleTy) {
15362   default:
15363     // For FP types that are currently not supported by PPC backend, return
15364     // false. Examples: f16, f80.
15365     return false;
15366   case MVT::f32:
15367   case MVT::f64:
15368   case MVT::ppcf128:
15369     return Imm.isPosZero();
15370   }
15371 }
15372 
15373 // For vector shift operation op, fold
15374 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15375 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15376                                   SelectionDAG &DAG) {
15377   SDValue N0 = N->getOperand(0);
15378   SDValue N1 = N->getOperand(1);
15379   EVT VT = N0.getValueType();
15380   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15381   unsigned Opcode = N->getOpcode();
15382   unsigned TargetOpcode;
15383 
15384   switch (Opcode) {
15385   default:
15386     llvm_unreachable("Unexpected shift operation");
15387   case ISD::SHL:
15388     TargetOpcode = PPCISD::SHL;
15389     break;
15390   case ISD::SRL:
15391     TargetOpcode = PPCISD::SRL;
15392     break;
15393   case ISD::SRA:
15394     TargetOpcode = PPCISD::SRA;
15395     break;
15396   }
15397 
15398   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15399       N1->getOpcode() == ISD::AND)
15400     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15401       if (Mask->getZExtValue() == OpSizeInBits - 1)
15402         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15403 
15404   return SDValue();
15405 }
15406 
15407 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15408   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15409     return Value;
15410 
15411   SDValue N0 = N->getOperand(0);
15412   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15413   if (!Subtarget.isISA3_0() ||
15414       N0.getOpcode() != ISD::SIGN_EXTEND ||
15415       N0.getOperand(0).getValueType() != MVT::i32 ||
15416       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15417     return SDValue();
15418 
15419   // We can't save an operation here if the value is already extended, and
15420   // the existing shift is easier to combine.
15421   SDValue ExtsSrc = N0.getOperand(0);
15422   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15423       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15424     return SDValue();
15425 
15426   SDLoc DL(N0);
15427   SDValue ShiftBy = SDValue(CN1, 0);
15428   // We want the shift amount to be i32 on the extswli, but the shift could
15429   // have an i64.
15430   if (ShiftBy.getValueType() == MVT::i64)
15431     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15432 
15433   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15434                          ShiftBy);
15435 }
15436 
15437 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15438   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15439     return Value;
15440 
15441   return SDValue();
15442 }
15443 
15444 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15445   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15446     return Value;
15447 
15448   return SDValue();
15449 }
15450 
15451 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15452 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15453 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15454 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15455 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15456                                  const PPCSubtarget &Subtarget) {
15457   if (!Subtarget.isPPC64())
15458     return SDValue();
15459 
15460   SDValue LHS = N->getOperand(0);
15461   SDValue RHS = N->getOperand(1);
15462 
15463   auto isZextOfCompareWithConstant = [](SDValue Op) {
15464     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15465         Op.getValueType() != MVT::i64)
15466       return false;
15467 
15468     SDValue Cmp = Op.getOperand(0);
15469     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15470         Cmp.getOperand(0).getValueType() != MVT::i64)
15471       return false;
15472 
15473     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15474       int64_t NegConstant = 0 - Constant->getSExtValue();
15475       // Due to the limitations of the addi instruction,
15476       // -C is required to be [-32768, 32767].
15477       return isInt<16>(NegConstant);
15478     }
15479 
15480     return false;
15481   };
15482 
15483   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15484   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15485 
15486   // If there is a pattern, canonicalize a zext operand to the RHS.
15487   if (LHSHasPattern && !RHSHasPattern)
15488     std::swap(LHS, RHS);
15489   else if (!LHSHasPattern && !RHSHasPattern)
15490     return SDValue();
15491 
15492   SDLoc DL(N);
15493   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15494   SDValue Cmp = RHS.getOperand(0);
15495   SDValue Z = Cmp.getOperand(0);
15496   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15497 
15498   assert(Constant && "Constant Should not be a null pointer.");
15499   int64_t NegConstant = 0 - Constant->getSExtValue();
15500 
15501   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15502   default: break;
15503   case ISD::SETNE: {
15504     //                                 when C == 0
15505     //                             --> addze X, (addic Z, -1).carry
15506     //                            /
15507     // add X, (zext(setne Z, C))--
15508     //                            \    when -32768 <= -C <= 32767 && C != 0
15509     //                             --> addze X, (addic (addi Z, -C), -1).carry
15510     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15511                               DAG.getConstant(NegConstant, DL, MVT::i64));
15512     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15513     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15514                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15515     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15516                        SDValue(Addc.getNode(), 1));
15517     }
15518   case ISD::SETEQ: {
15519     //                                 when C == 0
15520     //                             --> addze X, (subfic Z, 0).carry
15521     //                            /
15522     // add X, (zext(sete  Z, C))--
15523     //                            \    when -32768 <= -C <= 32767 && C != 0
15524     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15525     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15526                               DAG.getConstant(NegConstant, DL, MVT::i64));
15527     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15528     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15529                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15530     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15531                        SDValue(Subc.getNode(), 1));
15532     }
15533   }
15534 
15535   return SDValue();
15536 }
15537 
15538 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15539   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15540     return Value;
15541 
15542   return SDValue();
15543 }
15544 
15545 // Detect TRUNCATE operations on bitcasts of float128 values.
15546 // What we are looking for here is the situtation where we extract a subset
15547 // of bits from a 128 bit float.
15548 // This can be of two forms:
15549 // 1) BITCAST of f128 feeding TRUNCATE
15550 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15551 // The reason this is required is because we do not have a legal i128 type
15552 // and so we want to prevent having to store the f128 and then reload part
15553 // of it.
15554 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15555                                            DAGCombinerInfo &DCI) const {
15556   // If we are using CRBits then try that first.
15557   if (Subtarget.useCRBits()) {
15558     // Check if CRBits did anything and return that if it did.
15559     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15560       return CRTruncValue;
15561   }
15562 
15563   SDLoc dl(N);
15564   SDValue Op0 = N->getOperand(0);
15565 
15566   // Looking for a truncate of i128 to i64.
15567   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15568     return SDValue();
15569 
15570   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15571 
15572   // SRL feeding TRUNCATE.
15573   if (Op0.getOpcode() == ISD::SRL) {
15574     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15575     // The right shift has to be by 64 bits.
15576     if (!ConstNode || ConstNode->getZExtValue() != 64)
15577       return SDValue();
15578 
15579     // Switch the element number to extract.
15580     EltToExtract = EltToExtract ? 0 : 1;
15581     // Update Op0 past the SRL.
15582     Op0 = Op0.getOperand(0);
15583   }
15584 
15585   // BITCAST feeding a TRUNCATE possibly via SRL.
15586   if (Op0.getOpcode() == ISD::BITCAST &&
15587       Op0.getValueType() == MVT::i128 &&
15588       Op0.getOperand(0).getValueType() == MVT::f128) {
15589     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15590     return DCI.DAG.getNode(
15591         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15592         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15593   }
15594   return SDValue();
15595 }
15596 
15597 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15598   SelectionDAG &DAG = DCI.DAG;
15599 
15600   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15601   if (!ConstOpOrElement)
15602     return SDValue();
15603 
15604   // An imul is usually smaller than the alternative sequence for legal type.
15605   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15606       isOperationLegal(ISD::MUL, N->getValueType(0)))
15607     return SDValue();
15608 
15609   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15610     switch (this->Subtarget.getCPUDirective()) {
15611     default:
15612       // TODO: enhance the condition for subtarget before pwr8
15613       return false;
15614     case PPC::DIR_PWR8:
15615       //  type        mul     add    shl
15616       // scalar        4       1      1
15617       // vector        7       2      2
15618       return true;
15619     case PPC::DIR_PWR9:
15620     case PPC::DIR_PWR_FUTURE:
15621       //  type        mul     add    shl
15622       // scalar        5       2      2
15623       // vector        7       2      2
15624 
15625       // The cycle RATIO of related operations are showed as a table above.
15626       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15627       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15628       // are 4, it is always profitable; but for 3 instrs patterns
15629       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15630       // So we should only do it for vector type.
15631       return IsAddOne && IsNeg ? VT.isVector() : true;
15632     }
15633   };
15634 
15635   EVT VT = N->getValueType(0);
15636   SDLoc DL(N);
15637 
15638   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15639   bool IsNeg = MulAmt.isNegative();
15640   APInt MulAmtAbs = MulAmt.abs();
15641 
15642   if ((MulAmtAbs - 1).isPowerOf2()) {
15643     // (mul x, 2^N + 1) => (add (shl x, N), x)
15644     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15645 
15646     if (!IsProfitable(IsNeg, true, VT))
15647       return SDValue();
15648 
15649     SDValue Op0 = N->getOperand(0);
15650     SDValue Op1 =
15651         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15652                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15653     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15654 
15655     if (!IsNeg)
15656       return Res;
15657 
15658     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15659   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15660     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15661     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15662 
15663     if (!IsProfitable(IsNeg, false, VT))
15664       return SDValue();
15665 
15666     SDValue Op0 = N->getOperand(0);
15667     SDValue Op1 =
15668         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15669                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15670 
15671     if (!IsNeg)
15672       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15673     else
15674       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15675 
15676   } else {
15677     return SDValue();
15678   }
15679 }
15680 
15681 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15682   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15683   if (!Subtarget.is64BitELFABI())
15684     return false;
15685 
15686   // If not a tail call then no need to proceed.
15687   if (!CI->isTailCall())
15688     return false;
15689 
15690   // If sibling calls have been disabled and tail-calls aren't guaranteed
15691   // there is no reason to duplicate.
15692   auto &TM = getTargetMachine();
15693   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15694     return false;
15695 
15696   // Can't tail call a function called indirectly, or if it has variadic args.
15697   const Function *Callee = CI->getCalledFunction();
15698   if (!Callee || Callee->isVarArg())
15699     return false;
15700 
15701   // Make sure the callee and caller calling conventions are eligible for tco.
15702   const Function *Caller = CI->getParent()->getParent();
15703   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15704                                            CI->getCallingConv()))
15705       return false;
15706 
15707   // If the function is local then we have a good chance at tail-calling it
15708   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15709 }
15710 
15711 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15712   if (!Subtarget.hasVSX())
15713     return false;
15714   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15715     return true;
15716   return VT == MVT::f32 || VT == MVT::f64 ||
15717     VT == MVT::v4f32 || VT == MVT::v2f64;
15718 }
15719 
15720 bool PPCTargetLowering::
15721 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15722   const Value *Mask = AndI.getOperand(1);
15723   // If the mask is suitable for andi. or andis. we should sink the and.
15724   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15725     // Can't handle constants wider than 64-bits.
15726     if (CI->getBitWidth() > 64)
15727       return false;
15728     int64_t ConstVal = CI->getZExtValue();
15729     return isUInt<16>(ConstVal) ||
15730       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15731   }
15732 
15733   // For non-constant masks, we can always use the record-form and.
15734   return true;
15735 }
15736 
15737 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15738 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15739 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15740 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15741 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15742 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15743   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15744   assert(Subtarget.hasP9Altivec() &&
15745          "Only combine this when P9 altivec supported!");
15746   EVT VT = N->getValueType(0);
15747   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15748     return SDValue();
15749 
15750   SelectionDAG &DAG = DCI.DAG;
15751   SDLoc dl(N);
15752   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15753     // Even for signed integers, if it's known to be positive (as signed
15754     // integer) due to zero-extended inputs.
15755     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15756     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15757     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15758          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15759         (SubOpcd1 == ISD::ZERO_EXTEND ||
15760          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15761       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15762                          N->getOperand(0)->getOperand(0),
15763                          N->getOperand(0)->getOperand(1),
15764                          DAG.getTargetConstant(0, dl, MVT::i32));
15765     }
15766 
15767     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15768     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15769         N->getOperand(0).hasOneUse()) {
15770       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15771                          N->getOperand(0)->getOperand(0),
15772                          N->getOperand(0)->getOperand(1),
15773                          DAG.getTargetConstant(1, dl, MVT::i32));
15774     }
15775   }
15776 
15777   return SDValue();
15778 }
15779 
15780 // For type v4i32/v8ii16/v16i8, transform
15781 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15782 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15783 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15784 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15785 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15786                                           DAGCombinerInfo &DCI) const {
15787   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15788   assert(Subtarget.hasP9Altivec() &&
15789          "Only combine this when P9 altivec supported!");
15790 
15791   SelectionDAG &DAG = DCI.DAG;
15792   SDLoc dl(N);
15793   SDValue Cond = N->getOperand(0);
15794   SDValue TrueOpnd = N->getOperand(1);
15795   SDValue FalseOpnd = N->getOperand(2);
15796   EVT VT = N->getOperand(1).getValueType();
15797 
15798   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15799       FalseOpnd.getOpcode() != ISD::SUB)
15800     return SDValue();
15801 
15802   // ABSD only available for type v4i32/v8i16/v16i8
15803   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15804     return SDValue();
15805 
15806   // At least to save one more dependent computation
15807   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15808     return SDValue();
15809 
15810   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15811 
15812   // Can only handle unsigned comparison here
15813   switch (CC) {
15814   default:
15815     return SDValue();
15816   case ISD::SETUGT:
15817   case ISD::SETUGE:
15818     break;
15819   case ISD::SETULT:
15820   case ISD::SETULE:
15821     std::swap(TrueOpnd, FalseOpnd);
15822     break;
15823   }
15824 
15825   SDValue CmpOpnd1 = Cond.getOperand(0);
15826   SDValue CmpOpnd2 = Cond.getOperand(1);
15827 
15828   // SETCC CmpOpnd1 CmpOpnd2 cond
15829   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15830   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15831   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15832       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15833       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15834       FalseOpnd.getOperand(1) == CmpOpnd1) {
15835     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15836                        CmpOpnd1, CmpOpnd2,
15837                        DAG.getTargetConstant(0, dl, MVT::i32));
15838   }
15839 
15840   return SDValue();
15841 }
15842