1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 using namespace llvm; 43 44 // FIXME: Remove this once soft-float is supported. 45 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 46 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 47 48 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 49 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 50 51 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 52 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 53 54 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 55 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 56 57 // FIXME: Remove this once the bug has been fixed! 58 extern cl::opt<bool> ANDIGlueBug; 59 60 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 61 const PPCSubtarget &STI) 62 : TargetLowering(TM), Subtarget(STI) { 63 // Use _setjmp/_longjmp instead of setjmp/longjmp. 64 setUseUnderscoreSetJmp(true); 65 setUseUnderscoreLongJmp(true); 66 67 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 68 // arguments are at least 4/8 bytes aligned. 69 bool isPPC64 = Subtarget.isPPC64(); 70 setMinStackArgumentAlignment(isPPC64 ? 8:4); 71 72 // Set up the register classes. 73 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 74 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 75 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 76 77 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 78 for (MVT VT : MVT::integer_valuetypes()) { 79 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 81 } 82 83 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 84 85 // PowerPC has pre-inc load and store's. 86 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 93 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 100 101 if (Subtarget.useCRBits()) { 102 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 103 104 if (isPPC64 || Subtarget.hasFPCVT()) { 105 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 106 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 107 isPPC64 ? MVT::i64 : MVT::i32); 108 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 109 AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, 110 isPPC64 ? MVT::i64 : MVT::i32); 111 } else { 112 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 113 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 114 } 115 116 // PowerPC does not support direct load / store of condition registers 117 setOperationAction(ISD::LOAD, MVT::i1, Custom); 118 setOperationAction(ISD::STORE, MVT::i1, Custom); 119 120 // FIXME: Remove this once the ANDI glue bug is fixed: 121 if (ANDIGlueBug) 122 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 123 124 for (MVT VT : MVT::integer_valuetypes()) { 125 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 127 setTruncStoreAction(VT, MVT::i1, Expand); 128 } 129 130 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 131 } 132 133 // This is used in the ppcf128->int sequence. Note it has different semantics 134 // from FP_ROUND: that rounds to nearest, this rounds to zero. 135 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 136 137 // We do not currently implement these libm ops for PowerPC. 138 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 139 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 144 145 // PowerPC has no SREM/UREM instructions 146 setOperationAction(ISD::SREM, MVT::i32, Expand); 147 setOperationAction(ISD::UREM, MVT::i32, Expand); 148 setOperationAction(ISD::SREM, MVT::i64, Expand); 149 setOperationAction(ISD::UREM, MVT::i64, Expand); 150 151 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 152 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 153 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 155 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 157 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 159 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 160 161 // We don't support sin/cos/sqrt/fmod/pow 162 setOperationAction(ISD::FSIN , MVT::f64, Expand); 163 setOperationAction(ISD::FCOS , MVT::f64, Expand); 164 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 165 setOperationAction(ISD::FREM , MVT::f64, Expand); 166 setOperationAction(ISD::FPOW , MVT::f64, Expand); 167 setOperationAction(ISD::FMA , MVT::f64, Legal); 168 setOperationAction(ISD::FSIN , MVT::f32, Expand); 169 setOperationAction(ISD::FCOS , MVT::f32, Expand); 170 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 171 setOperationAction(ISD::FREM , MVT::f32, Expand); 172 setOperationAction(ISD::FPOW , MVT::f32, Expand); 173 setOperationAction(ISD::FMA , MVT::f32, Legal); 174 175 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 176 177 // If we're enabling GP optimizations, use hardware square root 178 if (!Subtarget.hasFSQRT() && 179 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 180 Subtarget.hasFRE())) 181 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 182 183 if (!Subtarget.hasFSQRT() && 184 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 185 Subtarget.hasFRES())) 186 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 187 188 if (Subtarget.hasFCPSGN()) { 189 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 190 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 191 } else { 192 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 193 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 194 } 195 196 if (Subtarget.hasFPRND()) { 197 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 198 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 199 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 200 setOperationAction(ISD::FROUND, MVT::f64, Legal); 201 202 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 203 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 204 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 205 setOperationAction(ISD::FROUND, MVT::f32, Legal); 206 } 207 208 // PowerPC does not have BSWAP, CTPOP or CTTZ 209 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 210 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 212 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 214 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 216 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 217 218 if (Subtarget.hasPOPCNTD()) { 219 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 220 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 221 } else { 222 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 223 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 224 } 225 226 // PowerPC does not have ROTR 227 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 228 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 229 230 if (!Subtarget.useCRBits()) { 231 // PowerPC does not have Select 232 setOperationAction(ISD::SELECT, MVT::i32, Expand); 233 setOperationAction(ISD::SELECT, MVT::i64, Expand); 234 setOperationAction(ISD::SELECT, MVT::f32, Expand); 235 setOperationAction(ISD::SELECT, MVT::f64, Expand); 236 } 237 238 // PowerPC wants to turn select_cc of FP into fsel when possible. 239 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 240 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 241 242 // PowerPC wants to optimize integer setcc a bit 243 if (!Subtarget.useCRBits()) 244 setOperationAction(ISD::SETCC, MVT::i32, Custom); 245 246 // PowerPC does not have BRCOND which requires SetCC 247 if (!Subtarget.useCRBits()) 248 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 249 250 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 251 252 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 253 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 254 255 // PowerPC does not have [U|S]INT_TO_FP 256 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 258 259 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 260 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 262 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 263 264 // We cannot sextinreg(i1). Expand to shifts. 265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 266 267 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 268 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 269 // support continuation, user-level threading, and etc.. As a result, no 270 // other SjLj exception interfaces are implemented and please don't build 271 // your own exception handling based on them. 272 // LLVM/Clang supports zero-cost DWARF exception handling. 273 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 274 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 275 276 // We want to legalize GlobalAddress and ConstantPool nodes into the 277 // appropriate instructions to materialize the address. 278 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 279 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 280 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 281 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 282 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 283 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 284 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 285 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 286 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 287 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 288 289 // TRAP is legal. 290 setOperationAction(ISD::TRAP, MVT::Other, Legal); 291 292 // TRAMPOLINE is custom lowered. 293 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 294 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 295 296 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 297 setOperationAction(ISD::VASTART , MVT::Other, Custom); 298 299 if (Subtarget.isSVR4ABI()) { 300 if (isPPC64) { 301 // VAARG always uses double-word chunks, so promote anything smaller. 302 setOperationAction(ISD::VAARG, MVT::i1, Promote); 303 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 304 setOperationAction(ISD::VAARG, MVT::i8, Promote); 305 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 306 setOperationAction(ISD::VAARG, MVT::i16, Promote); 307 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 308 setOperationAction(ISD::VAARG, MVT::i32, Promote); 309 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 310 setOperationAction(ISD::VAARG, MVT::Other, Expand); 311 } else { 312 // VAARG is custom lowered with the 32-bit SVR4 ABI. 313 setOperationAction(ISD::VAARG, MVT::Other, Custom); 314 setOperationAction(ISD::VAARG, MVT::i64, Custom); 315 } 316 } else 317 setOperationAction(ISD::VAARG, MVT::Other, Expand); 318 319 if (Subtarget.isSVR4ABI() && !isPPC64) 320 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 321 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 322 else 323 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 324 325 // Use the default implementation. 326 setOperationAction(ISD::VAEND , MVT::Other, Expand); 327 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 328 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 329 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 331 332 // We want to custom lower some of our intrinsics. 333 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 334 335 // To handle counter-based loop conditions. 336 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 337 338 // Comparisons that require checking two conditions. 339 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 340 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 341 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 343 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 345 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 347 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 349 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 351 352 if (Subtarget.has64BitSupport()) { 353 // They also have instructions for converting between i64 and fp. 354 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 355 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 356 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 357 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 358 // This is just the low 32 bits of a (signed) fp->i64 conversion. 359 // We cannot do this with Promote because i64 is not a legal type. 360 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 361 362 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 363 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 364 } else { 365 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 366 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 367 } 368 369 // With the instructions enabled under FPCVT, we can do everything. 370 if (Subtarget.hasFPCVT()) { 371 if (Subtarget.has64BitSupport()) { 372 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 373 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 374 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 375 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 376 } 377 378 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 379 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 380 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 381 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 382 } 383 384 if (Subtarget.use64BitRegs()) { 385 // 64-bit PowerPC implementations can support i64 types directly 386 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 387 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 388 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 389 // 64-bit PowerPC wants to expand i128 shifts itself. 390 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 391 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 393 } else { 394 // 32-bit PowerPC wants to expand i64 shifts itself. 395 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 396 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 398 } 399 400 if (Subtarget.hasAltivec()) { 401 // First set operation action for all vector types to expand. Then we 402 // will selectively turn on ones that can be effectively codegen'd. 403 for (MVT VT : MVT::vector_valuetypes()) { 404 // add/sub are legal for all supported vector VT's. 405 setOperationAction(ISD::ADD , VT, Legal); 406 setOperationAction(ISD::SUB , VT, Legal); 407 408 // Vector instructions introduced in P8 409 if (Subtarget.hasP8Altivec()) { 410 setOperationAction(ISD::CTPOP, VT, Legal); 411 setOperationAction(ISD::CTLZ, VT, Legal); 412 } 413 else { 414 setOperationAction(ISD::CTPOP, VT, Expand); 415 setOperationAction(ISD::CTLZ, VT, Expand); 416 } 417 418 // We promote all shuffles to v16i8. 419 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 420 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 421 422 // We promote all non-typed operations to v4i32. 423 setOperationAction(ISD::AND , VT, Promote); 424 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 425 setOperationAction(ISD::OR , VT, Promote); 426 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 427 setOperationAction(ISD::XOR , VT, Promote); 428 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 429 setOperationAction(ISD::LOAD , VT, Promote); 430 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 431 setOperationAction(ISD::SELECT, VT, Promote); 432 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 433 setOperationAction(ISD::STORE, VT, Promote); 434 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 435 436 // No other operations are legal. 437 setOperationAction(ISD::MUL , VT, Expand); 438 setOperationAction(ISD::SDIV, VT, Expand); 439 setOperationAction(ISD::SREM, VT, Expand); 440 setOperationAction(ISD::UDIV, VT, Expand); 441 setOperationAction(ISD::UREM, VT, Expand); 442 setOperationAction(ISD::FDIV, VT, Expand); 443 setOperationAction(ISD::FREM, VT, Expand); 444 setOperationAction(ISD::FNEG, VT, Expand); 445 setOperationAction(ISD::FSQRT, VT, Expand); 446 setOperationAction(ISD::FLOG, VT, Expand); 447 setOperationAction(ISD::FLOG10, VT, Expand); 448 setOperationAction(ISD::FLOG2, VT, Expand); 449 setOperationAction(ISD::FEXP, VT, Expand); 450 setOperationAction(ISD::FEXP2, VT, Expand); 451 setOperationAction(ISD::FSIN, VT, Expand); 452 setOperationAction(ISD::FCOS, VT, Expand); 453 setOperationAction(ISD::FABS, VT, Expand); 454 setOperationAction(ISD::FPOWI, VT, Expand); 455 setOperationAction(ISD::FFLOOR, VT, Expand); 456 setOperationAction(ISD::FCEIL, VT, Expand); 457 setOperationAction(ISD::FTRUNC, VT, Expand); 458 setOperationAction(ISD::FRINT, VT, Expand); 459 setOperationAction(ISD::FNEARBYINT, VT, Expand); 460 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 461 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 462 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 463 setOperationAction(ISD::MULHU, VT, Expand); 464 setOperationAction(ISD::MULHS, VT, Expand); 465 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 466 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 467 setOperationAction(ISD::UDIVREM, VT, Expand); 468 setOperationAction(ISD::SDIVREM, VT, Expand); 469 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 470 setOperationAction(ISD::FPOW, VT, Expand); 471 setOperationAction(ISD::BSWAP, VT, Expand); 472 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 473 setOperationAction(ISD::CTTZ, VT, Expand); 474 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 475 setOperationAction(ISD::VSELECT, VT, Expand); 476 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 477 478 for (MVT InnerVT : MVT::vector_valuetypes()) { 479 setTruncStoreAction(VT, InnerVT, Expand); 480 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 481 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 482 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 483 } 484 } 485 486 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 487 // with merges, splats, etc. 488 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 489 490 setOperationAction(ISD::AND , MVT::v4i32, Legal); 491 setOperationAction(ISD::OR , MVT::v4i32, Legal); 492 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 493 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 494 setOperationAction(ISD::SELECT, MVT::v4i32, 495 Subtarget.useCRBits() ? Legal : Expand); 496 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 497 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 498 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 499 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 500 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 501 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 502 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 503 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 504 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 505 506 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 507 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 508 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 509 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 510 511 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 512 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 513 514 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 515 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 516 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 517 } 518 519 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 520 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 521 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 522 523 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 524 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 525 526 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 527 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 528 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 529 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 530 531 // Altivec does not contain unordered floating-point compare instructions 532 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 533 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 534 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 535 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 536 537 if (Subtarget.hasVSX()) { 538 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 539 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 540 541 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 544 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 545 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 546 547 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 548 549 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 550 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 551 552 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 553 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 554 555 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 556 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 557 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 558 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 559 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 560 561 // Share the Altivec comparison restrictions. 562 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 563 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 564 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 565 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 566 567 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 568 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 569 570 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 571 572 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 573 574 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 575 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 576 577 // VSX v2i64 only supports non-arithmetic operations. 578 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 579 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 580 581 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 582 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 583 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 584 585 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 586 587 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 588 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 589 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 590 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 591 592 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 593 594 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 595 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 596 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 597 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 598 599 // Vector operation legalization checks the result type of 600 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 601 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 602 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 603 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 604 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 605 606 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 607 } 608 609 if (Subtarget.hasP8Altivec()) 610 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 611 } 612 613 if (Subtarget.has64BitSupport()) 614 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 615 616 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 617 618 if (!isPPC64) { 619 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 620 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 621 } 622 623 setBooleanContents(ZeroOrOneBooleanContent); 624 // Altivec instructions set fields to all zeros or all ones. 625 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 626 627 if (!isPPC64) { 628 // These libcalls are not available in 32-bit. 629 setLibcallName(RTLIB::SHL_I128, nullptr); 630 setLibcallName(RTLIB::SRL_I128, nullptr); 631 setLibcallName(RTLIB::SRA_I128, nullptr); 632 } 633 634 if (isPPC64) { 635 setStackPointerRegisterToSaveRestore(PPC::X1); 636 setExceptionPointerRegister(PPC::X3); 637 setExceptionSelectorRegister(PPC::X4); 638 } else { 639 setStackPointerRegisterToSaveRestore(PPC::R1); 640 setExceptionPointerRegister(PPC::R3); 641 setExceptionSelectorRegister(PPC::R4); 642 } 643 644 // We have target-specific dag combine patterns for the following nodes: 645 setTargetDAGCombine(ISD::SINT_TO_FP); 646 if (Subtarget.hasFPCVT()) 647 setTargetDAGCombine(ISD::UINT_TO_FP); 648 setTargetDAGCombine(ISD::LOAD); 649 setTargetDAGCombine(ISD::STORE); 650 setTargetDAGCombine(ISD::BR_CC); 651 if (Subtarget.useCRBits()) 652 setTargetDAGCombine(ISD::BRCOND); 653 setTargetDAGCombine(ISD::BSWAP); 654 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 655 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 656 setTargetDAGCombine(ISD::INTRINSIC_VOID); 657 658 setTargetDAGCombine(ISD::SIGN_EXTEND); 659 setTargetDAGCombine(ISD::ZERO_EXTEND); 660 setTargetDAGCombine(ISD::ANY_EXTEND); 661 662 if (Subtarget.useCRBits()) { 663 setTargetDAGCombine(ISD::TRUNCATE); 664 setTargetDAGCombine(ISD::SETCC); 665 setTargetDAGCombine(ISD::SELECT_CC); 666 } 667 668 // Use reciprocal estimates. 669 if (TM.Options.UnsafeFPMath) { 670 setTargetDAGCombine(ISD::FDIV); 671 setTargetDAGCombine(ISD::FSQRT); 672 } 673 674 // Darwin long double math library functions have $LDBL128 appended. 675 if (Subtarget.isDarwin()) { 676 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 677 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 678 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 679 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 680 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 681 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 682 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 683 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 684 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 685 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 686 } 687 688 // With 32 condition bits, we don't need to sink (and duplicate) compares 689 // aggressively in CodeGenPrep. 690 if (Subtarget.useCRBits()) 691 setHasMultipleConditionRegisters(); 692 693 setMinFunctionAlignment(2); 694 if (Subtarget.isDarwin()) 695 setPrefFunctionAlignment(4); 696 697 switch (Subtarget.getDarwinDirective()) { 698 default: break; 699 case PPC::DIR_970: 700 case PPC::DIR_A2: 701 case PPC::DIR_E500mc: 702 case PPC::DIR_E5500: 703 case PPC::DIR_PWR4: 704 case PPC::DIR_PWR5: 705 case PPC::DIR_PWR5X: 706 case PPC::DIR_PWR6: 707 case PPC::DIR_PWR6X: 708 case PPC::DIR_PWR7: 709 case PPC::DIR_PWR8: 710 setPrefFunctionAlignment(4); 711 setPrefLoopAlignment(4); 712 break; 713 } 714 715 setInsertFencesForAtomic(true); 716 717 if (Subtarget.enableMachineScheduler()) 718 setSchedulingPreference(Sched::Source); 719 else 720 setSchedulingPreference(Sched::Hybrid); 721 722 computeRegisterProperties(); 723 724 // The Freescale cores do better with aggressive inlining of memcpy and 725 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 726 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 727 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 728 MaxStoresPerMemset = 32; 729 MaxStoresPerMemsetOptSize = 16; 730 MaxStoresPerMemcpy = 32; 731 MaxStoresPerMemcpyOptSize = 8; 732 MaxStoresPerMemmove = 32; 733 MaxStoresPerMemmoveOptSize = 8; 734 } 735 } 736 737 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 738 /// the desired ByVal argument alignment. 739 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 740 unsigned MaxMaxAlign) { 741 if (MaxAlign == MaxMaxAlign) 742 return; 743 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 744 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 745 MaxAlign = 32; 746 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 747 MaxAlign = 16; 748 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 749 unsigned EltAlign = 0; 750 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 751 if (EltAlign > MaxAlign) 752 MaxAlign = EltAlign; 753 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 754 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 755 unsigned EltAlign = 0; 756 getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign); 757 if (EltAlign > MaxAlign) 758 MaxAlign = EltAlign; 759 if (MaxAlign == MaxMaxAlign) 760 break; 761 } 762 } 763 } 764 765 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 766 /// function arguments in the caller parameter area. 767 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 768 // Darwin passes everything on 4 byte boundary. 769 if (Subtarget.isDarwin()) 770 return 4; 771 772 // 16byte and wider vectors are passed on 16byte boundary. 773 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 774 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 775 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 776 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 777 return Align; 778 } 779 780 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 781 switch (Opcode) { 782 default: return nullptr; 783 case PPCISD::FSEL: return "PPCISD::FSEL"; 784 case PPCISD::FCFID: return "PPCISD::FCFID"; 785 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 786 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 787 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 788 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 789 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 790 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 791 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 792 case PPCISD::FRE: return "PPCISD::FRE"; 793 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 794 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 795 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 796 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 797 case PPCISD::VPERM: return "PPCISD::VPERM"; 798 case PPCISD::CMPB: return "PPCISD::CMPB"; 799 case PPCISD::Hi: return "PPCISD::Hi"; 800 case PPCISD::Lo: return "PPCISD::Lo"; 801 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 802 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 803 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 804 case PPCISD::SRL: return "PPCISD::SRL"; 805 case PPCISD::SRA: return "PPCISD::SRA"; 806 case PPCISD::SHL: return "PPCISD::SHL"; 807 case PPCISD::CALL: return "PPCISD::CALL"; 808 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 809 case PPCISD::CALL_TLS: return "PPCISD::CALL_TLS"; 810 case PPCISD::CALL_NOP_TLS: return "PPCISD::CALL_NOP_TLS"; 811 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 812 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 813 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 814 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 815 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 816 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 817 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 818 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 819 case PPCISD::VCMP: return "PPCISD::VCMP"; 820 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 821 case PPCISD::LBRX: return "PPCISD::LBRX"; 822 case PPCISD::STBRX: return "PPCISD::STBRX"; 823 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 824 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 825 case PPCISD::LARX: return "PPCISD::LARX"; 826 case PPCISD::STCX: return "PPCISD::STCX"; 827 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 828 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 829 case PPCISD::BDZ: return "PPCISD::BDZ"; 830 case PPCISD::MFFS: return "PPCISD::MFFS"; 831 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 832 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 833 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 834 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 835 case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA"; 836 case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L"; 837 case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L"; 838 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 839 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 840 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 841 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 842 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 843 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 844 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 845 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 846 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 847 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 848 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 849 case PPCISD::SC: return "PPCISD::SC"; 850 } 851 } 852 853 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 854 if (!VT.isVector()) 855 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 856 return VT.changeVectorElementTypeToInteger(); 857 } 858 859 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 860 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 861 return true; 862 } 863 864 //===----------------------------------------------------------------------===// 865 // Node matching predicates, for use by the tblgen matching code. 866 //===----------------------------------------------------------------------===// 867 868 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 869 static bool isFloatingPointZero(SDValue Op) { 870 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 871 return CFP->getValueAPF().isZero(); 872 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 873 // Maybe this has already been legalized into the constant pool? 874 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 875 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 876 return CFP->getValueAPF().isZero(); 877 } 878 return false; 879 } 880 881 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 882 /// true if Op is undef or if it matches the specified value. 883 static bool isConstantOrUndef(int Op, int Val) { 884 return Op < 0 || Op == Val; 885 } 886 887 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 888 /// VPKUHUM instruction. 889 /// The ShuffleKind distinguishes between big-endian operations with 890 /// two different inputs (0), either-endian operations with two identical 891 /// inputs (1), and little-endian operantion with two different inputs (2). 892 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 893 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 894 SelectionDAG &DAG) { 895 bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 896 if (ShuffleKind == 0) { 897 if (IsLE) 898 return false; 899 for (unsigned i = 0; i != 16; ++i) 900 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 901 return false; 902 } else if (ShuffleKind == 2) { 903 if (!IsLE) 904 return false; 905 for (unsigned i = 0; i != 16; ++i) 906 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 907 return false; 908 } else if (ShuffleKind == 1) { 909 unsigned j = IsLE ? 0 : 1; 910 for (unsigned i = 0; i != 8; ++i) 911 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 912 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 913 return false; 914 } 915 return true; 916 } 917 918 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 919 /// VPKUWUM instruction. 920 /// The ShuffleKind distinguishes between big-endian operations with 921 /// two different inputs (0), either-endian operations with two identical 922 /// inputs (1), and little-endian operantion with two different inputs (2). 923 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 924 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 925 SelectionDAG &DAG) { 926 bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 927 if (ShuffleKind == 0) { 928 if (IsLE) 929 return false; 930 for (unsigned i = 0; i != 16; i += 2) 931 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 932 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 933 return false; 934 } else if (ShuffleKind == 2) { 935 if (!IsLE) 936 return false; 937 for (unsigned i = 0; i != 16; i += 2) 938 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 939 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 940 return false; 941 } else if (ShuffleKind == 1) { 942 unsigned j = IsLE ? 0 : 2; 943 for (unsigned i = 0; i != 8; i += 2) 944 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 945 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 946 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 947 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 948 return false; 949 } 950 return true; 951 } 952 953 /// isVMerge - Common function, used to match vmrg* shuffles. 954 /// 955 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 956 unsigned LHSStart, unsigned RHSStart) { 957 if (N->getValueType(0) != MVT::v16i8) 958 return false; 959 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 960 "Unsupported merge size!"); 961 962 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 963 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 964 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 965 LHSStart+j+i*UnitSize) || 966 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 967 RHSStart+j+i*UnitSize)) 968 return false; 969 } 970 return true; 971 } 972 973 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 974 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 975 /// The ShuffleKind distinguishes between big-endian merges with two 976 /// different inputs (0), either-endian merges with two identical inputs (1), 977 /// and little-endian merges with two different inputs (2). For the latter, 978 /// the input operands are swapped (see PPCInstrAltivec.td). 979 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 980 unsigned ShuffleKind, SelectionDAG &DAG) { 981 if (DAG.getTarget().getDataLayout()->isLittleEndian()) { 982 if (ShuffleKind == 1) // unary 983 return isVMerge(N, UnitSize, 0, 0); 984 else if (ShuffleKind == 2) // swapped 985 return isVMerge(N, UnitSize, 0, 16); 986 else 987 return false; 988 } else { 989 if (ShuffleKind == 1) // unary 990 return isVMerge(N, UnitSize, 8, 8); 991 else if (ShuffleKind == 0) // normal 992 return isVMerge(N, UnitSize, 8, 24); 993 else 994 return false; 995 } 996 } 997 998 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 999 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1000 /// The ShuffleKind distinguishes between big-endian merges with two 1001 /// different inputs (0), either-endian merges with two identical inputs (1), 1002 /// and little-endian merges with two different inputs (2). For the latter, 1003 /// the input operands are swapped (see PPCInstrAltivec.td). 1004 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1005 unsigned ShuffleKind, SelectionDAG &DAG) { 1006 if (DAG.getTarget().getDataLayout()->isLittleEndian()) { 1007 if (ShuffleKind == 1) // unary 1008 return isVMerge(N, UnitSize, 8, 8); 1009 else if (ShuffleKind == 2) // swapped 1010 return isVMerge(N, UnitSize, 8, 24); 1011 else 1012 return false; 1013 } else { 1014 if (ShuffleKind == 1) // unary 1015 return isVMerge(N, UnitSize, 0, 0); 1016 else if (ShuffleKind == 0) // normal 1017 return isVMerge(N, UnitSize, 0, 16); 1018 else 1019 return false; 1020 } 1021 } 1022 1023 1024 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1025 /// amount, otherwise return -1. 1026 /// The ShuffleKind distinguishes between big-endian operations with two 1027 /// different inputs (0), either-endian operations with two identical inputs 1028 /// (1), and little-endian operations with two different inputs (2). For the 1029 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1030 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1031 SelectionDAG &DAG) { 1032 if (N->getValueType(0) != MVT::v16i8) 1033 return -1; 1034 1035 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1036 1037 // Find the first non-undef value in the shuffle mask. 1038 unsigned i; 1039 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1040 /*search*/; 1041 1042 if (i == 16) return -1; // all undef. 1043 1044 // Otherwise, check to see if the rest of the elements are consecutively 1045 // numbered from this value. 1046 unsigned ShiftAmt = SVOp->getMaskElt(i); 1047 if (ShiftAmt < i) return -1; 1048 1049 ShiftAmt -= i; 1050 bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 1051 1052 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1053 // Check the rest of the elements to see if they are consecutive. 1054 for (++i; i != 16; ++i) 1055 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1056 return -1; 1057 } else if (ShuffleKind == 1) { 1058 // Check the rest of the elements to see if they are consecutive. 1059 for (++i; i != 16; ++i) 1060 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1061 return -1; 1062 } else 1063 return -1; 1064 1065 if (ShuffleKind == 2 && isLE) 1066 ShiftAmt = 16 - ShiftAmt; 1067 1068 return ShiftAmt; 1069 } 1070 1071 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1072 /// specifies a splat of a single element that is suitable for input to 1073 /// VSPLTB/VSPLTH/VSPLTW. 1074 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1075 assert(N->getValueType(0) == MVT::v16i8 && 1076 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1077 1078 // This is a splat operation if each element of the permute is the same, and 1079 // if the value doesn't reference the second vector. 1080 unsigned ElementBase = N->getMaskElt(0); 1081 1082 // FIXME: Handle UNDEF elements too! 1083 if (ElementBase >= 16) 1084 return false; 1085 1086 // Check that the indices are consecutive, in the case of a multi-byte element 1087 // splatted with a v16i8 mask. 1088 for (unsigned i = 1; i != EltSize; ++i) 1089 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1090 return false; 1091 1092 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1093 if (N->getMaskElt(i) < 0) continue; 1094 for (unsigned j = 0; j != EltSize; ++j) 1095 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1096 return false; 1097 } 1098 return true; 1099 } 1100 1101 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 1102 /// are -0.0. 1103 bool PPC::isAllNegativeZeroVector(SDNode *N) { 1104 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 1105 1106 APInt APVal, APUndef; 1107 unsigned BitSize; 1108 bool HasAnyUndefs; 1109 1110 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 1111 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 1112 return CFP->getValueAPF().isNegZero(); 1113 1114 return false; 1115 } 1116 1117 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1118 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1119 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1120 SelectionDAG &DAG) { 1121 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1122 assert(isSplatShuffleMask(SVOp, EltSize)); 1123 if (DAG.getTarget().getDataLayout()->isLittleEndian()) 1124 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1125 else 1126 return SVOp->getMaskElt(0) / EltSize; 1127 } 1128 1129 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1130 /// by using a vspltis[bhw] instruction of the specified element size, return 1131 /// the constant being splatted. The ByteSize field indicates the number of 1132 /// bytes of each element [124] -> [bhw]. 1133 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1134 SDValue OpVal(nullptr, 0); 1135 1136 // If ByteSize of the splat is bigger than the element size of the 1137 // build_vector, then we have a case where we are checking for a splat where 1138 // multiple elements of the buildvector are folded together into a single 1139 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1140 unsigned EltSize = 16/N->getNumOperands(); 1141 if (EltSize < ByteSize) { 1142 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1143 SDValue UniquedVals[4]; 1144 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1145 1146 // See if all of the elements in the buildvector agree across. 1147 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1148 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1149 // If the element isn't a constant, bail fully out. 1150 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1151 1152 1153 if (!UniquedVals[i&(Multiple-1)].getNode()) 1154 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1155 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1156 return SDValue(); // no match. 1157 } 1158 1159 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1160 // either constant or undef values that are identical for each chunk. See 1161 // if these chunks can form into a larger vspltis*. 1162 1163 // Check to see if all of the leading entries are either 0 or -1. If 1164 // neither, then this won't fit into the immediate field. 1165 bool LeadingZero = true; 1166 bool LeadingOnes = true; 1167 for (unsigned i = 0; i != Multiple-1; ++i) { 1168 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1169 1170 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1171 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1172 } 1173 // Finally, check the least significant entry. 1174 if (LeadingZero) { 1175 if (!UniquedVals[Multiple-1].getNode()) 1176 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 1177 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1178 if (Val < 16) 1179 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 1180 } 1181 if (LeadingOnes) { 1182 if (!UniquedVals[Multiple-1].getNode()) 1183 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 1184 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1185 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1186 return DAG.getTargetConstant(Val, MVT::i32); 1187 } 1188 1189 return SDValue(); 1190 } 1191 1192 // Check to see if this buildvec has a single non-undef value in its elements. 1193 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1194 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1195 if (!OpVal.getNode()) 1196 OpVal = N->getOperand(i); 1197 else if (OpVal != N->getOperand(i)) 1198 return SDValue(); 1199 } 1200 1201 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1202 1203 unsigned ValSizeInBytes = EltSize; 1204 uint64_t Value = 0; 1205 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1206 Value = CN->getZExtValue(); 1207 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1208 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1209 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1210 } 1211 1212 // If the splat value is larger than the element value, then we can never do 1213 // this splat. The only case that we could fit the replicated bits into our 1214 // immediate field for would be zero, and we prefer to use vxor for it. 1215 if (ValSizeInBytes < ByteSize) return SDValue(); 1216 1217 // If the element value is larger than the splat value, cut it in half and 1218 // check to see if the two halves are equal. Continue doing this until we 1219 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 1220 while (ValSizeInBytes > ByteSize) { 1221 ValSizeInBytes >>= 1; 1222 1223 // If the top half equals the bottom half, we're still ok. 1224 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 1225 (Value & ((1 << (8*ValSizeInBytes))-1))) 1226 return SDValue(); 1227 } 1228 1229 // Properly sign extend the value. 1230 int MaskVal = SignExtend32(Value, ByteSize * 8); 1231 1232 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1233 if (MaskVal == 0) return SDValue(); 1234 1235 // Finally, if this value fits in a 5 bit sext field, return it 1236 if (SignExtend32<5>(MaskVal) == MaskVal) 1237 return DAG.getTargetConstant(MaskVal, MVT::i32); 1238 return SDValue(); 1239 } 1240 1241 //===----------------------------------------------------------------------===// 1242 // Addressing Mode Selection 1243 //===----------------------------------------------------------------------===// 1244 1245 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1246 /// or 64-bit immediate, and if the value can be accurately represented as a 1247 /// sign extension from a 16-bit value. If so, this returns true and the 1248 /// immediate. 1249 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1250 if (!isa<ConstantSDNode>(N)) 1251 return false; 1252 1253 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1254 if (N->getValueType(0) == MVT::i32) 1255 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1256 else 1257 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1258 } 1259 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1260 return isIntS16Immediate(Op.getNode(), Imm); 1261 } 1262 1263 1264 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1265 /// can be represented as an indexed [r+r] operation. Returns false if it 1266 /// can be more efficiently represented with [r+imm]. 1267 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1268 SDValue &Index, 1269 SelectionDAG &DAG) const { 1270 short imm = 0; 1271 if (N.getOpcode() == ISD::ADD) { 1272 if (isIntS16Immediate(N.getOperand(1), imm)) 1273 return false; // r+i 1274 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1275 return false; // r+i 1276 1277 Base = N.getOperand(0); 1278 Index = N.getOperand(1); 1279 return true; 1280 } else if (N.getOpcode() == ISD::OR) { 1281 if (isIntS16Immediate(N.getOperand(1), imm)) 1282 return false; // r+i can fold it if we can. 1283 1284 // If this is an or of disjoint bitfields, we can codegen this as an add 1285 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1286 // disjoint. 1287 APInt LHSKnownZero, LHSKnownOne; 1288 APInt RHSKnownZero, RHSKnownOne; 1289 DAG.computeKnownBits(N.getOperand(0), 1290 LHSKnownZero, LHSKnownOne); 1291 1292 if (LHSKnownZero.getBoolValue()) { 1293 DAG.computeKnownBits(N.getOperand(1), 1294 RHSKnownZero, RHSKnownOne); 1295 // If all of the bits are known zero on the LHS or RHS, the add won't 1296 // carry. 1297 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1298 Base = N.getOperand(0); 1299 Index = N.getOperand(1); 1300 return true; 1301 } 1302 } 1303 } 1304 1305 return false; 1306 } 1307 1308 // If we happen to be doing an i64 load or store into a stack slot that has 1309 // less than a 4-byte alignment, then the frame-index elimination may need to 1310 // use an indexed load or store instruction (because the offset may not be a 1311 // multiple of 4). The extra register needed to hold the offset comes from the 1312 // register scavenger, and it is possible that the scavenger will need to use 1313 // an emergency spill slot. As a result, we need to make sure that a spill slot 1314 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1315 // stack slot. 1316 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1317 // FIXME: This does not handle the LWA case. 1318 if (VT != MVT::i64) 1319 return; 1320 1321 // NOTE: We'll exclude negative FIs here, which come from argument 1322 // lowering, because there are no known test cases triggering this problem 1323 // using packed structures (or similar). We can remove this exclusion if 1324 // we find such a test case. The reason why this is so test-case driven is 1325 // because this entire 'fixup' is only to prevent crashes (from the 1326 // register scavenger) on not-really-valid inputs. For example, if we have: 1327 // %a = alloca i1 1328 // %b = bitcast i1* %a to i64* 1329 // store i64* a, i64 b 1330 // then the store should really be marked as 'align 1', but is not. If it 1331 // were marked as 'align 1' then the indexed form would have been 1332 // instruction-selected initially, and the problem this 'fixup' is preventing 1333 // won't happen regardless. 1334 if (FrameIdx < 0) 1335 return; 1336 1337 MachineFunction &MF = DAG.getMachineFunction(); 1338 MachineFrameInfo *MFI = MF.getFrameInfo(); 1339 1340 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1341 if (Align >= 4) 1342 return; 1343 1344 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1345 FuncInfo->setHasNonRISpills(); 1346 } 1347 1348 /// Returns true if the address N can be represented by a base register plus 1349 /// a signed 16-bit displacement [r+imm], and if it is not better 1350 /// represented as reg+reg. If Aligned is true, only accept displacements 1351 /// suitable for STD and friends, i.e. multiples of 4. 1352 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1353 SDValue &Base, 1354 SelectionDAG &DAG, 1355 bool Aligned) const { 1356 // FIXME dl should come from parent load or store, not from address 1357 SDLoc dl(N); 1358 // If this can be more profitably realized as r+r, fail. 1359 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1360 return false; 1361 1362 if (N.getOpcode() == ISD::ADD) { 1363 short imm = 0; 1364 if (isIntS16Immediate(N.getOperand(1), imm) && 1365 (!Aligned || (imm & 3) == 0)) { 1366 Disp = DAG.getTargetConstant(imm, N.getValueType()); 1367 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1368 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1369 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1370 } else { 1371 Base = N.getOperand(0); 1372 } 1373 return true; // [r+i] 1374 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1375 // Match LOAD (ADD (X, Lo(G))). 1376 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1377 && "Cannot handle constant offsets yet!"); 1378 Disp = N.getOperand(1).getOperand(0); // The global address. 1379 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1380 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1381 Disp.getOpcode() == ISD::TargetConstantPool || 1382 Disp.getOpcode() == ISD::TargetJumpTable); 1383 Base = N.getOperand(0); 1384 return true; // [&g+r] 1385 } 1386 } else if (N.getOpcode() == ISD::OR) { 1387 short imm = 0; 1388 if (isIntS16Immediate(N.getOperand(1), imm) && 1389 (!Aligned || (imm & 3) == 0)) { 1390 // If this is an or of disjoint bitfields, we can codegen this as an add 1391 // (for better address arithmetic) if the LHS and RHS of the OR are 1392 // provably disjoint. 1393 APInt LHSKnownZero, LHSKnownOne; 1394 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1395 1396 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1397 // If all of the bits are known zero on the LHS or RHS, the add won't 1398 // carry. 1399 if (FrameIndexSDNode *FI = 1400 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1401 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1402 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1403 } else { 1404 Base = N.getOperand(0); 1405 } 1406 Disp = DAG.getTargetConstant(imm, N.getValueType()); 1407 return true; 1408 } 1409 } 1410 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1411 // Loading from a constant address. 1412 1413 // If this address fits entirely in a 16-bit sext immediate field, codegen 1414 // this as "d, 0" 1415 short Imm; 1416 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1417 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 1418 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1419 CN->getValueType(0)); 1420 return true; 1421 } 1422 1423 // Handle 32-bit sext immediates with LIS + addr mode. 1424 if ((CN->getValueType(0) == MVT::i32 || 1425 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1426 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1427 int Addr = (int)CN->getZExtValue(); 1428 1429 // Otherwise, break this down into an LIS + disp. 1430 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 1431 1432 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 1433 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1434 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1435 return true; 1436 } 1437 } 1438 1439 Disp = DAG.getTargetConstant(0, getPointerTy()); 1440 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1441 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1442 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1443 } else 1444 Base = N; 1445 return true; // [r+0] 1446 } 1447 1448 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1449 /// represented as an indexed [r+r] operation. 1450 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1451 SDValue &Index, 1452 SelectionDAG &DAG) const { 1453 // Check to see if we can easily represent this as an [r+r] address. This 1454 // will fail if it thinks that the address is more profitably represented as 1455 // reg+imm, e.g. where imm = 0. 1456 if (SelectAddressRegReg(N, Base, Index, DAG)) 1457 return true; 1458 1459 // If the operand is an addition, always emit this as [r+r], since this is 1460 // better (for code size, and execution, as the memop does the add for free) 1461 // than emitting an explicit add. 1462 if (N.getOpcode() == ISD::ADD) { 1463 Base = N.getOperand(0); 1464 Index = N.getOperand(1); 1465 return true; 1466 } 1467 1468 // Otherwise, do it the hard way, using R0 as the base register. 1469 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1470 N.getValueType()); 1471 Index = N; 1472 return true; 1473 } 1474 1475 /// getPreIndexedAddressParts - returns true by value, base pointer and 1476 /// offset pointer and addressing mode by reference if the node's address 1477 /// can be legally represented as pre-indexed load / store address. 1478 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1479 SDValue &Offset, 1480 ISD::MemIndexedMode &AM, 1481 SelectionDAG &DAG) const { 1482 if (DisablePPCPreinc) return false; 1483 1484 bool isLoad = true; 1485 SDValue Ptr; 1486 EVT VT; 1487 unsigned Alignment; 1488 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1489 Ptr = LD->getBasePtr(); 1490 VT = LD->getMemoryVT(); 1491 Alignment = LD->getAlignment(); 1492 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1493 Ptr = ST->getBasePtr(); 1494 VT = ST->getMemoryVT(); 1495 Alignment = ST->getAlignment(); 1496 isLoad = false; 1497 } else 1498 return false; 1499 1500 // PowerPC doesn't have preinc load/store instructions for vectors. 1501 if (VT.isVector()) 1502 return false; 1503 1504 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1505 1506 // Common code will reject creating a pre-inc form if the base pointer 1507 // is a frame index, or if N is a store and the base pointer is either 1508 // the same as or a predecessor of the value being stored. Check for 1509 // those situations here, and try with swapped Base/Offset instead. 1510 bool Swap = false; 1511 1512 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1513 Swap = true; 1514 else if (!isLoad) { 1515 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1516 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1517 Swap = true; 1518 } 1519 1520 if (Swap) 1521 std::swap(Base, Offset); 1522 1523 AM = ISD::PRE_INC; 1524 return true; 1525 } 1526 1527 // LDU/STU can only handle immediates that are a multiple of 4. 1528 if (VT != MVT::i64) { 1529 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1530 return false; 1531 } else { 1532 // LDU/STU need an address with at least 4-byte alignment. 1533 if (Alignment < 4) 1534 return false; 1535 1536 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1537 return false; 1538 } 1539 1540 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1541 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1542 // sext i32 to i64 when addr mode is r+i. 1543 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1544 LD->getExtensionType() == ISD::SEXTLOAD && 1545 isa<ConstantSDNode>(Offset)) 1546 return false; 1547 } 1548 1549 AM = ISD::PRE_INC; 1550 return true; 1551 } 1552 1553 //===----------------------------------------------------------------------===// 1554 // LowerOperation implementation 1555 //===----------------------------------------------------------------------===// 1556 1557 /// GetLabelAccessInfo - Return true if we should reference labels using a 1558 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1559 static bool GetLabelAccessInfo(const TargetMachine &TM, 1560 const PPCSubtarget &Subtarget, 1561 unsigned &HiOpFlags, unsigned &LoOpFlags, 1562 const GlobalValue *GV = nullptr) { 1563 HiOpFlags = PPCII::MO_HA; 1564 LoOpFlags = PPCII::MO_LO; 1565 1566 // Don't use the pic base if not in PIC relocation model. 1567 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1568 1569 if (isPIC) { 1570 HiOpFlags |= PPCII::MO_PIC_FLAG; 1571 LoOpFlags |= PPCII::MO_PIC_FLAG; 1572 } 1573 1574 // If this is a reference to a global value that requires a non-lazy-ptr, make 1575 // sure that instruction lowering adds it. 1576 if (GV && Subtarget.hasLazyResolverStub(GV, TM)) { 1577 HiOpFlags |= PPCII::MO_NLP_FLAG; 1578 LoOpFlags |= PPCII::MO_NLP_FLAG; 1579 1580 if (GV->hasHiddenVisibility()) { 1581 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1582 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1583 } 1584 } 1585 1586 return isPIC; 1587 } 1588 1589 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1590 SelectionDAG &DAG) { 1591 EVT PtrVT = HiPart.getValueType(); 1592 SDValue Zero = DAG.getConstant(0, PtrVT); 1593 SDLoc DL(HiPart); 1594 1595 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1596 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1597 1598 // With PIC, the first instruction is actually "GR+hi(&G)". 1599 if (isPIC) 1600 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1601 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1602 1603 // Generate non-pic code that has direct accesses to the constant pool. 1604 // The address of the global is just (hi(&g)+lo(&g)). 1605 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1606 } 1607 1608 static void setUsesTOCBasePtr(MachineFunction &MF) { 1609 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1610 FuncInfo->setUsesTOCBasePtr(); 1611 } 1612 1613 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 1614 setUsesTOCBasePtr(DAG.getMachineFunction()); 1615 } 1616 1617 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1618 SelectionDAG &DAG) const { 1619 EVT PtrVT = Op.getValueType(); 1620 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1621 const Constant *C = CP->getConstVal(); 1622 1623 // 64-bit SVR4 ABI code is always position-independent. 1624 // The actual address of the GlobalValue is stored in the TOC. 1625 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 1626 setUsesTOCBasePtr(DAG); 1627 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 1628 return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA, 1629 DAG.getRegister(PPC::X2, MVT::i64)); 1630 } 1631 1632 unsigned MOHiFlag, MOLoFlag; 1633 bool isPIC = 1634 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 1635 1636 if (isPIC && Subtarget.isSVR4ABI()) { 1637 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 1638 PPCII::MO_PIC_FLAG); 1639 SDLoc DL(CP); 1640 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA, 1641 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT)); 1642 } 1643 1644 SDValue CPIHi = 1645 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1646 SDValue CPILo = 1647 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1648 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1649 } 1650 1651 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1652 EVT PtrVT = Op.getValueType(); 1653 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1654 1655 // 64-bit SVR4 ABI code is always position-independent. 1656 // The actual address of the GlobalValue is stored in the TOC. 1657 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 1658 setUsesTOCBasePtr(DAG); 1659 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1660 return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA, 1661 DAG.getRegister(PPC::X2, MVT::i64)); 1662 } 1663 1664 unsigned MOHiFlag, MOLoFlag; 1665 bool isPIC = 1666 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 1667 1668 if (isPIC && Subtarget.isSVR4ABI()) { 1669 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 1670 PPCII::MO_PIC_FLAG); 1671 SDLoc DL(GA); 1672 return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), PtrVT, GA, 1673 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT)); 1674 } 1675 1676 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1677 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1678 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1679 } 1680 1681 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1682 SelectionDAG &DAG) const { 1683 EVT PtrVT = Op.getValueType(); 1684 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 1685 const BlockAddress *BA = BASDN->getBlockAddress(); 1686 1687 // 64-bit SVR4 ABI code is always position-independent. 1688 // The actual BlockAddress is stored in the TOC. 1689 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 1690 setUsesTOCBasePtr(DAG); 1691 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 1692 return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(BASDN), MVT::i64, GA, 1693 DAG.getRegister(PPC::X2, MVT::i64)); 1694 } 1695 1696 unsigned MOHiFlag, MOLoFlag; 1697 bool isPIC = 1698 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 1699 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 1700 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 1701 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1702 } 1703 1704 // Generate a call to __tls_get_addr for the given GOT entry Op. 1705 std::pair<SDValue,SDValue> 1706 PPCTargetLowering::lowerTLSCall(SDValue Op, SDLoc dl, 1707 SelectionDAG &DAG) const { 1708 1709 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 1710 TargetLowering::ArgListTy Args; 1711 TargetLowering::ArgListEntry Entry; 1712 Entry.Node = Op; 1713 Entry.Ty = IntPtrTy; 1714 Args.push_back(Entry); 1715 1716 TargetLowering::CallLoweringInfo CLI(DAG); 1717 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 1718 .setCallee(CallingConv::C, IntPtrTy, 1719 DAG.getTargetExternalSymbol("__tls_get_addr", getPointerTy()), 1720 std::move(Args), 0); 1721 1722 return LowerCallTo(CLI); 1723 } 1724 1725 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1726 SelectionDAG &DAG) const { 1727 1728 // FIXME: TLS addresses currently use medium model code sequences, 1729 // which is the most useful form. Eventually support for small and 1730 // large models could be added if users need it, at the cost of 1731 // additional complexity. 1732 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1733 SDLoc dl(GA); 1734 const GlobalValue *GV = GA->getGlobal(); 1735 EVT PtrVT = getPointerTy(); 1736 bool is64bit = Subtarget.isPPC64(); 1737 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 1738 PICLevel::Level picLevel = M->getPICLevel(); 1739 1740 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 1741 1742 if (Model == TLSModel::LocalExec) { 1743 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1744 PPCII::MO_TPREL_HA); 1745 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1746 PPCII::MO_TPREL_LO); 1747 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 1748 is64bit ? MVT::i64 : MVT::i32); 1749 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 1750 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 1751 } 1752 1753 if (Model == TLSModel::InitialExec) { 1754 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 1755 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1756 PPCII::MO_TLS); 1757 SDValue GOTPtr; 1758 if (is64bit) { 1759 setUsesTOCBasePtr(DAG); 1760 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 1761 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 1762 PtrVT, GOTReg, TGA); 1763 } else 1764 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 1765 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 1766 PtrVT, TGA, GOTPtr); 1767 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 1768 } 1769 1770 if (Model == TLSModel::GeneralDynamic) { 1771 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1772 PPCII::MO_TLSGD); 1773 SDValue GOTPtr; 1774 if (is64bit) { 1775 setUsesTOCBasePtr(DAG); 1776 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 1777 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 1778 GOTReg, TGA); 1779 } else { 1780 if (picLevel == PICLevel::Small) 1781 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 1782 else 1783 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 1784 } 1785 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT, 1786 GOTPtr, TGA); 1787 std::pair<SDValue, SDValue> CallResult = lowerTLSCall(GOTEntry, dl, DAG); 1788 return CallResult.first; 1789 } 1790 1791 if (Model == TLSModel::LocalDynamic) { 1792 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1793 PPCII::MO_TLSLD); 1794 SDValue GOTPtr; 1795 if (is64bit) { 1796 setUsesTOCBasePtr(DAG); 1797 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 1798 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 1799 GOTReg, TGA); 1800 } else { 1801 if (picLevel == PICLevel::Small) 1802 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 1803 else 1804 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 1805 } 1806 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT, 1807 GOTPtr, TGA); 1808 std::pair<SDValue, SDValue> CallResult = lowerTLSCall(GOTEntry, dl, DAG); 1809 SDValue TLSAddr = CallResult.first; 1810 SDValue Chain = CallResult.second; 1811 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, 1812 Chain, TLSAddr, TGA); 1813 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 1814 } 1815 1816 llvm_unreachable("Unknown TLS model!"); 1817 } 1818 1819 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1820 SelectionDAG &DAG) const { 1821 EVT PtrVT = Op.getValueType(); 1822 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1823 SDLoc DL(GSDN); 1824 const GlobalValue *GV = GSDN->getGlobal(); 1825 1826 // 64-bit SVR4 ABI code is always position-independent. 1827 // The actual address of the GlobalValue is stored in the TOC. 1828 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 1829 setUsesTOCBasePtr(DAG); 1830 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1831 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1832 DAG.getRegister(PPC::X2, MVT::i64)); 1833 } 1834 1835 unsigned MOHiFlag, MOLoFlag; 1836 bool isPIC = 1837 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 1838 1839 if (isPIC && Subtarget.isSVR4ABI()) { 1840 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 1841 GSDN->getOffset(), 1842 PPCII::MO_PIC_FLAG); 1843 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA, 1844 DAG.getNode(PPCISD::GlobalBaseReg, DL, MVT::i32)); 1845 } 1846 1847 SDValue GAHi = 1848 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1849 SDValue GALo = 1850 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1851 1852 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1853 1854 // If the global reference is actually to a non-lazy-pointer, we have to do an 1855 // extra load to get the address of the global. 1856 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1857 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1858 false, false, false, 0); 1859 return Ptr; 1860 } 1861 1862 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1863 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1864 SDLoc dl(Op); 1865 1866 if (Op.getValueType() == MVT::v2i64) { 1867 // When the operands themselves are v2i64 values, we need to do something 1868 // special because VSX has no underlying comparison operations for these. 1869 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 1870 // Equality can be handled by casting to the legal type for Altivec 1871 // comparisons, everything else needs to be expanded. 1872 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 1873 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 1874 DAG.getSetCC(dl, MVT::v4i32, 1875 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 1876 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 1877 CC)); 1878 } 1879 1880 return SDValue(); 1881 } 1882 1883 // We handle most of these in the usual way. 1884 return Op; 1885 } 1886 1887 // If we're comparing for equality to zero, expose the fact that this is 1888 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1889 // fold the new nodes. 1890 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1891 if (C->isNullValue() && CC == ISD::SETEQ) { 1892 EVT VT = Op.getOperand(0).getValueType(); 1893 SDValue Zext = Op.getOperand(0); 1894 if (VT.bitsLT(MVT::i32)) { 1895 VT = MVT::i32; 1896 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1897 } 1898 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1899 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1900 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1901 DAG.getConstant(Log2b, MVT::i32)); 1902 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1903 } 1904 // Leave comparisons against 0 and -1 alone for now, since they're usually 1905 // optimized. FIXME: revisit this when we can custom lower all setcc 1906 // optimizations. 1907 if (C->isAllOnesValue() || C->isNullValue()) 1908 return SDValue(); 1909 } 1910 1911 // If we have an integer seteq/setne, turn it into a compare against zero 1912 // by xor'ing the rhs with the lhs, which is faster than setting a 1913 // condition register, reading it back out, and masking the correct bit. The 1914 // normal approach here uses sub to do this instead of xor. Using xor exposes 1915 // the result to other bit-twiddling opportunities. 1916 EVT LHSVT = Op.getOperand(0).getValueType(); 1917 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1918 EVT VT = Op.getValueType(); 1919 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1920 Op.getOperand(1)); 1921 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1922 } 1923 return SDValue(); 1924 } 1925 1926 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1927 const PPCSubtarget &Subtarget) const { 1928 SDNode *Node = Op.getNode(); 1929 EVT VT = Node->getValueType(0); 1930 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1931 SDValue InChain = Node->getOperand(0); 1932 SDValue VAListPtr = Node->getOperand(1); 1933 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1934 SDLoc dl(Node); 1935 1936 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1937 1938 // gpr_index 1939 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1940 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1941 false, false, false, 0); 1942 InChain = GprIndex.getValue(1); 1943 1944 if (VT == MVT::i64) { 1945 // Check if GprIndex is even 1946 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1947 DAG.getConstant(1, MVT::i32)); 1948 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1949 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1950 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1951 DAG.getConstant(1, MVT::i32)); 1952 // Align GprIndex to be even if it isn't 1953 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1954 GprIndex); 1955 } 1956 1957 // fpr index is 1 byte after gpr 1958 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1959 DAG.getConstant(1, MVT::i32)); 1960 1961 // fpr 1962 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1963 FprPtr, MachinePointerInfo(SV), MVT::i8, 1964 false, false, false, 0); 1965 InChain = FprIndex.getValue(1); 1966 1967 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1968 DAG.getConstant(8, MVT::i32)); 1969 1970 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1971 DAG.getConstant(4, MVT::i32)); 1972 1973 // areas 1974 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1975 MachinePointerInfo(), false, false, 1976 false, 0); 1977 InChain = OverflowArea.getValue(1); 1978 1979 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1980 MachinePointerInfo(), false, false, 1981 false, 0); 1982 InChain = RegSaveArea.getValue(1); 1983 1984 // select overflow_area if index > 8 1985 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1986 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1987 1988 // adjustment constant gpr_index * 4/8 1989 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1990 VT.isInteger() ? GprIndex : FprIndex, 1991 DAG.getConstant(VT.isInteger() ? 4 : 8, 1992 MVT::i32)); 1993 1994 // OurReg = RegSaveArea + RegConstant 1995 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1996 RegConstant); 1997 1998 // Floating types are 32 bytes into RegSaveArea 1999 if (VT.isFloatingPoint()) 2000 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2001 DAG.getConstant(32, MVT::i32)); 2002 2003 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2004 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2005 VT.isInteger() ? GprIndex : FprIndex, 2006 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 2007 MVT::i32)); 2008 2009 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2010 VT.isInteger() ? VAListPtr : FprPtr, 2011 MachinePointerInfo(SV), 2012 MVT::i8, false, false, 0); 2013 2014 // determine if we should load from reg_save_area or overflow_area 2015 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2016 2017 // increase overflow_area by 4/8 if gpr/fpr > 8 2018 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2019 DAG.getConstant(VT.isInteger() ? 4 : 8, 2020 MVT::i32)); 2021 2022 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2023 OverflowAreaPlusN); 2024 2025 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2026 OverflowAreaPtr, 2027 MachinePointerInfo(), 2028 MVT::i32, false, false, 0); 2029 2030 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2031 false, false, false, 0); 2032 } 2033 2034 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2035 const PPCSubtarget &Subtarget) const { 2036 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2037 2038 // We have to copy the entire va_list struct: 2039 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2040 return DAG.getMemcpy(Op.getOperand(0), Op, 2041 Op.getOperand(1), Op.getOperand(2), 2042 DAG.getConstant(12, MVT::i32), 8, false, true, 2043 MachinePointerInfo(), MachinePointerInfo()); 2044 } 2045 2046 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2047 SelectionDAG &DAG) const { 2048 return Op.getOperand(0); 2049 } 2050 2051 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2052 SelectionDAG &DAG) const { 2053 SDValue Chain = Op.getOperand(0); 2054 SDValue Trmp = Op.getOperand(1); // trampoline 2055 SDValue FPtr = Op.getOperand(2); // nested function 2056 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2057 SDLoc dl(Op); 2058 2059 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2060 bool isPPC64 = (PtrVT == MVT::i64); 2061 Type *IntPtrTy = 2062 DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( 2063 *DAG.getContext()); 2064 2065 TargetLowering::ArgListTy Args; 2066 TargetLowering::ArgListEntry Entry; 2067 2068 Entry.Ty = IntPtrTy; 2069 Entry.Node = Trmp; Args.push_back(Entry); 2070 2071 // TrampSize == (isPPC64 ? 48 : 40); 2072 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 2073 isPPC64 ? MVT::i64 : MVT::i32); 2074 Args.push_back(Entry); 2075 2076 Entry.Node = FPtr; Args.push_back(Entry); 2077 Entry.Node = Nest; Args.push_back(Entry); 2078 2079 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2080 TargetLowering::CallLoweringInfo CLI(DAG); 2081 CLI.setDebugLoc(dl).setChain(Chain) 2082 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2083 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2084 std::move(Args), 0); 2085 2086 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2087 return CallResult.second; 2088 } 2089 2090 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2091 const PPCSubtarget &Subtarget) const { 2092 MachineFunction &MF = DAG.getMachineFunction(); 2093 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2094 2095 SDLoc dl(Op); 2096 2097 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2098 // vastart just stores the address of the VarArgsFrameIndex slot into the 2099 // memory location argument. 2100 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2101 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2102 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2103 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2104 MachinePointerInfo(SV), 2105 false, false, 0); 2106 } 2107 2108 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2109 // We suppose the given va_list is already allocated. 2110 // 2111 // typedef struct { 2112 // char gpr; /* index into the array of 8 GPRs 2113 // * stored in the register save area 2114 // * gpr=0 corresponds to r3, 2115 // * gpr=1 to r4, etc. 2116 // */ 2117 // char fpr; /* index into the array of 8 FPRs 2118 // * stored in the register save area 2119 // * fpr=0 corresponds to f1, 2120 // * fpr=1 to f2, etc. 2121 // */ 2122 // char *overflow_arg_area; 2123 // /* location on stack that holds 2124 // * the next overflow argument 2125 // */ 2126 // char *reg_save_area; 2127 // /* where r3:r10 and f1:f8 (if saved) 2128 // * are stored 2129 // */ 2130 // } va_list[1]; 2131 2132 2133 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 2134 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 2135 2136 2137 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2138 2139 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2140 PtrVT); 2141 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2142 PtrVT); 2143 2144 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2145 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 2146 2147 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2148 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 2149 2150 uint64_t FPROffset = 1; 2151 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 2152 2153 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2154 2155 // Store first byte : number of int regs 2156 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2157 Op.getOperand(1), 2158 MachinePointerInfo(SV), 2159 MVT::i8, false, false, 0); 2160 uint64_t nextOffset = FPROffset; 2161 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2162 ConstFPROffset); 2163 2164 // Store second byte : number of float regs 2165 SDValue secondStore = 2166 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2167 MachinePointerInfo(SV, nextOffset), MVT::i8, 2168 false, false, 0); 2169 nextOffset += StackOffset; 2170 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2171 2172 // Store second word : arguments given on stack 2173 SDValue thirdStore = 2174 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2175 MachinePointerInfo(SV, nextOffset), 2176 false, false, 0); 2177 nextOffset += FrameOffset; 2178 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2179 2180 // Store third word : arguments given in registers 2181 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2182 MachinePointerInfo(SV, nextOffset), 2183 false, false, 0); 2184 2185 } 2186 2187 #include "PPCGenCallingConv.inc" 2188 2189 // Function whose sole purpose is to kill compiler warnings 2190 // stemming from unused functions included from PPCGenCallingConv.inc. 2191 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2192 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2193 } 2194 2195 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2196 CCValAssign::LocInfo &LocInfo, 2197 ISD::ArgFlagsTy &ArgFlags, 2198 CCState &State) { 2199 return true; 2200 } 2201 2202 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2203 MVT &LocVT, 2204 CCValAssign::LocInfo &LocInfo, 2205 ISD::ArgFlagsTy &ArgFlags, 2206 CCState &State) { 2207 static const MCPhysReg ArgRegs[] = { 2208 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2209 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2210 }; 2211 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2212 2213 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 2214 2215 // Skip one register if the first unallocated register has an even register 2216 // number and there are still argument registers available which have not been 2217 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2218 // need to skip a register if RegNum is odd. 2219 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2220 State.AllocateReg(ArgRegs[RegNum]); 2221 } 2222 2223 // Always return false here, as this function only makes sure that the first 2224 // unallocated register has an odd register number and does not actually 2225 // allocate a register for the current argument. 2226 return false; 2227 } 2228 2229 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2230 MVT &LocVT, 2231 CCValAssign::LocInfo &LocInfo, 2232 ISD::ArgFlagsTy &ArgFlags, 2233 CCState &State) { 2234 static const MCPhysReg ArgRegs[] = { 2235 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2236 PPC::F8 2237 }; 2238 2239 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2240 2241 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 2242 2243 // If there is only one Floating-point register left we need to put both f64 2244 // values of a split ppc_fp128 value on the stack. 2245 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2246 State.AllocateReg(ArgRegs[RegNum]); 2247 } 2248 2249 // Always return false here, as this function only makes sure that the two f64 2250 // values a ppc_fp128 value is split into are both passed in registers or both 2251 // passed on the stack and does not actually allocate a register for the 2252 // current argument. 2253 return false; 2254 } 2255 2256 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 2257 /// on Darwin. 2258 static const MCPhysReg *GetFPR() { 2259 static const MCPhysReg FPR[] = { 2260 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2261 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 2262 }; 2263 2264 return FPR; 2265 } 2266 2267 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2268 /// the stack. 2269 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2270 unsigned PtrByteSize) { 2271 unsigned ArgSize = ArgVT.getStoreSize(); 2272 if (Flags.isByVal()) 2273 ArgSize = Flags.getByValSize(); 2274 2275 // Round up to multiples of the pointer size, except for array members, 2276 // which are always packed. 2277 if (!Flags.isInConsecutiveRegs()) 2278 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2279 2280 return ArgSize; 2281 } 2282 2283 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2284 /// on the stack. 2285 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2286 ISD::ArgFlagsTy Flags, 2287 unsigned PtrByteSize) { 2288 unsigned Align = PtrByteSize; 2289 2290 // Altivec parameters are padded to a 16 byte boundary. 2291 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2292 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2293 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) 2294 Align = 16; 2295 2296 // ByVal parameters are aligned as requested. 2297 if (Flags.isByVal()) { 2298 unsigned BVAlign = Flags.getByValAlign(); 2299 if (BVAlign > PtrByteSize) { 2300 if (BVAlign % PtrByteSize != 0) 2301 llvm_unreachable( 2302 "ByVal alignment is not a multiple of the pointer size"); 2303 2304 Align = BVAlign; 2305 } 2306 } 2307 2308 // Array members are always packed to their original alignment. 2309 if (Flags.isInConsecutiveRegs()) { 2310 // If the array member was split into multiple registers, the first 2311 // needs to be aligned to the size of the full type. (Except for 2312 // ppcf128, which is only aligned as its f64 components.) 2313 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2314 Align = OrigVT.getStoreSize(); 2315 else 2316 Align = ArgVT.getStoreSize(); 2317 } 2318 2319 return Align; 2320 } 2321 2322 /// CalculateStackSlotUsed - Return whether this argument will use its 2323 /// stack slot (instead of being passed in registers). ArgOffset, 2324 /// AvailableFPRs, and AvailableVRs must hold the current argument 2325 /// position, and will be updated to account for this argument. 2326 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2327 ISD::ArgFlagsTy Flags, 2328 unsigned PtrByteSize, 2329 unsigned LinkageSize, 2330 unsigned ParamAreaSize, 2331 unsigned &ArgOffset, 2332 unsigned &AvailableFPRs, 2333 unsigned &AvailableVRs) { 2334 bool UseMemory = false; 2335 2336 // Respect alignment of argument on the stack. 2337 unsigned Align = 2338 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2339 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2340 // If there's no space left in the argument save area, we must 2341 // use memory (this check also catches zero-sized arguments). 2342 if (ArgOffset >= LinkageSize + ParamAreaSize) 2343 UseMemory = true; 2344 2345 // Allocate argument on the stack. 2346 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2347 if (Flags.isInConsecutiveRegsLast()) 2348 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2349 // If we overran the argument save area, we must use memory 2350 // (this check catches arguments passed partially in memory) 2351 if (ArgOffset > LinkageSize + ParamAreaSize) 2352 UseMemory = true; 2353 2354 // However, if the argument is actually passed in an FPR or a VR, 2355 // we don't use memory after all. 2356 if (!Flags.isByVal()) { 2357 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 2358 if (AvailableFPRs > 0) { 2359 --AvailableFPRs; 2360 return false; 2361 } 2362 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2363 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2364 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) 2365 if (AvailableVRs > 0) { 2366 --AvailableVRs; 2367 return false; 2368 } 2369 } 2370 2371 return UseMemory; 2372 } 2373 2374 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2375 /// ensure minimum alignment required for target. 2376 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2377 unsigned NumBytes) { 2378 unsigned TargetAlign = Lowering->getStackAlignment(); 2379 unsigned AlignMask = TargetAlign - 1; 2380 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2381 return NumBytes; 2382 } 2383 2384 SDValue 2385 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2386 CallingConv::ID CallConv, bool isVarArg, 2387 const SmallVectorImpl<ISD::InputArg> 2388 &Ins, 2389 SDLoc dl, SelectionDAG &DAG, 2390 SmallVectorImpl<SDValue> &InVals) 2391 const { 2392 if (Subtarget.isSVR4ABI()) { 2393 if (Subtarget.isPPC64()) 2394 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2395 dl, DAG, InVals); 2396 else 2397 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2398 dl, DAG, InVals); 2399 } else { 2400 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2401 dl, DAG, InVals); 2402 } 2403 } 2404 2405 SDValue 2406 PPCTargetLowering::LowerFormalArguments_32SVR4( 2407 SDValue Chain, 2408 CallingConv::ID CallConv, bool isVarArg, 2409 const SmallVectorImpl<ISD::InputArg> 2410 &Ins, 2411 SDLoc dl, SelectionDAG &DAG, 2412 SmallVectorImpl<SDValue> &InVals) const { 2413 2414 // 32-bit SVR4 ABI Stack Frame Layout: 2415 // +-----------------------------------+ 2416 // +--> | Back chain | 2417 // | +-----------------------------------+ 2418 // | | Floating-point register save area | 2419 // | +-----------------------------------+ 2420 // | | General register save area | 2421 // | +-----------------------------------+ 2422 // | | CR save word | 2423 // | +-----------------------------------+ 2424 // | | VRSAVE save word | 2425 // | +-----------------------------------+ 2426 // | | Alignment padding | 2427 // | +-----------------------------------+ 2428 // | | Vector register save area | 2429 // | +-----------------------------------+ 2430 // | | Local variable space | 2431 // | +-----------------------------------+ 2432 // | | Parameter list area | 2433 // | +-----------------------------------+ 2434 // | | LR save word | 2435 // | +-----------------------------------+ 2436 // SP--> +--- | Back chain | 2437 // +-----------------------------------+ 2438 // 2439 // Specifications: 2440 // System V Application Binary Interface PowerPC Processor Supplement 2441 // AltiVec Technology Programming Interface Manual 2442 2443 MachineFunction &MF = DAG.getMachineFunction(); 2444 MachineFrameInfo *MFI = MF.getFrameInfo(); 2445 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2446 2447 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2448 // Potential tail calls could cause overwriting of argument stack slots. 2449 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2450 (CallConv == CallingConv::Fast)); 2451 unsigned PtrByteSize = 4; 2452 2453 // Assign locations to all of the incoming arguments. 2454 SmallVector<CCValAssign, 16> ArgLocs; 2455 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2456 *DAG.getContext()); 2457 2458 // Reserve space for the linkage area on the stack. 2459 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false, false); 2460 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2461 2462 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2463 2464 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2465 CCValAssign &VA = ArgLocs[i]; 2466 2467 // Arguments stored in registers. 2468 if (VA.isRegLoc()) { 2469 const TargetRegisterClass *RC; 2470 EVT ValVT = VA.getValVT(); 2471 2472 switch (ValVT.getSimpleVT().SimpleTy) { 2473 default: 2474 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2475 case MVT::i1: 2476 case MVT::i32: 2477 RC = &PPC::GPRCRegClass; 2478 break; 2479 case MVT::f32: 2480 RC = &PPC::F4RCRegClass; 2481 break; 2482 case MVT::f64: 2483 if (Subtarget.hasVSX()) 2484 RC = &PPC::VSFRCRegClass; 2485 else 2486 RC = &PPC::F8RCRegClass; 2487 break; 2488 case MVT::v16i8: 2489 case MVT::v8i16: 2490 case MVT::v4i32: 2491 case MVT::v4f32: 2492 RC = &PPC::VRRCRegClass; 2493 break; 2494 case MVT::v2f64: 2495 case MVT::v2i64: 2496 RC = &PPC::VSHRCRegClass; 2497 break; 2498 } 2499 2500 // Transform the arguments stored in physical registers into virtual ones. 2501 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2502 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2503 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2504 2505 if (ValVT == MVT::i1) 2506 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2507 2508 InVals.push_back(ArgValue); 2509 } else { 2510 // Argument stored in memory. 2511 assert(VA.isMemLoc()); 2512 2513 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2514 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2515 isImmutable); 2516 2517 // Create load nodes to retrieve arguments from the stack. 2518 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2519 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2520 MachinePointerInfo(), 2521 false, false, false, 0)); 2522 } 2523 } 2524 2525 // Assign locations to all of the incoming aggregate by value arguments. 2526 // Aggregates passed by value are stored in the local variable space of the 2527 // caller's stack frame, right above the parameter list area. 2528 SmallVector<CCValAssign, 16> ByValArgLocs; 2529 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2530 ByValArgLocs, *DAG.getContext()); 2531 2532 // Reserve stack space for the allocations in CCInfo. 2533 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2534 2535 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2536 2537 // Area that is at least reserved in the caller of this function. 2538 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2539 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2540 2541 // Set the size that is at least reserved in caller of this function. Tail 2542 // call optimized function's reserved stack space needs to be aligned so that 2543 // taking the difference between two stack areas will result in an aligned 2544 // stack. 2545 MinReservedArea = 2546 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2547 FuncInfo->setMinReservedArea(MinReservedArea); 2548 2549 SmallVector<SDValue, 8> MemOps; 2550 2551 // If the function takes variable number of arguments, make a frame index for 2552 // the start of the first vararg value... for expansion of llvm.va_start. 2553 if (isVarArg) { 2554 static const MCPhysReg GPArgRegs[] = { 2555 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2556 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2557 }; 2558 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2559 2560 static const MCPhysReg FPArgRegs[] = { 2561 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2562 PPC::F8 2563 }; 2564 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2565 if (DisablePPCFloatInVariadic) 2566 NumFPArgRegs = 0; 2567 2568 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 2569 NumGPArgRegs)); 2570 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 2571 NumFPArgRegs)); 2572 2573 // Make room for NumGPArgRegs and NumFPArgRegs. 2574 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2575 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2576 2577 FuncInfo->setVarArgsStackOffset( 2578 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2579 CCInfo.getNextStackOffset(), true)); 2580 2581 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2582 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2583 2584 // The fixed integer arguments of a variadic function are stored to the 2585 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2586 // the result of va_next. 2587 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2588 // Get an existing live-in vreg, or add a new one. 2589 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2590 if (!VReg) 2591 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2592 2593 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2594 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2595 MachinePointerInfo(), false, false, 0); 2596 MemOps.push_back(Store); 2597 // Increment the address by four for the next argument to store 2598 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2599 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2600 } 2601 2602 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2603 // is set. 2604 // The double arguments are stored to the VarArgsFrameIndex 2605 // on the stack. 2606 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2607 // Get an existing live-in vreg, or add a new one. 2608 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2609 if (!VReg) 2610 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2611 2612 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2613 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2614 MachinePointerInfo(), false, false, 0); 2615 MemOps.push_back(Store); 2616 // Increment the address by eight for the next argument to store 2617 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, 2618 PtrVT); 2619 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2620 } 2621 } 2622 2623 if (!MemOps.empty()) 2624 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 2625 2626 return Chain; 2627 } 2628 2629 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2630 // value to MVT::i64 and then truncate to the correct register size. 2631 SDValue 2632 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 2633 SelectionDAG &DAG, SDValue ArgVal, 2634 SDLoc dl) const { 2635 if (Flags.isSExt()) 2636 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2637 DAG.getValueType(ObjectVT)); 2638 else if (Flags.isZExt()) 2639 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2640 DAG.getValueType(ObjectVT)); 2641 2642 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 2643 } 2644 2645 SDValue 2646 PPCTargetLowering::LowerFormalArguments_64SVR4( 2647 SDValue Chain, 2648 CallingConv::ID CallConv, bool isVarArg, 2649 const SmallVectorImpl<ISD::InputArg> 2650 &Ins, 2651 SDLoc dl, SelectionDAG &DAG, 2652 SmallVectorImpl<SDValue> &InVals) const { 2653 // TODO: add description of PPC stack frame format, or at least some docs. 2654 // 2655 bool isELFv2ABI = Subtarget.isELFv2ABI(); 2656 bool isLittleEndian = Subtarget.isLittleEndian(); 2657 MachineFunction &MF = DAG.getMachineFunction(); 2658 MachineFrameInfo *MFI = MF.getFrameInfo(); 2659 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2660 2661 assert(!(CallConv == CallingConv::Fast && isVarArg) && 2662 "fastcc not supported on varargs functions"); 2663 2664 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2665 // Potential tail calls could cause overwriting of argument stack slots. 2666 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2667 (CallConv == CallingConv::Fast)); 2668 unsigned PtrByteSize = 8; 2669 2670 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false, 2671 isELFv2ABI); 2672 2673 static const MCPhysReg GPR[] = { 2674 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 2675 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 2676 }; 2677 2678 static const MCPhysReg *FPR = GetFPR(); 2679 2680 static const MCPhysReg VR[] = { 2681 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 2682 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 2683 }; 2684 static const MCPhysReg VSRH[] = { 2685 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 2686 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 2687 }; 2688 2689 const unsigned Num_GPR_Regs = array_lengthof(GPR); 2690 const unsigned Num_FPR_Regs = 13; 2691 const unsigned Num_VR_Regs = array_lengthof(VR); 2692 2693 // Do a first pass over the arguments to determine whether the ABI 2694 // guarantees that our caller has allocated the parameter save area 2695 // on its stack frame. In the ELFv1 ABI, this is always the case; 2696 // in the ELFv2 ABI, it is true if this is a vararg function or if 2697 // any parameter is located in a stack slot. 2698 2699 bool HasParameterArea = !isELFv2ABI || isVarArg; 2700 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 2701 unsigned NumBytes = LinkageSize; 2702 unsigned AvailableFPRs = Num_FPR_Regs; 2703 unsigned AvailableVRs = Num_VR_Regs; 2704 for (unsigned i = 0, e = Ins.size(); i != e; ++i) 2705 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 2706 PtrByteSize, LinkageSize, ParamAreaSize, 2707 NumBytes, AvailableFPRs, AvailableVRs)) 2708 HasParameterArea = true; 2709 2710 // Add DAG nodes to load the arguments or copy them out of registers. On 2711 // entry to a function on PPC, the arguments start after the linkage area, 2712 // although the first ones are often in registers. 2713 2714 unsigned ArgOffset = LinkageSize; 2715 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 2716 SmallVector<SDValue, 8> MemOps; 2717 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 2718 unsigned CurArgIdx = 0; 2719 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 2720 SDValue ArgVal; 2721 bool needsLoad = false; 2722 EVT ObjectVT = Ins[ArgNo].VT; 2723 EVT OrigVT = Ins[ArgNo].ArgVT; 2724 unsigned ObjSize = ObjectVT.getStoreSize(); 2725 unsigned ArgSize = ObjSize; 2726 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2727 std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); 2728 CurArgIdx = Ins[ArgNo].OrigArgIndex; 2729 2730 // We re-align the argument offset for each argument, except when using the 2731 // fast calling convention, when we need to make sure we do that only when 2732 // we'll actually use a stack slot. 2733 unsigned CurArgOffset, Align; 2734 auto ComputeArgOffset = [&]() { 2735 /* Respect alignment of argument on the stack. */ 2736 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 2737 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2738 CurArgOffset = ArgOffset; 2739 }; 2740 2741 if (CallConv != CallingConv::Fast) { 2742 ComputeArgOffset(); 2743 2744 /* Compute GPR index associated with argument offset. */ 2745 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 2746 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 2747 } 2748 2749 // FIXME the codegen can be much improved in some cases. 2750 // We do not have to keep everything in memory. 2751 if (Flags.isByVal()) { 2752 if (CallConv == CallingConv::Fast) 2753 ComputeArgOffset(); 2754 2755 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 2756 ObjSize = Flags.getByValSize(); 2757 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2758 // Empty aggregate parameters do not take up registers. Examples: 2759 // struct { } a; 2760 // union { } b; 2761 // int c[0]; 2762 // etc. However, we have to provide a place-holder in InVals, so 2763 // pretend we have an 8-byte item at the current address for that 2764 // purpose. 2765 if (!ObjSize) { 2766 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2767 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2768 InVals.push_back(FIN); 2769 continue; 2770 } 2771 2772 // Create a stack object covering all stack doublewords occupied 2773 // by the argument. If the argument is (fully or partially) on 2774 // the stack, or if the argument is fully in registers but the 2775 // caller has allocated the parameter save anyway, we can refer 2776 // directly to the caller's stack frame. Otherwise, create a 2777 // local copy in our own frame. 2778 int FI; 2779 if (HasParameterArea || 2780 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 2781 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 2782 else 2783 FI = MFI->CreateStackObject(ArgSize, Align, false); 2784 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2785 2786 // Handle aggregates smaller than 8 bytes. 2787 if (ObjSize < PtrByteSize) { 2788 // The value of the object is its address, which differs from the 2789 // address of the enclosing doubleword on big-endian systems. 2790 SDValue Arg = FIN; 2791 if (!isLittleEndian) { 2792 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT); 2793 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 2794 } 2795 InVals.push_back(Arg); 2796 2797 if (GPR_idx != Num_GPR_Regs) { 2798 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 2799 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2800 SDValue Store; 2801 2802 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 2803 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 2804 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 2805 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 2806 MachinePointerInfo(FuncArg), 2807 ObjType, false, false, 0); 2808 } else { 2809 // For sizes that don't fit a truncating store (3, 5, 6, 7), 2810 // store the whole register as-is to the parameter save area 2811 // slot. 2812 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2813 MachinePointerInfo(FuncArg), 2814 false, false, 0); 2815 } 2816 2817 MemOps.push_back(Store); 2818 } 2819 // Whether we copied from a register or not, advance the offset 2820 // into the parameter save area by a full doubleword. 2821 ArgOffset += PtrByteSize; 2822 continue; 2823 } 2824 2825 // The value of the object is its address, which is the address of 2826 // its first stack doubleword. 2827 InVals.push_back(FIN); 2828 2829 // Store whatever pieces of the object are in registers to memory. 2830 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2831 if (GPR_idx == Num_GPR_Regs) 2832 break; 2833 2834 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2835 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2836 SDValue Addr = FIN; 2837 if (j) { 2838 SDValue Off = DAG.getConstant(j, PtrVT); 2839 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 2840 } 2841 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 2842 MachinePointerInfo(FuncArg, j), 2843 false, false, 0); 2844 MemOps.push_back(Store); 2845 ++GPR_idx; 2846 } 2847 ArgOffset += ArgSize; 2848 continue; 2849 } 2850 2851 switch (ObjectVT.getSimpleVT().SimpleTy) { 2852 default: llvm_unreachable("Unhandled argument type!"); 2853 case MVT::i1: 2854 case MVT::i32: 2855 case MVT::i64: 2856 // These can be scalar arguments or elements of an integer array type 2857 // passed directly. Clang may use those instead of "byval" aggregate 2858 // types to avoid forcing arguments to memory unnecessarily. 2859 if (GPR_idx != Num_GPR_Regs) { 2860 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 2861 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2862 2863 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 2864 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2865 // value to MVT::i64 and then truncate to the correct register size. 2866 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 2867 } else { 2868 if (CallConv == CallingConv::Fast) 2869 ComputeArgOffset(); 2870 2871 needsLoad = true; 2872 ArgSize = PtrByteSize; 2873 } 2874 if (CallConv != CallingConv::Fast || needsLoad) 2875 ArgOffset += 8; 2876 break; 2877 2878 case MVT::f32: 2879 case MVT::f64: 2880 // These can be scalar arguments or elements of a float array type 2881 // passed directly. The latter are used to implement ELFv2 homogenous 2882 // float aggregates. 2883 if (FPR_idx != Num_FPR_Regs) { 2884 unsigned VReg; 2885 2886 if (ObjectVT == MVT::f32) 2887 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2888 else 2889 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 2890 ? &PPC::VSFRCRegClass 2891 : &PPC::F8RCRegClass); 2892 2893 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2894 ++FPR_idx; 2895 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 2896 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 2897 // once we support fp <-> gpr moves. 2898 2899 // This can only ever happen in the presence of f32 array types, 2900 // since otherwise we never run out of FPRs before running out 2901 // of GPRs. 2902 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 2903 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2904 2905 if (ObjectVT == MVT::f32) { 2906 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 2907 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 2908 DAG.getConstant(32, MVT::i32)); 2909 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2910 } 2911 2912 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 2913 } else { 2914 if (CallConv == CallingConv::Fast) 2915 ComputeArgOffset(); 2916 2917 needsLoad = true; 2918 } 2919 2920 // When passing an array of floats, the array occupies consecutive 2921 // space in the argument area; only round up to the next doubleword 2922 // at the end of the array. Otherwise, each float takes 8 bytes. 2923 if (CallConv != CallingConv::Fast || needsLoad) { 2924 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 2925 ArgOffset += ArgSize; 2926 if (Flags.isInConsecutiveRegsLast()) 2927 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2928 } 2929 break; 2930 case MVT::v4f32: 2931 case MVT::v4i32: 2932 case MVT::v8i16: 2933 case MVT::v16i8: 2934 case MVT::v2f64: 2935 case MVT::v2i64: 2936 // These can be scalar arguments or elements of a vector array type 2937 // passed directly. The latter are used to implement ELFv2 homogenous 2938 // vector aggregates. 2939 if (VR_idx != Num_VR_Regs) { 2940 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 2941 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 2942 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2943 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2944 ++VR_idx; 2945 } else { 2946 if (CallConv == CallingConv::Fast) 2947 ComputeArgOffset(); 2948 2949 needsLoad = true; 2950 } 2951 if (CallConv != CallingConv::Fast || needsLoad) 2952 ArgOffset += 16; 2953 break; 2954 } 2955 2956 // We need to load the argument to a virtual register if we determined 2957 // above that we ran out of physical registers of the appropriate type. 2958 if (needsLoad) { 2959 if (ObjSize < ArgSize && !isLittleEndian) 2960 CurArgOffset += ArgSize - ObjSize; 2961 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 2962 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2963 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2964 false, false, false, 0); 2965 } 2966 2967 InVals.push_back(ArgVal); 2968 } 2969 2970 // Area that is at least reserved in the caller of this function. 2971 unsigned MinReservedArea; 2972 if (HasParameterArea) 2973 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 2974 else 2975 MinReservedArea = LinkageSize; 2976 2977 // Set the size that is at least reserved in caller of this function. Tail 2978 // call optimized functions' reserved stack space needs to be aligned so that 2979 // taking the difference between two stack areas will result in an aligned 2980 // stack. 2981 MinReservedArea = 2982 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2983 FuncInfo->setMinReservedArea(MinReservedArea); 2984 2985 // If the function takes variable number of arguments, make a frame index for 2986 // the start of the first vararg value... for expansion of llvm.va_start. 2987 if (isVarArg) { 2988 int Depth = ArgOffset; 2989 2990 FuncInfo->setVarArgsFrameIndex( 2991 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 2992 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2993 2994 // If this function is vararg, store any remaining integer argument regs 2995 // to their spots on the stack so that they may be loaded by deferencing the 2996 // result of va_next. 2997 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 2998 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 2999 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3000 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3001 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3002 MachinePointerInfo(), false, false, 0); 3003 MemOps.push_back(Store); 3004 // Increment the address by four for the next argument to store 3005 SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT); 3006 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3007 } 3008 } 3009 3010 if (!MemOps.empty()) 3011 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3012 3013 return Chain; 3014 } 3015 3016 SDValue 3017 PPCTargetLowering::LowerFormalArguments_Darwin( 3018 SDValue Chain, 3019 CallingConv::ID CallConv, bool isVarArg, 3020 const SmallVectorImpl<ISD::InputArg> 3021 &Ins, 3022 SDLoc dl, SelectionDAG &DAG, 3023 SmallVectorImpl<SDValue> &InVals) const { 3024 // TODO: add description of PPC stack frame format, or at least some docs. 3025 // 3026 MachineFunction &MF = DAG.getMachineFunction(); 3027 MachineFrameInfo *MFI = MF.getFrameInfo(); 3028 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3029 3030 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3031 bool isPPC64 = PtrVT == MVT::i64; 3032 // Potential tail calls could cause overwriting of argument stack slots. 3033 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3034 (CallConv == CallingConv::Fast)); 3035 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3036 3037 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true, 3038 false); 3039 unsigned ArgOffset = LinkageSize; 3040 // Area that is at least reserved in caller of this function. 3041 unsigned MinReservedArea = ArgOffset; 3042 3043 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3044 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3045 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3046 }; 3047 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3048 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3049 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3050 }; 3051 3052 static const MCPhysReg *FPR = GetFPR(); 3053 3054 static const MCPhysReg VR[] = { 3055 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3056 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3057 }; 3058 3059 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3060 const unsigned Num_FPR_Regs = 13; 3061 const unsigned Num_VR_Regs = array_lengthof( VR); 3062 3063 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3064 3065 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3066 3067 // In 32-bit non-varargs functions, the stack space for vectors is after the 3068 // stack space for non-vectors. We do not use this space unless we have 3069 // too many vectors to fit in registers, something that only occurs in 3070 // constructed examples:), but we have to walk the arglist to figure 3071 // that out...for the pathological case, compute VecArgOffset as the 3072 // start of the vector parameter area. Computing VecArgOffset is the 3073 // entire point of the following loop. 3074 unsigned VecArgOffset = ArgOffset; 3075 if (!isVarArg && !isPPC64) { 3076 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3077 ++ArgNo) { 3078 EVT ObjectVT = Ins[ArgNo].VT; 3079 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3080 3081 if (Flags.isByVal()) { 3082 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3083 unsigned ObjSize = Flags.getByValSize(); 3084 unsigned ArgSize = 3085 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3086 VecArgOffset += ArgSize; 3087 continue; 3088 } 3089 3090 switch(ObjectVT.getSimpleVT().SimpleTy) { 3091 default: llvm_unreachable("Unhandled argument type!"); 3092 case MVT::i1: 3093 case MVT::i32: 3094 case MVT::f32: 3095 VecArgOffset += 4; 3096 break; 3097 case MVT::i64: // PPC64 3098 case MVT::f64: 3099 // FIXME: We are guaranteed to be !isPPC64 at this point. 3100 // Does MVT::i64 apply? 3101 VecArgOffset += 8; 3102 break; 3103 case MVT::v4f32: 3104 case MVT::v4i32: 3105 case MVT::v8i16: 3106 case MVT::v16i8: 3107 // Nothing to do, we're only looking at Nonvector args here. 3108 break; 3109 } 3110 } 3111 } 3112 // We've found where the vector parameter area in memory is. Skip the 3113 // first 12 parameters; these don't use that memory. 3114 VecArgOffset = ((VecArgOffset+15)/16)*16; 3115 VecArgOffset += 12*16; 3116 3117 // Add DAG nodes to load the arguments or copy them out of registers. On 3118 // entry to a function on PPC, the arguments start after the linkage area, 3119 // although the first ones are often in registers. 3120 3121 SmallVector<SDValue, 8> MemOps; 3122 unsigned nAltivecParamsAtEnd = 0; 3123 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3124 unsigned CurArgIdx = 0; 3125 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3126 SDValue ArgVal; 3127 bool needsLoad = false; 3128 EVT ObjectVT = Ins[ArgNo].VT; 3129 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3130 unsigned ArgSize = ObjSize; 3131 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3132 std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); 3133 CurArgIdx = Ins[ArgNo].OrigArgIndex; 3134 3135 unsigned CurArgOffset = ArgOffset; 3136 3137 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3138 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3139 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3140 if (isVarArg || isPPC64) { 3141 MinReservedArea = ((MinReservedArea+15)/16)*16; 3142 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3143 Flags, 3144 PtrByteSize); 3145 } else nAltivecParamsAtEnd++; 3146 } else 3147 // Calculate min reserved area. 3148 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3149 Flags, 3150 PtrByteSize); 3151 3152 // FIXME the codegen can be much improved in some cases. 3153 // We do not have to keep everything in memory. 3154 if (Flags.isByVal()) { 3155 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3156 ObjSize = Flags.getByValSize(); 3157 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3158 // Objects of size 1 and 2 are right justified, everything else is 3159 // left justified. This means the memory address is adjusted forwards. 3160 if (ObjSize==1 || ObjSize==2) { 3161 CurArgOffset = CurArgOffset + (4 - ObjSize); 3162 } 3163 // The value of the object is its address. 3164 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3165 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3166 InVals.push_back(FIN); 3167 if (ObjSize==1 || ObjSize==2) { 3168 if (GPR_idx != Num_GPR_Regs) { 3169 unsigned VReg; 3170 if (isPPC64) 3171 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3172 else 3173 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3174 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3175 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3176 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3177 MachinePointerInfo(FuncArg), 3178 ObjType, false, false, 0); 3179 MemOps.push_back(Store); 3180 ++GPR_idx; 3181 } 3182 3183 ArgOffset += PtrByteSize; 3184 3185 continue; 3186 } 3187 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3188 // Store whatever pieces of the object are in registers 3189 // to memory. ArgOffset will be the address of the beginning 3190 // of the object. 3191 if (GPR_idx != Num_GPR_Regs) { 3192 unsigned VReg; 3193 if (isPPC64) 3194 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3195 else 3196 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3197 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3198 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3199 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3200 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3201 MachinePointerInfo(FuncArg, j), 3202 false, false, 0); 3203 MemOps.push_back(Store); 3204 ++GPR_idx; 3205 ArgOffset += PtrByteSize; 3206 } else { 3207 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3208 break; 3209 } 3210 } 3211 continue; 3212 } 3213 3214 switch (ObjectVT.getSimpleVT().SimpleTy) { 3215 default: llvm_unreachable("Unhandled argument type!"); 3216 case MVT::i1: 3217 case MVT::i32: 3218 if (!isPPC64) { 3219 if (GPR_idx != Num_GPR_Regs) { 3220 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3221 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3222 3223 if (ObjectVT == MVT::i1) 3224 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3225 3226 ++GPR_idx; 3227 } else { 3228 needsLoad = true; 3229 ArgSize = PtrByteSize; 3230 } 3231 // All int arguments reserve stack space in the Darwin ABI. 3232 ArgOffset += PtrByteSize; 3233 break; 3234 } 3235 // FALLTHROUGH 3236 case MVT::i64: // PPC64 3237 if (GPR_idx != Num_GPR_Regs) { 3238 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3239 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3240 3241 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3242 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3243 // value to MVT::i64 and then truncate to the correct register size. 3244 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3245 3246 ++GPR_idx; 3247 } else { 3248 needsLoad = true; 3249 ArgSize = PtrByteSize; 3250 } 3251 // All int arguments reserve stack space in the Darwin ABI. 3252 ArgOffset += 8; 3253 break; 3254 3255 case MVT::f32: 3256 case MVT::f64: 3257 // Every 4 bytes of argument space consumes one of the GPRs available for 3258 // argument passing. 3259 if (GPR_idx != Num_GPR_Regs) { 3260 ++GPR_idx; 3261 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3262 ++GPR_idx; 3263 } 3264 if (FPR_idx != Num_FPR_Regs) { 3265 unsigned VReg; 3266 3267 if (ObjectVT == MVT::f32) 3268 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3269 else 3270 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3271 3272 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3273 ++FPR_idx; 3274 } else { 3275 needsLoad = true; 3276 } 3277 3278 // All FP arguments reserve stack space in the Darwin ABI. 3279 ArgOffset += isPPC64 ? 8 : ObjSize; 3280 break; 3281 case MVT::v4f32: 3282 case MVT::v4i32: 3283 case MVT::v8i16: 3284 case MVT::v16i8: 3285 // Note that vector arguments in registers don't reserve stack space, 3286 // except in varargs functions. 3287 if (VR_idx != Num_VR_Regs) { 3288 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3289 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3290 if (isVarArg) { 3291 while ((ArgOffset % 16) != 0) { 3292 ArgOffset += PtrByteSize; 3293 if (GPR_idx != Num_GPR_Regs) 3294 GPR_idx++; 3295 } 3296 ArgOffset += 16; 3297 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3298 } 3299 ++VR_idx; 3300 } else { 3301 if (!isVarArg && !isPPC64) { 3302 // Vectors go after all the nonvectors. 3303 CurArgOffset = VecArgOffset; 3304 VecArgOffset += 16; 3305 } else { 3306 // Vectors are aligned. 3307 ArgOffset = ((ArgOffset+15)/16)*16; 3308 CurArgOffset = ArgOffset; 3309 ArgOffset += 16; 3310 } 3311 needsLoad = true; 3312 } 3313 break; 3314 } 3315 3316 // We need to load the argument to a virtual register if we determined above 3317 // that we ran out of physical registers of the appropriate type. 3318 if (needsLoad) { 3319 int FI = MFI->CreateFixedObject(ObjSize, 3320 CurArgOffset + (ArgSize - ObjSize), 3321 isImmutable); 3322 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3323 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3324 false, false, false, 0); 3325 } 3326 3327 InVals.push_back(ArgVal); 3328 } 3329 3330 // Allow for Altivec parameters at the end, if needed. 3331 if (nAltivecParamsAtEnd) { 3332 MinReservedArea = ((MinReservedArea+15)/16)*16; 3333 MinReservedArea += 16*nAltivecParamsAtEnd; 3334 } 3335 3336 // Area that is at least reserved in the caller of this function. 3337 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3338 3339 // Set the size that is at least reserved in caller of this function. Tail 3340 // call optimized functions' reserved stack space needs to be aligned so that 3341 // taking the difference between two stack areas will result in an aligned 3342 // stack. 3343 MinReservedArea = 3344 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3345 FuncInfo->setMinReservedArea(MinReservedArea); 3346 3347 // If the function takes variable number of arguments, make a frame index for 3348 // the start of the first vararg value... for expansion of llvm.va_start. 3349 if (isVarArg) { 3350 int Depth = ArgOffset; 3351 3352 FuncInfo->setVarArgsFrameIndex( 3353 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3354 Depth, true)); 3355 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3356 3357 // If this function is vararg, store any remaining integer argument regs 3358 // to their spots on the stack so that they may be loaded by deferencing the 3359 // result of va_next. 3360 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3361 unsigned VReg; 3362 3363 if (isPPC64) 3364 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3365 else 3366 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3367 3368 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3369 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3370 MachinePointerInfo(), false, false, 0); 3371 MemOps.push_back(Store); 3372 // Increment the address by four for the next argument to store 3373 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 3374 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3375 } 3376 } 3377 3378 if (!MemOps.empty()) 3379 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3380 3381 return Chain; 3382 } 3383 3384 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3385 /// adjusted to accommodate the arguments for the tailcall. 3386 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3387 unsigned ParamSize) { 3388 3389 if (!isTailCall) return 0; 3390 3391 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3392 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3393 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3394 // Remember only if the new adjustement is bigger. 3395 if (SPDiff < FI->getTailCallSPDelta()) 3396 FI->setTailCallSPDelta(SPDiff); 3397 3398 return SPDiff; 3399 } 3400 3401 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3402 /// for tail call optimization. Targets which want to do tail call 3403 /// optimization should implement this function. 3404 bool 3405 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3406 CallingConv::ID CalleeCC, 3407 bool isVarArg, 3408 const SmallVectorImpl<ISD::InputArg> &Ins, 3409 SelectionDAG& DAG) const { 3410 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3411 return false; 3412 3413 // Variable argument functions are not supported. 3414 if (isVarArg) 3415 return false; 3416 3417 MachineFunction &MF = DAG.getMachineFunction(); 3418 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3419 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3420 // Functions containing by val parameters are not supported. 3421 for (unsigned i = 0; i != Ins.size(); i++) { 3422 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3423 if (Flags.isByVal()) return false; 3424 } 3425 3426 // Non-PIC/GOT tail calls are supported. 3427 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3428 return true; 3429 3430 // At the moment we can only do local tail calls (in same module, hidden 3431 // or protected) if we are generating PIC. 3432 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3433 return G->getGlobal()->hasHiddenVisibility() 3434 || G->getGlobal()->hasProtectedVisibility(); 3435 } 3436 3437 return false; 3438 } 3439 3440 /// isCallCompatibleAddress - Return the immediate to use if the specified 3441 /// 32-bit value is representable in the immediate field of a BxA instruction. 3442 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3443 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3444 if (!C) return nullptr; 3445 3446 int Addr = C->getZExtValue(); 3447 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3448 SignExtend32<26>(Addr) != Addr) 3449 return nullptr; // Top 6 bits have to be sext of immediate. 3450 3451 return DAG.getConstant((int)C->getZExtValue() >> 2, 3452 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 3453 } 3454 3455 namespace { 3456 3457 struct TailCallArgumentInfo { 3458 SDValue Arg; 3459 SDValue FrameIdxOp; 3460 int FrameIdx; 3461 3462 TailCallArgumentInfo() : FrameIdx(0) {} 3463 }; 3464 3465 } 3466 3467 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3468 static void 3469 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3470 SDValue Chain, 3471 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3472 SmallVectorImpl<SDValue> &MemOpChains, 3473 SDLoc dl) { 3474 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3475 SDValue Arg = TailCallArgs[i].Arg; 3476 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3477 int FI = TailCallArgs[i].FrameIdx; 3478 // Store relative to framepointer. 3479 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 3480 MachinePointerInfo::getFixedStack(FI), 3481 false, false, 0)); 3482 } 3483 } 3484 3485 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3486 /// the appropriate stack slot for the tail call optimized function call. 3487 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3488 MachineFunction &MF, 3489 SDValue Chain, 3490 SDValue OldRetAddr, 3491 SDValue OldFP, 3492 int SPDiff, 3493 bool isPPC64, 3494 bool isDarwinABI, 3495 SDLoc dl) { 3496 if (SPDiff) { 3497 // Calculate the new stack slot for the return address. 3498 int SlotSize = isPPC64 ? 8 : 4; 3499 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 3500 isDarwinABI); 3501 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3502 NewRetAddrLoc, true); 3503 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3504 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3505 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3506 MachinePointerInfo::getFixedStack(NewRetAddr), 3507 false, false, 0); 3508 3509 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3510 // slot as the FP is never overwritten. 3511 if (isDarwinABI) { 3512 int NewFPLoc = 3513 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 3514 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3515 true); 3516 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3517 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 3518 MachinePointerInfo::getFixedStack(NewFPIdx), 3519 false, false, 0); 3520 } 3521 } 3522 return Chain; 3523 } 3524 3525 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3526 /// the position of the argument. 3527 static void 3528 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3529 SDValue Arg, int SPDiff, unsigned ArgOffset, 3530 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3531 int Offset = ArgOffset + SPDiff; 3532 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3533 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3534 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3535 SDValue FIN = DAG.getFrameIndex(FI, VT); 3536 TailCallArgumentInfo Info; 3537 Info.Arg = Arg; 3538 Info.FrameIdxOp = FIN; 3539 Info.FrameIdx = FI; 3540 TailCallArguments.push_back(Info); 3541 } 3542 3543 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3544 /// stack slot. Returns the chain as result and the loaded frame pointers in 3545 /// LROpOut/FPOpout. Used when tail calling. 3546 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3547 int SPDiff, 3548 SDValue Chain, 3549 SDValue &LROpOut, 3550 SDValue &FPOpOut, 3551 bool isDarwinABI, 3552 SDLoc dl) const { 3553 if (SPDiff) { 3554 // Load the LR and FP stack slot for later adjusting. 3555 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3556 LROpOut = getReturnAddrFrameIndex(DAG); 3557 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3558 false, false, false, 0); 3559 Chain = SDValue(LROpOut.getNode(), 1); 3560 3561 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3562 // slot as the FP is never overwritten. 3563 if (isDarwinABI) { 3564 FPOpOut = getFramePointerFrameIndex(DAG); 3565 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3566 false, false, false, 0); 3567 Chain = SDValue(FPOpOut.getNode(), 1); 3568 } 3569 } 3570 return Chain; 3571 } 3572 3573 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 3574 /// by "Src" to address "Dst" of size "Size". Alignment information is 3575 /// specified by the specific parameter attribute. The copy will be passed as 3576 /// a byval function parameter. 3577 /// Sometimes what we are copying is the end of a larger object, the part that 3578 /// does not fit in registers. 3579 static SDValue 3580 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 3581 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 3582 SDLoc dl) { 3583 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 3584 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 3585 false, false, MachinePointerInfo(), 3586 MachinePointerInfo()); 3587 } 3588 3589 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 3590 /// tail calls. 3591 static void 3592 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 3593 SDValue Arg, SDValue PtrOff, int SPDiff, 3594 unsigned ArgOffset, bool isPPC64, bool isTailCall, 3595 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 3596 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 3597 SDLoc dl) { 3598 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3599 if (!isTailCall) { 3600 if (isVector) { 3601 SDValue StackPtr; 3602 if (isPPC64) 3603 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3604 else 3605 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3606 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3607 DAG.getConstant(ArgOffset, PtrVT)); 3608 } 3609 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3610 MachinePointerInfo(), false, false, 0)); 3611 // Calculate and remember argument location. 3612 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 3613 TailCallArguments); 3614 } 3615 3616 static 3617 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 3618 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 3619 SDValue LROp, SDValue FPOp, bool isDarwinABI, 3620 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 3621 MachineFunction &MF = DAG.getMachineFunction(); 3622 3623 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 3624 // might overwrite each other in case of tail call optimization. 3625 SmallVector<SDValue, 8> MemOpChains2; 3626 // Do not flag preceding copytoreg stuff together with the following stuff. 3627 InFlag = SDValue(); 3628 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 3629 MemOpChains2, dl); 3630 if (!MemOpChains2.empty()) 3631 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 3632 3633 // Store the return address to the appropriate stack slot. 3634 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 3635 isPPC64, isDarwinABI, dl); 3636 3637 // Emit callseq_end just before tailcall node. 3638 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 3639 DAG.getIntPtrConstant(0, true), InFlag, dl); 3640 InFlag = Chain.getValue(1); 3641 } 3642 3643 // Is this global address that of a function that can be called by name? (as 3644 // opposed to something that must hold a descriptor for an indirect call). 3645 static bool isFunctionGlobalAddress(SDValue Callee) { 3646 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3647 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 3648 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 3649 return false; 3650 3651 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 3652 } 3653 3654 return false; 3655 } 3656 3657 static 3658 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 3659 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 3660 bool isTailCall, bool IsPatchPoint, 3661 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 3662 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 3663 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 3664 3665 bool isPPC64 = Subtarget.isPPC64(); 3666 bool isSVR4ABI = Subtarget.isSVR4ABI(); 3667 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3668 3669 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3670 NodeTys.push_back(MVT::Other); // Returns a chain 3671 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 3672 3673 unsigned CallOpc = PPCISD::CALL; 3674 3675 bool needIndirectCall = true; 3676 if (!isSVR4ABI || !isPPC64) 3677 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 3678 // If this is an absolute destination address, use the munged value. 3679 Callee = SDValue(Dest, 0); 3680 needIndirectCall = false; 3681 } 3682 3683 if (isFunctionGlobalAddress(Callee)) { 3684 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 3685 // A call to a TLS address is actually an indirect call to a 3686 // thread-specific pointer. 3687 unsigned OpFlags = 0; 3688 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 3689 (Subtarget.getTargetTriple().isMacOSX() && 3690 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 3691 (G->getGlobal()->isDeclaration() || 3692 G->getGlobal()->isWeakForLinker())) || 3693 (Subtarget.isTargetELF() && !isPPC64 && 3694 !G->getGlobal()->hasLocalLinkage() && 3695 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 3696 // PC-relative references to external symbols should go through $stub, 3697 // unless we're building with the leopard linker or later, which 3698 // automatically synthesizes these stubs. 3699 OpFlags = PPCII::MO_PLT_OR_STUB; 3700 } 3701 3702 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 3703 // every direct call is) turn it into a TargetGlobalAddress / 3704 // TargetExternalSymbol node so that legalize doesn't hack it. 3705 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 3706 Callee.getValueType(), 0, OpFlags); 3707 needIndirectCall = false; 3708 } 3709 3710 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3711 unsigned char OpFlags = 0; 3712 3713 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 3714 (Subtarget.getTargetTriple().isMacOSX() && 3715 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 3716 (Subtarget.isTargetELF() && !isPPC64 && 3717 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 3718 // PC-relative references to external symbols should go through $stub, 3719 // unless we're building with the leopard linker or later, which 3720 // automatically synthesizes these stubs. 3721 OpFlags = PPCII::MO_PLT_OR_STUB; 3722 } 3723 3724 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 3725 OpFlags); 3726 needIndirectCall = false; 3727 } 3728 3729 if (IsPatchPoint) { 3730 // We'll form an invalid direct call when lowering a patchpoint; the full 3731 // sequence for an indirect call is complicated, and many of the 3732 // instructions introduced might have side effects (and, thus, can't be 3733 // removed later). The call itself will be removed as soon as the 3734 // argument/return lowering is complete, so the fact that it has the wrong 3735 // kind of operands should not really matter. 3736 needIndirectCall = false; 3737 } 3738 3739 if (needIndirectCall) { 3740 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 3741 // to do the call, we can't use PPCISD::CALL. 3742 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 3743 3744 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 3745 // Function pointers in the 64-bit SVR4 ABI do not point to the function 3746 // entry point, but to the function descriptor (the function entry point 3747 // address is part of the function descriptor though). 3748 // The function descriptor is a three doubleword structure with the 3749 // following fields: function entry point, TOC base address and 3750 // environment pointer. 3751 // Thus for a call through a function pointer, the following actions need 3752 // to be performed: 3753 // 1. Save the TOC of the caller in the TOC save area of its stack 3754 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 3755 // 2. Load the address of the function entry point from the function 3756 // descriptor. 3757 // 3. Load the TOC of the callee from the function descriptor into r2. 3758 // 4. Load the environment pointer from the function descriptor into 3759 // r11. 3760 // 5. Branch to the function entry point address. 3761 // 6. On return of the callee, the TOC of the caller needs to be 3762 // restored (this is done in FinishCall()). 3763 // 3764 // The loads are scheduled at the beginning of the call sequence, and the 3765 // register copies are flagged together to ensure that no other 3766 // operations can be scheduled in between. E.g. without flagging the 3767 // copies together, a TOC access in the caller could be scheduled between 3768 // the assignment of the callee TOC and the branch to the callee, which 3769 // results in the TOC access going through the TOC of the callee instead 3770 // of going through the TOC of the caller, which leads to incorrect code. 3771 3772 // Load the address of the function entry point from the function 3773 // descriptor. 3774 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 3775 if (LDChain.getValueType() == MVT::Glue) 3776 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 3777 3778 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 3779 3780 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 3781 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 3782 false, false, LoadsInv, 8); 3783 3784 // Load environment pointer into r11. 3785 SDValue PtrOff = DAG.getIntPtrConstant(16); 3786 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 3787 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 3788 MPI.getWithOffset(16), false, false, 3789 LoadsInv, 8); 3790 3791 SDValue TOCOff = DAG.getIntPtrConstant(8); 3792 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 3793 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 3794 MPI.getWithOffset(8), false, false, 3795 LoadsInv, 8); 3796 3797 setUsesTOCBasePtr(DAG); 3798 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 3799 InFlag); 3800 Chain = TOCVal.getValue(0); 3801 InFlag = TOCVal.getValue(1); 3802 3803 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 3804 InFlag); 3805 3806 Chain = EnvVal.getValue(0); 3807 InFlag = EnvVal.getValue(1); 3808 3809 MTCTROps[0] = Chain; 3810 MTCTROps[1] = LoadFuncPtr; 3811 MTCTROps[2] = InFlag; 3812 } 3813 3814 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 3815 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 3816 InFlag = Chain.getValue(1); 3817 3818 NodeTys.clear(); 3819 NodeTys.push_back(MVT::Other); 3820 NodeTys.push_back(MVT::Glue); 3821 Ops.push_back(Chain); 3822 CallOpc = PPCISD::BCTRL; 3823 Callee.setNode(nullptr); 3824 // Add use of X11 (holding environment pointer) 3825 if (isSVR4ABI && isPPC64 && !isELFv2ABI) 3826 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 3827 // Add CTR register as callee so a bctr can be emitted later. 3828 if (isTailCall) 3829 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 3830 } 3831 3832 // If this is a direct call, pass the chain and the callee. 3833 if (Callee.getNode()) { 3834 Ops.push_back(Chain); 3835 Ops.push_back(Callee); 3836 3837 // If this is a call to __tls_get_addr, find the symbol whose address 3838 // is to be taken and add it to the list. This will be used to 3839 // generate __tls_get_addr(<sym>@tlsgd) or __tls_get_addr(<sym>@tlsld). 3840 // We find the symbol by walking the chain to the CopyFromReg, walking 3841 // back from the CopyFromReg to the ADDI_TLSGD_L or ADDI_TLSLD_L, and 3842 // pulling the symbol from that node. 3843 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 3844 if (!strcmp(S->getSymbol(), "__tls_get_addr")) { 3845 assert(!needIndirectCall && "Indirect call to __tls_get_addr???"); 3846 SDNode *AddI = Chain.getNode()->getOperand(2).getNode(); 3847 SDValue TGTAddr = AddI->getOperand(1); 3848 assert(TGTAddr.getNode()->getOpcode() == ISD::TargetGlobalTLSAddress && 3849 "Didn't find target global TLS address where we expected one"); 3850 Ops.push_back(TGTAddr); 3851 CallOpc = PPCISD::CALL_TLS; 3852 } 3853 } 3854 // If this is a tail call add stack pointer delta. 3855 if (isTailCall) 3856 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 3857 3858 // Add argument registers to the end of the list so that they are known live 3859 // into the call. 3860 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 3861 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 3862 RegsToPass[i].second.getValueType())); 3863 3864 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 3865 // into the call. 3866 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 3867 setUsesTOCBasePtr(DAG); 3868 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 3869 } 3870 3871 return CallOpc; 3872 } 3873 3874 static 3875 bool isLocalCall(const SDValue &Callee) 3876 { 3877 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3878 return !G->getGlobal()->isDeclaration() && 3879 !G->getGlobal()->isWeakForLinker(); 3880 return false; 3881 } 3882 3883 SDValue 3884 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 3885 CallingConv::ID CallConv, bool isVarArg, 3886 const SmallVectorImpl<ISD::InputArg> &Ins, 3887 SDLoc dl, SelectionDAG &DAG, 3888 SmallVectorImpl<SDValue> &InVals) const { 3889 3890 SmallVector<CCValAssign, 16> RVLocs; 3891 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 3892 *DAG.getContext()); 3893 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 3894 3895 // Copy all of the result registers out of their specified physreg. 3896 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 3897 CCValAssign &VA = RVLocs[i]; 3898 assert(VA.isRegLoc() && "Can only return in registers!"); 3899 3900 SDValue Val = DAG.getCopyFromReg(Chain, dl, 3901 VA.getLocReg(), VA.getLocVT(), InFlag); 3902 Chain = Val.getValue(1); 3903 InFlag = Val.getValue(2); 3904 3905 switch (VA.getLocInfo()) { 3906 default: llvm_unreachable("Unknown loc info!"); 3907 case CCValAssign::Full: break; 3908 case CCValAssign::AExt: 3909 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 3910 break; 3911 case CCValAssign::ZExt: 3912 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 3913 DAG.getValueType(VA.getValVT())); 3914 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 3915 break; 3916 case CCValAssign::SExt: 3917 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 3918 DAG.getValueType(VA.getValVT())); 3919 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 3920 break; 3921 } 3922 3923 InVals.push_back(Val); 3924 } 3925 3926 return Chain; 3927 } 3928 3929 SDValue 3930 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 3931 bool isTailCall, bool isVarArg, bool IsPatchPoint, 3932 SelectionDAG &DAG, 3933 SmallVector<std::pair<unsigned, SDValue>, 8> 3934 &RegsToPass, 3935 SDValue InFlag, SDValue Chain, 3936 SDValue CallSeqStart, SDValue &Callee, 3937 int SPDiff, unsigned NumBytes, 3938 const SmallVectorImpl<ISD::InputArg> &Ins, 3939 SmallVectorImpl<SDValue> &InVals, 3940 ImmutableCallSite *CS) const { 3941 3942 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3943 std::vector<EVT> NodeTys; 3944 SmallVector<SDValue, 8> Ops; 3945 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 3946 SPDiff, isTailCall, IsPatchPoint, RegsToPass, 3947 Ops, NodeTys, CS, Subtarget); 3948 3949 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 3950 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 3951 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 3952 3953 // When performing tail call optimization the callee pops its arguments off 3954 // the stack. Account for this here so these bytes can be pushed back on in 3955 // PPCFrameLowering::eliminateCallFramePseudoInstr. 3956 int BytesCalleePops = 3957 (CallConv == CallingConv::Fast && 3958 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 3959 3960 // Add a register mask operand representing the call-preserved registers. 3961 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3962 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); 3963 assert(Mask && "Missing call preserved mask for calling convention"); 3964 Ops.push_back(DAG.getRegisterMask(Mask)); 3965 3966 if (InFlag.getNode()) 3967 Ops.push_back(InFlag); 3968 3969 // Emit tail call. 3970 if (isTailCall) { 3971 assert(((Callee.getOpcode() == ISD::Register && 3972 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 3973 Callee.getOpcode() == ISD::TargetExternalSymbol || 3974 Callee.getOpcode() == ISD::TargetGlobalAddress || 3975 isa<ConstantSDNode>(Callee)) && 3976 "Expecting an global address, external symbol, absolute value or register"); 3977 3978 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 3979 } 3980 3981 // Add a NOP immediately after the branch instruction when using the 64-bit 3982 // SVR4 ABI. At link time, if caller and callee are in a different module and 3983 // thus have a different TOC, the call will be replaced with a call to a stub 3984 // function which saves the current TOC, loads the TOC of the callee and 3985 // branches to the callee. The NOP will be replaced with a load instruction 3986 // which restores the TOC of the caller from the TOC save slot of the current 3987 // stack frame. If caller and callee belong to the same module (and have the 3988 // same TOC), the NOP will remain unchanged. 3989 3990 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 3991 !IsPatchPoint) { 3992 if (CallOpc == PPCISD::BCTRL) { 3993 // This is a call through a function pointer. 3994 // Restore the caller TOC from the save area into R2. 3995 // See PrepareCall() for more information about calls through function 3996 // pointers in the 64-bit SVR4 ABI. 3997 // We are using a target-specific load with r2 hard coded, because the 3998 // result of a target-independent load would never go directly into r2, 3999 // since r2 is a reserved register (which prevents the register allocator 4000 // from allocating it), resulting in an additional register being 4001 // allocated and an unnecessary move instruction being generated. 4002 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4003 4004 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4005 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4006 unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI); 4007 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset); 4008 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4009 4010 // The address needs to go after the chain input but before the flag (or 4011 // any other variadic arguments). 4012 Ops.insert(std::next(Ops.begin()), AddTOC); 4013 } else if ((CallOpc == PPCISD::CALL) && 4014 (!isLocalCall(Callee) || 4015 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4016 // Otherwise insert NOP for non-local calls. 4017 CallOpc = PPCISD::CALL_NOP; 4018 } else if (CallOpc == PPCISD::CALL_TLS) 4019 // For 64-bit SVR4, TLS calls are always non-local. 4020 CallOpc = PPCISD::CALL_NOP_TLS; 4021 } 4022 4023 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4024 InFlag = Chain.getValue(1); 4025 4026 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 4027 DAG.getIntPtrConstant(BytesCalleePops, true), 4028 InFlag, dl); 4029 if (!Ins.empty()) 4030 InFlag = Chain.getValue(1); 4031 4032 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4033 Ins, dl, DAG, InVals); 4034 } 4035 4036 SDValue 4037 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4038 SmallVectorImpl<SDValue> &InVals) const { 4039 SelectionDAG &DAG = CLI.DAG; 4040 SDLoc &dl = CLI.DL; 4041 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4042 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4043 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4044 SDValue Chain = CLI.Chain; 4045 SDValue Callee = CLI.Callee; 4046 bool &isTailCall = CLI.IsTailCall; 4047 CallingConv::ID CallConv = CLI.CallConv; 4048 bool isVarArg = CLI.IsVarArg; 4049 bool IsPatchPoint = CLI.IsPatchPoint; 4050 ImmutableCallSite *CS = CLI.CS; 4051 4052 if (isTailCall) 4053 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4054 Ins, DAG); 4055 4056 if (!isTailCall && CS && CS->isMustTailCall()) 4057 report_fatal_error("failed to perform tail call elimination on a call " 4058 "site marked musttail"); 4059 4060 if (Subtarget.isSVR4ABI()) { 4061 if (Subtarget.isPPC64()) 4062 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4063 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4064 dl, DAG, InVals, CS); 4065 else 4066 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4067 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4068 dl, DAG, InVals, CS); 4069 } 4070 4071 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4072 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4073 dl, DAG, InVals, CS); 4074 } 4075 4076 SDValue 4077 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4078 CallingConv::ID CallConv, bool isVarArg, 4079 bool isTailCall, bool IsPatchPoint, 4080 const SmallVectorImpl<ISD::OutputArg> &Outs, 4081 const SmallVectorImpl<SDValue> &OutVals, 4082 const SmallVectorImpl<ISD::InputArg> &Ins, 4083 SDLoc dl, SelectionDAG &DAG, 4084 SmallVectorImpl<SDValue> &InVals, 4085 ImmutableCallSite *CS) const { 4086 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4087 // of the 32-bit SVR4 ABI stack frame layout. 4088 4089 assert((CallConv == CallingConv::C || 4090 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4091 4092 unsigned PtrByteSize = 4; 4093 4094 MachineFunction &MF = DAG.getMachineFunction(); 4095 4096 // Mark this function as potentially containing a function that contains a 4097 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4098 // and restoring the callers stack pointer in this functions epilog. This is 4099 // done because by tail calling the called function might overwrite the value 4100 // in this function's (MF) stack pointer stack slot 0(SP). 4101 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4102 CallConv == CallingConv::Fast) 4103 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4104 4105 // Count how many bytes are to be pushed on the stack, including the linkage 4106 // area, parameter list area and the part of the local variable space which 4107 // contains copies of aggregates which are passed by value. 4108 4109 // Assign locations to all of the outgoing arguments. 4110 SmallVector<CCValAssign, 16> ArgLocs; 4111 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4112 *DAG.getContext()); 4113 4114 // Reserve space for the linkage area on the stack. 4115 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false, false), 4116 PtrByteSize); 4117 4118 if (isVarArg) { 4119 // Handle fixed and variable vector arguments differently. 4120 // Fixed vector arguments go into registers as long as registers are 4121 // available. Variable vector arguments always go into memory. 4122 unsigned NumArgs = Outs.size(); 4123 4124 for (unsigned i = 0; i != NumArgs; ++i) { 4125 MVT ArgVT = Outs[i].VT; 4126 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4127 bool Result; 4128 4129 if (Outs[i].IsFixed) { 4130 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4131 CCInfo); 4132 } else { 4133 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4134 ArgFlags, CCInfo); 4135 } 4136 4137 if (Result) { 4138 #ifndef NDEBUG 4139 errs() << "Call operand #" << i << " has unhandled type " 4140 << EVT(ArgVT).getEVTString() << "\n"; 4141 #endif 4142 llvm_unreachable(nullptr); 4143 } 4144 } 4145 } else { 4146 // All arguments are treated the same. 4147 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4148 } 4149 4150 // Assign locations to all of the outgoing aggregate by value arguments. 4151 SmallVector<CCValAssign, 16> ByValArgLocs; 4152 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4153 ByValArgLocs, *DAG.getContext()); 4154 4155 // Reserve stack space for the allocations in CCInfo. 4156 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4157 4158 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4159 4160 // Size of the linkage area, parameter list area and the part of the local 4161 // space variable where copies of aggregates which are passed by value are 4162 // stored. 4163 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4164 4165 // Calculate by how many bytes the stack has to be adjusted in case of tail 4166 // call optimization. 4167 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4168 4169 // Adjust the stack pointer for the new arguments... 4170 // These operations are automatically eliminated by the prolog/epilog pass 4171 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), 4172 dl); 4173 SDValue CallSeqStart = Chain; 4174 4175 // Load the return address and frame pointer so it can be moved somewhere else 4176 // later. 4177 SDValue LROp, FPOp; 4178 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4179 dl); 4180 4181 // Set up a copy of the stack pointer for use loading and storing any 4182 // arguments that may not fit in the registers available for argument 4183 // passing. 4184 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4185 4186 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4187 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4188 SmallVector<SDValue, 8> MemOpChains; 4189 4190 bool seenFloatArg = false; 4191 // Walk the register/memloc assignments, inserting copies/loads. 4192 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4193 i != e; 4194 ++i) { 4195 CCValAssign &VA = ArgLocs[i]; 4196 SDValue Arg = OutVals[i]; 4197 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4198 4199 if (Flags.isByVal()) { 4200 // Argument is an aggregate which is passed by value, thus we need to 4201 // create a copy of it in the local variable space of the current stack 4202 // frame (which is the stack frame of the caller) and pass the address of 4203 // this copy to the callee. 4204 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4205 CCValAssign &ByValVA = ByValArgLocs[j++]; 4206 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4207 4208 // Memory reserved in the local variable space of the callers stack frame. 4209 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4210 4211 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 4212 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 4213 4214 // Create a copy of the argument in the local area of the current 4215 // stack frame. 4216 SDValue MemcpyCall = 4217 CreateCopyOfByValArgument(Arg, PtrOff, 4218 CallSeqStart.getNode()->getOperand(0), 4219 Flags, DAG, dl); 4220 4221 // This must go outside the CALLSEQ_START..END. 4222 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4223 CallSeqStart.getNode()->getOperand(1), 4224 SDLoc(MemcpyCall)); 4225 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4226 NewCallSeqStart.getNode()); 4227 Chain = CallSeqStart = NewCallSeqStart; 4228 4229 // Pass the address of the aggregate copy on the stack either in a 4230 // physical register or in the parameter list area of the current stack 4231 // frame to the callee. 4232 Arg = PtrOff; 4233 } 4234 4235 if (VA.isRegLoc()) { 4236 if (Arg.getValueType() == MVT::i1) 4237 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4238 4239 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4240 // Put argument in a physical register. 4241 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4242 } else { 4243 // Put argument in the parameter list area of the current stack frame. 4244 assert(VA.isMemLoc()); 4245 unsigned LocMemOffset = VA.getLocMemOffset(); 4246 4247 if (!isTailCall) { 4248 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 4249 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 4250 4251 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4252 MachinePointerInfo(), 4253 false, false, 0)); 4254 } else { 4255 // Calculate and remember argument location. 4256 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4257 TailCallArguments); 4258 } 4259 } 4260 } 4261 4262 if (!MemOpChains.empty()) 4263 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4264 4265 // Build a sequence of copy-to-reg nodes chained together with token chain 4266 // and flag operands which copy the outgoing args into the appropriate regs. 4267 SDValue InFlag; 4268 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4269 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4270 RegsToPass[i].second, InFlag); 4271 InFlag = Chain.getValue(1); 4272 } 4273 4274 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4275 // registers. 4276 if (isVarArg) { 4277 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4278 SDValue Ops[] = { Chain, InFlag }; 4279 4280 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4281 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4282 4283 InFlag = Chain.getValue(1); 4284 } 4285 4286 if (isTailCall) 4287 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4288 false, TailCallArguments); 4289 4290 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG, 4291 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4292 NumBytes, Ins, InVals, CS); 4293 } 4294 4295 // Copy an argument into memory, being careful to do this outside the 4296 // call sequence for the call to which the argument belongs. 4297 SDValue 4298 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4299 SDValue CallSeqStart, 4300 ISD::ArgFlagsTy Flags, 4301 SelectionDAG &DAG, 4302 SDLoc dl) const { 4303 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4304 CallSeqStart.getNode()->getOperand(0), 4305 Flags, DAG, dl); 4306 // The MEMCPY must go outside the CALLSEQ_START..END. 4307 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4308 CallSeqStart.getNode()->getOperand(1), 4309 SDLoc(MemcpyCall)); 4310 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4311 NewCallSeqStart.getNode()); 4312 return NewCallSeqStart; 4313 } 4314 4315 SDValue 4316 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4317 CallingConv::ID CallConv, bool isVarArg, 4318 bool isTailCall, bool IsPatchPoint, 4319 const SmallVectorImpl<ISD::OutputArg> &Outs, 4320 const SmallVectorImpl<SDValue> &OutVals, 4321 const SmallVectorImpl<ISD::InputArg> &Ins, 4322 SDLoc dl, SelectionDAG &DAG, 4323 SmallVectorImpl<SDValue> &InVals, 4324 ImmutableCallSite *CS) const { 4325 4326 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4327 bool isLittleEndian = Subtarget.isLittleEndian(); 4328 unsigned NumOps = Outs.size(); 4329 4330 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4331 unsigned PtrByteSize = 8; 4332 4333 MachineFunction &MF = DAG.getMachineFunction(); 4334 4335 // Mark this function as potentially containing a function that contains a 4336 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4337 // and restoring the callers stack pointer in this functions epilog. This is 4338 // done because by tail calling the called function might overwrite the value 4339 // in this function's (MF) stack pointer stack slot 0(SP). 4340 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4341 CallConv == CallingConv::Fast) 4342 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4343 4344 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4345 "fastcc not supported on varargs functions"); 4346 4347 // Count how many bytes are to be pushed on the stack, including the linkage 4348 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4349 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4350 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4351 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false, 4352 isELFv2ABI); 4353 unsigned NumBytes = LinkageSize; 4354 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4355 4356 static const MCPhysReg GPR[] = { 4357 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4358 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4359 }; 4360 static const MCPhysReg *FPR = GetFPR(); 4361 4362 static const MCPhysReg VR[] = { 4363 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4364 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4365 }; 4366 static const MCPhysReg VSRH[] = { 4367 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4368 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4369 }; 4370 4371 const unsigned NumGPRs = array_lengthof(GPR); 4372 const unsigned NumFPRs = 13; 4373 const unsigned NumVRs = array_lengthof(VR); 4374 4375 // When using the fast calling convention, we don't provide backing for 4376 // arguments that will be in registers. 4377 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4378 4379 // Add up all the space actually used. 4380 for (unsigned i = 0; i != NumOps; ++i) { 4381 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4382 EVT ArgVT = Outs[i].VT; 4383 EVT OrigVT = Outs[i].ArgVT; 4384 4385 if (CallConv == CallingConv::Fast) { 4386 if (Flags.isByVal()) 4387 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4388 else 4389 switch (ArgVT.getSimpleVT().SimpleTy) { 4390 default: llvm_unreachable("Unexpected ValueType for argument!"); 4391 case MVT::i1: 4392 case MVT::i32: 4393 case MVT::i64: 4394 if (++NumGPRsUsed <= NumGPRs) 4395 continue; 4396 break; 4397 case MVT::f32: 4398 case MVT::f64: 4399 if (++NumFPRsUsed <= NumFPRs) 4400 continue; 4401 break; 4402 case MVT::v4f32: 4403 case MVT::v4i32: 4404 case MVT::v8i16: 4405 case MVT::v16i8: 4406 case MVT::v2f64: 4407 case MVT::v2i64: 4408 if (++NumVRsUsed <= NumVRs) 4409 continue; 4410 break; 4411 } 4412 } 4413 4414 /* Respect alignment of argument on the stack. */ 4415 unsigned Align = 4416 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4417 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4418 4419 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4420 if (Flags.isInConsecutiveRegsLast()) 4421 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4422 } 4423 4424 unsigned NumBytesActuallyUsed = NumBytes; 4425 4426 // The prolog code of the callee may store up to 8 GPR argument registers to 4427 // the stack, allowing va_start to index over them in memory if its varargs. 4428 // Because we cannot tell if this is needed on the caller side, we have to 4429 // conservatively assume that it is needed. As such, make sure we have at 4430 // least enough stack space for the caller to store the 8 GPRs. 4431 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4432 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4433 4434 // Tail call needs the stack to be aligned. 4435 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4436 CallConv == CallingConv::Fast) 4437 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4438 4439 // Calculate by how many bytes the stack has to be adjusted in case of tail 4440 // call optimization. 4441 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4442 4443 // To protect arguments on the stack from being clobbered in a tail call, 4444 // force all the loads to happen before doing any other lowering. 4445 if (isTailCall) 4446 Chain = DAG.getStackArgumentTokenFactor(Chain); 4447 4448 // Adjust the stack pointer for the new arguments... 4449 // These operations are automatically eliminated by the prolog/epilog pass 4450 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), 4451 dl); 4452 SDValue CallSeqStart = Chain; 4453 4454 // Load the return address and frame pointer so it can be move somewhere else 4455 // later. 4456 SDValue LROp, FPOp; 4457 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4458 dl); 4459 4460 // Set up a copy of the stack pointer for use loading and storing any 4461 // arguments that may not fit in the registers available for argument 4462 // passing. 4463 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4464 4465 // Figure out which arguments are going to go in registers, and which in 4466 // memory. Also, if this is a vararg function, floating point operations 4467 // must be stored to our stack, and loaded into integer regs as well, if 4468 // any integer regs are available for argument passing. 4469 unsigned ArgOffset = LinkageSize; 4470 4471 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4472 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4473 4474 SmallVector<SDValue, 8> MemOpChains; 4475 for (unsigned i = 0; i != NumOps; ++i) { 4476 SDValue Arg = OutVals[i]; 4477 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4478 EVT ArgVT = Outs[i].VT; 4479 EVT OrigVT = Outs[i].ArgVT; 4480 4481 // PtrOff will be used to store the current argument to the stack if a 4482 // register cannot be found for it. 4483 SDValue PtrOff; 4484 4485 // We re-align the argument offset for each argument, except when using the 4486 // fast calling convention, when we need to make sure we do that only when 4487 // we'll actually use a stack slot. 4488 auto ComputePtrOff = [&]() { 4489 /* Respect alignment of argument on the stack. */ 4490 unsigned Align = 4491 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4492 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4493 4494 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 4495 4496 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4497 }; 4498 4499 if (CallConv != CallingConv::Fast) { 4500 ComputePtrOff(); 4501 4502 /* Compute GPR index associated with argument offset. */ 4503 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4504 GPR_idx = std::min(GPR_idx, NumGPRs); 4505 } 4506 4507 // Promote integers to 64-bit values. 4508 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4509 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4510 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4511 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4512 } 4513 4514 // FIXME memcpy is used way more than necessary. Correctness first. 4515 // Note: "by value" is code for passing a structure by value, not 4516 // basic types. 4517 if (Flags.isByVal()) { 4518 // Note: Size includes alignment padding, so 4519 // struct x { short a; char b; } 4520 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4521 // These are the proper values we need for right-justifying the 4522 // aggregate in a parameter register. 4523 unsigned Size = Flags.getByValSize(); 4524 4525 // An empty aggregate parameter takes up no storage and no 4526 // registers. 4527 if (Size == 0) 4528 continue; 4529 4530 if (CallConv == CallingConv::Fast) 4531 ComputePtrOff(); 4532 4533 // All aggregates smaller than 8 bytes must be passed right-justified. 4534 if (Size==1 || Size==2 || Size==4) { 4535 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4536 if (GPR_idx != NumGPRs) { 4537 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4538 MachinePointerInfo(), VT, 4539 false, false, false, 0); 4540 MemOpChains.push_back(Load.getValue(1)); 4541 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4542 4543 ArgOffset += PtrByteSize; 4544 continue; 4545 } 4546 } 4547 4548 if (GPR_idx == NumGPRs && Size < 8) { 4549 SDValue AddPtr = PtrOff; 4550 if (!isLittleEndian) { 4551 SDValue Const = DAG.getConstant(PtrByteSize - Size, 4552 PtrOff.getValueType()); 4553 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4554 } 4555 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4556 CallSeqStart, 4557 Flags, DAG, dl); 4558 ArgOffset += PtrByteSize; 4559 continue; 4560 } 4561 // Copy entire object into memory. There are cases where gcc-generated 4562 // code assumes it is there, even if it could be put entirely into 4563 // registers. (This is not what the doc says.) 4564 4565 // FIXME: The above statement is likely due to a misunderstanding of the 4566 // documents. All arguments must be copied into the parameter area BY 4567 // THE CALLEE in the event that the callee takes the address of any 4568 // formal argument. That has not yet been implemented. However, it is 4569 // reasonable to use the stack area as a staging area for the register 4570 // load. 4571 4572 // Skip this for small aggregates, as we will use the same slot for a 4573 // right-justified copy, below. 4574 if (Size >= 8) 4575 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 4576 CallSeqStart, 4577 Flags, DAG, dl); 4578 4579 // When a register is available, pass a small aggregate right-justified. 4580 if (Size < 8 && GPR_idx != NumGPRs) { 4581 // The easiest way to get this right-justified in a register 4582 // is to copy the structure into the rightmost portion of a 4583 // local variable slot, then load the whole slot into the 4584 // register. 4585 // FIXME: The memcpy seems to produce pretty awful code for 4586 // small aggregates, particularly for packed ones. 4587 // FIXME: It would be preferable to use the slot in the 4588 // parameter save area instead of a new local variable. 4589 SDValue AddPtr = PtrOff; 4590 if (!isLittleEndian) { 4591 SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); 4592 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4593 } 4594 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4595 CallSeqStart, 4596 Flags, DAG, dl); 4597 4598 // Load the slot into the register. 4599 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 4600 MachinePointerInfo(), 4601 false, false, false, 0); 4602 MemOpChains.push_back(Load.getValue(1)); 4603 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4604 4605 // Done with this argument. 4606 ArgOffset += PtrByteSize; 4607 continue; 4608 } 4609 4610 // For aggregates larger than PtrByteSize, copy the pieces of the 4611 // object that fit into registers from the parameter save area. 4612 for (unsigned j=0; j<Size; j+=PtrByteSize) { 4613 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 4614 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 4615 if (GPR_idx != NumGPRs) { 4616 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 4617 MachinePointerInfo(), 4618 false, false, false, 0); 4619 MemOpChains.push_back(Load.getValue(1)); 4620 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4621 ArgOffset += PtrByteSize; 4622 } else { 4623 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 4624 break; 4625 } 4626 } 4627 continue; 4628 } 4629 4630 switch (Arg.getSimpleValueType().SimpleTy) { 4631 default: llvm_unreachable("Unexpected ValueType for argument!"); 4632 case MVT::i1: 4633 case MVT::i32: 4634 case MVT::i64: 4635 // These can be scalar arguments or elements of an integer array type 4636 // passed directly. Clang may use those instead of "byval" aggregate 4637 // types to avoid forcing arguments to memory unnecessarily. 4638 if (GPR_idx != NumGPRs) { 4639 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 4640 } else { 4641 if (CallConv == CallingConv::Fast) 4642 ComputePtrOff(); 4643 4644 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4645 true, isTailCall, false, MemOpChains, 4646 TailCallArguments, dl); 4647 if (CallConv == CallingConv::Fast) 4648 ArgOffset += PtrByteSize; 4649 } 4650 if (CallConv != CallingConv::Fast) 4651 ArgOffset += PtrByteSize; 4652 break; 4653 case MVT::f32: 4654 case MVT::f64: { 4655 // These can be scalar arguments or elements of a float array type 4656 // passed directly. The latter are used to implement ELFv2 homogenous 4657 // float aggregates. 4658 4659 // Named arguments go into FPRs first, and once they overflow, the 4660 // remaining arguments go into GPRs and then the parameter save area. 4661 // Unnamed arguments for vararg functions always go to GPRs and 4662 // then the parameter save area. For now, put all arguments to vararg 4663 // routines always in both locations (FPR *and* GPR or stack slot). 4664 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 4665 bool NeededLoad = false; 4666 4667 // First load the argument into the next available FPR. 4668 if (FPR_idx != NumFPRs) 4669 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 4670 4671 // Next, load the argument into GPR or stack slot if needed. 4672 if (!NeedGPROrStack) 4673 ; 4674 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 4675 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4676 // once we support fp <-> gpr moves. 4677 4678 // In the non-vararg case, this can only ever happen in the 4679 // presence of f32 array types, since otherwise we never run 4680 // out of FPRs before running out of GPRs. 4681 SDValue ArgVal; 4682 4683 // Double values are always passed in a single GPR. 4684 if (Arg.getValueType() != MVT::f32) { 4685 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 4686 4687 // Non-array float values are extended and passed in a GPR. 4688 } else if (!Flags.isInConsecutiveRegs()) { 4689 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 4690 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 4691 4692 // If we have an array of floats, we collect every odd element 4693 // together with its predecessor into one GPR. 4694 } else if (ArgOffset % PtrByteSize != 0) { 4695 SDValue Lo, Hi; 4696 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 4697 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 4698 if (!isLittleEndian) 4699 std::swap(Lo, Hi); 4700 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 4701 4702 // The final element, if even, goes into the first half of a GPR. 4703 } else if (Flags.isInConsecutiveRegsLast()) { 4704 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 4705 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 4706 if (!isLittleEndian) 4707 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 4708 DAG.getConstant(32, MVT::i32)); 4709 4710 // Non-final even elements are skipped; they will be handled 4711 // together the with subsequent argument on the next go-around. 4712 } else 4713 ArgVal = SDValue(); 4714 4715 if (ArgVal.getNode()) 4716 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 4717 } else { 4718 if (CallConv == CallingConv::Fast) 4719 ComputePtrOff(); 4720 4721 // Single-precision floating-point values are mapped to the 4722 // second (rightmost) word of the stack doubleword. 4723 if (Arg.getValueType() == MVT::f32 && 4724 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 4725 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 4726 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 4727 } 4728 4729 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4730 true, isTailCall, false, MemOpChains, 4731 TailCallArguments, dl); 4732 4733 NeededLoad = true; 4734 } 4735 // When passing an array of floats, the array occupies consecutive 4736 // space in the argument area; only round up to the next doubleword 4737 // at the end of the array. Otherwise, each float takes 8 bytes. 4738 if (CallConv != CallingConv::Fast || NeededLoad) { 4739 ArgOffset += (Arg.getValueType() == MVT::f32 && 4740 Flags.isInConsecutiveRegs()) ? 4 : 8; 4741 if (Flags.isInConsecutiveRegsLast()) 4742 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4743 } 4744 break; 4745 } 4746 case MVT::v4f32: 4747 case MVT::v4i32: 4748 case MVT::v8i16: 4749 case MVT::v16i8: 4750 case MVT::v2f64: 4751 case MVT::v2i64: 4752 // These can be scalar arguments or elements of a vector array type 4753 // passed directly. The latter are used to implement ELFv2 homogenous 4754 // vector aggregates. 4755 4756 // For a varargs call, named arguments go into VRs or on the stack as 4757 // usual; unnamed arguments always go to the stack or the corresponding 4758 // GPRs when within range. For now, we always put the value in both 4759 // locations (or even all three). 4760 if (isVarArg) { 4761 // We could elide this store in the case where the object fits 4762 // entirely in R registers. Maybe later. 4763 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 4764 MachinePointerInfo(), false, false, 0); 4765 MemOpChains.push_back(Store); 4766 if (VR_idx != NumVRs) { 4767 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 4768 MachinePointerInfo(), 4769 false, false, false, 0); 4770 MemOpChains.push_back(Load.getValue(1)); 4771 4772 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 4773 Arg.getSimpleValueType() == MVT::v2i64) ? 4774 VSRH[VR_idx] : VR[VR_idx]; 4775 ++VR_idx; 4776 4777 RegsToPass.push_back(std::make_pair(VReg, Load)); 4778 } 4779 ArgOffset += 16; 4780 for (unsigned i=0; i<16; i+=PtrByteSize) { 4781 if (GPR_idx == NumGPRs) 4782 break; 4783 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 4784 DAG.getConstant(i, PtrVT)); 4785 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 4786 false, false, false, 0); 4787 MemOpChains.push_back(Load.getValue(1)); 4788 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4789 } 4790 break; 4791 } 4792 4793 // Non-varargs Altivec params go into VRs or on the stack. 4794 if (VR_idx != NumVRs) { 4795 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 4796 Arg.getSimpleValueType() == MVT::v2i64) ? 4797 VSRH[VR_idx] : VR[VR_idx]; 4798 ++VR_idx; 4799 4800 RegsToPass.push_back(std::make_pair(VReg, Arg)); 4801 } else { 4802 if (CallConv == CallingConv::Fast) 4803 ComputePtrOff(); 4804 4805 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4806 true, isTailCall, true, MemOpChains, 4807 TailCallArguments, dl); 4808 if (CallConv == CallingConv::Fast) 4809 ArgOffset += 16; 4810 } 4811 4812 if (CallConv != CallingConv::Fast) 4813 ArgOffset += 16; 4814 break; 4815 } 4816 } 4817 4818 assert(NumBytesActuallyUsed == ArgOffset); 4819 (void)NumBytesActuallyUsed; 4820 4821 if (!MemOpChains.empty()) 4822 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4823 4824 // Check if this is an indirect call (MTCTR/BCTRL). 4825 // See PrepareCall() for more information about calls through function 4826 // pointers in the 64-bit SVR4 ABI. 4827 if (!isTailCall && !IsPatchPoint && 4828 !isFunctionGlobalAddress(Callee) && 4829 !isa<ExternalSymbolSDNode>(Callee)) { 4830 // Load r2 into a virtual register and store it to the TOC save area. 4831 setUsesTOCBasePtr(DAG); 4832 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 4833 // TOC save area offset. 4834 unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI); 4835 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset); 4836 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4837 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 4838 MachinePointerInfo::getStack(TOCSaveOffset), 4839 false, false, 0); 4840 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 4841 // This does not mean the MTCTR instruction must use R12; it's easier 4842 // to model this as an extra parameter, so do that. 4843 if (isELFv2ABI && !IsPatchPoint) 4844 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 4845 } 4846 4847 // Build a sequence of copy-to-reg nodes chained together with token chain 4848 // and flag operands which copy the outgoing args into the appropriate regs. 4849 SDValue InFlag; 4850 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4851 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4852 RegsToPass[i].second, InFlag); 4853 InFlag = Chain.getValue(1); 4854 } 4855 4856 if (isTailCall) 4857 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 4858 FPOp, true, TailCallArguments); 4859 4860 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG, 4861 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4862 NumBytes, Ins, InVals, CS); 4863 } 4864 4865 SDValue 4866 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 4867 CallingConv::ID CallConv, bool isVarArg, 4868 bool isTailCall, bool IsPatchPoint, 4869 const SmallVectorImpl<ISD::OutputArg> &Outs, 4870 const SmallVectorImpl<SDValue> &OutVals, 4871 const SmallVectorImpl<ISD::InputArg> &Ins, 4872 SDLoc dl, SelectionDAG &DAG, 4873 SmallVectorImpl<SDValue> &InVals, 4874 ImmutableCallSite *CS) const { 4875 4876 unsigned NumOps = Outs.size(); 4877 4878 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4879 bool isPPC64 = PtrVT == MVT::i64; 4880 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4881 4882 MachineFunction &MF = DAG.getMachineFunction(); 4883 4884 // Mark this function as potentially containing a function that contains a 4885 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4886 // and restoring the callers stack pointer in this functions epilog. This is 4887 // done because by tail calling the called function might overwrite the value 4888 // in this function's (MF) stack pointer stack slot 0(SP). 4889 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4890 CallConv == CallingConv::Fast) 4891 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4892 4893 // Count how many bytes are to be pushed on the stack, including the linkage 4894 // area, and parameter passing area. We start with 24/48 bytes, which is 4895 // prereserved space for [SP][CR][LR][3 x unused]. 4896 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true, 4897 false); 4898 unsigned NumBytes = LinkageSize; 4899 4900 // Add up all the space actually used. 4901 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 4902 // they all go in registers, but we must reserve stack space for them for 4903 // possible use by the caller. In varargs or 64-bit calls, parameters are 4904 // assigned stack space in order, with padding so Altivec parameters are 4905 // 16-byte aligned. 4906 unsigned nAltivecParamsAtEnd = 0; 4907 for (unsigned i = 0; i != NumOps; ++i) { 4908 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4909 EVT ArgVT = Outs[i].VT; 4910 // Varargs Altivec parameters are padded to a 16 byte boundary. 4911 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 4912 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 4913 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 4914 if (!isVarArg && !isPPC64) { 4915 // Non-varargs Altivec parameters go after all the non-Altivec 4916 // parameters; handle those later so we know how much padding we need. 4917 nAltivecParamsAtEnd++; 4918 continue; 4919 } 4920 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 4921 NumBytes = ((NumBytes+15)/16)*16; 4922 } 4923 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4924 } 4925 4926 // Allow for Altivec parameters at the end, if needed. 4927 if (nAltivecParamsAtEnd) { 4928 NumBytes = ((NumBytes+15)/16)*16; 4929 NumBytes += 16*nAltivecParamsAtEnd; 4930 } 4931 4932 // The prolog code of the callee may store up to 8 GPR argument registers to 4933 // the stack, allowing va_start to index over them in memory if its varargs. 4934 // Because we cannot tell if this is needed on the caller side, we have to 4935 // conservatively assume that it is needed. As such, make sure we have at 4936 // least enough stack space for the caller to store the 8 GPRs. 4937 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4938 4939 // Tail call needs the stack to be aligned. 4940 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4941 CallConv == CallingConv::Fast) 4942 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4943 4944 // Calculate by how many bytes the stack has to be adjusted in case of tail 4945 // call optimization. 4946 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4947 4948 // To protect arguments on the stack from being clobbered in a tail call, 4949 // force all the loads to happen before doing any other lowering. 4950 if (isTailCall) 4951 Chain = DAG.getStackArgumentTokenFactor(Chain); 4952 4953 // Adjust the stack pointer for the new arguments... 4954 // These operations are automatically eliminated by the prolog/epilog pass 4955 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), 4956 dl); 4957 SDValue CallSeqStart = Chain; 4958 4959 // Load the return address and frame pointer so it can be move somewhere else 4960 // later. 4961 SDValue LROp, FPOp; 4962 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4963 dl); 4964 4965 // Set up a copy of the stack pointer for use loading and storing any 4966 // arguments that may not fit in the registers available for argument 4967 // passing. 4968 SDValue StackPtr; 4969 if (isPPC64) 4970 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4971 else 4972 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4973 4974 // Figure out which arguments are going to go in registers, and which in 4975 // memory. Also, if this is a vararg function, floating point operations 4976 // must be stored to our stack, and loaded into integer regs as well, if 4977 // any integer regs are available for argument passing. 4978 unsigned ArgOffset = LinkageSize; 4979 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4980 4981 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4982 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4983 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4984 }; 4985 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4986 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4987 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4988 }; 4989 static const MCPhysReg *FPR = GetFPR(); 4990 4991 static const MCPhysReg VR[] = { 4992 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4993 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4994 }; 4995 const unsigned NumGPRs = array_lengthof(GPR_32); 4996 const unsigned NumFPRs = 13; 4997 const unsigned NumVRs = array_lengthof(VR); 4998 4999 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5000 5001 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5002 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5003 5004 SmallVector<SDValue, 8> MemOpChains; 5005 for (unsigned i = 0; i != NumOps; ++i) { 5006 SDValue Arg = OutVals[i]; 5007 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5008 5009 // PtrOff will be used to store the current argument to the stack if a 5010 // register cannot be found for it. 5011 SDValue PtrOff; 5012 5013 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 5014 5015 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5016 5017 // On PPC64, promote integers to 64-bit values. 5018 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5019 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5020 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5021 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5022 } 5023 5024 // FIXME memcpy is used way more than necessary. Correctness first. 5025 // Note: "by value" is code for passing a structure by value, not 5026 // basic types. 5027 if (Flags.isByVal()) { 5028 unsigned Size = Flags.getByValSize(); 5029 // Very small objects are passed right-justified. Everything else is 5030 // passed left-justified. 5031 if (Size==1 || Size==2) { 5032 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5033 if (GPR_idx != NumGPRs) { 5034 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5035 MachinePointerInfo(), VT, 5036 false, false, false, 0); 5037 MemOpChains.push_back(Load.getValue(1)); 5038 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5039 5040 ArgOffset += PtrByteSize; 5041 } else { 5042 SDValue Const = DAG.getConstant(PtrByteSize - Size, 5043 PtrOff.getValueType()); 5044 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5045 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5046 CallSeqStart, 5047 Flags, DAG, dl); 5048 ArgOffset += PtrByteSize; 5049 } 5050 continue; 5051 } 5052 // Copy entire object into memory. There are cases where gcc-generated 5053 // code assumes it is there, even if it could be put entirely into 5054 // registers. (This is not what the doc says.) 5055 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5056 CallSeqStart, 5057 Flags, DAG, dl); 5058 5059 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5060 // copy the pieces of the object that fit into registers from the 5061 // parameter save area. 5062 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5063 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 5064 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5065 if (GPR_idx != NumGPRs) { 5066 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5067 MachinePointerInfo(), 5068 false, false, false, 0); 5069 MemOpChains.push_back(Load.getValue(1)); 5070 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5071 ArgOffset += PtrByteSize; 5072 } else { 5073 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5074 break; 5075 } 5076 } 5077 continue; 5078 } 5079 5080 switch (Arg.getSimpleValueType().SimpleTy) { 5081 default: llvm_unreachable("Unexpected ValueType for argument!"); 5082 case MVT::i1: 5083 case MVT::i32: 5084 case MVT::i64: 5085 if (GPR_idx != NumGPRs) { 5086 if (Arg.getValueType() == MVT::i1) 5087 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5088 5089 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5090 } else { 5091 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5092 isPPC64, isTailCall, false, MemOpChains, 5093 TailCallArguments, dl); 5094 } 5095 ArgOffset += PtrByteSize; 5096 break; 5097 case MVT::f32: 5098 case MVT::f64: 5099 if (FPR_idx != NumFPRs) { 5100 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5101 5102 if (isVarArg) { 5103 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5104 MachinePointerInfo(), false, false, 0); 5105 MemOpChains.push_back(Store); 5106 5107 // Float varargs are always shadowed in available integer registers 5108 if (GPR_idx != NumGPRs) { 5109 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5110 MachinePointerInfo(), false, false, 5111 false, 0); 5112 MemOpChains.push_back(Load.getValue(1)); 5113 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5114 } 5115 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5116 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 5117 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5118 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5119 MachinePointerInfo(), 5120 false, false, false, 0); 5121 MemOpChains.push_back(Load.getValue(1)); 5122 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5123 } 5124 } else { 5125 // If we have any FPRs remaining, we may also have GPRs remaining. 5126 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5127 // GPRs. 5128 if (GPR_idx != NumGPRs) 5129 ++GPR_idx; 5130 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5131 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5132 ++GPR_idx; 5133 } 5134 } else 5135 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5136 isPPC64, isTailCall, false, MemOpChains, 5137 TailCallArguments, dl); 5138 if (isPPC64) 5139 ArgOffset += 8; 5140 else 5141 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5142 break; 5143 case MVT::v4f32: 5144 case MVT::v4i32: 5145 case MVT::v8i16: 5146 case MVT::v16i8: 5147 if (isVarArg) { 5148 // These go aligned on the stack, or in the corresponding R registers 5149 // when within range. The Darwin PPC ABI doc claims they also go in 5150 // V registers; in fact gcc does this only for arguments that are 5151 // prototyped, not for those that match the ... We do it for all 5152 // arguments, seems to work. 5153 while (ArgOffset % 16 !=0) { 5154 ArgOffset += PtrByteSize; 5155 if (GPR_idx != NumGPRs) 5156 GPR_idx++; 5157 } 5158 // We could elide this store in the case where the object fits 5159 // entirely in R registers. Maybe later. 5160 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5161 DAG.getConstant(ArgOffset, PtrVT)); 5162 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5163 MachinePointerInfo(), false, false, 0); 5164 MemOpChains.push_back(Store); 5165 if (VR_idx != NumVRs) { 5166 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5167 MachinePointerInfo(), 5168 false, false, false, 0); 5169 MemOpChains.push_back(Load.getValue(1)); 5170 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5171 } 5172 ArgOffset += 16; 5173 for (unsigned i=0; i<16; i+=PtrByteSize) { 5174 if (GPR_idx == NumGPRs) 5175 break; 5176 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5177 DAG.getConstant(i, PtrVT)); 5178 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5179 false, false, false, 0); 5180 MemOpChains.push_back(Load.getValue(1)); 5181 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5182 } 5183 break; 5184 } 5185 5186 // Non-varargs Altivec params generally go in registers, but have 5187 // stack space allocated at the end. 5188 if (VR_idx != NumVRs) { 5189 // Doesn't have GPR space allocated. 5190 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5191 } else if (nAltivecParamsAtEnd==0) { 5192 // We are emitting Altivec params in order. 5193 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5194 isPPC64, isTailCall, true, MemOpChains, 5195 TailCallArguments, dl); 5196 ArgOffset += 16; 5197 } 5198 break; 5199 } 5200 } 5201 // If all Altivec parameters fit in registers, as they usually do, 5202 // they get stack space following the non-Altivec parameters. We 5203 // don't track this here because nobody below needs it. 5204 // If there are more Altivec parameters than fit in registers emit 5205 // the stores here. 5206 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5207 unsigned j = 0; 5208 // Offset is aligned; skip 1st 12 params which go in V registers. 5209 ArgOffset = ((ArgOffset+15)/16)*16; 5210 ArgOffset += 12*16; 5211 for (unsigned i = 0; i != NumOps; ++i) { 5212 SDValue Arg = OutVals[i]; 5213 EVT ArgType = Outs[i].VT; 5214 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5215 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5216 if (++j > NumVRs) { 5217 SDValue PtrOff; 5218 // We are emitting Altivec params in order. 5219 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5220 isPPC64, isTailCall, true, MemOpChains, 5221 TailCallArguments, dl); 5222 ArgOffset += 16; 5223 } 5224 } 5225 } 5226 } 5227 5228 if (!MemOpChains.empty()) 5229 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5230 5231 // On Darwin, R12 must contain the address of an indirect callee. This does 5232 // not mean the MTCTR instruction must use R12; it's easier to model this as 5233 // an extra parameter, so do that. 5234 if (!isTailCall && 5235 !isFunctionGlobalAddress(Callee) && 5236 !isa<ExternalSymbolSDNode>(Callee) && 5237 !isBLACompatibleAddress(Callee, DAG)) 5238 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5239 PPC::R12), Callee)); 5240 5241 // Build a sequence of copy-to-reg nodes chained together with token chain 5242 // and flag operands which copy the outgoing args into the appropriate regs. 5243 SDValue InFlag; 5244 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5245 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5246 RegsToPass[i].second, InFlag); 5247 InFlag = Chain.getValue(1); 5248 } 5249 5250 if (isTailCall) 5251 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5252 FPOp, true, TailCallArguments); 5253 5254 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG, 5255 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5256 NumBytes, Ins, InVals, CS); 5257 } 5258 5259 bool 5260 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5261 MachineFunction &MF, bool isVarArg, 5262 const SmallVectorImpl<ISD::OutputArg> &Outs, 5263 LLVMContext &Context) const { 5264 SmallVector<CCValAssign, 16> RVLocs; 5265 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5266 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5267 } 5268 5269 SDValue 5270 PPCTargetLowering::LowerReturn(SDValue Chain, 5271 CallingConv::ID CallConv, bool isVarArg, 5272 const SmallVectorImpl<ISD::OutputArg> &Outs, 5273 const SmallVectorImpl<SDValue> &OutVals, 5274 SDLoc dl, SelectionDAG &DAG) const { 5275 5276 SmallVector<CCValAssign, 16> RVLocs; 5277 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5278 *DAG.getContext()); 5279 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5280 5281 SDValue Flag; 5282 SmallVector<SDValue, 4> RetOps(1, Chain); 5283 5284 // Copy the result values into the output registers. 5285 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5286 CCValAssign &VA = RVLocs[i]; 5287 assert(VA.isRegLoc() && "Can only return in registers!"); 5288 5289 SDValue Arg = OutVals[i]; 5290 5291 switch (VA.getLocInfo()) { 5292 default: llvm_unreachable("Unknown loc info!"); 5293 case CCValAssign::Full: break; 5294 case CCValAssign::AExt: 5295 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5296 break; 5297 case CCValAssign::ZExt: 5298 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5299 break; 5300 case CCValAssign::SExt: 5301 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5302 break; 5303 } 5304 5305 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5306 Flag = Chain.getValue(1); 5307 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5308 } 5309 5310 RetOps[0] = Chain; // Update chain. 5311 5312 // Add the flag if we have it. 5313 if (Flag.getNode()) 5314 RetOps.push_back(Flag); 5315 5316 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5317 } 5318 5319 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5320 const PPCSubtarget &Subtarget) const { 5321 // When we pop the dynamic allocation we need to restore the SP link. 5322 SDLoc dl(Op); 5323 5324 // Get the corect type for pointers. 5325 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5326 5327 // Construct the stack pointer operand. 5328 bool isPPC64 = Subtarget.isPPC64(); 5329 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5330 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5331 5332 // Get the operands for the STACKRESTORE. 5333 SDValue Chain = Op.getOperand(0); 5334 SDValue SaveSP = Op.getOperand(1); 5335 5336 // Load the old link SP. 5337 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5338 MachinePointerInfo(), 5339 false, false, false, 0); 5340 5341 // Restore the stack pointer. 5342 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5343 5344 // Store the old link SP. 5345 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5346 false, false, 0); 5347 } 5348 5349 5350 5351 SDValue 5352 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 5353 MachineFunction &MF = DAG.getMachineFunction(); 5354 bool isPPC64 = Subtarget.isPPC64(); 5355 bool isDarwinABI = Subtarget.isDarwinABI(); 5356 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5357 5358 // Get current frame pointer save index. The users of this index will be 5359 // primarily DYNALLOC instructions. 5360 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5361 int RASI = FI->getReturnAddrSaveIndex(); 5362 5363 // If the frame pointer save index hasn't been defined yet. 5364 if (!RASI) { 5365 // Find out what the fix offset of the frame pointer save area. 5366 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 5367 // Allocate the frame index for frame pointer save area. 5368 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5369 // Save the result. 5370 FI->setReturnAddrSaveIndex(RASI); 5371 } 5372 return DAG.getFrameIndex(RASI, PtrVT); 5373 } 5374 5375 SDValue 5376 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5377 MachineFunction &MF = DAG.getMachineFunction(); 5378 bool isPPC64 = Subtarget.isPPC64(); 5379 bool isDarwinABI = Subtarget.isDarwinABI(); 5380 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5381 5382 // Get current frame pointer save index. The users of this index will be 5383 // primarily DYNALLOC instructions. 5384 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5385 int FPSI = FI->getFramePointerSaveIndex(); 5386 5387 // If the frame pointer save index hasn't been defined yet. 5388 if (!FPSI) { 5389 // Find out what the fix offset of the frame pointer save area. 5390 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 5391 isDarwinABI); 5392 5393 // Allocate the frame index for frame pointer save area. 5394 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5395 // Save the result. 5396 FI->setFramePointerSaveIndex(FPSI); 5397 } 5398 return DAG.getFrameIndex(FPSI, PtrVT); 5399 } 5400 5401 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5402 SelectionDAG &DAG, 5403 const PPCSubtarget &Subtarget) const { 5404 // Get the inputs. 5405 SDValue Chain = Op.getOperand(0); 5406 SDValue Size = Op.getOperand(1); 5407 SDLoc dl(Op); 5408 5409 // Get the corect type for pointers. 5410 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5411 // Negate the size. 5412 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5413 DAG.getConstant(0, PtrVT), Size); 5414 // Construct a node for the frame pointer save index. 5415 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5416 // Build a DYNALLOC node. 5417 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5418 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5419 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5420 } 5421 5422 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5423 SelectionDAG &DAG) const { 5424 SDLoc DL(Op); 5425 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5426 DAG.getVTList(MVT::i32, MVT::Other), 5427 Op.getOperand(0), Op.getOperand(1)); 5428 } 5429 5430 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5431 SelectionDAG &DAG) const { 5432 SDLoc DL(Op); 5433 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5434 Op.getOperand(0), Op.getOperand(1)); 5435 } 5436 5437 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5438 assert(Op.getValueType() == MVT::i1 && 5439 "Custom lowering only for i1 loads"); 5440 5441 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5442 5443 SDLoc dl(Op); 5444 LoadSDNode *LD = cast<LoadSDNode>(Op); 5445 5446 SDValue Chain = LD->getChain(); 5447 SDValue BasePtr = LD->getBasePtr(); 5448 MachineMemOperand *MMO = LD->getMemOperand(); 5449 5450 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain, 5451 BasePtr, MVT::i8, MMO); 5452 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5453 5454 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5455 return DAG.getMergeValues(Ops, dl); 5456 } 5457 5458 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5459 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5460 "Custom lowering only for i1 stores"); 5461 5462 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5463 5464 SDLoc dl(Op); 5465 StoreSDNode *ST = cast<StoreSDNode>(Op); 5466 5467 SDValue Chain = ST->getChain(); 5468 SDValue BasePtr = ST->getBasePtr(); 5469 SDValue Value = ST->getValue(); 5470 MachineMemOperand *MMO = ST->getMemOperand(); 5471 5472 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value); 5473 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5474 } 5475 5476 // FIXME: Remove this once the ANDI glue bug is fixed: 5477 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5478 assert(Op.getValueType() == MVT::i1 && 5479 "Custom lowering only for i1 results"); 5480 5481 SDLoc DL(Op); 5482 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5483 Op.getOperand(0)); 5484 } 5485 5486 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5487 /// possible. 5488 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5489 // Not FP? Not a fsel. 5490 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5491 !Op.getOperand(2).getValueType().isFloatingPoint()) 5492 return Op; 5493 5494 // We might be able to do better than this under some circumstances, but in 5495 // general, fsel-based lowering of select is a finite-math-only optimization. 5496 // For more information, see section F.3 of the 2.06 ISA specification. 5497 if (!DAG.getTarget().Options.NoInfsFPMath || 5498 !DAG.getTarget().Options.NoNaNsFPMath) 5499 return Op; 5500 5501 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5502 5503 EVT ResVT = Op.getValueType(); 5504 EVT CmpVT = Op.getOperand(0).getValueType(); 5505 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5506 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 5507 SDLoc dl(Op); 5508 5509 // If the RHS of the comparison is a 0.0, we don't need to do the 5510 // subtraction at all. 5511 SDValue Sel1; 5512 if (isFloatingPointZero(RHS)) 5513 switch (CC) { 5514 default: break; // SETUO etc aren't handled by fsel. 5515 case ISD::SETNE: 5516 std::swap(TV, FV); 5517 case ISD::SETEQ: 5518 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5519 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5520 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 5521 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 5522 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 5523 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 5524 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 5525 case ISD::SETULT: 5526 case ISD::SETLT: 5527 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 5528 case ISD::SETOGE: 5529 case ISD::SETGE: 5530 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5531 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5532 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 5533 case ISD::SETUGT: 5534 case ISD::SETGT: 5535 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 5536 case ISD::SETOLE: 5537 case ISD::SETLE: 5538 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5539 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5540 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 5541 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 5542 } 5543 5544 SDValue Cmp; 5545 switch (CC) { 5546 default: break; // SETUO etc aren't handled by fsel. 5547 case ISD::SETNE: 5548 std::swap(TV, FV); 5549 case ISD::SETEQ: 5550 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 5551 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 5552 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 5553 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 5554 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 5555 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 5556 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 5557 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 5558 case ISD::SETULT: 5559 case ISD::SETLT: 5560 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 5561 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 5562 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 5563 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 5564 case ISD::SETOGE: 5565 case ISD::SETGE: 5566 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 5567 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 5568 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 5569 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 5570 case ISD::SETUGT: 5571 case ISD::SETGT: 5572 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 5573 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 5574 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 5575 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 5576 case ISD::SETOLE: 5577 case ISD::SETLE: 5578 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 5579 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 5580 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 5581 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 5582 } 5583 return Op; 5584 } 5585 5586 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 5587 SelectionDAG &DAG, 5588 SDLoc dl) const { 5589 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 5590 SDValue Src = Op.getOperand(0); 5591 if (Src.getValueType() == MVT::f32) 5592 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 5593 5594 SDValue Tmp; 5595 switch (Op.getSimpleValueType().SimpleTy) { 5596 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 5597 case MVT::i32: 5598 Tmp = DAG.getNode( 5599 Op.getOpcode() == ISD::FP_TO_SINT 5600 ? PPCISD::FCTIWZ 5601 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 5602 dl, MVT::f64, Src); 5603 break; 5604 case MVT::i64: 5605 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 5606 "i64 FP_TO_UINT is supported only with FPCVT"); 5607 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 5608 PPCISD::FCTIDUZ, 5609 dl, MVT::f64, Src); 5610 break; 5611 } 5612 5613 // Convert the FP value to an int value through memory. 5614 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 5615 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 5616 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 5617 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 5618 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); 5619 5620 // Emit a store to the stack slot. 5621 SDValue Chain; 5622 if (i32Stack) { 5623 MachineFunction &MF = DAG.getMachineFunction(); 5624 MachineMemOperand *MMO = 5625 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 5626 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 5627 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 5628 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 5629 } else 5630 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 5631 MPI, false, false, 0); 5632 5633 // Result is a load from the stack slot. If loading 4 bytes, make sure to 5634 // add in a bias. 5635 if (Op.getValueType() == MVT::i32 && !i32Stack) { 5636 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 5637 DAG.getConstant(4, FIPtr.getValueType())); 5638 MPI = MPI.getWithOffset(4); 5639 } 5640 5641 RLI.Chain = Chain; 5642 RLI.Ptr = FIPtr; 5643 RLI.MPI = MPI; 5644 } 5645 5646 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 5647 SDLoc dl) const { 5648 ReuseLoadInfo RLI; 5649 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 5650 5651 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 5652 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 5653 RLI.Ranges); 5654 } 5655 5656 // We're trying to insert a regular store, S, and then a load, L. If the 5657 // incoming value, O, is a load, we might just be able to have our load use the 5658 // address used by O. However, we don't know if anything else will store to 5659 // that address before we can load from it. To prevent this situation, we need 5660 // to insert our load, L, into the chain as a peer of O. To do this, we give L 5661 // the same chain operand as O, we create a token factor from the chain results 5662 // of O and L, and we replace all uses of O's chain result with that token 5663 // factor (see spliceIntoChain below for this last part). 5664 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 5665 ReuseLoadInfo &RLI, 5666 SelectionDAG &DAG, 5667 ISD::LoadExtType ET) const { 5668 SDLoc dl(Op); 5669 if (ET == ISD::NON_EXTLOAD && 5670 (Op.getOpcode() == ISD::FP_TO_UINT || 5671 Op.getOpcode() == ISD::FP_TO_SINT) && 5672 isOperationLegalOrCustom(Op.getOpcode(), 5673 Op.getOperand(0).getValueType())) { 5674 5675 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 5676 return true; 5677 } 5678 5679 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 5680 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 5681 LD->isNonTemporal()) 5682 return false; 5683 if (LD->getMemoryVT() != MemVT) 5684 return false; 5685 5686 RLI.Ptr = LD->getBasePtr(); 5687 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 5688 assert(LD->getAddressingMode() == ISD::PRE_INC && 5689 "Non-pre-inc AM on PPC?"); 5690 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 5691 LD->getOffset()); 5692 } 5693 5694 RLI.Chain = LD->getChain(); 5695 RLI.MPI = LD->getPointerInfo(); 5696 RLI.IsInvariant = LD->isInvariant(); 5697 RLI.Alignment = LD->getAlignment(); 5698 RLI.AAInfo = LD->getAAInfo(); 5699 RLI.Ranges = LD->getRanges(); 5700 5701 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 5702 return true; 5703 } 5704 5705 // Given the head of the old chain, ResChain, insert a token factor containing 5706 // it and NewResChain, and make users of ResChain now be users of that token 5707 // factor. 5708 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 5709 SDValue NewResChain, 5710 SelectionDAG &DAG) const { 5711 if (!ResChain) 5712 return; 5713 5714 SDLoc dl(NewResChain); 5715 5716 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5717 NewResChain, DAG.getUNDEF(MVT::Other)); 5718 assert(TF.getNode() != NewResChain.getNode() && 5719 "A new TF really is required here"); 5720 5721 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 5722 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 5723 } 5724 5725 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 5726 SelectionDAG &DAG) const { 5727 SDLoc dl(Op); 5728 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 5729 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 5730 return SDValue(); 5731 5732 if (Op.getOperand(0).getValueType() == MVT::i1) 5733 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 5734 DAG.getConstantFP(1.0, Op.getValueType()), 5735 DAG.getConstantFP(0.0, Op.getValueType())); 5736 5737 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 5738 "UINT_TO_FP is supported only with FPCVT"); 5739 5740 // If we have FCFIDS, then use it when converting to single-precision. 5741 // Otherwise, convert to double-precision and then round. 5742 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 5743 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 5744 : PPCISD::FCFIDS) 5745 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 5746 : PPCISD::FCFID); 5747 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 5748 ? MVT::f32 5749 : MVT::f64; 5750 5751 if (Op.getOperand(0).getValueType() == MVT::i64) { 5752 SDValue SINT = Op.getOperand(0); 5753 // When converting to single-precision, we actually need to convert 5754 // to double-precision first and then round to single-precision. 5755 // To avoid double-rounding effects during that operation, we have 5756 // to prepare the input operand. Bits that might be truncated when 5757 // converting to double-precision are replaced by a bit that won't 5758 // be lost at this stage, but is below the single-precision rounding 5759 // position. 5760 // 5761 // However, if -enable-unsafe-fp-math is in effect, accept double 5762 // rounding to avoid the extra overhead. 5763 if (Op.getValueType() == MVT::f32 && 5764 !Subtarget.hasFPCVT() && 5765 !DAG.getTarget().Options.UnsafeFPMath) { 5766 5767 // Twiddle input to make sure the low 11 bits are zero. (If this 5768 // is the case, we are guaranteed the value will fit into the 53 bit 5769 // mantissa of an IEEE double-precision value without rounding.) 5770 // If any of those low 11 bits were not zero originally, make sure 5771 // bit 12 (value 2048) is set instead, so that the final rounding 5772 // to single-precision gets the correct result. 5773 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 5774 SINT, DAG.getConstant(2047, MVT::i64)); 5775 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 5776 Round, DAG.getConstant(2047, MVT::i64)); 5777 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 5778 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 5779 Round, DAG.getConstant(-2048, MVT::i64)); 5780 5781 // However, we cannot use that value unconditionally: if the magnitude 5782 // of the input value is small, the bit-twiddling we did above might 5783 // end up visibly changing the output. Fortunately, in that case, we 5784 // don't need to twiddle bits since the original input will convert 5785 // exactly to double-precision floating-point already. Therefore, 5786 // construct a conditional to use the original value if the top 11 5787 // bits are all sign-bit copies, and use the rounded value computed 5788 // above otherwise. 5789 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 5790 SINT, DAG.getConstant(53, MVT::i32)); 5791 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 5792 Cond, DAG.getConstant(1, MVT::i64)); 5793 Cond = DAG.getSetCC(dl, MVT::i32, 5794 Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); 5795 5796 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 5797 } 5798 5799 ReuseLoadInfo RLI; 5800 SDValue Bits; 5801 5802 MachineFunction &MF = DAG.getMachineFunction(); 5803 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 5804 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 5805 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 5806 RLI.Ranges); 5807 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 5808 } else if (Subtarget.hasLFIWAX() && 5809 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 5810 MachineMemOperand *MMO = 5811 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 5812 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 5813 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 5814 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 5815 DAG.getVTList(MVT::f64, MVT::Other), 5816 Ops, MVT::i32, MMO); 5817 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 5818 } else if (Subtarget.hasFPCVT() && 5819 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 5820 MachineMemOperand *MMO = 5821 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 5822 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 5823 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 5824 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 5825 DAG.getVTList(MVT::f64, MVT::Other), 5826 Ops, MVT::i32, MMO); 5827 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 5828 } else if (((Subtarget.hasLFIWAX() && 5829 SINT.getOpcode() == ISD::SIGN_EXTEND) || 5830 (Subtarget.hasFPCVT() && 5831 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 5832 SINT.getOperand(0).getValueType() == MVT::i32) { 5833 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 5834 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5835 5836 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 5837 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 5838 5839 SDValue Store = 5840 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 5841 MachinePointerInfo::getFixedStack(FrameIdx), 5842 false, false, 0); 5843 5844 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 5845 "Expected an i32 store"); 5846 5847 RLI.Ptr = FIdx; 5848 RLI.Chain = Store; 5849 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 5850 RLI.Alignment = 4; 5851 5852 MachineMemOperand *MMO = 5853 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 5854 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 5855 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 5856 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 5857 PPCISD::LFIWZX : PPCISD::LFIWAX, 5858 dl, DAG.getVTList(MVT::f64, MVT::Other), 5859 Ops, MVT::i32, MMO); 5860 } else 5861 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 5862 5863 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 5864 5865 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 5866 FP = DAG.getNode(ISD::FP_ROUND, dl, 5867 MVT::f32, FP, DAG.getIntPtrConstant(0)); 5868 return FP; 5869 } 5870 5871 assert(Op.getOperand(0).getValueType() == MVT::i32 && 5872 "Unhandled INT_TO_FP type in custom expander!"); 5873 // Since we only generate this in 64-bit mode, we can take advantage of 5874 // 64-bit registers. In particular, sign extend the input value into the 5875 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 5876 // then lfd it and fcfid it. 5877 MachineFunction &MF = DAG.getMachineFunction(); 5878 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 5879 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5880 5881 SDValue Ld; 5882 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 5883 ReuseLoadInfo RLI; 5884 bool ReusingLoad; 5885 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 5886 DAG))) { 5887 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 5888 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 5889 5890 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 5891 MachinePointerInfo::getFixedStack(FrameIdx), 5892 false, false, 0); 5893 5894 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 5895 "Expected an i32 store"); 5896 5897 RLI.Ptr = FIdx; 5898 RLI.Chain = Store; 5899 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 5900 RLI.Alignment = 4; 5901 } 5902 5903 MachineMemOperand *MMO = 5904 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 5905 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 5906 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 5907 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 5908 PPCISD::LFIWZX : PPCISD::LFIWAX, 5909 dl, DAG.getVTList(MVT::f64, MVT::Other), 5910 Ops, MVT::i32, MMO); 5911 if (ReusingLoad) 5912 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 5913 } else { 5914 assert(Subtarget.isPPC64() && 5915 "i32->FP without LFIWAX supported only on PPC64"); 5916 5917 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 5918 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 5919 5920 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 5921 Op.getOperand(0)); 5922 5923 // STD the extended value into the stack slot. 5924 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, 5925 MachinePointerInfo::getFixedStack(FrameIdx), 5926 false, false, 0); 5927 5928 // Load the value as a double. 5929 Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, 5930 MachinePointerInfo::getFixedStack(FrameIdx), 5931 false, false, false, 0); 5932 } 5933 5934 // FCFID it and return it. 5935 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 5936 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 5937 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 5938 return FP; 5939 } 5940 5941 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 5942 SelectionDAG &DAG) const { 5943 SDLoc dl(Op); 5944 /* 5945 The rounding mode is in bits 30:31 of FPSR, and has the following 5946 settings: 5947 00 Round to nearest 5948 01 Round to 0 5949 10 Round to +inf 5950 11 Round to -inf 5951 5952 FLT_ROUNDS, on the other hand, expects the following: 5953 -1 Undefined 5954 0 Round to 0 5955 1 Round to nearest 5956 2 Round to +inf 5957 3 Round to -inf 5958 5959 To perform the conversion, we do: 5960 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 5961 */ 5962 5963 MachineFunction &MF = DAG.getMachineFunction(); 5964 EVT VT = Op.getValueType(); 5965 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5966 5967 // Save FP Control Word to register 5968 EVT NodeTys[] = { 5969 MVT::f64, // return register 5970 MVT::Glue // unused in this context 5971 }; 5972 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 5973 5974 // Save FP register to stack slot 5975 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 5976 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 5977 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 5978 StackSlot, MachinePointerInfo(), false, false,0); 5979 5980 // Load FP Control Word from low 32 bits of stack slot. 5981 SDValue Four = DAG.getConstant(4, PtrVT); 5982 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 5983 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 5984 false, false, false, 0); 5985 5986 // Transform as necessary 5987 SDValue CWD1 = 5988 DAG.getNode(ISD::AND, dl, MVT::i32, 5989 CWD, DAG.getConstant(3, MVT::i32)); 5990 SDValue CWD2 = 5991 DAG.getNode(ISD::SRL, dl, MVT::i32, 5992 DAG.getNode(ISD::AND, dl, MVT::i32, 5993 DAG.getNode(ISD::XOR, dl, MVT::i32, 5994 CWD, DAG.getConstant(3, MVT::i32)), 5995 DAG.getConstant(3, MVT::i32)), 5996 DAG.getConstant(1, MVT::i32)); 5997 5998 SDValue RetVal = 5999 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6000 6001 return DAG.getNode((VT.getSizeInBits() < 16 ? 6002 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6003 } 6004 6005 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6006 EVT VT = Op.getValueType(); 6007 unsigned BitWidth = VT.getSizeInBits(); 6008 SDLoc dl(Op); 6009 assert(Op.getNumOperands() == 3 && 6010 VT == Op.getOperand(1).getValueType() && 6011 "Unexpected SHL!"); 6012 6013 // Expand into a bunch of logical ops. Note that these ops 6014 // depend on the PPC behavior for oversized shift amounts. 6015 SDValue Lo = Op.getOperand(0); 6016 SDValue Hi = Op.getOperand(1); 6017 SDValue Amt = Op.getOperand(2); 6018 EVT AmtVT = Amt.getValueType(); 6019 6020 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6021 DAG.getConstant(BitWidth, AmtVT), Amt); 6022 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6023 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6024 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6025 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6026 DAG.getConstant(-BitWidth, AmtVT)); 6027 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6028 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6029 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6030 SDValue OutOps[] = { OutLo, OutHi }; 6031 return DAG.getMergeValues(OutOps, dl); 6032 } 6033 6034 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6035 EVT VT = Op.getValueType(); 6036 SDLoc dl(Op); 6037 unsigned BitWidth = VT.getSizeInBits(); 6038 assert(Op.getNumOperands() == 3 && 6039 VT == Op.getOperand(1).getValueType() && 6040 "Unexpected SRL!"); 6041 6042 // Expand into a bunch of logical ops. Note that these ops 6043 // depend on the PPC behavior for oversized shift amounts. 6044 SDValue Lo = Op.getOperand(0); 6045 SDValue Hi = Op.getOperand(1); 6046 SDValue Amt = Op.getOperand(2); 6047 EVT AmtVT = Amt.getValueType(); 6048 6049 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6050 DAG.getConstant(BitWidth, AmtVT), Amt); 6051 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6052 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6053 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6054 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6055 DAG.getConstant(-BitWidth, AmtVT)); 6056 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6057 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6058 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6059 SDValue OutOps[] = { OutLo, OutHi }; 6060 return DAG.getMergeValues(OutOps, dl); 6061 } 6062 6063 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6064 SDLoc dl(Op); 6065 EVT VT = Op.getValueType(); 6066 unsigned BitWidth = VT.getSizeInBits(); 6067 assert(Op.getNumOperands() == 3 && 6068 VT == Op.getOperand(1).getValueType() && 6069 "Unexpected SRA!"); 6070 6071 // Expand into a bunch of logical ops, followed by a select_cc. 6072 SDValue Lo = Op.getOperand(0); 6073 SDValue Hi = Op.getOperand(1); 6074 SDValue Amt = Op.getOperand(2); 6075 EVT AmtVT = Amt.getValueType(); 6076 6077 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6078 DAG.getConstant(BitWidth, AmtVT), Amt); 6079 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6080 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6081 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6082 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6083 DAG.getConstant(-BitWidth, AmtVT)); 6084 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6085 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6086 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 6087 Tmp4, Tmp6, ISD::SETLE); 6088 SDValue OutOps[] = { OutLo, OutHi }; 6089 return DAG.getMergeValues(OutOps, dl); 6090 } 6091 6092 //===----------------------------------------------------------------------===// 6093 // Vector related lowering. 6094 // 6095 6096 /// BuildSplatI - Build a canonical splati of Val with an element size of 6097 /// SplatSize. Cast the result to VT. 6098 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6099 SelectionDAG &DAG, SDLoc dl) { 6100 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6101 6102 static const EVT VTys[] = { // canonical VT to use for each size. 6103 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6104 }; 6105 6106 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6107 6108 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6109 if (Val == -1) 6110 SplatSize = 1; 6111 6112 EVT CanonicalVT = VTys[SplatSize-1]; 6113 6114 // Build a canonical splat for this value. 6115 SDValue Elt = DAG.getConstant(Val, MVT::i32); 6116 SmallVector<SDValue, 8> Ops; 6117 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6118 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6119 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6120 } 6121 6122 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6123 /// specified intrinsic ID. 6124 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6125 SelectionDAG &DAG, SDLoc dl, 6126 EVT DestVT = MVT::Other) { 6127 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6128 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6129 DAG.getConstant(IID, MVT::i32), Op); 6130 } 6131 6132 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6133 /// specified intrinsic ID. 6134 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6135 SelectionDAG &DAG, SDLoc dl, 6136 EVT DestVT = MVT::Other) { 6137 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6138 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6139 DAG.getConstant(IID, MVT::i32), LHS, RHS); 6140 } 6141 6142 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6143 /// specified intrinsic ID. 6144 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6145 SDValue Op2, SelectionDAG &DAG, 6146 SDLoc dl, EVT DestVT = MVT::Other) { 6147 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6148 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6149 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 6150 } 6151 6152 6153 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6154 /// amount. The result has the specified value type. 6155 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6156 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6157 // Force LHS/RHS to be the right type. 6158 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6159 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6160 6161 int Ops[16]; 6162 for (unsigned i = 0; i != 16; ++i) 6163 Ops[i] = i + Amt; 6164 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6165 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6166 } 6167 6168 // If this is a case we can't handle, return null and let the default 6169 // expansion code take care of it. If we CAN select this case, and if it 6170 // selects to a single instruction, return Op. Otherwise, if we can codegen 6171 // this case more efficiently than a constant pool load, lower it to the 6172 // sequence of ops that should be used. 6173 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6174 SelectionDAG &DAG) const { 6175 SDLoc dl(Op); 6176 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6177 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6178 6179 // Check if this is a splat of a constant value. 6180 APInt APSplatBits, APSplatUndef; 6181 unsigned SplatBitSize; 6182 bool HasAnyUndefs; 6183 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6184 HasAnyUndefs, 0, true) || SplatBitSize > 32) 6185 return SDValue(); 6186 6187 unsigned SplatBits = APSplatBits.getZExtValue(); 6188 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6189 unsigned SplatSize = SplatBitSize / 8; 6190 6191 // First, handle single instruction cases. 6192 6193 // All zeros? 6194 if (SplatBits == 0) { 6195 // Canonicalize all zero vectors to be v4i32. 6196 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6197 SDValue Z = DAG.getConstant(0, MVT::i32); 6198 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6199 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6200 } 6201 return Op; 6202 } 6203 6204 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6205 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6206 (32-SplatBitSize)); 6207 if (SextVal >= -16 && SextVal <= 15) 6208 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6209 6210 6211 // Two instruction sequences. 6212 6213 // If this value is in the range [-32,30] and is even, use: 6214 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6215 // If this value is in the range [17,31] and is odd, use: 6216 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6217 // If this value is in the range [-31,-17] and is odd, use: 6218 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6219 // Note the last two are three-instruction sequences. 6220 if (SextVal >= -32 && SextVal <= 31) { 6221 // To avoid having these optimizations undone by constant folding, 6222 // we convert to a pseudo that will be expanded later into one of 6223 // the above forms. 6224 SDValue Elt = DAG.getConstant(SextVal, MVT::i32); 6225 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6226 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6227 SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32); 6228 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6229 if (VT == Op.getValueType()) 6230 return RetVal; 6231 else 6232 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6233 } 6234 6235 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6236 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6237 // for fneg/fabs. 6238 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6239 // Make -1 and vspltisw -1: 6240 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6241 6242 // Make the VSLW intrinsic, computing 0x8000_0000. 6243 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6244 OnesV, DAG, dl); 6245 6246 // xor by OnesV to invert it. 6247 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6248 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6249 } 6250 6251 // The remaining cases assume either big endian element order or 6252 // a splat-size that equates to the element size of the vector 6253 // to be built. An example that doesn't work for little endian is 6254 // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits 6255 // and a vector element size of 16 bits. The code below will 6256 // produce the vector in big endian element order, which for little 6257 // endian is {-1, 0, -1, 0, -1, 0, -1, 0}. 6258 6259 // For now, just avoid these optimizations in that case. 6260 // FIXME: Develop correct optimizations for LE with mismatched 6261 // splat and element sizes. 6262 6263 if (Subtarget.isLittleEndian() && 6264 SplatSize != Op.getValueType().getVectorElementType().getSizeInBits()) 6265 return SDValue(); 6266 6267 // Check to see if this is a wide variety of vsplti*, binop self cases. 6268 static const signed char SplatCsts[] = { 6269 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6270 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6271 }; 6272 6273 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6274 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6275 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6276 int i = SplatCsts[idx]; 6277 6278 // Figure out what shift amount will be used by altivec if shifted by i in 6279 // this splat size. 6280 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6281 6282 // vsplti + shl self. 6283 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 6284 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6285 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6286 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 6287 Intrinsic::ppc_altivec_vslw 6288 }; 6289 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6290 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6291 } 6292 6293 // vsplti + srl self. 6294 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6295 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6296 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6297 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 6298 Intrinsic::ppc_altivec_vsrw 6299 }; 6300 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6301 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6302 } 6303 6304 // vsplti + sra self. 6305 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6306 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6307 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6308 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 6309 Intrinsic::ppc_altivec_vsraw 6310 }; 6311 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6312 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6313 } 6314 6315 // vsplti + rol self. 6316 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 6317 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 6318 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6319 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6320 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 6321 Intrinsic::ppc_altivec_vrlw 6322 }; 6323 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6324 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6325 } 6326 6327 // t = vsplti c, result = vsldoi t, t, 1 6328 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 6329 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 6330 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 6331 } 6332 // t = vsplti c, result = vsldoi t, t, 2 6333 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 6334 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 6335 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 6336 } 6337 // t = vsplti c, result = vsldoi t, t, 3 6338 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 6339 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 6340 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 6341 } 6342 } 6343 6344 return SDValue(); 6345 } 6346 6347 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 6348 /// the specified operations to build the shuffle. 6349 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 6350 SDValue RHS, SelectionDAG &DAG, 6351 SDLoc dl) { 6352 unsigned OpNum = (PFEntry >> 26) & 0x0F; 6353 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 6354 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 6355 6356 enum { 6357 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 6358 OP_VMRGHW, 6359 OP_VMRGLW, 6360 OP_VSPLTISW0, 6361 OP_VSPLTISW1, 6362 OP_VSPLTISW2, 6363 OP_VSPLTISW3, 6364 OP_VSLDOI4, 6365 OP_VSLDOI8, 6366 OP_VSLDOI12 6367 }; 6368 6369 if (OpNum == OP_COPY) { 6370 if (LHSID == (1*9+2)*9+3) return LHS; 6371 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 6372 return RHS; 6373 } 6374 6375 SDValue OpLHS, OpRHS; 6376 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 6377 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 6378 6379 int ShufIdxs[16]; 6380 switch (OpNum) { 6381 default: llvm_unreachable("Unknown i32 permute!"); 6382 case OP_VMRGHW: 6383 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 6384 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 6385 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 6386 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 6387 break; 6388 case OP_VMRGLW: 6389 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 6390 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 6391 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 6392 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 6393 break; 6394 case OP_VSPLTISW0: 6395 for (unsigned i = 0; i != 16; ++i) 6396 ShufIdxs[i] = (i&3)+0; 6397 break; 6398 case OP_VSPLTISW1: 6399 for (unsigned i = 0; i != 16; ++i) 6400 ShufIdxs[i] = (i&3)+4; 6401 break; 6402 case OP_VSPLTISW2: 6403 for (unsigned i = 0; i != 16; ++i) 6404 ShufIdxs[i] = (i&3)+8; 6405 break; 6406 case OP_VSPLTISW3: 6407 for (unsigned i = 0; i != 16; ++i) 6408 ShufIdxs[i] = (i&3)+12; 6409 break; 6410 case OP_VSLDOI4: 6411 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 6412 case OP_VSLDOI8: 6413 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 6414 case OP_VSLDOI12: 6415 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 6416 } 6417 EVT VT = OpLHS.getValueType(); 6418 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 6419 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 6420 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 6421 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6422 } 6423 6424 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 6425 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 6426 /// return the code it can be lowered into. Worst case, it can always be 6427 /// lowered into a vperm. 6428 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 6429 SelectionDAG &DAG) const { 6430 SDLoc dl(Op); 6431 SDValue V1 = Op.getOperand(0); 6432 SDValue V2 = Op.getOperand(1); 6433 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 6434 EVT VT = Op.getValueType(); 6435 bool isLittleEndian = Subtarget.isLittleEndian(); 6436 6437 // Cases that are handled by instructions that take permute immediates 6438 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 6439 // selected by the instruction selector. 6440 if (V2.getOpcode() == ISD::UNDEF) { 6441 if (PPC::isSplatShuffleMask(SVOp, 1) || 6442 PPC::isSplatShuffleMask(SVOp, 2) || 6443 PPC::isSplatShuffleMask(SVOp, 4) || 6444 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 6445 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 6446 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 6447 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 6448 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 6449 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 6450 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 6451 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 6452 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) { 6453 return Op; 6454 } 6455 } 6456 6457 // Altivec has a variety of "shuffle immediates" that take two vector inputs 6458 // and produce a fixed permutation. If any of these match, do not lower to 6459 // VPERM. 6460 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 6461 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 6462 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 6463 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 6464 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 6465 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 6466 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 6467 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 6468 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 6469 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG)) 6470 return Op; 6471 6472 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 6473 // perfect shuffle table to emit an optimal matching sequence. 6474 ArrayRef<int> PermMask = SVOp->getMask(); 6475 6476 unsigned PFIndexes[4]; 6477 bool isFourElementShuffle = true; 6478 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 6479 unsigned EltNo = 8; // Start out undef. 6480 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 6481 if (PermMask[i*4+j] < 0) 6482 continue; // Undef, ignore it. 6483 6484 unsigned ByteSource = PermMask[i*4+j]; 6485 if ((ByteSource & 3) != j) { 6486 isFourElementShuffle = false; 6487 break; 6488 } 6489 6490 if (EltNo == 8) { 6491 EltNo = ByteSource/4; 6492 } else if (EltNo != ByteSource/4) { 6493 isFourElementShuffle = false; 6494 break; 6495 } 6496 } 6497 PFIndexes[i] = EltNo; 6498 } 6499 6500 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 6501 // perfect shuffle vector to determine if it is cost effective to do this as 6502 // discrete instructions, or whether we should use a vperm. 6503 // For now, we skip this for little endian until such time as we have a 6504 // little-endian perfect shuffle table. 6505 if (isFourElementShuffle && !isLittleEndian) { 6506 // Compute the index in the perfect shuffle table. 6507 unsigned PFTableIndex = 6508 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 6509 6510 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 6511 unsigned Cost = (PFEntry >> 30); 6512 6513 // Determining when to avoid vperm is tricky. Many things affect the cost 6514 // of vperm, particularly how many times the perm mask needs to be computed. 6515 // For example, if the perm mask can be hoisted out of a loop or is already 6516 // used (perhaps because there are multiple permutes with the same shuffle 6517 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 6518 // the loop requires an extra register. 6519 // 6520 // As a compromise, we only emit discrete instructions if the shuffle can be 6521 // generated in 3 or fewer operations. When we have loop information 6522 // available, if this block is within a loop, we should avoid using vperm 6523 // for 3-operation perms and use a constant pool load instead. 6524 if (Cost < 3) 6525 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 6526 } 6527 6528 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 6529 // vector that will get spilled to the constant pool. 6530 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 6531 6532 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 6533 // that it is in input element units, not in bytes. Convert now. 6534 6535 // For little endian, the order of the input vectors is reversed, and 6536 // the permutation mask is complemented with respect to 31. This is 6537 // necessary to produce proper semantics with the big-endian-biased vperm 6538 // instruction. 6539 EVT EltVT = V1.getValueType().getVectorElementType(); 6540 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 6541 6542 SmallVector<SDValue, 16> ResultMask; 6543 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6544 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 6545 6546 for (unsigned j = 0; j != BytesPerElement; ++j) 6547 if (isLittleEndian) 6548 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j), 6549 MVT::i32)); 6550 else 6551 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 6552 MVT::i32)); 6553 } 6554 6555 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 6556 ResultMask); 6557 if (isLittleEndian) 6558 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 6559 V2, V1, VPermMask); 6560 else 6561 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 6562 V1, V2, VPermMask); 6563 } 6564 6565 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 6566 /// altivec comparison. If it is, return true and fill in Opc/isDot with 6567 /// information about the intrinsic. 6568 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 6569 bool &isDot) { 6570 unsigned IntrinsicID = 6571 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 6572 CompareOpc = -1; 6573 isDot = false; 6574 switch (IntrinsicID) { 6575 default: return false; 6576 // Comparison predicates. 6577 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 6578 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 6579 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 6580 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 6581 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 6582 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 6583 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 6584 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 6585 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 6586 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 6587 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 6588 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 6589 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 6590 6591 // Normal Comparisons. 6592 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 6593 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 6594 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 6595 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 6596 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 6597 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 6598 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 6599 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 6600 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 6601 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 6602 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 6603 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 6604 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 6605 } 6606 return true; 6607 } 6608 6609 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 6610 /// lower, do it, otherwise return null. 6611 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6612 SelectionDAG &DAG) const { 6613 // If this is a lowered altivec predicate compare, CompareOpc is set to the 6614 // opcode number of the comparison. 6615 SDLoc dl(Op); 6616 int CompareOpc; 6617 bool isDot; 6618 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 6619 return SDValue(); // Don't custom lower most intrinsics. 6620 6621 // If this is a non-dot comparison, make the VCMP node and we are done. 6622 if (!isDot) { 6623 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 6624 Op.getOperand(1), Op.getOperand(2), 6625 DAG.getConstant(CompareOpc, MVT::i32)); 6626 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 6627 } 6628 6629 // Create the PPCISD altivec 'dot' comparison node. 6630 SDValue Ops[] = { 6631 Op.getOperand(2), // LHS 6632 Op.getOperand(3), // RHS 6633 DAG.getConstant(CompareOpc, MVT::i32) 6634 }; 6635 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 6636 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 6637 6638 // Now that we have the comparison, emit a copy from the CR to a GPR. 6639 // This is flagged to the above dot comparison. 6640 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 6641 DAG.getRegister(PPC::CR6, MVT::i32), 6642 CompNode.getValue(1)); 6643 6644 // Unpack the result based on how the target uses it. 6645 unsigned BitNo; // Bit # of CR6. 6646 bool InvertBit; // Invert result? 6647 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 6648 default: // Can't happen, don't crash on invalid number though. 6649 case 0: // Return the value of the EQ bit of CR6. 6650 BitNo = 0; InvertBit = false; 6651 break; 6652 case 1: // Return the inverted value of the EQ bit of CR6. 6653 BitNo = 0; InvertBit = true; 6654 break; 6655 case 2: // Return the value of the LT bit of CR6. 6656 BitNo = 2; InvertBit = false; 6657 break; 6658 case 3: // Return the inverted value of the LT bit of CR6. 6659 BitNo = 2; InvertBit = true; 6660 break; 6661 } 6662 6663 // Shift the bit into the low position. 6664 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 6665 DAG.getConstant(8-(3-BitNo), MVT::i32)); 6666 // Isolate the bit. 6667 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 6668 DAG.getConstant(1, MVT::i32)); 6669 6670 // If we are supposed to, toggle the bit. 6671 if (InvertBit) 6672 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 6673 DAG.getConstant(1, MVT::i32)); 6674 return Flags; 6675 } 6676 6677 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 6678 SelectionDAG &DAG) const { 6679 SDLoc dl(Op); 6680 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 6681 // instructions), but for smaller types, we need to first extend up to v2i32 6682 // before doing going farther. 6683 if (Op.getValueType() == MVT::v2i64) { 6684 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 6685 if (ExtVT != MVT::v2i32) { 6686 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 6687 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 6688 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 6689 ExtVT.getVectorElementType(), 4))); 6690 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 6691 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 6692 DAG.getValueType(MVT::v2i32)); 6693 } 6694 6695 return Op; 6696 } 6697 6698 return SDValue(); 6699 } 6700 6701 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 6702 SelectionDAG &DAG) const { 6703 SDLoc dl(Op); 6704 // Create a stack slot that is 16-byte aligned. 6705 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6706 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6707 EVT PtrVT = getPointerTy(); 6708 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6709 6710 // Store the input value into Value#0 of the stack slot. 6711 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 6712 Op.getOperand(0), FIdx, MachinePointerInfo(), 6713 false, false, 0); 6714 // Load it out. 6715 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 6716 false, false, false, 0); 6717 } 6718 6719 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 6720 SDLoc dl(Op); 6721 if (Op.getValueType() == MVT::v4i32) { 6722 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6723 6724 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 6725 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 6726 6727 SDValue RHSSwap = // = vrlw RHS, 16 6728 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 6729 6730 // Shrinkify inputs to v8i16. 6731 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 6732 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 6733 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 6734 6735 // Low parts multiplied together, generating 32-bit results (we ignore the 6736 // top parts). 6737 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 6738 LHS, RHS, DAG, dl, MVT::v4i32); 6739 6740 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 6741 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 6742 // Shift the high parts up 16 bits. 6743 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 6744 Neg16, DAG, dl); 6745 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 6746 } else if (Op.getValueType() == MVT::v8i16) { 6747 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6748 6749 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 6750 6751 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 6752 LHS, RHS, Zero, DAG, dl); 6753 } else if (Op.getValueType() == MVT::v16i8) { 6754 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6755 bool isLittleEndian = Subtarget.isLittleEndian(); 6756 6757 // Multiply the even 8-bit parts, producing 16-bit sums. 6758 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 6759 LHS, RHS, DAG, dl, MVT::v8i16); 6760 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 6761 6762 // Multiply the odd 8-bit parts, producing 16-bit sums. 6763 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 6764 LHS, RHS, DAG, dl, MVT::v8i16); 6765 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 6766 6767 // Merge the results together. Because vmuleub and vmuloub are 6768 // instructions with a big-endian bias, we must reverse the 6769 // element numbering and reverse the meaning of "odd" and "even" 6770 // when generating little endian code. 6771 int Ops[16]; 6772 for (unsigned i = 0; i != 8; ++i) { 6773 if (isLittleEndian) { 6774 Ops[i*2 ] = 2*i; 6775 Ops[i*2+1] = 2*i+16; 6776 } else { 6777 Ops[i*2 ] = 2*i+1; 6778 Ops[i*2+1] = 2*i+1+16; 6779 } 6780 } 6781 if (isLittleEndian) 6782 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 6783 else 6784 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 6785 } else { 6786 llvm_unreachable("Unknown mul to lower!"); 6787 } 6788 } 6789 6790 /// LowerOperation - Provide custom lowering hooks for some operations. 6791 /// 6792 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6793 switch (Op.getOpcode()) { 6794 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 6795 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 6796 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 6797 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 6798 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 6799 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 6800 case ISD::SETCC: return LowerSETCC(Op, DAG); 6801 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 6802 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 6803 case ISD::VASTART: 6804 return LowerVASTART(Op, DAG, Subtarget); 6805 6806 case ISD::VAARG: 6807 return LowerVAARG(Op, DAG, Subtarget); 6808 6809 case ISD::VACOPY: 6810 return LowerVACOPY(Op, DAG, Subtarget); 6811 6812 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 6813 case ISD::DYNAMIC_STACKALLOC: 6814 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 6815 6816 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 6817 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 6818 6819 case ISD::LOAD: return LowerLOAD(Op, DAG); 6820 case ISD::STORE: return LowerSTORE(Op, DAG); 6821 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 6822 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 6823 case ISD::FP_TO_UINT: 6824 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 6825 SDLoc(Op)); 6826 case ISD::UINT_TO_FP: 6827 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 6828 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 6829 6830 // Lower 64-bit shifts. 6831 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 6832 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 6833 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 6834 6835 // Vector-related lowering. 6836 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 6837 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 6838 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 6839 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 6840 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 6841 case ISD::MUL: return LowerMUL(Op, DAG); 6842 6843 // For counter-based loop handling. 6844 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 6845 6846 // Frame & Return address. 6847 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 6848 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 6849 } 6850 } 6851 6852 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 6853 SmallVectorImpl<SDValue>&Results, 6854 SelectionDAG &DAG) const { 6855 SDLoc dl(N); 6856 switch (N->getOpcode()) { 6857 default: 6858 llvm_unreachable("Do not know how to custom type legalize this operation!"); 6859 case ISD::READCYCLECOUNTER: { 6860 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6861 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 6862 6863 Results.push_back(RTB); 6864 Results.push_back(RTB.getValue(1)); 6865 Results.push_back(RTB.getValue(2)); 6866 break; 6867 } 6868 case ISD::INTRINSIC_W_CHAIN: { 6869 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 6870 Intrinsic::ppc_is_decremented_ctr_nonzero) 6871 break; 6872 6873 assert(N->getValueType(0) == MVT::i1 && 6874 "Unexpected result type for CTR decrement intrinsic"); 6875 EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0)); 6876 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 6877 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 6878 N->getOperand(1)); 6879 6880 Results.push_back(NewInt); 6881 Results.push_back(NewInt.getValue(1)); 6882 break; 6883 } 6884 case ISD::VAARG: { 6885 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 6886 return; 6887 6888 EVT VT = N->getValueType(0); 6889 6890 if (VT == MVT::i64) { 6891 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 6892 6893 Results.push_back(NewNode); 6894 Results.push_back(NewNode.getValue(1)); 6895 } 6896 return; 6897 } 6898 case ISD::FP_ROUND_INREG: { 6899 assert(N->getValueType(0) == MVT::ppcf128); 6900 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 6901 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 6902 MVT::f64, N->getOperand(0), 6903 DAG.getIntPtrConstant(0)); 6904 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 6905 MVT::f64, N->getOperand(0), 6906 DAG.getIntPtrConstant(1)); 6907 6908 // Add the two halves of the long double in round-to-zero mode. 6909 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 6910 6911 // We know the low half is about to be thrown away, so just use something 6912 // convenient. 6913 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 6914 FPreg, FPreg)); 6915 return; 6916 } 6917 case ISD::FP_TO_SINT: 6918 // LowerFP_TO_INT() can only handle f32 and f64. 6919 if (N->getOperand(0).getValueType() == MVT::ppcf128) 6920 return; 6921 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 6922 return; 6923 } 6924 } 6925 6926 6927 //===----------------------------------------------------------------------===// 6928 // Other Lowering Code 6929 //===----------------------------------------------------------------------===// 6930 6931 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 6932 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 6933 Function *Func = Intrinsic::getDeclaration(M, Id); 6934 return Builder.CreateCall(Func); 6935 } 6936 6937 // The mappings for emitLeading/TrailingFence is taken from 6938 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 6939 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 6940 AtomicOrdering Ord, bool IsStore, 6941 bool IsLoad) const { 6942 if (Ord == SequentiallyConsistent) 6943 return callIntrinsic(Builder, Intrinsic::ppc_sync); 6944 else if (isAtLeastRelease(Ord)) 6945 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 6946 else 6947 return nullptr; 6948 } 6949 6950 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 6951 AtomicOrdering Ord, bool IsStore, 6952 bool IsLoad) const { 6953 if (IsLoad && isAtLeastAcquire(Ord)) 6954 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 6955 // FIXME: this is too conservative, a dependent branch + isync is enough. 6956 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 6957 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 6958 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 6959 else 6960 return nullptr; 6961 } 6962 6963 MachineBasicBlock * 6964 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 6965 bool is64bit, unsigned BinOpcode) const { 6966 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 6967 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 6968 6969 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6970 MachineFunction *F = BB->getParent(); 6971 MachineFunction::iterator It = BB; 6972 ++It; 6973 6974 unsigned dest = MI->getOperand(0).getReg(); 6975 unsigned ptrA = MI->getOperand(1).getReg(); 6976 unsigned ptrB = MI->getOperand(2).getReg(); 6977 unsigned incr = MI->getOperand(3).getReg(); 6978 DebugLoc dl = MI->getDebugLoc(); 6979 6980 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 6981 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 6982 F->insert(It, loopMBB); 6983 F->insert(It, exitMBB); 6984 exitMBB->splice(exitMBB->begin(), BB, 6985 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6986 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 6987 6988 MachineRegisterInfo &RegInfo = F->getRegInfo(); 6989 unsigned TmpReg = (!BinOpcode) ? incr : 6990 RegInfo.createVirtualRegister( is64bit ? &PPC::G8RCRegClass 6991 : &PPC::GPRCRegClass); 6992 6993 // thisMBB: 6994 // ... 6995 // fallthrough --> loopMBB 6996 BB->addSuccessor(loopMBB); 6997 6998 // loopMBB: 6999 // l[wd]arx dest, ptr 7000 // add r0, dest, incr 7001 // st[wd]cx. r0, ptr 7002 // bne- loopMBB 7003 // fallthrough --> exitMBB 7004 BB = loopMBB; 7005 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 7006 .addReg(ptrA).addReg(ptrB); 7007 if (BinOpcode) 7008 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 7009 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 7010 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 7011 BuildMI(BB, dl, TII->get(PPC::BCC)) 7012 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 7013 BB->addSuccessor(loopMBB); 7014 BB->addSuccessor(exitMBB); 7015 7016 // exitMBB: 7017 // ... 7018 BB = exitMBB; 7019 return BB; 7020 } 7021 7022 MachineBasicBlock * 7023 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 7024 MachineBasicBlock *BB, 7025 bool is8bit, // operation 7026 unsigned BinOpcode) const { 7027 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 7028 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 7029 // In 64 bit mode we have to use 64 bits for addresses, even though the 7030 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 7031 // registers without caring whether they're 32 or 64, but here we're 7032 // doing actual arithmetic on the addresses. 7033 bool is64bit = Subtarget.isPPC64(); 7034 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 7035 7036 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7037 MachineFunction *F = BB->getParent(); 7038 MachineFunction::iterator It = BB; 7039 ++It; 7040 7041 unsigned dest = MI->getOperand(0).getReg(); 7042 unsigned ptrA = MI->getOperand(1).getReg(); 7043 unsigned ptrB = MI->getOperand(2).getReg(); 7044 unsigned incr = MI->getOperand(3).getReg(); 7045 DebugLoc dl = MI->getDebugLoc(); 7046 7047 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 7048 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 7049 F->insert(It, loopMBB); 7050 F->insert(It, exitMBB); 7051 exitMBB->splice(exitMBB->begin(), BB, 7052 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7053 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 7054 7055 MachineRegisterInfo &RegInfo = F->getRegInfo(); 7056 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 7057 : &PPC::GPRCRegClass; 7058 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 7059 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 7060 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 7061 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 7062 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 7063 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 7064 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 7065 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 7066 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 7067 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 7068 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 7069 unsigned Ptr1Reg; 7070 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 7071 7072 // thisMBB: 7073 // ... 7074 // fallthrough --> loopMBB 7075 BB->addSuccessor(loopMBB); 7076 7077 // The 4-byte load must be aligned, while a char or short may be 7078 // anywhere in the word. Hence all this nasty bookkeeping code. 7079 // add ptr1, ptrA, ptrB [copy if ptrA==0] 7080 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 7081 // xori shift, shift1, 24 [16] 7082 // rlwinm ptr, ptr1, 0, 0, 29 7083 // slw incr2, incr, shift 7084 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 7085 // slw mask, mask2, shift 7086 // loopMBB: 7087 // lwarx tmpDest, ptr 7088 // add tmp, tmpDest, incr2 7089 // andc tmp2, tmpDest, mask 7090 // and tmp3, tmp, mask 7091 // or tmp4, tmp3, tmp2 7092 // stwcx. tmp4, ptr 7093 // bne- loopMBB 7094 // fallthrough --> exitMBB 7095 // srw dest, tmpDest, shift 7096 if (ptrA != ZeroReg) { 7097 Ptr1Reg = RegInfo.createVirtualRegister(RC); 7098 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 7099 .addReg(ptrA).addReg(ptrB); 7100 } else { 7101 Ptr1Reg = ptrB; 7102 } 7103 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 7104 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 7105 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 7106 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 7107 if (is64bit) 7108 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 7109 .addReg(Ptr1Reg).addImm(0).addImm(61); 7110 else 7111 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 7112 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 7113 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 7114 .addReg(incr).addReg(ShiftReg); 7115 if (is8bit) 7116 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 7117 else { 7118 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 7119 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 7120 } 7121 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 7122 .addReg(Mask2Reg).addReg(ShiftReg); 7123 7124 BB = loopMBB; 7125 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 7126 .addReg(ZeroReg).addReg(PtrReg); 7127 if (BinOpcode) 7128 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 7129 .addReg(Incr2Reg).addReg(TmpDestReg); 7130 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 7131 .addReg(TmpDestReg).addReg(MaskReg); 7132 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 7133 .addReg(TmpReg).addReg(MaskReg); 7134 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 7135 .addReg(Tmp3Reg).addReg(Tmp2Reg); 7136 BuildMI(BB, dl, TII->get(PPC::STWCX)) 7137 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 7138 BuildMI(BB, dl, TII->get(PPC::BCC)) 7139 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 7140 BB->addSuccessor(loopMBB); 7141 BB->addSuccessor(exitMBB); 7142 7143 // exitMBB: 7144 // ... 7145 BB = exitMBB; 7146 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 7147 .addReg(ShiftReg); 7148 return BB; 7149 } 7150 7151 llvm::MachineBasicBlock* 7152 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 7153 MachineBasicBlock *MBB) const { 7154 DebugLoc DL = MI->getDebugLoc(); 7155 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 7156 7157 MachineFunction *MF = MBB->getParent(); 7158 MachineRegisterInfo &MRI = MF->getRegInfo(); 7159 7160 const BasicBlock *BB = MBB->getBasicBlock(); 7161 MachineFunction::iterator I = MBB; 7162 ++I; 7163 7164 // Memory Reference 7165 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 7166 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 7167 7168 unsigned DstReg = MI->getOperand(0).getReg(); 7169 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 7170 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 7171 unsigned mainDstReg = MRI.createVirtualRegister(RC); 7172 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 7173 7174 MVT PVT = getPointerTy(); 7175 assert((PVT == MVT::i64 || PVT == MVT::i32) && 7176 "Invalid Pointer Size!"); 7177 // For v = setjmp(buf), we generate 7178 // 7179 // thisMBB: 7180 // SjLjSetup mainMBB 7181 // bl mainMBB 7182 // v_restore = 1 7183 // b sinkMBB 7184 // 7185 // mainMBB: 7186 // buf[LabelOffset] = LR 7187 // v_main = 0 7188 // 7189 // sinkMBB: 7190 // v = phi(main, restore) 7191 // 7192 7193 MachineBasicBlock *thisMBB = MBB; 7194 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 7195 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 7196 MF->insert(I, mainMBB); 7197 MF->insert(I, sinkMBB); 7198 7199 MachineInstrBuilder MIB; 7200 7201 // Transfer the remainder of BB and its successor edges to sinkMBB. 7202 sinkMBB->splice(sinkMBB->begin(), MBB, 7203 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 7204 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 7205 7206 // Note that the structure of the jmp_buf used here is not compatible 7207 // with that used by libc, and is not designed to be. Specifically, it 7208 // stores only those 'reserved' registers that LLVM does not otherwise 7209 // understand how to spill. Also, by convention, by the time this 7210 // intrinsic is called, Clang has already stored the frame address in the 7211 // first slot of the buffer and stack address in the third. Following the 7212 // X86 target code, we'll store the jump address in the second slot. We also 7213 // need to save the TOC pointer (R2) to handle jumps between shared 7214 // libraries, and that will be stored in the fourth slot. The thread 7215 // identifier (R13) is not affected. 7216 7217 // thisMBB: 7218 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 7219 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 7220 const int64_t BPOffset = 4 * PVT.getStoreSize(); 7221 7222 // Prepare IP either in reg. 7223 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 7224 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 7225 unsigned BufReg = MI->getOperand(1).getReg(); 7226 7227 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 7228 setUsesTOCBasePtr(*MBB->getParent()); 7229 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 7230 .addReg(PPC::X2) 7231 .addImm(TOCOffset) 7232 .addReg(BufReg); 7233 MIB.setMemRefs(MMOBegin, MMOEnd); 7234 } 7235 7236 // Naked functions never have a base pointer, and so we use r1. For all 7237 // other functions, this decision must be delayed until during PEI. 7238 unsigned BaseReg; 7239 if (MF->getFunction()->getAttributes().hasAttribute( 7240 AttributeSet::FunctionIndex, Attribute::Naked)) 7241 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 7242 else 7243 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 7244 7245 MIB = BuildMI(*thisMBB, MI, DL, 7246 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 7247 .addReg(BaseReg) 7248 .addImm(BPOffset) 7249 .addReg(BufReg); 7250 MIB.setMemRefs(MMOBegin, MMOEnd); 7251 7252 // Setup 7253 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 7254 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7255 MIB.addRegMask(TRI->getNoPreservedMask()); 7256 7257 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 7258 7259 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 7260 .addMBB(mainMBB); 7261 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 7262 7263 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 7264 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 7265 7266 // mainMBB: 7267 // mainDstReg = 0 7268 MIB = 7269 BuildMI(mainMBB, DL, 7270 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 7271 7272 // Store IP 7273 if (Subtarget.isPPC64()) { 7274 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 7275 .addReg(LabelReg) 7276 .addImm(LabelOffset) 7277 .addReg(BufReg); 7278 } else { 7279 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 7280 .addReg(LabelReg) 7281 .addImm(LabelOffset) 7282 .addReg(BufReg); 7283 } 7284 7285 MIB.setMemRefs(MMOBegin, MMOEnd); 7286 7287 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 7288 mainMBB->addSuccessor(sinkMBB); 7289 7290 // sinkMBB: 7291 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 7292 TII->get(PPC::PHI), DstReg) 7293 .addReg(mainDstReg).addMBB(mainMBB) 7294 .addReg(restoreDstReg).addMBB(thisMBB); 7295 7296 MI->eraseFromParent(); 7297 return sinkMBB; 7298 } 7299 7300 MachineBasicBlock * 7301 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 7302 MachineBasicBlock *MBB) const { 7303 DebugLoc DL = MI->getDebugLoc(); 7304 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 7305 7306 MachineFunction *MF = MBB->getParent(); 7307 MachineRegisterInfo &MRI = MF->getRegInfo(); 7308 7309 // Memory Reference 7310 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 7311 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 7312 7313 MVT PVT = getPointerTy(); 7314 assert((PVT == MVT::i64 || PVT == MVT::i32) && 7315 "Invalid Pointer Size!"); 7316 7317 const TargetRegisterClass *RC = 7318 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7319 unsigned Tmp = MRI.createVirtualRegister(RC); 7320 // Since FP is only updated here but NOT referenced, it's treated as GPR. 7321 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 7322 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 7323 unsigned BP = 7324 (PVT == MVT::i64) 7325 ? PPC::X30 7326 : (Subtarget.isSVR4ABI() && 7327 MF->getTarget().getRelocationModel() == Reloc::PIC_ 7328 ? PPC::R29 7329 : PPC::R30); 7330 7331 MachineInstrBuilder MIB; 7332 7333 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 7334 const int64_t SPOffset = 2 * PVT.getStoreSize(); 7335 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 7336 const int64_t BPOffset = 4 * PVT.getStoreSize(); 7337 7338 unsigned BufReg = MI->getOperand(0).getReg(); 7339 7340 // Reload FP (the jumped-to function may not have had a 7341 // frame pointer, and if so, then its r31 will be restored 7342 // as necessary). 7343 if (PVT == MVT::i64) { 7344 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 7345 .addImm(0) 7346 .addReg(BufReg); 7347 } else { 7348 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 7349 .addImm(0) 7350 .addReg(BufReg); 7351 } 7352 MIB.setMemRefs(MMOBegin, MMOEnd); 7353 7354 // Reload IP 7355 if (PVT == MVT::i64) { 7356 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 7357 .addImm(LabelOffset) 7358 .addReg(BufReg); 7359 } else { 7360 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 7361 .addImm(LabelOffset) 7362 .addReg(BufReg); 7363 } 7364 MIB.setMemRefs(MMOBegin, MMOEnd); 7365 7366 // Reload SP 7367 if (PVT == MVT::i64) { 7368 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 7369 .addImm(SPOffset) 7370 .addReg(BufReg); 7371 } else { 7372 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 7373 .addImm(SPOffset) 7374 .addReg(BufReg); 7375 } 7376 MIB.setMemRefs(MMOBegin, MMOEnd); 7377 7378 // Reload BP 7379 if (PVT == MVT::i64) { 7380 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 7381 .addImm(BPOffset) 7382 .addReg(BufReg); 7383 } else { 7384 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 7385 .addImm(BPOffset) 7386 .addReg(BufReg); 7387 } 7388 MIB.setMemRefs(MMOBegin, MMOEnd); 7389 7390 // Reload TOC 7391 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 7392 setUsesTOCBasePtr(*MBB->getParent()); 7393 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 7394 .addImm(TOCOffset) 7395 .addReg(BufReg); 7396 7397 MIB.setMemRefs(MMOBegin, MMOEnd); 7398 } 7399 7400 // Jump 7401 BuildMI(*MBB, MI, DL, 7402 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 7403 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 7404 7405 MI->eraseFromParent(); 7406 return MBB; 7407 } 7408 7409 MachineBasicBlock * 7410 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 7411 MachineBasicBlock *BB) const { 7412 if (MI->getOpcode() == TargetOpcode::STACKMAP || 7413 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 7414 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 7415 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 7416 // Call lowering should have added an r2 operand to indicate a dependence 7417 // on the TOC base pointer value. It can't however, because there is no 7418 // way to mark the dependence as implicit there, and so the stackmap code 7419 // will confuse it with a regular operand. Instead, add the dependence 7420 // here. 7421 setUsesTOCBasePtr(*BB->getParent()); 7422 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 7423 } 7424 7425 return emitPatchPoint(MI, BB); 7426 } 7427 7428 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 7429 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 7430 return emitEHSjLjSetJmp(MI, BB); 7431 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 7432 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 7433 return emitEHSjLjLongJmp(MI, BB); 7434 } 7435 7436 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 7437 7438 // To "insert" these instructions we actually have to insert their 7439 // control-flow patterns. 7440 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7441 MachineFunction::iterator It = BB; 7442 ++It; 7443 7444 MachineFunction *F = BB->getParent(); 7445 7446 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 7447 MI->getOpcode() == PPC::SELECT_CC_I8 || 7448 MI->getOpcode() == PPC::SELECT_I4 || 7449 MI->getOpcode() == PPC::SELECT_I8)) { 7450 SmallVector<MachineOperand, 2> Cond; 7451 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 7452 MI->getOpcode() == PPC::SELECT_CC_I8) 7453 Cond.push_back(MI->getOperand(4)); 7454 else 7455 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 7456 Cond.push_back(MI->getOperand(1)); 7457 7458 DebugLoc dl = MI->getDebugLoc(); 7459 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 7460 Cond, MI->getOperand(2).getReg(), 7461 MI->getOperand(3).getReg()); 7462 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 7463 MI->getOpcode() == PPC::SELECT_CC_I8 || 7464 MI->getOpcode() == PPC::SELECT_CC_F4 || 7465 MI->getOpcode() == PPC::SELECT_CC_F8 || 7466 MI->getOpcode() == PPC::SELECT_CC_VRRC || 7467 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 7468 MI->getOpcode() == PPC::SELECT_CC_VSRC || 7469 MI->getOpcode() == PPC::SELECT_I4 || 7470 MI->getOpcode() == PPC::SELECT_I8 || 7471 MI->getOpcode() == PPC::SELECT_F4 || 7472 MI->getOpcode() == PPC::SELECT_F8 || 7473 MI->getOpcode() == PPC::SELECT_VRRC || 7474 MI->getOpcode() == PPC::SELECT_VSFRC || 7475 MI->getOpcode() == PPC::SELECT_VSRC) { 7476 // The incoming instruction knows the destination vreg to set, the 7477 // condition code register to branch on, the true/false values to 7478 // select between, and a branch opcode to use. 7479 7480 // thisMBB: 7481 // ... 7482 // TrueVal = ... 7483 // cmpTY ccX, r1, r2 7484 // bCC copy1MBB 7485 // fallthrough --> copy0MBB 7486 MachineBasicBlock *thisMBB = BB; 7487 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 7488 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 7489 DebugLoc dl = MI->getDebugLoc(); 7490 F->insert(It, copy0MBB); 7491 F->insert(It, sinkMBB); 7492 7493 // Transfer the remainder of BB and its successor edges to sinkMBB. 7494 sinkMBB->splice(sinkMBB->begin(), BB, 7495 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7496 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 7497 7498 // Next, add the true and fallthrough blocks as its successors. 7499 BB->addSuccessor(copy0MBB); 7500 BB->addSuccessor(sinkMBB); 7501 7502 if (MI->getOpcode() == PPC::SELECT_I4 || 7503 MI->getOpcode() == PPC::SELECT_I8 || 7504 MI->getOpcode() == PPC::SELECT_F4 || 7505 MI->getOpcode() == PPC::SELECT_F8 || 7506 MI->getOpcode() == PPC::SELECT_VRRC || 7507 MI->getOpcode() == PPC::SELECT_VSFRC || 7508 MI->getOpcode() == PPC::SELECT_VSRC) { 7509 BuildMI(BB, dl, TII->get(PPC::BC)) 7510 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 7511 } else { 7512 unsigned SelectPred = MI->getOperand(4).getImm(); 7513 BuildMI(BB, dl, TII->get(PPC::BCC)) 7514 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 7515 } 7516 7517 // copy0MBB: 7518 // %FalseValue = ... 7519 // # fallthrough to sinkMBB 7520 BB = copy0MBB; 7521 7522 // Update machine-CFG edges 7523 BB->addSuccessor(sinkMBB); 7524 7525 // sinkMBB: 7526 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 7527 // ... 7528 BB = sinkMBB; 7529 BuildMI(*BB, BB->begin(), dl, 7530 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 7531 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 7532 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 7533 } else if (MI->getOpcode() == PPC::ReadTB) { 7534 // To read the 64-bit time-base register on a 32-bit target, we read the 7535 // two halves. Should the counter have wrapped while it was being read, we 7536 // need to try again. 7537 // ... 7538 // readLoop: 7539 // mfspr Rx,TBU # load from TBU 7540 // mfspr Ry,TB # load from TB 7541 // mfspr Rz,TBU # load from TBU 7542 // cmpw crX,Rx,Rz # check if ‘old’=’new’ 7543 // bne readLoop # branch if they're not equal 7544 // ... 7545 7546 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 7547 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 7548 DebugLoc dl = MI->getDebugLoc(); 7549 F->insert(It, readMBB); 7550 F->insert(It, sinkMBB); 7551 7552 // Transfer the remainder of BB and its successor edges to sinkMBB. 7553 sinkMBB->splice(sinkMBB->begin(), BB, 7554 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7555 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 7556 7557 BB->addSuccessor(readMBB); 7558 BB = readMBB; 7559 7560 MachineRegisterInfo &RegInfo = F->getRegInfo(); 7561 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 7562 unsigned LoReg = MI->getOperand(0).getReg(); 7563 unsigned HiReg = MI->getOperand(1).getReg(); 7564 7565 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 7566 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 7567 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 7568 7569 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 7570 7571 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 7572 .addReg(HiReg).addReg(ReadAgainReg); 7573 BuildMI(BB, dl, TII->get(PPC::BCC)) 7574 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 7575 7576 BB->addSuccessor(readMBB); 7577 BB->addSuccessor(sinkMBB); 7578 } 7579 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 7580 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 7581 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 7582 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 7583 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 7584 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 7585 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 7586 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 7587 7588 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 7589 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 7590 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 7591 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 7592 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 7593 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 7594 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 7595 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 7596 7597 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 7598 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 7599 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 7600 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 7601 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 7602 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 7603 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 7604 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 7605 7606 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 7607 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 7608 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 7609 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 7610 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 7611 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 7612 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 7613 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 7614 7615 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 7616 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 7617 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 7618 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 7619 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 7620 BB = EmitAtomicBinary(MI, BB, false, PPC::NAND); 7621 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 7622 BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8); 7623 7624 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 7625 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 7626 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 7627 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 7628 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 7629 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 7630 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 7631 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 7632 7633 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 7634 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 7635 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 7636 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 7637 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 7638 BB = EmitAtomicBinary(MI, BB, false, 0); 7639 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 7640 BB = EmitAtomicBinary(MI, BB, true, 0); 7641 7642 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 7643 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 7644 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 7645 7646 unsigned dest = MI->getOperand(0).getReg(); 7647 unsigned ptrA = MI->getOperand(1).getReg(); 7648 unsigned ptrB = MI->getOperand(2).getReg(); 7649 unsigned oldval = MI->getOperand(3).getReg(); 7650 unsigned newval = MI->getOperand(4).getReg(); 7651 DebugLoc dl = MI->getDebugLoc(); 7652 7653 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 7654 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 7655 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 7656 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 7657 F->insert(It, loop1MBB); 7658 F->insert(It, loop2MBB); 7659 F->insert(It, midMBB); 7660 F->insert(It, exitMBB); 7661 exitMBB->splice(exitMBB->begin(), BB, 7662 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7663 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 7664 7665 // thisMBB: 7666 // ... 7667 // fallthrough --> loopMBB 7668 BB->addSuccessor(loop1MBB); 7669 7670 // loop1MBB: 7671 // l[wd]arx dest, ptr 7672 // cmp[wd] dest, oldval 7673 // bne- midMBB 7674 // loop2MBB: 7675 // st[wd]cx. newval, ptr 7676 // bne- loopMBB 7677 // b exitBB 7678 // midMBB: 7679 // st[wd]cx. dest, ptr 7680 // exitBB: 7681 BB = loop1MBB; 7682 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 7683 .addReg(ptrA).addReg(ptrB); 7684 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 7685 .addReg(oldval).addReg(dest); 7686 BuildMI(BB, dl, TII->get(PPC::BCC)) 7687 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 7688 BB->addSuccessor(loop2MBB); 7689 BB->addSuccessor(midMBB); 7690 7691 BB = loop2MBB; 7692 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 7693 .addReg(newval).addReg(ptrA).addReg(ptrB); 7694 BuildMI(BB, dl, TII->get(PPC::BCC)) 7695 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 7696 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 7697 BB->addSuccessor(loop1MBB); 7698 BB->addSuccessor(exitMBB); 7699 7700 BB = midMBB; 7701 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 7702 .addReg(dest).addReg(ptrA).addReg(ptrB); 7703 BB->addSuccessor(exitMBB); 7704 7705 // exitMBB: 7706 // ... 7707 BB = exitMBB; 7708 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 7709 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 7710 // We must use 64-bit registers for addresses when targeting 64-bit, 7711 // since we're actually doing arithmetic on them. Other registers 7712 // can be 32-bit. 7713 bool is64bit = Subtarget.isPPC64(); 7714 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 7715 7716 unsigned dest = MI->getOperand(0).getReg(); 7717 unsigned ptrA = MI->getOperand(1).getReg(); 7718 unsigned ptrB = MI->getOperand(2).getReg(); 7719 unsigned oldval = MI->getOperand(3).getReg(); 7720 unsigned newval = MI->getOperand(4).getReg(); 7721 DebugLoc dl = MI->getDebugLoc(); 7722 7723 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 7724 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 7725 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 7726 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 7727 F->insert(It, loop1MBB); 7728 F->insert(It, loop2MBB); 7729 F->insert(It, midMBB); 7730 F->insert(It, exitMBB); 7731 exitMBB->splice(exitMBB->begin(), BB, 7732 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7733 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 7734 7735 MachineRegisterInfo &RegInfo = F->getRegInfo(); 7736 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 7737 : &PPC::GPRCRegClass; 7738 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 7739 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 7740 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 7741 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 7742 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 7743 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 7744 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 7745 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 7746 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 7747 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 7748 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 7749 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 7750 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 7751 unsigned Ptr1Reg; 7752 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 7753 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 7754 // thisMBB: 7755 // ... 7756 // fallthrough --> loopMBB 7757 BB->addSuccessor(loop1MBB); 7758 7759 // The 4-byte load must be aligned, while a char or short may be 7760 // anywhere in the word. Hence all this nasty bookkeeping code. 7761 // add ptr1, ptrA, ptrB [copy if ptrA==0] 7762 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 7763 // xori shift, shift1, 24 [16] 7764 // rlwinm ptr, ptr1, 0, 0, 29 7765 // slw newval2, newval, shift 7766 // slw oldval2, oldval,shift 7767 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 7768 // slw mask, mask2, shift 7769 // and newval3, newval2, mask 7770 // and oldval3, oldval2, mask 7771 // loop1MBB: 7772 // lwarx tmpDest, ptr 7773 // and tmp, tmpDest, mask 7774 // cmpw tmp, oldval3 7775 // bne- midMBB 7776 // loop2MBB: 7777 // andc tmp2, tmpDest, mask 7778 // or tmp4, tmp2, newval3 7779 // stwcx. tmp4, ptr 7780 // bne- loop1MBB 7781 // b exitBB 7782 // midMBB: 7783 // stwcx. tmpDest, ptr 7784 // exitBB: 7785 // srw dest, tmpDest, shift 7786 if (ptrA != ZeroReg) { 7787 Ptr1Reg = RegInfo.createVirtualRegister(RC); 7788 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 7789 .addReg(ptrA).addReg(ptrB); 7790 } else { 7791 Ptr1Reg = ptrB; 7792 } 7793 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 7794 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 7795 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 7796 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 7797 if (is64bit) 7798 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 7799 .addReg(Ptr1Reg).addImm(0).addImm(61); 7800 else 7801 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 7802 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 7803 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 7804 .addReg(newval).addReg(ShiftReg); 7805 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 7806 .addReg(oldval).addReg(ShiftReg); 7807 if (is8bit) 7808 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 7809 else { 7810 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 7811 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 7812 .addReg(Mask3Reg).addImm(65535); 7813 } 7814 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 7815 .addReg(Mask2Reg).addReg(ShiftReg); 7816 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 7817 .addReg(NewVal2Reg).addReg(MaskReg); 7818 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 7819 .addReg(OldVal2Reg).addReg(MaskReg); 7820 7821 BB = loop1MBB; 7822 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 7823 .addReg(ZeroReg).addReg(PtrReg); 7824 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 7825 .addReg(TmpDestReg).addReg(MaskReg); 7826 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 7827 .addReg(TmpReg).addReg(OldVal3Reg); 7828 BuildMI(BB, dl, TII->get(PPC::BCC)) 7829 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 7830 BB->addSuccessor(loop2MBB); 7831 BB->addSuccessor(midMBB); 7832 7833 BB = loop2MBB; 7834 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 7835 .addReg(TmpDestReg).addReg(MaskReg); 7836 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 7837 .addReg(Tmp2Reg).addReg(NewVal3Reg); 7838 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 7839 .addReg(ZeroReg).addReg(PtrReg); 7840 BuildMI(BB, dl, TII->get(PPC::BCC)) 7841 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 7842 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 7843 BB->addSuccessor(loop1MBB); 7844 BB->addSuccessor(exitMBB); 7845 7846 BB = midMBB; 7847 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 7848 .addReg(ZeroReg).addReg(PtrReg); 7849 BB->addSuccessor(exitMBB); 7850 7851 // exitMBB: 7852 // ... 7853 BB = exitMBB; 7854 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 7855 .addReg(ShiftReg); 7856 } else if (MI->getOpcode() == PPC::FADDrtz) { 7857 // This pseudo performs an FADD with rounding mode temporarily forced 7858 // to round-to-zero. We emit this via custom inserter since the FPSCR 7859 // is not modeled at the SelectionDAG level. 7860 unsigned Dest = MI->getOperand(0).getReg(); 7861 unsigned Src1 = MI->getOperand(1).getReg(); 7862 unsigned Src2 = MI->getOperand(2).getReg(); 7863 DebugLoc dl = MI->getDebugLoc(); 7864 7865 MachineRegisterInfo &RegInfo = F->getRegInfo(); 7866 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 7867 7868 // Save FPSCR value. 7869 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 7870 7871 // Set rounding mode to round-to-zero. 7872 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 7873 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 7874 7875 // Perform addition. 7876 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 7877 7878 // Restore FPSCR value. 7879 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 7880 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 7881 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 7882 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 7883 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 7884 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 7885 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 7886 PPC::ANDIo8 : PPC::ANDIo; 7887 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 7888 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 7889 7890 MachineRegisterInfo &RegInfo = F->getRegInfo(); 7891 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 7892 &PPC::GPRCRegClass : 7893 &PPC::G8RCRegClass); 7894 7895 DebugLoc dl = MI->getDebugLoc(); 7896 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 7897 .addReg(MI->getOperand(1).getReg()).addImm(1); 7898 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 7899 MI->getOperand(0).getReg()) 7900 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 7901 } else { 7902 llvm_unreachable("Unexpected instr type to insert"); 7903 } 7904 7905 MI->eraseFromParent(); // The pseudo instruction is gone now. 7906 return BB; 7907 } 7908 7909 //===----------------------------------------------------------------------===// 7910 // Target Optimization Hooks 7911 //===----------------------------------------------------------------------===// 7912 7913 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 7914 DAGCombinerInfo &DCI, 7915 unsigned &RefinementSteps, 7916 bool &UseOneConstNR) const { 7917 EVT VT = Operand.getValueType(); 7918 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 7919 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 7920 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 7921 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 7922 // Convergence is quadratic, so we essentially double the number of digits 7923 // correct after every iteration. For both FRE and FRSQRTE, the minimum 7924 // architected relative accuracy is 2^-5. When hasRecipPrec(), this is 7925 // 2^-14. IEEE float has 23 digits and double has 52 digits. 7926 RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 7927 if (VT.getScalarType() == MVT::f64) 7928 ++RefinementSteps; 7929 UseOneConstNR = true; 7930 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 7931 } 7932 return SDValue(); 7933 } 7934 7935 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 7936 DAGCombinerInfo &DCI, 7937 unsigned &RefinementSteps) const { 7938 EVT VT = Operand.getValueType(); 7939 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 7940 (VT == MVT::f64 && Subtarget.hasFRE()) || 7941 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 7942 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 7943 // Convergence is quadratic, so we essentially double the number of digits 7944 // correct after every iteration. For both FRE and FRSQRTE, the minimum 7945 // architected relative accuracy is 2^-5. When hasRecipPrec(), this is 7946 // 2^-14. IEEE float has 23 digits and double has 52 digits. 7947 RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 7948 if (VT.getScalarType() == MVT::f64) 7949 ++RefinementSteps; 7950 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 7951 } 7952 return SDValue(); 7953 } 7954 7955 bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const { 7956 // Note: This functionality is used only when unsafe-fp-math is enabled, and 7957 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 7958 // enabled for division), this functionality is redundant with the default 7959 // combiner logic (once the division -> reciprocal/multiply transformation 7960 // has taken place). As a result, this matters more for older cores than for 7961 // newer ones. 7962 7963 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 7964 // reciprocal if there are two or more FDIVs (for embedded cores with only 7965 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 7966 switch (Subtarget.getDarwinDirective()) { 7967 default: 7968 return NumUsers > 2; 7969 case PPC::DIR_440: 7970 case PPC::DIR_A2: 7971 case PPC::DIR_E500mc: 7972 case PPC::DIR_E5500: 7973 return NumUsers > 1; 7974 } 7975 } 7976 7977 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 7978 unsigned Bytes, int Dist, 7979 SelectionDAG &DAG) { 7980 if (VT.getSizeInBits() / 8 != Bytes) 7981 return false; 7982 7983 SDValue BaseLoc = Base->getBasePtr(); 7984 if (Loc.getOpcode() == ISD::FrameIndex) { 7985 if (BaseLoc.getOpcode() != ISD::FrameIndex) 7986 return false; 7987 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 7988 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 7989 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 7990 int FS = MFI->getObjectSize(FI); 7991 int BFS = MFI->getObjectSize(BFI); 7992 if (FS != BFS || FS != (int)Bytes) return false; 7993 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 7994 } 7995 7996 // Handle X+C 7997 if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && 7998 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) 7999 return true; 8000 8001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8002 const GlobalValue *GV1 = nullptr; 8003 const GlobalValue *GV2 = nullptr; 8004 int64_t Offset1 = 0; 8005 int64_t Offset2 = 0; 8006 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 8007 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 8008 if (isGA1 && isGA2 && GV1 == GV2) 8009 return Offset1 == (Offset2 + Dist*Bytes); 8010 return false; 8011 } 8012 8013 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 8014 // not enforce equality of the chain operands. 8015 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 8016 unsigned Bytes, int Dist, 8017 SelectionDAG &DAG) { 8018 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 8019 EVT VT = LS->getMemoryVT(); 8020 SDValue Loc = LS->getBasePtr(); 8021 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 8022 } 8023 8024 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 8025 EVT VT; 8026 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 8027 default: return false; 8028 case Intrinsic::ppc_altivec_lvx: 8029 case Intrinsic::ppc_altivec_lvxl: 8030 case Intrinsic::ppc_vsx_lxvw4x: 8031 VT = MVT::v4i32; 8032 break; 8033 case Intrinsic::ppc_vsx_lxvd2x: 8034 VT = MVT::v2f64; 8035 break; 8036 case Intrinsic::ppc_altivec_lvebx: 8037 VT = MVT::i8; 8038 break; 8039 case Intrinsic::ppc_altivec_lvehx: 8040 VT = MVT::i16; 8041 break; 8042 case Intrinsic::ppc_altivec_lvewx: 8043 VT = MVT::i32; 8044 break; 8045 } 8046 8047 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 8048 } 8049 8050 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 8051 EVT VT; 8052 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 8053 default: return false; 8054 case Intrinsic::ppc_altivec_stvx: 8055 case Intrinsic::ppc_altivec_stvxl: 8056 case Intrinsic::ppc_vsx_stxvw4x: 8057 VT = MVT::v4i32; 8058 break; 8059 case Intrinsic::ppc_vsx_stxvd2x: 8060 VT = MVT::v2f64; 8061 break; 8062 case Intrinsic::ppc_altivec_stvebx: 8063 VT = MVT::i8; 8064 break; 8065 case Intrinsic::ppc_altivec_stvehx: 8066 VT = MVT::i16; 8067 break; 8068 case Intrinsic::ppc_altivec_stvewx: 8069 VT = MVT::i32; 8070 break; 8071 } 8072 8073 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 8074 } 8075 8076 return false; 8077 } 8078 8079 // Return true is there is a nearyby consecutive load to the one provided 8080 // (regardless of alignment). We search up and down the chain, looking though 8081 // token factors and other loads (but nothing else). As a result, a true result 8082 // indicates that it is safe to create a new consecutive load adjacent to the 8083 // load provided. 8084 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 8085 SDValue Chain = LD->getChain(); 8086 EVT VT = LD->getMemoryVT(); 8087 8088 SmallSet<SDNode *, 16> LoadRoots; 8089 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 8090 SmallSet<SDNode *, 16> Visited; 8091 8092 // First, search up the chain, branching to follow all token-factor operands. 8093 // If we find a consecutive load, then we're done, otherwise, record all 8094 // nodes just above the top-level loads and token factors. 8095 while (!Queue.empty()) { 8096 SDNode *ChainNext = Queue.pop_back_val(); 8097 if (!Visited.insert(ChainNext).second) 8098 continue; 8099 8100 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 8101 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 8102 return true; 8103 8104 if (!Visited.count(ChainLD->getChain().getNode())) 8105 Queue.push_back(ChainLD->getChain().getNode()); 8106 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 8107 for (const SDUse &O : ChainNext->ops()) 8108 if (!Visited.count(O.getNode())) 8109 Queue.push_back(O.getNode()); 8110 } else 8111 LoadRoots.insert(ChainNext); 8112 } 8113 8114 // Second, search down the chain, starting from the top-level nodes recorded 8115 // in the first phase. These top-level nodes are the nodes just above all 8116 // loads and token factors. Starting with their uses, recursively look though 8117 // all loads (just the chain uses) and token factors to find a consecutive 8118 // load. 8119 Visited.clear(); 8120 Queue.clear(); 8121 8122 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 8123 IE = LoadRoots.end(); I != IE; ++I) { 8124 Queue.push_back(*I); 8125 8126 while (!Queue.empty()) { 8127 SDNode *LoadRoot = Queue.pop_back_val(); 8128 if (!Visited.insert(LoadRoot).second) 8129 continue; 8130 8131 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 8132 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 8133 return true; 8134 8135 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 8136 UE = LoadRoot->use_end(); UI != UE; ++UI) 8137 if (((isa<MemSDNode>(*UI) && 8138 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 8139 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 8140 Queue.push_back(*UI); 8141 } 8142 } 8143 8144 return false; 8145 } 8146 8147 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 8148 DAGCombinerInfo &DCI) const { 8149 SelectionDAG &DAG = DCI.DAG; 8150 SDLoc dl(N); 8151 8152 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 8153 // If we're tracking CR bits, we need to be careful that we don't have: 8154 // trunc(binary-ops(zext(x), zext(y))) 8155 // or 8156 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 8157 // such that we're unnecessarily moving things into GPRs when it would be 8158 // better to keep them in CR bits. 8159 8160 // Note that trunc here can be an actual i1 trunc, or can be the effective 8161 // truncation that comes from a setcc or select_cc. 8162 if (N->getOpcode() == ISD::TRUNCATE && 8163 N->getValueType(0) != MVT::i1) 8164 return SDValue(); 8165 8166 if (N->getOperand(0).getValueType() != MVT::i32 && 8167 N->getOperand(0).getValueType() != MVT::i64) 8168 return SDValue(); 8169 8170 if (N->getOpcode() == ISD::SETCC || 8171 N->getOpcode() == ISD::SELECT_CC) { 8172 // If we're looking at a comparison, then we need to make sure that the 8173 // high bits (all except for the first) don't matter the result. 8174 ISD::CondCode CC = 8175 cast<CondCodeSDNode>(N->getOperand( 8176 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 8177 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 8178 8179 if (ISD::isSignedIntSetCC(CC)) { 8180 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 8181 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 8182 return SDValue(); 8183 } else if (ISD::isUnsignedIntSetCC(CC)) { 8184 if (!DAG.MaskedValueIsZero(N->getOperand(0), 8185 APInt::getHighBitsSet(OpBits, OpBits-1)) || 8186 !DAG.MaskedValueIsZero(N->getOperand(1), 8187 APInt::getHighBitsSet(OpBits, OpBits-1))) 8188 return SDValue(); 8189 } else { 8190 // This is neither a signed nor an unsigned comparison, just make sure 8191 // that the high bits are equal. 8192 APInt Op1Zero, Op1One; 8193 APInt Op2Zero, Op2One; 8194 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 8195 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 8196 8197 // We don't really care about what is known about the first bit (if 8198 // anything), so clear it in all masks prior to comparing them. 8199 Op1Zero.clearBit(0); Op1One.clearBit(0); 8200 Op2Zero.clearBit(0); Op2One.clearBit(0); 8201 8202 if (Op1Zero != Op2Zero || Op1One != Op2One) 8203 return SDValue(); 8204 } 8205 } 8206 8207 // We now know that the higher-order bits are irrelevant, we just need to 8208 // make sure that all of the intermediate operations are bit operations, and 8209 // all inputs are extensions. 8210 if (N->getOperand(0).getOpcode() != ISD::AND && 8211 N->getOperand(0).getOpcode() != ISD::OR && 8212 N->getOperand(0).getOpcode() != ISD::XOR && 8213 N->getOperand(0).getOpcode() != ISD::SELECT && 8214 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 8215 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 8216 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 8217 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 8218 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 8219 return SDValue(); 8220 8221 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 8222 N->getOperand(1).getOpcode() != ISD::AND && 8223 N->getOperand(1).getOpcode() != ISD::OR && 8224 N->getOperand(1).getOpcode() != ISD::XOR && 8225 N->getOperand(1).getOpcode() != ISD::SELECT && 8226 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 8227 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 8228 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 8229 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 8230 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 8231 return SDValue(); 8232 8233 SmallVector<SDValue, 4> Inputs; 8234 SmallVector<SDValue, 8> BinOps, PromOps; 8235 SmallPtrSet<SDNode *, 16> Visited; 8236 8237 for (unsigned i = 0; i < 2; ++i) { 8238 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 8239 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 8240 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 8241 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 8242 isa<ConstantSDNode>(N->getOperand(i))) 8243 Inputs.push_back(N->getOperand(i)); 8244 else 8245 BinOps.push_back(N->getOperand(i)); 8246 8247 if (N->getOpcode() == ISD::TRUNCATE) 8248 break; 8249 } 8250 8251 // Visit all inputs, collect all binary operations (and, or, xor and 8252 // select) that are all fed by extensions. 8253 while (!BinOps.empty()) { 8254 SDValue BinOp = BinOps.back(); 8255 BinOps.pop_back(); 8256 8257 if (!Visited.insert(BinOp.getNode()).second) 8258 continue; 8259 8260 PromOps.push_back(BinOp); 8261 8262 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 8263 // The condition of the select is not promoted. 8264 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 8265 continue; 8266 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 8267 continue; 8268 8269 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 8270 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 8271 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 8272 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 8273 isa<ConstantSDNode>(BinOp.getOperand(i))) { 8274 Inputs.push_back(BinOp.getOperand(i)); 8275 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 8276 BinOp.getOperand(i).getOpcode() == ISD::OR || 8277 BinOp.getOperand(i).getOpcode() == ISD::XOR || 8278 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 8279 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 8280 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 8281 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 8282 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 8283 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 8284 BinOps.push_back(BinOp.getOperand(i)); 8285 } else { 8286 // We have an input that is not an extension or another binary 8287 // operation; we'll abort this transformation. 8288 return SDValue(); 8289 } 8290 } 8291 } 8292 8293 // Make sure that this is a self-contained cluster of operations (which 8294 // is not quite the same thing as saying that everything has only one 8295 // use). 8296 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 8297 if (isa<ConstantSDNode>(Inputs[i])) 8298 continue; 8299 8300 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 8301 UE = Inputs[i].getNode()->use_end(); 8302 UI != UE; ++UI) { 8303 SDNode *User = *UI; 8304 if (User != N && !Visited.count(User)) 8305 return SDValue(); 8306 8307 // Make sure that we're not going to promote the non-output-value 8308 // operand(s) or SELECT or SELECT_CC. 8309 // FIXME: Although we could sometimes handle this, and it does occur in 8310 // practice that one of the condition inputs to the select is also one of 8311 // the outputs, we currently can't deal with this. 8312 if (User->getOpcode() == ISD::SELECT) { 8313 if (User->getOperand(0) == Inputs[i]) 8314 return SDValue(); 8315 } else if (User->getOpcode() == ISD::SELECT_CC) { 8316 if (User->getOperand(0) == Inputs[i] || 8317 User->getOperand(1) == Inputs[i]) 8318 return SDValue(); 8319 } 8320 } 8321 } 8322 8323 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 8324 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 8325 UE = PromOps[i].getNode()->use_end(); 8326 UI != UE; ++UI) { 8327 SDNode *User = *UI; 8328 if (User != N && !Visited.count(User)) 8329 return SDValue(); 8330 8331 // Make sure that we're not going to promote the non-output-value 8332 // operand(s) or SELECT or SELECT_CC. 8333 // FIXME: Although we could sometimes handle this, and it does occur in 8334 // practice that one of the condition inputs to the select is also one of 8335 // the outputs, we currently can't deal with this. 8336 if (User->getOpcode() == ISD::SELECT) { 8337 if (User->getOperand(0) == PromOps[i]) 8338 return SDValue(); 8339 } else if (User->getOpcode() == ISD::SELECT_CC) { 8340 if (User->getOperand(0) == PromOps[i] || 8341 User->getOperand(1) == PromOps[i]) 8342 return SDValue(); 8343 } 8344 } 8345 } 8346 8347 // Replace all inputs with the extension operand. 8348 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 8349 // Constants may have users outside the cluster of to-be-promoted nodes, 8350 // and so we need to replace those as we do the promotions. 8351 if (isa<ConstantSDNode>(Inputs[i])) 8352 continue; 8353 else 8354 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 8355 } 8356 8357 // Replace all operations (these are all the same, but have a different 8358 // (i1) return type). DAG.getNode will validate that the types of 8359 // a binary operator match, so go through the list in reverse so that 8360 // we've likely promoted both operands first. Any intermediate truncations or 8361 // extensions disappear. 8362 while (!PromOps.empty()) { 8363 SDValue PromOp = PromOps.back(); 8364 PromOps.pop_back(); 8365 8366 if (PromOp.getOpcode() == ISD::TRUNCATE || 8367 PromOp.getOpcode() == ISD::SIGN_EXTEND || 8368 PromOp.getOpcode() == ISD::ZERO_EXTEND || 8369 PromOp.getOpcode() == ISD::ANY_EXTEND) { 8370 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 8371 PromOp.getOperand(0).getValueType() != MVT::i1) { 8372 // The operand is not yet ready (see comment below). 8373 PromOps.insert(PromOps.begin(), PromOp); 8374 continue; 8375 } 8376 8377 SDValue RepValue = PromOp.getOperand(0); 8378 if (isa<ConstantSDNode>(RepValue)) 8379 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 8380 8381 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 8382 continue; 8383 } 8384 8385 unsigned C; 8386 switch (PromOp.getOpcode()) { 8387 default: C = 0; break; 8388 case ISD::SELECT: C = 1; break; 8389 case ISD::SELECT_CC: C = 2; break; 8390 } 8391 8392 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 8393 PromOp.getOperand(C).getValueType() != MVT::i1) || 8394 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 8395 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 8396 // The to-be-promoted operands of this node have not yet been 8397 // promoted (this should be rare because we're going through the 8398 // list backward, but if one of the operands has several users in 8399 // this cluster of to-be-promoted nodes, it is possible). 8400 PromOps.insert(PromOps.begin(), PromOp); 8401 continue; 8402 } 8403 8404 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 8405 PromOp.getNode()->op_end()); 8406 8407 // If there are any constant inputs, make sure they're replaced now. 8408 for (unsigned i = 0; i < 2; ++i) 8409 if (isa<ConstantSDNode>(Ops[C+i])) 8410 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 8411 8412 DAG.ReplaceAllUsesOfValueWith(PromOp, 8413 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 8414 } 8415 8416 // Now we're left with the initial truncation itself. 8417 if (N->getOpcode() == ISD::TRUNCATE) 8418 return N->getOperand(0); 8419 8420 // Otherwise, this is a comparison. The operands to be compared have just 8421 // changed type (to i1), but everything else is the same. 8422 return SDValue(N, 0); 8423 } 8424 8425 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 8426 DAGCombinerInfo &DCI) const { 8427 SelectionDAG &DAG = DCI.DAG; 8428 SDLoc dl(N); 8429 8430 // If we're tracking CR bits, we need to be careful that we don't have: 8431 // zext(binary-ops(trunc(x), trunc(y))) 8432 // or 8433 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 8434 // such that we're unnecessarily moving things into CR bits that can more 8435 // efficiently stay in GPRs. Note that if we're not certain that the high 8436 // bits are set as required by the final extension, we still may need to do 8437 // some masking to get the proper behavior. 8438 8439 // This same functionality is important on PPC64 when dealing with 8440 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 8441 // the return values of functions. Because it is so similar, it is handled 8442 // here as well. 8443 8444 if (N->getValueType(0) != MVT::i32 && 8445 N->getValueType(0) != MVT::i64) 8446 return SDValue(); 8447 8448 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 8449 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 8450 return SDValue(); 8451 8452 if (N->getOperand(0).getOpcode() != ISD::AND && 8453 N->getOperand(0).getOpcode() != ISD::OR && 8454 N->getOperand(0).getOpcode() != ISD::XOR && 8455 N->getOperand(0).getOpcode() != ISD::SELECT && 8456 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 8457 return SDValue(); 8458 8459 SmallVector<SDValue, 4> Inputs; 8460 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 8461 SmallPtrSet<SDNode *, 16> Visited; 8462 8463 // Visit all inputs, collect all binary operations (and, or, xor and 8464 // select) that are all fed by truncations. 8465 while (!BinOps.empty()) { 8466 SDValue BinOp = BinOps.back(); 8467 BinOps.pop_back(); 8468 8469 if (!Visited.insert(BinOp.getNode()).second) 8470 continue; 8471 8472 PromOps.push_back(BinOp); 8473 8474 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 8475 // The condition of the select is not promoted. 8476 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 8477 continue; 8478 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 8479 continue; 8480 8481 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 8482 isa<ConstantSDNode>(BinOp.getOperand(i))) { 8483 Inputs.push_back(BinOp.getOperand(i)); 8484 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 8485 BinOp.getOperand(i).getOpcode() == ISD::OR || 8486 BinOp.getOperand(i).getOpcode() == ISD::XOR || 8487 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 8488 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 8489 BinOps.push_back(BinOp.getOperand(i)); 8490 } else { 8491 // We have an input that is not a truncation or another binary 8492 // operation; we'll abort this transformation. 8493 return SDValue(); 8494 } 8495 } 8496 } 8497 8498 // The operands of a select that must be truncated when the select is 8499 // promoted because the operand is actually part of the to-be-promoted set. 8500 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 8501 8502 // Make sure that this is a self-contained cluster of operations (which 8503 // is not quite the same thing as saying that everything has only one 8504 // use). 8505 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 8506 if (isa<ConstantSDNode>(Inputs[i])) 8507 continue; 8508 8509 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 8510 UE = Inputs[i].getNode()->use_end(); 8511 UI != UE; ++UI) { 8512 SDNode *User = *UI; 8513 if (User != N && !Visited.count(User)) 8514 return SDValue(); 8515 8516 // If we're going to promote the non-output-value operand(s) or SELECT or 8517 // SELECT_CC, record them for truncation. 8518 if (User->getOpcode() == ISD::SELECT) { 8519 if (User->getOperand(0) == Inputs[i]) 8520 SelectTruncOp[0].insert(std::make_pair(User, 8521 User->getOperand(0).getValueType())); 8522 } else if (User->getOpcode() == ISD::SELECT_CC) { 8523 if (User->getOperand(0) == Inputs[i]) 8524 SelectTruncOp[0].insert(std::make_pair(User, 8525 User->getOperand(0).getValueType())); 8526 if (User->getOperand(1) == Inputs[i]) 8527 SelectTruncOp[1].insert(std::make_pair(User, 8528 User->getOperand(1).getValueType())); 8529 } 8530 } 8531 } 8532 8533 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 8534 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 8535 UE = PromOps[i].getNode()->use_end(); 8536 UI != UE; ++UI) { 8537 SDNode *User = *UI; 8538 if (User != N && !Visited.count(User)) 8539 return SDValue(); 8540 8541 // If we're going to promote the non-output-value operand(s) or SELECT or 8542 // SELECT_CC, record them for truncation. 8543 if (User->getOpcode() == ISD::SELECT) { 8544 if (User->getOperand(0) == PromOps[i]) 8545 SelectTruncOp[0].insert(std::make_pair(User, 8546 User->getOperand(0).getValueType())); 8547 } else if (User->getOpcode() == ISD::SELECT_CC) { 8548 if (User->getOperand(0) == PromOps[i]) 8549 SelectTruncOp[0].insert(std::make_pair(User, 8550 User->getOperand(0).getValueType())); 8551 if (User->getOperand(1) == PromOps[i]) 8552 SelectTruncOp[1].insert(std::make_pair(User, 8553 User->getOperand(1).getValueType())); 8554 } 8555 } 8556 } 8557 8558 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 8559 bool ReallyNeedsExt = false; 8560 if (N->getOpcode() != ISD::ANY_EXTEND) { 8561 // If all of the inputs are not already sign/zero extended, then 8562 // we'll still need to do that at the end. 8563 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 8564 if (isa<ConstantSDNode>(Inputs[i])) 8565 continue; 8566 8567 unsigned OpBits = 8568 Inputs[i].getOperand(0).getValueSizeInBits(); 8569 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 8570 8571 if ((N->getOpcode() == ISD::ZERO_EXTEND && 8572 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 8573 APInt::getHighBitsSet(OpBits, 8574 OpBits-PromBits))) || 8575 (N->getOpcode() == ISD::SIGN_EXTEND && 8576 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 8577 (OpBits-(PromBits-1)))) { 8578 ReallyNeedsExt = true; 8579 break; 8580 } 8581 } 8582 } 8583 8584 // Replace all inputs, either with the truncation operand, or a 8585 // truncation or extension to the final output type. 8586 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 8587 // Constant inputs need to be replaced with the to-be-promoted nodes that 8588 // use them because they might have users outside of the cluster of 8589 // promoted nodes. 8590 if (isa<ConstantSDNode>(Inputs[i])) 8591 continue; 8592 8593 SDValue InSrc = Inputs[i].getOperand(0); 8594 if (Inputs[i].getValueType() == N->getValueType(0)) 8595 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 8596 else if (N->getOpcode() == ISD::SIGN_EXTEND) 8597 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 8598 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 8599 else if (N->getOpcode() == ISD::ZERO_EXTEND) 8600 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 8601 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 8602 else 8603 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 8604 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 8605 } 8606 8607 // Replace all operations (these are all the same, but have a different 8608 // (promoted) return type). DAG.getNode will validate that the types of 8609 // a binary operator match, so go through the list in reverse so that 8610 // we've likely promoted both operands first. 8611 while (!PromOps.empty()) { 8612 SDValue PromOp = PromOps.back(); 8613 PromOps.pop_back(); 8614 8615 unsigned C; 8616 switch (PromOp.getOpcode()) { 8617 default: C = 0; break; 8618 case ISD::SELECT: C = 1; break; 8619 case ISD::SELECT_CC: C = 2; break; 8620 } 8621 8622 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 8623 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 8624 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 8625 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 8626 // The to-be-promoted operands of this node have not yet been 8627 // promoted (this should be rare because we're going through the 8628 // list backward, but if one of the operands has several users in 8629 // this cluster of to-be-promoted nodes, it is possible). 8630 PromOps.insert(PromOps.begin(), PromOp); 8631 continue; 8632 } 8633 8634 // For SELECT and SELECT_CC nodes, we do a similar check for any 8635 // to-be-promoted comparison inputs. 8636 if (PromOp.getOpcode() == ISD::SELECT || 8637 PromOp.getOpcode() == ISD::SELECT_CC) { 8638 if ((SelectTruncOp[0].count(PromOp.getNode()) && 8639 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 8640 (SelectTruncOp[1].count(PromOp.getNode()) && 8641 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 8642 PromOps.insert(PromOps.begin(), PromOp); 8643 continue; 8644 } 8645 } 8646 8647 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 8648 PromOp.getNode()->op_end()); 8649 8650 // If this node has constant inputs, then they'll need to be promoted here. 8651 for (unsigned i = 0; i < 2; ++i) { 8652 if (!isa<ConstantSDNode>(Ops[C+i])) 8653 continue; 8654 if (Ops[C+i].getValueType() == N->getValueType(0)) 8655 continue; 8656 8657 if (N->getOpcode() == ISD::SIGN_EXTEND) 8658 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 8659 else if (N->getOpcode() == ISD::ZERO_EXTEND) 8660 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 8661 else 8662 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 8663 } 8664 8665 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 8666 // truncate them again to the original value type. 8667 if (PromOp.getOpcode() == ISD::SELECT || 8668 PromOp.getOpcode() == ISD::SELECT_CC) { 8669 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 8670 if (SI0 != SelectTruncOp[0].end()) 8671 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 8672 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 8673 if (SI1 != SelectTruncOp[1].end()) 8674 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 8675 } 8676 8677 DAG.ReplaceAllUsesOfValueWith(PromOp, 8678 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 8679 } 8680 8681 // Now we're left with the initial extension itself. 8682 if (!ReallyNeedsExt) 8683 return N->getOperand(0); 8684 8685 // To zero extend, just mask off everything except for the first bit (in the 8686 // i1 case). 8687 if (N->getOpcode() == ISD::ZERO_EXTEND) 8688 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 8689 DAG.getConstant(APInt::getLowBitsSet( 8690 N->getValueSizeInBits(0), PromBits), 8691 N->getValueType(0))); 8692 8693 assert(N->getOpcode() == ISD::SIGN_EXTEND && 8694 "Invalid extension type"); 8695 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0)); 8696 SDValue ShiftCst = 8697 DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy); 8698 return DAG.getNode(ISD::SRA, dl, N->getValueType(0), 8699 DAG.getNode(ISD::SHL, dl, N->getValueType(0), 8700 N->getOperand(0), ShiftCst), ShiftCst); 8701 } 8702 8703 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 8704 DAGCombinerInfo &DCI) const { 8705 assert((N->getOpcode() == ISD::SINT_TO_FP || 8706 N->getOpcode() == ISD::UINT_TO_FP) && 8707 "Need an int -> FP conversion node here"); 8708 8709 if (!Subtarget.has64BitSupport()) 8710 return SDValue(); 8711 8712 SelectionDAG &DAG = DCI.DAG; 8713 SDLoc dl(N); 8714 SDValue Op(N, 0); 8715 8716 // Don't handle ppc_fp128 here or i1 conversions. 8717 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8718 return SDValue(); 8719 if (Op.getOperand(0).getValueType() == MVT::i1) 8720 return SDValue(); 8721 8722 // For i32 intermediate values, unfortunately, the conversion functions 8723 // leave the upper 32 bits of the value are undefined. Within the set of 8724 // scalar instructions, we have no method for zero- or sign-extending the 8725 // value. Thus, we cannot handle i32 intermediate values here. 8726 if (Op.getOperand(0).getValueType() == MVT::i32) 8727 return SDValue(); 8728 8729 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8730 "UINT_TO_FP is supported only with FPCVT"); 8731 8732 // If we have FCFIDS, then use it when converting to single-precision. 8733 // Otherwise, convert to double-precision and then round. 8734 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8735 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8736 : PPCISD::FCFIDS) 8737 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8738 : PPCISD::FCFID); 8739 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8740 ? MVT::f32 8741 : MVT::f64; 8742 8743 // If we're converting from a float, to an int, and back to a float again, 8744 // then we don't need the store/load pair at all. 8745 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 8746 Subtarget.hasFPCVT()) || 8747 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 8748 SDValue Src = Op.getOperand(0).getOperand(0); 8749 if (Src.getValueType() == MVT::f32) { 8750 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8751 DCI.AddToWorklist(Src.getNode()); 8752 } 8753 8754 unsigned FCTOp = 8755 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8756 PPCISD::FCTIDUZ; 8757 8758 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 8759 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 8760 8761 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8762 FP = DAG.getNode(ISD::FP_ROUND, dl, 8763 MVT::f32, FP, DAG.getIntPtrConstant(0)); 8764 DCI.AddToWorklist(FP.getNode()); 8765 } 8766 8767 return FP; 8768 } 8769 8770 return SDValue(); 8771 } 8772 8773 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 8774 // builtins) into loads with swaps. 8775 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 8776 DAGCombinerInfo &DCI) const { 8777 SelectionDAG &DAG = DCI.DAG; 8778 SDLoc dl(N); 8779 SDValue Chain; 8780 SDValue Base; 8781 MachineMemOperand *MMO; 8782 8783 switch (N->getOpcode()) { 8784 default: 8785 llvm_unreachable("Unexpected opcode for little endian VSX load"); 8786 case ISD::LOAD: { 8787 LoadSDNode *LD = cast<LoadSDNode>(N); 8788 Chain = LD->getChain(); 8789 Base = LD->getBasePtr(); 8790 MMO = LD->getMemOperand(); 8791 // If the MMO suggests this isn't a load of a full vector, leave 8792 // things alone. For a built-in, we have to make the change for 8793 // correctness, so if there is a size problem that will be a bug. 8794 if (MMO->getSize() < 16) 8795 return SDValue(); 8796 break; 8797 } 8798 case ISD::INTRINSIC_W_CHAIN: { 8799 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 8800 Chain = Intrin->getChain(); 8801 Base = Intrin->getBasePtr(); 8802 MMO = Intrin->getMemOperand(); 8803 break; 8804 } 8805 } 8806 8807 MVT VecTy = N->getValueType(0).getSimpleVT(); 8808 SDValue LoadOps[] = { Chain, Base }; 8809 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 8810 DAG.getVTList(VecTy, MVT::Other), 8811 LoadOps, VecTy, MMO); 8812 DCI.AddToWorklist(Load.getNode()); 8813 Chain = Load.getValue(1); 8814 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 8815 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 8816 DCI.AddToWorklist(Swap.getNode()); 8817 return Swap; 8818 } 8819 8820 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 8821 // builtins) into stores with swaps. 8822 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 8823 DAGCombinerInfo &DCI) const { 8824 SelectionDAG &DAG = DCI.DAG; 8825 SDLoc dl(N); 8826 SDValue Chain; 8827 SDValue Base; 8828 unsigned SrcOpnd; 8829 MachineMemOperand *MMO; 8830 8831 switch (N->getOpcode()) { 8832 default: 8833 llvm_unreachable("Unexpected opcode for little endian VSX store"); 8834 case ISD::STORE: { 8835 StoreSDNode *ST = cast<StoreSDNode>(N); 8836 Chain = ST->getChain(); 8837 Base = ST->getBasePtr(); 8838 MMO = ST->getMemOperand(); 8839 SrcOpnd = 1; 8840 // If the MMO suggests this isn't a store of a full vector, leave 8841 // things alone. For a built-in, we have to make the change for 8842 // correctness, so if there is a size problem that will be a bug. 8843 if (MMO->getSize() < 16) 8844 return SDValue(); 8845 break; 8846 } 8847 case ISD::INTRINSIC_VOID: { 8848 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 8849 Chain = Intrin->getChain(); 8850 // Intrin->getBasePtr() oddly does not get what we want. 8851 Base = Intrin->getOperand(3); 8852 MMO = Intrin->getMemOperand(); 8853 SrcOpnd = 2; 8854 break; 8855 } 8856 } 8857 8858 SDValue Src = N->getOperand(SrcOpnd); 8859 MVT VecTy = Src.getValueType().getSimpleVT(); 8860 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 8861 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 8862 DCI.AddToWorklist(Swap.getNode()); 8863 Chain = Swap.getValue(1); 8864 SDValue StoreOps[] = { Chain, Swap, Base }; 8865 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 8866 DAG.getVTList(MVT::Other), 8867 StoreOps, VecTy, MMO); 8868 DCI.AddToWorklist(Store.getNode()); 8869 return Store; 8870 } 8871 8872 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 8873 DAGCombinerInfo &DCI) const { 8874 SelectionDAG &DAG = DCI.DAG; 8875 SDLoc dl(N); 8876 switch (N->getOpcode()) { 8877 default: break; 8878 case PPCISD::SHL: 8879 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 8880 if (C->isNullValue()) // 0 << V -> 0. 8881 return N->getOperand(0); 8882 } 8883 break; 8884 case PPCISD::SRL: 8885 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 8886 if (C->isNullValue()) // 0 >>u V -> 0. 8887 return N->getOperand(0); 8888 } 8889 break; 8890 case PPCISD::SRA: 8891 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 8892 if (C->isNullValue() || // 0 >>s V -> 0. 8893 C->isAllOnesValue()) // -1 >>s V -> -1. 8894 return N->getOperand(0); 8895 } 8896 break; 8897 case ISD::SIGN_EXTEND: 8898 case ISD::ZERO_EXTEND: 8899 case ISD::ANY_EXTEND: 8900 return DAGCombineExtBoolTrunc(N, DCI); 8901 case ISD::TRUNCATE: 8902 case ISD::SETCC: 8903 case ISD::SELECT_CC: 8904 return DAGCombineTruncBoolExt(N, DCI); 8905 case ISD::SINT_TO_FP: 8906 case ISD::UINT_TO_FP: 8907 return combineFPToIntToFP(N, DCI); 8908 case ISD::STORE: { 8909 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 8910 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 8911 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 8912 N->getOperand(1).getValueType() == MVT::i32 && 8913 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 8914 SDValue Val = N->getOperand(1).getOperand(0); 8915 if (Val.getValueType() == MVT::f32) { 8916 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 8917 DCI.AddToWorklist(Val.getNode()); 8918 } 8919 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 8920 DCI.AddToWorklist(Val.getNode()); 8921 8922 SDValue Ops[] = { 8923 N->getOperand(0), Val, N->getOperand(2), 8924 DAG.getValueType(N->getOperand(1).getValueType()) 8925 }; 8926 8927 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8928 DAG.getVTList(MVT::Other), Ops, 8929 cast<StoreSDNode>(N)->getMemoryVT(), 8930 cast<StoreSDNode>(N)->getMemOperand()); 8931 DCI.AddToWorklist(Val.getNode()); 8932 return Val; 8933 } 8934 8935 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 8936 if (cast<StoreSDNode>(N)->isUnindexed() && 8937 N->getOperand(1).getOpcode() == ISD::BSWAP && 8938 N->getOperand(1).getNode()->hasOneUse() && 8939 (N->getOperand(1).getValueType() == MVT::i32 || 8940 N->getOperand(1).getValueType() == MVT::i16 || 8941 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 8942 N->getOperand(1).getValueType() == MVT::i64))) { 8943 SDValue BSwapOp = N->getOperand(1).getOperand(0); 8944 // Do an any-extend to 32-bits if this is a half-word input. 8945 if (BSwapOp.getValueType() == MVT::i16) 8946 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 8947 8948 SDValue Ops[] = { 8949 N->getOperand(0), BSwapOp, N->getOperand(2), 8950 DAG.getValueType(N->getOperand(1).getValueType()) 8951 }; 8952 return 8953 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 8954 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 8955 cast<StoreSDNode>(N)->getMemOperand()); 8956 } 8957 8958 // For little endian, VSX stores require generating xxswapd/lxvd2x. 8959 EVT VT = N->getOperand(1).getValueType(); 8960 if (VT.isSimple()) { 8961 MVT StoreVT = VT.getSimpleVT(); 8962 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 8963 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 8964 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 8965 return expandVSXStoreForLE(N, DCI); 8966 } 8967 break; 8968 } 8969 case ISD::LOAD: { 8970 LoadSDNode *LD = cast<LoadSDNode>(N); 8971 EVT VT = LD->getValueType(0); 8972 8973 // For little endian, VSX loads require generating lxvd2x/xxswapd. 8974 if (VT.isSimple()) { 8975 MVT LoadVT = VT.getSimpleVT(); 8976 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 8977 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 8978 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 8979 return expandVSXLoadForLE(N, DCI); 8980 } 8981 8982 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 8983 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty); 8984 if (ISD::isNON_EXTLoad(N) && VT.isVector() && Subtarget.hasAltivec() && 8985 // P8 and later hardware should just use LOAD. 8986 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 8987 VT == MVT::v4i32 || VT == MVT::v4f32) && 8988 LD->getAlignment() < ABIAlignment) { 8989 // This is a type-legal unaligned Altivec load. 8990 SDValue Chain = LD->getChain(); 8991 SDValue Ptr = LD->getBasePtr(); 8992 bool isLittleEndian = Subtarget.isLittleEndian(); 8993 8994 // This implements the loading of unaligned vectors as described in 8995 // the venerable Apple Velocity Engine overview. Specifically: 8996 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 8997 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 8998 // 8999 // The general idea is to expand a sequence of one or more unaligned 9000 // loads into an alignment-based permutation-control instruction (lvsl 9001 // or lvsr), a series of regular vector loads (which always truncate 9002 // their input address to an aligned address), and a series of 9003 // permutations. The results of these permutations are the requested 9004 // loaded values. The trick is that the last "extra" load is not taken 9005 // from the address you might suspect (sizeof(vector) bytes after the 9006 // last requested load), but rather sizeof(vector) - 1 bytes after the 9007 // last requested vector. The point of this is to avoid a page fault if 9008 // the base address happened to be aligned. This works because if the 9009 // base address is aligned, then adding less than a full vector length 9010 // will cause the last vector in the sequence to be (re)loaded. 9011 // Otherwise, the next vector will be fetched as you might suspect was 9012 // necessary. 9013 9014 // We might be able to reuse the permutation generation from 9015 // a different base address offset from this one by an aligned amount. 9016 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 9017 // optimization later. 9018 Intrinsic::ID Intr = (isLittleEndian ? 9019 Intrinsic::ppc_altivec_lvsr : 9020 Intrinsic::ppc_altivec_lvsl); 9021 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8); 9022 9023 // Create the new MMO for the new base load. It is like the original MMO, 9024 // but represents an area in memory almost twice the vector size centered 9025 // on the original address. If the address is unaligned, we might start 9026 // reading up to (sizeof(vector)-1) bytes below the address of the 9027 // original unaligned load. 9028 MachineFunction &MF = DAG.getMachineFunction(); 9029 MachineMemOperand *BaseMMO = 9030 MF.getMachineMemOperand(LD->getMemOperand(), 9031 -LD->getMemoryVT().getStoreSize()+1, 9032 2*LD->getMemoryVT().getStoreSize()-1); 9033 9034 // Create the new base load. 9035 SDValue LDXIntID = DAG.getTargetConstant(Intrinsic::ppc_altivec_lvx, 9036 getPointerTy()); 9037 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 9038 SDValue BaseLoad = 9039 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 9040 DAG.getVTList(MVT::v4i32, MVT::Other), 9041 BaseLoadOps, MVT::v4i32, BaseMMO); 9042 9043 // Note that the value of IncOffset (which is provided to the next 9044 // load's pointer info offset value, and thus used to calculate the 9045 // alignment), and the value of IncValue (which is actually used to 9046 // increment the pointer value) are different! This is because we 9047 // require the next load to appear to be aligned, even though it 9048 // is actually offset from the base pointer by a lesser amount. 9049 int IncOffset = VT.getSizeInBits() / 8; 9050 int IncValue = IncOffset; 9051 9052 // Walk (both up and down) the chain looking for another load at the real 9053 // (aligned) offset (the alignment of the other load does not matter in 9054 // this case). If found, then do not use the offset reduction trick, as 9055 // that will prevent the loads from being later combined (as they would 9056 // otherwise be duplicates). 9057 if (!findConsecutiveLoad(LD, DAG)) 9058 --IncValue; 9059 9060 SDValue Increment = DAG.getConstant(IncValue, getPointerTy()); 9061 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 9062 9063 MachineMemOperand *ExtraMMO = 9064 MF.getMachineMemOperand(LD->getMemOperand(), 9065 1, 2*LD->getMemoryVT().getStoreSize()-1); 9066 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 9067 SDValue ExtraLoad = 9068 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 9069 DAG.getVTList(MVT::v4i32, MVT::Other), 9070 ExtraLoadOps, MVT::v4i32, ExtraMMO); 9071 9072 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 9073 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 9074 9075 // Because vperm has a big-endian bias, we must reverse the order 9076 // of the input vectors and complement the permute control vector 9077 // when generating little endian code. We have already handled the 9078 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 9079 // and ExtraLoad here. 9080 SDValue Perm; 9081 if (isLittleEndian) 9082 Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, 9083 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 9084 else 9085 Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, 9086 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 9087 9088 if (VT != MVT::v4i32) 9089 Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm); 9090 9091 // The output of the permutation is our loaded result, the TokenFactor is 9092 // our new chain. 9093 DCI.CombineTo(N, Perm, TF); 9094 return SDValue(N, 0); 9095 } 9096 } 9097 break; 9098 case ISD::INTRINSIC_WO_CHAIN: { 9099 bool isLittleEndian = Subtarget.isLittleEndian(); 9100 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 9101 : Intrinsic::ppc_altivec_lvsl); 9102 if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr && 9103 N->getOperand(1)->getOpcode() == ISD::ADD) { 9104 SDValue Add = N->getOperand(1); 9105 9106 if (DAG.MaskedValueIsZero( 9107 Add->getOperand(1), 9108 APInt::getAllOnesValue(4 /* 16 byte alignment */) 9109 .zext( 9110 Add.getValueType().getScalarType().getSizeInBits()))) { 9111 SDNode *BasePtr = Add->getOperand(0).getNode(); 9112 for (SDNode::use_iterator UI = BasePtr->use_begin(), 9113 UE = BasePtr->use_end(); 9114 UI != UE; ++UI) { 9115 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 9116 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 9117 Intr) { 9118 // We've found another LVSL/LVSR, and this address is an aligned 9119 // multiple of that one. The results will be the same, so use the 9120 // one we've just found instead. 9121 9122 return SDValue(*UI, 0); 9123 } 9124 } 9125 } 9126 } 9127 } 9128 9129 break; 9130 case ISD::INTRINSIC_W_CHAIN: { 9131 // For little endian, VSX loads require generating lxvd2x/xxswapd. 9132 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 9133 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9134 default: 9135 break; 9136 case Intrinsic::ppc_vsx_lxvw4x: 9137 case Intrinsic::ppc_vsx_lxvd2x: 9138 return expandVSXLoadForLE(N, DCI); 9139 } 9140 } 9141 break; 9142 } 9143 case ISD::INTRINSIC_VOID: { 9144 // For little endian, VSX stores require generating xxswapd/stxvd2x. 9145 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 9146 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9147 default: 9148 break; 9149 case Intrinsic::ppc_vsx_stxvw4x: 9150 case Intrinsic::ppc_vsx_stxvd2x: 9151 return expandVSXStoreForLE(N, DCI); 9152 } 9153 } 9154 break; 9155 } 9156 case ISD::BSWAP: 9157 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 9158 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 9159 N->getOperand(0).hasOneUse() && 9160 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 9161 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 9162 N->getValueType(0) == MVT::i64))) { 9163 SDValue Load = N->getOperand(0); 9164 LoadSDNode *LD = cast<LoadSDNode>(Load); 9165 // Create the byte-swapping load. 9166 SDValue Ops[] = { 9167 LD->getChain(), // Chain 9168 LD->getBasePtr(), // Ptr 9169 DAG.getValueType(N->getValueType(0)) // VT 9170 }; 9171 SDValue BSLoad = 9172 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 9173 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 9174 MVT::i64 : MVT::i32, MVT::Other), 9175 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9176 9177 // If this is an i16 load, insert the truncate. 9178 SDValue ResVal = BSLoad; 9179 if (N->getValueType(0) == MVT::i16) 9180 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 9181 9182 // First, combine the bswap away. This makes the value produced by the 9183 // load dead. 9184 DCI.CombineTo(N, ResVal); 9185 9186 // Next, combine the load away, we give it a bogus result value but a real 9187 // chain result. The result value is dead because the bswap is dead. 9188 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 9189 9190 // Return N so it doesn't get rechecked! 9191 return SDValue(N, 0); 9192 } 9193 9194 break; 9195 case PPCISD::VCMP: { 9196 // If a VCMPo node already exists with exactly the same operands as this 9197 // node, use its result instead of this node (VCMPo computes both a CR6 and 9198 // a normal output). 9199 // 9200 if (!N->getOperand(0).hasOneUse() && 9201 !N->getOperand(1).hasOneUse() && 9202 !N->getOperand(2).hasOneUse()) { 9203 9204 // Scan all of the users of the LHS, looking for VCMPo's that match. 9205 SDNode *VCMPoNode = nullptr; 9206 9207 SDNode *LHSN = N->getOperand(0).getNode(); 9208 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 9209 UI != E; ++UI) 9210 if (UI->getOpcode() == PPCISD::VCMPo && 9211 UI->getOperand(1) == N->getOperand(1) && 9212 UI->getOperand(2) == N->getOperand(2) && 9213 UI->getOperand(0) == N->getOperand(0)) { 9214 VCMPoNode = *UI; 9215 break; 9216 } 9217 9218 // If there is no VCMPo node, or if the flag value has a single use, don't 9219 // transform this. 9220 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 9221 break; 9222 9223 // Look at the (necessarily single) use of the flag value. If it has a 9224 // chain, this transformation is more complex. Note that multiple things 9225 // could use the value result, which we should ignore. 9226 SDNode *FlagUser = nullptr; 9227 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 9228 FlagUser == nullptr; ++UI) { 9229 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 9230 SDNode *User = *UI; 9231 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 9232 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 9233 FlagUser = User; 9234 break; 9235 } 9236 } 9237 } 9238 9239 // If the user is a MFOCRF instruction, we know this is safe. 9240 // Otherwise we give up for right now. 9241 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 9242 return SDValue(VCMPoNode, 0); 9243 } 9244 break; 9245 } 9246 case ISD::BRCOND: { 9247 SDValue Cond = N->getOperand(1); 9248 SDValue Target = N->getOperand(2); 9249 9250 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 9251 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 9252 Intrinsic::ppc_is_decremented_ctr_nonzero) { 9253 9254 // We now need to make the intrinsic dead (it cannot be instruction 9255 // selected). 9256 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 9257 assert(Cond.getNode()->hasOneUse() && 9258 "Counter decrement has more than one use"); 9259 9260 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 9261 N->getOperand(0), Target); 9262 } 9263 } 9264 break; 9265 case ISD::BR_CC: { 9266 // If this is a branch on an altivec predicate comparison, lower this so 9267 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 9268 // lowering is done pre-legalize, because the legalizer lowers the predicate 9269 // compare down to code that is difficult to reassemble. 9270 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 9271 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 9272 9273 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 9274 // value. If so, pass-through the AND to get to the intrinsic. 9275 if (LHS.getOpcode() == ISD::AND && 9276 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 9277 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 9278 Intrinsic::ppc_is_decremented_ctr_nonzero && 9279 isa<ConstantSDNode>(LHS.getOperand(1)) && 9280 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 9281 isZero()) 9282 LHS = LHS.getOperand(0); 9283 9284 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 9285 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 9286 Intrinsic::ppc_is_decremented_ctr_nonzero && 9287 isa<ConstantSDNode>(RHS)) { 9288 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 9289 "Counter decrement comparison is not EQ or NE"); 9290 9291 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 9292 bool isBDNZ = (CC == ISD::SETEQ && Val) || 9293 (CC == ISD::SETNE && !Val); 9294 9295 // We now need to make the intrinsic dead (it cannot be instruction 9296 // selected). 9297 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 9298 assert(LHS.getNode()->hasOneUse() && 9299 "Counter decrement has more than one use"); 9300 9301 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 9302 N->getOperand(0), N->getOperand(4)); 9303 } 9304 9305 int CompareOpc; 9306 bool isDot; 9307 9308 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 9309 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 9310 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 9311 assert(isDot && "Can't compare against a vector result!"); 9312 9313 // If this is a comparison against something other than 0/1, then we know 9314 // that the condition is never/always true. 9315 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 9316 if (Val != 0 && Val != 1) { 9317 if (CC == ISD::SETEQ) // Cond never true, remove branch. 9318 return N->getOperand(0); 9319 // Always !=, turn it into an unconditional branch. 9320 return DAG.getNode(ISD::BR, dl, MVT::Other, 9321 N->getOperand(0), N->getOperand(4)); 9322 } 9323 9324 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 9325 9326 // Create the PPCISD altivec 'dot' comparison node. 9327 SDValue Ops[] = { 9328 LHS.getOperand(2), // LHS of compare 9329 LHS.getOperand(3), // RHS of compare 9330 DAG.getConstant(CompareOpc, MVT::i32) 9331 }; 9332 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 9333 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9334 9335 // Unpack the result based on how the target uses it. 9336 PPC::Predicate CompOpc; 9337 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 9338 default: // Can't happen, don't crash on invalid number though. 9339 case 0: // Branch on the value of the EQ bit of CR6. 9340 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 9341 break; 9342 case 1: // Branch on the inverted value of the EQ bit of CR6. 9343 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 9344 break; 9345 case 2: // Branch on the value of the LT bit of CR6. 9346 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 9347 break; 9348 case 3: // Branch on the inverted value of the LT bit of CR6. 9349 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 9350 break; 9351 } 9352 9353 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 9354 DAG.getConstant(CompOpc, MVT::i32), 9355 DAG.getRegister(PPC::CR6, MVT::i32), 9356 N->getOperand(4), CompNode.getValue(1)); 9357 } 9358 break; 9359 } 9360 } 9361 9362 return SDValue(); 9363 } 9364 9365 SDValue 9366 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 9367 SelectionDAG &DAG, 9368 std::vector<SDNode *> *Created) const { 9369 // fold (sdiv X, pow2) 9370 EVT VT = N->getValueType(0); 9371 if (VT == MVT::i64 && !Subtarget.isPPC64()) 9372 return SDValue(); 9373 if ((VT != MVT::i32 && VT != MVT::i64) || 9374 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 9375 return SDValue(); 9376 9377 SDLoc DL(N); 9378 SDValue N0 = N->getOperand(0); 9379 9380 bool IsNegPow2 = (-Divisor).isPowerOf2(); 9381 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 9382 SDValue ShiftAmt = DAG.getConstant(Lg2, VT); 9383 9384 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 9385 if (Created) 9386 Created->push_back(Op.getNode()); 9387 9388 if (IsNegPow2) { 9389 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), Op); 9390 if (Created) 9391 Created->push_back(Op.getNode()); 9392 } 9393 9394 return Op; 9395 } 9396 9397 //===----------------------------------------------------------------------===// 9398 // Inline Assembly Support 9399 //===----------------------------------------------------------------------===// 9400 9401 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9402 APInt &KnownZero, 9403 APInt &KnownOne, 9404 const SelectionDAG &DAG, 9405 unsigned Depth) const { 9406 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 9407 switch (Op.getOpcode()) { 9408 default: break; 9409 case PPCISD::LBRX: { 9410 // lhbrx is known to have the top bits cleared out. 9411 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 9412 KnownZero = 0xFFFF0000; 9413 break; 9414 } 9415 case ISD::INTRINSIC_WO_CHAIN: { 9416 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 9417 default: break; 9418 case Intrinsic::ppc_altivec_vcmpbfp_p: 9419 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9420 case Intrinsic::ppc_altivec_vcmpequb_p: 9421 case Intrinsic::ppc_altivec_vcmpequh_p: 9422 case Intrinsic::ppc_altivec_vcmpequw_p: 9423 case Intrinsic::ppc_altivec_vcmpgefp_p: 9424 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9425 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9426 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9427 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9428 case Intrinsic::ppc_altivec_vcmpgtub_p: 9429 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9430 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9431 KnownZero = ~1U; // All bits but the low one are known to be zero. 9432 break; 9433 } 9434 } 9435 } 9436 } 9437 9438 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 9439 switch (Subtarget.getDarwinDirective()) { 9440 default: break; 9441 case PPC::DIR_970: 9442 case PPC::DIR_PWR4: 9443 case PPC::DIR_PWR5: 9444 case PPC::DIR_PWR5X: 9445 case PPC::DIR_PWR6: 9446 case PPC::DIR_PWR6X: 9447 case PPC::DIR_PWR7: 9448 case PPC::DIR_PWR8: { 9449 if (!ML) 9450 break; 9451 9452 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 9453 9454 // For small loops (between 5 and 8 instructions), align to a 32-byte 9455 // boundary so that the entire loop fits in one instruction-cache line. 9456 uint64_t LoopSize = 0; 9457 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 9458 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 9459 LoopSize += TII->GetInstSizeInBytes(J); 9460 9461 if (LoopSize > 16 && LoopSize <= 32) 9462 return 5; 9463 9464 break; 9465 } 9466 } 9467 9468 return TargetLowering::getPrefLoopAlignment(ML); 9469 } 9470 9471 /// getConstraintType - Given a constraint, return the type of 9472 /// constraint it is for this target. 9473 PPCTargetLowering::ConstraintType 9474 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 9475 if (Constraint.size() == 1) { 9476 switch (Constraint[0]) { 9477 default: break; 9478 case 'b': 9479 case 'r': 9480 case 'f': 9481 case 'v': 9482 case 'y': 9483 return C_RegisterClass; 9484 case 'Z': 9485 // FIXME: While Z does indicate a memory constraint, it specifically 9486 // indicates an r+r address (used in conjunction with the 'y' modifier 9487 // in the replacement string). Currently, we're forcing the base 9488 // register to be r0 in the asm printer (which is interpreted as zero) 9489 // and forming the complete address in the second register. This is 9490 // suboptimal. 9491 return C_Memory; 9492 } 9493 } else if (Constraint == "wc") { // individual CR bits. 9494 return C_RegisterClass; 9495 } else if (Constraint == "wa" || Constraint == "wd" || 9496 Constraint == "wf" || Constraint == "ws") { 9497 return C_RegisterClass; // VSX registers. 9498 } 9499 return TargetLowering::getConstraintType(Constraint); 9500 } 9501 9502 /// Examine constraint type and operand type and determine a weight value. 9503 /// This object must already have been set up with the operand type 9504 /// and the current alternative constraint selected. 9505 TargetLowering::ConstraintWeight 9506 PPCTargetLowering::getSingleConstraintMatchWeight( 9507 AsmOperandInfo &info, const char *constraint) const { 9508 ConstraintWeight weight = CW_Invalid; 9509 Value *CallOperandVal = info.CallOperandVal; 9510 // If we don't have a value, we can't do a match, 9511 // but allow it at the lowest weight. 9512 if (!CallOperandVal) 9513 return CW_Default; 9514 Type *type = CallOperandVal->getType(); 9515 9516 // Look at the constraint type. 9517 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 9518 return CW_Register; // an individual CR bit. 9519 else if ((StringRef(constraint) == "wa" || 9520 StringRef(constraint) == "wd" || 9521 StringRef(constraint) == "wf") && 9522 type->isVectorTy()) 9523 return CW_Register; 9524 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 9525 return CW_Register; 9526 9527 switch (*constraint) { 9528 default: 9529 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 9530 break; 9531 case 'b': 9532 if (type->isIntegerTy()) 9533 weight = CW_Register; 9534 break; 9535 case 'f': 9536 if (type->isFloatTy()) 9537 weight = CW_Register; 9538 break; 9539 case 'd': 9540 if (type->isDoubleTy()) 9541 weight = CW_Register; 9542 break; 9543 case 'v': 9544 if (type->isVectorTy()) 9545 weight = CW_Register; 9546 break; 9547 case 'y': 9548 weight = CW_Register; 9549 break; 9550 case 'Z': 9551 weight = CW_Memory; 9552 break; 9553 } 9554 return weight; 9555 } 9556 9557 std::pair<unsigned, const TargetRegisterClass*> 9558 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 9559 MVT VT) const { 9560 if (Constraint.size() == 1) { 9561 // GCC RS6000 Constraint Letters 9562 switch (Constraint[0]) { 9563 case 'b': // R1-R31 9564 if (VT == MVT::i64 && Subtarget.isPPC64()) 9565 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 9566 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 9567 case 'r': // R0-R31 9568 if (VT == MVT::i64 && Subtarget.isPPC64()) 9569 return std::make_pair(0U, &PPC::G8RCRegClass); 9570 return std::make_pair(0U, &PPC::GPRCRegClass); 9571 case 'f': 9572 if (VT == MVT::f32 || VT == MVT::i32) 9573 return std::make_pair(0U, &PPC::F4RCRegClass); 9574 if (VT == MVT::f64 || VT == MVT::i64) 9575 return std::make_pair(0U, &PPC::F8RCRegClass); 9576 break; 9577 case 'v': 9578 return std::make_pair(0U, &PPC::VRRCRegClass); 9579 case 'y': // crrc 9580 return std::make_pair(0U, &PPC::CRRCRegClass); 9581 } 9582 } else if (Constraint == "wc") { // an individual CR bit. 9583 return std::make_pair(0U, &PPC::CRBITRCRegClass); 9584 } else if (Constraint == "wa" || Constraint == "wd" || 9585 Constraint == "wf") { 9586 return std::make_pair(0U, &PPC::VSRCRegClass); 9587 } else if (Constraint == "ws") { 9588 return std::make_pair(0U, &PPC::VSFRCRegClass); 9589 } 9590 9591 std::pair<unsigned, const TargetRegisterClass*> R = 9592 TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 9593 9594 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 9595 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 9596 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 9597 // register. 9598 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 9599 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 9600 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 9601 PPC::GPRCRegClass.contains(R.first)) { 9602 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9603 return std::make_pair(TRI->getMatchingSuperReg(R.first, 9604 PPC::sub_32, &PPC::G8RCRegClass), 9605 &PPC::G8RCRegClass); 9606 } 9607 9608 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 9609 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 9610 R.first = PPC::CR0; 9611 R.second = &PPC::CRRCRegClass; 9612 } 9613 9614 return R; 9615 } 9616 9617 9618 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 9619 /// vector. If it is invalid, don't add anything to Ops. 9620 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 9621 std::string &Constraint, 9622 std::vector<SDValue>&Ops, 9623 SelectionDAG &DAG) const { 9624 SDValue Result; 9625 9626 // Only support length 1 constraints. 9627 if (Constraint.length() > 1) return; 9628 9629 char Letter = Constraint[0]; 9630 switch (Letter) { 9631 default: break; 9632 case 'I': 9633 case 'J': 9634 case 'K': 9635 case 'L': 9636 case 'M': 9637 case 'N': 9638 case 'O': 9639 case 'P': { 9640 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 9641 if (!CST) return; // Must be an immediate to match. 9642 int64_t Value = CST->getSExtValue(); 9643 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 9644 // numbers are printed as such. 9645 switch (Letter) { 9646 default: llvm_unreachable("Unknown constraint letter!"); 9647 case 'I': // "I" is a signed 16-bit constant. 9648 if (isInt<16>(Value)) 9649 Result = DAG.getTargetConstant(Value, TCVT); 9650 break; 9651 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 9652 if (isShiftedUInt<16, 16>(Value)) 9653 Result = DAG.getTargetConstant(Value, TCVT); 9654 break; 9655 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 9656 if (isShiftedInt<16, 16>(Value)) 9657 Result = DAG.getTargetConstant(Value, TCVT); 9658 break; 9659 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 9660 if (isUInt<16>(Value)) 9661 Result = DAG.getTargetConstant(Value, TCVT); 9662 break; 9663 case 'M': // "M" is a constant that is greater than 31. 9664 if (Value > 31) 9665 Result = DAG.getTargetConstant(Value, TCVT); 9666 break; 9667 case 'N': // "N" is a positive constant that is an exact power of two. 9668 if (Value > 0 && isPowerOf2_64(Value)) 9669 Result = DAG.getTargetConstant(Value, TCVT); 9670 break; 9671 case 'O': // "O" is the constant zero. 9672 if (Value == 0) 9673 Result = DAG.getTargetConstant(Value, TCVT); 9674 break; 9675 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 9676 if (isInt<16>(-Value)) 9677 Result = DAG.getTargetConstant(Value, TCVT); 9678 break; 9679 } 9680 break; 9681 } 9682 } 9683 9684 if (Result.getNode()) { 9685 Ops.push_back(Result); 9686 return; 9687 } 9688 9689 // Handle standard constraint letters. 9690 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9691 } 9692 9693 // isLegalAddressingMode - Return true if the addressing mode represented 9694 // by AM is legal for this target, for a load/store of the specified type. 9695 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 9696 Type *Ty) const { 9697 // FIXME: PPC does not allow r+i addressing modes for vectors! 9698 9699 // PPC allows a sign-extended 16-bit immediate field. 9700 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 9701 return false; 9702 9703 // No global is ever allowed as a base. 9704 if (AM.BaseGV) 9705 return false; 9706 9707 // PPC only support r+r, 9708 switch (AM.Scale) { 9709 case 0: // "r+i" or just "i", depending on HasBaseReg. 9710 break; 9711 case 1: 9712 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 9713 return false; 9714 // Otherwise we have r+r or r+i. 9715 break; 9716 case 2: 9717 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 9718 return false; 9719 // Allow 2*r as r+r. 9720 break; 9721 default: 9722 // No other scales are supported. 9723 return false; 9724 } 9725 9726 return true; 9727 } 9728 9729 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 9730 SelectionDAG &DAG) const { 9731 MachineFunction &MF = DAG.getMachineFunction(); 9732 MachineFrameInfo *MFI = MF.getFrameInfo(); 9733 MFI->setReturnAddressIsTaken(true); 9734 9735 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 9736 return SDValue(); 9737 9738 SDLoc dl(Op); 9739 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9740 9741 // Make sure the function does not optimize away the store of the RA to 9742 // the stack. 9743 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 9744 FuncInfo->setLRStoreRequired(); 9745 bool isPPC64 = Subtarget.isPPC64(); 9746 bool isDarwinABI = Subtarget.isDarwinABI(); 9747 9748 if (Depth > 0) { 9749 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 9750 SDValue Offset = 9751 9752 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 9753 isPPC64? MVT::i64 : MVT::i32); 9754 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 9755 DAG.getNode(ISD::ADD, dl, getPointerTy(), 9756 FrameAddr, Offset), 9757 MachinePointerInfo(), false, false, false, 0); 9758 } 9759 9760 // Just load the return address off the stack. 9761 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 9762 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 9763 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 9764 } 9765 9766 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 9767 SelectionDAG &DAG) const { 9768 SDLoc dl(Op); 9769 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9770 9771 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 9772 bool isPPC64 = PtrVT == MVT::i64; 9773 9774 MachineFunction &MF = DAG.getMachineFunction(); 9775 MachineFrameInfo *MFI = MF.getFrameInfo(); 9776 MFI->setFrameAddressIsTaken(true); 9777 9778 // Naked functions never have a frame pointer, and so we use r1. For all 9779 // other functions, this decision must be delayed until during PEI. 9780 unsigned FrameReg; 9781 if (MF.getFunction()->getAttributes().hasAttribute( 9782 AttributeSet::FunctionIndex, Attribute::Naked)) 9783 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 9784 else 9785 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 9786 9787 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 9788 PtrVT); 9789 while (Depth--) 9790 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 9791 FrameAddr, MachinePointerInfo(), false, false, 9792 false, 0); 9793 return FrameAddr; 9794 } 9795 9796 // FIXME? Maybe this could be a TableGen attribute on some registers and 9797 // this table could be generated automatically from RegInfo. 9798 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, 9799 EVT VT) const { 9800 bool isPPC64 = Subtarget.isPPC64(); 9801 bool isDarwinABI = Subtarget.isDarwinABI(); 9802 9803 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 9804 (!isPPC64 && VT != MVT::i32)) 9805 report_fatal_error("Invalid register global variable type"); 9806 9807 bool is64Bit = isPPC64 && VT == MVT::i64; 9808 unsigned Reg = StringSwitch<unsigned>(RegName) 9809 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 9810 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 9811 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 9812 (is64Bit ? PPC::X13 : PPC::R13)) 9813 .Default(0); 9814 9815 if (Reg) 9816 return Reg; 9817 report_fatal_error("Invalid register name global variable"); 9818 } 9819 9820 bool 9821 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 9822 // The PowerPC target isn't yet aware of offsets. 9823 return false; 9824 } 9825 9826 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 9827 const CallInst &I, 9828 unsigned Intrinsic) const { 9829 9830 switch (Intrinsic) { 9831 case Intrinsic::ppc_altivec_lvx: 9832 case Intrinsic::ppc_altivec_lvxl: 9833 case Intrinsic::ppc_altivec_lvebx: 9834 case Intrinsic::ppc_altivec_lvehx: 9835 case Intrinsic::ppc_altivec_lvewx: 9836 case Intrinsic::ppc_vsx_lxvd2x: 9837 case Intrinsic::ppc_vsx_lxvw4x: { 9838 EVT VT; 9839 switch (Intrinsic) { 9840 case Intrinsic::ppc_altivec_lvebx: 9841 VT = MVT::i8; 9842 break; 9843 case Intrinsic::ppc_altivec_lvehx: 9844 VT = MVT::i16; 9845 break; 9846 case Intrinsic::ppc_altivec_lvewx: 9847 VT = MVT::i32; 9848 break; 9849 case Intrinsic::ppc_vsx_lxvd2x: 9850 VT = MVT::v2f64; 9851 break; 9852 default: 9853 VT = MVT::v4i32; 9854 break; 9855 } 9856 9857 Info.opc = ISD::INTRINSIC_W_CHAIN; 9858 Info.memVT = VT; 9859 Info.ptrVal = I.getArgOperand(0); 9860 Info.offset = -VT.getStoreSize()+1; 9861 Info.size = 2*VT.getStoreSize()-1; 9862 Info.align = 1; 9863 Info.vol = false; 9864 Info.readMem = true; 9865 Info.writeMem = false; 9866 return true; 9867 } 9868 case Intrinsic::ppc_altivec_stvx: 9869 case Intrinsic::ppc_altivec_stvxl: 9870 case Intrinsic::ppc_altivec_stvebx: 9871 case Intrinsic::ppc_altivec_stvehx: 9872 case Intrinsic::ppc_altivec_stvewx: 9873 case Intrinsic::ppc_vsx_stxvd2x: 9874 case Intrinsic::ppc_vsx_stxvw4x: { 9875 EVT VT; 9876 switch (Intrinsic) { 9877 case Intrinsic::ppc_altivec_stvebx: 9878 VT = MVT::i8; 9879 break; 9880 case Intrinsic::ppc_altivec_stvehx: 9881 VT = MVT::i16; 9882 break; 9883 case Intrinsic::ppc_altivec_stvewx: 9884 VT = MVT::i32; 9885 break; 9886 case Intrinsic::ppc_vsx_stxvd2x: 9887 VT = MVT::v2f64; 9888 break; 9889 default: 9890 VT = MVT::v4i32; 9891 break; 9892 } 9893 9894 Info.opc = ISD::INTRINSIC_VOID; 9895 Info.memVT = VT; 9896 Info.ptrVal = I.getArgOperand(1); 9897 Info.offset = -VT.getStoreSize()+1; 9898 Info.size = 2*VT.getStoreSize()-1; 9899 Info.align = 1; 9900 Info.vol = false; 9901 Info.readMem = false; 9902 Info.writeMem = true; 9903 return true; 9904 } 9905 default: 9906 break; 9907 } 9908 9909 return false; 9910 } 9911 9912 /// getOptimalMemOpType - Returns the target specific optimal type for load 9913 /// and store operations as a result of memset, memcpy, and memmove 9914 /// lowering. If DstAlign is zero that means it's safe to destination 9915 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 9916 /// means there isn't a need to check it against alignment requirement, 9917 /// probably because the source does not need to be loaded. If 'IsMemset' is 9918 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 9919 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 9920 /// source is constant so it does not need to be loaded. 9921 /// It returns EVT::Other if the type should be determined using generic 9922 /// target-independent logic. 9923 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 9924 unsigned DstAlign, unsigned SrcAlign, 9925 bool IsMemset, bool ZeroMemset, 9926 bool MemcpyStrSrc, 9927 MachineFunction &MF) const { 9928 if (Subtarget.isPPC64()) { 9929 return MVT::i64; 9930 } else { 9931 return MVT::i32; 9932 } 9933 } 9934 9935 /// \brief Returns true if it is beneficial to convert a load of a constant 9936 /// to just the constant itself. 9937 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 9938 Type *Ty) const { 9939 assert(Ty->isIntegerTy()); 9940 9941 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 9942 if (BitSize == 0 || BitSize > 64) 9943 return false; 9944 return true; 9945 } 9946 9947 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 9948 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 9949 return false; 9950 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 9951 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 9952 return NumBits1 == 64 && NumBits2 == 32; 9953 } 9954 9955 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 9956 if (!VT1.isInteger() || !VT2.isInteger()) 9957 return false; 9958 unsigned NumBits1 = VT1.getSizeInBits(); 9959 unsigned NumBits2 = VT2.getSizeInBits(); 9960 return NumBits1 == 64 && NumBits2 == 32; 9961 } 9962 9963 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 9964 // Generally speaking, zexts are not free, but they are free when they can be 9965 // folded with other operations. 9966 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 9967 EVT MemVT = LD->getMemoryVT(); 9968 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 9969 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 9970 (LD->getExtensionType() == ISD::NON_EXTLOAD || 9971 LD->getExtensionType() == ISD::ZEXTLOAD)) 9972 return true; 9973 } 9974 9975 // FIXME: Add other cases... 9976 // - 32-bit shifts with a zext to i64 9977 // - zext after ctlz, bswap, etc. 9978 // - zext after and by a constant mask 9979 9980 return TargetLowering::isZExtFree(Val, VT2); 9981 } 9982 9983 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 9984 assert(VT.isFloatingPoint()); 9985 return true; 9986 } 9987 9988 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 9989 return isInt<16>(Imm) || isUInt<16>(Imm); 9990 } 9991 9992 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 9993 return isInt<16>(Imm) || isUInt<16>(Imm); 9994 } 9995 9996 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 9997 unsigned, 9998 unsigned, 9999 bool *Fast) const { 10000 if (DisablePPCUnaligned) 10001 return false; 10002 10003 // PowerPC supports unaligned memory access for simple non-vector types. 10004 // Although accessing unaligned addresses is not as efficient as accessing 10005 // aligned addresses, it is generally more efficient than manual expansion, 10006 // and generally only traps for software emulation when crossing page 10007 // boundaries. 10008 10009 if (!VT.isSimple()) 10010 return false; 10011 10012 if (VT.getSimpleVT().isVector()) { 10013 if (Subtarget.hasVSX()) { 10014 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 10015 VT != MVT::v4f32 && VT != MVT::v4i32) 10016 return false; 10017 } else { 10018 return false; 10019 } 10020 } 10021 10022 if (VT == MVT::ppcf128) 10023 return false; 10024 10025 if (Fast) 10026 *Fast = true; 10027 10028 return true; 10029 } 10030 10031 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 10032 VT = VT.getScalarType(); 10033 10034 if (!VT.isSimple()) 10035 return false; 10036 10037 switch (VT.getSimpleVT().SimpleTy) { 10038 case MVT::f32: 10039 case MVT::f64: 10040 return true; 10041 default: 10042 break; 10043 } 10044 10045 return false; 10046 } 10047 10048 const MCPhysReg * 10049 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 10050 // LR is a callee-save register, but we must treat it as clobbered by any call 10051 // site. Hence we include LR in the scratch registers, which are in turn added 10052 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 10053 // to CTR, which is used by any indirect call. 10054 static const MCPhysReg ScratchRegs[] = { 10055 PPC::X12, PPC::LR8, PPC::CTR8, 0 10056 }; 10057 10058 return ScratchRegs; 10059 } 10060 10061 bool 10062 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 10063 EVT VT , unsigned DefinedValues) const { 10064 if (VT == MVT::v2i64) 10065 return false; 10066 10067 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 10068 } 10069 10070 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 10071 if (DisableILPPref || Subtarget.enableMachineScheduler()) 10072 return TargetLowering::getSchedulingPreference(N); 10073 10074 return Sched::ILP; 10075 } 10076 10077 // Create a fast isel object. 10078 FastISel * 10079 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 10080 const TargetLibraryInfo *LibInfo) const { 10081 return PPC::createFastISel(FuncInfo, LibInfo); 10082 } 10083