1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCTargetMachine.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 27 #include "llvm/CallingConv.h" 28 #include "llvm/Constants.h" 29 #include "llvm/Function.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/DerivedTypes.h" 37 using namespace llvm; 38 39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 40 CCValAssign::LocInfo &LocInfo, 41 ISD::ArgFlagsTy &ArgFlags, 42 CCState &State); 43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 44 MVT &LocVT, 45 CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, 47 CCState &State); 48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 49 MVT &LocVT, 50 CCValAssign::LocInfo &LocInfo, 51 ISD::ArgFlagsTy &ArgFlags, 52 CCState &State); 53 54 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 55 cl::desc("enable preincrement load/store generation on PPC (experimental)"), 56 cl::Hidden); 57 58 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 59 if (TM.getSubtargetImpl()->isDarwin()) 60 return new TargetLoweringObjectFileMachO(); 61 62 return new TargetLoweringObjectFileELF(); 63 } 64 65 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 66 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 67 68 setPow2DivIsCheap(); 69 70 // Use _setjmp/_longjmp instead of setjmp/longjmp. 71 setUseUnderscoreSetJmp(true); 72 setUseUnderscoreLongJmp(true); 73 74 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 75 // arguments are at least 4/8 bytes aligned. 76 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 77 78 // Set up the register classes. 79 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 80 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 81 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 82 83 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 84 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 85 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 86 87 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 88 89 // PowerPC has pre-inc load and store's. 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 100 101 // This is used in the ppcf128->int sequence. Note it has different semantics 102 // from FP_ROUND: that rounds to nearest, this rounds to zero. 103 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 104 105 // We do not currently implment this libm ops for PowerPC. 106 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 107 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 108 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 109 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 110 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 111 112 // PowerPC has no SREM/UREM instructions 113 setOperationAction(ISD::SREM, MVT::i32, Expand); 114 setOperationAction(ISD::UREM, MVT::i32, Expand); 115 setOperationAction(ISD::SREM, MVT::i64, Expand); 116 setOperationAction(ISD::UREM, MVT::i64, Expand); 117 118 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 119 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 120 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 121 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 122 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 123 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 124 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 125 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 126 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 127 128 // We don't support sin/cos/sqrt/fmod/pow 129 setOperationAction(ISD::FSIN , MVT::f64, Expand); 130 setOperationAction(ISD::FCOS , MVT::f64, Expand); 131 setOperationAction(ISD::FREM , MVT::f64, Expand); 132 setOperationAction(ISD::FPOW , MVT::f64, Expand); 133 setOperationAction(ISD::FMA , MVT::f64, Expand); 134 setOperationAction(ISD::FSIN , MVT::f32, Expand); 135 setOperationAction(ISD::FCOS , MVT::f32, Expand); 136 setOperationAction(ISD::FREM , MVT::f32, Expand); 137 setOperationAction(ISD::FPOW , MVT::f32, Expand); 138 setOperationAction(ISD::FMA , MVT::f32, Expand); 139 140 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 141 142 // If we're enabling GP optimizations, use hardware square root 143 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 144 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 145 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 146 } 147 148 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 149 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 150 151 // PowerPC does not have BSWAP, CTPOP or CTTZ 152 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 153 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 154 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 155 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 156 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 157 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 158 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 159 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 160 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 161 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 162 163 // PowerPC does not have ROTR 164 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 165 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 166 167 // PowerPC does not have Select 168 setOperationAction(ISD::SELECT, MVT::i32, Expand); 169 setOperationAction(ISD::SELECT, MVT::i64, Expand); 170 setOperationAction(ISD::SELECT, MVT::f32, Expand); 171 setOperationAction(ISD::SELECT, MVT::f64, Expand); 172 173 // PowerPC wants to turn select_cc of FP into fsel when possible. 174 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 175 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 176 177 // PowerPC wants to optimize integer setcc a bit 178 setOperationAction(ISD::SETCC, MVT::i32, Custom); 179 180 // PowerPC does not have BRCOND which requires SetCC 181 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 182 183 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 184 185 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 186 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 187 188 // PowerPC does not have [U|S]INT_TO_FP 189 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 190 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 191 192 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 193 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 194 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 195 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 196 197 // We cannot sextinreg(i1). Expand to shifts. 198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 199 200 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 201 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 202 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 203 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 204 205 206 // We want to legalize GlobalAddress and ConstantPool nodes into the 207 // appropriate instructions to materialize the address. 208 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 209 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 210 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 211 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 212 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 213 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 214 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 215 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 216 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 217 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 218 219 // TRAP is legal. 220 setOperationAction(ISD::TRAP, MVT::Other, Legal); 221 222 // TRAMPOLINE is custom lowered. 223 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 224 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 225 226 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 227 setOperationAction(ISD::VASTART , MVT::Other, Custom); 228 229 // VAARG is custom lowered with the 32-bit SVR4 ABI. 230 if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 231 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) { 232 setOperationAction(ISD::VAARG, MVT::Other, Custom); 233 setOperationAction(ISD::VAARG, MVT::i64, Custom); 234 } else 235 setOperationAction(ISD::VAARG, MVT::Other, Expand); 236 237 // Use the default implementation. 238 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 239 setOperationAction(ISD::VAEND , MVT::Other, Expand); 240 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 241 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 242 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 243 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 244 245 // We want to custom lower some of our intrinsics. 246 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 247 248 // Comparisons that require checking two conditions. 249 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 250 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 251 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 252 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 253 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 254 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 255 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 256 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 257 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 258 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 259 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 260 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 261 262 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 263 // They also have instructions for converting between i64 and fp. 264 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 // This is just the low 32 bits of a (signed) fp->i64 conversion. 269 // We cannot do this with Promote because i64 is not a legal type. 270 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 271 272 // FIXME: disable this lowered code. This generates 64-bit register values, 273 // and we don't model the fact that the top part is clobbered by calls. We 274 // need to flag these together so that the value isn't live across a call. 275 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 276 } else { 277 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 278 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 279 } 280 281 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 282 // 64-bit PowerPC implementations can support i64 types directly 283 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 284 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 285 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 286 // 64-bit PowerPC wants to expand i128 shifts itself. 287 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 288 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 289 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 290 } else { 291 // 32-bit PowerPC wants to expand i64 shifts itself. 292 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 293 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 294 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 295 } 296 297 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 298 // First set operation action for all vector types to expand. Then we 299 // will selectively turn on ones that can be effectively codegen'd. 300 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 301 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 302 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 303 304 // add/sub are legal for all supported vector VT's. 305 setOperationAction(ISD::ADD , VT, Legal); 306 setOperationAction(ISD::SUB , VT, Legal); 307 308 // We promote all shuffles to v16i8. 309 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 310 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 311 312 // We promote all non-typed operations to v4i32. 313 setOperationAction(ISD::AND , VT, Promote); 314 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 315 setOperationAction(ISD::OR , VT, Promote); 316 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 317 setOperationAction(ISD::XOR , VT, Promote); 318 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 319 setOperationAction(ISD::LOAD , VT, Promote); 320 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 321 setOperationAction(ISD::SELECT, VT, Promote); 322 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 323 setOperationAction(ISD::STORE, VT, Promote); 324 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 325 326 // No other operations are legal. 327 setOperationAction(ISD::MUL , VT, Expand); 328 setOperationAction(ISD::SDIV, VT, Expand); 329 setOperationAction(ISD::SREM, VT, Expand); 330 setOperationAction(ISD::UDIV, VT, Expand); 331 setOperationAction(ISD::UREM, VT, Expand); 332 setOperationAction(ISD::FDIV, VT, Expand); 333 setOperationAction(ISD::FNEG, VT, Expand); 334 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 335 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 336 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 337 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 338 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 339 setOperationAction(ISD::UDIVREM, VT, Expand); 340 setOperationAction(ISD::SDIVREM, VT, Expand); 341 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 342 setOperationAction(ISD::FPOW, VT, Expand); 343 setOperationAction(ISD::CTPOP, VT, Expand); 344 setOperationAction(ISD::CTLZ, VT, Expand); 345 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 346 setOperationAction(ISD::CTTZ, VT, Expand); 347 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 348 } 349 350 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 351 // with merges, splats, etc. 352 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 353 354 setOperationAction(ISD::AND , MVT::v4i32, Legal); 355 setOperationAction(ISD::OR , MVT::v4i32, Legal); 356 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 357 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 358 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 359 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 360 361 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 362 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 363 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 364 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 365 366 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 367 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 368 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 369 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 370 371 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 372 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 373 374 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 375 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 376 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 377 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 378 } 379 380 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 381 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 382 383 setBooleanContents(ZeroOrOneBooleanContent); 384 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 385 386 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 387 setStackPointerRegisterToSaveRestore(PPC::X1); 388 setExceptionPointerRegister(PPC::X3); 389 setExceptionSelectorRegister(PPC::X4); 390 } else { 391 setStackPointerRegisterToSaveRestore(PPC::R1); 392 setExceptionPointerRegister(PPC::R3); 393 setExceptionSelectorRegister(PPC::R4); 394 } 395 396 // We have target-specific dag combine patterns for the following nodes: 397 setTargetDAGCombine(ISD::SINT_TO_FP); 398 setTargetDAGCombine(ISD::STORE); 399 setTargetDAGCombine(ISD::BR_CC); 400 setTargetDAGCombine(ISD::BSWAP); 401 402 // Darwin long double math library functions have $LDBL128 appended. 403 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 404 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 405 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 406 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 407 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 408 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 409 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 410 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 411 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 412 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 413 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 414 } 415 416 setMinFunctionAlignment(2); 417 if (PPCSubTarget.isDarwin()) 418 setPrefFunctionAlignment(4); 419 420 setInsertFencesForAtomic(true); 421 422 setSchedulingPreference(Sched::Hybrid); 423 424 computeRegisterProperties(); 425 } 426 427 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 428 /// function arguments in the caller parameter area. 429 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 430 const TargetMachine &TM = getTargetMachine(); 431 // Darwin passes everything on 4 byte boundary. 432 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 433 return 4; 434 // FIXME SVR4 TBD 435 return 4; 436 } 437 438 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 439 switch (Opcode) { 440 default: return 0; 441 case PPCISD::FSEL: return "PPCISD::FSEL"; 442 case PPCISD::FCFID: return "PPCISD::FCFID"; 443 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 444 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 445 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 446 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 447 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 448 case PPCISD::VPERM: return "PPCISD::VPERM"; 449 case PPCISD::Hi: return "PPCISD::Hi"; 450 case PPCISD::Lo: return "PPCISD::Lo"; 451 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 452 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 453 case PPCISD::LOAD: return "PPCISD::LOAD"; 454 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 455 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 456 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 457 case PPCISD::SRL: return "PPCISD::SRL"; 458 case PPCISD::SRA: return "PPCISD::SRA"; 459 case PPCISD::SHL: return "PPCISD::SHL"; 460 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 461 case PPCISD::STD_32: return "PPCISD::STD_32"; 462 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 463 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 464 case PPCISD::NOP: return "PPCISD::NOP"; 465 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 466 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 467 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 468 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 469 case PPCISD::MFCR: return "PPCISD::MFCR"; 470 case PPCISD::VCMP: return "PPCISD::VCMP"; 471 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 472 case PPCISD::LBRX: return "PPCISD::LBRX"; 473 case PPCISD::STBRX: return "PPCISD::STBRX"; 474 case PPCISD::LARX: return "PPCISD::LARX"; 475 case PPCISD::STCX: return "PPCISD::STCX"; 476 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 477 case PPCISD::MFFS: return "PPCISD::MFFS"; 478 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 479 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 480 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 481 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 482 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 483 } 484 } 485 486 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { 487 return MVT::i32; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // Node matching predicates, for use by the tblgen matching code. 492 //===----------------------------------------------------------------------===// 493 494 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 495 static bool isFloatingPointZero(SDValue Op) { 496 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 497 return CFP->getValueAPF().isZero(); 498 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 499 // Maybe this has already been legalized into the constant pool? 500 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 501 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 502 return CFP->getValueAPF().isZero(); 503 } 504 return false; 505 } 506 507 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 508 /// true if Op is undef or if it matches the specified value. 509 static bool isConstantOrUndef(int Op, int Val) { 510 return Op < 0 || Op == Val; 511 } 512 513 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 514 /// VPKUHUM instruction. 515 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 516 if (!isUnary) { 517 for (unsigned i = 0; i != 16; ++i) 518 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 519 return false; 520 } else { 521 for (unsigned i = 0; i != 8; ++i) 522 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 523 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 524 return false; 525 } 526 return true; 527 } 528 529 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 530 /// VPKUWUM instruction. 531 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 532 if (!isUnary) { 533 for (unsigned i = 0; i != 16; i += 2) 534 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 535 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 536 return false; 537 } else { 538 for (unsigned i = 0; i != 8; i += 2) 539 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 540 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 541 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 542 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 543 return false; 544 } 545 return true; 546 } 547 548 /// isVMerge - Common function, used to match vmrg* shuffles. 549 /// 550 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 551 unsigned LHSStart, unsigned RHSStart) { 552 assert(N->getValueType(0) == MVT::v16i8 && 553 "PPC only supports shuffles by bytes!"); 554 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 555 "Unsupported merge size!"); 556 557 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 558 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 559 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 560 LHSStart+j+i*UnitSize) || 561 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 562 RHSStart+j+i*UnitSize)) 563 return false; 564 } 565 return true; 566 } 567 568 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 569 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 570 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 571 bool isUnary) { 572 if (!isUnary) 573 return isVMerge(N, UnitSize, 8, 24); 574 return isVMerge(N, UnitSize, 8, 8); 575 } 576 577 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 578 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 579 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 580 bool isUnary) { 581 if (!isUnary) 582 return isVMerge(N, UnitSize, 0, 16); 583 return isVMerge(N, UnitSize, 0, 0); 584 } 585 586 587 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 588 /// amount, otherwise return -1. 589 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 590 assert(N->getValueType(0) == MVT::v16i8 && 591 "PPC only supports shuffles by bytes!"); 592 593 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 594 595 // Find the first non-undef value in the shuffle mask. 596 unsigned i; 597 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 598 /*search*/; 599 600 if (i == 16) return -1; // all undef. 601 602 // Otherwise, check to see if the rest of the elements are consecutively 603 // numbered from this value. 604 unsigned ShiftAmt = SVOp->getMaskElt(i); 605 if (ShiftAmt < i) return -1; 606 ShiftAmt -= i; 607 608 if (!isUnary) { 609 // Check the rest of the elements to see if they are consecutive. 610 for (++i; i != 16; ++i) 611 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 612 return -1; 613 } else { 614 // Check the rest of the elements to see if they are consecutive. 615 for (++i; i != 16; ++i) 616 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 617 return -1; 618 } 619 return ShiftAmt; 620 } 621 622 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 623 /// specifies a splat of a single element that is suitable for input to 624 /// VSPLTB/VSPLTH/VSPLTW. 625 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 626 assert(N->getValueType(0) == MVT::v16i8 && 627 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 628 629 // This is a splat operation if each element of the permute is the same, and 630 // if the value doesn't reference the second vector. 631 unsigned ElementBase = N->getMaskElt(0); 632 633 // FIXME: Handle UNDEF elements too! 634 if (ElementBase >= 16) 635 return false; 636 637 // Check that the indices are consecutive, in the case of a multi-byte element 638 // splatted with a v16i8 mask. 639 for (unsigned i = 1; i != EltSize; ++i) 640 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 641 return false; 642 643 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 644 if (N->getMaskElt(i) < 0) continue; 645 for (unsigned j = 0; j != EltSize; ++j) 646 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 647 return false; 648 } 649 return true; 650 } 651 652 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 653 /// are -0.0. 654 bool PPC::isAllNegativeZeroVector(SDNode *N) { 655 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 656 657 APInt APVal, APUndef; 658 unsigned BitSize; 659 bool HasAnyUndefs; 660 661 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 662 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 663 return CFP->getValueAPF().isNegZero(); 664 665 return false; 666 } 667 668 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 669 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 670 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 671 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 672 assert(isSplatShuffleMask(SVOp, EltSize)); 673 return SVOp->getMaskElt(0) / EltSize; 674 } 675 676 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 677 /// by using a vspltis[bhw] instruction of the specified element size, return 678 /// the constant being splatted. The ByteSize field indicates the number of 679 /// bytes of each element [124] -> [bhw]. 680 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 681 SDValue OpVal(0, 0); 682 683 // If ByteSize of the splat is bigger than the element size of the 684 // build_vector, then we have a case where we are checking for a splat where 685 // multiple elements of the buildvector are folded together into a single 686 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 687 unsigned EltSize = 16/N->getNumOperands(); 688 if (EltSize < ByteSize) { 689 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 690 SDValue UniquedVals[4]; 691 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 692 693 // See if all of the elements in the buildvector agree across. 694 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 695 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 696 // If the element isn't a constant, bail fully out. 697 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 698 699 700 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 701 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 702 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 703 return SDValue(); // no match. 704 } 705 706 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 707 // either constant or undef values that are identical for each chunk. See 708 // if these chunks can form into a larger vspltis*. 709 710 // Check to see if all of the leading entries are either 0 or -1. If 711 // neither, then this won't fit into the immediate field. 712 bool LeadingZero = true; 713 bool LeadingOnes = true; 714 for (unsigned i = 0; i != Multiple-1; ++i) { 715 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 716 717 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 718 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 719 } 720 // Finally, check the least significant entry. 721 if (LeadingZero) { 722 if (UniquedVals[Multiple-1].getNode() == 0) 723 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 724 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 725 if (Val < 16) 726 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 727 } 728 if (LeadingOnes) { 729 if (UniquedVals[Multiple-1].getNode() == 0) 730 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 731 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 732 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 733 return DAG.getTargetConstant(Val, MVT::i32); 734 } 735 736 return SDValue(); 737 } 738 739 // Check to see if this buildvec has a single non-undef value in its elements. 740 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 741 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 742 if (OpVal.getNode() == 0) 743 OpVal = N->getOperand(i); 744 else if (OpVal != N->getOperand(i)) 745 return SDValue(); 746 } 747 748 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 749 750 unsigned ValSizeInBytes = EltSize; 751 uint64_t Value = 0; 752 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 753 Value = CN->getZExtValue(); 754 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 755 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 756 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 757 } 758 759 // If the splat value is larger than the element value, then we can never do 760 // this splat. The only case that we could fit the replicated bits into our 761 // immediate field for would be zero, and we prefer to use vxor for it. 762 if (ValSizeInBytes < ByteSize) return SDValue(); 763 764 // If the element value is larger than the splat value, cut it in half and 765 // check to see if the two halves are equal. Continue doing this until we 766 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 767 while (ValSizeInBytes > ByteSize) { 768 ValSizeInBytes >>= 1; 769 770 // If the top half equals the bottom half, we're still ok. 771 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 772 (Value & ((1 << (8*ValSizeInBytes))-1))) 773 return SDValue(); 774 } 775 776 // Properly sign extend the value. 777 int ShAmt = (4-ByteSize)*8; 778 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 779 780 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 781 if (MaskVal == 0) return SDValue(); 782 783 // Finally, if this value fits in a 5 bit sext field, return it 784 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 785 return DAG.getTargetConstant(MaskVal, MVT::i32); 786 return SDValue(); 787 } 788 789 //===----------------------------------------------------------------------===// 790 // Addressing Mode Selection 791 //===----------------------------------------------------------------------===// 792 793 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 794 /// or 64-bit immediate, and if the value can be accurately represented as a 795 /// sign extension from a 16-bit value. If so, this returns true and the 796 /// immediate. 797 static bool isIntS16Immediate(SDNode *N, short &Imm) { 798 if (N->getOpcode() != ISD::Constant) 799 return false; 800 801 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 802 if (N->getValueType(0) == MVT::i32) 803 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 804 else 805 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 806 } 807 static bool isIntS16Immediate(SDValue Op, short &Imm) { 808 return isIntS16Immediate(Op.getNode(), Imm); 809 } 810 811 812 /// SelectAddressRegReg - Given the specified addressed, check to see if it 813 /// can be represented as an indexed [r+r] operation. Returns false if it 814 /// can be more efficiently represented with [r+imm]. 815 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 816 SDValue &Index, 817 SelectionDAG &DAG) const { 818 short imm = 0; 819 if (N.getOpcode() == ISD::ADD) { 820 if (isIntS16Immediate(N.getOperand(1), imm)) 821 return false; // r+i 822 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 823 return false; // r+i 824 825 Base = N.getOperand(0); 826 Index = N.getOperand(1); 827 return true; 828 } else if (N.getOpcode() == ISD::OR) { 829 if (isIntS16Immediate(N.getOperand(1), imm)) 830 return false; // r+i can fold it if we can. 831 832 // If this is an or of disjoint bitfields, we can codegen this as an add 833 // (for better address arithmetic) if the LHS and RHS of the OR are provably 834 // disjoint. 835 APInt LHSKnownZero, LHSKnownOne; 836 APInt RHSKnownZero, RHSKnownOne; 837 DAG.ComputeMaskedBits(N.getOperand(0), 838 APInt::getAllOnesValue(N.getOperand(0) 839 .getValueSizeInBits()), 840 LHSKnownZero, LHSKnownOne); 841 842 if (LHSKnownZero.getBoolValue()) { 843 DAG.ComputeMaskedBits(N.getOperand(1), 844 APInt::getAllOnesValue(N.getOperand(1) 845 .getValueSizeInBits()), 846 RHSKnownZero, RHSKnownOne); 847 // If all of the bits are known zero on the LHS or RHS, the add won't 848 // carry. 849 if (~(LHSKnownZero | RHSKnownZero) == 0) { 850 Base = N.getOperand(0); 851 Index = N.getOperand(1); 852 return true; 853 } 854 } 855 } 856 857 return false; 858 } 859 860 /// Returns true if the address N can be represented by a base register plus 861 /// a signed 16-bit displacement [r+imm], and if it is not better 862 /// represented as reg+reg. 863 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 864 SDValue &Base, 865 SelectionDAG &DAG) const { 866 // FIXME dl should come from parent load or store, not from address 867 DebugLoc dl = N.getDebugLoc(); 868 // If this can be more profitably realized as r+r, fail. 869 if (SelectAddressRegReg(N, Disp, Base, DAG)) 870 return false; 871 872 if (N.getOpcode() == ISD::ADD) { 873 short imm = 0; 874 if (isIntS16Immediate(N.getOperand(1), imm)) { 875 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 876 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 877 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 878 } else { 879 Base = N.getOperand(0); 880 } 881 return true; // [r+i] 882 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 883 // Match LOAD (ADD (X, Lo(G))). 884 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 885 && "Cannot handle constant offsets yet!"); 886 Disp = N.getOperand(1).getOperand(0); // The global address. 887 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 888 Disp.getOpcode() == ISD::TargetConstantPool || 889 Disp.getOpcode() == ISD::TargetJumpTable); 890 Base = N.getOperand(0); 891 return true; // [&g+r] 892 } 893 } else if (N.getOpcode() == ISD::OR) { 894 short imm = 0; 895 if (isIntS16Immediate(N.getOperand(1), imm)) { 896 // If this is an or of disjoint bitfields, we can codegen this as an add 897 // (for better address arithmetic) if the LHS and RHS of the OR are 898 // provably disjoint. 899 APInt LHSKnownZero, LHSKnownOne; 900 DAG.ComputeMaskedBits(N.getOperand(0), 901 APInt::getAllOnesValue(N.getOperand(0) 902 .getValueSizeInBits()), 903 LHSKnownZero, LHSKnownOne); 904 905 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 906 // If all of the bits are known zero on the LHS or RHS, the add won't 907 // carry. 908 Base = N.getOperand(0); 909 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 910 return true; 911 } 912 } 913 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 914 // Loading from a constant address. 915 916 // If this address fits entirely in a 16-bit sext immediate field, codegen 917 // this as "d, 0" 918 short Imm; 919 if (isIntS16Immediate(CN, Imm)) { 920 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 921 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 922 CN->getValueType(0)); 923 return true; 924 } 925 926 // Handle 32-bit sext immediates with LIS + addr mode. 927 if (CN->getValueType(0) == MVT::i32 || 928 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 929 int Addr = (int)CN->getZExtValue(); 930 931 // Otherwise, break this down into an LIS + disp. 932 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 933 934 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 935 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 936 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 937 return true; 938 } 939 } 940 941 Disp = DAG.getTargetConstant(0, getPointerTy()); 942 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 943 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 944 else 945 Base = N; 946 return true; // [r+0] 947 } 948 949 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 950 /// represented as an indexed [r+r] operation. 951 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 952 SDValue &Index, 953 SelectionDAG &DAG) const { 954 // Check to see if we can easily represent this as an [r+r] address. This 955 // will fail if it thinks that the address is more profitably represented as 956 // reg+imm, e.g. where imm = 0. 957 if (SelectAddressRegReg(N, Base, Index, DAG)) 958 return true; 959 960 // If the operand is an addition, always emit this as [r+r], since this is 961 // better (for code size, and execution, as the memop does the add for free) 962 // than emitting an explicit add. 963 if (N.getOpcode() == ISD::ADD) { 964 Base = N.getOperand(0); 965 Index = N.getOperand(1); 966 return true; 967 } 968 969 // Otherwise, do it the hard way, using R0 as the base register. 970 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 971 N.getValueType()); 972 Index = N; 973 return true; 974 } 975 976 /// SelectAddressRegImmShift - Returns true if the address N can be 977 /// represented by a base register plus a signed 14-bit displacement 978 /// [r+imm*4]. Suitable for use by STD and friends. 979 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 980 SDValue &Base, 981 SelectionDAG &DAG) const { 982 // FIXME dl should come from the parent load or store, not the address 983 DebugLoc dl = N.getDebugLoc(); 984 // If this can be more profitably realized as r+r, fail. 985 if (SelectAddressRegReg(N, Disp, Base, DAG)) 986 return false; 987 988 if (N.getOpcode() == ISD::ADD) { 989 short imm = 0; 990 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 991 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 992 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 993 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 994 } else { 995 Base = N.getOperand(0); 996 } 997 return true; // [r+i] 998 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 999 // Match LOAD (ADD (X, Lo(G))). 1000 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1001 && "Cannot handle constant offsets yet!"); 1002 Disp = N.getOperand(1).getOperand(0); // The global address. 1003 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1004 Disp.getOpcode() == ISD::TargetConstantPool || 1005 Disp.getOpcode() == ISD::TargetJumpTable); 1006 Base = N.getOperand(0); 1007 return true; // [&g+r] 1008 } 1009 } else if (N.getOpcode() == ISD::OR) { 1010 short imm = 0; 1011 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1012 // If this is an or of disjoint bitfields, we can codegen this as an add 1013 // (for better address arithmetic) if the LHS and RHS of the OR are 1014 // provably disjoint. 1015 APInt LHSKnownZero, LHSKnownOne; 1016 DAG.ComputeMaskedBits(N.getOperand(0), 1017 APInt::getAllOnesValue(N.getOperand(0) 1018 .getValueSizeInBits()), 1019 LHSKnownZero, LHSKnownOne); 1020 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1021 // If all of the bits are known zero on the LHS or RHS, the add won't 1022 // carry. 1023 Base = N.getOperand(0); 1024 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1025 return true; 1026 } 1027 } 1028 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1029 // Loading from a constant address. Verify low two bits are clear. 1030 if ((CN->getZExtValue() & 3) == 0) { 1031 // If this address fits entirely in a 14-bit sext immediate field, codegen 1032 // this as "d, 0" 1033 short Imm; 1034 if (isIntS16Immediate(CN, Imm)) { 1035 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1036 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1037 CN->getValueType(0)); 1038 return true; 1039 } 1040 1041 // Fold the low-part of 32-bit absolute addresses into addr mode. 1042 if (CN->getValueType(0) == MVT::i32 || 1043 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1044 int Addr = (int)CN->getZExtValue(); 1045 1046 // Otherwise, break this down into an LIS + disp. 1047 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1048 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1049 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1050 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1051 return true; 1052 } 1053 } 1054 } 1055 1056 Disp = DAG.getTargetConstant(0, getPointerTy()); 1057 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1058 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1059 else 1060 Base = N; 1061 return true; // [r+0] 1062 } 1063 1064 1065 /// getPreIndexedAddressParts - returns true by value, base pointer and 1066 /// offset pointer and addressing mode by reference if the node's address 1067 /// can be legally represented as pre-indexed load / store address. 1068 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1069 SDValue &Offset, 1070 ISD::MemIndexedMode &AM, 1071 SelectionDAG &DAG) const { 1072 // Disabled by default for now. 1073 if (!EnablePPCPreinc) return false; 1074 1075 SDValue Ptr; 1076 EVT VT; 1077 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1078 Ptr = LD->getBasePtr(); 1079 VT = LD->getMemoryVT(); 1080 1081 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1082 Ptr = ST->getBasePtr(); 1083 VT = ST->getMemoryVT(); 1084 } else 1085 return false; 1086 1087 // PowerPC doesn't have preinc load/store instructions for vectors. 1088 if (VT.isVector()) 1089 return false; 1090 1091 // TODO: Check reg+reg first. 1092 1093 // LDU/STU use reg+imm*4, others use reg+imm. 1094 if (VT != MVT::i64) { 1095 // reg + imm 1096 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1097 return false; 1098 } else { 1099 // reg + imm * 4. 1100 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1101 return false; 1102 } 1103 1104 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1105 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1106 // sext i32 to i64 when addr mode is r+i. 1107 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1108 LD->getExtensionType() == ISD::SEXTLOAD && 1109 isa<ConstantSDNode>(Offset)) 1110 return false; 1111 } 1112 1113 AM = ISD::PRE_INC; 1114 return true; 1115 } 1116 1117 //===----------------------------------------------------------------------===// 1118 // LowerOperation implementation 1119 //===----------------------------------------------------------------------===// 1120 1121 /// GetLabelAccessInfo - Return true if we should reference labels using a 1122 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1123 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1124 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1125 HiOpFlags = PPCII::MO_HA16; 1126 LoOpFlags = PPCII::MO_LO16; 1127 1128 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1129 // non-darwin platform. We don't support PIC on other platforms yet. 1130 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1131 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1132 if (isPIC) { 1133 HiOpFlags |= PPCII::MO_PIC_FLAG; 1134 LoOpFlags |= PPCII::MO_PIC_FLAG; 1135 } 1136 1137 // If this is a reference to a global value that requires a non-lazy-ptr, make 1138 // sure that instruction lowering adds it. 1139 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1140 HiOpFlags |= PPCII::MO_NLP_FLAG; 1141 LoOpFlags |= PPCII::MO_NLP_FLAG; 1142 1143 if (GV->hasHiddenVisibility()) { 1144 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1145 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1146 } 1147 } 1148 1149 return isPIC; 1150 } 1151 1152 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1153 SelectionDAG &DAG) { 1154 EVT PtrVT = HiPart.getValueType(); 1155 SDValue Zero = DAG.getConstant(0, PtrVT); 1156 DebugLoc DL = HiPart.getDebugLoc(); 1157 1158 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1159 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1160 1161 // With PIC, the first instruction is actually "GR+hi(&G)". 1162 if (isPIC) 1163 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1164 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1165 1166 // Generate non-pic code that has direct accesses to the constant pool. 1167 // The address of the global is just (hi(&g)+lo(&g)). 1168 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1169 } 1170 1171 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1172 SelectionDAG &DAG) const { 1173 EVT PtrVT = Op.getValueType(); 1174 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1175 const Constant *C = CP->getConstVal(); 1176 1177 unsigned MOHiFlag, MOLoFlag; 1178 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1179 SDValue CPIHi = 1180 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1181 SDValue CPILo = 1182 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1183 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1184 } 1185 1186 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1187 EVT PtrVT = Op.getValueType(); 1188 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1189 1190 unsigned MOHiFlag, MOLoFlag; 1191 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1192 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1193 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1194 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1195 } 1196 1197 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1198 SelectionDAG &DAG) const { 1199 EVT PtrVT = Op.getValueType(); 1200 1201 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1202 1203 unsigned MOHiFlag, MOLoFlag; 1204 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1205 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1206 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1207 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1208 } 1209 1210 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1211 SelectionDAG &DAG) const { 1212 EVT PtrVT = Op.getValueType(); 1213 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1214 DebugLoc DL = GSDN->getDebugLoc(); 1215 const GlobalValue *GV = GSDN->getGlobal(); 1216 1217 // 64-bit SVR4 ABI code is always position-independent. 1218 // The actual address of the GlobalValue is stored in the TOC. 1219 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1220 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1221 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1222 DAG.getRegister(PPC::X2, MVT::i64)); 1223 } 1224 1225 unsigned MOHiFlag, MOLoFlag; 1226 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1227 1228 SDValue GAHi = 1229 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1230 SDValue GALo = 1231 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1232 1233 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1234 1235 // If the global reference is actually to a non-lazy-pointer, we have to do an 1236 // extra load to get the address of the global. 1237 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1238 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1239 false, false, false, 0); 1240 return Ptr; 1241 } 1242 1243 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1244 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1245 DebugLoc dl = Op.getDebugLoc(); 1246 1247 // If we're comparing for equality to zero, expose the fact that this is 1248 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1249 // fold the new nodes. 1250 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1251 if (C->isNullValue() && CC == ISD::SETEQ) { 1252 EVT VT = Op.getOperand(0).getValueType(); 1253 SDValue Zext = Op.getOperand(0); 1254 if (VT.bitsLT(MVT::i32)) { 1255 VT = MVT::i32; 1256 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1257 } 1258 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1259 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1260 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1261 DAG.getConstant(Log2b, MVT::i32)); 1262 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1263 } 1264 // Leave comparisons against 0 and -1 alone for now, since they're usually 1265 // optimized. FIXME: revisit this when we can custom lower all setcc 1266 // optimizations. 1267 if (C->isAllOnesValue() || C->isNullValue()) 1268 return SDValue(); 1269 } 1270 1271 // If we have an integer seteq/setne, turn it into a compare against zero 1272 // by xor'ing the rhs with the lhs, which is faster than setting a 1273 // condition register, reading it back out, and masking the correct bit. The 1274 // normal approach here uses sub to do this instead of xor. Using xor exposes 1275 // the result to other bit-twiddling opportunities. 1276 EVT LHSVT = Op.getOperand(0).getValueType(); 1277 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1278 EVT VT = Op.getValueType(); 1279 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1280 Op.getOperand(1)); 1281 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1282 } 1283 return SDValue(); 1284 } 1285 1286 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1287 const PPCSubtarget &Subtarget) const { 1288 SDNode *Node = Op.getNode(); 1289 EVT VT = Node->getValueType(0); 1290 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1291 SDValue InChain = Node->getOperand(0); 1292 SDValue VAListPtr = Node->getOperand(1); 1293 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1294 DebugLoc dl = Node->getDebugLoc(); 1295 1296 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1297 1298 // gpr_index 1299 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1300 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1301 false, false, 0); 1302 InChain = GprIndex.getValue(1); 1303 1304 if (VT == MVT::i64) { 1305 // Check if GprIndex is even 1306 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1307 DAG.getConstant(1, MVT::i32)); 1308 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1309 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1310 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1311 DAG.getConstant(1, MVT::i32)); 1312 // Align GprIndex to be even if it isn't 1313 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1314 GprIndex); 1315 } 1316 1317 // fpr index is 1 byte after gpr 1318 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1319 DAG.getConstant(1, MVT::i32)); 1320 1321 // fpr 1322 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1323 FprPtr, MachinePointerInfo(SV), MVT::i8, 1324 false, false, 0); 1325 InChain = FprIndex.getValue(1); 1326 1327 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1328 DAG.getConstant(8, MVT::i32)); 1329 1330 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1331 DAG.getConstant(4, MVT::i32)); 1332 1333 // areas 1334 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1335 MachinePointerInfo(), false, false, 1336 false, 0); 1337 InChain = OverflowArea.getValue(1); 1338 1339 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1340 MachinePointerInfo(), false, false, 1341 false, 0); 1342 InChain = RegSaveArea.getValue(1); 1343 1344 // select overflow_area if index > 8 1345 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1346 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1347 1348 // adjustment constant gpr_index * 4/8 1349 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1350 VT.isInteger() ? GprIndex : FprIndex, 1351 DAG.getConstant(VT.isInteger() ? 4 : 8, 1352 MVT::i32)); 1353 1354 // OurReg = RegSaveArea + RegConstant 1355 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1356 RegConstant); 1357 1358 // Floating types are 32 bytes into RegSaveArea 1359 if (VT.isFloatingPoint()) 1360 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1361 DAG.getConstant(32, MVT::i32)); 1362 1363 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1364 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1365 VT.isInteger() ? GprIndex : FprIndex, 1366 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1367 MVT::i32)); 1368 1369 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1370 VT.isInteger() ? VAListPtr : FprPtr, 1371 MachinePointerInfo(SV), 1372 MVT::i8, false, false, 0); 1373 1374 // determine if we should load from reg_save_area or overflow_area 1375 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1376 1377 // increase overflow_area by 4/8 if gpr/fpr > 8 1378 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1379 DAG.getConstant(VT.isInteger() ? 4 : 8, 1380 MVT::i32)); 1381 1382 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1383 OverflowAreaPlusN); 1384 1385 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1386 OverflowAreaPtr, 1387 MachinePointerInfo(), 1388 MVT::i32, false, false, 0); 1389 1390 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 1391 false, false, false, 0); 1392 } 1393 1394 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 1395 SelectionDAG &DAG) const { 1396 return Op.getOperand(0); 1397 } 1398 1399 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 1400 SelectionDAG &DAG) const { 1401 SDValue Chain = Op.getOperand(0); 1402 SDValue Trmp = Op.getOperand(1); // trampoline 1403 SDValue FPtr = Op.getOperand(2); // nested function 1404 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1405 DebugLoc dl = Op.getDebugLoc(); 1406 1407 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1408 bool isPPC64 = (PtrVT == MVT::i64); 1409 Type *IntPtrTy = 1410 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1411 *DAG.getContext()); 1412 1413 TargetLowering::ArgListTy Args; 1414 TargetLowering::ArgListEntry Entry; 1415 1416 Entry.Ty = IntPtrTy; 1417 Entry.Node = Trmp; Args.push_back(Entry); 1418 1419 // TrampSize == (isPPC64 ? 48 : 40); 1420 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1421 isPPC64 ? MVT::i64 : MVT::i32); 1422 Args.push_back(Entry); 1423 1424 Entry.Node = FPtr; Args.push_back(Entry); 1425 Entry.Node = Nest; Args.push_back(Entry); 1426 1427 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1428 std::pair<SDValue, SDValue> CallResult = 1429 LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), 1430 false, false, false, false, 0, CallingConv::C, 1431 /*isTailCall=*/false, 1432 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 1433 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1434 Args, DAG, dl); 1435 1436 return CallResult.second; 1437 } 1438 1439 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1440 const PPCSubtarget &Subtarget) const { 1441 MachineFunction &MF = DAG.getMachineFunction(); 1442 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1443 1444 DebugLoc dl = Op.getDebugLoc(); 1445 1446 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1447 // vastart just stores the address of the VarArgsFrameIndex slot into the 1448 // memory location argument. 1449 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1450 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1451 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1452 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1453 MachinePointerInfo(SV), 1454 false, false, 0); 1455 } 1456 1457 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1458 // We suppose the given va_list is already allocated. 1459 // 1460 // typedef struct { 1461 // char gpr; /* index into the array of 8 GPRs 1462 // * stored in the register save area 1463 // * gpr=0 corresponds to r3, 1464 // * gpr=1 to r4, etc. 1465 // */ 1466 // char fpr; /* index into the array of 8 FPRs 1467 // * stored in the register save area 1468 // * fpr=0 corresponds to f1, 1469 // * fpr=1 to f2, etc. 1470 // */ 1471 // char *overflow_arg_area; 1472 // /* location on stack that holds 1473 // * the next overflow argument 1474 // */ 1475 // char *reg_save_area; 1476 // /* where r3:r10 and f1:f8 (if saved) 1477 // * are stored 1478 // */ 1479 // } va_list[1]; 1480 1481 1482 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1483 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1484 1485 1486 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1487 1488 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1489 PtrVT); 1490 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1491 PtrVT); 1492 1493 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1494 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1495 1496 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1497 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1498 1499 uint64_t FPROffset = 1; 1500 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1501 1502 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1503 1504 // Store first byte : number of int regs 1505 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1506 Op.getOperand(1), 1507 MachinePointerInfo(SV), 1508 MVT::i8, false, false, 0); 1509 uint64_t nextOffset = FPROffset; 1510 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1511 ConstFPROffset); 1512 1513 // Store second byte : number of float regs 1514 SDValue secondStore = 1515 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1516 MachinePointerInfo(SV, nextOffset), MVT::i8, 1517 false, false, 0); 1518 nextOffset += StackOffset; 1519 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1520 1521 // Store second word : arguments given on stack 1522 SDValue thirdStore = 1523 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1524 MachinePointerInfo(SV, nextOffset), 1525 false, false, 0); 1526 nextOffset += FrameOffset; 1527 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1528 1529 // Store third word : arguments given in registers 1530 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1531 MachinePointerInfo(SV, nextOffset), 1532 false, false, 0); 1533 1534 } 1535 1536 #include "PPCGenCallingConv.inc" 1537 1538 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1539 CCValAssign::LocInfo &LocInfo, 1540 ISD::ArgFlagsTy &ArgFlags, 1541 CCState &State) { 1542 return true; 1543 } 1544 1545 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1546 MVT &LocVT, 1547 CCValAssign::LocInfo &LocInfo, 1548 ISD::ArgFlagsTy &ArgFlags, 1549 CCState &State) { 1550 static const unsigned ArgRegs[] = { 1551 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1552 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1553 }; 1554 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1555 1556 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1557 1558 // Skip one register if the first unallocated register has an even register 1559 // number and there are still argument registers available which have not been 1560 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1561 // need to skip a register if RegNum is odd. 1562 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1563 State.AllocateReg(ArgRegs[RegNum]); 1564 } 1565 1566 // Always return false here, as this function only makes sure that the first 1567 // unallocated register has an odd register number and does not actually 1568 // allocate a register for the current argument. 1569 return false; 1570 } 1571 1572 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1573 MVT &LocVT, 1574 CCValAssign::LocInfo &LocInfo, 1575 ISD::ArgFlagsTy &ArgFlags, 1576 CCState &State) { 1577 static const unsigned ArgRegs[] = { 1578 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1579 PPC::F8 1580 }; 1581 1582 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1583 1584 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1585 1586 // If there is only one Floating-point register left we need to put both f64 1587 // values of a split ppc_fp128 value on the stack. 1588 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1589 State.AllocateReg(ArgRegs[RegNum]); 1590 } 1591 1592 // Always return false here, as this function only makes sure that the two f64 1593 // values a ppc_fp128 value is split into are both passed in registers or both 1594 // passed on the stack and does not actually allocate a register for the 1595 // current argument. 1596 return false; 1597 } 1598 1599 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1600 /// on Darwin. 1601 static const unsigned *GetFPR() { 1602 static const unsigned FPR[] = { 1603 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1604 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1605 }; 1606 1607 return FPR; 1608 } 1609 1610 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1611 /// the stack. 1612 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1613 unsigned PtrByteSize) { 1614 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1615 if (Flags.isByVal()) 1616 ArgSize = Flags.getByValSize(); 1617 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1618 1619 return ArgSize; 1620 } 1621 1622 SDValue 1623 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1624 CallingConv::ID CallConv, bool isVarArg, 1625 const SmallVectorImpl<ISD::InputArg> 1626 &Ins, 1627 DebugLoc dl, SelectionDAG &DAG, 1628 SmallVectorImpl<SDValue> &InVals) 1629 const { 1630 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1631 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1632 dl, DAG, InVals); 1633 } else { 1634 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1635 dl, DAG, InVals); 1636 } 1637 } 1638 1639 SDValue 1640 PPCTargetLowering::LowerFormalArguments_SVR4( 1641 SDValue Chain, 1642 CallingConv::ID CallConv, bool isVarArg, 1643 const SmallVectorImpl<ISD::InputArg> 1644 &Ins, 1645 DebugLoc dl, SelectionDAG &DAG, 1646 SmallVectorImpl<SDValue> &InVals) const { 1647 1648 // 32-bit SVR4 ABI Stack Frame Layout: 1649 // +-----------------------------------+ 1650 // +--> | Back chain | 1651 // | +-----------------------------------+ 1652 // | | Floating-point register save area | 1653 // | +-----------------------------------+ 1654 // | | General register save area | 1655 // | +-----------------------------------+ 1656 // | | CR save word | 1657 // | +-----------------------------------+ 1658 // | | VRSAVE save word | 1659 // | +-----------------------------------+ 1660 // | | Alignment padding | 1661 // | +-----------------------------------+ 1662 // | | Vector register save area | 1663 // | +-----------------------------------+ 1664 // | | Local variable space | 1665 // | +-----------------------------------+ 1666 // | | Parameter list area | 1667 // | +-----------------------------------+ 1668 // | | LR save word | 1669 // | +-----------------------------------+ 1670 // SP--> +--- | Back chain | 1671 // +-----------------------------------+ 1672 // 1673 // Specifications: 1674 // System V Application Binary Interface PowerPC Processor Supplement 1675 // AltiVec Technology Programming Interface Manual 1676 1677 MachineFunction &MF = DAG.getMachineFunction(); 1678 MachineFrameInfo *MFI = MF.getFrameInfo(); 1679 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1680 1681 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1682 // Potential tail calls could cause overwriting of argument stack slots. 1683 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1684 (CallConv == CallingConv::Fast)); 1685 unsigned PtrByteSize = 4; 1686 1687 // Assign locations to all of the incoming arguments. 1688 SmallVector<CCValAssign, 16> ArgLocs; 1689 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1690 getTargetMachine(), ArgLocs, *DAG.getContext()); 1691 1692 // Reserve space for the linkage area on the stack. 1693 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1694 1695 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1696 1697 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1698 CCValAssign &VA = ArgLocs[i]; 1699 1700 // Arguments stored in registers. 1701 if (VA.isRegLoc()) { 1702 const TargetRegisterClass *RC; 1703 EVT ValVT = VA.getValVT(); 1704 1705 switch (ValVT.getSimpleVT().SimpleTy) { 1706 default: 1707 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1708 case MVT::i32: 1709 RC = PPC::GPRCRegisterClass; 1710 break; 1711 case MVT::f32: 1712 RC = PPC::F4RCRegisterClass; 1713 break; 1714 case MVT::f64: 1715 RC = PPC::F8RCRegisterClass; 1716 break; 1717 case MVT::v16i8: 1718 case MVT::v8i16: 1719 case MVT::v4i32: 1720 case MVT::v4f32: 1721 RC = PPC::VRRCRegisterClass; 1722 break; 1723 } 1724 1725 // Transform the arguments stored in physical registers into virtual ones. 1726 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1727 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1728 1729 InVals.push_back(ArgValue); 1730 } else { 1731 // Argument stored in memory. 1732 assert(VA.isMemLoc()); 1733 1734 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1735 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1736 isImmutable); 1737 1738 // Create load nodes to retrieve arguments from the stack. 1739 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1740 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1741 MachinePointerInfo(), 1742 false, false, false, 0)); 1743 } 1744 } 1745 1746 // Assign locations to all of the incoming aggregate by value arguments. 1747 // Aggregates passed by value are stored in the local variable space of the 1748 // caller's stack frame, right above the parameter list area. 1749 SmallVector<CCValAssign, 16> ByValArgLocs; 1750 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1751 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1752 1753 // Reserve stack space for the allocations in CCInfo. 1754 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1755 1756 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1757 1758 // Area that is at least reserved in the caller of this function. 1759 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1760 1761 // Set the size that is at least reserved in caller of this function. Tail 1762 // call optimized function's reserved stack space needs to be aligned so that 1763 // taking the difference between two stack areas will result in an aligned 1764 // stack. 1765 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1766 1767 MinReservedArea = 1768 std::max(MinReservedArea, 1769 PPCFrameLowering::getMinCallFrameSize(false, false)); 1770 1771 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1772 getStackAlignment(); 1773 unsigned AlignMask = TargetAlign-1; 1774 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1775 1776 FI->setMinReservedArea(MinReservedArea); 1777 1778 SmallVector<SDValue, 8> MemOps; 1779 1780 // If the function takes variable number of arguments, make a frame index for 1781 // the start of the first vararg value... for expansion of llvm.va_start. 1782 if (isVarArg) { 1783 static const unsigned GPArgRegs[] = { 1784 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1785 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1786 }; 1787 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1788 1789 static const unsigned FPArgRegs[] = { 1790 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1791 PPC::F8 1792 }; 1793 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1794 1795 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1796 NumGPArgRegs)); 1797 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1798 NumFPArgRegs)); 1799 1800 // Make room for NumGPArgRegs and NumFPArgRegs. 1801 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1802 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1803 1804 FuncInfo->setVarArgsStackOffset( 1805 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1806 CCInfo.getNextStackOffset(), true)); 1807 1808 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1809 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1810 1811 // The fixed integer arguments of a variadic function are stored to the 1812 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1813 // the result of va_next. 1814 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1815 // Get an existing live-in vreg, or add a new one. 1816 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1817 if (!VReg) 1818 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1819 1820 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1821 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1822 MachinePointerInfo(), false, false, 0); 1823 MemOps.push_back(Store); 1824 // Increment the address by four for the next argument to store 1825 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1826 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1827 } 1828 1829 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1830 // is set. 1831 // The double arguments are stored to the VarArgsFrameIndex 1832 // on the stack. 1833 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1834 // Get an existing live-in vreg, or add a new one. 1835 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1836 if (!VReg) 1837 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1838 1839 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1840 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1841 MachinePointerInfo(), false, false, 0); 1842 MemOps.push_back(Store); 1843 // Increment the address by eight for the next argument to store 1844 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1845 PtrVT); 1846 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1847 } 1848 } 1849 1850 if (!MemOps.empty()) 1851 Chain = DAG.getNode(ISD::TokenFactor, dl, 1852 MVT::Other, &MemOps[0], MemOps.size()); 1853 1854 return Chain; 1855 } 1856 1857 SDValue 1858 PPCTargetLowering::LowerFormalArguments_Darwin( 1859 SDValue Chain, 1860 CallingConv::ID CallConv, bool isVarArg, 1861 const SmallVectorImpl<ISD::InputArg> 1862 &Ins, 1863 DebugLoc dl, SelectionDAG &DAG, 1864 SmallVectorImpl<SDValue> &InVals) const { 1865 // TODO: add description of PPC stack frame format, or at least some docs. 1866 // 1867 MachineFunction &MF = DAG.getMachineFunction(); 1868 MachineFrameInfo *MFI = MF.getFrameInfo(); 1869 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1870 1871 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1872 bool isPPC64 = PtrVT == MVT::i64; 1873 // Potential tail calls could cause overwriting of argument stack slots. 1874 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1875 (CallConv == CallingConv::Fast)); 1876 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1877 1878 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1879 // Area that is at least reserved in caller of this function. 1880 unsigned MinReservedArea = ArgOffset; 1881 1882 static const unsigned GPR_32[] = { // 32-bit registers. 1883 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1884 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1885 }; 1886 static const unsigned GPR_64[] = { // 64-bit registers. 1887 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1888 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1889 }; 1890 1891 static const unsigned *FPR = GetFPR(); 1892 1893 static const unsigned VR[] = { 1894 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1895 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1896 }; 1897 1898 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1899 const unsigned Num_FPR_Regs = 13; 1900 const unsigned Num_VR_Regs = array_lengthof( VR); 1901 1902 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1903 1904 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1905 1906 // In 32-bit non-varargs functions, the stack space for vectors is after the 1907 // stack space for non-vectors. We do not use this space unless we have 1908 // too many vectors to fit in registers, something that only occurs in 1909 // constructed examples:), but we have to walk the arglist to figure 1910 // that out...for the pathological case, compute VecArgOffset as the 1911 // start of the vector parameter area. Computing VecArgOffset is the 1912 // entire point of the following loop. 1913 unsigned VecArgOffset = ArgOffset; 1914 if (!isVarArg && !isPPC64) { 1915 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1916 ++ArgNo) { 1917 EVT ObjectVT = Ins[ArgNo].VT; 1918 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1919 1920 if (Flags.isByVal()) { 1921 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1922 unsigned ObjSize = Flags.getByValSize(); 1923 unsigned ArgSize = 1924 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1925 VecArgOffset += ArgSize; 1926 continue; 1927 } 1928 1929 switch(ObjectVT.getSimpleVT().SimpleTy) { 1930 default: llvm_unreachable("Unhandled argument type!"); 1931 case MVT::i32: 1932 case MVT::f32: 1933 VecArgOffset += isPPC64 ? 8 : 4; 1934 break; 1935 case MVT::i64: // PPC64 1936 case MVT::f64: 1937 VecArgOffset += 8; 1938 break; 1939 case MVT::v4f32: 1940 case MVT::v4i32: 1941 case MVT::v8i16: 1942 case MVT::v16i8: 1943 // Nothing to do, we're only looking at Nonvector args here. 1944 break; 1945 } 1946 } 1947 } 1948 // We've found where the vector parameter area in memory is. Skip the 1949 // first 12 parameters; these don't use that memory. 1950 VecArgOffset = ((VecArgOffset+15)/16)*16; 1951 VecArgOffset += 12*16; 1952 1953 // Add DAG nodes to load the arguments or copy them out of registers. On 1954 // entry to a function on PPC, the arguments start after the linkage area, 1955 // although the first ones are often in registers. 1956 1957 SmallVector<SDValue, 8> MemOps; 1958 unsigned nAltivecParamsAtEnd = 0; 1959 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1960 SDValue ArgVal; 1961 bool needsLoad = false; 1962 EVT ObjectVT = Ins[ArgNo].VT; 1963 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1964 unsigned ArgSize = ObjSize; 1965 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1966 1967 unsigned CurArgOffset = ArgOffset; 1968 1969 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1970 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1971 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1972 if (isVarArg || isPPC64) { 1973 MinReservedArea = ((MinReservedArea+15)/16)*16; 1974 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1975 Flags, 1976 PtrByteSize); 1977 } else nAltivecParamsAtEnd++; 1978 } else 1979 // Calculate min reserved area. 1980 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1981 Flags, 1982 PtrByteSize); 1983 1984 // FIXME the codegen can be much improved in some cases. 1985 // We do not have to keep everything in memory. 1986 if (Flags.isByVal()) { 1987 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1988 ObjSize = Flags.getByValSize(); 1989 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1990 // Objects of size 1 and 2 are right justified, everything else is 1991 // left justified. This means the memory address is adjusted forwards. 1992 if (ObjSize==1 || ObjSize==2) { 1993 CurArgOffset = CurArgOffset + (4 - ObjSize); 1994 } 1995 // The value of the object is its address. 1996 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1997 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1998 InVals.push_back(FIN); 1999 if (ObjSize==1 || ObjSize==2) { 2000 if (GPR_idx != Num_GPR_Regs) { 2001 unsigned VReg; 2002 if (isPPC64) 2003 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2004 else 2005 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2006 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2007 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2008 MachinePointerInfo(), 2009 ObjSize==1 ? MVT::i8 : MVT::i16, 2010 false, false, 0); 2011 MemOps.push_back(Store); 2012 ++GPR_idx; 2013 } 2014 2015 ArgOffset += PtrByteSize; 2016 2017 continue; 2018 } 2019 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2020 // Store whatever pieces of the object are in registers 2021 // to memory. ArgVal will be address of the beginning of 2022 // the object. 2023 if (GPR_idx != Num_GPR_Regs) { 2024 unsigned VReg; 2025 if (isPPC64) 2026 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2027 else 2028 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2029 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2030 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2031 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2032 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2033 MachinePointerInfo(), 2034 false, false, 0); 2035 MemOps.push_back(Store); 2036 ++GPR_idx; 2037 ArgOffset += PtrByteSize; 2038 } else { 2039 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2040 break; 2041 } 2042 } 2043 continue; 2044 } 2045 2046 switch (ObjectVT.getSimpleVT().SimpleTy) { 2047 default: llvm_unreachable("Unhandled argument type!"); 2048 case MVT::i32: 2049 if (!isPPC64) { 2050 if (GPR_idx != Num_GPR_Regs) { 2051 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2052 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2053 ++GPR_idx; 2054 } else { 2055 needsLoad = true; 2056 ArgSize = PtrByteSize; 2057 } 2058 // All int arguments reserve stack space in the Darwin ABI. 2059 ArgOffset += PtrByteSize; 2060 break; 2061 } 2062 // FALLTHROUGH 2063 case MVT::i64: // PPC64 2064 if (GPR_idx != Num_GPR_Regs) { 2065 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2066 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2067 2068 if (ObjectVT == MVT::i32) { 2069 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2070 // value to MVT::i64 and then truncate to the correct register size. 2071 if (Flags.isSExt()) 2072 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2073 DAG.getValueType(ObjectVT)); 2074 else if (Flags.isZExt()) 2075 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2076 DAG.getValueType(ObjectVT)); 2077 2078 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2079 } 2080 2081 ++GPR_idx; 2082 } else { 2083 needsLoad = true; 2084 ArgSize = PtrByteSize; 2085 } 2086 // All int arguments reserve stack space in the Darwin ABI. 2087 ArgOffset += 8; 2088 break; 2089 2090 case MVT::f32: 2091 case MVT::f64: 2092 // Every 4 bytes of argument space consumes one of the GPRs available for 2093 // argument passing. 2094 if (GPR_idx != Num_GPR_Regs) { 2095 ++GPR_idx; 2096 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2097 ++GPR_idx; 2098 } 2099 if (FPR_idx != Num_FPR_Regs) { 2100 unsigned VReg; 2101 2102 if (ObjectVT == MVT::f32) 2103 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2104 else 2105 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2106 2107 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2108 ++FPR_idx; 2109 } else { 2110 needsLoad = true; 2111 } 2112 2113 // All FP arguments reserve stack space in the Darwin ABI. 2114 ArgOffset += isPPC64 ? 8 : ObjSize; 2115 break; 2116 case MVT::v4f32: 2117 case MVT::v4i32: 2118 case MVT::v8i16: 2119 case MVT::v16i8: 2120 // Note that vector arguments in registers don't reserve stack space, 2121 // except in varargs functions. 2122 if (VR_idx != Num_VR_Regs) { 2123 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2124 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2125 if (isVarArg) { 2126 while ((ArgOffset % 16) != 0) { 2127 ArgOffset += PtrByteSize; 2128 if (GPR_idx != Num_GPR_Regs) 2129 GPR_idx++; 2130 } 2131 ArgOffset += 16; 2132 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2133 } 2134 ++VR_idx; 2135 } else { 2136 if (!isVarArg && !isPPC64) { 2137 // Vectors go after all the nonvectors. 2138 CurArgOffset = VecArgOffset; 2139 VecArgOffset += 16; 2140 } else { 2141 // Vectors are aligned. 2142 ArgOffset = ((ArgOffset+15)/16)*16; 2143 CurArgOffset = ArgOffset; 2144 ArgOffset += 16; 2145 } 2146 needsLoad = true; 2147 } 2148 break; 2149 } 2150 2151 // We need to load the argument to a virtual register if we determined above 2152 // that we ran out of physical registers of the appropriate type. 2153 if (needsLoad) { 2154 int FI = MFI->CreateFixedObject(ObjSize, 2155 CurArgOffset + (ArgSize - ObjSize), 2156 isImmutable); 2157 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2158 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2159 false, false, false, 0); 2160 } 2161 2162 InVals.push_back(ArgVal); 2163 } 2164 2165 // Set the size that is at least reserved in caller of this function. Tail 2166 // call optimized function's reserved stack space needs to be aligned so that 2167 // taking the difference between two stack areas will result in an aligned 2168 // stack. 2169 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2170 // Add the Altivec parameters at the end, if needed. 2171 if (nAltivecParamsAtEnd) { 2172 MinReservedArea = ((MinReservedArea+15)/16)*16; 2173 MinReservedArea += 16*nAltivecParamsAtEnd; 2174 } 2175 MinReservedArea = 2176 std::max(MinReservedArea, 2177 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2178 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2179 getStackAlignment(); 2180 unsigned AlignMask = TargetAlign-1; 2181 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2182 FI->setMinReservedArea(MinReservedArea); 2183 2184 // If the function takes variable number of arguments, make a frame index for 2185 // the start of the first vararg value... for expansion of llvm.va_start. 2186 if (isVarArg) { 2187 int Depth = ArgOffset; 2188 2189 FuncInfo->setVarArgsFrameIndex( 2190 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2191 Depth, true)); 2192 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2193 2194 // If this function is vararg, store any remaining integer argument regs 2195 // to their spots on the stack so that they may be loaded by deferencing the 2196 // result of va_next. 2197 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2198 unsigned VReg; 2199 2200 if (isPPC64) 2201 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2202 else 2203 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2204 2205 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2206 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2207 MachinePointerInfo(), false, false, 0); 2208 MemOps.push_back(Store); 2209 // Increment the address by four for the next argument to store 2210 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2211 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2212 } 2213 } 2214 2215 if (!MemOps.empty()) 2216 Chain = DAG.getNode(ISD::TokenFactor, dl, 2217 MVT::Other, &MemOps[0], MemOps.size()); 2218 2219 return Chain; 2220 } 2221 2222 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2223 /// linkage area for the Darwin ABI. 2224 static unsigned 2225 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2226 bool isPPC64, 2227 bool isVarArg, 2228 unsigned CC, 2229 const SmallVectorImpl<ISD::OutputArg> 2230 &Outs, 2231 const SmallVectorImpl<SDValue> &OutVals, 2232 unsigned &nAltivecParamsAtEnd) { 2233 // Count how many bytes are to be pushed on the stack, including the linkage 2234 // area, and parameter passing area. We start with 24/48 bytes, which is 2235 // prereserved space for [SP][CR][LR][3 x unused]. 2236 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2237 unsigned NumOps = Outs.size(); 2238 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2239 2240 // Add up all the space actually used. 2241 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2242 // they all go in registers, but we must reserve stack space for them for 2243 // possible use by the caller. In varargs or 64-bit calls, parameters are 2244 // assigned stack space in order, with padding so Altivec parameters are 2245 // 16-byte aligned. 2246 nAltivecParamsAtEnd = 0; 2247 for (unsigned i = 0; i != NumOps; ++i) { 2248 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2249 EVT ArgVT = Outs[i].VT; 2250 // Varargs Altivec parameters are padded to a 16 byte boundary. 2251 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2252 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2253 if (!isVarArg && !isPPC64) { 2254 // Non-varargs Altivec parameters go after all the non-Altivec 2255 // parameters; handle those later so we know how much padding we need. 2256 nAltivecParamsAtEnd++; 2257 continue; 2258 } 2259 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2260 NumBytes = ((NumBytes+15)/16)*16; 2261 } 2262 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2263 } 2264 2265 // Allow for Altivec parameters at the end, if needed. 2266 if (nAltivecParamsAtEnd) { 2267 NumBytes = ((NumBytes+15)/16)*16; 2268 NumBytes += 16*nAltivecParamsAtEnd; 2269 } 2270 2271 // The prolog code of the callee may store up to 8 GPR argument registers to 2272 // the stack, allowing va_start to index over them in memory if its varargs. 2273 // Because we cannot tell if this is needed on the caller side, we have to 2274 // conservatively assume that it is needed. As such, make sure we have at 2275 // least enough stack space for the caller to store the 8 GPRs. 2276 NumBytes = std::max(NumBytes, 2277 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2278 2279 // Tail call needs the stack to be aligned. 2280 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ 2281 unsigned TargetAlign = DAG.getMachineFunction().getTarget(). 2282 getFrameLowering()->getStackAlignment(); 2283 unsigned AlignMask = TargetAlign-1; 2284 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2285 } 2286 2287 return NumBytes; 2288 } 2289 2290 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2291 /// adjusted to accommodate the arguments for the tailcall. 2292 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2293 unsigned ParamSize) { 2294 2295 if (!isTailCall) return 0; 2296 2297 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2298 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2299 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2300 // Remember only if the new adjustement is bigger. 2301 if (SPDiff < FI->getTailCallSPDelta()) 2302 FI->setTailCallSPDelta(SPDiff); 2303 2304 return SPDiff; 2305 } 2306 2307 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2308 /// for tail call optimization. Targets which want to do tail call 2309 /// optimization should implement this function. 2310 bool 2311 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2312 CallingConv::ID CalleeCC, 2313 bool isVarArg, 2314 const SmallVectorImpl<ISD::InputArg> &Ins, 2315 SelectionDAG& DAG) const { 2316 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 2317 return false; 2318 2319 // Variable argument functions are not supported. 2320 if (isVarArg) 2321 return false; 2322 2323 MachineFunction &MF = DAG.getMachineFunction(); 2324 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2325 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2326 // Functions containing by val parameters are not supported. 2327 for (unsigned i = 0; i != Ins.size(); i++) { 2328 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2329 if (Flags.isByVal()) return false; 2330 } 2331 2332 // Non PIC/GOT tail calls are supported. 2333 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2334 return true; 2335 2336 // At the moment we can only do local tail calls (in same module, hidden 2337 // or protected) if we are generating PIC. 2338 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2339 return G->getGlobal()->hasHiddenVisibility() 2340 || G->getGlobal()->hasProtectedVisibility(); 2341 } 2342 2343 return false; 2344 } 2345 2346 /// isCallCompatibleAddress - Return the immediate to use if the specified 2347 /// 32-bit value is representable in the immediate field of a BxA instruction. 2348 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2349 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2350 if (!C) return 0; 2351 2352 int Addr = C->getZExtValue(); 2353 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2354 (Addr << 6 >> 6) != Addr) 2355 return 0; // Top 6 bits have to be sext of immediate. 2356 2357 return DAG.getConstant((int)C->getZExtValue() >> 2, 2358 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2359 } 2360 2361 namespace { 2362 2363 struct TailCallArgumentInfo { 2364 SDValue Arg; 2365 SDValue FrameIdxOp; 2366 int FrameIdx; 2367 2368 TailCallArgumentInfo() : FrameIdx(0) {} 2369 }; 2370 2371 } 2372 2373 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2374 static void 2375 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2376 SDValue Chain, 2377 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2378 SmallVector<SDValue, 8> &MemOpChains, 2379 DebugLoc dl) { 2380 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2381 SDValue Arg = TailCallArgs[i].Arg; 2382 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2383 int FI = TailCallArgs[i].FrameIdx; 2384 // Store relative to framepointer. 2385 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2386 MachinePointerInfo::getFixedStack(FI), 2387 false, false, 0)); 2388 } 2389 } 2390 2391 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2392 /// the appropriate stack slot for the tail call optimized function call. 2393 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2394 MachineFunction &MF, 2395 SDValue Chain, 2396 SDValue OldRetAddr, 2397 SDValue OldFP, 2398 int SPDiff, 2399 bool isPPC64, 2400 bool isDarwinABI, 2401 DebugLoc dl) { 2402 if (SPDiff) { 2403 // Calculate the new stack slot for the return address. 2404 int SlotSize = isPPC64 ? 8 : 4; 2405 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2406 isDarwinABI); 2407 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2408 NewRetAddrLoc, true); 2409 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2410 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2411 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2412 MachinePointerInfo::getFixedStack(NewRetAddr), 2413 false, false, 0); 2414 2415 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2416 // slot as the FP is never overwritten. 2417 if (isDarwinABI) { 2418 int NewFPLoc = 2419 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2420 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2421 true); 2422 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2423 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2424 MachinePointerInfo::getFixedStack(NewFPIdx), 2425 false, false, 0); 2426 } 2427 } 2428 return Chain; 2429 } 2430 2431 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2432 /// the position of the argument. 2433 static void 2434 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2435 SDValue Arg, int SPDiff, unsigned ArgOffset, 2436 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2437 int Offset = ArgOffset + SPDiff; 2438 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2439 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2440 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2441 SDValue FIN = DAG.getFrameIndex(FI, VT); 2442 TailCallArgumentInfo Info; 2443 Info.Arg = Arg; 2444 Info.FrameIdxOp = FIN; 2445 Info.FrameIdx = FI; 2446 TailCallArguments.push_back(Info); 2447 } 2448 2449 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2450 /// stack slot. Returns the chain as result and the loaded frame pointers in 2451 /// LROpOut/FPOpout. Used when tail calling. 2452 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2453 int SPDiff, 2454 SDValue Chain, 2455 SDValue &LROpOut, 2456 SDValue &FPOpOut, 2457 bool isDarwinABI, 2458 DebugLoc dl) const { 2459 if (SPDiff) { 2460 // Load the LR and FP stack slot for later adjusting. 2461 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2462 LROpOut = getReturnAddrFrameIndex(DAG); 2463 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2464 false, false, false, 0); 2465 Chain = SDValue(LROpOut.getNode(), 1); 2466 2467 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2468 // slot as the FP is never overwritten. 2469 if (isDarwinABI) { 2470 FPOpOut = getFramePointerFrameIndex(DAG); 2471 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2472 false, false, false, 0); 2473 Chain = SDValue(FPOpOut.getNode(), 1); 2474 } 2475 } 2476 return Chain; 2477 } 2478 2479 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2480 /// by "Src" to address "Dst" of size "Size". Alignment information is 2481 /// specified by the specific parameter attribute. The copy will be passed as 2482 /// a byval function parameter. 2483 /// Sometimes what we are copying is the end of a larger object, the part that 2484 /// does not fit in registers. 2485 static SDValue 2486 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2487 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2488 DebugLoc dl) { 2489 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2490 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2491 false, false, MachinePointerInfo(0), 2492 MachinePointerInfo(0)); 2493 } 2494 2495 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2496 /// tail calls. 2497 static void 2498 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2499 SDValue Arg, SDValue PtrOff, int SPDiff, 2500 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2501 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2502 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2503 DebugLoc dl) { 2504 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2505 if (!isTailCall) { 2506 if (isVector) { 2507 SDValue StackPtr; 2508 if (isPPC64) 2509 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2510 else 2511 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2512 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2513 DAG.getConstant(ArgOffset, PtrVT)); 2514 } 2515 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2516 MachinePointerInfo(), false, false, 0)); 2517 // Calculate and remember argument location. 2518 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2519 TailCallArguments); 2520 } 2521 2522 static 2523 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2524 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2525 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2526 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2527 MachineFunction &MF = DAG.getMachineFunction(); 2528 2529 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2530 // might overwrite each other in case of tail call optimization. 2531 SmallVector<SDValue, 8> MemOpChains2; 2532 // Do not flag preceding copytoreg stuff together with the following stuff. 2533 InFlag = SDValue(); 2534 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2535 MemOpChains2, dl); 2536 if (!MemOpChains2.empty()) 2537 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2538 &MemOpChains2[0], MemOpChains2.size()); 2539 2540 // Store the return address to the appropriate stack slot. 2541 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2542 isPPC64, isDarwinABI, dl); 2543 2544 // Emit callseq_end just before tailcall node. 2545 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2546 DAG.getIntPtrConstant(0, true), InFlag); 2547 InFlag = Chain.getValue(1); 2548 } 2549 2550 static 2551 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2552 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2553 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2554 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2555 const PPCSubtarget &PPCSubTarget) { 2556 2557 bool isPPC64 = PPCSubTarget.isPPC64(); 2558 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2559 2560 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2561 NodeTys.push_back(MVT::Other); // Returns a chain 2562 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2563 2564 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2565 2566 bool needIndirectCall = true; 2567 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2568 // If this is an absolute destination address, use the munged value. 2569 Callee = SDValue(Dest, 0); 2570 needIndirectCall = false; 2571 } 2572 2573 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2574 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2575 // Use indirect calls for ALL functions calls in JIT mode, since the 2576 // far-call stubs may be outside relocation limits for a BL instruction. 2577 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2578 unsigned OpFlags = 0; 2579 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2580 (PPCSubTarget.getTargetTriple().isMacOSX() && 2581 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2582 (G->getGlobal()->isDeclaration() || 2583 G->getGlobal()->isWeakForLinker())) { 2584 // PC-relative references to external symbols should go through $stub, 2585 // unless we're building with the leopard linker or later, which 2586 // automatically synthesizes these stubs. 2587 OpFlags = PPCII::MO_DARWIN_STUB; 2588 } 2589 2590 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2591 // every direct call is) turn it into a TargetGlobalAddress / 2592 // TargetExternalSymbol node so that legalize doesn't hack it. 2593 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2594 Callee.getValueType(), 2595 0, OpFlags); 2596 needIndirectCall = false; 2597 } 2598 } 2599 2600 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2601 unsigned char OpFlags = 0; 2602 2603 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2604 (PPCSubTarget.getTargetTriple().isMacOSX() && 2605 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2606 // PC-relative references to external symbols should go through $stub, 2607 // unless we're building with the leopard linker or later, which 2608 // automatically synthesizes these stubs. 2609 OpFlags = PPCII::MO_DARWIN_STUB; 2610 } 2611 2612 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2613 OpFlags); 2614 needIndirectCall = false; 2615 } 2616 2617 if (needIndirectCall) { 2618 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2619 // to do the call, we can't use PPCISD::CALL. 2620 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2621 2622 if (isSVR4ABI && isPPC64) { 2623 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2624 // entry point, but to the function descriptor (the function entry point 2625 // address is part of the function descriptor though). 2626 // The function descriptor is a three doubleword structure with the 2627 // following fields: function entry point, TOC base address and 2628 // environment pointer. 2629 // Thus for a call through a function pointer, the following actions need 2630 // to be performed: 2631 // 1. Save the TOC of the caller in the TOC save area of its stack 2632 // frame (this is done in LowerCall_Darwin()). 2633 // 2. Load the address of the function entry point from the function 2634 // descriptor. 2635 // 3. Load the TOC of the callee from the function descriptor into r2. 2636 // 4. Load the environment pointer from the function descriptor into 2637 // r11. 2638 // 5. Branch to the function entry point address. 2639 // 6. On return of the callee, the TOC of the caller needs to be 2640 // restored (this is done in FinishCall()). 2641 // 2642 // All those operations are flagged together to ensure that no other 2643 // operations can be scheduled in between. E.g. without flagging the 2644 // operations together, a TOC access in the caller could be scheduled 2645 // between the load of the callee TOC and the branch to the callee, which 2646 // results in the TOC access going through the TOC of the callee instead 2647 // of going through the TOC of the caller, which leads to incorrect code. 2648 2649 // Load the address of the function entry point from the function 2650 // descriptor. 2651 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2652 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2653 InFlag.getNode() ? 3 : 2); 2654 Chain = LoadFuncPtr.getValue(1); 2655 InFlag = LoadFuncPtr.getValue(2); 2656 2657 // Load environment pointer into r11. 2658 // Offset of the environment pointer within the function descriptor. 2659 SDValue PtrOff = DAG.getIntPtrConstant(16); 2660 2661 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2662 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2663 InFlag); 2664 Chain = LoadEnvPtr.getValue(1); 2665 InFlag = LoadEnvPtr.getValue(2); 2666 2667 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2668 InFlag); 2669 Chain = EnvVal.getValue(0); 2670 InFlag = EnvVal.getValue(1); 2671 2672 // Load TOC of the callee into r2. We are using a target-specific load 2673 // with r2 hard coded, because the result of a target-independent load 2674 // would never go directly into r2, since r2 is a reserved register (which 2675 // prevents the register allocator from allocating it), resulting in an 2676 // additional register being allocated and an unnecessary move instruction 2677 // being generated. 2678 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2679 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2680 Callee, InFlag); 2681 Chain = LoadTOCPtr.getValue(0); 2682 InFlag = LoadTOCPtr.getValue(1); 2683 2684 MTCTROps[0] = Chain; 2685 MTCTROps[1] = LoadFuncPtr; 2686 MTCTROps[2] = InFlag; 2687 } 2688 2689 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2690 2 + (InFlag.getNode() != 0)); 2691 InFlag = Chain.getValue(1); 2692 2693 NodeTys.clear(); 2694 NodeTys.push_back(MVT::Other); 2695 NodeTys.push_back(MVT::Glue); 2696 Ops.push_back(Chain); 2697 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2698 Callee.setNode(0); 2699 // Add CTR register as callee so a bctr can be emitted later. 2700 if (isTailCall) 2701 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 2702 } 2703 2704 // If this is a direct call, pass the chain and the callee. 2705 if (Callee.getNode()) { 2706 Ops.push_back(Chain); 2707 Ops.push_back(Callee); 2708 } 2709 // If this is a tail call add stack pointer delta. 2710 if (isTailCall) 2711 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2712 2713 // Add argument registers to the end of the list so that they are known live 2714 // into the call. 2715 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2716 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2717 RegsToPass[i].second.getValueType())); 2718 2719 return CallOpc; 2720 } 2721 2722 SDValue 2723 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2724 CallingConv::ID CallConv, bool isVarArg, 2725 const SmallVectorImpl<ISD::InputArg> &Ins, 2726 DebugLoc dl, SelectionDAG &DAG, 2727 SmallVectorImpl<SDValue> &InVals) const { 2728 2729 SmallVector<CCValAssign, 16> RVLocs; 2730 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2731 getTargetMachine(), RVLocs, *DAG.getContext()); 2732 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2733 2734 // Copy all of the result registers out of their specified physreg. 2735 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2736 CCValAssign &VA = RVLocs[i]; 2737 EVT VT = VA.getValVT(); 2738 assert(VA.isRegLoc() && "Can only return in registers!"); 2739 Chain = DAG.getCopyFromReg(Chain, dl, 2740 VA.getLocReg(), VT, InFlag).getValue(1); 2741 InVals.push_back(Chain.getValue(0)); 2742 InFlag = Chain.getValue(2); 2743 } 2744 2745 return Chain; 2746 } 2747 2748 SDValue 2749 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2750 bool isTailCall, bool isVarArg, 2751 SelectionDAG &DAG, 2752 SmallVector<std::pair<unsigned, SDValue>, 8> 2753 &RegsToPass, 2754 SDValue InFlag, SDValue Chain, 2755 SDValue &Callee, 2756 int SPDiff, unsigned NumBytes, 2757 const SmallVectorImpl<ISD::InputArg> &Ins, 2758 SmallVectorImpl<SDValue> &InVals) const { 2759 std::vector<EVT> NodeTys; 2760 SmallVector<SDValue, 8> Ops; 2761 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2762 isTailCall, RegsToPass, Ops, NodeTys, 2763 PPCSubTarget); 2764 2765 // When performing tail call optimization the callee pops its arguments off 2766 // the stack. Account for this here so these bytes can be pushed back on in 2767 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2768 int BytesCalleePops = 2769 (CallConv == CallingConv::Fast && 2770 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 2771 2772 // Add a register mask operand representing the call-preserved registers. 2773 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 2774 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); 2775 assert(Mask && "Missing call preserved mask for calling convention"); 2776 Ops.push_back(DAG.getRegisterMask(Mask)); 2777 2778 if (InFlag.getNode()) 2779 Ops.push_back(InFlag); 2780 2781 // Emit tail call. 2782 if (isTailCall) { 2783 // If this is the first return lowered for this function, add the regs 2784 // to the liveout set for the function. 2785 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2786 SmallVector<CCValAssign, 16> RVLocs; 2787 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2788 getTargetMachine(), RVLocs, *DAG.getContext()); 2789 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2790 for (unsigned i = 0; i != RVLocs.size(); ++i) 2791 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2792 } 2793 2794 assert(((Callee.getOpcode() == ISD::Register && 2795 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2796 Callee.getOpcode() == ISD::TargetExternalSymbol || 2797 Callee.getOpcode() == ISD::TargetGlobalAddress || 2798 isa<ConstantSDNode>(Callee)) && 2799 "Expecting an global address, external symbol, absolute value or register"); 2800 2801 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2802 } 2803 2804 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2805 InFlag = Chain.getValue(1); 2806 2807 // Add a NOP immediately after the branch instruction when using the 64-bit 2808 // SVR4 ABI. At link time, if caller and callee are in a different module and 2809 // thus have a different TOC, the call will be replaced with a call to a stub 2810 // function which saves the current TOC, loads the TOC of the callee and 2811 // branches to the callee. The NOP will be replaced with a load instruction 2812 // which restores the TOC of the caller from the TOC save slot of the current 2813 // stack frame. If caller and callee belong to the same module (and have the 2814 // same TOC), the NOP will remain unchanged. 2815 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2816 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2817 if (CallOpc == PPCISD::BCTRL_SVR4) { 2818 // This is a call through a function pointer. 2819 // Restore the caller TOC from the save area into R2. 2820 // See PrepareCall() for more information about calls through function 2821 // pointers in the 64-bit SVR4 ABI. 2822 // We are using a target-specific load with r2 hard coded, because the 2823 // result of a target-independent load would never go directly into r2, 2824 // since r2 is a reserved register (which prevents the register allocator 2825 // from allocating it), resulting in an additional register being 2826 // allocated and an unnecessary move instruction being generated. 2827 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2828 InFlag = Chain.getValue(1); 2829 } else { 2830 // Otherwise insert NOP. 2831 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2832 } 2833 } 2834 2835 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2836 DAG.getIntPtrConstant(BytesCalleePops, true), 2837 InFlag); 2838 if (!Ins.empty()) 2839 InFlag = Chain.getValue(1); 2840 2841 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2842 Ins, dl, DAG, InVals); 2843 } 2844 2845 SDValue 2846 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2847 CallingConv::ID CallConv, bool isVarArg, 2848 bool doesNotRet, bool &isTailCall, 2849 const SmallVectorImpl<ISD::OutputArg> &Outs, 2850 const SmallVectorImpl<SDValue> &OutVals, 2851 const SmallVectorImpl<ISD::InputArg> &Ins, 2852 DebugLoc dl, SelectionDAG &DAG, 2853 SmallVectorImpl<SDValue> &InVals) const { 2854 if (isTailCall) 2855 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2856 Ins, DAG); 2857 2858 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2859 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2860 isTailCall, Outs, OutVals, Ins, 2861 dl, DAG, InVals); 2862 2863 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2864 isTailCall, Outs, OutVals, Ins, 2865 dl, DAG, InVals); 2866 } 2867 2868 SDValue 2869 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2870 CallingConv::ID CallConv, bool isVarArg, 2871 bool isTailCall, 2872 const SmallVectorImpl<ISD::OutputArg> &Outs, 2873 const SmallVectorImpl<SDValue> &OutVals, 2874 const SmallVectorImpl<ISD::InputArg> &Ins, 2875 DebugLoc dl, SelectionDAG &DAG, 2876 SmallVectorImpl<SDValue> &InVals) const { 2877 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2878 // of the 32-bit SVR4 ABI stack frame layout. 2879 2880 assert((CallConv == CallingConv::C || 2881 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2882 2883 unsigned PtrByteSize = 4; 2884 2885 MachineFunction &MF = DAG.getMachineFunction(); 2886 2887 // Mark this function as potentially containing a function that contains a 2888 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2889 // and restoring the callers stack pointer in this functions epilog. This is 2890 // done because by tail calling the called function might overwrite the value 2891 // in this function's (MF) stack pointer stack slot 0(SP). 2892 if (getTargetMachine().Options.GuaranteedTailCallOpt && 2893 CallConv == CallingConv::Fast) 2894 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2895 2896 // Count how many bytes are to be pushed on the stack, including the linkage 2897 // area, parameter list area and the part of the local variable space which 2898 // contains copies of aggregates which are passed by value. 2899 2900 // Assign locations to all of the outgoing arguments. 2901 SmallVector<CCValAssign, 16> ArgLocs; 2902 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2903 getTargetMachine(), ArgLocs, *DAG.getContext()); 2904 2905 // Reserve space for the linkage area on the stack. 2906 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2907 2908 if (isVarArg) { 2909 // Handle fixed and variable vector arguments differently. 2910 // Fixed vector arguments go into registers as long as registers are 2911 // available. Variable vector arguments always go into memory. 2912 unsigned NumArgs = Outs.size(); 2913 2914 for (unsigned i = 0; i != NumArgs; ++i) { 2915 MVT ArgVT = Outs[i].VT; 2916 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2917 bool Result; 2918 2919 if (Outs[i].IsFixed) { 2920 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2921 CCInfo); 2922 } else { 2923 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2924 ArgFlags, CCInfo); 2925 } 2926 2927 if (Result) { 2928 #ifndef NDEBUG 2929 errs() << "Call operand #" << i << " has unhandled type " 2930 << EVT(ArgVT).getEVTString() << "\n"; 2931 #endif 2932 llvm_unreachable(0); 2933 } 2934 } 2935 } else { 2936 // All arguments are treated the same. 2937 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2938 } 2939 2940 // Assign locations to all of the outgoing aggregate by value arguments. 2941 SmallVector<CCValAssign, 16> ByValArgLocs; 2942 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2943 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 2944 2945 // Reserve stack space for the allocations in CCInfo. 2946 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2947 2948 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2949 2950 // Size of the linkage area, parameter list area and the part of the local 2951 // space variable where copies of aggregates which are passed by value are 2952 // stored. 2953 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2954 2955 // Calculate by how many bytes the stack has to be adjusted in case of tail 2956 // call optimization. 2957 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2958 2959 // Adjust the stack pointer for the new arguments... 2960 // These operations are automatically eliminated by the prolog/epilog pass 2961 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2962 SDValue CallSeqStart = Chain; 2963 2964 // Load the return address and frame pointer so it can be moved somewhere else 2965 // later. 2966 SDValue LROp, FPOp; 2967 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2968 dl); 2969 2970 // Set up a copy of the stack pointer for use loading and storing any 2971 // arguments that may not fit in the registers available for argument 2972 // passing. 2973 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2974 2975 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2976 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2977 SmallVector<SDValue, 8> MemOpChains; 2978 2979 bool seenFloatArg = false; 2980 // Walk the register/memloc assignments, inserting copies/loads. 2981 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2982 i != e; 2983 ++i) { 2984 CCValAssign &VA = ArgLocs[i]; 2985 SDValue Arg = OutVals[i]; 2986 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2987 2988 if (Flags.isByVal()) { 2989 // Argument is an aggregate which is passed by value, thus we need to 2990 // create a copy of it in the local variable space of the current stack 2991 // frame (which is the stack frame of the caller) and pass the address of 2992 // this copy to the callee. 2993 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2994 CCValAssign &ByValVA = ByValArgLocs[j++]; 2995 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2996 2997 // Memory reserved in the local variable space of the callers stack frame. 2998 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2999 3000 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3001 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3002 3003 // Create a copy of the argument in the local area of the current 3004 // stack frame. 3005 SDValue MemcpyCall = 3006 CreateCopyOfByValArgument(Arg, PtrOff, 3007 CallSeqStart.getNode()->getOperand(0), 3008 Flags, DAG, dl); 3009 3010 // This must go outside the CALLSEQ_START..END. 3011 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3012 CallSeqStart.getNode()->getOperand(1)); 3013 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3014 NewCallSeqStart.getNode()); 3015 Chain = CallSeqStart = NewCallSeqStart; 3016 3017 // Pass the address of the aggregate copy on the stack either in a 3018 // physical register or in the parameter list area of the current stack 3019 // frame to the callee. 3020 Arg = PtrOff; 3021 } 3022 3023 if (VA.isRegLoc()) { 3024 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 3025 // Put argument in a physical register. 3026 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3027 } else { 3028 // Put argument in the parameter list area of the current stack frame. 3029 assert(VA.isMemLoc()); 3030 unsigned LocMemOffset = VA.getLocMemOffset(); 3031 3032 if (!isTailCall) { 3033 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3034 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3035 3036 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3037 MachinePointerInfo(), 3038 false, false, 0)); 3039 } else { 3040 // Calculate and remember argument location. 3041 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3042 TailCallArguments); 3043 } 3044 } 3045 } 3046 3047 if (!MemOpChains.empty()) 3048 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3049 &MemOpChains[0], MemOpChains.size()); 3050 3051 // Set CR6 to true if this is a vararg call with floating args passed in 3052 // registers. 3053 if (isVarArg) { 3054 SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET, 3055 dl, MVT::i32), 0); 3056 RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR)); 3057 } 3058 3059 // Build a sequence of copy-to-reg nodes chained together with token chain 3060 // and flag operands which copy the outgoing args into the appropriate regs. 3061 SDValue InFlag; 3062 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3063 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3064 RegsToPass[i].second, InFlag); 3065 InFlag = Chain.getValue(1); 3066 } 3067 3068 if (isTailCall) 3069 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3070 false, TailCallArguments); 3071 3072 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3073 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3074 Ins, InVals); 3075 } 3076 3077 SDValue 3078 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 3079 CallingConv::ID CallConv, bool isVarArg, 3080 bool isTailCall, 3081 const SmallVectorImpl<ISD::OutputArg> &Outs, 3082 const SmallVectorImpl<SDValue> &OutVals, 3083 const SmallVectorImpl<ISD::InputArg> &Ins, 3084 DebugLoc dl, SelectionDAG &DAG, 3085 SmallVectorImpl<SDValue> &InVals) const { 3086 3087 unsigned NumOps = Outs.size(); 3088 3089 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3090 bool isPPC64 = PtrVT == MVT::i64; 3091 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3092 3093 MachineFunction &MF = DAG.getMachineFunction(); 3094 3095 // Mark this function as potentially containing a function that contains a 3096 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3097 // and restoring the callers stack pointer in this functions epilog. This is 3098 // done because by tail calling the called function might overwrite the value 3099 // in this function's (MF) stack pointer stack slot 0(SP). 3100 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3101 CallConv == CallingConv::Fast) 3102 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3103 3104 unsigned nAltivecParamsAtEnd = 0; 3105 3106 // Count how many bytes are to be pushed on the stack, including the linkage 3107 // area, and parameter passing area. We start with 24/48 bytes, which is 3108 // prereserved space for [SP][CR][LR][3 x unused]. 3109 unsigned NumBytes = 3110 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3111 Outs, OutVals, 3112 nAltivecParamsAtEnd); 3113 3114 // Calculate by how many bytes the stack has to be adjusted in case of tail 3115 // call optimization. 3116 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3117 3118 // To protect arguments on the stack from being clobbered in a tail call, 3119 // force all the loads to happen before doing any other lowering. 3120 if (isTailCall) 3121 Chain = DAG.getStackArgumentTokenFactor(Chain); 3122 3123 // Adjust the stack pointer for the new arguments... 3124 // These operations are automatically eliminated by the prolog/epilog pass 3125 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3126 SDValue CallSeqStart = Chain; 3127 3128 // Load the return address and frame pointer so it can be move somewhere else 3129 // later. 3130 SDValue LROp, FPOp; 3131 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3132 dl); 3133 3134 // Set up a copy of the stack pointer for use loading and storing any 3135 // arguments that may not fit in the registers available for argument 3136 // passing. 3137 SDValue StackPtr; 3138 if (isPPC64) 3139 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3140 else 3141 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3142 3143 // Figure out which arguments are going to go in registers, and which in 3144 // memory. Also, if this is a vararg function, floating point operations 3145 // must be stored to our stack, and loaded into integer regs as well, if 3146 // any integer regs are available for argument passing. 3147 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3148 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3149 3150 static const unsigned GPR_32[] = { // 32-bit registers. 3151 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3152 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3153 }; 3154 static const unsigned GPR_64[] = { // 64-bit registers. 3155 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3156 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3157 }; 3158 static const unsigned *FPR = GetFPR(); 3159 3160 static const unsigned VR[] = { 3161 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3162 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3163 }; 3164 const unsigned NumGPRs = array_lengthof(GPR_32); 3165 const unsigned NumFPRs = 13; 3166 const unsigned NumVRs = array_lengthof(VR); 3167 3168 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3169 3170 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3171 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3172 3173 SmallVector<SDValue, 8> MemOpChains; 3174 for (unsigned i = 0; i != NumOps; ++i) { 3175 SDValue Arg = OutVals[i]; 3176 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3177 3178 // PtrOff will be used to store the current argument to the stack if a 3179 // register cannot be found for it. 3180 SDValue PtrOff; 3181 3182 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3183 3184 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3185 3186 // On PPC64, promote integers to 64-bit values. 3187 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3188 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3189 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3190 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3191 } 3192 3193 // FIXME memcpy is used way more than necessary. Correctness first. 3194 if (Flags.isByVal()) { 3195 unsigned Size = Flags.getByValSize(); 3196 if (Size==1 || Size==2) { 3197 // Very small objects are passed right-justified. 3198 // Everything else is passed left-justified. 3199 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3200 if (GPR_idx != NumGPRs) { 3201 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3202 MachinePointerInfo(), VT, 3203 false, false, 0); 3204 MemOpChains.push_back(Load.getValue(1)); 3205 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3206 3207 ArgOffset += PtrByteSize; 3208 } else { 3209 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3210 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3211 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3212 CallSeqStart.getNode()->getOperand(0), 3213 Flags, DAG, dl); 3214 // This must go outside the CALLSEQ_START..END. 3215 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3216 CallSeqStart.getNode()->getOperand(1)); 3217 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3218 NewCallSeqStart.getNode()); 3219 Chain = CallSeqStart = NewCallSeqStart; 3220 ArgOffset += PtrByteSize; 3221 } 3222 continue; 3223 } 3224 // Copy entire object into memory. There are cases where gcc-generated 3225 // code assumes it is there, even if it could be put entirely into 3226 // registers. (This is not what the doc says.) 3227 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3228 CallSeqStart.getNode()->getOperand(0), 3229 Flags, DAG, dl); 3230 // This must go outside the CALLSEQ_START..END. 3231 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3232 CallSeqStart.getNode()->getOperand(1)); 3233 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3234 Chain = CallSeqStart = NewCallSeqStart; 3235 // And copy the pieces of it that fit into registers. 3236 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3237 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3238 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3239 if (GPR_idx != NumGPRs) { 3240 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3241 MachinePointerInfo(), 3242 false, false, false, 0); 3243 MemOpChains.push_back(Load.getValue(1)); 3244 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3245 ArgOffset += PtrByteSize; 3246 } else { 3247 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3248 break; 3249 } 3250 } 3251 continue; 3252 } 3253 3254 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3255 default: llvm_unreachable("Unexpected ValueType for argument!"); 3256 case MVT::i32: 3257 case MVT::i64: 3258 if (GPR_idx != NumGPRs) { 3259 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3260 } else { 3261 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3262 isPPC64, isTailCall, false, MemOpChains, 3263 TailCallArguments, dl); 3264 } 3265 ArgOffset += PtrByteSize; 3266 break; 3267 case MVT::f32: 3268 case MVT::f64: 3269 if (FPR_idx != NumFPRs) { 3270 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3271 3272 if (isVarArg) { 3273 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3274 MachinePointerInfo(), false, false, 0); 3275 MemOpChains.push_back(Store); 3276 3277 // Float varargs are always shadowed in available integer registers 3278 if (GPR_idx != NumGPRs) { 3279 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3280 MachinePointerInfo(), false, false, 3281 false, 0); 3282 MemOpChains.push_back(Load.getValue(1)); 3283 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3284 } 3285 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3286 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3287 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3288 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3289 MachinePointerInfo(), 3290 false, false, false, 0); 3291 MemOpChains.push_back(Load.getValue(1)); 3292 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3293 } 3294 } else { 3295 // If we have any FPRs remaining, we may also have GPRs remaining. 3296 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3297 // GPRs. 3298 if (GPR_idx != NumGPRs) 3299 ++GPR_idx; 3300 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3301 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3302 ++GPR_idx; 3303 } 3304 } else { 3305 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3306 isPPC64, isTailCall, false, MemOpChains, 3307 TailCallArguments, dl); 3308 } 3309 if (isPPC64) 3310 ArgOffset += 8; 3311 else 3312 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3313 break; 3314 case MVT::v4f32: 3315 case MVT::v4i32: 3316 case MVT::v8i16: 3317 case MVT::v16i8: 3318 if (isVarArg) { 3319 // These go aligned on the stack, or in the corresponding R registers 3320 // when within range. The Darwin PPC ABI doc claims they also go in 3321 // V registers; in fact gcc does this only for arguments that are 3322 // prototyped, not for those that match the ... We do it for all 3323 // arguments, seems to work. 3324 while (ArgOffset % 16 !=0) { 3325 ArgOffset += PtrByteSize; 3326 if (GPR_idx != NumGPRs) 3327 GPR_idx++; 3328 } 3329 // We could elide this store in the case where the object fits 3330 // entirely in R registers. Maybe later. 3331 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3332 DAG.getConstant(ArgOffset, PtrVT)); 3333 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3334 MachinePointerInfo(), false, false, 0); 3335 MemOpChains.push_back(Store); 3336 if (VR_idx != NumVRs) { 3337 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3338 MachinePointerInfo(), 3339 false, false, false, 0); 3340 MemOpChains.push_back(Load.getValue(1)); 3341 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3342 } 3343 ArgOffset += 16; 3344 for (unsigned i=0; i<16; i+=PtrByteSize) { 3345 if (GPR_idx == NumGPRs) 3346 break; 3347 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3348 DAG.getConstant(i, PtrVT)); 3349 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3350 false, false, false, 0); 3351 MemOpChains.push_back(Load.getValue(1)); 3352 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3353 } 3354 break; 3355 } 3356 3357 // Non-varargs Altivec params generally go in registers, but have 3358 // stack space allocated at the end. 3359 if (VR_idx != NumVRs) { 3360 // Doesn't have GPR space allocated. 3361 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3362 } else if (nAltivecParamsAtEnd==0) { 3363 // We are emitting Altivec params in order. 3364 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3365 isPPC64, isTailCall, true, MemOpChains, 3366 TailCallArguments, dl); 3367 ArgOffset += 16; 3368 } 3369 break; 3370 } 3371 } 3372 // If all Altivec parameters fit in registers, as they usually do, 3373 // they get stack space following the non-Altivec parameters. We 3374 // don't track this here because nobody below needs it. 3375 // If there are more Altivec parameters than fit in registers emit 3376 // the stores here. 3377 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3378 unsigned j = 0; 3379 // Offset is aligned; skip 1st 12 params which go in V registers. 3380 ArgOffset = ((ArgOffset+15)/16)*16; 3381 ArgOffset += 12*16; 3382 for (unsigned i = 0; i != NumOps; ++i) { 3383 SDValue Arg = OutVals[i]; 3384 EVT ArgType = Outs[i].VT; 3385 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3386 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3387 if (++j > NumVRs) { 3388 SDValue PtrOff; 3389 // We are emitting Altivec params in order. 3390 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3391 isPPC64, isTailCall, true, MemOpChains, 3392 TailCallArguments, dl); 3393 ArgOffset += 16; 3394 } 3395 } 3396 } 3397 } 3398 3399 if (!MemOpChains.empty()) 3400 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3401 &MemOpChains[0], MemOpChains.size()); 3402 3403 // Check if this is an indirect call (MTCTR/BCTRL). 3404 // See PrepareCall() for more information about calls through function 3405 // pointers in the 64-bit SVR4 ABI. 3406 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3407 !dyn_cast<GlobalAddressSDNode>(Callee) && 3408 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3409 !isBLACompatibleAddress(Callee, DAG)) { 3410 // Load r2 into a virtual register and store it to the TOC save area. 3411 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3412 // TOC save area offset. 3413 SDValue PtrOff = DAG.getIntPtrConstant(40); 3414 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3415 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3416 false, false, 0); 3417 } 3418 3419 // On Darwin, R12 must contain the address of an indirect callee. This does 3420 // not mean the MTCTR instruction must use R12; it's easier to model this as 3421 // an extra parameter, so do that. 3422 if (!isTailCall && 3423 !dyn_cast<GlobalAddressSDNode>(Callee) && 3424 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3425 !isBLACompatibleAddress(Callee, DAG)) 3426 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3427 PPC::R12), Callee)); 3428 3429 // Build a sequence of copy-to-reg nodes chained together with token chain 3430 // and flag operands which copy the outgoing args into the appropriate regs. 3431 SDValue InFlag; 3432 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3433 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3434 RegsToPass[i].second, InFlag); 3435 InFlag = Chain.getValue(1); 3436 } 3437 3438 if (isTailCall) 3439 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3440 FPOp, true, TailCallArguments); 3441 3442 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3443 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3444 Ins, InVals); 3445 } 3446 3447 bool 3448 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3449 MachineFunction &MF, bool isVarArg, 3450 const SmallVectorImpl<ISD::OutputArg> &Outs, 3451 LLVMContext &Context) const { 3452 SmallVector<CCValAssign, 16> RVLocs; 3453 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), 3454 RVLocs, Context); 3455 return CCInfo.CheckReturn(Outs, RetCC_PPC); 3456 } 3457 3458 SDValue 3459 PPCTargetLowering::LowerReturn(SDValue Chain, 3460 CallingConv::ID CallConv, bool isVarArg, 3461 const SmallVectorImpl<ISD::OutputArg> &Outs, 3462 const SmallVectorImpl<SDValue> &OutVals, 3463 DebugLoc dl, SelectionDAG &DAG) const { 3464 3465 SmallVector<CCValAssign, 16> RVLocs; 3466 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3467 getTargetMachine(), RVLocs, *DAG.getContext()); 3468 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3469 3470 // If this is the first return lowered for this function, add the regs to the 3471 // liveout set for the function. 3472 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3473 for (unsigned i = 0; i != RVLocs.size(); ++i) 3474 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3475 } 3476 3477 SDValue Flag; 3478 3479 // Copy the result values into the output registers. 3480 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3481 CCValAssign &VA = RVLocs[i]; 3482 assert(VA.isRegLoc() && "Can only return in registers!"); 3483 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3484 OutVals[i], Flag); 3485 Flag = Chain.getValue(1); 3486 } 3487 3488 if (Flag.getNode()) 3489 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3490 else 3491 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3492 } 3493 3494 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3495 const PPCSubtarget &Subtarget) const { 3496 // When we pop the dynamic allocation we need to restore the SP link. 3497 DebugLoc dl = Op.getDebugLoc(); 3498 3499 // Get the corect type for pointers. 3500 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3501 3502 // Construct the stack pointer operand. 3503 bool isPPC64 = Subtarget.isPPC64(); 3504 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3505 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3506 3507 // Get the operands for the STACKRESTORE. 3508 SDValue Chain = Op.getOperand(0); 3509 SDValue SaveSP = Op.getOperand(1); 3510 3511 // Load the old link SP. 3512 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3513 MachinePointerInfo(), 3514 false, false, false, 0); 3515 3516 // Restore the stack pointer. 3517 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3518 3519 // Store the old link SP. 3520 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3521 false, false, 0); 3522 } 3523 3524 3525 3526 SDValue 3527 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3528 MachineFunction &MF = DAG.getMachineFunction(); 3529 bool isPPC64 = PPCSubTarget.isPPC64(); 3530 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3531 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3532 3533 // Get current frame pointer save index. The users of this index will be 3534 // primarily DYNALLOC instructions. 3535 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3536 int RASI = FI->getReturnAddrSaveIndex(); 3537 3538 // If the frame pointer save index hasn't been defined yet. 3539 if (!RASI) { 3540 // Find out what the fix offset of the frame pointer save area. 3541 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3542 // Allocate the frame index for frame pointer save area. 3543 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3544 // Save the result. 3545 FI->setReturnAddrSaveIndex(RASI); 3546 } 3547 return DAG.getFrameIndex(RASI, PtrVT); 3548 } 3549 3550 SDValue 3551 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3552 MachineFunction &MF = DAG.getMachineFunction(); 3553 bool isPPC64 = PPCSubTarget.isPPC64(); 3554 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3555 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3556 3557 // Get current frame pointer save index. The users of this index will be 3558 // primarily DYNALLOC instructions. 3559 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3560 int FPSI = FI->getFramePointerSaveIndex(); 3561 3562 // If the frame pointer save index hasn't been defined yet. 3563 if (!FPSI) { 3564 // Find out what the fix offset of the frame pointer save area. 3565 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3566 isDarwinABI); 3567 3568 // Allocate the frame index for frame pointer save area. 3569 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3570 // Save the result. 3571 FI->setFramePointerSaveIndex(FPSI); 3572 } 3573 return DAG.getFrameIndex(FPSI, PtrVT); 3574 } 3575 3576 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3577 SelectionDAG &DAG, 3578 const PPCSubtarget &Subtarget) const { 3579 // Get the inputs. 3580 SDValue Chain = Op.getOperand(0); 3581 SDValue Size = Op.getOperand(1); 3582 DebugLoc dl = Op.getDebugLoc(); 3583 3584 // Get the corect type for pointers. 3585 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3586 // Negate the size. 3587 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3588 DAG.getConstant(0, PtrVT), Size); 3589 // Construct a node for the frame pointer save index. 3590 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3591 // Build a DYNALLOC node. 3592 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3593 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3594 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3595 } 3596 3597 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3598 /// possible. 3599 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3600 // Not FP? Not a fsel. 3601 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3602 !Op.getOperand(2).getValueType().isFloatingPoint()) 3603 return Op; 3604 3605 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3606 3607 // Cannot handle SETEQ/SETNE. 3608 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3609 3610 EVT ResVT = Op.getValueType(); 3611 EVT CmpVT = Op.getOperand(0).getValueType(); 3612 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3613 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3614 DebugLoc dl = Op.getDebugLoc(); 3615 3616 // If the RHS of the comparison is a 0.0, we don't need to do the 3617 // subtraction at all. 3618 if (isFloatingPointZero(RHS)) 3619 switch (CC) { 3620 default: break; // SETUO etc aren't handled by fsel. 3621 case ISD::SETULT: 3622 case ISD::SETLT: 3623 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3624 case ISD::SETOGE: 3625 case ISD::SETGE: 3626 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3627 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3628 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3629 case ISD::SETUGT: 3630 case ISD::SETGT: 3631 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3632 case ISD::SETOLE: 3633 case ISD::SETLE: 3634 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3635 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3636 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3637 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3638 } 3639 3640 SDValue Cmp; 3641 switch (CC) { 3642 default: break; // SETUO etc aren't handled by fsel. 3643 case ISD::SETULT: 3644 case ISD::SETLT: 3645 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3646 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3647 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3648 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3649 case ISD::SETOGE: 3650 case ISD::SETGE: 3651 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3652 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3653 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3654 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3655 case ISD::SETUGT: 3656 case ISD::SETGT: 3657 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3658 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3659 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3660 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3661 case ISD::SETOLE: 3662 case ISD::SETLE: 3663 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3664 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3665 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3666 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3667 } 3668 return Op; 3669 } 3670 3671 // FIXME: Split this code up when LegalizeDAGTypes lands. 3672 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3673 DebugLoc dl) const { 3674 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3675 SDValue Src = Op.getOperand(0); 3676 if (Src.getValueType() == MVT::f32) 3677 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3678 3679 SDValue Tmp; 3680 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3681 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3682 case MVT::i32: 3683 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3684 PPCISD::FCTIDZ, 3685 dl, MVT::f64, Src); 3686 break; 3687 case MVT::i64: 3688 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3689 break; 3690 } 3691 3692 // Convert the FP value to an int value through memory. 3693 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3694 3695 // Emit a store to the stack slot. 3696 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3697 MachinePointerInfo(), false, false, 0); 3698 3699 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3700 // add in a bias. 3701 if (Op.getValueType() == MVT::i32) 3702 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3703 DAG.getConstant(4, FIPtr.getValueType())); 3704 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3705 false, false, false, 0); 3706 } 3707 3708 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3709 SelectionDAG &DAG) const { 3710 DebugLoc dl = Op.getDebugLoc(); 3711 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3712 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3713 return SDValue(); 3714 3715 if (Op.getOperand(0).getValueType() == MVT::i64) { 3716 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3717 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3718 if (Op.getValueType() == MVT::f32) 3719 FP = DAG.getNode(ISD::FP_ROUND, dl, 3720 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3721 return FP; 3722 } 3723 3724 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3725 "Unhandled SINT_TO_FP type in custom expander!"); 3726 // Since we only generate this in 64-bit mode, we can take advantage of 3727 // 64-bit registers. In particular, sign extend the input value into the 3728 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3729 // then lfd it and fcfid it. 3730 MachineFunction &MF = DAG.getMachineFunction(); 3731 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3732 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3733 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3734 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3735 3736 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3737 Op.getOperand(0)); 3738 3739 // STD the extended value into the stack slot. 3740 MachineMemOperand *MMO = 3741 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3742 MachineMemOperand::MOStore, 8, 8); 3743 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3744 SDValue Store = 3745 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3746 Ops, 4, MVT::i64, MMO); 3747 // Load the value as a double. 3748 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3749 false, false, false, 0); 3750 3751 // FCFID it and return it. 3752 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3753 if (Op.getValueType() == MVT::f32) 3754 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3755 return FP; 3756 } 3757 3758 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3759 SelectionDAG &DAG) const { 3760 DebugLoc dl = Op.getDebugLoc(); 3761 /* 3762 The rounding mode is in bits 30:31 of FPSR, and has the following 3763 settings: 3764 00 Round to nearest 3765 01 Round to 0 3766 10 Round to +inf 3767 11 Round to -inf 3768 3769 FLT_ROUNDS, on the other hand, expects the following: 3770 -1 Undefined 3771 0 Round to 0 3772 1 Round to nearest 3773 2 Round to +inf 3774 3 Round to -inf 3775 3776 To perform the conversion, we do: 3777 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3778 */ 3779 3780 MachineFunction &MF = DAG.getMachineFunction(); 3781 EVT VT = Op.getValueType(); 3782 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3783 std::vector<EVT> NodeTys; 3784 SDValue MFFSreg, InFlag; 3785 3786 // Save FP Control Word to register 3787 NodeTys.push_back(MVT::f64); // return register 3788 NodeTys.push_back(MVT::Glue); // unused in this context 3789 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3790 3791 // Save FP register to stack slot 3792 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3793 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3794 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3795 StackSlot, MachinePointerInfo(), false, false,0); 3796 3797 // Load FP Control Word from low 32 bits of stack slot. 3798 SDValue Four = DAG.getConstant(4, PtrVT); 3799 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3800 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3801 false, false, false, 0); 3802 3803 // Transform as necessary 3804 SDValue CWD1 = 3805 DAG.getNode(ISD::AND, dl, MVT::i32, 3806 CWD, DAG.getConstant(3, MVT::i32)); 3807 SDValue CWD2 = 3808 DAG.getNode(ISD::SRL, dl, MVT::i32, 3809 DAG.getNode(ISD::AND, dl, MVT::i32, 3810 DAG.getNode(ISD::XOR, dl, MVT::i32, 3811 CWD, DAG.getConstant(3, MVT::i32)), 3812 DAG.getConstant(3, MVT::i32)), 3813 DAG.getConstant(1, MVT::i32)); 3814 3815 SDValue RetVal = 3816 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3817 3818 return DAG.getNode((VT.getSizeInBits() < 16 ? 3819 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3820 } 3821 3822 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3823 EVT VT = Op.getValueType(); 3824 unsigned BitWidth = VT.getSizeInBits(); 3825 DebugLoc dl = Op.getDebugLoc(); 3826 assert(Op.getNumOperands() == 3 && 3827 VT == Op.getOperand(1).getValueType() && 3828 "Unexpected SHL!"); 3829 3830 // Expand into a bunch of logical ops. Note that these ops 3831 // depend on the PPC behavior for oversized shift amounts. 3832 SDValue Lo = Op.getOperand(0); 3833 SDValue Hi = Op.getOperand(1); 3834 SDValue Amt = Op.getOperand(2); 3835 EVT AmtVT = Amt.getValueType(); 3836 3837 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3838 DAG.getConstant(BitWidth, AmtVT), Amt); 3839 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3840 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3841 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3842 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3843 DAG.getConstant(-BitWidth, AmtVT)); 3844 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3845 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3846 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3847 SDValue OutOps[] = { OutLo, OutHi }; 3848 return DAG.getMergeValues(OutOps, 2, dl); 3849 } 3850 3851 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3852 EVT VT = Op.getValueType(); 3853 DebugLoc dl = Op.getDebugLoc(); 3854 unsigned BitWidth = VT.getSizeInBits(); 3855 assert(Op.getNumOperands() == 3 && 3856 VT == Op.getOperand(1).getValueType() && 3857 "Unexpected SRL!"); 3858 3859 // Expand into a bunch of logical ops. Note that these ops 3860 // depend on the PPC behavior for oversized shift amounts. 3861 SDValue Lo = Op.getOperand(0); 3862 SDValue Hi = Op.getOperand(1); 3863 SDValue Amt = Op.getOperand(2); 3864 EVT AmtVT = Amt.getValueType(); 3865 3866 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3867 DAG.getConstant(BitWidth, AmtVT), Amt); 3868 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3869 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3870 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3871 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3872 DAG.getConstant(-BitWidth, AmtVT)); 3873 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3874 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3875 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3876 SDValue OutOps[] = { OutLo, OutHi }; 3877 return DAG.getMergeValues(OutOps, 2, dl); 3878 } 3879 3880 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3881 DebugLoc dl = Op.getDebugLoc(); 3882 EVT VT = Op.getValueType(); 3883 unsigned BitWidth = VT.getSizeInBits(); 3884 assert(Op.getNumOperands() == 3 && 3885 VT == Op.getOperand(1).getValueType() && 3886 "Unexpected SRA!"); 3887 3888 // Expand into a bunch of logical ops, followed by a select_cc. 3889 SDValue Lo = Op.getOperand(0); 3890 SDValue Hi = Op.getOperand(1); 3891 SDValue Amt = Op.getOperand(2); 3892 EVT AmtVT = Amt.getValueType(); 3893 3894 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3895 DAG.getConstant(BitWidth, AmtVT), Amt); 3896 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3897 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3898 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3899 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3900 DAG.getConstant(-BitWidth, AmtVT)); 3901 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3902 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3903 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3904 Tmp4, Tmp6, ISD::SETLE); 3905 SDValue OutOps[] = { OutLo, OutHi }; 3906 return DAG.getMergeValues(OutOps, 2, dl); 3907 } 3908 3909 //===----------------------------------------------------------------------===// 3910 // Vector related lowering. 3911 // 3912 3913 /// BuildSplatI - Build a canonical splati of Val with an element size of 3914 /// SplatSize. Cast the result to VT. 3915 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3916 SelectionDAG &DAG, DebugLoc dl) { 3917 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3918 3919 static const EVT VTys[] = { // canonical VT to use for each size. 3920 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3921 }; 3922 3923 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3924 3925 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3926 if (Val == -1) 3927 SplatSize = 1; 3928 3929 EVT CanonicalVT = VTys[SplatSize-1]; 3930 3931 // Build a canonical splat for this value. 3932 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3933 SmallVector<SDValue, 8> Ops; 3934 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3935 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3936 &Ops[0], Ops.size()); 3937 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3938 } 3939 3940 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3941 /// specified intrinsic ID. 3942 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3943 SelectionDAG &DAG, DebugLoc dl, 3944 EVT DestVT = MVT::Other) { 3945 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3946 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3947 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3948 } 3949 3950 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3951 /// specified intrinsic ID. 3952 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3953 SDValue Op2, SelectionDAG &DAG, 3954 DebugLoc dl, EVT DestVT = MVT::Other) { 3955 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3956 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3957 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3958 } 3959 3960 3961 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3962 /// amount. The result has the specified value type. 3963 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3964 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3965 // Force LHS/RHS to be the right type. 3966 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3967 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3968 3969 int Ops[16]; 3970 for (unsigned i = 0; i != 16; ++i) 3971 Ops[i] = i + Amt; 3972 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3973 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3974 } 3975 3976 // If this is a case we can't handle, return null and let the default 3977 // expansion code take care of it. If we CAN select this case, and if it 3978 // selects to a single instruction, return Op. Otherwise, if we can codegen 3979 // this case more efficiently than a constant pool load, lower it to the 3980 // sequence of ops that should be used. 3981 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3982 SelectionDAG &DAG) const { 3983 DebugLoc dl = Op.getDebugLoc(); 3984 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3985 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3986 3987 // Check if this is a splat of a constant value. 3988 APInt APSplatBits, APSplatUndef; 3989 unsigned SplatBitSize; 3990 bool HasAnyUndefs; 3991 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3992 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3993 return SDValue(); 3994 3995 unsigned SplatBits = APSplatBits.getZExtValue(); 3996 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3997 unsigned SplatSize = SplatBitSize / 8; 3998 3999 // First, handle single instruction cases. 4000 4001 // All zeros? 4002 if (SplatBits == 0) { 4003 // Canonicalize all zero vectors to be v4i32. 4004 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 4005 SDValue Z = DAG.getConstant(0, MVT::i32); 4006 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 4007 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 4008 } 4009 return Op; 4010 } 4011 4012 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 4013 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 4014 (32-SplatBitSize)); 4015 if (SextVal >= -16 && SextVal <= 15) 4016 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 4017 4018 4019 // Two instruction sequences. 4020 4021 // If this value is in the range [-32,30] and is even, use: 4022 // tmp = VSPLTI[bhw], result = add tmp, tmp 4023 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 4024 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 4025 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 4026 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4027 } 4028 4029 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 4030 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 4031 // for fneg/fabs. 4032 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 4033 // Make -1 and vspltisw -1: 4034 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 4035 4036 // Make the VSLW intrinsic, computing 0x8000_0000. 4037 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 4038 OnesV, DAG, dl); 4039 4040 // xor by OnesV to invert it. 4041 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 4042 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4043 } 4044 4045 // Check to see if this is a wide variety of vsplti*, binop self cases. 4046 static const signed char SplatCsts[] = { 4047 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 4048 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 4049 }; 4050 4051 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4052 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4053 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4054 int i = SplatCsts[idx]; 4055 4056 // Figure out what shift amount will be used by altivec if shifted by i in 4057 // this splat size. 4058 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4059 4060 // vsplti + shl self. 4061 if (SextVal == (i << (int)TypeShiftAmt)) { 4062 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4063 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4064 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4065 Intrinsic::ppc_altivec_vslw 4066 }; 4067 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4068 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4069 } 4070 4071 // vsplti + srl self. 4072 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4073 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4074 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4075 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4076 Intrinsic::ppc_altivec_vsrw 4077 }; 4078 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4079 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4080 } 4081 4082 // vsplti + sra self. 4083 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4084 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4085 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4086 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4087 Intrinsic::ppc_altivec_vsraw 4088 }; 4089 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4090 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4091 } 4092 4093 // vsplti + rol self. 4094 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4095 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4096 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4097 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4098 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4099 Intrinsic::ppc_altivec_vrlw 4100 }; 4101 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4102 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4103 } 4104 4105 // t = vsplti c, result = vsldoi t, t, 1 4106 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 4107 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4108 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4109 } 4110 // t = vsplti c, result = vsldoi t, t, 2 4111 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 4112 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4113 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4114 } 4115 // t = vsplti c, result = vsldoi t, t, 3 4116 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4117 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4118 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4119 } 4120 } 4121 4122 // Three instruction sequences. 4123 4124 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4125 if (SextVal >= 0 && SextVal <= 31) { 4126 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4127 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4128 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4129 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4130 } 4131 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4132 if (SextVal >= -31 && SextVal <= 0) { 4133 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4134 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4135 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4136 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4137 } 4138 4139 return SDValue(); 4140 } 4141 4142 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4143 /// the specified operations to build the shuffle. 4144 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4145 SDValue RHS, SelectionDAG &DAG, 4146 DebugLoc dl) { 4147 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4148 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4149 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4150 4151 enum { 4152 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4153 OP_VMRGHW, 4154 OP_VMRGLW, 4155 OP_VSPLTISW0, 4156 OP_VSPLTISW1, 4157 OP_VSPLTISW2, 4158 OP_VSPLTISW3, 4159 OP_VSLDOI4, 4160 OP_VSLDOI8, 4161 OP_VSLDOI12 4162 }; 4163 4164 if (OpNum == OP_COPY) { 4165 if (LHSID == (1*9+2)*9+3) return LHS; 4166 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4167 return RHS; 4168 } 4169 4170 SDValue OpLHS, OpRHS; 4171 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4172 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4173 4174 int ShufIdxs[16]; 4175 switch (OpNum) { 4176 default: llvm_unreachable("Unknown i32 permute!"); 4177 case OP_VMRGHW: 4178 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4179 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4180 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4181 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4182 break; 4183 case OP_VMRGLW: 4184 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4185 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4186 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4187 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4188 break; 4189 case OP_VSPLTISW0: 4190 for (unsigned i = 0; i != 16; ++i) 4191 ShufIdxs[i] = (i&3)+0; 4192 break; 4193 case OP_VSPLTISW1: 4194 for (unsigned i = 0; i != 16; ++i) 4195 ShufIdxs[i] = (i&3)+4; 4196 break; 4197 case OP_VSPLTISW2: 4198 for (unsigned i = 0; i != 16; ++i) 4199 ShufIdxs[i] = (i&3)+8; 4200 break; 4201 case OP_VSPLTISW3: 4202 for (unsigned i = 0; i != 16; ++i) 4203 ShufIdxs[i] = (i&3)+12; 4204 break; 4205 case OP_VSLDOI4: 4206 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4207 case OP_VSLDOI8: 4208 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4209 case OP_VSLDOI12: 4210 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4211 } 4212 EVT VT = OpLHS.getValueType(); 4213 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4214 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4215 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4216 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4217 } 4218 4219 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4220 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4221 /// return the code it can be lowered into. Worst case, it can always be 4222 /// lowered into a vperm. 4223 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4224 SelectionDAG &DAG) const { 4225 DebugLoc dl = Op.getDebugLoc(); 4226 SDValue V1 = Op.getOperand(0); 4227 SDValue V2 = Op.getOperand(1); 4228 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4229 EVT VT = Op.getValueType(); 4230 4231 // Cases that are handled by instructions that take permute immediates 4232 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4233 // selected by the instruction selector. 4234 if (V2.getOpcode() == ISD::UNDEF) { 4235 if (PPC::isSplatShuffleMask(SVOp, 1) || 4236 PPC::isSplatShuffleMask(SVOp, 2) || 4237 PPC::isSplatShuffleMask(SVOp, 4) || 4238 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4239 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4240 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4241 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4242 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4243 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4244 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4245 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4246 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4247 return Op; 4248 } 4249 } 4250 4251 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4252 // and produce a fixed permutation. If any of these match, do not lower to 4253 // VPERM. 4254 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4255 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4256 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4257 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4258 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4259 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4260 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4261 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4262 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4263 return Op; 4264 4265 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4266 // perfect shuffle table to emit an optimal matching sequence. 4267 ArrayRef<int> PermMask = SVOp->getMask(); 4268 4269 unsigned PFIndexes[4]; 4270 bool isFourElementShuffle = true; 4271 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4272 unsigned EltNo = 8; // Start out undef. 4273 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4274 if (PermMask[i*4+j] < 0) 4275 continue; // Undef, ignore it. 4276 4277 unsigned ByteSource = PermMask[i*4+j]; 4278 if ((ByteSource & 3) != j) { 4279 isFourElementShuffle = false; 4280 break; 4281 } 4282 4283 if (EltNo == 8) { 4284 EltNo = ByteSource/4; 4285 } else if (EltNo != ByteSource/4) { 4286 isFourElementShuffle = false; 4287 break; 4288 } 4289 } 4290 PFIndexes[i] = EltNo; 4291 } 4292 4293 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4294 // perfect shuffle vector to determine if it is cost effective to do this as 4295 // discrete instructions, or whether we should use a vperm. 4296 if (isFourElementShuffle) { 4297 // Compute the index in the perfect shuffle table. 4298 unsigned PFTableIndex = 4299 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4300 4301 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4302 unsigned Cost = (PFEntry >> 30); 4303 4304 // Determining when to avoid vperm is tricky. Many things affect the cost 4305 // of vperm, particularly how many times the perm mask needs to be computed. 4306 // For example, if the perm mask can be hoisted out of a loop or is already 4307 // used (perhaps because there are multiple permutes with the same shuffle 4308 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4309 // the loop requires an extra register. 4310 // 4311 // As a compromise, we only emit discrete instructions if the shuffle can be 4312 // generated in 3 or fewer operations. When we have loop information 4313 // available, if this block is within a loop, we should avoid using vperm 4314 // for 3-operation perms and use a constant pool load instead. 4315 if (Cost < 3) 4316 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4317 } 4318 4319 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4320 // vector that will get spilled to the constant pool. 4321 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4322 4323 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4324 // that it is in input element units, not in bytes. Convert now. 4325 EVT EltVT = V1.getValueType().getVectorElementType(); 4326 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4327 4328 SmallVector<SDValue, 16> ResultMask; 4329 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4330 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4331 4332 for (unsigned j = 0; j != BytesPerElement; ++j) 4333 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4334 MVT::i32)); 4335 } 4336 4337 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4338 &ResultMask[0], ResultMask.size()); 4339 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4340 } 4341 4342 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4343 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4344 /// information about the intrinsic. 4345 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4346 bool &isDot) { 4347 unsigned IntrinsicID = 4348 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4349 CompareOpc = -1; 4350 isDot = false; 4351 switch (IntrinsicID) { 4352 default: return false; 4353 // Comparison predicates. 4354 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4355 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4356 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4357 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4358 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4359 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4360 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4361 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4362 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4363 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4364 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4365 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4366 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4367 4368 // Normal Comparisons. 4369 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4370 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4371 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4372 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4373 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4374 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4375 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4376 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4377 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4378 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4379 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4380 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4381 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4382 } 4383 return true; 4384 } 4385 4386 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4387 /// lower, do it, otherwise return null. 4388 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4389 SelectionDAG &DAG) const { 4390 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4391 // opcode number of the comparison. 4392 DebugLoc dl = Op.getDebugLoc(); 4393 int CompareOpc; 4394 bool isDot; 4395 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4396 return SDValue(); // Don't custom lower most intrinsics. 4397 4398 // If this is a non-dot comparison, make the VCMP node and we are done. 4399 if (!isDot) { 4400 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4401 Op.getOperand(1), Op.getOperand(2), 4402 DAG.getConstant(CompareOpc, MVT::i32)); 4403 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4404 } 4405 4406 // Create the PPCISD altivec 'dot' comparison node. 4407 SDValue Ops[] = { 4408 Op.getOperand(2), // LHS 4409 Op.getOperand(3), // RHS 4410 DAG.getConstant(CompareOpc, MVT::i32) 4411 }; 4412 std::vector<EVT> VTs; 4413 VTs.push_back(Op.getOperand(2).getValueType()); 4414 VTs.push_back(MVT::Glue); 4415 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4416 4417 // Now that we have the comparison, emit a copy from the CR to a GPR. 4418 // This is flagged to the above dot comparison. 4419 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4420 DAG.getRegister(PPC::CR6, MVT::i32), 4421 CompNode.getValue(1)); 4422 4423 // Unpack the result based on how the target uses it. 4424 unsigned BitNo; // Bit # of CR6. 4425 bool InvertBit; // Invert result? 4426 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4427 default: // Can't happen, don't crash on invalid number though. 4428 case 0: // Return the value of the EQ bit of CR6. 4429 BitNo = 0; InvertBit = false; 4430 break; 4431 case 1: // Return the inverted value of the EQ bit of CR6. 4432 BitNo = 0; InvertBit = true; 4433 break; 4434 case 2: // Return the value of the LT bit of CR6. 4435 BitNo = 2; InvertBit = false; 4436 break; 4437 case 3: // Return the inverted value of the LT bit of CR6. 4438 BitNo = 2; InvertBit = true; 4439 break; 4440 } 4441 4442 // Shift the bit into the low position. 4443 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4444 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4445 // Isolate the bit. 4446 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4447 DAG.getConstant(1, MVT::i32)); 4448 4449 // If we are supposed to, toggle the bit. 4450 if (InvertBit) 4451 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4452 DAG.getConstant(1, MVT::i32)); 4453 return Flags; 4454 } 4455 4456 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4457 SelectionDAG &DAG) const { 4458 DebugLoc dl = Op.getDebugLoc(); 4459 // Create a stack slot that is 16-byte aligned. 4460 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4461 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4462 EVT PtrVT = getPointerTy(); 4463 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4464 4465 // Store the input value into Value#0 of the stack slot. 4466 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4467 Op.getOperand(0), FIdx, MachinePointerInfo(), 4468 false, false, 0); 4469 // Load it out. 4470 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4471 false, false, false, 0); 4472 } 4473 4474 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4475 DebugLoc dl = Op.getDebugLoc(); 4476 if (Op.getValueType() == MVT::v4i32) { 4477 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4478 4479 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4480 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4481 4482 SDValue RHSSwap = // = vrlw RHS, 16 4483 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4484 4485 // Shrinkify inputs to v8i16. 4486 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4487 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4488 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4489 4490 // Low parts multiplied together, generating 32-bit results (we ignore the 4491 // top parts). 4492 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4493 LHS, RHS, DAG, dl, MVT::v4i32); 4494 4495 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4496 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4497 // Shift the high parts up 16 bits. 4498 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4499 Neg16, DAG, dl); 4500 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4501 } else if (Op.getValueType() == MVT::v8i16) { 4502 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4503 4504 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4505 4506 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4507 LHS, RHS, Zero, DAG, dl); 4508 } else if (Op.getValueType() == MVT::v16i8) { 4509 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4510 4511 // Multiply the even 8-bit parts, producing 16-bit sums. 4512 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4513 LHS, RHS, DAG, dl, MVT::v8i16); 4514 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4515 4516 // Multiply the odd 8-bit parts, producing 16-bit sums. 4517 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4518 LHS, RHS, DAG, dl, MVT::v8i16); 4519 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4520 4521 // Merge the results together. 4522 int Ops[16]; 4523 for (unsigned i = 0; i != 8; ++i) { 4524 Ops[i*2 ] = 2*i+1; 4525 Ops[i*2+1] = 2*i+1+16; 4526 } 4527 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4528 } else { 4529 llvm_unreachable("Unknown mul to lower!"); 4530 } 4531 } 4532 4533 /// LowerOperation - Provide custom lowering hooks for some operations. 4534 /// 4535 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4536 switch (Op.getOpcode()) { 4537 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4538 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4539 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4540 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4541 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4542 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4543 case ISD::SETCC: return LowerSETCC(Op, DAG); 4544 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 4545 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 4546 case ISD::VASTART: 4547 return LowerVASTART(Op, DAG, PPCSubTarget); 4548 4549 case ISD::VAARG: 4550 return LowerVAARG(Op, DAG, PPCSubTarget); 4551 4552 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4553 case ISD::DYNAMIC_STACKALLOC: 4554 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4555 4556 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4557 case ISD::FP_TO_UINT: 4558 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4559 Op.getDebugLoc()); 4560 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4561 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4562 4563 // Lower 64-bit shifts. 4564 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4565 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4566 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4567 4568 // Vector-related lowering. 4569 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4570 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4571 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4572 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4573 case ISD::MUL: return LowerMUL(Op, DAG); 4574 4575 // Frame & Return address. 4576 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4577 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4578 } 4579 } 4580 4581 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4582 SmallVectorImpl<SDValue>&Results, 4583 SelectionDAG &DAG) const { 4584 const TargetMachine &TM = getTargetMachine(); 4585 DebugLoc dl = N->getDebugLoc(); 4586 switch (N->getOpcode()) { 4587 default: 4588 llvm_unreachable("Do not know how to custom type legalize this operation!"); 4589 case ISD::VAARG: { 4590 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 4591 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 4592 return; 4593 4594 EVT VT = N->getValueType(0); 4595 4596 if (VT == MVT::i64) { 4597 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 4598 4599 Results.push_back(NewNode); 4600 Results.push_back(NewNode.getValue(1)); 4601 } 4602 return; 4603 } 4604 case ISD::FP_ROUND_INREG: { 4605 assert(N->getValueType(0) == MVT::ppcf128); 4606 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4607 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4608 MVT::f64, N->getOperand(0), 4609 DAG.getIntPtrConstant(0)); 4610 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4611 MVT::f64, N->getOperand(0), 4612 DAG.getIntPtrConstant(1)); 4613 4614 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4615 // of the long double, and puts FPSCR back the way it was. We do not 4616 // actually model FPSCR. 4617 std::vector<EVT> NodeTys; 4618 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4619 4620 NodeTys.push_back(MVT::f64); // Return register 4621 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4622 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4623 MFFSreg = Result.getValue(0); 4624 InFlag = Result.getValue(1); 4625 4626 NodeTys.clear(); 4627 NodeTys.push_back(MVT::Glue); // Returns a flag 4628 Ops[0] = DAG.getConstant(31, MVT::i32); 4629 Ops[1] = InFlag; 4630 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4631 InFlag = Result.getValue(0); 4632 4633 NodeTys.clear(); 4634 NodeTys.push_back(MVT::Glue); // Returns a flag 4635 Ops[0] = DAG.getConstant(30, MVT::i32); 4636 Ops[1] = InFlag; 4637 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4638 InFlag = Result.getValue(0); 4639 4640 NodeTys.clear(); 4641 NodeTys.push_back(MVT::f64); // result of add 4642 NodeTys.push_back(MVT::Glue); // Returns a flag 4643 Ops[0] = Lo; 4644 Ops[1] = Hi; 4645 Ops[2] = InFlag; 4646 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4647 FPreg = Result.getValue(0); 4648 InFlag = Result.getValue(1); 4649 4650 NodeTys.clear(); 4651 NodeTys.push_back(MVT::f64); 4652 Ops[0] = DAG.getConstant(1, MVT::i32); 4653 Ops[1] = MFFSreg; 4654 Ops[2] = FPreg; 4655 Ops[3] = InFlag; 4656 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4657 FPreg = Result.getValue(0); 4658 4659 // We know the low half is about to be thrown away, so just use something 4660 // convenient. 4661 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4662 FPreg, FPreg)); 4663 return; 4664 } 4665 case ISD::FP_TO_SINT: 4666 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4667 return; 4668 } 4669 } 4670 4671 4672 //===----------------------------------------------------------------------===// 4673 // Other Lowering Code 4674 //===----------------------------------------------------------------------===// 4675 4676 MachineBasicBlock * 4677 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4678 bool is64bit, unsigned BinOpcode) const { 4679 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4680 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4681 4682 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4683 MachineFunction *F = BB->getParent(); 4684 MachineFunction::iterator It = BB; 4685 ++It; 4686 4687 unsigned dest = MI->getOperand(0).getReg(); 4688 unsigned ptrA = MI->getOperand(1).getReg(); 4689 unsigned ptrB = MI->getOperand(2).getReg(); 4690 unsigned incr = MI->getOperand(3).getReg(); 4691 DebugLoc dl = MI->getDebugLoc(); 4692 4693 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4694 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4695 F->insert(It, loopMBB); 4696 F->insert(It, exitMBB); 4697 exitMBB->splice(exitMBB->begin(), BB, 4698 llvm::next(MachineBasicBlock::iterator(MI)), 4699 BB->end()); 4700 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4701 4702 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4703 unsigned TmpReg = (!BinOpcode) ? incr : 4704 RegInfo.createVirtualRegister( 4705 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4706 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4707 4708 // thisMBB: 4709 // ... 4710 // fallthrough --> loopMBB 4711 BB->addSuccessor(loopMBB); 4712 4713 // loopMBB: 4714 // l[wd]arx dest, ptr 4715 // add r0, dest, incr 4716 // st[wd]cx. r0, ptr 4717 // bne- loopMBB 4718 // fallthrough --> exitMBB 4719 BB = loopMBB; 4720 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4721 .addReg(ptrA).addReg(ptrB); 4722 if (BinOpcode) 4723 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4724 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4725 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4726 BuildMI(BB, dl, TII->get(PPC::BCC)) 4727 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4728 BB->addSuccessor(loopMBB); 4729 BB->addSuccessor(exitMBB); 4730 4731 // exitMBB: 4732 // ... 4733 BB = exitMBB; 4734 return BB; 4735 } 4736 4737 MachineBasicBlock * 4738 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4739 MachineBasicBlock *BB, 4740 bool is8bit, // operation 4741 unsigned BinOpcode) const { 4742 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4743 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4744 // In 64 bit mode we have to use 64 bits for addresses, even though the 4745 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4746 // registers without caring whether they're 32 or 64, but here we're 4747 // doing actual arithmetic on the addresses. 4748 bool is64bit = PPCSubTarget.isPPC64(); 4749 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4750 4751 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4752 MachineFunction *F = BB->getParent(); 4753 MachineFunction::iterator It = BB; 4754 ++It; 4755 4756 unsigned dest = MI->getOperand(0).getReg(); 4757 unsigned ptrA = MI->getOperand(1).getReg(); 4758 unsigned ptrB = MI->getOperand(2).getReg(); 4759 unsigned incr = MI->getOperand(3).getReg(); 4760 DebugLoc dl = MI->getDebugLoc(); 4761 4762 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4763 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4764 F->insert(It, loopMBB); 4765 F->insert(It, exitMBB); 4766 exitMBB->splice(exitMBB->begin(), BB, 4767 llvm::next(MachineBasicBlock::iterator(MI)), 4768 BB->end()); 4769 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4770 4771 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4772 const TargetRegisterClass *RC = 4773 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4774 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4775 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4776 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4777 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4778 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4779 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4780 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4781 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4782 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4783 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4784 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4785 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4786 unsigned Ptr1Reg; 4787 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4788 4789 // thisMBB: 4790 // ... 4791 // fallthrough --> loopMBB 4792 BB->addSuccessor(loopMBB); 4793 4794 // The 4-byte load must be aligned, while a char or short may be 4795 // anywhere in the word. Hence all this nasty bookkeeping code. 4796 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4797 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4798 // xori shift, shift1, 24 [16] 4799 // rlwinm ptr, ptr1, 0, 0, 29 4800 // slw incr2, incr, shift 4801 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4802 // slw mask, mask2, shift 4803 // loopMBB: 4804 // lwarx tmpDest, ptr 4805 // add tmp, tmpDest, incr2 4806 // andc tmp2, tmpDest, mask 4807 // and tmp3, tmp, mask 4808 // or tmp4, tmp3, tmp2 4809 // stwcx. tmp4, ptr 4810 // bne- loopMBB 4811 // fallthrough --> exitMBB 4812 // srw dest, tmpDest, shift 4813 if (ptrA != ZeroReg) { 4814 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4815 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4816 .addReg(ptrA).addReg(ptrB); 4817 } else { 4818 Ptr1Reg = ptrB; 4819 } 4820 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4821 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4822 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4823 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4824 if (is64bit) 4825 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4826 .addReg(Ptr1Reg).addImm(0).addImm(61); 4827 else 4828 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4829 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4830 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4831 .addReg(incr).addReg(ShiftReg); 4832 if (is8bit) 4833 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4834 else { 4835 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4836 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4837 } 4838 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4839 .addReg(Mask2Reg).addReg(ShiftReg); 4840 4841 BB = loopMBB; 4842 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4843 .addReg(ZeroReg).addReg(PtrReg); 4844 if (BinOpcode) 4845 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4846 .addReg(Incr2Reg).addReg(TmpDestReg); 4847 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4848 .addReg(TmpDestReg).addReg(MaskReg); 4849 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4850 .addReg(TmpReg).addReg(MaskReg); 4851 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4852 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4853 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4854 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4855 BuildMI(BB, dl, TII->get(PPC::BCC)) 4856 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4857 BB->addSuccessor(loopMBB); 4858 BB->addSuccessor(exitMBB); 4859 4860 // exitMBB: 4861 // ... 4862 BB = exitMBB; 4863 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4864 .addReg(ShiftReg); 4865 return BB; 4866 } 4867 4868 MachineBasicBlock * 4869 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4870 MachineBasicBlock *BB) const { 4871 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4872 4873 // To "insert" these instructions we actually have to insert their 4874 // control-flow patterns. 4875 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4876 MachineFunction::iterator It = BB; 4877 ++It; 4878 4879 MachineFunction *F = BB->getParent(); 4880 4881 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4882 MI->getOpcode() == PPC::SELECT_CC_I8 || 4883 MI->getOpcode() == PPC::SELECT_CC_F4 || 4884 MI->getOpcode() == PPC::SELECT_CC_F8 || 4885 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4886 4887 // The incoming instruction knows the destination vreg to set, the 4888 // condition code register to branch on, the true/false values to 4889 // select between, and a branch opcode to use. 4890 4891 // thisMBB: 4892 // ... 4893 // TrueVal = ... 4894 // cmpTY ccX, r1, r2 4895 // bCC copy1MBB 4896 // fallthrough --> copy0MBB 4897 MachineBasicBlock *thisMBB = BB; 4898 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4899 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4900 unsigned SelectPred = MI->getOperand(4).getImm(); 4901 DebugLoc dl = MI->getDebugLoc(); 4902 F->insert(It, copy0MBB); 4903 F->insert(It, sinkMBB); 4904 4905 // Transfer the remainder of BB and its successor edges to sinkMBB. 4906 sinkMBB->splice(sinkMBB->begin(), BB, 4907 llvm::next(MachineBasicBlock::iterator(MI)), 4908 BB->end()); 4909 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4910 4911 // Next, add the true and fallthrough blocks as its successors. 4912 BB->addSuccessor(copy0MBB); 4913 BB->addSuccessor(sinkMBB); 4914 4915 BuildMI(BB, dl, TII->get(PPC::BCC)) 4916 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4917 4918 // copy0MBB: 4919 // %FalseValue = ... 4920 // # fallthrough to sinkMBB 4921 BB = copy0MBB; 4922 4923 // Update machine-CFG edges 4924 BB->addSuccessor(sinkMBB); 4925 4926 // sinkMBB: 4927 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4928 // ... 4929 BB = sinkMBB; 4930 BuildMI(*BB, BB->begin(), dl, 4931 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4932 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4933 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4934 } 4935 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4936 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4937 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4938 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4939 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4940 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4941 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4942 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4943 4944 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4945 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4946 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4947 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4948 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4949 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4950 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4951 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4952 4953 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4954 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4955 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4956 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4957 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4958 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4959 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4960 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4961 4962 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4963 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4964 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4965 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4966 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4967 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4968 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4969 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4970 4971 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4972 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4973 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4974 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4975 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4976 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4977 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4978 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4979 4980 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4981 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4982 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4983 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4984 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4985 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4986 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4987 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4988 4989 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4990 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4991 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4992 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4993 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4994 BB = EmitAtomicBinary(MI, BB, false, 0); 4995 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4996 BB = EmitAtomicBinary(MI, BB, true, 0); 4997 4998 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4999 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 5000 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 5001 5002 unsigned dest = MI->getOperand(0).getReg(); 5003 unsigned ptrA = MI->getOperand(1).getReg(); 5004 unsigned ptrB = MI->getOperand(2).getReg(); 5005 unsigned oldval = MI->getOperand(3).getReg(); 5006 unsigned newval = MI->getOperand(4).getReg(); 5007 DebugLoc dl = MI->getDebugLoc(); 5008 5009 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5010 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5011 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5012 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5013 F->insert(It, loop1MBB); 5014 F->insert(It, loop2MBB); 5015 F->insert(It, midMBB); 5016 F->insert(It, exitMBB); 5017 exitMBB->splice(exitMBB->begin(), BB, 5018 llvm::next(MachineBasicBlock::iterator(MI)), 5019 BB->end()); 5020 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5021 5022 // thisMBB: 5023 // ... 5024 // fallthrough --> loopMBB 5025 BB->addSuccessor(loop1MBB); 5026 5027 // loop1MBB: 5028 // l[wd]arx dest, ptr 5029 // cmp[wd] dest, oldval 5030 // bne- midMBB 5031 // loop2MBB: 5032 // st[wd]cx. newval, ptr 5033 // bne- loopMBB 5034 // b exitBB 5035 // midMBB: 5036 // st[wd]cx. dest, ptr 5037 // exitBB: 5038 BB = loop1MBB; 5039 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5040 .addReg(ptrA).addReg(ptrB); 5041 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 5042 .addReg(oldval).addReg(dest); 5043 BuildMI(BB, dl, TII->get(PPC::BCC)) 5044 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5045 BB->addSuccessor(loop2MBB); 5046 BB->addSuccessor(midMBB); 5047 5048 BB = loop2MBB; 5049 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5050 .addReg(newval).addReg(ptrA).addReg(ptrB); 5051 BuildMI(BB, dl, TII->get(PPC::BCC)) 5052 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5053 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5054 BB->addSuccessor(loop1MBB); 5055 BB->addSuccessor(exitMBB); 5056 5057 BB = midMBB; 5058 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5059 .addReg(dest).addReg(ptrA).addReg(ptrB); 5060 BB->addSuccessor(exitMBB); 5061 5062 // exitMBB: 5063 // ... 5064 BB = exitMBB; 5065 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5066 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5067 // We must use 64-bit registers for addresses when targeting 64-bit, 5068 // since we're actually doing arithmetic on them. Other registers 5069 // can be 32-bit. 5070 bool is64bit = PPCSubTarget.isPPC64(); 5071 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5072 5073 unsigned dest = MI->getOperand(0).getReg(); 5074 unsigned ptrA = MI->getOperand(1).getReg(); 5075 unsigned ptrB = MI->getOperand(2).getReg(); 5076 unsigned oldval = MI->getOperand(3).getReg(); 5077 unsigned newval = MI->getOperand(4).getReg(); 5078 DebugLoc dl = MI->getDebugLoc(); 5079 5080 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5081 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5082 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5083 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5084 F->insert(It, loop1MBB); 5085 F->insert(It, loop2MBB); 5086 F->insert(It, midMBB); 5087 F->insert(It, exitMBB); 5088 exitMBB->splice(exitMBB->begin(), BB, 5089 llvm::next(MachineBasicBlock::iterator(MI)), 5090 BB->end()); 5091 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5092 5093 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5094 const TargetRegisterClass *RC = 5095 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5096 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5097 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5098 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5099 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5100 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5101 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5102 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5103 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5104 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5105 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5106 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5107 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5108 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5109 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5110 unsigned Ptr1Reg; 5111 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5112 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5113 // thisMBB: 5114 // ... 5115 // fallthrough --> loopMBB 5116 BB->addSuccessor(loop1MBB); 5117 5118 // The 4-byte load must be aligned, while a char or short may be 5119 // anywhere in the word. Hence all this nasty bookkeeping code. 5120 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5121 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5122 // xori shift, shift1, 24 [16] 5123 // rlwinm ptr, ptr1, 0, 0, 29 5124 // slw newval2, newval, shift 5125 // slw oldval2, oldval,shift 5126 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5127 // slw mask, mask2, shift 5128 // and newval3, newval2, mask 5129 // and oldval3, oldval2, mask 5130 // loop1MBB: 5131 // lwarx tmpDest, ptr 5132 // and tmp, tmpDest, mask 5133 // cmpw tmp, oldval3 5134 // bne- midMBB 5135 // loop2MBB: 5136 // andc tmp2, tmpDest, mask 5137 // or tmp4, tmp2, newval3 5138 // stwcx. tmp4, ptr 5139 // bne- loop1MBB 5140 // b exitBB 5141 // midMBB: 5142 // stwcx. tmpDest, ptr 5143 // exitBB: 5144 // srw dest, tmpDest, shift 5145 if (ptrA != ZeroReg) { 5146 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5147 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5148 .addReg(ptrA).addReg(ptrB); 5149 } else { 5150 Ptr1Reg = ptrB; 5151 } 5152 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5153 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5154 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5155 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5156 if (is64bit) 5157 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5158 .addReg(Ptr1Reg).addImm(0).addImm(61); 5159 else 5160 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5161 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5162 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5163 .addReg(newval).addReg(ShiftReg); 5164 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5165 .addReg(oldval).addReg(ShiftReg); 5166 if (is8bit) 5167 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5168 else { 5169 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5170 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5171 .addReg(Mask3Reg).addImm(65535); 5172 } 5173 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5174 .addReg(Mask2Reg).addReg(ShiftReg); 5175 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5176 .addReg(NewVal2Reg).addReg(MaskReg); 5177 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5178 .addReg(OldVal2Reg).addReg(MaskReg); 5179 5180 BB = loop1MBB; 5181 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5182 .addReg(ZeroReg).addReg(PtrReg); 5183 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5184 .addReg(TmpDestReg).addReg(MaskReg); 5185 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5186 .addReg(TmpReg).addReg(OldVal3Reg); 5187 BuildMI(BB, dl, TII->get(PPC::BCC)) 5188 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5189 BB->addSuccessor(loop2MBB); 5190 BB->addSuccessor(midMBB); 5191 5192 BB = loop2MBB; 5193 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5194 .addReg(TmpDestReg).addReg(MaskReg); 5195 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5196 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5197 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5198 .addReg(ZeroReg).addReg(PtrReg); 5199 BuildMI(BB, dl, TII->get(PPC::BCC)) 5200 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5201 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5202 BB->addSuccessor(loop1MBB); 5203 BB->addSuccessor(exitMBB); 5204 5205 BB = midMBB; 5206 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5207 .addReg(ZeroReg).addReg(PtrReg); 5208 BB->addSuccessor(exitMBB); 5209 5210 // exitMBB: 5211 // ... 5212 BB = exitMBB; 5213 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5214 .addReg(ShiftReg); 5215 } else { 5216 llvm_unreachable("Unexpected instr type to insert"); 5217 } 5218 5219 MI->eraseFromParent(); // The pseudo instruction is gone now. 5220 return BB; 5221 } 5222 5223 //===----------------------------------------------------------------------===// 5224 // Target Optimization Hooks 5225 //===----------------------------------------------------------------------===// 5226 5227 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5228 DAGCombinerInfo &DCI) const { 5229 const TargetMachine &TM = getTargetMachine(); 5230 SelectionDAG &DAG = DCI.DAG; 5231 DebugLoc dl = N->getDebugLoc(); 5232 switch (N->getOpcode()) { 5233 default: break; 5234 case PPCISD::SHL: 5235 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5236 if (C->isNullValue()) // 0 << V -> 0. 5237 return N->getOperand(0); 5238 } 5239 break; 5240 case PPCISD::SRL: 5241 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5242 if (C->isNullValue()) // 0 >>u V -> 0. 5243 return N->getOperand(0); 5244 } 5245 break; 5246 case PPCISD::SRA: 5247 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5248 if (C->isNullValue() || // 0 >>s V -> 0. 5249 C->isAllOnesValue()) // -1 >>s V -> -1. 5250 return N->getOperand(0); 5251 } 5252 break; 5253 5254 case ISD::SINT_TO_FP: 5255 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5256 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5257 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5258 // We allow the src/dst to be either f32/f64, but the intermediate 5259 // type must be i64. 5260 if (N->getOperand(0).getValueType() == MVT::i64 && 5261 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5262 SDValue Val = N->getOperand(0).getOperand(0); 5263 if (Val.getValueType() == MVT::f32) { 5264 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5265 DCI.AddToWorklist(Val.getNode()); 5266 } 5267 5268 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5269 DCI.AddToWorklist(Val.getNode()); 5270 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5271 DCI.AddToWorklist(Val.getNode()); 5272 if (N->getValueType(0) == MVT::f32) { 5273 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5274 DAG.getIntPtrConstant(0)); 5275 DCI.AddToWorklist(Val.getNode()); 5276 } 5277 return Val; 5278 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5279 // If the intermediate type is i32, we can avoid the load/store here 5280 // too. 5281 } 5282 } 5283 } 5284 break; 5285 case ISD::STORE: 5286 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5287 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5288 !cast<StoreSDNode>(N)->isTruncatingStore() && 5289 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5290 N->getOperand(1).getValueType() == MVT::i32 && 5291 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5292 SDValue Val = N->getOperand(1).getOperand(0); 5293 if (Val.getValueType() == MVT::f32) { 5294 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5295 DCI.AddToWorklist(Val.getNode()); 5296 } 5297 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5298 DCI.AddToWorklist(Val.getNode()); 5299 5300 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5301 N->getOperand(2), N->getOperand(3)); 5302 DCI.AddToWorklist(Val.getNode()); 5303 return Val; 5304 } 5305 5306 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5307 if (cast<StoreSDNode>(N)->isUnindexed() && 5308 N->getOperand(1).getOpcode() == ISD::BSWAP && 5309 N->getOperand(1).getNode()->hasOneUse() && 5310 (N->getOperand(1).getValueType() == MVT::i32 || 5311 N->getOperand(1).getValueType() == MVT::i16)) { 5312 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5313 // Do an any-extend to 32-bits if this is a half-word input. 5314 if (BSwapOp.getValueType() == MVT::i16) 5315 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5316 5317 SDValue Ops[] = { 5318 N->getOperand(0), BSwapOp, N->getOperand(2), 5319 DAG.getValueType(N->getOperand(1).getValueType()) 5320 }; 5321 return 5322 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5323 Ops, array_lengthof(Ops), 5324 cast<StoreSDNode>(N)->getMemoryVT(), 5325 cast<StoreSDNode>(N)->getMemOperand()); 5326 } 5327 break; 5328 case ISD::BSWAP: 5329 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5330 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5331 N->getOperand(0).hasOneUse() && 5332 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5333 SDValue Load = N->getOperand(0); 5334 LoadSDNode *LD = cast<LoadSDNode>(Load); 5335 // Create the byte-swapping load. 5336 SDValue Ops[] = { 5337 LD->getChain(), // Chain 5338 LD->getBasePtr(), // Ptr 5339 DAG.getValueType(N->getValueType(0)) // VT 5340 }; 5341 SDValue BSLoad = 5342 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5343 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5344 LD->getMemoryVT(), LD->getMemOperand()); 5345 5346 // If this is an i16 load, insert the truncate. 5347 SDValue ResVal = BSLoad; 5348 if (N->getValueType(0) == MVT::i16) 5349 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5350 5351 // First, combine the bswap away. This makes the value produced by the 5352 // load dead. 5353 DCI.CombineTo(N, ResVal); 5354 5355 // Next, combine the load away, we give it a bogus result value but a real 5356 // chain result. The result value is dead because the bswap is dead. 5357 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5358 5359 // Return N so it doesn't get rechecked! 5360 return SDValue(N, 0); 5361 } 5362 5363 break; 5364 case PPCISD::VCMP: { 5365 // If a VCMPo node already exists with exactly the same operands as this 5366 // node, use its result instead of this node (VCMPo computes both a CR6 and 5367 // a normal output). 5368 // 5369 if (!N->getOperand(0).hasOneUse() && 5370 !N->getOperand(1).hasOneUse() && 5371 !N->getOperand(2).hasOneUse()) { 5372 5373 // Scan all of the users of the LHS, looking for VCMPo's that match. 5374 SDNode *VCMPoNode = 0; 5375 5376 SDNode *LHSN = N->getOperand(0).getNode(); 5377 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5378 UI != E; ++UI) 5379 if (UI->getOpcode() == PPCISD::VCMPo && 5380 UI->getOperand(1) == N->getOperand(1) && 5381 UI->getOperand(2) == N->getOperand(2) && 5382 UI->getOperand(0) == N->getOperand(0)) { 5383 VCMPoNode = *UI; 5384 break; 5385 } 5386 5387 // If there is no VCMPo node, or if the flag value has a single use, don't 5388 // transform this. 5389 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5390 break; 5391 5392 // Look at the (necessarily single) use of the flag value. If it has a 5393 // chain, this transformation is more complex. Note that multiple things 5394 // could use the value result, which we should ignore. 5395 SDNode *FlagUser = 0; 5396 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5397 FlagUser == 0; ++UI) { 5398 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5399 SDNode *User = *UI; 5400 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5401 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5402 FlagUser = User; 5403 break; 5404 } 5405 } 5406 } 5407 5408 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5409 // give up for right now. 5410 if (FlagUser->getOpcode() == PPCISD::MFCR) 5411 return SDValue(VCMPoNode, 0); 5412 } 5413 break; 5414 } 5415 case ISD::BR_CC: { 5416 // If this is a branch on an altivec predicate comparison, lower this so 5417 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5418 // lowering is done pre-legalize, because the legalizer lowers the predicate 5419 // compare down to code that is difficult to reassemble. 5420 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5421 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5422 int CompareOpc; 5423 bool isDot; 5424 5425 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5426 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5427 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5428 assert(isDot && "Can't compare against a vector result!"); 5429 5430 // If this is a comparison against something other than 0/1, then we know 5431 // that the condition is never/always true. 5432 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5433 if (Val != 0 && Val != 1) { 5434 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5435 return N->getOperand(0); 5436 // Always !=, turn it into an unconditional branch. 5437 return DAG.getNode(ISD::BR, dl, MVT::Other, 5438 N->getOperand(0), N->getOperand(4)); 5439 } 5440 5441 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5442 5443 // Create the PPCISD altivec 'dot' comparison node. 5444 std::vector<EVT> VTs; 5445 SDValue Ops[] = { 5446 LHS.getOperand(2), // LHS of compare 5447 LHS.getOperand(3), // RHS of compare 5448 DAG.getConstant(CompareOpc, MVT::i32) 5449 }; 5450 VTs.push_back(LHS.getOperand(2).getValueType()); 5451 VTs.push_back(MVT::Glue); 5452 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5453 5454 // Unpack the result based on how the target uses it. 5455 PPC::Predicate CompOpc; 5456 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5457 default: // Can't happen, don't crash on invalid number though. 5458 case 0: // Branch on the value of the EQ bit of CR6. 5459 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5460 break; 5461 case 1: // Branch on the inverted value of the EQ bit of CR6. 5462 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5463 break; 5464 case 2: // Branch on the value of the LT bit of CR6. 5465 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5466 break; 5467 case 3: // Branch on the inverted value of the LT bit of CR6. 5468 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5469 break; 5470 } 5471 5472 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5473 DAG.getConstant(CompOpc, MVT::i32), 5474 DAG.getRegister(PPC::CR6, MVT::i32), 5475 N->getOperand(4), CompNode.getValue(1)); 5476 } 5477 break; 5478 } 5479 } 5480 5481 return SDValue(); 5482 } 5483 5484 //===----------------------------------------------------------------------===// 5485 // Inline Assembly Support 5486 //===----------------------------------------------------------------------===// 5487 5488 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5489 const APInt &Mask, 5490 APInt &KnownZero, 5491 APInt &KnownOne, 5492 const SelectionDAG &DAG, 5493 unsigned Depth) const { 5494 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5495 switch (Op.getOpcode()) { 5496 default: break; 5497 case PPCISD::LBRX: { 5498 // lhbrx is known to have the top bits cleared out. 5499 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5500 KnownZero = 0xFFFF0000; 5501 break; 5502 } 5503 case ISD::INTRINSIC_WO_CHAIN: { 5504 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5505 default: break; 5506 case Intrinsic::ppc_altivec_vcmpbfp_p: 5507 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5508 case Intrinsic::ppc_altivec_vcmpequb_p: 5509 case Intrinsic::ppc_altivec_vcmpequh_p: 5510 case Intrinsic::ppc_altivec_vcmpequw_p: 5511 case Intrinsic::ppc_altivec_vcmpgefp_p: 5512 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5513 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5514 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5515 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5516 case Intrinsic::ppc_altivec_vcmpgtub_p: 5517 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5518 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5519 KnownZero = ~1U; // All bits but the low one are known to be zero. 5520 break; 5521 } 5522 } 5523 } 5524 } 5525 5526 5527 /// getConstraintType - Given a constraint, return the type of 5528 /// constraint it is for this target. 5529 PPCTargetLowering::ConstraintType 5530 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5531 if (Constraint.size() == 1) { 5532 switch (Constraint[0]) { 5533 default: break; 5534 case 'b': 5535 case 'r': 5536 case 'f': 5537 case 'v': 5538 case 'y': 5539 return C_RegisterClass; 5540 } 5541 } 5542 return TargetLowering::getConstraintType(Constraint); 5543 } 5544 5545 /// Examine constraint type and operand type and determine a weight value. 5546 /// This object must already have been set up with the operand type 5547 /// and the current alternative constraint selected. 5548 TargetLowering::ConstraintWeight 5549 PPCTargetLowering::getSingleConstraintMatchWeight( 5550 AsmOperandInfo &info, const char *constraint) const { 5551 ConstraintWeight weight = CW_Invalid; 5552 Value *CallOperandVal = info.CallOperandVal; 5553 // If we don't have a value, we can't do a match, 5554 // but allow it at the lowest weight. 5555 if (CallOperandVal == NULL) 5556 return CW_Default; 5557 Type *type = CallOperandVal->getType(); 5558 // Look at the constraint type. 5559 switch (*constraint) { 5560 default: 5561 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5562 break; 5563 case 'b': 5564 if (type->isIntegerTy()) 5565 weight = CW_Register; 5566 break; 5567 case 'f': 5568 if (type->isFloatTy()) 5569 weight = CW_Register; 5570 break; 5571 case 'd': 5572 if (type->isDoubleTy()) 5573 weight = CW_Register; 5574 break; 5575 case 'v': 5576 if (type->isVectorTy()) 5577 weight = CW_Register; 5578 break; 5579 case 'y': 5580 weight = CW_Register; 5581 break; 5582 } 5583 return weight; 5584 } 5585 5586 std::pair<unsigned, const TargetRegisterClass*> 5587 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5588 EVT VT) const { 5589 if (Constraint.size() == 1) { 5590 // GCC RS6000 Constraint Letters 5591 switch (Constraint[0]) { 5592 case 'b': // R1-R31 5593 case 'r': // R0-R31 5594 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5595 return std::make_pair(0U, PPC::G8RCRegisterClass); 5596 return std::make_pair(0U, PPC::GPRCRegisterClass); 5597 case 'f': 5598 if (VT == MVT::f32) 5599 return std::make_pair(0U, PPC::F4RCRegisterClass); 5600 else if (VT == MVT::f64) 5601 return std::make_pair(0U, PPC::F8RCRegisterClass); 5602 break; 5603 case 'v': 5604 return std::make_pair(0U, PPC::VRRCRegisterClass); 5605 case 'y': // crrc 5606 return std::make_pair(0U, PPC::CRRCRegisterClass); 5607 } 5608 } 5609 5610 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5611 } 5612 5613 5614 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5615 /// vector. If it is invalid, don't add anything to Ops. 5616 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5617 std::string &Constraint, 5618 std::vector<SDValue>&Ops, 5619 SelectionDAG &DAG) const { 5620 SDValue Result(0,0); 5621 5622 // Only support length 1 constraints. 5623 if (Constraint.length() > 1) return; 5624 5625 char Letter = Constraint[0]; 5626 switch (Letter) { 5627 default: break; 5628 case 'I': 5629 case 'J': 5630 case 'K': 5631 case 'L': 5632 case 'M': 5633 case 'N': 5634 case 'O': 5635 case 'P': { 5636 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5637 if (!CST) return; // Must be an immediate to match. 5638 unsigned Value = CST->getZExtValue(); 5639 switch (Letter) { 5640 default: llvm_unreachable("Unknown constraint letter!"); 5641 case 'I': // "I" is a signed 16-bit constant. 5642 if ((short)Value == (int)Value) 5643 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5644 break; 5645 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5646 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5647 if ((short)Value == 0) 5648 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5649 break; 5650 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5651 if ((Value >> 16) == 0) 5652 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5653 break; 5654 case 'M': // "M" is a constant that is greater than 31. 5655 if (Value > 31) 5656 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5657 break; 5658 case 'N': // "N" is a positive constant that is an exact power of two. 5659 if ((int)Value > 0 && isPowerOf2_32(Value)) 5660 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5661 break; 5662 case 'O': // "O" is the constant zero. 5663 if (Value == 0) 5664 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5665 break; 5666 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5667 if ((short)-Value == (int)-Value) 5668 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5669 break; 5670 } 5671 break; 5672 } 5673 } 5674 5675 if (Result.getNode()) { 5676 Ops.push_back(Result); 5677 return; 5678 } 5679 5680 // Handle standard constraint letters. 5681 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5682 } 5683 5684 // isLegalAddressingMode - Return true if the addressing mode represented 5685 // by AM is legal for this target, for a load/store of the specified type. 5686 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5687 Type *Ty) const { 5688 // FIXME: PPC does not allow r+i addressing modes for vectors! 5689 5690 // PPC allows a sign-extended 16-bit immediate field. 5691 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5692 return false; 5693 5694 // No global is ever allowed as a base. 5695 if (AM.BaseGV) 5696 return false; 5697 5698 // PPC only support r+r, 5699 switch (AM.Scale) { 5700 case 0: // "r+i" or just "i", depending on HasBaseReg. 5701 break; 5702 case 1: 5703 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5704 return false; 5705 // Otherwise we have r+r or r+i. 5706 break; 5707 case 2: 5708 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5709 return false; 5710 // Allow 2*r as r+r. 5711 break; 5712 default: 5713 // No other scales are supported. 5714 return false; 5715 } 5716 5717 return true; 5718 } 5719 5720 /// isLegalAddressImmediate - Return true if the integer value can be used 5721 /// as the offset of the target addressing mode for load / store of the 5722 /// given type. 5723 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 5724 // PPC allows a sign-extended 16-bit immediate field. 5725 return (V > -(1 << 16) && V < (1 << 16)-1); 5726 } 5727 5728 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5729 return false; 5730 } 5731 5732 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5733 SelectionDAG &DAG) const { 5734 MachineFunction &MF = DAG.getMachineFunction(); 5735 MachineFrameInfo *MFI = MF.getFrameInfo(); 5736 MFI->setReturnAddressIsTaken(true); 5737 5738 DebugLoc dl = Op.getDebugLoc(); 5739 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5740 5741 // Make sure the function does not optimize away the store of the RA to 5742 // the stack. 5743 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5744 FuncInfo->setLRStoreRequired(); 5745 bool isPPC64 = PPCSubTarget.isPPC64(); 5746 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5747 5748 if (Depth > 0) { 5749 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5750 SDValue Offset = 5751 5752 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5753 isPPC64? MVT::i64 : MVT::i32); 5754 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5755 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5756 FrameAddr, Offset), 5757 MachinePointerInfo(), false, false, false, 0); 5758 } 5759 5760 // Just load the return address off the stack. 5761 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5762 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5763 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 5764 } 5765 5766 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5767 SelectionDAG &DAG) const { 5768 DebugLoc dl = Op.getDebugLoc(); 5769 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5770 5771 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5772 bool isPPC64 = PtrVT == MVT::i64; 5773 5774 MachineFunction &MF = DAG.getMachineFunction(); 5775 MachineFrameInfo *MFI = MF.getFrameInfo(); 5776 MFI->setFrameAddressIsTaken(true); 5777 bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || 5778 MFI->hasVarSizedObjects()) && 5779 MFI->getStackSize() && 5780 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5781 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5782 (is31 ? PPC::R31 : PPC::R1); 5783 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5784 PtrVT); 5785 while (Depth--) 5786 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5787 FrameAddr, MachinePointerInfo(), false, false, 5788 false, 0); 5789 return FrameAddr; 5790 } 5791 5792 bool 5793 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5794 // The PowerPC target isn't yet aware of offsets. 5795 return false; 5796 } 5797 5798 /// getOptimalMemOpType - Returns the target specific optimal type for load 5799 /// and store operations as a result of memset, memcpy, and memmove 5800 /// lowering. If DstAlign is zero that means it's safe to destination 5801 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5802 /// means there isn't a need to check it against alignment requirement, 5803 /// probably because the source does not need to be loaded. If 5804 /// 'IsZeroVal' is true, that means it's safe to return a 5805 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 5806 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5807 /// constant so it does not need to be loaded. 5808 /// It returns EVT::Other if the type should be determined using generic 5809 /// target-independent logic. 5810 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5811 unsigned DstAlign, unsigned SrcAlign, 5812 bool IsZeroVal, 5813 bool MemcpyStrSrc, 5814 MachineFunction &MF) const { 5815 if (this->PPCSubTarget.isPPC64()) { 5816 return MVT::i64; 5817 } else { 5818 return MVT::i32; 5819 } 5820 } 5821