1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnablePPCPCRelTLS( 125 "enable-ppc-pcrel-tls", 126 cl::desc("enable the use of PC relative memops in TLS instructions on PPC"), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 if (Subtarget.isISA3_0()) { 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 177 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 178 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 179 } else { 180 // No extending loads from f16 or HW conversions back and forth. 181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 185 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 186 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 187 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 188 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 189 } 190 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 // PowerPC has pre-inc load and store's. 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 204 if (!Subtarget.hasSPE()) { 205 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 206 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 209 } 210 211 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 212 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 213 for (MVT VT : ScalarIntVTs) { 214 setOperationAction(ISD::ADDC, VT, Legal); 215 setOperationAction(ISD::ADDE, VT, Legal); 216 setOperationAction(ISD::SUBC, VT, Legal); 217 setOperationAction(ISD::SUBE, VT, Legal); 218 } 219 220 if (Subtarget.useCRBits()) { 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 222 223 if (isPPC64 || Subtarget.hasFPCVT()) { 224 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 228 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 229 isPPC64 ? MVT::i64 : MVT::i32); 230 231 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 232 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 233 isPPC64 ? MVT::i64 : MVT::i32); 234 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 235 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 236 isPPC64 ? MVT::i64 : MVT::i32); 237 } else { 238 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 240 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 242 } 243 244 // PowerPC does not support direct load/store of condition registers. 245 setOperationAction(ISD::LOAD, MVT::i1, Custom); 246 setOperationAction(ISD::STORE, MVT::i1, Custom); 247 248 // FIXME: Remove this once the ANDI glue bug is fixed: 249 if (ANDIGlueBug) 250 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 251 252 for (MVT VT : MVT::integer_valuetypes()) { 253 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 254 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 255 setTruncStoreAction(VT, MVT::i1, Expand); 256 } 257 258 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 259 } 260 261 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 262 // PPC (the libcall is not available). 263 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 264 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 265 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 266 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 267 268 // We do not currently implement these libm ops for PowerPC. 269 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 270 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 271 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 272 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 273 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 274 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 275 276 // PowerPC has no SREM/UREM instructions unless we are on P9 277 // On P9 we may use a hardware instruction to compute the remainder. 278 // When the result of both the remainder and the division is required it is 279 // more efficient to compute the remainder from the result of the division 280 // rather than use the remainder instruction. The instructions are legalized 281 // directly because the DivRemPairsPass performs the transformation at the IR 282 // level. 283 if (Subtarget.isISA3_0()) { 284 setOperationAction(ISD::SREM, MVT::i32, Legal); 285 setOperationAction(ISD::UREM, MVT::i32, Legal); 286 setOperationAction(ISD::SREM, MVT::i64, Legal); 287 setOperationAction(ISD::UREM, MVT::i64, Legal); 288 } else { 289 setOperationAction(ISD::SREM, MVT::i32, Expand); 290 setOperationAction(ISD::UREM, MVT::i32, Expand); 291 setOperationAction(ISD::SREM, MVT::i64, Expand); 292 setOperationAction(ISD::UREM, MVT::i64, Expand); 293 } 294 295 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 296 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 297 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 298 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 299 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 300 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 301 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 302 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 303 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 304 305 // Handle constrained floating-point operations of scalar. 306 // TODO: Handle SPE specific operation. 307 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 309 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 310 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 311 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 312 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 313 314 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 315 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 316 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 317 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 319 if (Subtarget.hasVSX()) { 320 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 321 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 322 } 323 324 if (Subtarget.hasFSQRT()) { 325 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 327 } 328 329 if (Subtarget.hasFPRND()) { 330 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 334 335 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 336 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 337 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 338 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 339 } 340 341 // We don't support sin/cos/sqrt/fmod/pow 342 setOperationAction(ISD::FSIN , MVT::f64, Expand); 343 setOperationAction(ISD::FCOS , MVT::f64, Expand); 344 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 345 setOperationAction(ISD::FREM , MVT::f64, Expand); 346 setOperationAction(ISD::FPOW , MVT::f64, Expand); 347 setOperationAction(ISD::FSIN , MVT::f32, Expand); 348 setOperationAction(ISD::FCOS , MVT::f32, Expand); 349 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 350 setOperationAction(ISD::FREM , MVT::f32, Expand); 351 setOperationAction(ISD::FPOW , MVT::f32, Expand); 352 if (Subtarget.hasSPE()) { 353 setOperationAction(ISD::FMA , MVT::f64, Expand); 354 setOperationAction(ISD::FMA , MVT::f32, Expand); 355 } else { 356 setOperationAction(ISD::FMA , MVT::f64, Legal); 357 setOperationAction(ISD::FMA , MVT::f32, Legal); 358 } 359 360 if (Subtarget.hasSPE()) 361 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 362 363 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 364 365 // If we're enabling GP optimizations, use hardware square root 366 if (!Subtarget.hasFSQRT() && 367 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 368 Subtarget.hasFRE())) 369 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 370 371 if (!Subtarget.hasFSQRT() && 372 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 373 Subtarget.hasFRES())) 374 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 375 376 if (Subtarget.hasFCPSGN()) { 377 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 378 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 379 } else { 380 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 381 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 382 } 383 384 if (Subtarget.hasFPRND()) { 385 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 386 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 387 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 388 setOperationAction(ISD::FROUND, MVT::f64, Legal); 389 390 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 391 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 392 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 393 setOperationAction(ISD::FROUND, MVT::f32, Legal); 394 } 395 396 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 397 // to speed up scalar BSWAP64. 398 // CTPOP or CTTZ were introduced in P8/P9 respectively 399 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 400 if (Subtarget.hasP9Vector()) 401 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 402 else 403 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 404 if (Subtarget.isISA3_0()) { 405 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 406 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 407 } else { 408 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 409 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 410 } 411 412 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 413 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 414 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 415 } else { 416 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 417 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 418 } 419 420 // PowerPC does not have ROTR 421 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 422 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 423 424 if (!Subtarget.useCRBits()) { 425 // PowerPC does not have Select 426 setOperationAction(ISD::SELECT, MVT::i32, Expand); 427 setOperationAction(ISD::SELECT, MVT::i64, Expand); 428 setOperationAction(ISD::SELECT, MVT::f32, Expand); 429 setOperationAction(ISD::SELECT, MVT::f64, Expand); 430 } 431 432 // PowerPC wants to turn select_cc of FP into fsel when possible. 433 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 434 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 435 436 // PowerPC wants to optimize integer setcc a bit 437 if (!Subtarget.useCRBits()) 438 setOperationAction(ISD::SETCC, MVT::i32, Custom); 439 440 if (Subtarget.hasFPU()) { 441 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 442 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 443 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 444 445 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 446 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 447 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 448 } 449 450 // PowerPC does not have BRCOND which requires SetCC 451 if (!Subtarget.useCRBits()) 452 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 453 454 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 455 456 if (Subtarget.hasSPE()) { 457 // SPE has built-in conversions 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 459 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 460 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 461 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 462 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 463 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 464 } else { 465 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 466 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 467 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 468 469 // PowerPC does not have [U|S]INT_TO_FP 470 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 471 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 472 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 473 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 474 } 475 476 if (Subtarget.hasDirectMove() && isPPC64) { 477 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 478 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 479 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 480 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 481 if (TM.Options.UnsafeFPMath) { 482 setOperationAction(ISD::LRINT, MVT::f64, Legal); 483 setOperationAction(ISD::LRINT, MVT::f32, Legal); 484 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 485 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 486 setOperationAction(ISD::LROUND, MVT::f64, Legal); 487 setOperationAction(ISD::LROUND, MVT::f32, Legal); 488 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 489 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 490 } 491 } else { 492 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 493 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 494 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 495 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 496 } 497 498 // We cannot sextinreg(i1). Expand to shifts. 499 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 500 501 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 502 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 503 // support continuation, user-level threading, and etc.. As a result, no 504 // other SjLj exception interfaces are implemented and please don't build 505 // your own exception handling based on them. 506 // LLVM/Clang supports zero-cost DWARF exception handling. 507 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 508 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 509 510 // We want to legalize GlobalAddress and ConstantPool nodes into the 511 // appropriate instructions to materialize the address. 512 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 513 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 514 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 515 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 516 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 517 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 518 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 519 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 520 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 521 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 522 523 // TRAP is legal. 524 setOperationAction(ISD::TRAP, MVT::Other, Legal); 525 526 // TRAMPOLINE is custom lowered. 527 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 528 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 529 530 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 531 setOperationAction(ISD::VASTART , MVT::Other, Custom); 532 533 if (Subtarget.is64BitELFABI()) { 534 // VAARG always uses double-word chunks, so promote anything smaller. 535 setOperationAction(ISD::VAARG, MVT::i1, Promote); 536 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 537 setOperationAction(ISD::VAARG, MVT::i8, Promote); 538 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 539 setOperationAction(ISD::VAARG, MVT::i16, Promote); 540 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 541 setOperationAction(ISD::VAARG, MVT::i32, Promote); 542 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 543 setOperationAction(ISD::VAARG, MVT::Other, Expand); 544 } else if (Subtarget.is32BitELFABI()) { 545 // VAARG is custom lowered with the 32-bit SVR4 ABI. 546 setOperationAction(ISD::VAARG, MVT::Other, Custom); 547 setOperationAction(ISD::VAARG, MVT::i64, Custom); 548 } else 549 setOperationAction(ISD::VAARG, MVT::Other, Expand); 550 551 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 552 if (Subtarget.is32BitELFABI()) 553 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 554 else 555 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 556 557 // Use the default implementation. 558 setOperationAction(ISD::VAEND , MVT::Other, Expand); 559 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 560 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 561 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 562 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 563 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 564 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 565 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 566 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 567 568 // We want to custom lower some of our intrinsics. 569 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 570 571 // To handle counter-based loop conditions. 572 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 573 574 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 575 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 576 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 577 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 578 579 // Comparisons that require checking two conditions. 580 if (Subtarget.hasSPE()) { 581 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 582 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 583 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 584 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 585 } 586 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 587 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 588 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 589 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 590 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 591 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 592 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 593 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 594 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 595 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 596 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 597 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 598 599 if (Subtarget.has64BitSupport()) { 600 // They also have instructions for converting between i64 and fp. 601 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 602 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 603 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 604 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 605 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 606 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 607 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 608 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 609 // This is just the low 32 bits of a (signed) fp->i64 conversion. 610 // We cannot do this with Promote because i64 is not a legal type. 611 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 612 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 613 614 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 615 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 616 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 617 } 618 } else { 619 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 620 if (Subtarget.hasSPE()) { 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 622 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 623 } else { 624 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 626 } 627 } 628 629 // With the instructions enabled under FPCVT, we can do everything. 630 if (Subtarget.hasFPCVT()) { 631 if (Subtarget.has64BitSupport()) { 632 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 633 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 634 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 635 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 636 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 637 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 638 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 639 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 640 } 641 642 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 644 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 645 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 646 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 647 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 648 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 649 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 650 } 651 652 if (Subtarget.use64BitRegs()) { 653 // 64-bit PowerPC implementations can support i64 types directly 654 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 655 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 656 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 657 // 64-bit PowerPC wants to expand i128 shifts itself. 658 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 659 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 660 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 661 } else { 662 // 32-bit PowerPC wants to expand i64 shifts itself. 663 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 664 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 665 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 666 } 667 668 // PowerPC has better expansions for funnel shifts than the generic 669 // TargetLowering::expandFunnelShift. 670 if (Subtarget.has64BitSupport()) { 671 setOperationAction(ISD::FSHL, MVT::i64, Custom); 672 setOperationAction(ISD::FSHR, MVT::i64, Custom); 673 } 674 setOperationAction(ISD::FSHL, MVT::i32, Custom); 675 setOperationAction(ISD::FSHR, MVT::i32, Custom); 676 677 if (Subtarget.hasVSX()) { 678 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 679 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 680 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 681 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 682 } 683 684 if (Subtarget.hasAltivec()) { 685 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 686 setOperationAction(ISD::SADDSAT, VT, Legal); 687 setOperationAction(ISD::SSUBSAT, VT, Legal); 688 setOperationAction(ISD::UADDSAT, VT, Legal); 689 setOperationAction(ISD::USUBSAT, VT, Legal); 690 } 691 // First set operation action for all vector types to expand. Then we 692 // will selectively turn on ones that can be effectively codegen'd. 693 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 694 // add/sub are legal for all supported vector VT's. 695 setOperationAction(ISD::ADD, VT, Legal); 696 setOperationAction(ISD::SUB, VT, Legal); 697 698 // For v2i64, these are only valid with P8Vector. This is corrected after 699 // the loop. 700 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 701 setOperationAction(ISD::SMAX, VT, Legal); 702 setOperationAction(ISD::SMIN, VT, Legal); 703 setOperationAction(ISD::UMAX, VT, Legal); 704 setOperationAction(ISD::UMIN, VT, Legal); 705 } 706 else { 707 setOperationAction(ISD::SMAX, VT, Expand); 708 setOperationAction(ISD::SMIN, VT, Expand); 709 setOperationAction(ISD::UMAX, VT, Expand); 710 setOperationAction(ISD::UMIN, VT, Expand); 711 } 712 713 if (Subtarget.hasVSX()) { 714 setOperationAction(ISD::FMAXNUM, VT, Legal); 715 setOperationAction(ISD::FMINNUM, VT, Legal); 716 } 717 718 // Vector instructions introduced in P8 719 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 720 setOperationAction(ISD::CTPOP, VT, Legal); 721 setOperationAction(ISD::CTLZ, VT, Legal); 722 } 723 else { 724 setOperationAction(ISD::CTPOP, VT, Expand); 725 setOperationAction(ISD::CTLZ, VT, Expand); 726 } 727 728 // Vector instructions introduced in P9 729 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 730 setOperationAction(ISD::CTTZ, VT, Legal); 731 else 732 setOperationAction(ISD::CTTZ, VT, Expand); 733 734 // We promote all shuffles to v16i8. 735 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 736 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 737 738 // We promote all non-typed operations to v4i32. 739 setOperationAction(ISD::AND , VT, Promote); 740 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 741 setOperationAction(ISD::OR , VT, Promote); 742 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 743 setOperationAction(ISD::XOR , VT, Promote); 744 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 745 setOperationAction(ISD::LOAD , VT, Promote); 746 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 747 setOperationAction(ISD::SELECT, VT, Promote); 748 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 749 setOperationAction(ISD::VSELECT, VT, Legal); 750 setOperationAction(ISD::SELECT_CC, VT, Promote); 751 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 752 setOperationAction(ISD::STORE, VT, Promote); 753 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 754 755 // No other operations are legal. 756 setOperationAction(ISD::MUL , VT, Expand); 757 setOperationAction(ISD::SDIV, VT, Expand); 758 setOperationAction(ISD::SREM, VT, Expand); 759 setOperationAction(ISD::UDIV, VT, Expand); 760 setOperationAction(ISD::UREM, VT, Expand); 761 setOperationAction(ISD::FDIV, VT, Expand); 762 setOperationAction(ISD::FREM, VT, Expand); 763 setOperationAction(ISD::FNEG, VT, Expand); 764 setOperationAction(ISD::FSQRT, VT, Expand); 765 setOperationAction(ISD::FLOG, VT, Expand); 766 setOperationAction(ISD::FLOG10, VT, Expand); 767 setOperationAction(ISD::FLOG2, VT, Expand); 768 setOperationAction(ISD::FEXP, VT, Expand); 769 setOperationAction(ISD::FEXP2, VT, Expand); 770 setOperationAction(ISD::FSIN, VT, Expand); 771 setOperationAction(ISD::FCOS, VT, Expand); 772 setOperationAction(ISD::FABS, VT, Expand); 773 setOperationAction(ISD::FFLOOR, VT, Expand); 774 setOperationAction(ISD::FCEIL, VT, Expand); 775 setOperationAction(ISD::FTRUNC, VT, Expand); 776 setOperationAction(ISD::FRINT, VT, Expand); 777 setOperationAction(ISD::FNEARBYINT, VT, Expand); 778 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 779 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 780 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 781 setOperationAction(ISD::MULHU, VT, Expand); 782 setOperationAction(ISD::MULHS, VT, Expand); 783 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 784 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 785 setOperationAction(ISD::UDIVREM, VT, Expand); 786 setOperationAction(ISD::SDIVREM, VT, Expand); 787 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 788 setOperationAction(ISD::FPOW, VT, Expand); 789 setOperationAction(ISD::BSWAP, VT, Expand); 790 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 791 setOperationAction(ISD::ROTL, VT, Expand); 792 setOperationAction(ISD::ROTR, VT, Expand); 793 794 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 795 setTruncStoreAction(VT, InnerVT, Expand); 796 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 797 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 798 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 799 } 800 } 801 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 802 if (!Subtarget.hasP8Vector()) { 803 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 804 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 805 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 806 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 807 } 808 809 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 810 setOperationAction(ISD::ABS, VT, Custom); 811 812 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 813 // with merges, splats, etc. 814 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 815 816 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 817 // are cheap, so handle them before they get expanded to scalar. 818 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 819 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 820 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 821 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 822 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 823 824 setOperationAction(ISD::AND , MVT::v4i32, Legal); 825 setOperationAction(ISD::OR , MVT::v4i32, Legal); 826 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 827 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 828 setOperationAction(ISD::SELECT, MVT::v4i32, 829 Subtarget.useCRBits() ? Legal : Expand); 830 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 831 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 832 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 833 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 834 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 835 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 836 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 837 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 838 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 839 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 840 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 841 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 842 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 843 844 // Without hasP8Altivec set, v2i64 SMAX isn't available. 845 // But ABS custom lowering requires SMAX support. 846 if (!Subtarget.hasP8Altivec()) 847 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 848 849 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 850 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 851 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 852 if (Subtarget.hasAltivec()) 853 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 854 setOperationAction(ISD::ROTL, VT, Legal); 855 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 856 if (Subtarget.hasP8Altivec()) 857 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 858 859 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 860 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 861 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 862 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 863 864 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 865 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 866 867 if (Subtarget.hasVSX()) { 868 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 869 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 870 } 871 872 if (Subtarget.hasP8Altivec()) 873 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 874 else 875 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 876 877 if (Subtarget.isISA3_1()) { 878 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 879 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 880 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 881 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 882 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 883 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 884 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 885 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 886 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 887 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 888 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 889 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 890 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 891 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 892 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 893 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 894 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 895 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 896 } 897 898 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 899 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 900 901 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 902 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 903 904 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 905 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 906 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 907 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 908 909 // Altivec does not contain unordered floating-point compare instructions 910 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 911 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 912 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 913 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 914 915 if (Subtarget.hasVSX()) { 916 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 917 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 918 if (Subtarget.hasP8Vector()) { 919 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 920 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 921 } 922 if (Subtarget.hasDirectMove() && isPPC64) { 923 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 924 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 925 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 926 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 927 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 928 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 929 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 930 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 931 } 932 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 933 934 // The nearbyint variants are not allowed to raise the inexact exception 935 // so we can only code-gen them with unsafe math. 936 if (TM.Options.UnsafeFPMath) { 937 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 938 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 939 } 940 941 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 942 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 943 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 944 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 945 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 946 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 947 setOperationAction(ISD::FROUND, MVT::f64, Legal); 948 setOperationAction(ISD::FRINT, MVT::f64, Legal); 949 950 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 951 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 952 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 953 setOperationAction(ISD::FROUND, MVT::f32, Legal); 954 setOperationAction(ISD::FRINT, MVT::f32, Legal); 955 956 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 957 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 958 959 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 960 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 961 962 // Share the Altivec comparison restrictions. 963 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 964 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 965 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 966 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 967 968 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 969 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 970 971 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 972 973 if (Subtarget.hasP8Vector()) 974 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 975 976 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 977 978 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 979 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 980 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 981 982 if (Subtarget.hasP8Altivec()) { 983 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 984 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 985 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 986 987 // 128 bit shifts can be accomplished via 3 instructions for SHL and 988 // SRL, but not for SRA because of the instructions available: 989 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 990 // doing 991 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 992 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 993 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 994 995 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 996 } 997 else { 998 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 999 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1000 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1001 1002 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1003 1004 // VSX v2i64 only supports non-arithmetic operations. 1005 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1006 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1007 } 1008 1009 if (Subtarget.isISA3_1()) 1010 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1011 else 1012 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1013 1014 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1015 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1016 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1017 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1018 1019 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1020 1021 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1022 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1023 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1024 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1025 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1026 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1027 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1028 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1029 1030 // Custom handling for partial vectors of integers converted to 1031 // floating point. We already have optimal handling for v2i32 through 1032 // the DAG combine, so those aren't necessary. 1033 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1034 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1035 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1036 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1037 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1038 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1039 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1040 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1041 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1042 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1043 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1044 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1045 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1046 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1047 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1048 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1049 1050 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1051 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1052 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1053 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1054 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1055 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1056 1057 if (Subtarget.hasDirectMove()) 1058 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1059 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1060 1061 // Handle constrained floating-point operations of vector. 1062 // The predictor is `hasVSX` because altivec instruction has 1063 // no exception but VSX vector instruction has. 1064 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1065 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1066 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1067 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1068 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1069 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1070 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1071 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1072 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1073 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1074 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1075 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1076 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1077 1078 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1079 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1080 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1081 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1082 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1083 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1084 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1085 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1086 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1087 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1088 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1089 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1090 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1091 1092 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1093 } 1094 1095 if (Subtarget.hasP8Altivec()) { 1096 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1097 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1098 } 1099 1100 if (Subtarget.hasP9Vector()) { 1101 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1102 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1103 1104 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1105 // SRL, but not for SRA because of the instructions available: 1106 // VS{RL} and VS{RL}O. 1107 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1108 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1109 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1110 1111 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1112 setOperationAction(ISD::FADD, MVT::f128, Legal); 1113 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1114 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1115 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1116 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1117 // No extending loads to f128 on PPC. 1118 for (MVT FPT : MVT::fp_valuetypes()) 1119 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1120 setOperationAction(ISD::FMA, MVT::f128, Legal); 1121 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1122 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1123 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1124 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1125 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1126 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1127 1128 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1129 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1130 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1131 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1132 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1133 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1134 1135 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1136 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1137 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1138 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1139 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1140 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1141 // No implementation for these ops for PowerPC. 1142 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1143 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1144 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1145 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1146 setOperationAction(ISD::FREM, MVT::f128, Expand); 1147 1148 // Handle constrained floating-point operations of fp128 1149 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1150 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1151 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1152 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1153 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1154 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1155 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1156 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1157 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1158 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1159 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1160 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1161 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1162 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1163 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1164 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1165 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1166 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1167 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1168 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1169 } 1170 1171 if (Subtarget.hasP9Altivec()) { 1172 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1173 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1174 1175 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1177 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1178 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1180 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1181 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1182 } 1183 } 1184 1185 if (Subtarget.pairedVectorMemops()) { 1186 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1187 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1188 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1189 } 1190 if (Subtarget.hasMMA()) { 1191 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1192 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1193 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1194 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1195 } 1196 1197 if (Subtarget.has64BitSupport()) 1198 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1199 1200 if (Subtarget.isISA3_1()) 1201 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1202 1203 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1204 1205 if (!isPPC64) { 1206 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1207 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1208 } 1209 1210 setBooleanContents(ZeroOrOneBooleanContent); 1211 1212 if (Subtarget.hasAltivec()) { 1213 // Altivec instructions set fields to all zeros or all ones. 1214 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1215 } 1216 1217 if (!isPPC64) { 1218 // These libcalls are not available in 32-bit. 1219 setLibcallName(RTLIB::SHL_I128, nullptr); 1220 setLibcallName(RTLIB::SRL_I128, nullptr); 1221 setLibcallName(RTLIB::SRA_I128, nullptr); 1222 } 1223 1224 if (!isPPC64) 1225 setMaxAtomicSizeInBitsSupported(32); 1226 1227 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1228 1229 // We have target-specific dag combine patterns for the following nodes: 1230 setTargetDAGCombine(ISD::ADD); 1231 setTargetDAGCombine(ISD::SHL); 1232 setTargetDAGCombine(ISD::SRA); 1233 setTargetDAGCombine(ISD::SRL); 1234 setTargetDAGCombine(ISD::MUL); 1235 setTargetDAGCombine(ISD::FMA); 1236 setTargetDAGCombine(ISD::SINT_TO_FP); 1237 setTargetDAGCombine(ISD::BUILD_VECTOR); 1238 if (Subtarget.hasFPCVT()) 1239 setTargetDAGCombine(ISD::UINT_TO_FP); 1240 setTargetDAGCombine(ISD::LOAD); 1241 setTargetDAGCombine(ISD::STORE); 1242 setTargetDAGCombine(ISD::BR_CC); 1243 if (Subtarget.useCRBits()) 1244 setTargetDAGCombine(ISD::BRCOND); 1245 setTargetDAGCombine(ISD::BSWAP); 1246 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1247 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1248 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1249 1250 setTargetDAGCombine(ISD::SIGN_EXTEND); 1251 setTargetDAGCombine(ISD::ZERO_EXTEND); 1252 setTargetDAGCombine(ISD::ANY_EXTEND); 1253 1254 setTargetDAGCombine(ISD::TRUNCATE); 1255 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1256 1257 1258 if (Subtarget.useCRBits()) { 1259 setTargetDAGCombine(ISD::TRUNCATE); 1260 setTargetDAGCombine(ISD::SETCC); 1261 setTargetDAGCombine(ISD::SELECT_CC); 1262 } 1263 1264 if (Subtarget.hasP9Altivec()) { 1265 setTargetDAGCombine(ISD::ABS); 1266 setTargetDAGCombine(ISD::VSELECT); 1267 } 1268 1269 setLibcallName(RTLIB::LOG_F128, "logf128"); 1270 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1271 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1272 setLibcallName(RTLIB::EXP_F128, "expf128"); 1273 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1274 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1275 setLibcallName(RTLIB::COS_F128, "cosf128"); 1276 setLibcallName(RTLIB::POW_F128, "powf128"); 1277 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1278 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1279 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1280 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1281 1282 // With 32 condition bits, we don't need to sink (and duplicate) compares 1283 // aggressively in CodeGenPrep. 1284 if (Subtarget.useCRBits()) { 1285 setHasMultipleConditionRegisters(); 1286 setJumpIsExpensive(); 1287 } 1288 1289 setMinFunctionAlignment(Align(4)); 1290 1291 switch (Subtarget.getCPUDirective()) { 1292 default: break; 1293 case PPC::DIR_970: 1294 case PPC::DIR_A2: 1295 case PPC::DIR_E500: 1296 case PPC::DIR_E500mc: 1297 case PPC::DIR_E5500: 1298 case PPC::DIR_PWR4: 1299 case PPC::DIR_PWR5: 1300 case PPC::DIR_PWR5X: 1301 case PPC::DIR_PWR6: 1302 case PPC::DIR_PWR6X: 1303 case PPC::DIR_PWR7: 1304 case PPC::DIR_PWR8: 1305 case PPC::DIR_PWR9: 1306 case PPC::DIR_PWR10: 1307 case PPC::DIR_PWR_FUTURE: 1308 setPrefLoopAlignment(Align(16)); 1309 setPrefFunctionAlignment(Align(16)); 1310 break; 1311 } 1312 1313 if (Subtarget.enableMachineScheduler()) 1314 setSchedulingPreference(Sched::Source); 1315 else 1316 setSchedulingPreference(Sched::Hybrid); 1317 1318 computeRegisterProperties(STI.getRegisterInfo()); 1319 1320 // The Freescale cores do better with aggressive inlining of memcpy and 1321 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1322 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1323 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1324 MaxStoresPerMemset = 32; 1325 MaxStoresPerMemsetOptSize = 16; 1326 MaxStoresPerMemcpy = 32; 1327 MaxStoresPerMemcpyOptSize = 8; 1328 MaxStoresPerMemmove = 32; 1329 MaxStoresPerMemmoveOptSize = 8; 1330 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1331 // The A2 also benefits from (very) aggressive inlining of memcpy and 1332 // friends. The overhead of a the function call, even when warm, can be 1333 // over one hundred cycles. 1334 MaxStoresPerMemset = 128; 1335 MaxStoresPerMemcpy = 128; 1336 MaxStoresPerMemmove = 128; 1337 MaxLoadsPerMemcmp = 128; 1338 } else { 1339 MaxLoadsPerMemcmp = 8; 1340 MaxLoadsPerMemcmpOptSize = 4; 1341 } 1342 1343 IsStrictFPEnabled = true; 1344 1345 // Let the subtarget (CPU) decide if a predictable select is more expensive 1346 // than the corresponding branch. This information is used in CGP to decide 1347 // when to convert selects into branches. 1348 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1349 } 1350 1351 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1352 /// the desired ByVal argument alignment. 1353 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1354 if (MaxAlign == MaxMaxAlign) 1355 return; 1356 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1357 if (MaxMaxAlign >= 32 && 1358 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1359 MaxAlign = Align(32); 1360 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1361 MaxAlign < 16) 1362 MaxAlign = Align(16); 1363 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1364 Align EltAlign; 1365 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1366 if (EltAlign > MaxAlign) 1367 MaxAlign = EltAlign; 1368 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1369 for (auto *EltTy : STy->elements()) { 1370 Align EltAlign; 1371 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1372 if (EltAlign > MaxAlign) 1373 MaxAlign = EltAlign; 1374 if (MaxAlign == MaxMaxAlign) 1375 break; 1376 } 1377 } 1378 } 1379 1380 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1381 /// function arguments in the caller parameter area. 1382 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1383 const DataLayout &DL) const { 1384 // 16byte and wider vectors are passed on 16byte boundary. 1385 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1386 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1387 if (Subtarget.hasAltivec()) 1388 getMaxByValAlign(Ty, Alignment, Align(16)); 1389 return Alignment.value(); 1390 } 1391 1392 bool PPCTargetLowering::useSoftFloat() const { 1393 return Subtarget.useSoftFloat(); 1394 } 1395 1396 bool PPCTargetLowering::hasSPE() const { 1397 return Subtarget.hasSPE(); 1398 } 1399 1400 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1401 return VT.isScalarInteger(); 1402 } 1403 1404 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1405 /// type is cheaper than a multiply followed by a shift. 1406 /// This is true for words and doublewords on 64-bit PowerPC. 1407 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1408 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1409 isOperationLegal(ISD::MULHU, Type))) 1410 return true; 1411 return TargetLowering::isMulhCheaperThanMulShift(Type); 1412 } 1413 1414 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1415 switch ((PPCISD::NodeType)Opcode) { 1416 case PPCISD::FIRST_NUMBER: break; 1417 case PPCISD::FSEL: return "PPCISD::FSEL"; 1418 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1419 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1420 case PPCISD::FCFID: return "PPCISD::FCFID"; 1421 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1422 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1423 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1424 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1425 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1426 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1427 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1428 case PPCISD::FP_TO_UINT_IN_VSR: 1429 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1430 case PPCISD::FP_TO_SINT_IN_VSR: 1431 return "PPCISD::FP_TO_SINT_IN_VSR"; 1432 case PPCISD::FRE: return "PPCISD::FRE"; 1433 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1434 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1435 case PPCISD::VPERM: return "PPCISD::VPERM"; 1436 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1437 case PPCISD::XXSPLTI_SP_TO_DP: 1438 return "PPCISD::XXSPLTI_SP_TO_DP"; 1439 case PPCISD::XXSPLTI32DX: 1440 return "PPCISD::XXSPLTI32DX"; 1441 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1442 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1443 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1444 case PPCISD::CMPB: return "PPCISD::CMPB"; 1445 case PPCISD::Hi: return "PPCISD::Hi"; 1446 case PPCISD::Lo: return "PPCISD::Lo"; 1447 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1448 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1449 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1450 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1451 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1452 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1453 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1454 case PPCISD::SRL: return "PPCISD::SRL"; 1455 case PPCISD::SRA: return "PPCISD::SRA"; 1456 case PPCISD::SHL: return "PPCISD::SHL"; 1457 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1458 case PPCISD::CALL: return "PPCISD::CALL"; 1459 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1460 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1461 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1462 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1463 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1464 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1465 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1466 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1467 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1468 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1469 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1470 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1471 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1472 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1473 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1474 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1475 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1476 case PPCISD::ANDI_rec_1_EQ_BIT: 1477 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1478 case PPCISD::ANDI_rec_1_GT_BIT: 1479 return "PPCISD::ANDI_rec_1_GT_BIT"; 1480 case PPCISD::VCMP: return "PPCISD::VCMP"; 1481 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1482 case PPCISD::LBRX: return "PPCISD::LBRX"; 1483 case PPCISD::STBRX: return "PPCISD::STBRX"; 1484 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1485 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1486 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1487 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1488 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1489 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1490 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1491 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1492 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1493 case PPCISD::ST_VSR_SCAL_INT: 1494 return "PPCISD::ST_VSR_SCAL_INT"; 1495 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1496 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1497 case PPCISD::BDZ: return "PPCISD::BDZ"; 1498 case PPCISD::MFFS: return "PPCISD::MFFS"; 1499 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1500 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1501 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1502 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1503 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1504 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1505 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1506 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1507 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1508 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1509 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1510 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1511 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1512 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1513 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1514 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1515 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1516 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1517 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1518 case PPCISD::PADDI_DTPREL: 1519 return "PPCISD::PADDI_DTPREL"; 1520 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1521 case PPCISD::SC: return "PPCISD::SC"; 1522 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1523 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1524 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1525 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1526 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1527 case PPCISD::VABSD: return "PPCISD::VABSD"; 1528 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1529 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1530 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1531 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1532 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1533 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1534 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1535 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1536 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1537 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1538 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1539 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1540 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1541 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1542 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1543 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1544 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1545 case PPCISD::STRICT_FADDRTZ: 1546 return "PPCISD::STRICT_FADDRTZ"; 1547 case PPCISD::STRICT_FCTIDZ: 1548 return "PPCISD::STRICT_FCTIDZ"; 1549 case PPCISD::STRICT_FCTIWZ: 1550 return "PPCISD::STRICT_FCTIWZ"; 1551 case PPCISD::STRICT_FCTIDUZ: 1552 return "PPCISD::STRICT_FCTIDUZ"; 1553 case PPCISD::STRICT_FCTIWUZ: 1554 return "PPCISD::STRICT_FCTIWUZ"; 1555 case PPCISD::STRICT_FCFID: 1556 return "PPCISD::STRICT_FCFID"; 1557 case PPCISD::STRICT_FCFIDU: 1558 return "PPCISD::STRICT_FCFIDU"; 1559 case PPCISD::STRICT_FCFIDS: 1560 return "PPCISD::STRICT_FCFIDS"; 1561 case PPCISD::STRICT_FCFIDUS: 1562 return "PPCISD::STRICT_FCFIDUS"; 1563 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1564 } 1565 return nullptr; 1566 } 1567 1568 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1569 EVT VT) const { 1570 if (!VT.isVector()) 1571 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1572 1573 return VT.changeVectorElementTypeToInteger(); 1574 } 1575 1576 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1577 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1578 return true; 1579 } 1580 1581 //===----------------------------------------------------------------------===// 1582 // Node matching predicates, for use by the tblgen matching code. 1583 //===----------------------------------------------------------------------===// 1584 1585 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1586 static bool isFloatingPointZero(SDValue Op) { 1587 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1588 return CFP->getValueAPF().isZero(); 1589 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1590 // Maybe this has already been legalized into the constant pool? 1591 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1592 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1593 return CFP->getValueAPF().isZero(); 1594 } 1595 return false; 1596 } 1597 1598 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1599 /// true if Op is undef or if it matches the specified value. 1600 static bool isConstantOrUndef(int Op, int Val) { 1601 return Op < 0 || Op == Val; 1602 } 1603 1604 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1605 /// VPKUHUM instruction. 1606 /// The ShuffleKind distinguishes between big-endian operations with 1607 /// two different inputs (0), either-endian operations with two identical 1608 /// inputs (1), and little-endian operations with two different inputs (2). 1609 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1610 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1611 SelectionDAG &DAG) { 1612 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1613 if (ShuffleKind == 0) { 1614 if (IsLE) 1615 return false; 1616 for (unsigned i = 0; i != 16; ++i) 1617 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1618 return false; 1619 } else if (ShuffleKind == 2) { 1620 if (!IsLE) 1621 return false; 1622 for (unsigned i = 0; i != 16; ++i) 1623 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1624 return false; 1625 } else if (ShuffleKind == 1) { 1626 unsigned j = IsLE ? 0 : 1; 1627 for (unsigned i = 0; i != 8; ++i) 1628 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1629 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1630 return false; 1631 } 1632 return true; 1633 } 1634 1635 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1636 /// VPKUWUM instruction. 1637 /// The ShuffleKind distinguishes between big-endian operations with 1638 /// two different inputs (0), either-endian operations with two identical 1639 /// inputs (1), and little-endian operations with two different inputs (2). 1640 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1641 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1642 SelectionDAG &DAG) { 1643 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1644 if (ShuffleKind == 0) { 1645 if (IsLE) 1646 return false; 1647 for (unsigned i = 0; i != 16; i += 2) 1648 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1649 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1650 return false; 1651 } else if (ShuffleKind == 2) { 1652 if (!IsLE) 1653 return false; 1654 for (unsigned i = 0; i != 16; i += 2) 1655 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1656 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1657 return false; 1658 } else if (ShuffleKind == 1) { 1659 unsigned j = IsLE ? 0 : 2; 1660 for (unsigned i = 0; i != 8; i += 2) 1661 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1662 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1663 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1664 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1665 return false; 1666 } 1667 return true; 1668 } 1669 1670 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1671 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1672 /// current subtarget. 1673 /// 1674 /// The ShuffleKind distinguishes between big-endian operations with 1675 /// two different inputs (0), either-endian operations with two identical 1676 /// inputs (1), and little-endian operations with two different inputs (2). 1677 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1678 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1679 SelectionDAG &DAG) { 1680 const PPCSubtarget& Subtarget = 1681 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1682 if (!Subtarget.hasP8Vector()) 1683 return false; 1684 1685 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1686 if (ShuffleKind == 0) { 1687 if (IsLE) 1688 return false; 1689 for (unsigned i = 0; i != 16; i += 4) 1690 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1691 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1692 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1693 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1694 return false; 1695 } else if (ShuffleKind == 2) { 1696 if (!IsLE) 1697 return false; 1698 for (unsigned i = 0; i != 16; i += 4) 1699 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1700 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1701 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1702 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1703 return false; 1704 } else if (ShuffleKind == 1) { 1705 unsigned j = IsLE ? 0 : 4; 1706 for (unsigned i = 0; i != 8; i += 4) 1707 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1708 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1709 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1710 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1711 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1712 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1713 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1714 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1715 return false; 1716 } 1717 return true; 1718 } 1719 1720 /// isVMerge - Common function, used to match vmrg* shuffles. 1721 /// 1722 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1723 unsigned LHSStart, unsigned RHSStart) { 1724 if (N->getValueType(0) != MVT::v16i8) 1725 return false; 1726 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1727 "Unsupported merge size!"); 1728 1729 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1730 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1731 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1732 LHSStart+j+i*UnitSize) || 1733 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1734 RHSStart+j+i*UnitSize)) 1735 return false; 1736 } 1737 return true; 1738 } 1739 1740 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1741 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1742 /// The ShuffleKind distinguishes between big-endian merges with two 1743 /// different inputs (0), either-endian merges with two identical inputs (1), 1744 /// and little-endian merges with two different inputs (2). For the latter, 1745 /// the input operands are swapped (see PPCInstrAltivec.td). 1746 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1747 unsigned ShuffleKind, SelectionDAG &DAG) { 1748 if (DAG.getDataLayout().isLittleEndian()) { 1749 if (ShuffleKind == 1) // unary 1750 return isVMerge(N, UnitSize, 0, 0); 1751 else if (ShuffleKind == 2) // swapped 1752 return isVMerge(N, UnitSize, 0, 16); 1753 else 1754 return false; 1755 } else { 1756 if (ShuffleKind == 1) // unary 1757 return isVMerge(N, UnitSize, 8, 8); 1758 else if (ShuffleKind == 0) // normal 1759 return isVMerge(N, UnitSize, 8, 24); 1760 else 1761 return false; 1762 } 1763 } 1764 1765 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1766 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1767 /// The ShuffleKind distinguishes between big-endian merges with two 1768 /// different inputs (0), either-endian merges with two identical inputs (1), 1769 /// and little-endian merges with two different inputs (2). For the latter, 1770 /// the input operands are swapped (see PPCInstrAltivec.td). 1771 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1772 unsigned ShuffleKind, SelectionDAG &DAG) { 1773 if (DAG.getDataLayout().isLittleEndian()) { 1774 if (ShuffleKind == 1) // unary 1775 return isVMerge(N, UnitSize, 8, 8); 1776 else if (ShuffleKind == 2) // swapped 1777 return isVMerge(N, UnitSize, 8, 24); 1778 else 1779 return false; 1780 } else { 1781 if (ShuffleKind == 1) // unary 1782 return isVMerge(N, UnitSize, 0, 0); 1783 else if (ShuffleKind == 0) // normal 1784 return isVMerge(N, UnitSize, 0, 16); 1785 else 1786 return false; 1787 } 1788 } 1789 1790 /** 1791 * Common function used to match vmrgew and vmrgow shuffles 1792 * 1793 * The indexOffset determines whether to look for even or odd words in 1794 * the shuffle mask. This is based on the of the endianness of the target 1795 * machine. 1796 * - Little Endian: 1797 * - Use offset of 0 to check for odd elements 1798 * - Use offset of 4 to check for even elements 1799 * - Big Endian: 1800 * - Use offset of 0 to check for even elements 1801 * - Use offset of 4 to check for odd elements 1802 * A detailed description of the vector element ordering for little endian and 1803 * big endian can be found at 1804 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1805 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1806 * compiler differences mean to you 1807 * 1808 * The mask to the shuffle vector instruction specifies the indices of the 1809 * elements from the two input vectors to place in the result. The elements are 1810 * numbered in array-access order, starting with the first vector. These vectors 1811 * are always of type v16i8, thus each vector will contain 16 elements of size 1812 * 8. More info on the shuffle vector can be found in the 1813 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1814 * Language Reference. 1815 * 1816 * The RHSStartValue indicates whether the same input vectors are used (unary) 1817 * or two different input vectors are used, based on the following: 1818 * - If the instruction uses the same vector for both inputs, the range of the 1819 * indices will be 0 to 15. In this case, the RHSStart value passed should 1820 * be 0. 1821 * - If the instruction has two different vectors then the range of the 1822 * indices will be 0 to 31. In this case, the RHSStart value passed should 1823 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1824 * to 31 specify elements in the second vector). 1825 * 1826 * \param[in] N The shuffle vector SD Node to analyze 1827 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1828 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1829 * vector to the shuffle_vector instruction 1830 * \return true iff this shuffle vector represents an even or odd word merge 1831 */ 1832 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1833 unsigned RHSStartValue) { 1834 if (N->getValueType(0) != MVT::v16i8) 1835 return false; 1836 1837 for (unsigned i = 0; i < 2; ++i) 1838 for (unsigned j = 0; j < 4; ++j) 1839 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1840 i*RHSStartValue+j+IndexOffset) || 1841 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1842 i*RHSStartValue+j+IndexOffset+8)) 1843 return false; 1844 return true; 1845 } 1846 1847 /** 1848 * Determine if the specified shuffle mask is suitable for the vmrgew or 1849 * vmrgow instructions. 1850 * 1851 * \param[in] N The shuffle vector SD Node to analyze 1852 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1853 * \param[in] ShuffleKind Identify the type of merge: 1854 * - 0 = big-endian merge with two different inputs; 1855 * - 1 = either-endian merge with two identical inputs; 1856 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1857 * little-endian merges). 1858 * \param[in] DAG The current SelectionDAG 1859 * \return true iff this shuffle mask 1860 */ 1861 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1862 unsigned ShuffleKind, SelectionDAG &DAG) { 1863 if (DAG.getDataLayout().isLittleEndian()) { 1864 unsigned indexOffset = CheckEven ? 4 : 0; 1865 if (ShuffleKind == 1) // Unary 1866 return isVMerge(N, indexOffset, 0); 1867 else if (ShuffleKind == 2) // swapped 1868 return isVMerge(N, indexOffset, 16); 1869 else 1870 return false; 1871 } 1872 else { 1873 unsigned indexOffset = CheckEven ? 0 : 4; 1874 if (ShuffleKind == 1) // Unary 1875 return isVMerge(N, indexOffset, 0); 1876 else if (ShuffleKind == 0) // Normal 1877 return isVMerge(N, indexOffset, 16); 1878 else 1879 return false; 1880 } 1881 return false; 1882 } 1883 1884 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1885 /// amount, otherwise return -1. 1886 /// The ShuffleKind distinguishes between big-endian operations with two 1887 /// different inputs (0), either-endian operations with two identical inputs 1888 /// (1), and little-endian operations with two different inputs (2). For the 1889 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1890 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1891 SelectionDAG &DAG) { 1892 if (N->getValueType(0) != MVT::v16i8) 1893 return -1; 1894 1895 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1896 1897 // Find the first non-undef value in the shuffle mask. 1898 unsigned i; 1899 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1900 /*search*/; 1901 1902 if (i == 16) return -1; // all undef. 1903 1904 // Otherwise, check to see if the rest of the elements are consecutively 1905 // numbered from this value. 1906 unsigned ShiftAmt = SVOp->getMaskElt(i); 1907 if (ShiftAmt < i) return -1; 1908 1909 ShiftAmt -= i; 1910 bool isLE = DAG.getDataLayout().isLittleEndian(); 1911 1912 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1913 // Check the rest of the elements to see if they are consecutive. 1914 for (++i; i != 16; ++i) 1915 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1916 return -1; 1917 } else if (ShuffleKind == 1) { 1918 // Check the rest of the elements to see if they are consecutive. 1919 for (++i; i != 16; ++i) 1920 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1921 return -1; 1922 } else 1923 return -1; 1924 1925 if (isLE) 1926 ShiftAmt = 16 - ShiftAmt; 1927 1928 return ShiftAmt; 1929 } 1930 1931 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1932 /// specifies a splat of a single element that is suitable for input to 1933 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1934 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1935 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1936 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1937 1938 // The consecutive indices need to specify an element, not part of two 1939 // different elements. So abandon ship early if this isn't the case. 1940 if (N->getMaskElt(0) % EltSize != 0) 1941 return false; 1942 1943 // This is a splat operation if each element of the permute is the same, and 1944 // if the value doesn't reference the second vector. 1945 unsigned ElementBase = N->getMaskElt(0); 1946 1947 // FIXME: Handle UNDEF elements too! 1948 if (ElementBase >= 16) 1949 return false; 1950 1951 // Check that the indices are consecutive, in the case of a multi-byte element 1952 // splatted with a v16i8 mask. 1953 for (unsigned i = 1; i != EltSize; ++i) 1954 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1955 return false; 1956 1957 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1958 if (N->getMaskElt(i) < 0) continue; 1959 for (unsigned j = 0; j != EltSize; ++j) 1960 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1961 return false; 1962 } 1963 return true; 1964 } 1965 1966 /// Check that the mask is shuffling N byte elements. Within each N byte 1967 /// element of the mask, the indices could be either in increasing or 1968 /// decreasing order as long as they are consecutive. 1969 /// \param[in] N the shuffle vector SD Node to analyze 1970 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1971 /// Word/DoubleWord/QuadWord). 1972 /// \param[in] StepLen the delta indices number among the N byte element, if 1973 /// the mask is in increasing/decreasing order then it is 1/-1. 1974 /// \return true iff the mask is shuffling N byte elements. 1975 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1976 int StepLen) { 1977 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1978 "Unexpected element width."); 1979 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1980 1981 unsigned NumOfElem = 16 / Width; 1982 unsigned MaskVal[16]; // Width is never greater than 16 1983 for (unsigned i = 0; i < NumOfElem; ++i) { 1984 MaskVal[0] = N->getMaskElt(i * Width); 1985 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1986 return false; 1987 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1988 return false; 1989 } 1990 1991 for (unsigned int j = 1; j < Width; ++j) { 1992 MaskVal[j] = N->getMaskElt(i * Width + j); 1993 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1994 return false; 1995 } 1996 } 1997 } 1998 1999 return true; 2000 } 2001 2002 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2003 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2004 if (!isNByteElemShuffleMask(N, 4, 1)) 2005 return false; 2006 2007 // Now we look at mask elements 0,4,8,12 2008 unsigned M0 = N->getMaskElt(0) / 4; 2009 unsigned M1 = N->getMaskElt(4) / 4; 2010 unsigned M2 = N->getMaskElt(8) / 4; 2011 unsigned M3 = N->getMaskElt(12) / 4; 2012 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2013 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2014 2015 // Below, let H and L be arbitrary elements of the shuffle mask 2016 // where H is in the range [4,7] and L is in the range [0,3]. 2017 // H, 1, 2, 3 or L, 5, 6, 7 2018 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2019 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2020 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2021 InsertAtByte = IsLE ? 12 : 0; 2022 Swap = M0 < 4; 2023 return true; 2024 } 2025 // 0, H, 2, 3 or 4, L, 6, 7 2026 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2027 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2028 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2029 InsertAtByte = IsLE ? 8 : 4; 2030 Swap = M1 < 4; 2031 return true; 2032 } 2033 // 0, 1, H, 3 or 4, 5, L, 7 2034 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2035 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2036 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2037 InsertAtByte = IsLE ? 4 : 8; 2038 Swap = M2 < 4; 2039 return true; 2040 } 2041 // 0, 1, 2, H or 4, 5, 6, L 2042 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2043 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2044 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2045 InsertAtByte = IsLE ? 0 : 12; 2046 Swap = M3 < 4; 2047 return true; 2048 } 2049 2050 // If both vector operands for the shuffle are the same vector, the mask will 2051 // contain only elements from the first one and the second one will be undef. 2052 if (N->getOperand(1).isUndef()) { 2053 ShiftElts = 0; 2054 Swap = true; 2055 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2056 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2057 InsertAtByte = IsLE ? 12 : 0; 2058 return true; 2059 } 2060 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2061 InsertAtByte = IsLE ? 8 : 4; 2062 return true; 2063 } 2064 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2065 InsertAtByte = IsLE ? 4 : 8; 2066 return true; 2067 } 2068 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2069 InsertAtByte = IsLE ? 0 : 12; 2070 return true; 2071 } 2072 } 2073 2074 return false; 2075 } 2076 2077 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2078 bool &Swap, bool IsLE) { 2079 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2080 // Ensure each byte index of the word is consecutive. 2081 if (!isNByteElemShuffleMask(N, 4, 1)) 2082 return false; 2083 2084 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2085 unsigned M0 = N->getMaskElt(0) / 4; 2086 unsigned M1 = N->getMaskElt(4) / 4; 2087 unsigned M2 = N->getMaskElt(8) / 4; 2088 unsigned M3 = N->getMaskElt(12) / 4; 2089 2090 // If both vector operands for the shuffle are the same vector, the mask will 2091 // contain only elements from the first one and the second one will be undef. 2092 if (N->getOperand(1).isUndef()) { 2093 assert(M0 < 4 && "Indexing into an undef vector?"); 2094 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2095 return false; 2096 2097 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2098 Swap = false; 2099 return true; 2100 } 2101 2102 // Ensure each word index of the ShuffleVector Mask is consecutive. 2103 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2104 return false; 2105 2106 if (IsLE) { 2107 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2108 // Input vectors don't need to be swapped if the leading element 2109 // of the result is one of the 3 left elements of the second vector 2110 // (or if there is no shift to be done at all). 2111 Swap = false; 2112 ShiftElts = (8 - M0) % 8; 2113 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2114 // Input vectors need to be swapped if the leading element 2115 // of the result is one of the 3 left elements of the first vector 2116 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2117 Swap = true; 2118 ShiftElts = (4 - M0) % 4; 2119 } 2120 2121 return true; 2122 } else { // BE 2123 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2124 // Input vectors don't need to be swapped if the leading element 2125 // of the result is one of the 4 elements of the first vector. 2126 Swap = false; 2127 ShiftElts = M0; 2128 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2129 // Input vectors need to be swapped if the leading element 2130 // of the result is one of the 4 elements of the right vector. 2131 Swap = true; 2132 ShiftElts = M0 - 4; 2133 } 2134 2135 return true; 2136 } 2137 } 2138 2139 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2140 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2141 2142 if (!isNByteElemShuffleMask(N, Width, -1)) 2143 return false; 2144 2145 for (int i = 0; i < 16; i += Width) 2146 if (N->getMaskElt(i) != i + Width - 1) 2147 return false; 2148 2149 return true; 2150 } 2151 2152 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2153 return isXXBRShuffleMaskHelper(N, 2); 2154 } 2155 2156 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2157 return isXXBRShuffleMaskHelper(N, 4); 2158 } 2159 2160 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2161 return isXXBRShuffleMaskHelper(N, 8); 2162 } 2163 2164 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2165 return isXXBRShuffleMaskHelper(N, 16); 2166 } 2167 2168 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2169 /// if the inputs to the instruction should be swapped and set \p DM to the 2170 /// value for the immediate. 2171 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2172 /// AND element 0 of the result comes from the first input (LE) or second input 2173 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2174 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2175 /// mask. 2176 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2177 bool &Swap, bool IsLE) { 2178 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2179 2180 // Ensure each byte index of the double word is consecutive. 2181 if (!isNByteElemShuffleMask(N, 8, 1)) 2182 return false; 2183 2184 unsigned M0 = N->getMaskElt(0) / 8; 2185 unsigned M1 = N->getMaskElt(8) / 8; 2186 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2187 2188 // If both vector operands for the shuffle are the same vector, the mask will 2189 // contain only elements from the first one and the second one will be undef. 2190 if (N->getOperand(1).isUndef()) { 2191 if ((M0 | M1) < 2) { 2192 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2193 Swap = false; 2194 return true; 2195 } else 2196 return false; 2197 } 2198 2199 if (IsLE) { 2200 if (M0 > 1 && M1 < 2) { 2201 Swap = false; 2202 } else if (M0 < 2 && M1 > 1) { 2203 M0 = (M0 + 2) % 4; 2204 M1 = (M1 + 2) % 4; 2205 Swap = true; 2206 } else 2207 return false; 2208 2209 // Note: if control flow comes here that means Swap is already set above 2210 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2211 return true; 2212 } else { // BE 2213 if (M0 < 2 && M1 > 1) { 2214 Swap = false; 2215 } else if (M0 > 1 && M1 < 2) { 2216 M0 = (M0 + 2) % 4; 2217 M1 = (M1 + 2) % 4; 2218 Swap = true; 2219 } else 2220 return false; 2221 2222 // Note: if control flow comes here that means Swap is already set above 2223 DM = (M0 << 1) + (M1 & 1); 2224 return true; 2225 } 2226 } 2227 2228 2229 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2230 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2231 /// elements are counted from the left of the vector register). 2232 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2233 SelectionDAG &DAG) { 2234 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2235 assert(isSplatShuffleMask(SVOp, EltSize)); 2236 if (DAG.getDataLayout().isLittleEndian()) 2237 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2238 else 2239 return SVOp->getMaskElt(0) / EltSize; 2240 } 2241 2242 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2243 /// by using a vspltis[bhw] instruction of the specified element size, return 2244 /// the constant being splatted. The ByteSize field indicates the number of 2245 /// bytes of each element [124] -> [bhw]. 2246 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2247 SDValue OpVal(nullptr, 0); 2248 2249 // If ByteSize of the splat is bigger than the element size of the 2250 // build_vector, then we have a case where we are checking for a splat where 2251 // multiple elements of the buildvector are folded together into a single 2252 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2253 unsigned EltSize = 16/N->getNumOperands(); 2254 if (EltSize < ByteSize) { 2255 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2256 SDValue UniquedVals[4]; 2257 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2258 2259 // See if all of the elements in the buildvector agree across. 2260 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2261 if (N->getOperand(i).isUndef()) continue; 2262 // If the element isn't a constant, bail fully out. 2263 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2264 2265 if (!UniquedVals[i&(Multiple-1)].getNode()) 2266 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2267 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2268 return SDValue(); // no match. 2269 } 2270 2271 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2272 // either constant or undef values that are identical for each chunk. See 2273 // if these chunks can form into a larger vspltis*. 2274 2275 // Check to see if all of the leading entries are either 0 or -1. If 2276 // neither, then this won't fit into the immediate field. 2277 bool LeadingZero = true; 2278 bool LeadingOnes = true; 2279 for (unsigned i = 0; i != Multiple-1; ++i) { 2280 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2281 2282 LeadingZero &= isNullConstant(UniquedVals[i]); 2283 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2284 } 2285 // Finally, check the least significant entry. 2286 if (LeadingZero) { 2287 if (!UniquedVals[Multiple-1].getNode()) 2288 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2289 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2290 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2291 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2292 } 2293 if (LeadingOnes) { 2294 if (!UniquedVals[Multiple-1].getNode()) 2295 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2296 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2297 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2298 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2299 } 2300 2301 return SDValue(); 2302 } 2303 2304 // Check to see if this buildvec has a single non-undef value in its elements. 2305 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2306 if (N->getOperand(i).isUndef()) continue; 2307 if (!OpVal.getNode()) 2308 OpVal = N->getOperand(i); 2309 else if (OpVal != N->getOperand(i)) 2310 return SDValue(); 2311 } 2312 2313 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2314 2315 unsigned ValSizeInBytes = EltSize; 2316 uint64_t Value = 0; 2317 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2318 Value = CN->getZExtValue(); 2319 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2320 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2321 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2322 } 2323 2324 // If the splat value is larger than the element value, then we can never do 2325 // this splat. The only case that we could fit the replicated bits into our 2326 // immediate field for would be zero, and we prefer to use vxor for it. 2327 if (ValSizeInBytes < ByteSize) return SDValue(); 2328 2329 // If the element value is larger than the splat value, check if it consists 2330 // of a repeated bit pattern of size ByteSize. 2331 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2332 return SDValue(); 2333 2334 // Properly sign extend the value. 2335 int MaskVal = SignExtend32(Value, ByteSize * 8); 2336 2337 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2338 if (MaskVal == 0) return SDValue(); 2339 2340 // Finally, if this value fits in a 5 bit sext field, return it 2341 if (SignExtend32<5>(MaskVal) == MaskVal) 2342 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2343 return SDValue(); 2344 } 2345 2346 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2347 /// amount, otherwise return -1. 2348 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2349 EVT VT = N->getValueType(0); 2350 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2351 return -1; 2352 2353 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2354 2355 // Find the first non-undef value in the shuffle mask. 2356 unsigned i; 2357 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2358 /*search*/; 2359 2360 if (i == 4) return -1; // all undef. 2361 2362 // Otherwise, check to see if the rest of the elements are consecutively 2363 // numbered from this value. 2364 unsigned ShiftAmt = SVOp->getMaskElt(i); 2365 if (ShiftAmt < i) return -1; 2366 ShiftAmt -= i; 2367 2368 // Check the rest of the elements to see if they are consecutive. 2369 for (++i; i != 4; ++i) 2370 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2371 return -1; 2372 2373 return ShiftAmt; 2374 } 2375 2376 //===----------------------------------------------------------------------===// 2377 // Addressing Mode Selection 2378 //===----------------------------------------------------------------------===// 2379 2380 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2381 /// or 64-bit immediate, and if the value can be accurately represented as a 2382 /// sign extension from a 16-bit value. If so, this returns true and the 2383 /// immediate. 2384 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2385 if (!isa<ConstantSDNode>(N)) 2386 return false; 2387 2388 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2389 if (N->getValueType(0) == MVT::i32) 2390 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2391 else 2392 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2393 } 2394 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2395 return isIntS16Immediate(Op.getNode(), Imm); 2396 } 2397 2398 2399 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2400 /// be represented as an indexed [r+r] operation. 2401 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2402 SDValue &Index, 2403 SelectionDAG &DAG) const { 2404 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2405 UI != E; ++UI) { 2406 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2407 if (Memop->getMemoryVT() == MVT::f64) { 2408 Base = N.getOperand(0); 2409 Index = N.getOperand(1); 2410 return true; 2411 } 2412 } 2413 } 2414 return false; 2415 } 2416 2417 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2418 /// can be represented as an indexed [r+r] operation. Returns false if it 2419 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2420 /// non-zero and N can be represented by a base register plus a signed 16-bit 2421 /// displacement, make a more precise judgement by checking (displacement % \p 2422 /// EncodingAlignment). 2423 bool PPCTargetLowering::SelectAddressRegReg( 2424 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2425 MaybeAlign EncodingAlignment) const { 2426 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2427 // a [pc+imm]. 2428 if (SelectAddressPCRel(N, Base)) 2429 return false; 2430 2431 int16_t Imm = 0; 2432 if (N.getOpcode() == ISD::ADD) { 2433 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2434 // SPE load/store can only handle 8-bit offsets. 2435 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2436 return true; 2437 if (isIntS16Immediate(N.getOperand(1), Imm) && 2438 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2439 return false; // r+i 2440 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2441 return false; // r+i 2442 2443 Base = N.getOperand(0); 2444 Index = N.getOperand(1); 2445 return true; 2446 } else if (N.getOpcode() == ISD::OR) { 2447 if (isIntS16Immediate(N.getOperand(1), Imm) && 2448 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2449 return false; // r+i can fold it if we can. 2450 2451 // If this is an or of disjoint bitfields, we can codegen this as an add 2452 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2453 // disjoint. 2454 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2455 2456 if (LHSKnown.Zero.getBoolValue()) { 2457 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2458 // If all of the bits are known zero on the LHS or RHS, the add won't 2459 // carry. 2460 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2461 Base = N.getOperand(0); 2462 Index = N.getOperand(1); 2463 return true; 2464 } 2465 } 2466 } 2467 2468 return false; 2469 } 2470 2471 // If we happen to be doing an i64 load or store into a stack slot that has 2472 // less than a 4-byte alignment, then the frame-index elimination may need to 2473 // use an indexed load or store instruction (because the offset may not be a 2474 // multiple of 4). The extra register needed to hold the offset comes from the 2475 // register scavenger, and it is possible that the scavenger will need to use 2476 // an emergency spill slot. As a result, we need to make sure that a spill slot 2477 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2478 // stack slot. 2479 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2480 // FIXME: This does not handle the LWA case. 2481 if (VT != MVT::i64) 2482 return; 2483 2484 // NOTE: We'll exclude negative FIs here, which come from argument 2485 // lowering, because there are no known test cases triggering this problem 2486 // using packed structures (or similar). We can remove this exclusion if 2487 // we find such a test case. The reason why this is so test-case driven is 2488 // because this entire 'fixup' is only to prevent crashes (from the 2489 // register scavenger) on not-really-valid inputs. For example, if we have: 2490 // %a = alloca i1 2491 // %b = bitcast i1* %a to i64* 2492 // store i64* a, i64 b 2493 // then the store should really be marked as 'align 1', but is not. If it 2494 // were marked as 'align 1' then the indexed form would have been 2495 // instruction-selected initially, and the problem this 'fixup' is preventing 2496 // won't happen regardless. 2497 if (FrameIdx < 0) 2498 return; 2499 2500 MachineFunction &MF = DAG.getMachineFunction(); 2501 MachineFrameInfo &MFI = MF.getFrameInfo(); 2502 2503 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2504 return; 2505 2506 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2507 FuncInfo->setHasNonRISpills(); 2508 } 2509 2510 /// Returns true if the address N can be represented by a base register plus 2511 /// a signed 16-bit displacement [r+imm], and if it is not better 2512 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2513 /// displacements that are multiples of that value. 2514 bool PPCTargetLowering::SelectAddressRegImm( 2515 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2516 MaybeAlign EncodingAlignment) const { 2517 // FIXME dl should come from parent load or store, not from address 2518 SDLoc dl(N); 2519 2520 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2521 // a [pc+imm]. 2522 if (SelectAddressPCRel(N, Base)) 2523 return false; 2524 2525 // If this can be more profitably realized as r+r, fail. 2526 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2527 return false; 2528 2529 if (N.getOpcode() == ISD::ADD) { 2530 int16_t imm = 0; 2531 if (isIntS16Immediate(N.getOperand(1), imm) && 2532 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2533 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2534 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2535 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2536 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2537 } else { 2538 Base = N.getOperand(0); 2539 } 2540 return true; // [r+i] 2541 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2542 // Match LOAD (ADD (X, Lo(G))). 2543 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2544 && "Cannot handle constant offsets yet!"); 2545 Disp = N.getOperand(1).getOperand(0); // The global address. 2546 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2547 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2548 Disp.getOpcode() == ISD::TargetConstantPool || 2549 Disp.getOpcode() == ISD::TargetJumpTable); 2550 Base = N.getOperand(0); 2551 return true; // [&g+r] 2552 } 2553 } else if (N.getOpcode() == ISD::OR) { 2554 int16_t imm = 0; 2555 if (isIntS16Immediate(N.getOperand(1), imm) && 2556 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2557 // If this is an or of disjoint bitfields, we can codegen this as an add 2558 // (for better address arithmetic) if the LHS and RHS of the OR are 2559 // provably disjoint. 2560 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2561 2562 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2563 // If all of the bits are known zero on the LHS or RHS, the add won't 2564 // carry. 2565 if (FrameIndexSDNode *FI = 2566 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2567 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2568 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2569 } else { 2570 Base = N.getOperand(0); 2571 } 2572 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2573 return true; 2574 } 2575 } 2576 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2577 // Loading from a constant address. 2578 2579 // If this address fits entirely in a 16-bit sext immediate field, codegen 2580 // this as "d, 0" 2581 int16_t Imm; 2582 if (isIntS16Immediate(CN, Imm) && 2583 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2584 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2585 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2586 CN->getValueType(0)); 2587 return true; 2588 } 2589 2590 // Handle 32-bit sext immediates with LIS + addr mode. 2591 if ((CN->getValueType(0) == MVT::i32 || 2592 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2593 (!EncodingAlignment || 2594 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2595 int Addr = (int)CN->getZExtValue(); 2596 2597 // Otherwise, break this down into an LIS + disp. 2598 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2599 2600 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2601 MVT::i32); 2602 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2603 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2604 return true; 2605 } 2606 } 2607 2608 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2609 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2610 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2611 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2612 } else 2613 Base = N; 2614 return true; // [r+0] 2615 } 2616 2617 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2618 /// represented as an indexed [r+r] operation. 2619 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2620 SDValue &Index, 2621 SelectionDAG &DAG) const { 2622 // Check to see if we can easily represent this as an [r+r] address. This 2623 // will fail if it thinks that the address is more profitably represented as 2624 // reg+imm, e.g. where imm = 0. 2625 if (SelectAddressRegReg(N, Base, Index, DAG)) 2626 return true; 2627 2628 // If the address is the result of an add, we will utilize the fact that the 2629 // address calculation includes an implicit add. However, we can reduce 2630 // register pressure if we do not materialize a constant just for use as the 2631 // index register. We only get rid of the add if it is not an add of a 2632 // value and a 16-bit signed constant and both have a single use. 2633 int16_t imm = 0; 2634 if (N.getOpcode() == ISD::ADD && 2635 (!isIntS16Immediate(N.getOperand(1), imm) || 2636 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2637 Base = N.getOperand(0); 2638 Index = N.getOperand(1); 2639 return true; 2640 } 2641 2642 // Otherwise, do it the hard way, using R0 as the base register. 2643 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2644 N.getValueType()); 2645 Index = N; 2646 return true; 2647 } 2648 2649 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2650 Ty *PCRelCand = dyn_cast<Ty>(N); 2651 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2652 } 2653 2654 /// Returns true if this address is a PC Relative address. 2655 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2656 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2657 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2658 // This is a materialize PC Relative node. Always select this as PC Relative. 2659 Base = N; 2660 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2661 return true; 2662 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2663 isValidPCRelNode<GlobalAddressSDNode>(N) || 2664 isValidPCRelNode<JumpTableSDNode>(N) || 2665 isValidPCRelNode<BlockAddressSDNode>(N)) 2666 return true; 2667 return false; 2668 } 2669 2670 /// Returns true if we should use a direct load into vector instruction 2671 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2672 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2673 2674 // If there are any other uses other than scalar to vector, then we should 2675 // keep it as a scalar load -> direct move pattern to prevent multiple 2676 // loads. 2677 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2678 if (!LD) 2679 return false; 2680 2681 EVT MemVT = LD->getMemoryVT(); 2682 if (!MemVT.isSimple()) 2683 return false; 2684 switch(MemVT.getSimpleVT().SimpleTy) { 2685 case MVT::i64: 2686 break; 2687 case MVT::i32: 2688 if (!ST.hasP8Vector()) 2689 return false; 2690 break; 2691 case MVT::i16: 2692 case MVT::i8: 2693 if (!ST.hasP9Vector()) 2694 return false; 2695 break; 2696 default: 2697 return false; 2698 } 2699 2700 SDValue LoadedVal(N, 0); 2701 if (!LoadedVal.hasOneUse()) 2702 return false; 2703 2704 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2705 UI != UE; ++UI) 2706 if (UI.getUse().get().getResNo() == 0 && 2707 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2708 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2709 return false; 2710 2711 return true; 2712 } 2713 2714 /// getPreIndexedAddressParts - returns true by value, base pointer and 2715 /// offset pointer and addressing mode by reference if the node's address 2716 /// can be legally represented as pre-indexed load / store address. 2717 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2718 SDValue &Offset, 2719 ISD::MemIndexedMode &AM, 2720 SelectionDAG &DAG) const { 2721 if (DisablePPCPreinc) return false; 2722 2723 bool isLoad = true; 2724 SDValue Ptr; 2725 EVT VT; 2726 unsigned Alignment; 2727 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2728 Ptr = LD->getBasePtr(); 2729 VT = LD->getMemoryVT(); 2730 Alignment = LD->getAlignment(); 2731 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2732 Ptr = ST->getBasePtr(); 2733 VT = ST->getMemoryVT(); 2734 Alignment = ST->getAlignment(); 2735 isLoad = false; 2736 } else 2737 return false; 2738 2739 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2740 // instructions because we can fold these into a more efficient instruction 2741 // instead, (such as LXSD). 2742 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2743 return false; 2744 } 2745 2746 // PowerPC doesn't have preinc load/store instructions for vectors 2747 if (VT.isVector()) 2748 return false; 2749 2750 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2751 // Common code will reject creating a pre-inc form if the base pointer 2752 // is a frame index, or if N is a store and the base pointer is either 2753 // the same as or a predecessor of the value being stored. Check for 2754 // those situations here, and try with swapped Base/Offset instead. 2755 bool Swap = false; 2756 2757 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2758 Swap = true; 2759 else if (!isLoad) { 2760 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2761 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2762 Swap = true; 2763 } 2764 2765 if (Swap) 2766 std::swap(Base, Offset); 2767 2768 AM = ISD::PRE_INC; 2769 return true; 2770 } 2771 2772 // LDU/STU can only handle immediates that are a multiple of 4. 2773 if (VT != MVT::i64) { 2774 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2775 return false; 2776 } else { 2777 // LDU/STU need an address with at least 4-byte alignment. 2778 if (Alignment < 4) 2779 return false; 2780 2781 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2782 return false; 2783 } 2784 2785 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2786 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2787 // sext i32 to i64 when addr mode is r+i. 2788 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2789 LD->getExtensionType() == ISD::SEXTLOAD && 2790 isa<ConstantSDNode>(Offset)) 2791 return false; 2792 } 2793 2794 AM = ISD::PRE_INC; 2795 return true; 2796 } 2797 2798 //===----------------------------------------------------------------------===// 2799 // LowerOperation implementation 2800 //===----------------------------------------------------------------------===// 2801 2802 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2803 /// and LoOpFlags to the target MO flags. 2804 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2805 unsigned &HiOpFlags, unsigned &LoOpFlags, 2806 const GlobalValue *GV = nullptr) { 2807 HiOpFlags = PPCII::MO_HA; 2808 LoOpFlags = PPCII::MO_LO; 2809 2810 // Don't use the pic base if not in PIC relocation model. 2811 if (IsPIC) { 2812 HiOpFlags |= PPCII::MO_PIC_FLAG; 2813 LoOpFlags |= PPCII::MO_PIC_FLAG; 2814 } 2815 } 2816 2817 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2818 SelectionDAG &DAG) { 2819 SDLoc DL(HiPart); 2820 EVT PtrVT = HiPart.getValueType(); 2821 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2822 2823 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2824 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2825 2826 // With PIC, the first instruction is actually "GR+hi(&G)". 2827 if (isPIC) 2828 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2829 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2830 2831 // Generate non-pic code that has direct accesses to the constant pool. 2832 // The address of the global is just (hi(&g)+lo(&g)). 2833 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2834 } 2835 2836 static void setUsesTOCBasePtr(MachineFunction &MF) { 2837 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2838 FuncInfo->setUsesTOCBasePtr(); 2839 } 2840 2841 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2842 setUsesTOCBasePtr(DAG.getMachineFunction()); 2843 } 2844 2845 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2846 SDValue GA) const { 2847 const bool Is64Bit = Subtarget.isPPC64(); 2848 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2849 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2850 : Subtarget.isAIXABI() 2851 ? DAG.getRegister(PPC::R2, VT) 2852 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2853 SDValue Ops[] = { GA, Reg }; 2854 return DAG.getMemIntrinsicNode( 2855 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2856 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2857 MachineMemOperand::MOLoad); 2858 } 2859 2860 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2861 SelectionDAG &DAG) const { 2862 EVT PtrVT = Op.getValueType(); 2863 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2864 const Constant *C = CP->getConstVal(); 2865 2866 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2867 // The actual address of the GlobalValue is stored in the TOC. 2868 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2869 if (Subtarget.isUsingPCRelativeCalls()) { 2870 SDLoc DL(CP); 2871 EVT Ty = getPointerTy(DAG.getDataLayout()); 2872 SDValue ConstPool = DAG.getTargetConstantPool( 2873 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2874 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2875 } 2876 setUsesTOCBasePtr(DAG); 2877 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2878 return getTOCEntry(DAG, SDLoc(CP), GA); 2879 } 2880 2881 unsigned MOHiFlag, MOLoFlag; 2882 bool IsPIC = isPositionIndependent(); 2883 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2884 2885 if (IsPIC && Subtarget.isSVR4ABI()) { 2886 SDValue GA = 2887 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2888 return getTOCEntry(DAG, SDLoc(CP), GA); 2889 } 2890 2891 SDValue CPIHi = 2892 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2893 SDValue CPILo = 2894 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2895 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2896 } 2897 2898 // For 64-bit PowerPC, prefer the more compact relative encodings. 2899 // This trades 32 bits per jump table entry for one or two instructions 2900 // on the jump site. 2901 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2902 if (isJumpTableRelative()) 2903 return MachineJumpTableInfo::EK_LabelDifference32; 2904 2905 return TargetLowering::getJumpTableEncoding(); 2906 } 2907 2908 bool PPCTargetLowering::isJumpTableRelative() const { 2909 if (UseAbsoluteJumpTables) 2910 return false; 2911 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2912 return true; 2913 return TargetLowering::isJumpTableRelative(); 2914 } 2915 2916 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2917 SelectionDAG &DAG) const { 2918 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2919 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2920 2921 switch (getTargetMachine().getCodeModel()) { 2922 case CodeModel::Small: 2923 case CodeModel::Medium: 2924 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2925 default: 2926 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2927 getPointerTy(DAG.getDataLayout())); 2928 } 2929 } 2930 2931 const MCExpr * 2932 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2933 unsigned JTI, 2934 MCContext &Ctx) const { 2935 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2936 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2937 2938 switch (getTargetMachine().getCodeModel()) { 2939 case CodeModel::Small: 2940 case CodeModel::Medium: 2941 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2942 default: 2943 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2944 } 2945 } 2946 2947 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2948 EVT PtrVT = Op.getValueType(); 2949 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2950 2951 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2952 if (Subtarget.isUsingPCRelativeCalls()) { 2953 SDLoc DL(JT); 2954 EVT Ty = getPointerTy(DAG.getDataLayout()); 2955 SDValue GA = 2956 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2957 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2958 return MatAddr; 2959 } 2960 2961 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2962 // The actual address of the GlobalValue is stored in the TOC. 2963 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2964 setUsesTOCBasePtr(DAG); 2965 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2966 return getTOCEntry(DAG, SDLoc(JT), GA); 2967 } 2968 2969 unsigned MOHiFlag, MOLoFlag; 2970 bool IsPIC = isPositionIndependent(); 2971 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2972 2973 if (IsPIC && Subtarget.isSVR4ABI()) { 2974 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2975 PPCII::MO_PIC_FLAG); 2976 return getTOCEntry(DAG, SDLoc(GA), GA); 2977 } 2978 2979 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2980 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2981 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2982 } 2983 2984 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2985 SelectionDAG &DAG) const { 2986 EVT PtrVT = Op.getValueType(); 2987 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2988 const BlockAddress *BA = BASDN->getBlockAddress(); 2989 2990 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2991 if (Subtarget.isUsingPCRelativeCalls()) { 2992 SDLoc DL(BASDN); 2993 EVT Ty = getPointerTy(DAG.getDataLayout()); 2994 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 2995 PPCII::MO_PCREL_FLAG); 2996 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2997 return MatAddr; 2998 } 2999 3000 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3001 // The actual BlockAddress is stored in the TOC. 3002 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3003 setUsesTOCBasePtr(DAG); 3004 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3005 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3006 } 3007 3008 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3009 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3010 return getTOCEntry( 3011 DAG, SDLoc(BASDN), 3012 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3013 3014 unsigned MOHiFlag, MOLoFlag; 3015 bool IsPIC = isPositionIndependent(); 3016 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3017 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3018 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3019 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3020 } 3021 3022 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3023 SelectionDAG &DAG) const { 3024 // FIXME: TLS addresses currently use medium model code sequences, 3025 // which is the most useful form. Eventually support for small and 3026 // large models could be added if users need it, at the cost of 3027 // additional complexity. 3028 if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS) 3029 report_fatal_error("Thread local storage is not supported with pc-relative" 3030 " addressing - please compile with -mno-pcrel"); 3031 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3032 if (DAG.getTarget().useEmulatedTLS()) 3033 return LowerToTLSEmulatedModel(GA, DAG); 3034 3035 SDLoc dl(GA); 3036 const GlobalValue *GV = GA->getGlobal(); 3037 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3038 bool is64bit = Subtarget.isPPC64(); 3039 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3040 PICLevel::Level picLevel = M->getPICLevel(); 3041 3042 const TargetMachine &TM = getTargetMachine(); 3043 TLSModel::Model Model = TM.getTLSModel(GV); 3044 3045 if (Model == TLSModel::LocalExec) { 3046 if (Subtarget.isUsingPCRelativeCalls()) { 3047 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3048 SDValue TGA = DAG.getTargetGlobalAddress( 3049 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3050 SDValue MatAddr = 3051 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3052 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3053 } 3054 3055 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3056 PPCII::MO_TPREL_HA); 3057 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3058 PPCII::MO_TPREL_LO); 3059 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3060 : DAG.getRegister(PPC::R2, MVT::i32); 3061 3062 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3063 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3064 } 3065 3066 if (Model == TLSModel::InitialExec) { 3067 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3068 SDValue TGA = DAG.getTargetGlobalAddress( 3069 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3070 SDValue TGATLS = DAG.getTargetGlobalAddress( 3071 GV, dl, PtrVT, 0, 3072 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3073 SDValue TPOffset; 3074 if (IsPCRel) { 3075 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3076 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3077 MachinePointerInfo()); 3078 } else { 3079 SDValue GOTPtr; 3080 if (is64bit) { 3081 setUsesTOCBasePtr(DAG); 3082 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3083 GOTPtr = 3084 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3085 } else { 3086 if (!TM.isPositionIndependent()) 3087 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3088 else if (picLevel == PICLevel::SmallPIC) 3089 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3090 else 3091 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3092 } 3093 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3094 } 3095 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3096 } 3097 3098 if (Model == TLSModel::GeneralDynamic) { 3099 if (Subtarget.isUsingPCRelativeCalls()) { 3100 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3101 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3102 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3103 } 3104 3105 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3106 SDValue GOTPtr; 3107 if (is64bit) { 3108 setUsesTOCBasePtr(DAG); 3109 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3110 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3111 GOTReg, TGA); 3112 } else { 3113 if (picLevel == PICLevel::SmallPIC) 3114 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3115 else 3116 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3117 } 3118 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3119 GOTPtr, TGA, TGA); 3120 } 3121 3122 if (Model == TLSModel::LocalDynamic) { 3123 if (Subtarget.isUsingPCRelativeCalls()) { 3124 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3125 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3126 SDValue MatPCRel = 3127 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3128 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3129 } 3130 3131 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3132 SDValue GOTPtr; 3133 if (is64bit) { 3134 setUsesTOCBasePtr(DAG); 3135 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3136 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3137 GOTReg, TGA); 3138 } else { 3139 if (picLevel == PICLevel::SmallPIC) 3140 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3141 else 3142 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3143 } 3144 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3145 PtrVT, GOTPtr, TGA, TGA); 3146 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3147 PtrVT, TLSAddr, TGA); 3148 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3149 } 3150 3151 llvm_unreachable("Unknown TLS model!"); 3152 } 3153 3154 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3155 SelectionDAG &DAG) const { 3156 EVT PtrVT = Op.getValueType(); 3157 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3158 SDLoc DL(GSDN); 3159 const GlobalValue *GV = GSDN->getGlobal(); 3160 3161 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3162 // The actual address of the GlobalValue is stored in the TOC. 3163 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3164 if (Subtarget.isUsingPCRelativeCalls()) { 3165 EVT Ty = getPointerTy(DAG.getDataLayout()); 3166 if (isAccessedAsGotIndirect(Op)) { 3167 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3168 PPCII::MO_PCREL_FLAG | 3169 PPCII::MO_GOT_FLAG); 3170 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3171 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3172 MachinePointerInfo()); 3173 return Load; 3174 } else { 3175 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3176 PPCII::MO_PCREL_FLAG); 3177 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3178 } 3179 } 3180 setUsesTOCBasePtr(DAG); 3181 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3182 return getTOCEntry(DAG, DL, GA); 3183 } 3184 3185 unsigned MOHiFlag, MOLoFlag; 3186 bool IsPIC = isPositionIndependent(); 3187 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3188 3189 if (IsPIC && Subtarget.isSVR4ABI()) { 3190 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3191 GSDN->getOffset(), 3192 PPCII::MO_PIC_FLAG); 3193 return getTOCEntry(DAG, DL, GA); 3194 } 3195 3196 SDValue GAHi = 3197 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3198 SDValue GALo = 3199 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3200 3201 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3202 } 3203 3204 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3205 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3206 SDLoc dl(Op); 3207 3208 if (Op.getValueType() == MVT::v2i64) { 3209 // When the operands themselves are v2i64 values, we need to do something 3210 // special because VSX has no underlying comparison operations for these. 3211 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3212 // Equality can be handled by casting to the legal type for Altivec 3213 // comparisons, everything else needs to be expanded. 3214 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3215 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3216 DAG.getSetCC(dl, MVT::v4i32, 3217 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3218 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3219 CC)); 3220 } 3221 3222 return SDValue(); 3223 } 3224 3225 // We handle most of these in the usual way. 3226 return Op; 3227 } 3228 3229 // If we're comparing for equality to zero, expose the fact that this is 3230 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3231 // fold the new nodes. 3232 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3233 return V; 3234 3235 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3236 // Leave comparisons against 0 and -1 alone for now, since they're usually 3237 // optimized. FIXME: revisit this when we can custom lower all setcc 3238 // optimizations. 3239 if (C->isAllOnesValue() || C->isNullValue()) 3240 return SDValue(); 3241 } 3242 3243 // If we have an integer seteq/setne, turn it into a compare against zero 3244 // by xor'ing the rhs with the lhs, which is faster than setting a 3245 // condition register, reading it back out, and masking the correct bit. The 3246 // normal approach here uses sub to do this instead of xor. Using xor exposes 3247 // the result to other bit-twiddling opportunities. 3248 EVT LHSVT = Op.getOperand(0).getValueType(); 3249 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3250 EVT VT = Op.getValueType(); 3251 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3252 Op.getOperand(1)); 3253 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3254 } 3255 return SDValue(); 3256 } 3257 3258 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3259 SDNode *Node = Op.getNode(); 3260 EVT VT = Node->getValueType(0); 3261 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3262 SDValue InChain = Node->getOperand(0); 3263 SDValue VAListPtr = Node->getOperand(1); 3264 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3265 SDLoc dl(Node); 3266 3267 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3268 3269 // gpr_index 3270 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3271 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3272 InChain = GprIndex.getValue(1); 3273 3274 if (VT == MVT::i64) { 3275 // Check if GprIndex is even 3276 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3277 DAG.getConstant(1, dl, MVT::i32)); 3278 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3279 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3280 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3281 DAG.getConstant(1, dl, MVT::i32)); 3282 // Align GprIndex to be even if it isn't 3283 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3284 GprIndex); 3285 } 3286 3287 // fpr index is 1 byte after gpr 3288 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3289 DAG.getConstant(1, dl, MVT::i32)); 3290 3291 // fpr 3292 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3293 FprPtr, MachinePointerInfo(SV), MVT::i8); 3294 InChain = FprIndex.getValue(1); 3295 3296 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3297 DAG.getConstant(8, dl, MVT::i32)); 3298 3299 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3300 DAG.getConstant(4, dl, MVT::i32)); 3301 3302 // areas 3303 SDValue OverflowArea = 3304 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3305 InChain = OverflowArea.getValue(1); 3306 3307 SDValue RegSaveArea = 3308 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3309 InChain = RegSaveArea.getValue(1); 3310 3311 // select overflow_area if index > 8 3312 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3313 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3314 3315 // adjustment constant gpr_index * 4/8 3316 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3317 VT.isInteger() ? GprIndex : FprIndex, 3318 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3319 MVT::i32)); 3320 3321 // OurReg = RegSaveArea + RegConstant 3322 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3323 RegConstant); 3324 3325 // Floating types are 32 bytes into RegSaveArea 3326 if (VT.isFloatingPoint()) 3327 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3328 DAG.getConstant(32, dl, MVT::i32)); 3329 3330 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3331 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3332 VT.isInteger() ? GprIndex : FprIndex, 3333 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3334 MVT::i32)); 3335 3336 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3337 VT.isInteger() ? VAListPtr : FprPtr, 3338 MachinePointerInfo(SV), MVT::i8); 3339 3340 // determine if we should load from reg_save_area or overflow_area 3341 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3342 3343 // increase overflow_area by 4/8 if gpr/fpr > 8 3344 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3345 DAG.getConstant(VT.isInteger() ? 4 : 8, 3346 dl, MVT::i32)); 3347 3348 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3349 OverflowAreaPlusN); 3350 3351 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3352 MachinePointerInfo(), MVT::i32); 3353 3354 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3355 } 3356 3357 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3358 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3359 3360 // We have to copy the entire va_list struct: 3361 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3362 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3363 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3364 false, true, false, MachinePointerInfo(), 3365 MachinePointerInfo()); 3366 } 3367 3368 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3369 SelectionDAG &DAG) const { 3370 if (Subtarget.isAIXABI()) 3371 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3372 3373 return Op.getOperand(0); 3374 } 3375 3376 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3377 SelectionDAG &DAG) const { 3378 if (Subtarget.isAIXABI()) 3379 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3380 3381 SDValue Chain = Op.getOperand(0); 3382 SDValue Trmp = Op.getOperand(1); // trampoline 3383 SDValue FPtr = Op.getOperand(2); // nested function 3384 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3385 SDLoc dl(Op); 3386 3387 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3388 bool isPPC64 = (PtrVT == MVT::i64); 3389 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3390 3391 TargetLowering::ArgListTy Args; 3392 TargetLowering::ArgListEntry Entry; 3393 3394 Entry.Ty = IntPtrTy; 3395 Entry.Node = Trmp; Args.push_back(Entry); 3396 3397 // TrampSize == (isPPC64 ? 48 : 40); 3398 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3399 isPPC64 ? MVT::i64 : MVT::i32); 3400 Args.push_back(Entry); 3401 3402 Entry.Node = FPtr; Args.push_back(Entry); 3403 Entry.Node = Nest; Args.push_back(Entry); 3404 3405 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3406 TargetLowering::CallLoweringInfo CLI(DAG); 3407 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3408 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3409 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3410 3411 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3412 return CallResult.second; 3413 } 3414 3415 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3416 MachineFunction &MF = DAG.getMachineFunction(); 3417 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3418 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3419 3420 SDLoc dl(Op); 3421 3422 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3423 // vastart just stores the address of the VarArgsFrameIndex slot into the 3424 // memory location argument. 3425 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3426 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3427 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3428 MachinePointerInfo(SV)); 3429 } 3430 3431 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3432 // We suppose the given va_list is already allocated. 3433 // 3434 // typedef struct { 3435 // char gpr; /* index into the array of 8 GPRs 3436 // * stored in the register save area 3437 // * gpr=0 corresponds to r3, 3438 // * gpr=1 to r4, etc. 3439 // */ 3440 // char fpr; /* index into the array of 8 FPRs 3441 // * stored in the register save area 3442 // * fpr=0 corresponds to f1, 3443 // * fpr=1 to f2, etc. 3444 // */ 3445 // char *overflow_arg_area; 3446 // /* location on stack that holds 3447 // * the next overflow argument 3448 // */ 3449 // char *reg_save_area; 3450 // /* where r3:r10 and f1:f8 (if saved) 3451 // * are stored 3452 // */ 3453 // } va_list[1]; 3454 3455 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3456 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3457 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3458 PtrVT); 3459 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3460 PtrVT); 3461 3462 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3463 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3464 3465 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3466 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3467 3468 uint64_t FPROffset = 1; 3469 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3470 3471 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3472 3473 // Store first byte : number of int regs 3474 SDValue firstStore = 3475 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3476 MachinePointerInfo(SV), MVT::i8); 3477 uint64_t nextOffset = FPROffset; 3478 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3479 ConstFPROffset); 3480 3481 // Store second byte : number of float regs 3482 SDValue secondStore = 3483 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3484 MachinePointerInfo(SV, nextOffset), MVT::i8); 3485 nextOffset += StackOffset; 3486 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3487 3488 // Store second word : arguments given on stack 3489 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3490 MachinePointerInfo(SV, nextOffset)); 3491 nextOffset += FrameOffset; 3492 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3493 3494 // Store third word : arguments given in registers 3495 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3496 MachinePointerInfo(SV, nextOffset)); 3497 } 3498 3499 /// FPR - The set of FP registers that should be allocated for arguments 3500 /// on Darwin and AIX. 3501 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3502 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3503 PPC::F11, PPC::F12, PPC::F13}; 3504 3505 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3506 /// the stack. 3507 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3508 unsigned PtrByteSize) { 3509 unsigned ArgSize = ArgVT.getStoreSize(); 3510 if (Flags.isByVal()) 3511 ArgSize = Flags.getByValSize(); 3512 3513 // Round up to multiples of the pointer size, except for array members, 3514 // which are always packed. 3515 if (!Flags.isInConsecutiveRegs()) 3516 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3517 3518 return ArgSize; 3519 } 3520 3521 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3522 /// on the stack. 3523 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3524 ISD::ArgFlagsTy Flags, 3525 unsigned PtrByteSize) { 3526 Align Alignment(PtrByteSize); 3527 3528 // Altivec parameters are padded to a 16 byte boundary. 3529 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3530 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3531 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3532 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3533 Alignment = Align(16); 3534 3535 // ByVal parameters are aligned as requested. 3536 if (Flags.isByVal()) { 3537 auto BVAlign = Flags.getNonZeroByValAlign(); 3538 if (BVAlign > PtrByteSize) { 3539 if (BVAlign.value() % PtrByteSize != 0) 3540 llvm_unreachable( 3541 "ByVal alignment is not a multiple of the pointer size"); 3542 3543 Alignment = BVAlign; 3544 } 3545 } 3546 3547 // Array members are always packed to their original alignment. 3548 if (Flags.isInConsecutiveRegs()) { 3549 // If the array member was split into multiple registers, the first 3550 // needs to be aligned to the size of the full type. (Except for 3551 // ppcf128, which is only aligned as its f64 components.) 3552 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3553 Alignment = Align(OrigVT.getStoreSize()); 3554 else 3555 Alignment = Align(ArgVT.getStoreSize()); 3556 } 3557 3558 return Alignment; 3559 } 3560 3561 /// CalculateStackSlotUsed - Return whether this argument will use its 3562 /// stack slot (instead of being passed in registers). ArgOffset, 3563 /// AvailableFPRs, and AvailableVRs must hold the current argument 3564 /// position, and will be updated to account for this argument. 3565 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3566 unsigned PtrByteSize, unsigned LinkageSize, 3567 unsigned ParamAreaSize, unsigned &ArgOffset, 3568 unsigned &AvailableFPRs, 3569 unsigned &AvailableVRs) { 3570 bool UseMemory = false; 3571 3572 // Respect alignment of argument on the stack. 3573 Align Alignment = 3574 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3575 ArgOffset = alignTo(ArgOffset, Alignment); 3576 // If there's no space left in the argument save area, we must 3577 // use memory (this check also catches zero-sized arguments). 3578 if (ArgOffset >= LinkageSize + ParamAreaSize) 3579 UseMemory = true; 3580 3581 // Allocate argument on the stack. 3582 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3583 if (Flags.isInConsecutiveRegsLast()) 3584 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3585 // If we overran the argument save area, we must use memory 3586 // (this check catches arguments passed partially in memory) 3587 if (ArgOffset > LinkageSize + ParamAreaSize) 3588 UseMemory = true; 3589 3590 // However, if the argument is actually passed in an FPR or a VR, 3591 // we don't use memory after all. 3592 if (!Flags.isByVal()) { 3593 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3594 if (AvailableFPRs > 0) { 3595 --AvailableFPRs; 3596 return false; 3597 } 3598 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3599 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3600 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3601 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3602 if (AvailableVRs > 0) { 3603 --AvailableVRs; 3604 return false; 3605 } 3606 } 3607 3608 return UseMemory; 3609 } 3610 3611 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3612 /// ensure minimum alignment required for target. 3613 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3614 unsigned NumBytes) { 3615 return alignTo(NumBytes, Lowering->getStackAlign()); 3616 } 3617 3618 SDValue PPCTargetLowering::LowerFormalArguments( 3619 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3620 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3621 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3622 if (Subtarget.isAIXABI()) 3623 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3624 InVals); 3625 if (Subtarget.is64BitELFABI()) 3626 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3627 InVals); 3628 if (Subtarget.is32BitELFABI()) 3629 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3630 InVals); 3631 3632 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3633 InVals); 3634 } 3635 3636 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3637 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3638 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3639 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3640 3641 // 32-bit SVR4 ABI Stack Frame Layout: 3642 // +-----------------------------------+ 3643 // +--> | Back chain | 3644 // | +-----------------------------------+ 3645 // | | Floating-point register save area | 3646 // | +-----------------------------------+ 3647 // | | General register save area | 3648 // | +-----------------------------------+ 3649 // | | CR save word | 3650 // | +-----------------------------------+ 3651 // | | VRSAVE save word | 3652 // | +-----------------------------------+ 3653 // | | Alignment padding | 3654 // | +-----------------------------------+ 3655 // | | Vector register save area | 3656 // | +-----------------------------------+ 3657 // | | Local variable space | 3658 // | +-----------------------------------+ 3659 // | | Parameter list area | 3660 // | +-----------------------------------+ 3661 // | | LR save word | 3662 // | +-----------------------------------+ 3663 // SP--> +--- | Back chain | 3664 // +-----------------------------------+ 3665 // 3666 // Specifications: 3667 // System V Application Binary Interface PowerPC Processor Supplement 3668 // AltiVec Technology Programming Interface Manual 3669 3670 MachineFunction &MF = DAG.getMachineFunction(); 3671 MachineFrameInfo &MFI = MF.getFrameInfo(); 3672 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3673 3674 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3675 // Potential tail calls could cause overwriting of argument stack slots. 3676 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3677 (CallConv == CallingConv::Fast)); 3678 const Align PtrAlign(4); 3679 3680 // Assign locations to all of the incoming arguments. 3681 SmallVector<CCValAssign, 16> ArgLocs; 3682 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3683 *DAG.getContext()); 3684 3685 // Reserve space for the linkage area on the stack. 3686 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3687 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3688 if (useSoftFloat()) 3689 CCInfo.PreAnalyzeFormalArguments(Ins); 3690 3691 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3692 CCInfo.clearWasPPCF128(); 3693 3694 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3695 CCValAssign &VA = ArgLocs[i]; 3696 3697 // Arguments stored in registers. 3698 if (VA.isRegLoc()) { 3699 const TargetRegisterClass *RC; 3700 EVT ValVT = VA.getValVT(); 3701 3702 switch (ValVT.getSimpleVT().SimpleTy) { 3703 default: 3704 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3705 case MVT::i1: 3706 case MVT::i32: 3707 RC = &PPC::GPRCRegClass; 3708 break; 3709 case MVT::f32: 3710 if (Subtarget.hasP8Vector()) 3711 RC = &PPC::VSSRCRegClass; 3712 else if (Subtarget.hasSPE()) 3713 RC = &PPC::GPRCRegClass; 3714 else 3715 RC = &PPC::F4RCRegClass; 3716 break; 3717 case MVT::f64: 3718 if (Subtarget.hasVSX()) 3719 RC = &PPC::VSFRCRegClass; 3720 else if (Subtarget.hasSPE()) 3721 // SPE passes doubles in GPR pairs. 3722 RC = &PPC::GPRCRegClass; 3723 else 3724 RC = &PPC::F8RCRegClass; 3725 break; 3726 case MVT::v16i8: 3727 case MVT::v8i16: 3728 case MVT::v4i32: 3729 RC = &PPC::VRRCRegClass; 3730 break; 3731 case MVT::v4f32: 3732 RC = &PPC::VRRCRegClass; 3733 break; 3734 case MVT::v2f64: 3735 case MVT::v2i64: 3736 RC = &PPC::VRRCRegClass; 3737 break; 3738 } 3739 3740 SDValue ArgValue; 3741 // Transform the arguments stored in physical registers into 3742 // virtual ones. 3743 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3744 assert(i + 1 < e && "No second half of double precision argument"); 3745 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3746 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3747 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3748 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3749 if (!Subtarget.isLittleEndian()) 3750 std::swap (ArgValueLo, ArgValueHi); 3751 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3752 ArgValueHi); 3753 } else { 3754 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3755 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3756 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3757 if (ValVT == MVT::i1) 3758 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3759 } 3760 3761 InVals.push_back(ArgValue); 3762 } else { 3763 // Argument stored in memory. 3764 assert(VA.isMemLoc()); 3765 3766 // Get the extended size of the argument type in stack 3767 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3768 // Get the actual size of the argument type 3769 unsigned ObjSize = VA.getValVT().getStoreSize(); 3770 unsigned ArgOffset = VA.getLocMemOffset(); 3771 // Stack objects in PPC32 are right justified. 3772 ArgOffset += ArgSize - ObjSize; 3773 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3774 3775 // Create load nodes to retrieve arguments from the stack. 3776 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3777 InVals.push_back( 3778 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3779 } 3780 } 3781 3782 // Assign locations to all of the incoming aggregate by value arguments. 3783 // Aggregates passed by value are stored in the local variable space of the 3784 // caller's stack frame, right above the parameter list area. 3785 SmallVector<CCValAssign, 16> ByValArgLocs; 3786 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3787 ByValArgLocs, *DAG.getContext()); 3788 3789 // Reserve stack space for the allocations in CCInfo. 3790 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3791 3792 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3793 3794 // Area that is at least reserved in the caller of this function. 3795 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3796 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3797 3798 // Set the size that is at least reserved in caller of this function. Tail 3799 // call optimized function's reserved stack space needs to be aligned so that 3800 // taking the difference between two stack areas will result in an aligned 3801 // stack. 3802 MinReservedArea = 3803 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3804 FuncInfo->setMinReservedArea(MinReservedArea); 3805 3806 SmallVector<SDValue, 8> MemOps; 3807 3808 // If the function takes variable number of arguments, make a frame index for 3809 // the start of the first vararg value... for expansion of llvm.va_start. 3810 if (isVarArg) { 3811 static const MCPhysReg GPArgRegs[] = { 3812 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3813 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3814 }; 3815 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3816 3817 static const MCPhysReg FPArgRegs[] = { 3818 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3819 PPC::F8 3820 }; 3821 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3822 3823 if (useSoftFloat() || hasSPE()) 3824 NumFPArgRegs = 0; 3825 3826 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3827 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3828 3829 // Make room for NumGPArgRegs and NumFPArgRegs. 3830 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3831 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3832 3833 FuncInfo->setVarArgsStackOffset( 3834 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3835 CCInfo.getNextStackOffset(), true)); 3836 3837 FuncInfo->setVarArgsFrameIndex( 3838 MFI.CreateStackObject(Depth, Align(8), false)); 3839 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3840 3841 // The fixed integer arguments of a variadic function are stored to the 3842 // VarArgsFrameIndex on the stack so that they may be loaded by 3843 // dereferencing the result of va_next. 3844 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3845 // Get an existing live-in vreg, or add a new one. 3846 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3847 if (!VReg) 3848 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3849 3850 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3851 SDValue Store = 3852 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3853 MemOps.push_back(Store); 3854 // Increment the address by four for the next argument to store 3855 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3856 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3857 } 3858 3859 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3860 // is set. 3861 // The double arguments are stored to the VarArgsFrameIndex 3862 // on the stack. 3863 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3864 // Get an existing live-in vreg, or add a new one. 3865 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3866 if (!VReg) 3867 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3868 3869 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3870 SDValue Store = 3871 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3872 MemOps.push_back(Store); 3873 // Increment the address by eight for the next argument to store 3874 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3875 PtrVT); 3876 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3877 } 3878 } 3879 3880 if (!MemOps.empty()) 3881 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3882 3883 return Chain; 3884 } 3885 3886 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3887 // value to MVT::i64 and then truncate to the correct register size. 3888 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3889 EVT ObjectVT, SelectionDAG &DAG, 3890 SDValue ArgVal, 3891 const SDLoc &dl) const { 3892 if (Flags.isSExt()) 3893 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3894 DAG.getValueType(ObjectVT)); 3895 else if (Flags.isZExt()) 3896 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3897 DAG.getValueType(ObjectVT)); 3898 3899 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3900 } 3901 3902 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3903 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3904 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3905 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3906 // TODO: add description of PPC stack frame format, or at least some docs. 3907 // 3908 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3909 bool isLittleEndian = Subtarget.isLittleEndian(); 3910 MachineFunction &MF = DAG.getMachineFunction(); 3911 MachineFrameInfo &MFI = MF.getFrameInfo(); 3912 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3913 3914 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3915 "fastcc not supported on varargs functions"); 3916 3917 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3918 // Potential tail calls could cause overwriting of argument stack slots. 3919 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3920 (CallConv == CallingConv::Fast)); 3921 unsigned PtrByteSize = 8; 3922 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3923 3924 static const MCPhysReg GPR[] = { 3925 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3926 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3927 }; 3928 static const MCPhysReg VR[] = { 3929 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3930 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3931 }; 3932 3933 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3934 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3935 const unsigned Num_VR_Regs = array_lengthof(VR); 3936 3937 // Do a first pass over the arguments to determine whether the ABI 3938 // guarantees that our caller has allocated the parameter save area 3939 // on its stack frame. In the ELFv1 ABI, this is always the case; 3940 // in the ELFv2 ABI, it is true if this is a vararg function or if 3941 // any parameter is located in a stack slot. 3942 3943 bool HasParameterArea = !isELFv2ABI || isVarArg; 3944 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3945 unsigned NumBytes = LinkageSize; 3946 unsigned AvailableFPRs = Num_FPR_Regs; 3947 unsigned AvailableVRs = Num_VR_Regs; 3948 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3949 if (Ins[i].Flags.isNest()) 3950 continue; 3951 3952 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3953 PtrByteSize, LinkageSize, ParamAreaSize, 3954 NumBytes, AvailableFPRs, AvailableVRs)) 3955 HasParameterArea = true; 3956 } 3957 3958 // Add DAG nodes to load the arguments or copy them out of registers. On 3959 // entry to a function on PPC, the arguments start after the linkage area, 3960 // although the first ones are often in registers. 3961 3962 unsigned ArgOffset = LinkageSize; 3963 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3964 SmallVector<SDValue, 8> MemOps; 3965 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3966 unsigned CurArgIdx = 0; 3967 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3968 SDValue ArgVal; 3969 bool needsLoad = false; 3970 EVT ObjectVT = Ins[ArgNo].VT; 3971 EVT OrigVT = Ins[ArgNo].ArgVT; 3972 unsigned ObjSize = ObjectVT.getStoreSize(); 3973 unsigned ArgSize = ObjSize; 3974 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3975 if (Ins[ArgNo].isOrigArg()) { 3976 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3977 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3978 } 3979 // We re-align the argument offset for each argument, except when using the 3980 // fast calling convention, when we need to make sure we do that only when 3981 // we'll actually use a stack slot. 3982 unsigned CurArgOffset; 3983 Align Alignment; 3984 auto ComputeArgOffset = [&]() { 3985 /* Respect alignment of argument on the stack. */ 3986 Alignment = 3987 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3988 ArgOffset = alignTo(ArgOffset, Alignment); 3989 CurArgOffset = ArgOffset; 3990 }; 3991 3992 if (CallConv != CallingConv::Fast) { 3993 ComputeArgOffset(); 3994 3995 /* Compute GPR index associated with argument offset. */ 3996 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3997 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3998 } 3999 4000 // FIXME the codegen can be much improved in some cases. 4001 // We do not have to keep everything in memory. 4002 if (Flags.isByVal()) { 4003 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4004 4005 if (CallConv == CallingConv::Fast) 4006 ComputeArgOffset(); 4007 4008 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4009 ObjSize = Flags.getByValSize(); 4010 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4011 // Empty aggregate parameters do not take up registers. Examples: 4012 // struct { } a; 4013 // union { } b; 4014 // int c[0]; 4015 // etc. However, we have to provide a place-holder in InVals, so 4016 // pretend we have an 8-byte item at the current address for that 4017 // purpose. 4018 if (!ObjSize) { 4019 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4020 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4021 InVals.push_back(FIN); 4022 continue; 4023 } 4024 4025 // Create a stack object covering all stack doublewords occupied 4026 // by the argument. If the argument is (fully or partially) on 4027 // the stack, or if the argument is fully in registers but the 4028 // caller has allocated the parameter save anyway, we can refer 4029 // directly to the caller's stack frame. Otherwise, create a 4030 // local copy in our own frame. 4031 int FI; 4032 if (HasParameterArea || 4033 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4034 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4035 else 4036 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4037 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4038 4039 // Handle aggregates smaller than 8 bytes. 4040 if (ObjSize < PtrByteSize) { 4041 // The value of the object is its address, which differs from the 4042 // address of the enclosing doubleword on big-endian systems. 4043 SDValue Arg = FIN; 4044 if (!isLittleEndian) { 4045 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4046 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4047 } 4048 InVals.push_back(Arg); 4049 4050 if (GPR_idx != Num_GPR_Regs) { 4051 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4052 FuncInfo->addLiveInAttr(VReg, Flags); 4053 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4054 SDValue Store; 4055 4056 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4057 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4058 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4059 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4060 MachinePointerInfo(&*FuncArg), ObjType); 4061 } else { 4062 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4063 // store the whole register as-is to the parameter save area 4064 // slot. 4065 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4066 MachinePointerInfo(&*FuncArg)); 4067 } 4068 4069 MemOps.push_back(Store); 4070 } 4071 // Whether we copied from a register or not, advance the offset 4072 // into the parameter save area by a full doubleword. 4073 ArgOffset += PtrByteSize; 4074 continue; 4075 } 4076 4077 // The value of the object is its address, which is the address of 4078 // its first stack doubleword. 4079 InVals.push_back(FIN); 4080 4081 // Store whatever pieces of the object are in registers to memory. 4082 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4083 if (GPR_idx == Num_GPR_Regs) 4084 break; 4085 4086 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4087 FuncInfo->addLiveInAttr(VReg, Flags); 4088 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4089 SDValue Addr = FIN; 4090 if (j) { 4091 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4092 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4093 } 4094 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4095 MachinePointerInfo(&*FuncArg, j)); 4096 MemOps.push_back(Store); 4097 ++GPR_idx; 4098 } 4099 ArgOffset += ArgSize; 4100 continue; 4101 } 4102 4103 switch (ObjectVT.getSimpleVT().SimpleTy) { 4104 default: llvm_unreachable("Unhandled argument type!"); 4105 case MVT::i1: 4106 case MVT::i32: 4107 case MVT::i64: 4108 if (Flags.isNest()) { 4109 // The 'nest' parameter, if any, is passed in R11. 4110 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4111 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4112 4113 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4114 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4115 4116 break; 4117 } 4118 4119 // These can be scalar arguments or elements of an integer array type 4120 // passed directly. Clang may use those instead of "byval" aggregate 4121 // types to avoid forcing arguments to memory unnecessarily. 4122 if (GPR_idx != Num_GPR_Regs) { 4123 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4124 FuncInfo->addLiveInAttr(VReg, Flags); 4125 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4126 4127 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4128 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4129 // value to MVT::i64 and then truncate to the correct register size. 4130 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4131 } else { 4132 if (CallConv == CallingConv::Fast) 4133 ComputeArgOffset(); 4134 4135 needsLoad = true; 4136 ArgSize = PtrByteSize; 4137 } 4138 if (CallConv != CallingConv::Fast || needsLoad) 4139 ArgOffset += 8; 4140 break; 4141 4142 case MVT::f32: 4143 case MVT::f64: 4144 // These can be scalar arguments or elements of a float array type 4145 // passed directly. The latter are used to implement ELFv2 homogenous 4146 // float aggregates. 4147 if (FPR_idx != Num_FPR_Regs) { 4148 unsigned VReg; 4149 4150 if (ObjectVT == MVT::f32) 4151 VReg = MF.addLiveIn(FPR[FPR_idx], 4152 Subtarget.hasP8Vector() 4153 ? &PPC::VSSRCRegClass 4154 : &PPC::F4RCRegClass); 4155 else 4156 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4157 ? &PPC::VSFRCRegClass 4158 : &PPC::F8RCRegClass); 4159 4160 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4161 ++FPR_idx; 4162 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4163 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4164 // once we support fp <-> gpr moves. 4165 4166 // This can only ever happen in the presence of f32 array types, 4167 // since otherwise we never run out of FPRs before running out 4168 // of GPRs. 4169 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4170 FuncInfo->addLiveInAttr(VReg, Flags); 4171 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4172 4173 if (ObjectVT == MVT::f32) { 4174 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4175 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4176 DAG.getConstant(32, dl, MVT::i32)); 4177 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4178 } 4179 4180 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4181 } else { 4182 if (CallConv == CallingConv::Fast) 4183 ComputeArgOffset(); 4184 4185 needsLoad = true; 4186 } 4187 4188 // When passing an array of floats, the array occupies consecutive 4189 // space in the argument area; only round up to the next doubleword 4190 // at the end of the array. Otherwise, each float takes 8 bytes. 4191 if (CallConv != CallingConv::Fast || needsLoad) { 4192 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4193 ArgOffset += ArgSize; 4194 if (Flags.isInConsecutiveRegsLast()) 4195 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4196 } 4197 break; 4198 case MVT::v4f32: 4199 case MVT::v4i32: 4200 case MVT::v8i16: 4201 case MVT::v16i8: 4202 case MVT::v2f64: 4203 case MVT::v2i64: 4204 case MVT::v1i128: 4205 case MVT::f128: 4206 // These can be scalar arguments or elements of a vector array type 4207 // passed directly. The latter are used to implement ELFv2 homogenous 4208 // vector aggregates. 4209 if (VR_idx != Num_VR_Regs) { 4210 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4211 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4212 ++VR_idx; 4213 } else { 4214 if (CallConv == CallingConv::Fast) 4215 ComputeArgOffset(); 4216 needsLoad = true; 4217 } 4218 if (CallConv != CallingConv::Fast || needsLoad) 4219 ArgOffset += 16; 4220 break; 4221 } 4222 4223 // We need to load the argument to a virtual register if we determined 4224 // above that we ran out of physical registers of the appropriate type. 4225 if (needsLoad) { 4226 if (ObjSize < ArgSize && !isLittleEndian) 4227 CurArgOffset += ArgSize - ObjSize; 4228 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4229 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4230 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4231 } 4232 4233 InVals.push_back(ArgVal); 4234 } 4235 4236 // Area that is at least reserved in the caller of this function. 4237 unsigned MinReservedArea; 4238 if (HasParameterArea) 4239 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4240 else 4241 MinReservedArea = LinkageSize; 4242 4243 // Set the size that is at least reserved in caller of this function. Tail 4244 // call optimized functions' reserved stack space needs to be aligned so that 4245 // taking the difference between two stack areas will result in an aligned 4246 // stack. 4247 MinReservedArea = 4248 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4249 FuncInfo->setMinReservedArea(MinReservedArea); 4250 4251 // If the function takes variable number of arguments, make a frame index for 4252 // the start of the first vararg value... for expansion of llvm.va_start. 4253 // On ELFv2ABI spec, it writes: 4254 // C programs that are intended to be *portable* across different compilers 4255 // and architectures must use the header file <stdarg.h> to deal with variable 4256 // argument lists. 4257 if (isVarArg && MFI.hasVAStart()) { 4258 int Depth = ArgOffset; 4259 4260 FuncInfo->setVarArgsFrameIndex( 4261 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4262 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4263 4264 // If this function is vararg, store any remaining integer argument regs 4265 // to their spots on the stack so that they may be loaded by dereferencing 4266 // the result of va_next. 4267 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4268 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4269 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4270 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4271 SDValue Store = 4272 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4273 MemOps.push_back(Store); 4274 // Increment the address by four for the next argument to store 4275 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4276 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4277 } 4278 } 4279 4280 if (!MemOps.empty()) 4281 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4282 4283 return Chain; 4284 } 4285 4286 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4287 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4288 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4289 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4290 // TODO: add description of PPC stack frame format, or at least some docs. 4291 // 4292 MachineFunction &MF = DAG.getMachineFunction(); 4293 MachineFrameInfo &MFI = MF.getFrameInfo(); 4294 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4295 4296 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4297 bool isPPC64 = PtrVT == MVT::i64; 4298 // Potential tail calls could cause overwriting of argument stack slots. 4299 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4300 (CallConv == CallingConv::Fast)); 4301 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4302 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4303 unsigned ArgOffset = LinkageSize; 4304 // Area that is at least reserved in caller of this function. 4305 unsigned MinReservedArea = ArgOffset; 4306 4307 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4308 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4309 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4310 }; 4311 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4312 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4313 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4314 }; 4315 static const MCPhysReg VR[] = { 4316 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4317 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4318 }; 4319 4320 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4321 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4322 const unsigned Num_VR_Regs = array_lengthof( VR); 4323 4324 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4325 4326 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4327 4328 // In 32-bit non-varargs functions, the stack space for vectors is after the 4329 // stack space for non-vectors. We do not use this space unless we have 4330 // too many vectors to fit in registers, something that only occurs in 4331 // constructed examples:), but we have to walk the arglist to figure 4332 // that out...for the pathological case, compute VecArgOffset as the 4333 // start of the vector parameter area. Computing VecArgOffset is the 4334 // entire point of the following loop. 4335 unsigned VecArgOffset = ArgOffset; 4336 if (!isVarArg && !isPPC64) { 4337 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4338 ++ArgNo) { 4339 EVT ObjectVT = Ins[ArgNo].VT; 4340 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4341 4342 if (Flags.isByVal()) { 4343 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4344 unsigned ObjSize = Flags.getByValSize(); 4345 unsigned ArgSize = 4346 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4347 VecArgOffset += ArgSize; 4348 continue; 4349 } 4350 4351 switch(ObjectVT.getSimpleVT().SimpleTy) { 4352 default: llvm_unreachable("Unhandled argument type!"); 4353 case MVT::i1: 4354 case MVT::i32: 4355 case MVT::f32: 4356 VecArgOffset += 4; 4357 break; 4358 case MVT::i64: // PPC64 4359 case MVT::f64: 4360 // FIXME: We are guaranteed to be !isPPC64 at this point. 4361 // Does MVT::i64 apply? 4362 VecArgOffset += 8; 4363 break; 4364 case MVT::v4f32: 4365 case MVT::v4i32: 4366 case MVT::v8i16: 4367 case MVT::v16i8: 4368 // Nothing to do, we're only looking at Nonvector args here. 4369 break; 4370 } 4371 } 4372 } 4373 // We've found where the vector parameter area in memory is. Skip the 4374 // first 12 parameters; these don't use that memory. 4375 VecArgOffset = ((VecArgOffset+15)/16)*16; 4376 VecArgOffset += 12*16; 4377 4378 // Add DAG nodes to load the arguments or copy them out of registers. On 4379 // entry to a function on PPC, the arguments start after the linkage area, 4380 // although the first ones are often in registers. 4381 4382 SmallVector<SDValue, 8> MemOps; 4383 unsigned nAltivecParamsAtEnd = 0; 4384 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4385 unsigned CurArgIdx = 0; 4386 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4387 SDValue ArgVal; 4388 bool needsLoad = false; 4389 EVT ObjectVT = Ins[ArgNo].VT; 4390 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4391 unsigned ArgSize = ObjSize; 4392 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4393 if (Ins[ArgNo].isOrigArg()) { 4394 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4395 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4396 } 4397 unsigned CurArgOffset = ArgOffset; 4398 4399 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4400 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4401 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4402 if (isVarArg || isPPC64) { 4403 MinReservedArea = ((MinReservedArea+15)/16)*16; 4404 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4405 Flags, 4406 PtrByteSize); 4407 } else nAltivecParamsAtEnd++; 4408 } else 4409 // Calculate min reserved area. 4410 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4411 Flags, 4412 PtrByteSize); 4413 4414 // FIXME the codegen can be much improved in some cases. 4415 // We do not have to keep everything in memory. 4416 if (Flags.isByVal()) { 4417 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4418 4419 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4420 ObjSize = Flags.getByValSize(); 4421 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4422 // Objects of size 1 and 2 are right justified, everything else is 4423 // left justified. This means the memory address is adjusted forwards. 4424 if (ObjSize==1 || ObjSize==2) { 4425 CurArgOffset = CurArgOffset + (4 - ObjSize); 4426 } 4427 // The value of the object is its address. 4428 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4429 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4430 InVals.push_back(FIN); 4431 if (ObjSize==1 || ObjSize==2) { 4432 if (GPR_idx != Num_GPR_Regs) { 4433 unsigned VReg; 4434 if (isPPC64) 4435 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4436 else 4437 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4438 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4439 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4440 SDValue Store = 4441 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4442 MachinePointerInfo(&*FuncArg), ObjType); 4443 MemOps.push_back(Store); 4444 ++GPR_idx; 4445 } 4446 4447 ArgOffset += PtrByteSize; 4448 4449 continue; 4450 } 4451 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4452 // Store whatever pieces of the object are in registers 4453 // to memory. ArgOffset will be the address of the beginning 4454 // of the object. 4455 if (GPR_idx != Num_GPR_Regs) { 4456 unsigned VReg; 4457 if (isPPC64) 4458 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4459 else 4460 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4461 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4462 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4463 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4464 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4465 MachinePointerInfo(&*FuncArg, j)); 4466 MemOps.push_back(Store); 4467 ++GPR_idx; 4468 ArgOffset += PtrByteSize; 4469 } else { 4470 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4471 break; 4472 } 4473 } 4474 continue; 4475 } 4476 4477 switch (ObjectVT.getSimpleVT().SimpleTy) { 4478 default: llvm_unreachable("Unhandled argument type!"); 4479 case MVT::i1: 4480 case MVT::i32: 4481 if (!isPPC64) { 4482 if (GPR_idx != Num_GPR_Regs) { 4483 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4484 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4485 4486 if (ObjectVT == MVT::i1) 4487 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4488 4489 ++GPR_idx; 4490 } else { 4491 needsLoad = true; 4492 ArgSize = PtrByteSize; 4493 } 4494 // All int arguments reserve stack space in the Darwin ABI. 4495 ArgOffset += PtrByteSize; 4496 break; 4497 } 4498 LLVM_FALLTHROUGH; 4499 case MVT::i64: // PPC64 4500 if (GPR_idx != Num_GPR_Regs) { 4501 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4502 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4503 4504 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4505 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4506 // value to MVT::i64 and then truncate to the correct register size. 4507 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4508 4509 ++GPR_idx; 4510 } else { 4511 needsLoad = true; 4512 ArgSize = PtrByteSize; 4513 } 4514 // All int arguments reserve stack space in the Darwin ABI. 4515 ArgOffset += 8; 4516 break; 4517 4518 case MVT::f32: 4519 case MVT::f64: 4520 // Every 4 bytes of argument space consumes one of the GPRs available for 4521 // argument passing. 4522 if (GPR_idx != Num_GPR_Regs) { 4523 ++GPR_idx; 4524 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4525 ++GPR_idx; 4526 } 4527 if (FPR_idx != Num_FPR_Regs) { 4528 unsigned VReg; 4529 4530 if (ObjectVT == MVT::f32) 4531 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4532 else 4533 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4534 4535 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4536 ++FPR_idx; 4537 } else { 4538 needsLoad = true; 4539 } 4540 4541 // All FP arguments reserve stack space in the Darwin ABI. 4542 ArgOffset += isPPC64 ? 8 : ObjSize; 4543 break; 4544 case MVT::v4f32: 4545 case MVT::v4i32: 4546 case MVT::v8i16: 4547 case MVT::v16i8: 4548 // Note that vector arguments in registers don't reserve stack space, 4549 // except in varargs functions. 4550 if (VR_idx != Num_VR_Regs) { 4551 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4552 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4553 if (isVarArg) { 4554 while ((ArgOffset % 16) != 0) { 4555 ArgOffset += PtrByteSize; 4556 if (GPR_idx != Num_GPR_Regs) 4557 GPR_idx++; 4558 } 4559 ArgOffset += 16; 4560 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4561 } 4562 ++VR_idx; 4563 } else { 4564 if (!isVarArg && !isPPC64) { 4565 // Vectors go after all the nonvectors. 4566 CurArgOffset = VecArgOffset; 4567 VecArgOffset += 16; 4568 } else { 4569 // Vectors are aligned. 4570 ArgOffset = ((ArgOffset+15)/16)*16; 4571 CurArgOffset = ArgOffset; 4572 ArgOffset += 16; 4573 } 4574 needsLoad = true; 4575 } 4576 break; 4577 } 4578 4579 // We need to load the argument to a virtual register if we determined above 4580 // that we ran out of physical registers of the appropriate type. 4581 if (needsLoad) { 4582 int FI = MFI.CreateFixedObject(ObjSize, 4583 CurArgOffset + (ArgSize - ObjSize), 4584 isImmutable); 4585 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4586 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4587 } 4588 4589 InVals.push_back(ArgVal); 4590 } 4591 4592 // Allow for Altivec parameters at the end, if needed. 4593 if (nAltivecParamsAtEnd) { 4594 MinReservedArea = ((MinReservedArea+15)/16)*16; 4595 MinReservedArea += 16*nAltivecParamsAtEnd; 4596 } 4597 4598 // Area that is at least reserved in the caller of this function. 4599 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4600 4601 // Set the size that is at least reserved in caller of this function. Tail 4602 // call optimized functions' reserved stack space needs to be aligned so that 4603 // taking the difference between two stack areas will result in an aligned 4604 // stack. 4605 MinReservedArea = 4606 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4607 FuncInfo->setMinReservedArea(MinReservedArea); 4608 4609 // If the function takes variable number of arguments, make a frame index for 4610 // the start of the first vararg value... for expansion of llvm.va_start. 4611 if (isVarArg) { 4612 int Depth = ArgOffset; 4613 4614 FuncInfo->setVarArgsFrameIndex( 4615 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4616 Depth, true)); 4617 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4618 4619 // If this function is vararg, store any remaining integer argument regs 4620 // to their spots on the stack so that they may be loaded by dereferencing 4621 // the result of va_next. 4622 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4623 unsigned VReg; 4624 4625 if (isPPC64) 4626 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4627 else 4628 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4629 4630 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4631 SDValue Store = 4632 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4633 MemOps.push_back(Store); 4634 // Increment the address by four for the next argument to store 4635 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4636 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4637 } 4638 } 4639 4640 if (!MemOps.empty()) 4641 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4642 4643 return Chain; 4644 } 4645 4646 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4647 /// adjusted to accommodate the arguments for the tailcall. 4648 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4649 unsigned ParamSize) { 4650 4651 if (!isTailCall) return 0; 4652 4653 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4654 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4655 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4656 // Remember only if the new adjustment is bigger. 4657 if (SPDiff < FI->getTailCallSPDelta()) 4658 FI->setTailCallSPDelta(SPDiff); 4659 4660 return SPDiff; 4661 } 4662 4663 static bool isFunctionGlobalAddress(SDValue Callee); 4664 4665 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4666 const TargetMachine &TM) { 4667 // It does not make sense to call callsShareTOCBase() with a caller that 4668 // is PC Relative since PC Relative callers do not have a TOC. 4669 #ifndef NDEBUG 4670 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4671 assert(!STICaller->isUsingPCRelativeCalls() && 4672 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4673 #endif 4674 4675 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4676 // don't have enough information to determine if the caller and callee share 4677 // the same TOC base, so we have to pessimistically assume they don't for 4678 // correctness. 4679 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4680 if (!G) 4681 return false; 4682 4683 const GlobalValue *GV = G->getGlobal(); 4684 4685 // If the callee is preemptable, then the static linker will use a plt-stub 4686 // which saves the toc to the stack, and needs a nop after the call 4687 // instruction to convert to a toc-restore. 4688 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4689 return false; 4690 4691 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4692 // We may need a TOC restore in the situation where the caller requires a 4693 // valid TOC but the callee is PC Relative and does not. 4694 const Function *F = dyn_cast<Function>(GV); 4695 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4696 4697 // If we have an Alias we can try to get the function from there. 4698 if (Alias) { 4699 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4700 F = dyn_cast<Function>(GlobalObj); 4701 } 4702 4703 // If we still have no valid function pointer we do not have enough 4704 // information to determine if the callee uses PC Relative calls so we must 4705 // assume that it does. 4706 if (!F) 4707 return false; 4708 4709 // If the callee uses PC Relative we cannot guarantee that the callee won't 4710 // clobber the TOC of the caller and so we must assume that the two 4711 // functions do not share a TOC base. 4712 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4713 if (STICallee->isUsingPCRelativeCalls()) 4714 return false; 4715 4716 // The medium and large code models are expected to provide a sufficiently 4717 // large TOC to provide all data addressing needs of a module with a 4718 // single TOC. 4719 if (CodeModel::Medium == TM.getCodeModel() || 4720 CodeModel::Large == TM.getCodeModel()) 4721 return true; 4722 4723 // Otherwise we need to ensure callee and caller are in the same section, 4724 // since the linker may allocate multiple TOCs, and we don't know which 4725 // sections will belong to the same TOC base. 4726 if (!GV->isStrongDefinitionForLinker()) 4727 return false; 4728 4729 // Any explicitly-specified sections and section prefixes must also match. 4730 // Also, if we're using -ffunction-sections, then each function is always in 4731 // a different section (the same is true for COMDAT functions). 4732 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4733 GV->getSection() != Caller->getSection()) 4734 return false; 4735 if (const auto *F = dyn_cast<Function>(GV)) { 4736 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4737 return false; 4738 } 4739 4740 return true; 4741 } 4742 4743 static bool 4744 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4745 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4746 assert(Subtarget.is64BitELFABI()); 4747 4748 const unsigned PtrByteSize = 8; 4749 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4750 4751 static const MCPhysReg GPR[] = { 4752 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4753 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4754 }; 4755 static const MCPhysReg VR[] = { 4756 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4757 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4758 }; 4759 4760 const unsigned NumGPRs = array_lengthof(GPR); 4761 const unsigned NumFPRs = 13; 4762 const unsigned NumVRs = array_lengthof(VR); 4763 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4764 4765 unsigned NumBytes = LinkageSize; 4766 unsigned AvailableFPRs = NumFPRs; 4767 unsigned AvailableVRs = NumVRs; 4768 4769 for (const ISD::OutputArg& Param : Outs) { 4770 if (Param.Flags.isNest()) continue; 4771 4772 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4773 LinkageSize, ParamAreaSize, NumBytes, 4774 AvailableFPRs, AvailableVRs)) 4775 return true; 4776 } 4777 return false; 4778 } 4779 4780 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4781 if (CB.arg_size() != CallerFn->arg_size()) 4782 return false; 4783 4784 auto CalleeArgIter = CB.arg_begin(); 4785 auto CalleeArgEnd = CB.arg_end(); 4786 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4787 4788 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4789 const Value* CalleeArg = *CalleeArgIter; 4790 const Value* CallerArg = &(*CallerArgIter); 4791 if (CalleeArg == CallerArg) 4792 continue; 4793 4794 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4795 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4796 // } 4797 // 1st argument of callee is undef and has the same type as caller. 4798 if (CalleeArg->getType() == CallerArg->getType() && 4799 isa<UndefValue>(CalleeArg)) 4800 continue; 4801 4802 return false; 4803 } 4804 4805 return true; 4806 } 4807 4808 // Returns true if TCO is possible between the callers and callees 4809 // calling conventions. 4810 static bool 4811 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4812 CallingConv::ID CalleeCC) { 4813 // Tail calls are possible with fastcc and ccc. 4814 auto isTailCallableCC = [] (CallingConv::ID CC){ 4815 return CC == CallingConv::C || CC == CallingConv::Fast; 4816 }; 4817 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4818 return false; 4819 4820 // We can safely tail call both fastcc and ccc callees from a c calling 4821 // convention caller. If the caller is fastcc, we may have less stack space 4822 // than a non-fastcc caller with the same signature so disable tail-calls in 4823 // that case. 4824 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4825 } 4826 4827 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4828 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4829 const SmallVectorImpl<ISD::OutputArg> &Outs, 4830 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4831 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4832 4833 if (DisableSCO && !TailCallOpt) return false; 4834 4835 // Variadic argument functions are not supported. 4836 if (isVarArg) return false; 4837 4838 auto &Caller = DAG.getMachineFunction().getFunction(); 4839 // Check that the calling conventions are compatible for tco. 4840 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4841 return false; 4842 4843 // Caller contains any byval parameter is not supported. 4844 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4845 return false; 4846 4847 // Callee contains any byval parameter is not supported, too. 4848 // Note: This is a quick work around, because in some cases, e.g. 4849 // caller's stack size > callee's stack size, we are still able to apply 4850 // sibling call optimization. For example, gcc is able to do SCO for caller1 4851 // in the following example, but not for caller2. 4852 // struct test { 4853 // long int a; 4854 // char ary[56]; 4855 // } gTest; 4856 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4857 // b->a = v.a; 4858 // return 0; 4859 // } 4860 // void caller1(struct test a, struct test c, struct test *b) { 4861 // callee(gTest, b); } 4862 // void caller2(struct test *b) { callee(gTest, b); } 4863 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4864 return false; 4865 4866 // If callee and caller use different calling conventions, we cannot pass 4867 // parameters on stack since offsets for the parameter area may be different. 4868 if (Caller.getCallingConv() != CalleeCC && 4869 needStackSlotPassParameters(Subtarget, Outs)) 4870 return false; 4871 4872 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4873 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4874 // callee potentially have different TOC bases then we cannot tail call since 4875 // we need to restore the TOC pointer after the call. 4876 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4877 // We cannot guarantee this for indirect calls or calls to external functions. 4878 // When PC-Relative addressing is used, the concept of the TOC is no longer 4879 // applicable so this check is not required. 4880 // Check first for indirect calls. 4881 if (!Subtarget.isUsingPCRelativeCalls() && 4882 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4883 return false; 4884 4885 // Check if we share the TOC base. 4886 if (!Subtarget.isUsingPCRelativeCalls() && 4887 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4888 return false; 4889 4890 // TCO allows altering callee ABI, so we don't have to check further. 4891 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4892 return true; 4893 4894 if (DisableSCO) return false; 4895 4896 // If callee use the same argument list that caller is using, then we can 4897 // apply SCO on this case. If it is not, then we need to check if callee needs 4898 // stack for passing arguments. 4899 // PC Relative tail calls may not have a CallBase. 4900 // If there is no CallBase we cannot verify if we have the same argument 4901 // list so assume that we don't have the same argument list. 4902 if (CB && !hasSameArgumentList(&Caller, *CB) && 4903 needStackSlotPassParameters(Subtarget, Outs)) 4904 return false; 4905 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4906 return false; 4907 4908 return true; 4909 } 4910 4911 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4912 /// for tail call optimization. Targets which want to do tail call 4913 /// optimization should implement this function. 4914 bool 4915 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4916 CallingConv::ID CalleeCC, 4917 bool isVarArg, 4918 const SmallVectorImpl<ISD::InputArg> &Ins, 4919 SelectionDAG& DAG) const { 4920 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4921 return false; 4922 4923 // Variable argument functions are not supported. 4924 if (isVarArg) 4925 return false; 4926 4927 MachineFunction &MF = DAG.getMachineFunction(); 4928 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4929 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4930 // Functions containing by val parameters are not supported. 4931 for (unsigned i = 0; i != Ins.size(); i++) { 4932 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4933 if (Flags.isByVal()) return false; 4934 } 4935 4936 // Non-PIC/GOT tail calls are supported. 4937 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4938 return true; 4939 4940 // At the moment we can only do local tail calls (in same module, hidden 4941 // or protected) if we are generating PIC. 4942 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4943 return G->getGlobal()->hasHiddenVisibility() 4944 || G->getGlobal()->hasProtectedVisibility(); 4945 } 4946 4947 return false; 4948 } 4949 4950 /// isCallCompatibleAddress - Return the immediate to use if the specified 4951 /// 32-bit value is representable in the immediate field of a BxA instruction. 4952 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4953 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4954 if (!C) return nullptr; 4955 4956 int Addr = C->getZExtValue(); 4957 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4958 SignExtend32<26>(Addr) != Addr) 4959 return nullptr; // Top 6 bits have to be sext of immediate. 4960 4961 return DAG 4962 .getConstant( 4963 (int)C->getZExtValue() >> 2, SDLoc(Op), 4964 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4965 .getNode(); 4966 } 4967 4968 namespace { 4969 4970 struct TailCallArgumentInfo { 4971 SDValue Arg; 4972 SDValue FrameIdxOp; 4973 int FrameIdx = 0; 4974 4975 TailCallArgumentInfo() = default; 4976 }; 4977 4978 } // end anonymous namespace 4979 4980 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4981 static void StoreTailCallArgumentsToStackSlot( 4982 SelectionDAG &DAG, SDValue Chain, 4983 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4984 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4985 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4986 SDValue Arg = TailCallArgs[i].Arg; 4987 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4988 int FI = TailCallArgs[i].FrameIdx; 4989 // Store relative to framepointer. 4990 MemOpChains.push_back(DAG.getStore( 4991 Chain, dl, Arg, FIN, 4992 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4993 } 4994 } 4995 4996 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4997 /// the appropriate stack slot for the tail call optimized function call. 4998 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4999 SDValue OldRetAddr, SDValue OldFP, 5000 int SPDiff, const SDLoc &dl) { 5001 if (SPDiff) { 5002 // Calculate the new stack slot for the return address. 5003 MachineFunction &MF = DAG.getMachineFunction(); 5004 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5005 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5006 bool isPPC64 = Subtarget.isPPC64(); 5007 int SlotSize = isPPC64 ? 8 : 4; 5008 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5009 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5010 NewRetAddrLoc, true); 5011 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5012 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5013 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5014 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5015 } 5016 return Chain; 5017 } 5018 5019 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5020 /// the position of the argument. 5021 static void 5022 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5023 SDValue Arg, int SPDiff, unsigned ArgOffset, 5024 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5025 int Offset = ArgOffset + SPDiff; 5026 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5027 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5028 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5029 SDValue FIN = DAG.getFrameIndex(FI, VT); 5030 TailCallArgumentInfo Info; 5031 Info.Arg = Arg; 5032 Info.FrameIdxOp = FIN; 5033 Info.FrameIdx = FI; 5034 TailCallArguments.push_back(Info); 5035 } 5036 5037 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5038 /// stack slot. Returns the chain as result and the loaded frame pointers in 5039 /// LROpOut/FPOpout. Used when tail calling. 5040 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5041 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5042 SDValue &FPOpOut, const SDLoc &dl) const { 5043 if (SPDiff) { 5044 // Load the LR and FP stack slot for later adjusting. 5045 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5046 LROpOut = getReturnAddrFrameIndex(DAG); 5047 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5048 Chain = SDValue(LROpOut.getNode(), 1); 5049 } 5050 return Chain; 5051 } 5052 5053 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5054 /// by "Src" to address "Dst" of size "Size". Alignment information is 5055 /// specified by the specific parameter attribute. The copy will be passed as 5056 /// a byval function parameter. 5057 /// Sometimes what we are copying is the end of a larger object, the part that 5058 /// does not fit in registers. 5059 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5060 SDValue Chain, ISD::ArgFlagsTy Flags, 5061 SelectionDAG &DAG, const SDLoc &dl) { 5062 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5063 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5064 Flags.getNonZeroByValAlign(), false, false, false, 5065 MachinePointerInfo(), MachinePointerInfo()); 5066 } 5067 5068 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5069 /// tail calls. 5070 static void LowerMemOpCallTo( 5071 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5072 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5073 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5074 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5075 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5076 if (!isTailCall) { 5077 if (isVector) { 5078 SDValue StackPtr; 5079 if (isPPC64) 5080 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5081 else 5082 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5083 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5084 DAG.getConstant(ArgOffset, dl, PtrVT)); 5085 } 5086 MemOpChains.push_back( 5087 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5088 // Calculate and remember argument location. 5089 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5090 TailCallArguments); 5091 } 5092 5093 static void 5094 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5095 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5096 SDValue FPOp, 5097 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5098 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5099 // might overwrite each other in case of tail call optimization. 5100 SmallVector<SDValue, 8> MemOpChains2; 5101 // Do not flag preceding copytoreg stuff together with the following stuff. 5102 InFlag = SDValue(); 5103 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5104 MemOpChains2, dl); 5105 if (!MemOpChains2.empty()) 5106 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5107 5108 // Store the return address to the appropriate stack slot. 5109 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5110 5111 // Emit callseq_end just before tailcall node. 5112 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5113 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5114 InFlag = Chain.getValue(1); 5115 } 5116 5117 // Is this global address that of a function that can be called by name? (as 5118 // opposed to something that must hold a descriptor for an indirect call). 5119 static bool isFunctionGlobalAddress(SDValue Callee) { 5120 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5121 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5122 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5123 return false; 5124 5125 return G->getGlobal()->getValueType()->isFunctionTy(); 5126 } 5127 5128 return false; 5129 } 5130 5131 SDValue PPCTargetLowering::LowerCallResult( 5132 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5133 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5134 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5135 SmallVector<CCValAssign, 16> RVLocs; 5136 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5137 *DAG.getContext()); 5138 5139 CCRetInfo.AnalyzeCallResult( 5140 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5141 ? RetCC_PPC_Cold 5142 : RetCC_PPC); 5143 5144 // Copy all of the result registers out of their specified physreg. 5145 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5146 CCValAssign &VA = RVLocs[i]; 5147 assert(VA.isRegLoc() && "Can only return in registers!"); 5148 5149 SDValue Val; 5150 5151 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5152 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5153 InFlag); 5154 Chain = Lo.getValue(1); 5155 InFlag = Lo.getValue(2); 5156 VA = RVLocs[++i]; // skip ahead to next loc 5157 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5158 InFlag); 5159 Chain = Hi.getValue(1); 5160 InFlag = Hi.getValue(2); 5161 if (!Subtarget.isLittleEndian()) 5162 std::swap (Lo, Hi); 5163 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5164 } else { 5165 Val = DAG.getCopyFromReg(Chain, dl, 5166 VA.getLocReg(), VA.getLocVT(), InFlag); 5167 Chain = Val.getValue(1); 5168 InFlag = Val.getValue(2); 5169 } 5170 5171 switch (VA.getLocInfo()) { 5172 default: llvm_unreachable("Unknown loc info!"); 5173 case CCValAssign::Full: break; 5174 case CCValAssign::AExt: 5175 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5176 break; 5177 case CCValAssign::ZExt: 5178 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5179 DAG.getValueType(VA.getValVT())); 5180 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5181 break; 5182 case CCValAssign::SExt: 5183 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5184 DAG.getValueType(VA.getValVT())); 5185 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5186 break; 5187 } 5188 5189 InVals.push_back(Val); 5190 } 5191 5192 return Chain; 5193 } 5194 5195 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5196 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5197 // PatchPoint calls are not indirect. 5198 if (isPatchPoint) 5199 return false; 5200 5201 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5202 return false; 5203 5204 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5205 // becuase the immediate function pointer points to a descriptor instead of 5206 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5207 // pointer immediate points to the global entry point, while the BLA would 5208 // need to jump to the local entry point (see rL211174). 5209 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5210 isBLACompatibleAddress(Callee, DAG)) 5211 return false; 5212 5213 return true; 5214 } 5215 5216 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5217 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5218 return Subtarget.isAIXABI() || 5219 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5220 } 5221 5222 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5223 const Function &Caller, 5224 const SDValue &Callee, 5225 const PPCSubtarget &Subtarget, 5226 const TargetMachine &TM) { 5227 if (CFlags.IsTailCall) 5228 return PPCISD::TC_RETURN; 5229 5230 // This is a call through a function pointer. 5231 if (CFlags.IsIndirect) { 5232 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5233 // indirect calls. The save of the caller's TOC pointer to the stack will be 5234 // inserted into the DAG as part of call lowering. The restore of the TOC 5235 // pointer is modeled by using a pseudo instruction for the call opcode that 5236 // represents the 2 instruction sequence of an indirect branch and link, 5237 // immediately followed by a load of the TOC pointer from the the stack save 5238 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5239 // as it is not saved or used. 5240 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5241 : PPCISD::BCTRL; 5242 } 5243 5244 if (Subtarget.isUsingPCRelativeCalls()) { 5245 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5246 return PPCISD::CALL_NOTOC; 5247 } 5248 5249 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5250 // immediately following the call instruction if the caller and callee may 5251 // have different TOC bases. At link time if the linker determines the calls 5252 // may not share a TOC base, the call is redirected to a trampoline inserted 5253 // by the linker. The trampoline will (among other things) save the callers 5254 // TOC pointer at an ABI designated offset in the linkage area and the linker 5255 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5256 // into gpr2. 5257 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5258 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5259 : PPCISD::CALL_NOP; 5260 5261 return PPCISD::CALL; 5262 } 5263 5264 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5265 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5266 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5267 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5268 return SDValue(Dest, 0); 5269 5270 // Returns true if the callee is local, and false otherwise. 5271 auto isLocalCallee = [&]() { 5272 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5273 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5274 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5275 5276 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5277 !dyn_cast_or_null<GlobalIFunc>(GV); 5278 }; 5279 5280 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5281 // a static relocation model causes some versions of GNU LD (2.17.50, at 5282 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5283 // built with secure-PLT. 5284 bool UsePlt = 5285 Subtarget.is32BitELFABI() && !isLocalCallee() && 5286 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5287 5288 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5289 const TargetMachine &TM = Subtarget.getTargetMachine(); 5290 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5291 MCSymbolXCOFF *S = 5292 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5293 5294 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5295 return DAG.getMCSymbol(S, PtrVT); 5296 }; 5297 5298 if (isFunctionGlobalAddress(Callee)) { 5299 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5300 5301 if (Subtarget.isAIXABI()) { 5302 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5303 return getAIXFuncEntryPointSymbolSDNode(GV); 5304 } 5305 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5306 UsePlt ? PPCII::MO_PLT : 0); 5307 } 5308 5309 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5310 const char *SymName = S->getSymbol(); 5311 if (Subtarget.isAIXABI()) { 5312 // If there exists a user-declared function whose name is the same as the 5313 // ExternalSymbol's, then we pick up the user-declared version. 5314 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5315 if (const Function *F = 5316 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5317 return getAIXFuncEntryPointSymbolSDNode(F); 5318 5319 // On AIX, direct function calls reference the symbol for the function's 5320 // entry point, which is named by prepending a "." before the function's 5321 // C-linkage name. A Qualname is returned here because an external 5322 // function entry point is a csect with XTY_ER property. 5323 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5324 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5325 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5326 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5327 SectionKind::getMetadata()); 5328 return Sec->getQualNameSymbol(); 5329 }; 5330 5331 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5332 } 5333 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5334 UsePlt ? PPCII::MO_PLT : 0); 5335 } 5336 5337 // No transformation needed. 5338 assert(Callee.getNode() && "What no callee?"); 5339 return Callee; 5340 } 5341 5342 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5343 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5344 "Expected a CALLSEQ_STARTSDNode."); 5345 5346 // The last operand is the chain, except when the node has glue. If the node 5347 // has glue, then the last operand is the glue, and the chain is the second 5348 // last operand. 5349 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5350 if (LastValue.getValueType() != MVT::Glue) 5351 return LastValue; 5352 5353 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5354 } 5355 5356 // Creates the node that moves a functions address into the count register 5357 // to prepare for an indirect call instruction. 5358 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5359 SDValue &Glue, SDValue &Chain, 5360 const SDLoc &dl) { 5361 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5362 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5363 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5364 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5365 // The glue is the second value produced. 5366 Glue = Chain.getValue(1); 5367 } 5368 5369 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5370 SDValue &Glue, SDValue &Chain, 5371 SDValue CallSeqStart, 5372 const CallBase *CB, const SDLoc &dl, 5373 bool hasNest, 5374 const PPCSubtarget &Subtarget) { 5375 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5376 // entry point, but to the function descriptor (the function entry point 5377 // address is part of the function descriptor though). 5378 // The function descriptor is a three doubleword structure with the 5379 // following fields: function entry point, TOC base address and 5380 // environment pointer. 5381 // Thus for a call through a function pointer, the following actions need 5382 // to be performed: 5383 // 1. Save the TOC of the caller in the TOC save area of its stack 5384 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5385 // 2. Load the address of the function entry point from the function 5386 // descriptor. 5387 // 3. Load the TOC of the callee from the function descriptor into r2. 5388 // 4. Load the environment pointer from the function descriptor into 5389 // r11. 5390 // 5. Branch to the function entry point address. 5391 // 6. On return of the callee, the TOC of the caller needs to be 5392 // restored (this is done in FinishCall()). 5393 // 5394 // The loads are scheduled at the beginning of the call sequence, and the 5395 // register copies are flagged together to ensure that no other 5396 // operations can be scheduled in between. E.g. without flagging the 5397 // copies together, a TOC access in the caller could be scheduled between 5398 // the assignment of the callee TOC and the branch to the callee, which leads 5399 // to incorrect code. 5400 5401 // Start by loading the function address from the descriptor. 5402 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5403 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5404 ? (MachineMemOperand::MODereferenceable | 5405 MachineMemOperand::MOInvariant) 5406 : MachineMemOperand::MONone; 5407 5408 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5409 5410 // Registers used in building the DAG. 5411 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5412 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5413 5414 // Offsets of descriptor members. 5415 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5416 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5417 5418 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5419 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5420 5421 // One load for the functions entry point address. 5422 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5423 Alignment, MMOFlags); 5424 5425 // One for loading the TOC anchor for the module that contains the called 5426 // function. 5427 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5428 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5429 SDValue TOCPtr = 5430 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5431 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5432 5433 // One for loading the environment pointer. 5434 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5435 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5436 SDValue LoadEnvPtr = 5437 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5438 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5439 5440 5441 // Then copy the newly loaded TOC anchor to the TOC pointer. 5442 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5443 Chain = TOCVal.getValue(0); 5444 Glue = TOCVal.getValue(1); 5445 5446 // If the function call has an explicit 'nest' parameter, it takes the 5447 // place of the environment pointer. 5448 assert((!hasNest || !Subtarget.isAIXABI()) && 5449 "Nest parameter is not supported on AIX."); 5450 if (!hasNest) { 5451 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5452 Chain = EnvVal.getValue(0); 5453 Glue = EnvVal.getValue(1); 5454 } 5455 5456 // The rest of the indirect call sequence is the same as the non-descriptor 5457 // DAG. 5458 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5459 } 5460 5461 static void 5462 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5463 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5464 SelectionDAG &DAG, 5465 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5466 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5467 const PPCSubtarget &Subtarget) { 5468 const bool IsPPC64 = Subtarget.isPPC64(); 5469 // MVT for a general purpose register. 5470 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5471 5472 // First operand is always the chain. 5473 Ops.push_back(Chain); 5474 5475 // If it's a direct call pass the callee as the second operand. 5476 if (!CFlags.IsIndirect) 5477 Ops.push_back(Callee); 5478 else { 5479 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5480 5481 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5482 // on the stack (this would have been done in `LowerCall_64SVR4` or 5483 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5484 // represents both the indirect branch and a load that restores the TOC 5485 // pointer from the linkage area. The operand for the TOC restore is an add 5486 // of the TOC save offset to the stack pointer. This must be the second 5487 // operand: after the chain input but before any other variadic arguments. 5488 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5489 // saved or used. 5490 if (isTOCSaveRestoreRequired(Subtarget)) { 5491 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5492 5493 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5494 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5495 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5496 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5497 Ops.push_back(AddTOC); 5498 } 5499 5500 // Add the register used for the environment pointer. 5501 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5502 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5503 RegVT)); 5504 5505 5506 // Add CTR register as callee so a bctr can be emitted later. 5507 if (CFlags.IsTailCall) 5508 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5509 } 5510 5511 // If this is a tail call add stack pointer delta. 5512 if (CFlags.IsTailCall) 5513 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5514 5515 // Add argument registers to the end of the list so that they are known live 5516 // into the call. 5517 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5518 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5519 RegsToPass[i].second.getValueType())); 5520 5521 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5522 // no way to mark dependencies as implicit here. 5523 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5524 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5525 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5526 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5527 5528 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5529 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5530 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5531 5532 // Add a register mask operand representing the call-preserved registers. 5533 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5534 const uint32_t *Mask = 5535 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5536 assert(Mask && "Missing call preserved mask for calling convention"); 5537 Ops.push_back(DAG.getRegisterMask(Mask)); 5538 5539 // If the glue is valid, it is the last operand. 5540 if (Glue.getNode()) 5541 Ops.push_back(Glue); 5542 } 5543 5544 SDValue PPCTargetLowering::FinishCall( 5545 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5546 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5547 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5548 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5549 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5550 5551 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5552 Subtarget.isAIXABI()) 5553 setUsesTOCBasePtr(DAG); 5554 5555 unsigned CallOpc = 5556 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5557 Subtarget, DAG.getTarget()); 5558 5559 if (!CFlags.IsIndirect) 5560 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5561 else if (Subtarget.usesFunctionDescriptors()) 5562 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5563 dl, CFlags.HasNest, Subtarget); 5564 else 5565 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5566 5567 // Build the operand list for the call instruction. 5568 SmallVector<SDValue, 8> Ops; 5569 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5570 SPDiff, Subtarget); 5571 5572 // Emit tail call. 5573 if (CFlags.IsTailCall) { 5574 // Indirect tail call when using PC Relative calls do not have the same 5575 // constraints. 5576 assert(((Callee.getOpcode() == ISD::Register && 5577 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5578 Callee.getOpcode() == ISD::TargetExternalSymbol || 5579 Callee.getOpcode() == ISD::TargetGlobalAddress || 5580 isa<ConstantSDNode>(Callee) || 5581 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5582 "Expecting a global address, external symbol, absolute value, " 5583 "register or an indirect tail call when PC Relative calls are " 5584 "used."); 5585 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5586 assert(CallOpc == PPCISD::TC_RETURN && 5587 "Unexpected call opcode for a tail call."); 5588 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5589 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5590 } 5591 5592 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5593 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5594 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5595 Glue = Chain.getValue(1); 5596 5597 // When performing tail call optimization the callee pops its arguments off 5598 // the stack. Account for this here so these bytes can be pushed back on in 5599 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5600 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5601 getTargetMachine().Options.GuaranteedTailCallOpt) 5602 ? NumBytes 5603 : 0; 5604 5605 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5606 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5607 Glue, dl); 5608 Glue = Chain.getValue(1); 5609 5610 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5611 DAG, InVals); 5612 } 5613 5614 SDValue 5615 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5616 SmallVectorImpl<SDValue> &InVals) const { 5617 SelectionDAG &DAG = CLI.DAG; 5618 SDLoc &dl = CLI.DL; 5619 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5620 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5621 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5622 SDValue Chain = CLI.Chain; 5623 SDValue Callee = CLI.Callee; 5624 bool &isTailCall = CLI.IsTailCall; 5625 CallingConv::ID CallConv = CLI.CallConv; 5626 bool isVarArg = CLI.IsVarArg; 5627 bool isPatchPoint = CLI.IsPatchPoint; 5628 const CallBase *CB = CLI.CB; 5629 5630 if (isTailCall) { 5631 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5632 isTailCall = false; 5633 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5634 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5635 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5636 else 5637 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5638 Ins, DAG); 5639 if (isTailCall) { 5640 ++NumTailCalls; 5641 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5642 ++NumSiblingCalls; 5643 5644 // PC Relative calls no longer guarantee that the callee is a Global 5645 // Address Node. The callee could be an indirect tail call in which 5646 // case the SDValue for the callee could be a load (to load the address 5647 // of a function pointer) or it may be a register copy (to move the 5648 // address of the callee from a function parameter into a virtual 5649 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5650 assert((Subtarget.isUsingPCRelativeCalls() || 5651 isa<GlobalAddressSDNode>(Callee)) && 5652 "Callee should be an llvm::Function object."); 5653 5654 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5655 << "\nTCO callee: "); 5656 LLVM_DEBUG(Callee.dump()); 5657 } 5658 } 5659 5660 if (!isTailCall && CB && CB->isMustTailCall()) 5661 report_fatal_error("failed to perform tail call elimination on a call " 5662 "site marked musttail"); 5663 5664 // When long calls (i.e. indirect calls) are always used, calls are always 5665 // made via function pointer. If we have a function name, first translate it 5666 // into a pointer. 5667 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5668 !isTailCall) 5669 Callee = LowerGlobalAddress(Callee, DAG); 5670 5671 CallFlags CFlags( 5672 CallConv, isTailCall, isVarArg, isPatchPoint, 5673 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5674 // hasNest 5675 Subtarget.is64BitELFABI() && 5676 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5677 CLI.NoMerge); 5678 5679 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5680 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5681 InVals, CB); 5682 5683 if (Subtarget.isSVR4ABI()) 5684 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5685 InVals, CB); 5686 5687 if (Subtarget.isAIXABI()) 5688 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5689 InVals, CB); 5690 5691 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5692 InVals, CB); 5693 } 5694 5695 SDValue PPCTargetLowering::LowerCall_32SVR4( 5696 SDValue Chain, SDValue Callee, CallFlags CFlags, 5697 const SmallVectorImpl<ISD::OutputArg> &Outs, 5698 const SmallVectorImpl<SDValue> &OutVals, 5699 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5700 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5701 const CallBase *CB) const { 5702 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5703 // of the 32-bit SVR4 ABI stack frame layout. 5704 5705 const CallingConv::ID CallConv = CFlags.CallConv; 5706 const bool IsVarArg = CFlags.IsVarArg; 5707 const bool IsTailCall = CFlags.IsTailCall; 5708 5709 assert((CallConv == CallingConv::C || 5710 CallConv == CallingConv::Cold || 5711 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5712 5713 const Align PtrAlign(4); 5714 5715 MachineFunction &MF = DAG.getMachineFunction(); 5716 5717 // Mark this function as potentially containing a function that contains a 5718 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5719 // and restoring the callers stack pointer in this functions epilog. This is 5720 // done because by tail calling the called function might overwrite the value 5721 // in this function's (MF) stack pointer stack slot 0(SP). 5722 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5723 CallConv == CallingConv::Fast) 5724 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5725 5726 // Count how many bytes are to be pushed on the stack, including the linkage 5727 // area, parameter list area and the part of the local variable space which 5728 // contains copies of aggregates which are passed by value. 5729 5730 // Assign locations to all of the outgoing arguments. 5731 SmallVector<CCValAssign, 16> ArgLocs; 5732 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5733 5734 // Reserve space for the linkage area on the stack. 5735 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5736 PtrAlign); 5737 if (useSoftFloat()) 5738 CCInfo.PreAnalyzeCallOperands(Outs); 5739 5740 if (IsVarArg) { 5741 // Handle fixed and variable vector arguments differently. 5742 // Fixed vector arguments go into registers as long as registers are 5743 // available. Variable vector arguments always go into memory. 5744 unsigned NumArgs = Outs.size(); 5745 5746 for (unsigned i = 0; i != NumArgs; ++i) { 5747 MVT ArgVT = Outs[i].VT; 5748 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5749 bool Result; 5750 5751 if (Outs[i].IsFixed) { 5752 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5753 CCInfo); 5754 } else { 5755 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5756 ArgFlags, CCInfo); 5757 } 5758 5759 if (Result) { 5760 #ifndef NDEBUG 5761 errs() << "Call operand #" << i << " has unhandled type " 5762 << EVT(ArgVT).getEVTString() << "\n"; 5763 #endif 5764 llvm_unreachable(nullptr); 5765 } 5766 } 5767 } else { 5768 // All arguments are treated the same. 5769 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5770 } 5771 CCInfo.clearWasPPCF128(); 5772 5773 // Assign locations to all of the outgoing aggregate by value arguments. 5774 SmallVector<CCValAssign, 16> ByValArgLocs; 5775 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5776 5777 // Reserve stack space for the allocations in CCInfo. 5778 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5779 5780 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5781 5782 // Size of the linkage area, parameter list area and the part of the local 5783 // space variable where copies of aggregates which are passed by value are 5784 // stored. 5785 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5786 5787 // Calculate by how many bytes the stack has to be adjusted in case of tail 5788 // call optimization. 5789 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5790 5791 // Adjust the stack pointer for the new arguments... 5792 // These operations are automatically eliminated by the prolog/epilog pass 5793 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5794 SDValue CallSeqStart = Chain; 5795 5796 // Load the return address and frame pointer so it can be moved somewhere else 5797 // later. 5798 SDValue LROp, FPOp; 5799 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5800 5801 // Set up a copy of the stack pointer for use loading and storing any 5802 // arguments that may not fit in the registers available for argument 5803 // passing. 5804 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5805 5806 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5807 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5808 SmallVector<SDValue, 8> MemOpChains; 5809 5810 bool seenFloatArg = false; 5811 // Walk the register/memloc assignments, inserting copies/loads. 5812 // i - Tracks the index into the list of registers allocated for the call 5813 // RealArgIdx - Tracks the index into the list of actual function arguments 5814 // j - Tracks the index into the list of byval arguments 5815 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5816 i != e; 5817 ++i, ++RealArgIdx) { 5818 CCValAssign &VA = ArgLocs[i]; 5819 SDValue Arg = OutVals[RealArgIdx]; 5820 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5821 5822 if (Flags.isByVal()) { 5823 // Argument is an aggregate which is passed by value, thus we need to 5824 // create a copy of it in the local variable space of the current stack 5825 // frame (which is the stack frame of the caller) and pass the address of 5826 // this copy to the callee. 5827 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5828 CCValAssign &ByValVA = ByValArgLocs[j++]; 5829 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5830 5831 // Memory reserved in the local variable space of the callers stack frame. 5832 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5833 5834 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5835 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5836 StackPtr, PtrOff); 5837 5838 // Create a copy of the argument in the local area of the current 5839 // stack frame. 5840 SDValue MemcpyCall = 5841 CreateCopyOfByValArgument(Arg, PtrOff, 5842 CallSeqStart.getNode()->getOperand(0), 5843 Flags, DAG, dl); 5844 5845 // This must go outside the CALLSEQ_START..END. 5846 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5847 SDLoc(MemcpyCall)); 5848 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5849 NewCallSeqStart.getNode()); 5850 Chain = CallSeqStart = NewCallSeqStart; 5851 5852 // Pass the address of the aggregate copy on the stack either in a 5853 // physical register or in the parameter list area of the current stack 5854 // frame to the callee. 5855 Arg = PtrOff; 5856 } 5857 5858 // When useCRBits() is true, there can be i1 arguments. 5859 // It is because getRegisterType(MVT::i1) => MVT::i1, 5860 // and for other integer types getRegisterType() => MVT::i32. 5861 // Extend i1 and ensure callee will get i32. 5862 if (Arg.getValueType() == MVT::i1) 5863 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5864 dl, MVT::i32, Arg); 5865 5866 if (VA.isRegLoc()) { 5867 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5868 // Put argument in a physical register. 5869 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5870 bool IsLE = Subtarget.isLittleEndian(); 5871 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5872 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5873 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5874 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5875 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5876 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5877 SVal.getValue(0))); 5878 } else 5879 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5880 } else { 5881 // Put argument in the parameter list area of the current stack frame. 5882 assert(VA.isMemLoc()); 5883 unsigned LocMemOffset = VA.getLocMemOffset(); 5884 5885 if (!IsTailCall) { 5886 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5887 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5888 StackPtr, PtrOff); 5889 5890 MemOpChains.push_back( 5891 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5892 } else { 5893 // Calculate and remember argument location. 5894 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5895 TailCallArguments); 5896 } 5897 } 5898 } 5899 5900 if (!MemOpChains.empty()) 5901 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5902 5903 // Build a sequence of copy-to-reg nodes chained together with token chain 5904 // and flag operands which copy the outgoing args into the appropriate regs. 5905 SDValue InFlag; 5906 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5907 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5908 RegsToPass[i].second, InFlag); 5909 InFlag = Chain.getValue(1); 5910 } 5911 5912 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5913 // registers. 5914 if (IsVarArg) { 5915 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5916 SDValue Ops[] = { Chain, InFlag }; 5917 5918 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5919 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5920 5921 InFlag = Chain.getValue(1); 5922 } 5923 5924 if (IsTailCall) 5925 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5926 TailCallArguments); 5927 5928 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5929 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5930 } 5931 5932 // Copy an argument into memory, being careful to do this outside the 5933 // call sequence for the call to which the argument belongs. 5934 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5935 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5936 SelectionDAG &DAG, const SDLoc &dl) const { 5937 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5938 CallSeqStart.getNode()->getOperand(0), 5939 Flags, DAG, dl); 5940 // The MEMCPY must go outside the CALLSEQ_START..END. 5941 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5942 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5943 SDLoc(MemcpyCall)); 5944 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5945 NewCallSeqStart.getNode()); 5946 return NewCallSeqStart; 5947 } 5948 5949 SDValue PPCTargetLowering::LowerCall_64SVR4( 5950 SDValue Chain, SDValue Callee, CallFlags CFlags, 5951 const SmallVectorImpl<ISD::OutputArg> &Outs, 5952 const SmallVectorImpl<SDValue> &OutVals, 5953 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5954 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5955 const CallBase *CB) const { 5956 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5957 bool isLittleEndian = Subtarget.isLittleEndian(); 5958 unsigned NumOps = Outs.size(); 5959 bool IsSibCall = false; 5960 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5961 5962 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5963 unsigned PtrByteSize = 8; 5964 5965 MachineFunction &MF = DAG.getMachineFunction(); 5966 5967 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5968 IsSibCall = true; 5969 5970 // Mark this function as potentially containing a function that contains a 5971 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5972 // and restoring the callers stack pointer in this functions epilog. This is 5973 // done because by tail calling the called function might overwrite the value 5974 // in this function's (MF) stack pointer stack slot 0(SP). 5975 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5976 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5977 5978 assert(!(IsFastCall && CFlags.IsVarArg) && 5979 "fastcc not supported on varargs functions"); 5980 5981 // Count how many bytes are to be pushed on the stack, including the linkage 5982 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5983 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5984 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5985 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5986 unsigned NumBytes = LinkageSize; 5987 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5988 5989 static const MCPhysReg GPR[] = { 5990 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5991 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5992 }; 5993 static const MCPhysReg VR[] = { 5994 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5995 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5996 }; 5997 5998 const unsigned NumGPRs = array_lengthof(GPR); 5999 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6000 const unsigned NumVRs = array_lengthof(VR); 6001 6002 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6003 // can be passed to the callee in registers. 6004 // For the fast calling convention, there is another check below. 6005 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6006 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6007 if (!HasParameterArea) { 6008 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6009 unsigned AvailableFPRs = NumFPRs; 6010 unsigned AvailableVRs = NumVRs; 6011 unsigned NumBytesTmp = NumBytes; 6012 for (unsigned i = 0; i != NumOps; ++i) { 6013 if (Outs[i].Flags.isNest()) continue; 6014 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6015 PtrByteSize, LinkageSize, ParamAreaSize, 6016 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6017 HasParameterArea = true; 6018 } 6019 } 6020 6021 // When using the fast calling convention, we don't provide backing for 6022 // arguments that will be in registers. 6023 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6024 6025 // Avoid allocating parameter area for fastcc functions if all the arguments 6026 // can be passed in the registers. 6027 if (IsFastCall) 6028 HasParameterArea = false; 6029 6030 // Add up all the space actually used. 6031 for (unsigned i = 0; i != NumOps; ++i) { 6032 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6033 EVT ArgVT = Outs[i].VT; 6034 EVT OrigVT = Outs[i].ArgVT; 6035 6036 if (Flags.isNest()) 6037 continue; 6038 6039 if (IsFastCall) { 6040 if (Flags.isByVal()) { 6041 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6042 if (NumGPRsUsed > NumGPRs) 6043 HasParameterArea = true; 6044 } else { 6045 switch (ArgVT.getSimpleVT().SimpleTy) { 6046 default: llvm_unreachable("Unexpected ValueType for argument!"); 6047 case MVT::i1: 6048 case MVT::i32: 6049 case MVT::i64: 6050 if (++NumGPRsUsed <= NumGPRs) 6051 continue; 6052 break; 6053 case MVT::v4i32: 6054 case MVT::v8i16: 6055 case MVT::v16i8: 6056 case MVT::v2f64: 6057 case MVT::v2i64: 6058 case MVT::v1i128: 6059 case MVT::f128: 6060 if (++NumVRsUsed <= NumVRs) 6061 continue; 6062 break; 6063 case MVT::v4f32: 6064 if (++NumVRsUsed <= NumVRs) 6065 continue; 6066 break; 6067 case MVT::f32: 6068 case MVT::f64: 6069 if (++NumFPRsUsed <= NumFPRs) 6070 continue; 6071 break; 6072 } 6073 HasParameterArea = true; 6074 } 6075 } 6076 6077 /* Respect alignment of argument on the stack. */ 6078 auto Alignement = 6079 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6080 NumBytes = alignTo(NumBytes, Alignement); 6081 6082 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6083 if (Flags.isInConsecutiveRegsLast()) 6084 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6085 } 6086 6087 unsigned NumBytesActuallyUsed = NumBytes; 6088 6089 // In the old ELFv1 ABI, 6090 // the prolog code of the callee may store up to 8 GPR argument registers to 6091 // the stack, allowing va_start to index over them in memory if its varargs. 6092 // Because we cannot tell if this is needed on the caller side, we have to 6093 // conservatively assume that it is needed. As such, make sure we have at 6094 // least enough stack space for the caller to store the 8 GPRs. 6095 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6096 // really requires memory operands, e.g. a vararg function. 6097 if (HasParameterArea) 6098 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6099 else 6100 NumBytes = LinkageSize; 6101 6102 // Tail call needs the stack to be aligned. 6103 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6104 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6105 6106 int SPDiff = 0; 6107 6108 // Calculate by how many bytes the stack has to be adjusted in case of tail 6109 // call optimization. 6110 if (!IsSibCall) 6111 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6112 6113 // To protect arguments on the stack from being clobbered in a tail call, 6114 // force all the loads to happen before doing any other lowering. 6115 if (CFlags.IsTailCall) 6116 Chain = DAG.getStackArgumentTokenFactor(Chain); 6117 6118 // Adjust the stack pointer for the new arguments... 6119 // These operations are automatically eliminated by the prolog/epilog pass 6120 if (!IsSibCall) 6121 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6122 SDValue CallSeqStart = Chain; 6123 6124 // Load the return address and frame pointer so it can be move somewhere else 6125 // later. 6126 SDValue LROp, FPOp; 6127 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6128 6129 // Set up a copy of the stack pointer for use loading and storing any 6130 // arguments that may not fit in the registers available for argument 6131 // passing. 6132 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6133 6134 // Figure out which arguments are going to go in registers, and which in 6135 // memory. Also, if this is a vararg function, floating point operations 6136 // must be stored to our stack, and loaded into integer regs as well, if 6137 // any integer regs are available for argument passing. 6138 unsigned ArgOffset = LinkageSize; 6139 6140 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6141 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6142 6143 SmallVector<SDValue, 8> MemOpChains; 6144 for (unsigned i = 0; i != NumOps; ++i) { 6145 SDValue Arg = OutVals[i]; 6146 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6147 EVT ArgVT = Outs[i].VT; 6148 EVT OrigVT = Outs[i].ArgVT; 6149 6150 // PtrOff will be used to store the current argument to the stack if a 6151 // register cannot be found for it. 6152 SDValue PtrOff; 6153 6154 // We re-align the argument offset for each argument, except when using the 6155 // fast calling convention, when we need to make sure we do that only when 6156 // we'll actually use a stack slot. 6157 auto ComputePtrOff = [&]() { 6158 /* Respect alignment of argument on the stack. */ 6159 auto Alignment = 6160 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6161 ArgOffset = alignTo(ArgOffset, Alignment); 6162 6163 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6164 6165 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6166 }; 6167 6168 if (!IsFastCall) { 6169 ComputePtrOff(); 6170 6171 /* Compute GPR index associated with argument offset. */ 6172 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6173 GPR_idx = std::min(GPR_idx, NumGPRs); 6174 } 6175 6176 // Promote integers to 64-bit values. 6177 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6178 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6179 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6180 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6181 } 6182 6183 // FIXME memcpy is used way more than necessary. Correctness first. 6184 // Note: "by value" is code for passing a structure by value, not 6185 // basic types. 6186 if (Flags.isByVal()) { 6187 // Note: Size includes alignment padding, so 6188 // struct x { short a; char b; } 6189 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6190 // These are the proper values we need for right-justifying the 6191 // aggregate in a parameter register. 6192 unsigned Size = Flags.getByValSize(); 6193 6194 // An empty aggregate parameter takes up no storage and no 6195 // registers. 6196 if (Size == 0) 6197 continue; 6198 6199 if (IsFastCall) 6200 ComputePtrOff(); 6201 6202 // All aggregates smaller than 8 bytes must be passed right-justified. 6203 if (Size==1 || Size==2 || Size==4) { 6204 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6205 if (GPR_idx != NumGPRs) { 6206 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6207 MachinePointerInfo(), VT); 6208 MemOpChains.push_back(Load.getValue(1)); 6209 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6210 6211 ArgOffset += PtrByteSize; 6212 continue; 6213 } 6214 } 6215 6216 if (GPR_idx == NumGPRs && Size < 8) { 6217 SDValue AddPtr = PtrOff; 6218 if (!isLittleEndian) { 6219 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6220 PtrOff.getValueType()); 6221 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6222 } 6223 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6224 CallSeqStart, 6225 Flags, DAG, dl); 6226 ArgOffset += PtrByteSize; 6227 continue; 6228 } 6229 // Copy entire object into memory. There are cases where gcc-generated 6230 // code assumes it is there, even if it could be put entirely into 6231 // registers. (This is not what the doc says.) 6232 6233 // FIXME: The above statement is likely due to a misunderstanding of the 6234 // documents. All arguments must be copied into the parameter area BY 6235 // THE CALLEE in the event that the callee takes the address of any 6236 // formal argument. That has not yet been implemented. However, it is 6237 // reasonable to use the stack area as a staging area for the register 6238 // load. 6239 6240 // Skip this for small aggregates, as we will use the same slot for a 6241 // right-justified copy, below. 6242 if (Size >= 8) 6243 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6244 CallSeqStart, 6245 Flags, DAG, dl); 6246 6247 // When a register is available, pass a small aggregate right-justified. 6248 if (Size < 8 && GPR_idx != NumGPRs) { 6249 // The easiest way to get this right-justified in a register 6250 // is to copy the structure into the rightmost portion of a 6251 // local variable slot, then load the whole slot into the 6252 // register. 6253 // FIXME: The memcpy seems to produce pretty awful code for 6254 // small aggregates, particularly for packed ones. 6255 // FIXME: It would be preferable to use the slot in the 6256 // parameter save area instead of a new local variable. 6257 SDValue AddPtr = PtrOff; 6258 if (!isLittleEndian) { 6259 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6260 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6261 } 6262 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6263 CallSeqStart, 6264 Flags, DAG, dl); 6265 6266 // Load the slot into the register. 6267 SDValue Load = 6268 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6269 MemOpChains.push_back(Load.getValue(1)); 6270 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6271 6272 // Done with this argument. 6273 ArgOffset += PtrByteSize; 6274 continue; 6275 } 6276 6277 // For aggregates larger than PtrByteSize, copy the pieces of the 6278 // object that fit into registers from the parameter save area. 6279 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6280 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6281 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6282 if (GPR_idx != NumGPRs) { 6283 SDValue Load = 6284 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6285 MemOpChains.push_back(Load.getValue(1)); 6286 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6287 ArgOffset += PtrByteSize; 6288 } else { 6289 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6290 break; 6291 } 6292 } 6293 continue; 6294 } 6295 6296 switch (Arg.getSimpleValueType().SimpleTy) { 6297 default: llvm_unreachable("Unexpected ValueType for argument!"); 6298 case MVT::i1: 6299 case MVT::i32: 6300 case MVT::i64: 6301 if (Flags.isNest()) { 6302 // The 'nest' parameter, if any, is passed in R11. 6303 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6304 break; 6305 } 6306 6307 // These can be scalar arguments or elements of an integer array type 6308 // passed directly. Clang may use those instead of "byval" aggregate 6309 // types to avoid forcing arguments to memory unnecessarily. 6310 if (GPR_idx != NumGPRs) { 6311 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6312 } else { 6313 if (IsFastCall) 6314 ComputePtrOff(); 6315 6316 assert(HasParameterArea && 6317 "Parameter area must exist to pass an argument in memory."); 6318 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6319 true, CFlags.IsTailCall, false, MemOpChains, 6320 TailCallArguments, dl); 6321 if (IsFastCall) 6322 ArgOffset += PtrByteSize; 6323 } 6324 if (!IsFastCall) 6325 ArgOffset += PtrByteSize; 6326 break; 6327 case MVT::f32: 6328 case MVT::f64: { 6329 // These can be scalar arguments or elements of a float array type 6330 // passed directly. The latter are used to implement ELFv2 homogenous 6331 // float aggregates. 6332 6333 // Named arguments go into FPRs first, and once they overflow, the 6334 // remaining arguments go into GPRs and then the parameter save area. 6335 // Unnamed arguments for vararg functions always go to GPRs and 6336 // then the parameter save area. For now, put all arguments to vararg 6337 // routines always in both locations (FPR *and* GPR or stack slot). 6338 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6339 bool NeededLoad = false; 6340 6341 // First load the argument into the next available FPR. 6342 if (FPR_idx != NumFPRs) 6343 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6344 6345 // Next, load the argument into GPR or stack slot if needed. 6346 if (!NeedGPROrStack) 6347 ; 6348 else if (GPR_idx != NumGPRs && !IsFastCall) { 6349 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6350 // once we support fp <-> gpr moves. 6351 6352 // In the non-vararg case, this can only ever happen in the 6353 // presence of f32 array types, since otherwise we never run 6354 // out of FPRs before running out of GPRs. 6355 SDValue ArgVal; 6356 6357 // Double values are always passed in a single GPR. 6358 if (Arg.getValueType() != MVT::f32) { 6359 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6360 6361 // Non-array float values are extended and passed in a GPR. 6362 } else if (!Flags.isInConsecutiveRegs()) { 6363 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6364 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6365 6366 // If we have an array of floats, we collect every odd element 6367 // together with its predecessor into one GPR. 6368 } else if (ArgOffset % PtrByteSize != 0) { 6369 SDValue Lo, Hi; 6370 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6371 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6372 if (!isLittleEndian) 6373 std::swap(Lo, Hi); 6374 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6375 6376 // The final element, if even, goes into the first half of a GPR. 6377 } else if (Flags.isInConsecutiveRegsLast()) { 6378 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6379 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6380 if (!isLittleEndian) 6381 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6382 DAG.getConstant(32, dl, MVT::i32)); 6383 6384 // Non-final even elements are skipped; they will be handled 6385 // together the with subsequent argument on the next go-around. 6386 } else 6387 ArgVal = SDValue(); 6388 6389 if (ArgVal.getNode()) 6390 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6391 } else { 6392 if (IsFastCall) 6393 ComputePtrOff(); 6394 6395 // Single-precision floating-point values are mapped to the 6396 // second (rightmost) word of the stack doubleword. 6397 if (Arg.getValueType() == MVT::f32 && 6398 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6399 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6400 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6401 } 6402 6403 assert(HasParameterArea && 6404 "Parameter area must exist to pass an argument in memory."); 6405 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6406 true, CFlags.IsTailCall, false, MemOpChains, 6407 TailCallArguments, dl); 6408 6409 NeededLoad = true; 6410 } 6411 // When passing an array of floats, the array occupies consecutive 6412 // space in the argument area; only round up to the next doubleword 6413 // at the end of the array. Otherwise, each float takes 8 bytes. 6414 if (!IsFastCall || NeededLoad) { 6415 ArgOffset += (Arg.getValueType() == MVT::f32 && 6416 Flags.isInConsecutiveRegs()) ? 4 : 8; 6417 if (Flags.isInConsecutiveRegsLast()) 6418 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6419 } 6420 break; 6421 } 6422 case MVT::v4f32: 6423 case MVT::v4i32: 6424 case MVT::v8i16: 6425 case MVT::v16i8: 6426 case MVT::v2f64: 6427 case MVT::v2i64: 6428 case MVT::v1i128: 6429 case MVT::f128: 6430 // These can be scalar arguments or elements of a vector array type 6431 // passed directly. The latter are used to implement ELFv2 homogenous 6432 // vector aggregates. 6433 6434 // For a varargs call, named arguments go into VRs or on the stack as 6435 // usual; unnamed arguments always go to the stack or the corresponding 6436 // GPRs when within range. For now, we always put the value in both 6437 // locations (or even all three). 6438 if (CFlags.IsVarArg) { 6439 assert(HasParameterArea && 6440 "Parameter area must exist if we have a varargs call."); 6441 // We could elide this store in the case where the object fits 6442 // entirely in R registers. Maybe later. 6443 SDValue Store = 6444 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6445 MemOpChains.push_back(Store); 6446 if (VR_idx != NumVRs) { 6447 SDValue Load = 6448 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6449 MemOpChains.push_back(Load.getValue(1)); 6450 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6451 } 6452 ArgOffset += 16; 6453 for (unsigned i=0; i<16; i+=PtrByteSize) { 6454 if (GPR_idx == NumGPRs) 6455 break; 6456 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6457 DAG.getConstant(i, dl, PtrVT)); 6458 SDValue Load = 6459 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6460 MemOpChains.push_back(Load.getValue(1)); 6461 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6462 } 6463 break; 6464 } 6465 6466 // Non-varargs Altivec params go into VRs or on the stack. 6467 if (VR_idx != NumVRs) { 6468 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6469 } else { 6470 if (IsFastCall) 6471 ComputePtrOff(); 6472 6473 assert(HasParameterArea && 6474 "Parameter area must exist to pass an argument in memory."); 6475 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6476 true, CFlags.IsTailCall, true, MemOpChains, 6477 TailCallArguments, dl); 6478 if (IsFastCall) 6479 ArgOffset += 16; 6480 } 6481 6482 if (!IsFastCall) 6483 ArgOffset += 16; 6484 break; 6485 } 6486 } 6487 6488 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6489 "mismatch in size of parameter area"); 6490 (void)NumBytesActuallyUsed; 6491 6492 if (!MemOpChains.empty()) 6493 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6494 6495 // Check if this is an indirect call (MTCTR/BCTRL). 6496 // See prepareDescriptorIndirectCall and buildCallOperands for more 6497 // information about calls through function pointers in the 64-bit SVR4 ABI. 6498 if (CFlags.IsIndirect) { 6499 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6500 // caller in the TOC save area. 6501 if (isTOCSaveRestoreRequired(Subtarget)) { 6502 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6503 // Load r2 into a virtual register and store it to the TOC save area. 6504 setUsesTOCBasePtr(DAG); 6505 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6506 // TOC save area offset. 6507 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6508 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6509 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6510 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6511 MachinePointerInfo::getStack( 6512 DAG.getMachineFunction(), TOCSaveOffset)); 6513 } 6514 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6515 // This does not mean the MTCTR instruction must use R12; it's easier 6516 // to model this as an extra parameter, so do that. 6517 if (isELFv2ABI && !CFlags.IsPatchPoint) 6518 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6519 } 6520 6521 // Build a sequence of copy-to-reg nodes chained together with token chain 6522 // and flag operands which copy the outgoing args into the appropriate regs. 6523 SDValue InFlag; 6524 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6525 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6526 RegsToPass[i].second, InFlag); 6527 InFlag = Chain.getValue(1); 6528 } 6529 6530 if (CFlags.IsTailCall && !IsSibCall) 6531 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6532 TailCallArguments); 6533 6534 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6535 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6536 } 6537 6538 SDValue PPCTargetLowering::LowerCall_Darwin( 6539 SDValue Chain, SDValue Callee, CallFlags CFlags, 6540 const SmallVectorImpl<ISD::OutputArg> &Outs, 6541 const SmallVectorImpl<SDValue> &OutVals, 6542 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6543 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6544 const CallBase *CB) const { 6545 unsigned NumOps = Outs.size(); 6546 6547 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6548 bool isPPC64 = PtrVT == MVT::i64; 6549 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6550 6551 MachineFunction &MF = DAG.getMachineFunction(); 6552 6553 // Mark this function as potentially containing a function that contains a 6554 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6555 // and restoring the callers stack pointer in this functions epilog. This is 6556 // done because by tail calling the called function might overwrite the value 6557 // in this function's (MF) stack pointer stack slot 0(SP). 6558 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6559 CFlags.CallConv == CallingConv::Fast) 6560 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6561 6562 // Count how many bytes are to be pushed on the stack, including the linkage 6563 // area, and parameter passing area. We start with 24/48 bytes, which is 6564 // prereserved space for [SP][CR][LR][3 x unused]. 6565 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6566 unsigned NumBytes = LinkageSize; 6567 6568 // Add up all the space actually used. 6569 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6570 // they all go in registers, but we must reserve stack space for them for 6571 // possible use by the caller. In varargs or 64-bit calls, parameters are 6572 // assigned stack space in order, with padding so Altivec parameters are 6573 // 16-byte aligned. 6574 unsigned nAltivecParamsAtEnd = 0; 6575 for (unsigned i = 0; i != NumOps; ++i) { 6576 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6577 EVT ArgVT = Outs[i].VT; 6578 // Varargs Altivec parameters are padded to a 16 byte boundary. 6579 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6580 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6581 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6582 if (!CFlags.IsVarArg && !isPPC64) { 6583 // Non-varargs Altivec parameters go after all the non-Altivec 6584 // parameters; handle those later so we know how much padding we need. 6585 nAltivecParamsAtEnd++; 6586 continue; 6587 } 6588 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6589 NumBytes = ((NumBytes+15)/16)*16; 6590 } 6591 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6592 } 6593 6594 // Allow for Altivec parameters at the end, if needed. 6595 if (nAltivecParamsAtEnd) { 6596 NumBytes = ((NumBytes+15)/16)*16; 6597 NumBytes += 16*nAltivecParamsAtEnd; 6598 } 6599 6600 // The prolog code of the callee may store up to 8 GPR argument registers to 6601 // the stack, allowing va_start to index over them in memory if its varargs. 6602 // Because we cannot tell if this is needed on the caller side, we have to 6603 // conservatively assume that it is needed. As such, make sure we have at 6604 // least enough stack space for the caller to store the 8 GPRs. 6605 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6606 6607 // Tail call needs the stack to be aligned. 6608 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6609 CFlags.CallConv == CallingConv::Fast) 6610 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6611 6612 // Calculate by how many bytes the stack has to be adjusted in case of tail 6613 // call optimization. 6614 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6615 6616 // To protect arguments on the stack from being clobbered in a tail call, 6617 // force all the loads to happen before doing any other lowering. 6618 if (CFlags.IsTailCall) 6619 Chain = DAG.getStackArgumentTokenFactor(Chain); 6620 6621 // Adjust the stack pointer for the new arguments... 6622 // These operations are automatically eliminated by the prolog/epilog pass 6623 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6624 SDValue CallSeqStart = Chain; 6625 6626 // Load the return address and frame pointer so it can be move somewhere else 6627 // later. 6628 SDValue LROp, FPOp; 6629 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6630 6631 // Set up a copy of the stack pointer for use loading and storing any 6632 // arguments that may not fit in the registers available for argument 6633 // passing. 6634 SDValue StackPtr; 6635 if (isPPC64) 6636 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6637 else 6638 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6639 6640 // Figure out which arguments are going to go in registers, and which in 6641 // memory. Also, if this is a vararg function, floating point operations 6642 // must be stored to our stack, and loaded into integer regs as well, if 6643 // any integer regs are available for argument passing. 6644 unsigned ArgOffset = LinkageSize; 6645 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6646 6647 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6648 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6649 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6650 }; 6651 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6652 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6653 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6654 }; 6655 static const MCPhysReg VR[] = { 6656 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6657 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6658 }; 6659 const unsigned NumGPRs = array_lengthof(GPR_32); 6660 const unsigned NumFPRs = 13; 6661 const unsigned NumVRs = array_lengthof(VR); 6662 6663 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6664 6665 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6666 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6667 6668 SmallVector<SDValue, 8> MemOpChains; 6669 for (unsigned i = 0; i != NumOps; ++i) { 6670 SDValue Arg = OutVals[i]; 6671 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6672 6673 // PtrOff will be used to store the current argument to the stack if a 6674 // register cannot be found for it. 6675 SDValue PtrOff; 6676 6677 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6678 6679 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6680 6681 // On PPC64, promote integers to 64-bit values. 6682 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6683 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6684 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6685 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6686 } 6687 6688 // FIXME memcpy is used way more than necessary. Correctness first. 6689 // Note: "by value" is code for passing a structure by value, not 6690 // basic types. 6691 if (Flags.isByVal()) { 6692 unsigned Size = Flags.getByValSize(); 6693 // Very small objects are passed right-justified. Everything else is 6694 // passed left-justified. 6695 if (Size==1 || Size==2) { 6696 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6697 if (GPR_idx != NumGPRs) { 6698 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6699 MachinePointerInfo(), VT); 6700 MemOpChains.push_back(Load.getValue(1)); 6701 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6702 6703 ArgOffset += PtrByteSize; 6704 } else { 6705 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6706 PtrOff.getValueType()); 6707 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6708 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6709 CallSeqStart, 6710 Flags, DAG, dl); 6711 ArgOffset += PtrByteSize; 6712 } 6713 continue; 6714 } 6715 // Copy entire object into memory. There are cases where gcc-generated 6716 // code assumes it is there, even if it could be put entirely into 6717 // registers. (This is not what the doc says.) 6718 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6719 CallSeqStart, 6720 Flags, DAG, dl); 6721 6722 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6723 // copy the pieces of the object that fit into registers from the 6724 // parameter save area. 6725 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6726 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6727 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6728 if (GPR_idx != NumGPRs) { 6729 SDValue Load = 6730 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6731 MemOpChains.push_back(Load.getValue(1)); 6732 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6733 ArgOffset += PtrByteSize; 6734 } else { 6735 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6736 break; 6737 } 6738 } 6739 continue; 6740 } 6741 6742 switch (Arg.getSimpleValueType().SimpleTy) { 6743 default: llvm_unreachable("Unexpected ValueType for argument!"); 6744 case MVT::i1: 6745 case MVT::i32: 6746 case MVT::i64: 6747 if (GPR_idx != NumGPRs) { 6748 if (Arg.getValueType() == MVT::i1) 6749 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6750 6751 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6752 } else { 6753 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6754 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6755 TailCallArguments, dl); 6756 } 6757 ArgOffset += PtrByteSize; 6758 break; 6759 case MVT::f32: 6760 case MVT::f64: 6761 if (FPR_idx != NumFPRs) { 6762 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6763 6764 if (CFlags.IsVarArg) { 6765 SDValue Store = 6766 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6767 MemOpChains.push_back(Store); 6768 6769 // Float varargs are always shadowed in available integer registers 6770 if (GPR_idx != NumGPRs) { 6771 SDValue Load = 6772 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6773 MemOpChains.push_back(Load.getValue(1)); 6774 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6775 } 6776 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6777 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6778 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6779 SDValue Load = 6780 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6781 MemOpChains.push_back(Load.getValue(1)); 6782 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6783 } 6784 } else { 6785 // If we have any FPRs remaining, we may also have GPRs remaining. 6786 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6787 // GPRs. 6788 if (GPR_idx != NumGPRs) 6789 ++GPR_idx; 6790 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6791 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6792 ++GPR_idx; 6793 } 6794 } else 6795 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6796 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6797 TailCallArguments, dl); 6798 if (isPPC64) 6799 ArgOffset += 8; 6800 else 6801 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6802 break; 6803 case MVT::v4f32: 6804 case MVT::v4i32: 6805 case MVT::v8i16: 6806 case MVT::v16i8: 6807 if (CFlags.IsVarArg) { 6808 // These go aligned on the stack, or in the corresponding R registers 6809 // when within range. The Darwin PPC ABI doc claims they also go in 6810 // V registers; in fact gcc does this only for arguments that are 6811 // prototyped, not for those that match the ... We do it for all 6812 // arguments, seems to work. 6813 while (ArgOffset % 16 !=0) { 6814 ArgOffset += PtrByteSize; 6815 if (GPR_idx != NumGPRs) 6816 GPR_idx++; 6817 } 6818 // We could elide this store in the case where the object fits 6819 // entirely in R registers. Maybe later. 6820 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6821 DAG.getConstant(ArgOffset, dl, PtrVT)); 6822 SDValue Store = 6823 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6824 MemOpChains.push_back(Store); 6825 if (VR_idx != NumVRs) { 6826 SDValue Load = 6827 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6828 MemOpChains.push_back(Load.getValue(1)); 6829 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6830 } 6831 ArgOffset += 16; 6832 for (unsigned i=0; i<16; i+=PtrByteSize) { 6833 if (GPR_idx == NumGPRs) 6834 break; 6835 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6836 DAG.getConstant(i, dl, PtrVT)); 6837 SDValue Load = 6838 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6839 MemOpChains.push_back(Load.getValue(1)); 6840 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6841 } 6842 break; 6843 } 6844 6845 // Non-varargs Altivec params generally go in registers, but have 6846 // stack space allocated at the end. 6847 if (VR_idx != NumVRs) { 6848 // Doesn't have GPR space allocated. 6849 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6850 } else if (nAltivecParamsAtEnd==0) { 6851 // We are emitting Altivec params in order. 6852 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6853 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6854 TailCallArguments, dl); 6855 ArgOffset += 16; 6856 } 6857 break; 6858 } 6859 } 6860 // If all Altivec parameters fit in registers, as they usually do, 6861 // they get stack space following the non-Altivec parameters. We 6862 // don't track this here because nobody below needs it. 6863 // If there are more Altivec parameters than fit in registers emit 6864 // the stores here. 6865 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6866 unsigned j = 0; 6867 // Offset is aligned; skip 1st 12 params which go in V registers. 6868 ArgOffset = ((ArgOffset+15)/16)*16; 6869 ArgOffset += 12*16; 6870 for (unsigned i = 0; i != NumOps; ++i) { 6871 SDValue Arg = OutVals[i]; 6872 EVT ArgType = Outs[i].VT; 6873 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6874 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6875 if (++j > NumVRs) { 6876 SDValue PtrOff; 6877 // We are emitting Altivec params in order. 6878 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6879 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6880 TailCallArguments, dl); 6881 ArgOffset += 16; 6882 } 6883 } 6884 } 6885 } 6886 6887 if (!MemOpChains.empty()) 6888 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6889 6890 // On Darwin, R12 must contain the address of an indirect callee. This does 6891 // not mean the MTCTR instruction must use R12; it's easier to model this as 6892 // an extra parameter, so do that. 6893 if (CFlags.IsIndirect) { 6894 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6895 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6896 PPC::R12), Callee)); 6897 } 6898 6899 // Build a sequence of copy-to-reg nodes chained together with token chain 6900 // and flag operands which copy the outgoing args into the appropriate regs. 6901 SDValue InFlag; 6902 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6903 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6904 RegsToPass[i].second, InFlag); 6905 InFlag = Chain.getValue(1); 6906 } 6907 6908 if (CFlags.IsTailCall) 6909 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6910 TailCallArguments); 6911 6912 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6913 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6914 } 6915 6916 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6917 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6918 CCState &State) { 6919 6920 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6921 State.getMachineFunction().getSubtarget()); 6922 const bool IsPPC64 = Subtarget.isPPC64(); 6923 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6924 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6925 6926 assert((!ValVT.isInteger() || 6927 (ValVT.getFixedSizeInBits() <= RegVT.getFixedSizeInBits())) && 6928 "Integer argument exceeds register size: should have been legalized"); 6929 6930 if (ValVT == MVT::f128) 6931 report_fatal_error("f128 is unimplemented on AIX."); 6932 6933 if (ArgFlags.isNest()) 6934 report_fatal_error("Nest arguments are unimplemented."); 6935 6936 if (ValVT.isVector() || LocVT.isVector()) 6937 report_fatal_error("Vector arguments are unimplemented on AIX."); 6938 6939 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6940 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6941 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6942 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6943 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6944 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6945 6946 if (ArgFlags.isByVal()) { 6947 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6948 report_fatal_error("Pass-by-value arguments with alignment greater than " 6949 "register width are not supported."); 6950 6951 const unsigned ByValSize = ArgFlags.getByValSize(); 6952 6953 // An empty aggregate parameter takes up no storage and no registers, 6954 // but needs a MemLoc for a stack slot for the formal arguments side. 6955 if (ByValSize == 0) { 6956 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6957 State.getNextStackOffset(), RegVT, 6958 LocInfo)); 6959 return false; 6960 } 6961 6962 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6963 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6964 for (const unsigned E = Offset + StackSize; Offset < E; 6965 Offset += PtrAlign.value()) { 6966 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6967 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6968 else { 6969 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6970 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6971 LocInfo)); 6972 break; 6973 } 6974 } 6975 return false; 6976 } 6977 6978 // Arguments always reserve parameter save area. 6979 switch (ValVT.SimpleTy) { 6980 default: 6981 report_fatal_error("Unhandled value type for argument."); 6982 case MVT::i64: 6983 // i64 arguments should have been split to i32 for PPC32. 6984 assert(IsPPC64 && "PPC32 should have split i64 values."); 6985 LLVM_FALLTHROUGH; 6986 case MVT::i1: 6987 case MVT::i32: { 6988 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6989 // AIX integer arguments are always passed in register width. 6990 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6991 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6992 : CCValAssign::LocInfo::ZExt; 6993 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6994 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6995 else 6996 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6997 6998 return false; 6999 } 7000 case MVT::f32: 7001 case MVT::f64: { 7002 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7003 const unsigned StoreSize = LocVT.getStoreSize(); 7004 // Floats are always 4-byte aligned in the PSA on AIX. 7005 // This includes f64 in 64-bit mode for ABI compatibility. 7006 const unsigned Offset = 7007 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7008 unsigned FReg = State.AllocateReg(FPR); 7009 if (FReg) 7010 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7011 7012 // Reserve and initialize GPRs or initialize the PSA as required. 7013 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7014 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7015 assert(FReg && "An FPR should be available when a GPR is reserved."); 7016 if (State.isVarArg()) { 7017 // Successfully reserved GPRs are only initialized for vararg calls. 7018 // Custom handling is required for: 7019 // f64 in PPC32 needs to be split into 2 GPRs. 7020 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7021 State.addLoc( 7022 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7023 } 7024 } else { 7025 // If there are insufficient GPRs, the PSA needs to be initialized. 7026 // Initialization occurs even if an FPR was initialized for 7027 // compatibility with the AIX XL compiler. The full memory for the 7028 // argument will be initialized even if a prior word is saved in GPR. 7029 // A custom memLoc is used when the argument also passes in FPR so 7030 // that the callee handling can skip over it easily. 7031 State.addLoc( 7032 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7033 LocInfo) 7034 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7035 break; 7036 } 7037 } 7038 7039 return false; 7040 } 7041 } 7042 return true; 7043 } 7044 7045 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7046 bool IsPPC64) { 7047 assert((IsPPC64 || SVT != MVT::i64) && 7048 "i64 should have been split for 32-bit codegen."); 7049 7050 switch (SVT) { 7051 default: 7052 report_fatal_error("Unexpected value type for formal argument"); 7053 case MVT::i1: 7054 case MVT::i32: 7055 case MVT::i64: 7056 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7057 case MVT::f32: 7058 return &PPC::F4RCRegClass; 7059 case MVT::f64: 7060 return &PPC::F8RCRegClass; 7061 } 7062 } 7063 7064 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7065 SelectionDAG &DAG, SDValue ArgValue, 7066 MVT LocVT, const SDLoc &dl) { 7067 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7068 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 7069 7070 if (Flags.isSExt()) 7071 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7072 DAG.getValueType(ValVT)); 7073 else if (Flags.isZExt()) 7074 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7075 DAG.getValueType(ValVT)); 7076 7077 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7078 } 7079 7080 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7081 const unsigned LASize = FL->getLinkageSize(); 7082 7083 if (PPC::GPRCRegClass.contains(Reg)) { 7084 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7085 "Reg must be a valid argument register!"); 7086 return LASize + 4 * (Reg - PPC::R3); 7087 } 7088 7089 if (PPC::G8RCRegClass.contains(Reg)) { 7090 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7091 "Reg must be a valid argument register!"); 7092 return LASize + 8 * (Reg - PPC::X3); 7093 } 7094 7095 llvm_unreachable("Only general purpose registers expected."); 7096 } 7097 7098 // AIX ABI Stack Frame Layout: 7099 // 7100 // Low Memory +--------------------------------------------+ 7101 // SP +---> | Back chain | ---+ 7102 // | +--------------------------------------------+ | 7103 // | | Saved Condition Register | | 7104 // | +--------------------------------------------+ | 7105 // | | Saved Linkage Register | | 7106 // | +--------------------------------------------+ | Linkage Area 7107 // | | Reserved for compilers | | 7108 // | +--------------------------------------------+ | 7109 // | | Reserved for binders | | 7110 // | +--------------------------------------------+ | 7111 // | | Saved TOC pointer | ---+ 7112 // | +--------------------------------------------+ 7113 // | | Parameter save area | 7114 // | +--------------------------------------------+ 7115 // | | Alloca space | 7116 // | +--------------------------------------------+ 7117 // | | Local variable space | 7118 // | +--------------------------------------------+ 7119 // | | Float/int conversion temporary | 7120 // | +--------------------------------------------+ 7121 // | | Save area for AltiVec registers | 7122 // | +--------------------------------------------+ 7123 // | | AltiVec alignment padding | 7124 // | +--------------------------------------------+ 7125 // | | Save area for VRSAVE register | 7126 // | +--------------------------------------------+ 7127 // | | Save area for General Purpose registers | 7128 // | +--------------------------------------------+ 7129 // | | Save area for Floating Point registers | 7130 // | +--------------------------------------------+ 7131 // +---- | Back chain | 7132 // High Memory +--------------------------------------------+ 7133 // 7134 // Specifications: 7135 // AIX 7.2 Assembler Language Reference 7136 // Subroutine linkage convention 7137 7138 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7139 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7140 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7141 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7142 7143 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7144 CallConv == CallingConv::Fast) && 7145 "Unexpected calling convention!"); 7146 7147 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7148 report_fatal_error("Tail call support is unimplemented on AIX."); 7149 7150 if (useSoftFloat()) 7151 report_fatal_error("Soft float support is unimplemented on AIX."); 7152 7153 const PPCSubtarget &Subtarget = 7154 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7155 7156 const bool IsPPC64 = Subtarget.isPPC64(); 7157 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7158 7159 // Assign locations to all of the incoming arguments. 7160 SmallVector<CCValAssign, 16> ArgLocs; 7161 MachineFunction &MF = DAG.getMachineFunction(); 7162 MachineFrameInfo &MFI = MF.getFrameInfo(); 7163 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7164 7165 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7166 // Reserve space for the linkage area on the stack. 7167 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7168 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7169 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7170 7171 SmallVector<SDValue, 8> MemOps; 7172 7173 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7174 CCValAssign &VA = ArgLocs[I++]; 7175 MVT LocVT = VA.getLocVT(); 7176 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7177 7178 // For compatibility with the AIX XL compiler, the float args in the 7179 // parameter save area are initialized even if the argument is available 7180 // in register. The caller is required to initialize both the register 7181 // and memory, however, the callee can choose to expect it in either. 7182 // The memloc is dismissed here because the argument is retrieved from 7183 // the register. 7184 if (VA.isMemLoc() && VA.needsCustom()) 7185 continue; 7186 7187 if (Flags.isByVal() && VA.isMemLoc()) { 7188 const unsigned Size = 7189 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7190 PtrByteSize); 7191 const int FI = MF.getFrameInfo().CreateFixedObject( 7192 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7193 /* IsAliased */ true); 7194 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7195 InVals.push_back(FIN); 7196 7197 continue; 7198 } 7199 7200 if (Flags.isByVal()) { 7201 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7202 7203 const MCPhysReg ArgReg = VA.getLocReg(); 7204 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7205 7206 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7207 report_fatal_error("Over aligned byvals not supported yet."); 7208 7209 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7210 const int FI = MF.getFrameInfo().CreateFixedObject( 7211 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7212 /* IsAliased */ true); 7213 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7214 InVals.push_back(FIN); 7215 7216 // Add live ins for all the RegLocs for the same ByVal. 7217 const TargetRegisterClass *RegClass = 7218 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7219 7220 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7221 unsigned Offset) { 7222 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7223 // Since the callers side has left justified the aggregate in the 7224 // register, we can simply store the entire register into the stack 7225 // slot. 7226 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7227 // The store to the fixedstack object is needed becuase accessing a 7228 // field of the ByVal will use a gep and load. Ideally we will optimize 7229 // to extracting the value from the register directly, and elide the 7230 // stores when the arguments address is not taken, but that will need to 7231 // be future work. 7232 SDValue Store = DAG.getStore( 7233 CopyFrom.getValue(1), dl, CopyFrom, 7234 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7235 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7236 7237 MemOps.push_back(Store); 7238 }; 7239 7240 unsigned Offset = 0; 7241 HandleRegLoc(VA.getLocReg(), Offset); 7242 Offset += PtrByteSize; 7243 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7244 Offset += PtrByteSize) { 7245 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7246 "RegLocs should be for ByVal argument."); 7247 7248 const CCValAssign RL = ArgLocs[I++]; 7249 HandleRegLoc(RL.getLocReg(), Offset); 7250 } 7251 7252 if (Offset != StackSize) { 7253 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7254 "Expected MemLoc for remaining bytes."); 7255 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7256 // Consume the MemLoc.The InVal has already been emitted, so nothing 7257 // more needs to be done. 7258 ++I; 7259 } 7260 7261 continue; 7262 } 7263 7264 EVT ValVT = VA.getValVT(); 7265 if (VA.isRegLoc() && !VA.needsCustom()) { 7266 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7267 unsigned VReg = 7268 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7269 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7270 if (ValVT.isScalarInteger() && 7271 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7272 ArgValue = 7273 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7274 } 7275 InVals.push_back(ArgValue); 7276 continue; 7277 } 7278 if (VA.isMemLoc()) { 7279 const unsigned LocSize = LocVT.getStoreSize(); 7280 const unsigned ValSize = ValVT.getStoreSize(); 7281 assert((ValSize <= LocSize) && 7282 "Object size is larger than size of MemLoc"); 7283 int CurArgOffset = VA.getLocMemOffset(); 7284 // Objects are right-justified because AIX is big-endian. 7285 if (LocSize > ValSize) 7286 CurArgOffset += LocSize - ValSize; 7287 // Potential tail calls could cause overwriting of argument stack slots. 7288 const bool IsImmutable = 7289 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7290 (CallConv == CallingConv::Fast)); 7291 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7292 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7293 SDValue ArgValue = 7294 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7295 InVals.push_back(ArgValue); 7296 continue; 7297 } 7298 } 7299 7300 // On AIX a minimum of 8 words is saved to the parameter save area. 7301 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7302 // Area that is at least reserved in the caller of this function. 7303 unsigned CallerReservedArea = 7304 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7305 7306 // Set the size that is at least reserved in caller of this function. Tail 7307 // call optimized function's reserved stack space needs to be aligned so 7308 // that taking the difference between two stack areas will result in an 7309 // aligned stack. 7310 CallerReservedArea = 7311 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7312 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7313 FuncInfo->setMinReservedArea(CallerReservedArea); 7314 7315 if (isVarArg) { 7316 FuncInfo->setVarArgsFrameIndex( 7317 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7318 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7319 7320 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7321 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7322 7323 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7324 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7325 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7326 7327 // The fixed integer arguments of a variadic function are stored to the 7328 // VarArgsFrameIndex on the stack so that they may be loaded by 7329 // dereferencing the result of va_next. 7330 for (unsigned GPRIndex = 7331 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7332 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7333 7334 const unsigned VReg = 7335 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7336 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7337 7338 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7339 SDValue Store = 7340 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7341 MemOps.push_back(Store); 7342 // Increment the address for the next argument to store. 7343 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7344 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7345 } 7346 } 7347 7348 if (!MemOps.empty()) 7349 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7350 7351 return Chain; 7352 } 7353 7354 SDValue PPCTargetLowering::LowerCall_AIX( 7355 SDValue Chain, SDValue Callee, CallFlags CFlags, 7356 const SmallVectorImpl<ISD::OutputArg> &Outs, 7357 const SmallVectorImpl<SDValue> &OutVals, 7358 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7359 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7360 const CallBase *CB) const { 7361 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7362 // AIX ABI stack frame layout. 7363 7364 assert((CFlags.CallConv == CallingConv::C || 7365 CFlags.CallConv == CallingConv::Cold || 7366 CFlags.CallConv == CallingConv::Fast) && 7367 "Unexpected calling convention!"); 7368 7369 if (CFlags.IsPatchPoint) 7370 report_fatal_error("This call type is unimplemented on AIX."); 7371 7372 const PPCSubtarget& Subtarget = 7373 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7374 if (Subtarget.hasAltivec()) 7375 report_fatal_error("Altivec support is unimplemented on AIX."); 7376 7377 MachineFunction &MF = DAG.getMachineFunction(); 7378 SmallVector<CCValAssign, 16> ArgLocs; 7379 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7380 *DAG.getContext()); 7381 7382 // Reserve space for the linkage save area (LSA) on the stack. 7383 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7384 // [SP][CR][LR][2 x reserved][TOC]. 7385 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7386 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7387 const bool IsPPC64 = Subtarget.isPPC64(); 7388 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7389 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7390 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7391 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7392 7393 // The prolog code of the callee may store up to 8 GPR argument registers to 7394 // the stack, allowing va_start to index over them in memory if the callee 7395 // is variadic. 7396 // Because we cannot tell if this is needed on the caller side, we have to 7397 // conservatively assume that it is needed. As such, make sure we have at 7398 // least enough stack space for the caller to store the 8 GPRs. 7399 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7400 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7401 CCInfo.getNextStackOffset()); 7402 7403 // Adjust the stack pointer for the new arguments... 7404 // These operations are automatically eliminated by the prolog/epilog pass. 7405 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7406 SDValue CallSeqStart = Chain; 7407 7408 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7409 SmallVector<SDValue, 8> MemOpChains; 7410 7411 // Set up a copy of the stack pointer for loading and storing any 7412 // arguments that may not fit in the registers available for argument 7413 // passing. 7414 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7415 : DAG.getRegister(PPC::R1, MVT::i32); 7416 7417 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7418 const unsigned ValNo = ArgLocs[I].getValNo(); 7419 SDValue Arg = OutVals[ValNo]; 7420 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7421 7422 if (Flags.isByVal()) { 7423 const unsigned ByValSize = Flags.getByValSize(); 7424 7425 // Nothing to do for zero-sized ByVals on the caller side. 7426 if (!ByValSize) { 7427 ++I; 7428 continue; 7429 } 7430 7431 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7432 return DAG.getExtLoad( 7433 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7434 (LoadOffset != 0) 7435 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7436 : Arg, 7437 MachinePointerInfo(), VT); 7438 }; 7439 7440 unsigned LoadOffset = 0; 7441 7442 // Initialize registers, which are fully occupied by the by-val argument. 7443 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7444 SDValue Load = GetLoad(PtrVT, LoadOffset); 7445 MemOpChains.push_back(Load.getValue(1)); 7446 LoadOffset += PtrByteSize; 7447 const CCValAssign &ByValVA = ArgLocs[I++]; 7448 assert(ByValVA.getValNo() == ValNo && 7449 "Unexpected location for pass-by-value argument."); 7450 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7451 } 7452 7453 if (LoadOffset == ByValSize) 7454 continue; 7455 7456 // There must be one more loc to handle the remainder. 7457 assert(ArgLocs[I].getValNo() == ValNo && 7458 "Expected additional location for by-value argument."); 7459 7460 if (ArgLocs[I].isMemLoc()) { 7461 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7462 const CCValAssign &ByValVA = ArgLocs[I++]; 7463 ISD::ArgFlagsTy MemcpyFlags = Flags; 7464 // Only memcpy the bytes that don't pass in register. 7465 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7466 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7467 (LoadOffset != 0) 7468 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7469 : Arg, 7470 DAG.getObjectPtrOffset(dl, StackPtr, 7471 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7472 CallSeqStart, MemcpyFlags, DAG, dl); 7473 continue; 7474 } 7475 7476 // Initialize the final register residue. 7477 // Any residue that occupies the final by-val arg register must be 7478 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7479 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7480 // 2 and 1 byte loads. 7481 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7482 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7483 "Unexpected register residue for by-value argument."); 7484 SDValue ResidueVal; 7485 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7486 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7487 const MVT VT = 7488 N == 1 ? MVT::i8 7489 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7490 SDValue Load = GetLoad(VT, LoadOffset); 7491 MemOpChains.push_back(Load.getValue(1)); 7492 LoadOffset += N; 7493 Bytes += N; 7494 7495 // By-val arguments are passed left-justfied in register. 7496 // Every load here needs to be shifted, otherwise a full register load 7497 // should have been used. 7498 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7499 "Unexpected load emitted during handling of pass-by-value " 7500 "argument."); 7501 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7502 EVT ShiftAmountTy = 7503 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7504 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7505 SDValue ShiftedLoad = 7506 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7507 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7508 ShiftedLoad) 7509 : ShiftedLoad; 7510 } 7511 7512 const CCValAssign &ByValVA = ArgLocs[I++]; 7513 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7514 continue; 7515 } 7516 7517 CCValAssign &VA = ArgLocs[I++]; 7518 const MVT LocVT = VA.getLocVT(); 7519 const MVT ValVT = VA.getValVT(); 7520 7521 switch (VA.getLocInfo()) { 7522 default: 7523 report_fatal_error("Unexpected argument extension type."); 7524 case CCValAssign::Full: 7525 break; 7526 case CCValAssign::ZExt: 7527 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7528 break; 7529 case CCValAssign::SExt: 7530 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7531 break; 7532 } 7533 7534 if (VA.isRegLoc() && !VA.needsCustom()) { 7535 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7536 continue; 7537 } 7538 7539 if (VA.isMemLoc()) { 7540 SDValue PtrOff = 7541 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7542 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7543 MemOpChains.push_back( 7544 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7545 7546 continue; 7547 } 7548 7549 // Custom handling is used for GPR initializations for vararg float 7550 // arguments. 7551 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7552 ValVT.isFloatingPoint() && LocVT.isInteger() && 7553 "Unexpected register handling for calling convention."); 7554 7555 SDValue ArgAsInt = 7556 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7557 7558 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7559 // f32 in 32-bit GPR 7560 // f64 in 64-bit GPR 7561 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7562 else if (Arg.getValueType().getFixedSizeInBits() < 7563 LocVT.getFixedSizeInBits()) 7564 // f32 in 64-bit GPR. 7565 RegsToPass.push_back(std::make_pair( 7566 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7567 else { 7568 // f64 in two 32-bit GPRs 7569 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7570 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7571 "Unexpected custom register for argument!"); 7572 CCValAssign &GPR1 = VA; 7573 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7574 DAG.getConstant(32, dl, MVT::i8)); 7575 RegsToPass.push_back(std::make_pair( 7576 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7577 7578 if (I != E) { 7579 // If only 1 GPR was available, there will only be one custom GPR and 7580 // the argument will also pass in memory. 7581 CCValAssign &PeekArg = ArgLocs[I]; 7582 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7583 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7584 CCValAssign &GPR2 = ArgLocs[I++]; 7585 RegsToPass.push_back(std::make_pair( 7586 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7587 } 7588 } 7589 } 7590 } 7591 7592 if (!MemOpChains.empty()) 7593 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7594 7595 // For indirect calls, we need to save the TOC base to the stack for 7596 // restoration after the call. 7597 if (CFlags.IsIndirect) { 7598 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7599 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7600 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7601 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7602 const unsigned TOCSaveOffset = 7603 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7604 7605 setUsesTOCBasePtr(DAG); 7606 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7607 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7608 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7609 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7610 Chain = DAG.getStore( 7611 Val.getValue(1), dl, Val, AddPtr, 7612 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7613 } 7614 7615 // Build a sequence of copy-to-reg nodes chained together with token chain 7616 // and flag operands which copy the outgoing args into the appropriate regs. 7617 SDValue InFlag; 7618 for (auto Reg : RegsToPass) { 7619 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7620 InFlag = Chain.getValue(1); 7621 } 7622 7623 const int SPDiff = 0; 7624 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7625 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7626 } 7627 7628 bool 7629 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7630 MachineFunction &MF, bool isVarArg, 7631 const SmallVectorImpl<ISD::OutputArg> &Outs, 7632 LLVMContext &Context) const { 7633 SmallVector<CCValAssign, 16> RVLocs; 7634 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7635 return CCInfo.CheckReturn( 7636 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7637 ? RetCC_PPC_Cold 7638 : RetCC_PPC); 7639 } 7640 7641 SDValue 7642 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7643 bool isVarArg, 7644 const SmallVectorImpl<ISD::OutputArg> &Outs, 7645 const SmallVectorImpl<SDValue> &OutVals, 7646 const SDLoc &dl, SelectionDAG &DAG) const { 7647 SmallVector<CCValAssign, 16> RVLocs; 7648 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7649 *DAG.getContext()); 7650 CCInfo.AnalyzeReturn(Outs, 7651 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7652 ? RetCC_PPC_Cold 7653 : RetCC_PPC); 7654 7655 SDValue Flag; 7656 SmallVector<SDValue, 4> RetOps(1, Chain); 7657 7658 // Copy the result values into the output registers. 7659 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7660 CCValAssign &VA = RVLocs[i]; 7661 assert(VA.isRegLoc() && "Can only return in registers!"); 7662 7663 SDValue Arg = OutVals[RealResIdx]; 7664 7665 if (Subtarget.isAIXABI() && 7666 (VA.getLocVT().isVector() || VA.getValVT().isVector())) 7667 report_fatal_error("Returning vector types not yet supported on AIX."); 7668 7669 switch (VA.getLocInfo()) { 7670 default: llvm_unreachable("Unknown loc info!"); 7671 case CCValAssign::Full: break; 7672 case CCValAssign::AExt: 7673 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7674 break; 7675 case CCValAssign::ZExt: 7676 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7677 break; 7678 case CCValAssign::SExt: 7679 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7680 break; 7681 } 7682 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7683 bool isLittleEndian = Subtarget.isLittleEndian(); 7684 // Legalize ret f64 -> ret 2 x i32. 7685 SDValue SVal = 7686 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7687 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7688 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7689 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7690 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7691 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7692 Flag = Chain.getValue(1); 7693 VA = RVLocs[++i]; // skip ahead to next loc 7694 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7695 } else 7696 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7697 Flag = Chain.getValue(1); 7698 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7699 } 7700 7701 RetOps[0] = Chain; // Update chain. 7702 7703 // Add the flag if we have it. 7704 if (Flag.getNode()) 7705 RetOps.push_back(Flag); 7706 7707 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7708 } 7709 7710 SDValue 7711 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7712 SelectionDAG &DAG) const { 7713 SDLoc dl(Op); 7714 7715 // Get the correct type for integers. 7716 EVT IntVT = Op.getValueType(); 7717 7718 // Get the inputs. 7719 SDValue Chain = Op.getOperand(0); 7720 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7721 // Build a DYNAREAOFFSET node. 7722 SDValue Ops[2] = {Chain, FPSIdx}; 7723 SDVTList VTs = DAG.getVTList(IntVT); 7724 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7725 } 7726 7727 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7728 SelectionDAG &DAG) const { 7729 // When we pop the dynamic allocation we need to restore the SP link. 7730 SDLoc dl(Op); 7731 7732 // Get the correct type for pointers. 7733 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7734 7735 // Construct the stack pointer operand. 7736 bool isPPC64 = Subtarget.isPPC64(); 7737 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7738 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7739 7740 // Get the operands for the STACKRESTORE. 7741 SDValue Chain = Op.getOperand(0); 7742 SDValue SaveSP = Op.getOperand(1); 7743 7744 // Load the old link SP. 7745 SDValue LoadLinkSP = 7746 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7747 7748 // Restore the stack pointer. 7749 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7750 7751 // Store the old link SP. 7752 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7753 } 7754 7755 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7756 MachineFunction &MF = DAG.getMachineFunction(); 7757 bool isPPC64 = Subtarget.isPPC64(); 7758 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7759 7760 // Get current frame pointer save index. The users of this index will be 7761 // primarily DYNALLOC instructions. 7762 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7763 int RASI = FI->getReturnAddrSaveIndex(); 7764 7765 // If the frame pointer save index hasn't been defined yet. 7766 if (!RASI) { 7767 // Find out what the fix offset of the frame pointer save area. 7768 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7769 // Allocate the frame index for frame pointer save area. 7770 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7771 // Save the result. 7772 FI->setReturnAddrSaveIndex(RASI); 7773 } 7774 return DAG.getFrameIndex(RASI, PtrVT); 7775 } 7776 7777 SDValue 7778 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7779 MachineFunction &MF = DAG.getMachineFunction(); 7780 bool isPPC64 = Subtarget.isPPC64(); 7781 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7782 7783 // Get current frame pointer save index. The users of this index will be 7784 // primarily DYNALLOC instructions. 7785 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7786 int FPSI = FI->getFramePointerSaveIndex(); 7787 7788 // If the frame pointer save index hasn't been defined yet. 7789 if (!FPSI) { 7790 // Find out what the fix offset of the frame pointer save area. 7791 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7792 // Allocate the frame index for frame pointer save area. 7793 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7794 // Save the result. 7795 FI->setFramePointerSaveIndex(FPSI); 7796 } 7797 return DAG.getFrameIndex(FPSI, PtrVT); 7798 } 7799 7800 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7801 SelectionDAG &DAG) const { 7802 MachineFunction &MF = DAG.getMachineFunction(); 7803 // Get the inputs. 7804 SDValue Chain = Op.getOperand(0); 7805 SDValue Size = Op.getOperand(1); 7806 SDLoc dl(Op); 7807 7808 // Get the correct type for pointers. 7809 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7810 // Negate the size. 7811 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7812 DAG.getConstant(0, dl, PtrVT), Size); 7813 // Construct a node for the frame pointer save index. 7814 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7815 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7816 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7817 if (hasInlineStackProbe(MF)) 7818 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7819 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7820 } 7821 7822 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7823 SelectionDAG &DAG) const { 7824 MachineFunction &MF = DAG.getMachineFunction(); 7825 7826 bool isPPC64 = Subtarget.isPPC64(); 7827 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7828 7829 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7830 return DAG.getFrameIndex(FI, PtrVT); 7831 } 7832 7833 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7834 SelectionDAG &DAG) const { 7835 SDLoc DL(Op); 7836 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7837 DAG.getVTList(MVT::i32, MVT::Other), 7838 Op.getOperand(0), Op.getOperand(1)); 7839 } 7840 7841 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7842 SelectionDAG &DAG) const { 7843 SDLoc DL(Op); 7844 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7845 Op.getOperand(0), Op.getOperand(1)); 7846 } 7847 7848 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7849 if (Op.getValueType().isVector()) 7850 return LowerVectorLoad(Op, DAG); 7851 7852 assert(Op.getValueType() == MVT::i1 && 7853 "Custom lowering only for i1 loads"); 7854 7855 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7856 7857 SDLoc dl(Op); 7858 LoadSDNode *LD = cast<LoadSDNode>(Op); 7859 7860 SDValue Chain = LD->getChain(); 7861 SDValue BasePtr = LD->getBasePtr(); 7862 MachineMemOperand *MMO = LD->getMemOperand(); 7863 7864 SDValue NewLD = 7865 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7866 BasePtr, MVT::i8, MMO); 7867 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7868 7869 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7870 return DAG.getMergeValues(Ops, dl); 7871 } 7872 7873 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7874 if (Op.getOperand(1).getValueType().isVector()) 7875 return LowerVectorStore(Op, DAG); 7876 7877 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7878 "Custom lowering only for i1 stores"); 7879 7880 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7881 7882 SDLoc dl(Op); 7883 StoreSDNode *ST = cast<StoreSDNode>(Op); 7884 7885 SDValue Chain = ST->getChain(); 7886 SDValue BasePtr = ST->getBasePtr(); 7887 SDValue Value = ST->getValue(); 7888 MachineMemOperand *MMO = ST->getMemOperand(); 7889 7890 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7891 Value); 7892 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7893 } 7894 7895 // FIXME: Remove this once the ANDI glue bug is fixed: 7896 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7897 assert(Op.getValueType() == MVT::i1 && 7898 "Custom lowering only for i1 results"); 7899 7900 SDLoc DL(Op); 7901 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7902 } 7903 7904 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7905 SelectionDAG &DAG) const { 7906 7907 // Implements a vector truncate that fits in a vector register as a shuffle. 7908 // We want to legalize vector truncates down to where the source fits in 7909 // a vector register (and target is therefore smaller than vector register 7910 // size). At that point legalization will try to custom lower the sub-legal 7911 // result and get here - where we can contain the truncate as a single target 7912 // operation. 7913 7914 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7915 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7916 // 7917 // We will implement it for big-endian ordering as this (where x denotes 7918 // undefined): 7919 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7920 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7921 // 7922 // The same operation in little-endian ordering will be: 7923 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7924 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7925 7926 EVT TrgVT = Op.getValueType(); 7927 assert(TrgVT.isVector() && "Vector type expected."); 7928 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7929 EVT EltVT = TrgVT.getVectorElementType(); 7930 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7931 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7932 !isPowerOf2_32(EltVT.getSizeInBits())) 7933 return SDValue(); 7934 7935 SDValue N1 = Op.getOperand(0); 7936 EVT SrcVT = N1.getValueType(); 7937 unsigned SrcSize = SrcVT.getSizeInBits(); 7938 if (SrcSize > 256 || 7939 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7940 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7941 return SDValue(); 7942 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7943 return SDValue(); 7944 7945 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7946 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7947 7948 SDLoc DL(Op); 7949 SDValue Op1, Op2; 7950 if (SrcSize == 256) { 7951 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7952 EVT SplitVT = 7953 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7954 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7955 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7956 DAG.getConstant(0, DL, VecIdxTy)); 7957 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7958 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7959 } 7960 else { 7961 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7962 Op2 = DAG.getUNDEF(WideVT); 7963 } 7964 7965 // First list the elements we want to keep. 7966 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7967 SmallVector<int, 16> ShuffV; 7968 if (Subtarget.isLittleEndian()) 7969 for (unsigned i = 0; i < TrgNumElts; ++i) 7970 ShuffV.push_back(i * SizeMult); 7971 else 7972 for (unsigned i = 1; i <= TrgNumElts; ++i) 7973 ShuffV.push_back(i * SizeMult - 1); 7974 7975 // Populate the remaining elements with undefs. 7976 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7977 // ShuffV.push_back(i + WideNumElts); 7978 ShuffV.push_back(WideNumElts + 1); 7979 7980 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7981 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7982 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7983 } 7984 7985 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7986 /// possible. 7987 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7988 // Not FP, or using SPE? Not a fsel. 7989 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7990 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7991 return Op; 7992 7993 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7994 7995 EVT ResVT = Op.getValueType(); 7996 EVT CmpVT = Op.getOperand(0).getValueType(); 7997 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7998 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7999 SDLoc dl(Op); 8000 SDNodeFlags Flags = Op.getNode()->getFlags(); 8001 8002 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8003 // presence of infinities. 8004 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8005 switch (CC) { 8006 default: 8007 break; 8008 case ISD::SETOGT: 8009 case ISD::SETGT: 8010 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8011 case ISD::SETOLT: 8012 case ISD::SETLT: 8013 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8014 } 8015 } 8016 8017 // We might be able to do better than this under some circumstances, but in 8018 // general, fsel-based lowering of select is a finite-math-only optimization. 8019 // For more information, see section F.3 of the 2.06 ISA specification. 8020 // With ISA 3.0 8021 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8022 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8023 return Op; 8024 8025 // If the RHS of the comparison is a 0.0, we don't need to do the 8026 // subtraction at all. 8027 SDValue Sel1; 8028 if (isFloatingPointZero(RHS)) 8029 switch (CC) { 8030 default: break; // SETUO etc aren't handled by fsel. 8031 case ISD::SETNE: 8032 std::swap(TV, FV); 8033 LLVM_FALLTHROUGH; 8034 case ISD::SETEQ: 8035 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8036 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8037 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8038 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8039 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8040 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8041 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8042 case ISD::SETULT: 8043 case ISD::SETLT: 8044 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8045 LLVM_FALLTHROUGH; 8046 case ISD::SETOGE: 8047 case ISD::SETGE: 8048 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8049 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8050 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8051 case ISD::SETUGT: 8052 case ISD::SETGT: 8053 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8054 LLVM_FALLTHROUGH; 8055 case ISD::SETOLE: 8056 case ISD::SETLE: 8057 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8058 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8059 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8060 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8061 } 8062 8063 SDValue Cmp; 8064 switch (CC) { 8065 default: break; // SETUO etc aren't handled by fsel. 8066 case ISD::SETNE: 8067 std::swap(TV, FV); 8068 LLVM_FALLTHROUGH; 8069 case ISD::SETEQ: 8070 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8071 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8072 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8073 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8074 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8075 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8076 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8077 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8078 case ISD::SETULT: 8079 case ISD::SETLT: 8080 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8081 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8082 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8083 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8084 case ISD::SETOGE: 8085 case ISD::SETGE: 8086 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8087 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8088 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8089 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8090 case ISD::SETUGT: 8091 case ISD::SETGT: 8092 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8093 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8094 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8095 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8096 case ISD::SETOLE: 8097 case ISD::SETLE: 8098 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8099 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8100 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8101 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8102 } 8103 return Op; 8104 } 8105 8106 static unsigned getPPCStrictOpcode(unsigned Opc) { 8107 switch (Opc) { 8108 default: 8109 llvm_unreachable("No strict version of this opcode!"); 8110 case PPCISD::FCTIDZ: 8111 return PPCISD::STRICT_FCTIDZ; 8112 case PPCISD::FCTIWZ: 8113 return PPCISD::STRICT_FCTIWZ; 8114 case PPCISD::FCTIDUZ: 8115 return PPCISD::STRICT_FCTIDUZ; 8116 case PPCISD::FCTIWUZ: 8117 return PPCISD::STRICT_FCTIWUZ; 8118 case PPCISD::FCFID: 8119 return PPCISD::STRICT_FCFID; 8120 case PPCISD::FCFIDU: 8121 return PPCISD::STRICT_FCFIDU; 8122 case PPCISD::FCFIDS: 8123 return PPCISD::STRICT_FCFIDS; 8124 case PPCISD::FCFIDUS: 8125 return PPCISD::STRICT_FCFIDUS; 8126 } 8127 } 8128 8129 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8130 const PPCSubtarget &Subtarget) { 8131 SDLoc dl(Op); 8132 bool IsStrict = Op->isStrictFPOpcode(); 8133 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8134 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8135 8136 // TODO: Any other flags to propagate? 8137 SDNodeFlags Flags; 8138 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8139 8140 // For strict nodes, source is the second operand. 8141 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8142 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8143 assert(Src.getValueType().isFloatingPoint()); 8144 if (Src.getValueType() == MVT::f32) { 8145 if (IsStrict) { 8146 Src = 8147 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8148 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8149 Chain = Src.getValue(1); 8150 } else 8151 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8152 } 8153 SDValue Conv; 8154 unsigned Opc = ISD::DELETED_NODE; 8155 switch (Op.getSimpleValueType().SimpleTy) { 8156 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8157 case MVT::i32: 8158 Opc = IsSigned ? PPCISD::FCTIWZ 8159 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8160 break; 8161 case MVT::i64: 8162 assert((IsSigned || Subtarget.hasFPCVT()) && 8163 "i64 FP_TO_UINT is supported only with FPCVT"); 8164 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8165 } 8166 if (IsStrict) { 8167 Opc = getPPCStrictOpcode(Opc); 8168 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8169 {Chain, Src}, Flags); 8170 } else { 8171 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8172 } 8173 return Conv; 8174 } 8175 8176 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8177 SelectionDAG &DAG, 8178 const SDLoc &dl) const { 8179 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8180 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8181 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8182 bool IsStrict = Op->isStrictFPOpcode(); 8183 8184 // Convert the FP value to an int value through memory. 8185 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8186 (IsSigned || Subtarget.hasFPCVT()); 8187 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8188 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8189 MachinePointerInfo MPI = 8190 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8191 8192 // Emit a store to the stack slot. 8193 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8194 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8195 if (i32Stack) { 8196 MachineFunction &MF = DAG.getMachineFunction(); 8197 Alignment = Align(4); 8198 MachineMemOperand *MMO = 8199 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8200 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8201 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8202 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8203 } else 8204 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8205 8206 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8207 // add in a bias on big endian. 8208 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8209 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8210 DAG.getConstant(4, dl, FIPtr.getValueType())); 8211 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8212 } 8213 8214 RLI.Chain = Chain; 8215 RLI.Ptr = FIPtr; 8216 RLI.MPI = MPI; 8217 RLI.Alignment = Alignment; 8218 } 8219 8220 /// Custom lowers floating point to integer conversions to use 8221 /// the direct move instructions available in ISA 2.07 to avoid the 8222 /// need for load/store combinations. 8223 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8224 SelectionDAG &DAG, 8225 const SDLoc &dl) const { 8226 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8227 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8228 if (Op->isStrictFPOpcode()) 8229 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8230 else 8231 return Mov; 8232 } 8233 8234 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8235 const SDLoc &dl) const { 8236 bool IsStrict = Op->isStrictFPOpcode(); 8237 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8238 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8239 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8240 EVT SrcVT = Src.getValueType(); 8241 EVT DstVT = Op.getValueType(); 8242 8243 // FP to INT conversions are legal for f128. 8244 if (SrcVT == MVT::f128) 8245 return Op; 8246 8247 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8248 // PPC (the libcall is not available). 8249 if (SrcVT == MVT::ppcf128) { 8250 if (DstVT == MVT::i32) { 8251 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8252 // set other fast-math flags to FP operations in both strict and 8253 // non-strict cases. (FP_TO_SINT, FSUB) 8254 SDNodeFlags Flags; 8255 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8256 8257 if (IsSigned) { 8258 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8259 DAG.getIntPtrConstant(0, dl)); 8260 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8261 DAG.getIntPtrConstant(1, dl)); 8262 8263 // Add the two halves of the long double in round-to-zero mode, and use 8264 // a smaller FP_TO_SINT. 8265 if (IsStrict) { 8266 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8267 DAG.getVTList(MVT::f64, MVT::Other), 8268 {Op.getOperand(0), Lo, Hi}, Flags); 8269 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8270 DAG.getVTList(MVT::i32, MVT::Other), 8271 {Res.getValue(1), Res}, Flags); 8272 } else { 8273 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8274 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8275 } 8276 } else { 8277 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8278 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8279 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8280 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8281 if (IsStrict) { 8282 // Sel = Src < 0x80000000 8283 // FltOfs = select Sel, 0.0, 0x80000000 8284 // IntOfs = select Sel, 0, 0x80000000 8285 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8286 SDValue Chain = Op.getOperand(0); 8287 EVT SetCCVT = 8288 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8289 EVT DstSetCCVT = 8290 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8291 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8292 Chain, true); 8293 Chain = Sel.getValue(1); 8294 8295 SDValue FltOfs = DAG.getSelect( 8296 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8297 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8298 8299 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8300 DAG.getVTList(SrcVT, MVT::Other), 8301 {Chain, Src, FltOfs}, Flags); 8302 Chain = Val.getValue(1); 8303 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8304 DAG.getVTList(DstVT, MVT::Other), 8305 {Chain, Val}, Flags); 8306 Chain = SInt.getValue(1); 8307 SDValue IntOfs = DAG.getSelect( 8308 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8309 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8310 return DAG.getMergeValues({Result, Chain}, dl); 8311 } else { 8312 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8313 // FIXME: generated code sucks. 8314 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8315 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8316 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8317 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8318 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8319 } 8320 } 8321 } 8322 8323 return SDValue(); 8324 } 8325 8326 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8327 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8328 8329 ReuseLoadInfo RLI; 8330 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8331 8332 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8333 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8334 } 8335 8336 // We're trying to insert a regular store, S, and then a load, L. If the 8337 // incoming value, O, is a load, we might just be able to have our load use the 8338 // address used by O. However, we don't know if anything else will store to 8339 // that address before we can load from it. To prevent this situation, we need 8340 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8341 // the same chain operand as O, we create a token factor from the chain results 8342 // of O and L, and we replace all uses of O's chain result with that token 8343 // factor (see spliceIntoChain below for this last part). 8344 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8345 ReuseLoadInfo &RLI, 8346 SelectionDAG &DAG, 8347 ISD::LoadExtType ET) const { 8348 // Conservatively skip reusing for constrained FP nodes. 8349 if (Op->isStrictFPOpcode()) 8350 return false; 8351 8352 SDLoc dl(Op); 8353 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8354 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8355 if (ET == ISD::NON_EXTLOAD && 8356 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8357 isOperationLegalOrCustom(Op.getOpcode(), 8358 Op.getOperand(0).getValueType())) { 8359 8360 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8361 return true; 8362 } 8363 8364 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8365 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8366 LD->isNonTemporal()) 8367 return false; 8368 if (LD->getMemoryVT() != MemVT) 8369 return false; 8370 8371 RLI.Ptr = LD->getBasePtr(); 8372 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8373 assert(LD->getAddressingMode() == ISD::PRE_INC && 8374 "Non-pre-inc AM on PPC?"); 8375 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8376 LD->getOffset()); 8377 } 8378 8379 RLI.Chain = LD->getChain(); 8380 RLI.MPI = LD->getPointerInfo(); 8381 RLI.IsDereferenceable = LD->isDereferenceable(); 8382 RLI.IsInvariant = LD->isInvariant(); 8383 RLI.Alignment = LD->getAlign(); 8384 RLI.AAInfo = LD->getAAInfo(); 8385 RLI.Ranges = LD->getRanges(); 8386 8387 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8388 return true; 8389 } 8390 8391 // Given the head of the old chain, ResChain, insert a token factor containing 8392 // it and NewResChain, and make users of ResChain now be users of that token 8393 // factor. 8394 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8395 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8396 SDValue NewResChain, 8397 SelectionDAG &DAG) const { 8398 if (!ResChain) 8399 return; 8400 8401 SDLoc dl(NewResChain); 8402 8403 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8404 NewResChain, DAG.getUNDEF(MVT::Other)); 8405 assert(TF.getNode() != NewResChain.getNode() && 8406 "A new TF really is required here"); 8407 8408 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8409 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8410 } 8411 8412 /// Analyze profitability of direct move 8413 /// prefer float load to int load plus direct move 8414 /// when there is no integer use of int load 8415 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8416 SDNode *Origin = Op.getOperand(0).getNode(); 8417 if (Origin->getOpcode() != ISD::LOAD) 8418 return true; 8419 8420 // If there is no LXSIBZX/LXSIHZX, like Power8, 8421 // prefer direct move if the memory size is 1 or 2 bytes. 8422 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8423 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8424 return true; 8425 8426 for (SDNode::use_iterator UI = Origin->use_begin(), 8427 UE = Origin->use_end(); 8428 UI != UE; ++UI) { 8429 8430 // Only look at the users of the loaded value. 8431 if (UI.getUse().get().getResNo() != 0) 8432 continue; 8433 8434 if (UI->getOpcode() != ISD::SINT_TO_FP && 8435 UI->getOpcode() != ISD::UINT_TO_FP && 8436 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8437 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8438 return true; 8439 } 8440 8441 return false; 8442 } 8443 8444 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8445 const PPCSubtarget &Subtarget, 8446 SDValue Chain = SDValue()) { 8447 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8448 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8449 SDLoc dl(Op); 8450 8451 // TODO: Any other flags to propagate? 8452 SDNodeFlags Flags; 8453 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8454 8455 // If we have FCFIDS, then use it when converting to single-precision. 8456 // Otherwise, convert to double-precision and then round. 8457 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8458 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8459 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8460 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8461 if (Op->isStrictFPOpcode()) { 8462 if (!Chain) 8463 Chain = Op.getOperand(0); 8464 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8465 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8466 } else 8467 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8468 } 8469 8470 /// Custom lowers integer to floating point conversions to use 8471 /// the direct move instructions available in ISA 2.07 to avoid the 8472 /// need for load/store combinations. 8473 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8474 SelectionDAG &DAG, 8475 const SDLoc &dl) const { 8476 assert((Op.getValueType() == MVT::f32 || 8477 Op.getValueType() == MVT::f64) && 8478 "Invalid floating point type as target of conversion"); 8479 assert(Subtarget.hasFPCVT() && 8480 "Int to FP conversions with direct moves require FPCVT"); 8481 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8482 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8483 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8484 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8485 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8486 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8487 return convertIntToFP(Op, Mov, DAG, Subtarget); 8488 } 8489 8490 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8491 8492 EVT VecVT = Vec.getValueType(); 8493 assert(VecVT.isVector() && "Expected a vector type."); 8494 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8495 8496 EVT EltVT = VecVT.getVectorElementType(); 8497 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8498 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8499 8500 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8501 SmallVector<SDValue, 16> Ops(NumConcat); 8502 Ops[0] = Vec; 8503 SDValue UndefVec = DAG.getUNDEF(VecVT); 8504 for (unsigned i = 1; i < NumConcat; ++i) 8505 Ops[i] = UndefVec; 8506 8507 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8508 } 8509 8510 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8511 const SDLoc &dl) const { 8512 bool IsStrict = Op->isStrictFPOpcode(); 8513 unsigned Opc = Op.getOpcode(); 8514 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8515 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8516 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8517 "Unexpected conversion type"); 8518 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8519 "Supports conversions to v2f64/v4f32 only."); 8520 8521 // TODO: Any other flags to propagate? 8522 SDNodeFlags Flags; 8523 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8524 8525 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8526 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8527 8528 SDValue Wide = widenVec(DAG, Src, dl); 8529 EVT WideVT = Wide.getValueType(); 8530 unsigned WideNumElts = WideVT.getVectorNumElements(); 8531 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8532 8533 SmallVector<int, 16> ShuffV; 8534 for (unsigned i = 0; i < WideNumElts; ++i) 8535 ShuffV.push_back(i + WideNumElts); 8536 8537 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8538 int SaveElts = FourEltRes ? 4 : 2; 8539 if (Subtarget.isLittleEndian()) 8540 for (int i = 0; i < SaveElts; i++) 8541 ShuffV[i * Stride] = i; 8542 else 8543 for (int i = 1; i <= SaveElts; i++) 8544 ShuffV[i * Stride - 1] = i - 1; 8545 8546 SDValue ShuffleSrc2 = 8547 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8548 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8549 8550 SDValue Extend; 8551 if (SignedConv) { 8552 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8553 EVT ExtVT = Src.getValueType(); 8554 if (Subtarget.hasP9Altivec()) 8555 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8556 IntermediateVT.getVectorNumElements()); 8557 8558 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8559 DAG.getValueType(ExtVT)); 8560 } else 8561 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8562 8563 if (IsStrict) 8564 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8565 {Op.getOperand(0), Extend}, Flags); 8566 8567 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8568 } 8569 8570 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8571 SelectionDAG &DAG) const { 8572 SDLoc dl(Op); 8573 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8574 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8575 bool IsStrict = Op->isStrictFPOpcode(); 8576 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8577 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8578 8579 // TODO: Any other flags to propagate? 8580 SDNodeFlags Flags; 8581 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8582 8583 EVT InVT = Src.getValueType(); 8584 EVT OutVT = Op.getValueType(); 8585 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8586 isOperationCustom(Op.getOpcode(), InVT)) 8587 return LowerINT_TO_FPVector(Op, DAG, dl); 8588 8589 // Conversions to f128 are legal. 8590 if (Op.getValueType() == MVT::f128) 8591 return Op; 8592 8593 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8594 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8595 return SDValue(); 8596 8597 if (Src.getValueType() == MVT::i1) 8598 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8599 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8600 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8601 8602 // If we have direct moves, we can do all the conversion, skip the store/load 8603 // however, without FPCVT we can't do most conversions. 8604 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8605 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8606 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8607 8608 assert((IsSigned || Subtarget.hasFPCVT()) && 8609 "UINT_TO_FP is supported only with FPCVT"); 8610 8611 if (Src.getValueType() == MVT::i64) { 8612 SDValue SINT = Src; 8613 // When converting to single-precision, we actually need to convert 8614 // to double-precision first and then round to single-precision. 8615 // To avoid double-rounding effects during that operation, we have 8616 // to prepare the input operand. Bits that might be truncated when 8617 // converting to double-precision are replaced by a bit that won't 8618 // be lost at this stage, but is below the single-precision rounding 8619 // position. 8620 // 8621 // However, if -enable-unsafe-fp-math is in effect, accept double 8622 // rounding to avoid the extra overhead. 8623 if (Op.getValueType() == MVT::f32 && 8624 !Subtarget.hasFPCVT() && 8625 !DAG.getTarget().Options.UnsafeFPMath) { 8626 8627 // Twiddle input to make sure the low 11 bits are zero. (If this 8628 // is the case, we are guaranteed the value will fit into the 53 bit 8629 // mantissa of an IEEE double-precision value without rounding.) 8630 // If any of those low 11 bits were not zero originally, make sure 8631 // bit 12 (value 2048) is set instead, so that the final rounding 8632 // to single-precision gets the correct result. 8633 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8634 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8635 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8636 Round, DAG.getConstant(2047, dl, MVT::i64)); 8637 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8638 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8639 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8640 8641 // However, we cannot use that value unconditionally: if the magnitude 8642 // of the input value is small, the bit-twiddling we did above might 8643 // end up visibly changing the output. Fortunately, in that case, we 8644 // don't need to twiddle bits since the original input will convert 8645 // exactly to double-precision floating-point already. Therefore, 8646 // construct a conditional to use the original value if the top 11 8647 // bits are all sign-bit copies, and use the rounded value computed 8648 // above otherwise. 8649 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8650 SINT, DAG.getConstant(53, dl, MVT::i32)); 8651 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8652 Cond, DAG.getConstant(1, dl, MVT::i64)); 8653 Cond = DAG.getSetCC( 8654 dl, 8655 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8656 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8657 8658 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8659 } 8660 8661 ReuseLoadInfo RLI; 8662 SDValue Bits; 8663 8664 MachineFunction &MF = DAG.getMachineFunction(); 8665 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8666 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8667 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8668 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8669 } else if (Subtarget.hasLFIWAX() && 8670 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8671 MachineMemOperand *MMO = 8672 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8673 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8674 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8675 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8676 DAG.getVTList(MVT::f64, MVT::Other), 8677 Ops, MVT::i32, MMO); 8678 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8679 } else if (Subtarget.hasFPCVT() && 8680 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8681 MachineMemOperand *MMO = 8682 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8683 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8684 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8685 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8686 DAG.getVTList(MVT::f64, MVT::Other), 8687 Ops, MVT::i32, MMO); 8688 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8689 } else if (((Subtarget.hasLFIWAX() && 8690 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8691 (Subtarget.hasFPCVT() && 8692 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8693 SINT.getOperand(0).getValueType() == MVT::i32) { 8694 MachineFrameInfo &MFI = MF.getFrameInfo(); 8695 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8696 8697 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8698 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8699 8700 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8701 MachinePointerInfo::getFixedStack( 8702 DAG.getMachineFunction(), FrameIdx)); 8703 Chain = Store; 8704 8705 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8706 "Expected an i32 store"); 8707 8708 RLI.Ptr = FIdx; 8709 RLI.Chain = Chain; 8710 RLI.MPI = 8711 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8712 RLI.Alignment = Align(4); 8713 8714 MachineMemOperand *MMO = 8715 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8716 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8717 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8718 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8719 PPCISD::LFIWZX : PPCISD::LFIWAX, 8720 dl, DAG.getVTList(MVT::f64, MVT::Other), 8721 Ops, MVT::i32, MMO); 8722 Chain = Bits.getValue(1); 8723 } else 8724 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8725 8726 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8727 if (IsStrict) 8728 Chain = FP.getValue(1); 8729 8730 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8731 if (IsStrict) 8732 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8733 DAG.getVTList(MVT::f32, MVT::Other), 8734 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8735 else 8736 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8737 DAG.getIntPtrConstant(0, dl)); 8738 } 8739 return FP; 8740 } 8741 8742 assert(Src.getValueType() == MVT::i32 && 8743 "Unhandled INT_TO_FP type in custom expander!"); 8744 // Since we only generate this in 64-bit mode, we can take advantage of 8745 // 64-bit registers. In particular, sign extend the input value into the 8746 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8747 // then lfd it and fcfid it. 8748 MachineFunction &MF = DAG.getMachineFunction(); 8749 MachineFrameInfo &MFI = MF.getFrameInfo(); 8750 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8751 8752 SDValue Ld; 8753 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8754 ReuseLoadInfo RLI; 8755 bool ReusingLoad; 8756 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8757 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8758 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8759 8760 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8761 MachinePointerInfo::getFixedStack( 8762 DAG.getMachineFunction(), FrameIdx)); 8763 Chain = Store; 8764 8765 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8766 "Expected an i32 store"); 8767 8768 RLI.Ptr = FIdx; 8769 RLI.Chain = Chain; 8770 RLI.MPI = 8771 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8772 RLI.Alignment = Align(4); 8773 } 8774 8775 MachineMemOperand *MMO = 8776 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8777 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8778 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8779 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8780 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8781 MVT::i32, MMO); 8782 Chain = Ld.getValue(1); 8783 if (ReusingLoad) 8784 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8785 } else { 8786 assert(Subtarget.isPPC64() && 8787 "i32->FP without LFIWAX supported only on PPC64"); 8788 8789 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8790 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8791 8792 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8793 8794 // STD the extended value into the stack slot. 8795 SDValue Store = DAG.getStore( 8796 Chain, dl, Ext64, FIdx, 8797 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8798 Chain = Store; 8799 8800 // Load the value as a double. 8801 Ld = DAG.getLoad( 8802 MVT::f64, dl, Chain, FIdx, 8803 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8804 Chain = Ld.getValue(1); 8805 } 8806 8807 // FCFID it and return it. 8808 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8809 if (IsStrict) 8810 Chain = FP.getValue(1); 8811 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8812 if (IsStrict) 8813 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8814 DAG.getVTList(MVT::f32, MVT::Other), 8815 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8816 else 8817 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8818 DAG.getIntPtrConstant(0, dl)); 8819 } 8820 return FP; 8821 } 8822 8823 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8824 SelectionDAG &DAG) const { 8825 SDLoc dl(Op); 8826 /* 8827 The rounding mode is in bits 30:31 of FPSR, and has the following 8828 settings: 8829 00 Round to nearest 8830 01 Round to 0 8831 10 Round to +inf 8832 11 Round to -inf 8833 8834 FLT_ROUNDS, on the other hand, expects the following: 8835 -1 Undefined 8836 0 Round to 0 8837 1 Round to nearest 8838 2 Round to +inf 8839 3 Round to -inf 8840 8841 To perform the conversion, we do: 8842 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8843 */ 8844 8845 MachineFunction &MF = DAG.getMachineFunction(); 8846 EVT VT = Op.getValueType(); 8847 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8848 8849 // Save FP Control Word to register 8850 SDValue Chain = Op.getOperand(0); 8851 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8852 Chain = MFFS.getValue(1); 8853 8854 // Save FP register to stack slot 8855 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8856 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8857 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8858 8859 // Load FP Control Word from low 32 bits of stack slot. 8860 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8861 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8862 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8863 Chain = CWD.getValue(1); 8864 8865 // Transform as necessary 8866 SDValue CWD1 = 8867 DAG.getNode(ISD::AND, dl, MVT::i32, 8868 CWD, DAG.getConstant(3, dl, MVT::i32)); 8869 SDValue CWD2 = 8870 DAG.getNode(ISD::SRL, dl, MVT::i32, 8871 DAG.getNode(ISD::AND, dl, MVT::i32, 8872 DAG.getNode(ISD::XOR, dl, MVT::i32, 8873 CWD, DAG.getConstant(3, dl, MVT::i32)), 8874 DAG.getConstant(3, dl, MVT::i32)), 8875 DAG.getConstant(1, dl, MVT::i32)); 8876 8877 SDValue RetVal = 8878 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8879 8880 RetVal = 8881 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8882 dl, VT, RetVal); 8883 8884 return DAG.getMergeValues({RetVal, Chain}, dl); 8885 } 8886 8887 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8888 EVT VT = Op.getValueType(); 8889 unsigned BitWidth = VT.getSizeInBits(); 8890 SDLoc dl(Op); 8891 assert(Op.getNumOperands() == 3 && 8892 VT == Op.getOperand(1).getValueType() && 8893 "Unexpected SHL!"); 8894 8895 // Expand into a bunch of logical ops. Note that these ops 8896 // depend on the PPC behavior for oversized shift amounts. 8897 SDValue Lo = Op.getOperand(0); 8898 SDValue Hi = Op.getOperand(1); 8899 SDValue Amt = Op.getOperand(2); 8900 EVT AmtVT = Amt.getValueType(); 8901 8902 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8903 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8904 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8905 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8906 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8907 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8908 DAG.getConstant(-BitWidth, dl, AmtVT)); 8909 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8910 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8911 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8912 SDValue OutOps[] = { OutLo, OutHi }; 8913 return DAG.getMergeValues(OutOps, dl); 8914 } 8915 8916 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8917 EVT VT = Op.getValueType(); 8918 SDLoc dl(Op); 8919 unsigned BitWidth = VT.getSizeInBits(); 8920 assert(Op.getNumOperands() == 3 && 8921 VT == Op.getOperand(1).getValueType() && 8922 "Unexpected SRL!"); 8923 8924 // Expand into a bunch of logical ops. Note that these ops 8925 // depend on the PPC behavior for oversized shift amounts. 8926 SDValue Lo = Op.getOperand(0); 8927 SDValue Hi = Op.getOperand(1); 8928 SDValue Amt = Op.getOperand(2); 8929 EVT AmtVT = Amt.getValueType(); 8930 8931 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8932 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8933 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8934 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8935 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8936 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8937 DAG.getConstant(-BitWidth, dl, AmtVT)); 8938 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8939 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8940 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8941 SDValue OutOps[] = { OutLo, OutHi }; 8942 return DAG.getMergeValues(OutOps, dl); 8943 } 8944 8945 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8946 SDLoc dl(Op); 8947 EVT VT = Op.getValueType(); 8948 unsigned BitWidth = VT.getSizeInBits(); 8949 assert(Op.getNumOperands() == 3 && 8950 VT == Op.getOperand(1).getValueType() && 8951 "Unexpected SRA!"); 8952 8953 // Expand into a bunch of logical ops, followed by a select_cc. 8954 SDValue Lo = Op.getOperand(0); 8955 SDValue Hi = Op.getOperand(1); 8956 SDValue Amt = Op.getOperand(2); 8957 EVT AmtVT = Amt.getValueType(); 8958 8959 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8960 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8961 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8962 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8963 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8964 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8965 DAG.getConstant(-BitWidth, dl, AmtVT)); 8966 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8967 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8968 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8969 Tmp4, Tmp6, ISD::SETLE); 8970 SDValue OutOps[] = { OutLo, OutHi }; 8971 return DAG.getMergeValues(OutOps, dl); 8972 } 8973 8974 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8975 SelectionDAG &DAG) const { 8976 SDLoc dl(Op); 8977 EVT VT = Op.getValueType(); 8978 unsigned BitWidth = VT.getSizeInBits(); 8979 8980 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8981 SDValue X = Op.getOperand(0); 8982 SDValue Y = Op.getOperand(1); 8983 SDValue Z = Op.getOperand(2); 8984 EVT AmtVT = Z.getValueType(); 8985 8986 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8987 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8988 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8989 // on PowerPC shift by BW being well defined. 8990 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8991 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8992 SDValue SubZ = 8993 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8994 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8995 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8996 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8997 } 8998 8999 //===----------------------------------------------------------------------===// 9000 // Vector related lowering. 9001 // 9002 9003 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 9004 /// element size of SplatSize. Cast the result to VT. 9005 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 9006 SelectionDAG &DAG, const SDLoc &dl) { 9007 static const MVT VTys[] = { // canonical VT to use for each size. 9008 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 9009 }; 9010 9011 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 9012 9013 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 9014 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 9015 SplatSize = 1; 9016 Val = 0xFF; 9017 } 9018 9019 EVT CanonicalVT = VTys[SplatSize-1]; 9020 9021 // Build a canonical splat for this value. 9022 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9023 } 9024 9025 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9026 /// specified intrinsic ID. 9027 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9028 const SDLoc &dl, EVT DestVT = MVT::Other) { 9029 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9030 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9031 DAG.getConstant(IID, dl, MVT::i32), Op); 9032 } 9033 9034 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9035 /// specified intrinsic ID. 9036 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9037 SelectionDAG &DAG, const SDLoc &dl, 9038 EVT DestVT = MVT::Other) { 9039 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9040 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9041 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9042 } 9043 9044 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9045 /// specified intrinsic ID. 9046 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9047 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9048 EVT DestVT = MVT::Other) { 9049 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9050 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9051 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9052 } 9053 9054 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9055 /// amount. The result has the specified value type. 9056 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9057 SelectionDAG &DAG, const SDLoc &dl) { 9058 // Force LHS/RHS to be the right type. 9059 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9060 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9061 9062 int Ops[16]; 9063 for (unsigned i = 0; i != 16; ++i) 9064 Ops[i] = i + Amt; 9065 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9066 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9067 } 9068 9069 /// Do we have an efficient pattern in a .td file for this node? 9070 /// 9071 /// \param V - pointer to the BuildVectorSDNode being matched 9072 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9073 /// 9074 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9075 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9076 /// the opposite is true (expansion is beneficial) are: 9077 /// - The node builds a vector out of integers that are not 32 or 64-bits 9078 /// - The node builds a vector out of constants 9079 /// - The node is a "load-and-splat" 9080 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9081 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9082 bool HasDirectMove, 9083 bool HasP8Vector) { 9084 EVT VecVT = V->getValueType(0); 9085 bool RightType = VecVT == MVT::v2f64 || 9086 (HasP8Vector && VecVT == MVT::v4f32) || 9087 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9088 if (!RightType) 9089 return false; 9090 9091 bool IsSplat = true; 9092 bool IsLoad = false; 9093 SDValue Op0 = V->getOperand(0); 9094 9095 // This function is called in a block that confirms the node is not a constant 9096 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9097 // different constants. 9098 if (V->isConstant()) 9099 return false; 9100 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9101 if (V->getOperand(i).isUndef()) 9102 return false; 9103 // We want to expand nodes that represent load-and-splat even if the 9104 // loaded value is a floating point truncation or conversion to int. 9105 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9106 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9107 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9108 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9109 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9110 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9111 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9112 IsLoad = true; 9113 // If the operands are different or the input is not a load and has more 9114 // uses than just this BV node, then it isn't a splat. 9115 if (V->getOperand(i) != Op0 || 9116 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9117 IsSplat = false; 9118 } 9119 return !(IsSplat && IsLoad); 9120 } 9121 9122 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9123 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9124 9125 SDLoc dl(Op); 9126 SDValue Op0 = Op->getOperand(0); 9127 9128 if ((Op.getValueType() != MVT::f128) || 9129 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9130 (Op0.getOperand(0).getValueType() != MVT::i64) || 9131 (Op0.getOperand(1).getValueType() != MVT::i64)) 9132 return SDValue(); 9133 9134 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9135 Op0.getOperand(1)); 9136 } 9137 9138 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9139 const SDValue *InputLoad = &Op; 9140 if (InputLoad->getOpcode() == ISD::BITCAST) 9141 InputLoad = &InputLoad->getOperand(0); 9142 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9143 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9144 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9145 InputLoad = &InputLoad->getOperand(0); 9146 } 9147 if (InputLoad->getOpcode() != ISD::LOAD) 9148 return nullptr; 9149 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9150 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9151 } 9152 9153 // Convert the argument APFloat to a single precision APFloat if there is no 9154 // loss in information during the conversion to single precision APFloat and the 9155 // resulting number is not a denormal number. Return true if successful. 9156 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9157 APFloat APFloatToConvert = ArgAPFloat; 9158 bool LosesInfo = true; 9159 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9160 &LosesInfo); 9161 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9162 if (Success) 9163 ArgAPFloat = APFloatToConvert; 9164 return Success; 9165 } 9166 9167 // Bitcast the argument APInt to a double and convert it to a single precision 9168 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9169 // argument if there is no loss in information during the conversion from 9170 // double to single precision APFloat and the resulting number is not a denormal 9171 // number. Return true if successful. 9172 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9173 double DpValue = ArgAPInt.bitsToDouble(); 9174 APFloat APFloatDp(DpValue); 9175 bool Success = convertToNonDenormSingle(APFloatDp); 9176 if (Success) 9177 ArgAPInt = APFloatDp.bitcastToAPInt(); 9178 return Success; 9179 } 9180 9181 // If this is a case we can't handle, return null and let the default 9182 // expansion code take care of it. If we CAN select this case, and if it 9183 // selects to a single instruction, return Op. Otherwise, if we can codegen 9184 // this case more efficiently than a constant pool load, lower it to the 9185 // sequence of ops that should be used. 9186 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9187 SelectionDAG &DAG) const { 9188 SDLoc dl(Op); 9189 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9190 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9191 9192 // Check if this is a splat of a constant value. 9193 APInt APSplatBits, APSplatUndef; 9194 unsigned SplatBitSize; 9195 bool HasAnyUndefs; 9196 bool BVNIsConstantSplat = 9197 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9198 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9199 9200 // If it is a splat of a double, check if we can shrink it to a 32 bit 9201 // non-denormal float which when converted back to double gives us the same 9202 // double. This is to exploit the XXSPLTIDP instruction. 9203 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9204 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9205 convertToNonDenormSingle(APSplatBits)) { 9206 SDValue SplatNode = DAG.getNode( 9207 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9208 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9209 return DAG.getBitcast(Op.getValueType(), SplatNode); 9210 } 9211 9212 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9213 9214 bool IsPermutedLoad = false; 9215 const SDValue *InputLoad = 9216 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9217 // Handle load-and-splat patterns as we have instructions that will do this 9218 // in one go. 9219 if (InputLoad && DAG.isSplatValue(Op, true)) { 9220 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9221 9222 // We have handling for 4 and 8 byte elements. 9223 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9224 9225 // Checking for a single use of this load, we have to check for vector 9226 // width (128 bits) / ElementSize uses (since each operand of the 9227 // BUILD_VECTOR is a separate use of the value. 9228 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9229 ((Subtarget.hasVSX() && ElementSize == 64) || 9230 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9231 SDValue Ops[] = { 9232 LD->getChain(), // Chain 9233 LD->getBasePtr(), // Ptr 9234 DAG.getValueType(Op.getValueType()) // VT 9235 }; 9236 return 9237 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9238 DAG.getVTList(Op.getValueType(), MVT::Other), 9239 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9240 } 9241 } 9242 9243 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9244 // lowered to VSX instructions under certain conditions. 9245 // Without VSX, there is no pattern more efficient than expanding the node. 9246 if (Subtarget.hasVSX() && 9247 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9248 Subtarget.hasP8Vector())) 9249 return Op; 9250 return SDValue(); 9251 } 9252 9253 uint64_t SplatBits = APSplatBits.getZExtValue(); 9254 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9255 unsigned SplatSize = SplatBitSize / 8; 9256 9257 // First, handle single instruction cases. 9258 9259 // All zeros? 9260 if (SplatBits == 0) { 9261 // Canonicalize all zero vectors to be v4i32. 9262 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9263 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9264 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9265 } 9266 return Op; 9267 } 9268 9269 // We have XXSPLTIW for constant splats four bytes wide. 9270 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9271 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9272 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9273 // turned into a 4-byte splat of 0xABABABAB. 9274 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9275 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 9276 Op.getValueType(), DAG, dl); 9277 9278 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9279 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9280 dl); 9281 9282 // We have XXSPLTIB for constant splats one byte wide. 9283 if (Subtarget.hasP9Vector() && SplatSize == 1) 9284 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9285 dl); 9286 9287 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9288 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9289 (32-SplatBitSize)); 9290 if (SextVal >= -16 && SextVal <= 15) 9291 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9292 dl); 9293 9294 // Two instruction sequences. 9295 9296 // If this value is in the range [-32,30] and is even, use: 9297 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9298 // If this value is in the range [17,31] and is odd, use: 9299 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9300 // If this value is in the range [-31,-17] and is odd, use: 9301 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9302 // Note the last two are three-instruction sequences. 9303 if (SextVal >= -32 && SextVal <= 31) { 9304 // To avoid having these optimizations undone by constant folding, 9305 // we convert to a pseudo that will be expanded later into one of 9306 // the above forms. 9307 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9308 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9309 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9310 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9311 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9312 if (VT == Op.getValueType()) 9313 return RetVal; 9314 else 9315 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9316 } 9317 9318 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9319 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9320 // for fneg/fabs. 9321 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9322 // Make -1 and vspltisw -1: 9323 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9324 9325 // Make the VSLW intrinsic, computing 0x8000_0000. 9326 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9327 OnesV, DAG, dl); 9328 9329 // xor by OnesV to invert it. 9330 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9331 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9332 } 9333 9334 // Check to see if this is a wide variety of vsplti*, binop self cases. 9335 static const signed char SplatCsts[] = { 9336 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9337 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9338 }; 9339 9340 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9341 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9342 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9343 int i = SplatCsts[idx]; 9344 9345 // Figure out what shift amount will be used by altivec if shifted by i in 9346 // this splat size. 9347 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9348 9349 // vsplti + shl self. 9350 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9351 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9352 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9353 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9354 Intrinsic::ppc_altivec_vslw 9355 }; 9356 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9357 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9358 } 9359 9360 // vsplti + srl self. 9361 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9362 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9363 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9364 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9365 Intrinsic::ppc_altivec_vsrw 9366 }; 9367 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9368 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9369 } 9370 9371 // vsplti + sra self. 9372 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9373 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9374 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9375 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9376 Intrinsic::ppc_altivec_vsraw 9377 }; 9378 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9379 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9380 } 9381 9382 // vsplti + rol self. 9383 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9384 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9385 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9386 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9387 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9388 Intrinsic::ppc_altivec_vrlw 9389 }; 9390 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9391 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9392 } 9393 9394 // t = vsplti c, result = vsldoi t, t, 1 9395 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9396 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9397 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9398 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9399 } 9400 // t = vsplti c, result = vsldoi t, t, 2 9401 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9402 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9403 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9404 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9405 } 9406 // t = vsplti c, result = vsldoi t, t, 3 9407 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9408 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9409 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9410 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9411 } 9412 } 9413 9414 return SDValue(); 9415 } 9416 9417 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9418 /// the specified operations to build the shuffle. 9419 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9420 SDValue RHS, SelectionDAG &DAG, 9421 const SDLoc &dl) { 9422 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9423 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9424 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9425 9426 enum { 9427 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9428 OP_VMRGHW, 9429 OP_VMRGLW, 9430 OP_VSPLTISW0, 9431 OP_VSPLTISW1, 9432 OP_VSPLTISW2, 9433 OP_VSPLTISW3, 9434 OP_VSLDOI4, 9435 OP_VSLDOI8, 9436 OP_VSLDOI12 9437 }; 9438 9439 if (OpNum == OP_COPY) { 9440 if (LHSID == (1*9+2)*9+3) return LHS; 9441 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9442 return RHS; 9443 } 9444 9445 SDValue OpLHS, OpRHS; 9446 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9447 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9448 9449 int ShufIdxs[16]; 9450 switch (OpNum) { 9451 default: llvm_unreachable("Unknown i32 permute!"); 9452 case OP_VMRGHW: 9453 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9454 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9455 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9456 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9457 break; 9458 case OP_VMRGLW: 9459 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9460 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9461 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9462 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9463 break; 9464 case OP_VSPLTISW0: 9465 for (unsigned i = 0; i != 16; ++i) 9466 ShufIdxs[i] = (i&3)+0; 9467 break; 9468 case OP_VSPLTISW1: 9469 for (unsigned i = 0; i != 16; ++i) 9470 ShufIdxs[i] = (i&3)+4; 9471 break; 9472 case OP_VSPLTISW2: 9473 for (unsigned i = 0; i != 16; ++i) 9474 ShufIdxs[i] = (i&3)+8; 9475 break; 9476 case OP_VSPLTISW3: 9477 for (unsigned i = 0; i != 16; ++i) 9478 ShufIdxs[i] = (i&3)+12; 9479 break; 9480 case OP_VSLDOI4: 9481 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9482 case OP_VSLDOI8: 9483 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9484 case OP_VSLDOI12: 9485 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9486 } 9487 EVT VT = OpLHS.getValueType(); 9488 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9489 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9490 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9491 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9492 } 9493 9494 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9495 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9496 /// SDValue. 9497 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9498 SelectionDAG &DAG) const { 9499 const unsigned BytesInVector = 16; 9500 bool IsLE = Subtarget.isLittleEndian(); 9501 SDLoc dl(N); 9502 SDValue V1 = N->getOperand(0); 9503 SDValue V2 = N->getOperand(1); 9504 unsigned ShiftElts = 0, InsertAtByte = 0; 9505 bool Swap = false; 9506 9507 // Shifts required to get the byte we want at element 7. 9508 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9509 0, 15, 14, 13, 12, 11, 10, 9}; 9510 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9511 1, 2, 3, 4, 5, 6, 7, 8}; 9512 9513 ArrayRef<int> Mask = N->getMask(); 9514 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9515 9516 // For each mask element, find out if we're just inserting something 9517 // from V2 into V1 or vice versa. 9518 // Possible permutations inserting an element from V2 into V1: 9519 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9520 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9521 // ... 9522 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9523 // Inserting from V1 into V2 will be similar, except mask range will be 9524 // [16,31]. 9525 9526 bool FoundCandidate = false; 9527 // If both vector operands for the shuffle are the same vector, the mask 9528 // will contain only elements from the first one and the second one will be 9529 // undef. 9530 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9531 // Go through the mask of half-words to find an element that's being moved 9532 // from one vector to the other. 9533 for (unsigned i = 0; i < BytesInVector; ++i) { 9534 unsigned CurrentElement = Mask[i]; 9535 // If 2nd operand is undefined, we should only look for element 7 in the 9536 // Mask. 9537 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9538 continue; 9539 9540 bool OtherElementsInOrder = true; 9541 // Examine the other elements in the Mask to see if they're in original 9542 // order. 9543 for (unsigned j = 0; j < BytesInVector; ++j) { 9544 if (j == i) 9545 continue; 9546 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9547 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9548 // in which we always assume we're always picking from the 1st operand. 9549 int MaskOffset = 9550 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9551 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9552 OtherElementsInOrder = false; 9553 break; 9554 } 9555 } 9556 // If other elements are in original order, we record the number of shifts 9557 // we need to get the element we want into element 7. Also record which byte 9558 // in the vector we should insert into. 9559 if (OtherElementsInOrder) { 9560 // If 2nd operand is undefined, we assume no shifts and no swapping. 9561 if (V2.isUndef()) { 9562 ShiftElts = 0; 9563 Swap = false; 9564 } else { 9565 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9566 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9567 : BigEndianShifts[CurrentElement & 0xF]; 9568 Swap = CurrentElement < BytesInVector; 9569 } 9570 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9571 FoundCandidate = true; 9572 break; 9573 } 9574 } 9575 9576 if (!FoundCandidate) 9577 return SDValue(); 9578 9579 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9580 // optionally with VECSHL if shift is required. 9581 if (Swap) 9582 std::swap(V1, V2); 9583 if (V2.isUndef()) 9584 V2 = V1; 9585 if (ShiftElts) { 9586 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9587 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9588 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9589 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9590 } 9591 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9592 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9593 } 9594 9595 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9596 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9597 /// SDValue. 9598 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9599 SelectionDAG &DAG) const { 9600 const unsigned NumHalfWords = 8; 9601 const unsigned BytesInVector = NumHalfWords * 2; 9602 // Check that the shuffle is on half-words. 9603 if (!isNByteElemShuffleMask(N, 2, 1)) 9604 return SDValue(); 9605 9606 bool IsLE = Subtarget.isLittleEndian(); 9607 SDLoc dl(N); 9608 SDValue V1 = N->getOperand(0); 9609 SDValue V2 = N->getOperand(1); 9610 unsigned ShiftElts = 0, InsertAtByte = 0; 9611 bool Swap = false; 9612 9613 // Shifts required to get the half-word we want at element 3. 9614 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9615 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9616 9617 uint32_t Mask = 0; 9618 uint32_t OriginalOrderLow = 0x1234567; 9619 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9620 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9621 // 32-bit space, only need 4-bit nibbles per element. 9622 for (unsigned i = 0; i < NumHalfWords; ++i) { 9623 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9624 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9625 } 9626 9627 // For each mask element, find out if we're just inserting something 9628 // from V2 into V1 or vice versa. Possible permutations inserting an element 9629 // from V2 into V1: 9630 // X, 1, 2, 3, 4, 5, 6, 7 9631 // 0, X, 2, 3, 4, 5, 6, 7 9632 // 0, 1, X, 3, 4, 5, 6, 7 9633 // 0, 1, 2, X, 4, 5, 6, 7 9634 // 0, 1, 2, 3, X, 5, 6, 7 9635 // 0, 1, 2, 3, 4, X, 6, 7 9636 // 0, 1, 2, 3, 4, 5, X, 7 9637 // 0, 1, 2, 3, 4, 5, 6, X 9638 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9639 9640 bool FoundCandidate = false; 9641 // Go through the mask of half-words to find an element that's being moved 9642 // from one vector to the other. 9643 for (unsigned i = 0; i < NumHalfWords; ++i) { 9644 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9645 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9646 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9647 uint32_t TargetOrder = 0x0; 9648 9649 // If both vector operands for the shuffle are the same vector, the mask 9650 // will contain only elements from the first one and the second one will be 9651 // undef. 9652 if (V2.isUndef()) { 9653 ShiftElts = 0; 9654 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9655 TargetOrder = OriginalOrderLow; 9656 Swap = false; 9657 // Skip if not the correct element or mask of other elements don't equal 9658 // to our expected order. 9659 if (MaskOneElt == VINSERTHSrcElem && 9660 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9661 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9662 FoundCandidate = true; 9663 break; 9664 } 9665 } else { // If both operands are defined. 9666 // Target order is [8,15] if the current mask is between [0,7]. 9667 TargetOrder = 9668 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9669 // Skip if mask of other elements don't equal our expected order. 9670 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9671 // We only need the last 3 bits for the number of shifts. 9672 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9673 : BigEndianShifts[MaskOneElt & 0x7]; 9674 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9675 Swap = MaskOneElt < NumHalfWords; 9676 FoundCandidate = true; 9677 break; 9678 } 9679 } 9680 } 9681 9682 if (!FoundCandidate) 9683 return SDValue(); 9684 9685 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9686 // optionally with VECSHL if shift is required. 9687 if (Swap) 9688 std::swap(V1, V2); 9689 if (V2.isUndef()) 9690 V2 = V1; 9691 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9692 if (ShiftElts) { 9693 // Double ShiftElts because we're left shifting on v16i8 type. 9694 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9695 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9696 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9697 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9698 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9699 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9700 } 9701 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9702 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9703 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9704 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9705 } 9706 9707 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9708 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9709 /// return the default SDValue. 9710 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9711 SelectionDAG &DAG) const { 9712 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9713 // to v16i8. Peek through the bitcasts to get the actual operands. 9714 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9715 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9716 9717 auto ShuffleMask = SVN->getMask(); 9718 SDValue VecShuffle(SVN, 0); 9719 SDLoc DL(SVN); 9720 9721 // Check that we have a four byte shuffle. 9722 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9723 return SDValue(); 9724 9725 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9726 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9727 std::swap(LHS, RHS); 9728 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9729 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9730 } 9731 9732 // Ensure that the RHS is a vector of constants. 9733 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9734 if (!BVN) 9735 return SDValue(); 9736 9737 // Check if RHS is a splat of 4-bytes (or smaller). 9738 APInt APSplatValue, APSplatUndef; 9739 unsigned SplatBitSize; 9740 bool HasAnyUndefs; 9741 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9742 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9743 SplatBitSize > 32) 9744 return SDValue(); 9745 9746 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9747 // The instruction splats a constant C into two words of the source vector 9748 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9749 // Thus we check that the shuffle mask is the equivalent of 9750 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9751 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9752 // within each word are consecutive, so we only need to check the first byte. 9753 SDValue Index; 9754 bool IsLE = Subtarget.isLittleEndian(); 9755 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9756 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9757 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9758 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9759 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9760 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9761 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9762 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9763 else 9764 return SDValue(); 9765 9766 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9767 // for XXSPLTI32DX. 9768 unsigned SplatVal = APSplatValue.getZExtValue(); 9769 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9770 SplatVal |= (SplatVal << SplatBitSize); 9771 9772 SDValue SplatNode = DAG.getNode( 9773 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9774 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9775 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9776 } 9777 9778 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9779 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9780 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9781 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9782 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9783 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9784 assert(Op.getValueType() == MVT::v1i128 && 9785 "Only set v1i128 as custom, other type shouldn't reach here!"); 9786 SDLoc dl(Op); 9787 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9788 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9789 unsigned SHLAmt = N1.getConstantOperandVal(0); 9790 if (SHLAmt % 8 == 0) { 9791 SmallVector<int, 16> Mask(16, 0); 9792 std::iota(Mask.begin(), Mask.end(), 0); 9793 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9794 if (SDValue Shuffle = 9795 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9796 DAG.getUNDEF(MVT::v16i8), Mask)) 9797 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9798 } 9799 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9800 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9801 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9802 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9803 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9804 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9805 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9806 } 9807 9808 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9809 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9810 /// return the code it can be lowered into. Worst case, it can always be 9811 /// lowered into a vperm. 9812 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9813 SelectionDAG &DAG) const { 9814 SDLoc dl(Op); 9815 SDValue V1 = Op.getOperand(0); 9816 SDValue V2 = Op.getOperand(1); 9817 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9818 9819 // Any nodes that were combined in the target-independent combiner prior 9820 // to vector legalization will not be sent to the target combine. Try to 9821 // combine it here. 9822 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9823 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9824 return NewShuffle; 9825 Op = NewShuffle; 9826 SVOp = cast<ShuffleVectorSDNode>(Op); 9827 V1 = Op.getOperand(0); 9828 V2 = Op.getOperand(1); 9829 } 9830 EVT VT = Op.getValueType(); 9831 bool isLittleEndian = Subtarget.isLittleEndian(); 9832 9833 unsigned ShiftElts, InsertAtByte; 9834 bool Swap = false; 9835 9836 // If this is a load-and-splat, we can do that with a single instruction 9837 // in some cases. However if the load has multiple uses, we don't want to 9838 // combine it because that will just produce multiple loads. 9839 bool IsPermutedLoad = false; 9840 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9841 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9842 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9843 InputLoad->hasOneUse()) { 9844 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9845 int SplatIdx = 9846 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9847 9848 // The splat index for permuted loads will be in the left half of the vector 9849 // which is strictly wider than the loaded value by 8 bytes. So we need to 9850 // adjust the splat index to point to the correct address in memory. 9851 if (IsPermutedLoad) { 9852 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9853 SplatIdx += IsFourByte ? 2 : 1; 9854 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9855 "Splat of a value outside of the loaded memory"); 9856 } 9857 9858 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9859 // For 4-byte load-and-splat, we need Power9. 9860 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9861 uint64_t Offset = 0; 9862 if (IsFourByte) 9863 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9864 else 9865 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9866 9867 SDValue BasePtr = LD->getBasePtr(); 9868 if (Offset != 0) 9869 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9870 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9871 SDValue Ops[] = { 9872 LD->getChain(), // Chain 9873 BasePtr, // BasePtr 9874 DAG.getValueType(Op.getValueType()) // VT 9875 }; 9876 SDVTList VTL = 9877 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9878 SDValue LdSplt = 9879 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9880 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9881 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9882 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9883 return LdSplt; 9884 } 9885 } 9886 if (Subtarget.hasP9Vector() && 9887 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9888 isLittleEndian)) { 9889 if (Swap) 9890 std::swap(V1, V2); 9891 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9892 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9893 if (ShiftElts) { 9894 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9895 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9896 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9897 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9898 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9899 } 9900 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9901 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9902 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9903 } 9904 9905 if (Subtarget.hasPrefixInstrs()) { 9906 SDValue SplatInsertNode; 9907 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9908 return SplatInsertNode; 9909 } 9910 9911 if (Subtarget.hasP9Altivec()) { 9912 SDValue NewISDNode; 9913 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9914 return NewISDNode; 9915 9916 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9917 return NewISDNode; 9918 } 9919 9920 if (Subtarget.hasVSX() && 9921 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9922 if (Swap) 9923 std::swap(V1, V2); 9924 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9925 SDValue Conv2 = 9926 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9927 9928 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9929 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9930 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9931 } 9932 9933 if (Subtarget.hasVSX() && 9934 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9935 if (Swap) 9936 std::swap(V1, V2); 9937 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9938 SDValue Conv2 = 9939 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9940 9941 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9942 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9943 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9944 } 9945 9946 if (Subtarget.hasP9Vector()) { 9947 if (PPC::isXXBRHShuffleMask(SVOp)) { 9948 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9949 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9950 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9951 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9952 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9953 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9954 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9955 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9956 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9957 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9958 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9959 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9960 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9961 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9962 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9963 } 9964 } 9965 9966 if (Subtarget.hasVSX()) { 9967 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9968 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9969 9970 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9971 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9972 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9973 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9974 } 9975 9976 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9977 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9978 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9979 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9980 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9981 } 9982 } 9983 9984 // Cases that are handled by instructions that take permute immediates 9985 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9986 // selected by the instruction selector. 9987 if (V2.isUndef()) { 9988 if (PPC::isSplatShuffleMask(SVOp, 1) || 9989 PPC::isSplatShuffleMask(SVOp, 2) || 9990 PPC::isSplatShuffleMask(SVOp, 4) || 9991 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9992 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9993 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9994 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9995 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9996 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9997 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9998 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9999 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10000 (Subtarget.hasP8Altivec() && ( 10001 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10002 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10003 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10004 return Op; 10005 } 10006 } 10007 10008 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10009 // and produce a fixed permutation. If any of these match, do not lower to 10010 // VPERM. 10011 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10012 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10013 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10014 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10015 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10016 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10017 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10018 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10019 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10020 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10021 (Subtarget.hasP8Altivec() && ( 10022 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10023 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10024 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10025 return Op; 10026 10027 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10028 // perfect shuffle table to emit an optimal matching sequence. 10029 ArrayRef<int> PermMask = SVOp->getMask(); 10030 10031 unsigned PFIndexes[4]; 10032 bool isFourElementShuffle = true; 10033 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10034 unsigned EltNo = 8; // Start out undef. 10035 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10036 if (PermMask[i*4+j] < 0) 10037 continue; // Undef, ignore it. 10038 10039 unsigned ByteSource = PermMask[i*4+j]; 10040 if ((ByteSource & 3) != j) { 10041 isFourElementShuffle = false; 10042 break; 10043 } 10044 10045 if (EltNo == 8) { 10046 EltNo = ByteSource/4; 10047 } else if (EltNo != ByteSource/4) { 10048 isFourElementShuffle = false; 10049 break; 10050 } 10051 } 10052 PFIndexes[i] = EltNo; 10053 } 10054 10055 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10056 // perfect shuffle vector to determine if it is cost effective to do this as 10057 // discrete instructions, or whether we should use a vperm. 10058 // For now, we skip this for little endian until such time as we have a 10059 // little-endian perfect shuffle table. 10060 if (isFourElementShuffle && !isLittleEndian) { 10061 // Compute the index in the perfect shuffle table. 10062 unsigned PFTableIndex = 10063 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10064 10065 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10066 unsigned Cost = (PFEntry >> 30); 10067 10068 // Determining when to avoid vperm is tricky. Many things affect the cost 10069 // of vperm, particularly how many times the perm mask needs to be computed. 10070 // For example, if the perm mask can be hoisted out of a loop or is already 10071 // used (perhaps because there are multiple permutes with the same shuffle 10072 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10073 // the loop requires an extra register. 10074 // 10075 // As a compromise, we only emit discrete instructions if the shuffle can be 10076 // generated in 3 or fewer operations. When we have loop information 10077 // available, if this block is within a loop, we should avoid using vperm 10078 // for 3-operation perms and use a constant pool load instead. 10079 if (Cost < 3) 10080 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10081 } 10082 10083 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10084 // vector that will get spilled to the constant pool. 10085 if (V2.isUndef()) V2 = V1; 10086 10087 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10088 // that it is in input element units, not in bytes. Convert now. 10089 10090 // For little endian, the order of the input vectors is reversed, and 10091 // the permutation mask is complemented with respect to 31. This is 10092 // necessary to produce proper semantics with the big-endian-biased vperm 10093 // instruction. 10094 EVT EltVT = V1.getValueType().getVectorElementType(); 10095 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10096 10097 SmallVector<SDValue, 16> ResultMask; 10098 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10099 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10100 10101 for (unsigned j = 0; j != BytesPerElement; ++j) 10102 if (isLittleEndian) 10103 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10104 dl, MVT::i32)); 10105 else 10106 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10107 MVT::i32)); 10108 } 10109 10110 ShufflesHandledWithVPERM++; 10111 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10112 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10113 LLVM_DEBUG(SVOp->dump()); 10114 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10115 LLVM_DEBUG(VPermMask.dump()); 10116 10117 if (isLittleEndian) 10118 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10119 V2, V1, VPermMask); 10120 else 10121 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10122 V1, V2, VPermMask); 10123 } 10124 10125 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10126 /// vector comparison. If it is, return true and fill in Opc/isDot with 10127 /// information about the intrinsic. 10128 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10129 bool &isDot, const PPCSubtarget &Subtarget) { 10130 unsigned IntrinsicID = 10131 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10132 CompareOpc = -1; 10133 isDot = false; 10134 switch (IntrinsicID) { 10135 default: 10136 return false; 10137 // Comparison predicates. 10138 case Intrinsic::ppc_altivec_vcmpbfp_p: 10139 CompareOpc = 966; 10140 isDot = true; 10141 break; 10142 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10143 CompareOpc = 198; 10144 isDot = true; 10145 break; 10146 case Intrinsic::ppc_altivec_vcmpequb_p: 10147 CompareOpc = 6; 10148 isDot = true; 10149 break; 10150 case Intrinsic::ppc_altivec_vcmpequh_p: 10151 CompareOpc = 70; 10152 isDot = true; 10153 break; 10154 case Intrinsic::ppc_altivec_vcmpequw_p: 10155 CompareOpc = 134; 10156 isDot = true; 10157 break; 10158 case Intrinsic::ppc_altivec_vcmpequd_p: 10159 if (Subtarget.hasP8Altivec()) { 10160 CompareOpc = 199; 10161 isDot = true; 10162 } else 10163 return false; 10164 break; 10165 case Intrinsic::ppc_altivec_vcmpneb_p: 10166 case Intrinsic::ppc_altivec_vcmpneh_p: 10167 case Intrinsic::ppc_altivec_vcmpnew_p: 10168 case Intrinsic::ppc_altivec_vcmpnezb_p: 10169 case Intrinsic::ppc_altivec_vcmpnezh_p: 10170 case Intrinsic::ppc_altivec_vcmpnezw_p: 10171 if (Subtarget.hasP9Altivec()) { 10172 switch (IntrinsicID) { 10173 default: 10174 llvm_unreachable("Unknown comparison intrinsic."); 10175 case Intrinsic::ppc_altivec_vcmpneb_p: 10176 CompareOpc = 7; 10177 break; 10178 case Intrinsic::ppc_altivec_vcmpneh_p: 10179 CompareOpc = 71; 10180 break; 10181 case Intrinsic::ppc_altivec_vcmpnew_p: 10182 CompareOpc = 135; 10183 break; 10184 case Intrinsic::ppc_altivec_vcmpnezb_p: 10185 CompareOpc = 263; 10186 break; 10187 case Intrinsic::ppc_altivec_vcmpnezh_p: 10188 CompareOpc = 327; 10189 break; 10190 case Intrinsic::ppc_altivec_vcmpnezw_p: 10191 CompareOpc = 391; 10192 break; 10193 } 10194 isDot = true; 10195 } else 10196 return false; 10197 break; 10198 case Intrinsic::ppc_altivec_vcmpgefp_p: 10199 CompareOpc = 454; 10200 isDot = true; 10201 break; 10202 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10203 CompareOpc = 710; 10204 isDot = true; 10205 break; 10206 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10207 CompareOpc = 774; 10208 isDot = true; 10209 break; 10210 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10211 CompareOpc = 838; 10212 isDot = true; 10213 break; 10214 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10215 CompareOpc = 902; 10216 isDot = true; 10217 break; 10218 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10219 if (Subtarget.hasP8Altivec()) { 10220 CompareOpc = 967; 10221 isDot = true; 10222 } else 10223 return false; 10224 break; 10225 case Intrinsic::ppc_altivec_vcmpgtub_p: 10226 CompareOpc = 518; 10227 isDot = true; 10228 break; 10229 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10230 CompareOpc = 582; 10231 isDot = true; 10232 break; 10233 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10234 CompareOpc = 646; 10235 isDot = true; 10236 break; 10237 case Intrinsic::ppc_altivec_vcmpgtud_p: 10238 if (Subtarget.hasP8Altivec()) { 10239 CompareOpc = 711; 10240 isDot = true; 10241 } else 10242 return false; 10243 break; 10244 10245 case Intrinsic::ppc_altivec_vcmpequq: 10246 case Intrinsic::ppc_altivec_vcmpgtsq: 10247 case Intrinsic::ppc_altivec_vcmpgtuq: 10248 if (!Subtarget.isISA3_1()) 10249 return false; 10250 switch (IntrinsicID) { 10251 default: 10252 llvm_unreachable("Unknown comparison intrinsic."); 10253 case Intrinsic::ppc_altivec_vcmpequq: 10254 CompareOpc = 455; 10255 break; 10256 case Intrinsic::ppc_altivec_vcmpgtsq: 10257 CompareOpc = 903; 10258 break; 10259 case Intrinsic::ppc_altivec_vcmpgtuq: 10260 CompareOpc = 647; 10261 break; 10262 } 10263 break; 10264 10265 // VSX predicate comparisons use the same infrastructure 10266 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10267 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10268 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10269 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10270 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10271 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10272 if (Subtarget.hasVSX()) { 10273 switch (IntrinsicID) { 10274 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10275 CompareOpc = 99; 10276 break; 10277 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10278 CompareOpc = 115; 10279 break; 10280 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10281 CompareOpc = 107; 10282 break; 10283 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10284 CompareOpc = 67; 10285 break; 10286 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10287 CompareOpc = 83; 10288 break; 10289 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10290 CompareOpc = 75; 10291 break; 10292 } 10293 isDot = true; 10294 } else 10295 return false; 10296 break; 10297 10298 // Normal Comparisons. 10299 case Intrinsic::ppc_altivec_vcmpbfp: 10300 CompareOpc = 966; 10301 break; 10302 case Intrinsic::ppc_altivec_vcmpeqfp: 10303 CompareOpc = 198; 10304 break; 10305 case Intrinsic::ppc_altivec_vcmpequb: 10306 CompareOpc = 6; 10307 break; 10308 case Intrinsic::ppc_altivec_vcmpequh: 10309 CompareOpc = 70; 10310 break; 10311 case Intrinsic::ppc_altivec_vcmpequw: 10312 CompareOpc = 134; 10313 break; 10314 case Intrinsic::ppc_altivec_vcmpequd: 10315 if (Subtarget.hasP8Altivec()) 10316 CompareOpc = 199; 10317 else 10318 return false; 10319 break; 10320 case Intrinsic::ppc_altivec_vcmpneb: 10321 case Intrinsic::ppc_altivec_vcmpneh: 10322 case Intrinsic::ppc_altivec_vcmpnew: 10323 case Intrinsic::ppc_altivec_vcmpnezb: 10324 case Intrinsic::ppc_altivec_vcmpnezh: 10325 case Intrinsic::ppc_altivec_vcmpnezw: 10326 if (Subtarget.hasP9Altivec()) 10327 switch (IntrinsicID) { 10328 default: 10329 llvm_unreachable("Unknown comparison intrinsic."); 10330 case Intrinsic::ppc_altivec_vcmpneb: 10331 CompareOpc = 7; 10332 break; 10333 case Intrinsic::ppc_altivec_vcmpneh: 10334 CompareOpc = 71; 10335 break; 10336 case Intrinsic::ppc_altivec_vcmpnew: 10337 CompareOpc = 135; 10338 break; 10339 case Intrinsic::ppc_altivec_vcmpnezb: 10340 CompareOpc = 263; 10341 break; 10342 case Intrinsic::ppc_altivec_vcmpnezh: 10343 CompareOpc = 327; 10344 break; 10345 case Intrinsic::ppc_altivec_vcmpnezw: 10346 CompareOpc = 391; 10347 break; 10348 } 10349 else 10350 return false; 10351 break; 10352 case Intrinsic::ppc_altivec_vcmpgefp: 10353 CompareOpc = 454; 10354 break; 10355 case Intrinsic::ppc_altivec_vcmpgtfp: 10356 CompareOpc = 710; 10357 break; 10358 case Intrinsic::ppc_altivec_vcmpgtsb: 10359 CompareOpc = 774; 10360 break; 10361 case Intrinsic::ppc_altivec_vcmpgtsh: 10362 CompareOpc = 838; 10363 break; 10364 case Intrinsic::ppc_altivec_vcmpgtsw: 10365 CompareOpc = 902; 10366 break; 10367 case Intrinsic::ppc_altivec_vcmpgtsd: 10368 if (Subtarget.hasP8Altivec()) 10369 CompareOpc = 967; 10370 else 10371 return false; 10372 break; 10373 case Intrinsic::ppc_altivec_vcmpgtub: 10374 CompareOpc = 518; 10375 break; 10376 case Intrinsic::ppc_altivec_vcmpgtuh: 10377 CompareOpc = 582; 10378 break; 10379 case Intrinsic::ppc_altivec_vcmpgtuw: 10380 CompareOpc = 646; 10381 break; 10382 case Intrinsic::ppc_altivec_vcmpgtud: 10383 if (Subtarget.hasP8Altivec()) 10384 CompareOpc = 711; 10385 else 10386 return false; 10387 break; 10388 case Intrinsic::ppc_altivec_vcmpequq_p: 10389 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10390 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10391 if (!Subtarget.isISA3_1()) 10392 return false; 10393 switch (IntrinsicID) { 10394 default: 10395 llvm_unreachable("Unknown comparison intrinsic."); 10396 case Intrinsic::ppc_altivec_vcmpequq_p: 10397 CompareOpc = 455; 10398 break; 10399 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10400 CompareOpc = 903; 10401 break; 10402 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10403 CompareOpc = 647; 10404 break; 10405 } 10406 isDot = true; 10407 break; 10408 } 10409 return true; 10410 } 10411 10412 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10413 /// lower, do it, otherwise return null. 10414 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10415 SelectionDAG &DAG) const { 10416 unsigned IntrinsicID = 10417 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10418 10419 SDLoc dl(Op); 10420 10421 switch (IntrinsicID) { 10422 case Intrinsic::thread_pointer: 10423 // Reads the thread pointer register, used for __builtin_thread_pointer. 10424 if (Subtarget.isPPC64()) 10425 return DAG.getRegister(PPC::X13, MVT::i64); 10426 return DAG.getRegister(PPC::R2, MVT::i32); 10427 10428 case Intrinsic::ppc_mma_disassemble_acc: 10429 case Intrinsic::ppc_mma_disassemble_pair: { 10430 int NumVecs = 2; 10431 SDValue WideVec = Op.getOperand(1); 10432 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10433 NumVecs = 4; 10434 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10435 } 10436 SmallVector<SDValue, 4> RetOps; 10437 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10438 SDValue Extract = DAG.getNode( 10439 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10440 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10441 : VecNo, 10442 dl, MVT::i64)); 10443 RetOps.push_back(Extract); 10444 } 10445 return DAG.getMergeValues(RetOps, dl); 10446 } 10447 } 10448 10449 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10450 // opcode number of the comparison. 10451 int CompareOpc; 10452 bool isDot; 10453 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10454 return SDValue(); // Don't custom lower most intrinsics. 10455 10456 // If this is a non-dot comparison, make the VCMP node and we are done. 10457 if (!isDot) { 10458 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10459 Op.getOperand(1), Op.getOperand(2), 10460 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10461 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10462 } 10463 10464 // Create the PPCISD altivec 'dot' comparison node. 10465 SDValue Ops[] = { 10466 Op.getOperand(2), // LHS 10467 Op.getOperand(3), // RHS 10468 DAG.getConstant(CompareOpc, dl, MVT::i32) 10469 }; 10470 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10471 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10472 10473 // Now that we have the comparison, emit a copy from the CR to a GPR. 10474 // This is flagged to the above dot comparison. 10475 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10476 DAG.getRegister(PPC::CR6, MVT::i32), 10477 CompNode.getValue(1)); 10478 10479 // Unpack the result based on how the target uses it. 10480 unsigned BitNo; // Bit # of CR6. 10481 bool InvertBit; // Invert result? 10482 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10483 default: // Can't happen, don't crash on invalid number though. 10484 case 0: // Return the value of the EQ bit of CR6. 10485 BitNo = 0; InvertBit = false; 10486 break; 10487 case 1: // Return the inverted value of the EQ bit of CR6. 10488 BitNo = 0; InvertBit = true; 10489 break; 10490 case 2: // Return the value of the LT bit of CR6. 10491 BitNo = 2; InvertBit = false; 10492 break; 10493 case 3: // Return the inverted value of the LT bit of CR6. 10494 BitNo = 2; InvertBit = true; 10495 break; 10496 } 10497 10498 // Shift the bit into the low position. 10499 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10500 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10501 // Isolate the bit. 10502 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10503 DAG.getConstant(1, dl, MVT::i32)); 10504 10505 // If we are supposed to, toggle the bit. 10506 if (InvertBit) 10507 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10508 DAG.getConstant(1, dl, MVT::i32)); 10509 return Flags; 10510 } 10511 10512 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10513 SelectionDAG &DAG) const { 10514 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10515 // the beginning of the argument list. 10516 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10517 SDLoc DL(Op); 10518 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10519 case Intrinsic::ppc_cfence: { 10520 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10521 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10522 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10523 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10524 Op.getOperand(ArgStart + 1)), 10525 Op.getOperand(0)), 10526 0); 10527 } 10528 default: 10529 break; 10530 } 10531 return SDValue(); 10532 } 10533 10534 // Lower scalar BSWAP64 to xxbrd. 10535 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10536 SDLoc dl(Op); 10537 // MTVSRDD 10538 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10539 Op.getOperand(0)); 10540 // XXBRD 10541 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10542 // MFVSRD 10543 int VectorIndex = 0; 10544 if (Subtarget.isLittleEndian()) 10545 VectorIndex = 1; 10546 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10547 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10548 return Op; 10549 } 10550 10551 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10552 // compared to a value that is atomically loaded (atomic loads zero-extend). 10553 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10554 SelectionDAG &DAG) const { 10555 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10556 "Expecting an atomic compare-and-swap here."); 10557 SDLoc dl(Op); 10558 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10559 EVT MemVT = AtomicNode->getMemoryVT(); 10560 if (MemVT.getSizeInBits() >= 32) 10561 return Op; 10562 10563 SDValue CmpOp = Op.getOperand(2); 10564 // If this is already correctly zero-extended, leave it alone. 10565 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10566 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10567 return Op; 10568 10569 // Clear the high bits of the compare operand. 10570 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10571 SDValue NewCmpOp = 10572 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10573 DAG.getConstant(MaskVal, dl, MVT::i32)); 10574 10575 // Replace the existing compare operand with the properly zero-extended one. 10576 SmallVector<SDValue, 4> Ops; 10577 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10578 Ops.push_back(AtomicNode->getOperand(i)); 10579 Ops[2] = NewCmpOp; 10580 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10581 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10582 auto NodeTy = 10583 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10584 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10585 } 10586 10587 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10588 SelectionDAG &DAG) const { 10589 SDLoc dl(Op); 10590 // Create a stack slot that is 16-byte aligned. 10591 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10592 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10593 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10594 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10595 10596 // Store the input value into Value#0 of the stack slot. 10597 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10598 MachinePointerInfo()); 10599 // Load it out. 10600 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10601 } 10602 10603 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10604 SelectionDAG &DAG) const { 10605 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10606 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10607 10608 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10609 // We have legal lowering for constant indices but not for variable ones. 10610 if (!C) 10611 return SDValue(); 10612 10613 EVT VT = Op.getValueType(); 10614 SDLoc dl(Op); 10615 SDValue V1 = Op.getOperand(0); 10616 SDValue V2 = Op.getOperand(1); 10617 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10618 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10619 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10620 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10621 unsigned InsertAtElement = C->getZExtValue(); 10622 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10623 if (Subtarget.isLittleEndian()) { 10624 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10625 } 10626 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10627 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10628 } 10629 return Op; 10630 } 10631 10632 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10633 SelectionDAG &DAG) const { 10634 SDLoc dl(Op); 10635 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10636 SDValue LoadChain = LN->getChain(); 10637 SDValue BasePtr = LN->getBasePtr(); 10638 EVT VT = Op.getValueType(); 10639 10640 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10641 return Op; 10642 10643 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10644 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10645 // 2 or 4 vsx registers. 10646 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10647 "Type unsupported without MMA"); 10648 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10649 "Type unsupported without paired vector support"); 10650 Align Alignment = LN->getAlign(); 10651 SmallVector<SDValue, 4> Loads; 10652 SmallVector<SDValue, 4> LoadChains; 10653 unsigned NumVecs = VT.getSizeInBits() / 128; 10654 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10655 SDValue Load = 10656 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10657 LN->getPointerInfo().getWithOffset(Idx * 16), 10658 commonAlignment(Alignment, Idx * 16), 10659 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10660 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10661 DAG.getConstant(16, dl, BasePtr.getValueType())); 10662 Loads.push_back(Load); 10663 LoadChains.push_back(Load.getValue(1)); 10664 } 10665 if (Subtarget.isLittleEndian()) { 10666 std::reverse(Loads.begin(), Loads.end()); 10667 std::reverse(LoadChains.begin(), LoadChains.end()); 10668 } 10669 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10670 SDValue Value = 10671 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10672 dl, VT, Loads); 10673 SDValue RetOps[] = {Value, TF}; 10674 return DAG.getMergeValues(RetOps, dl); 10675 } 10676 10677 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10678 SelectionDAG &DAG) const { 10679 SDLoc dl(Op); 10680 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10681 SDValue StoreChain = SN->getChain(); 10682 SDValue BasePtr = SN->getBasePtr(); 10683 SDValue Value = SN->getValue(); 10684 EVT StoreVT = Value.getValueType(); 10685 10686 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10687 return Op; 10688 10689 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10690 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10691 // underlying registers individually. 10692 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10693 "Type unsupported without MMA"); 10694 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10695 "Type unsupported without paired vector support"); 10696 Align Alignment = SN->getAlign(); 10697 SmallVector<SDValue, 4> Stores; 10698 unsigned NumVecs = 2; 10699 if (StoreVT == MVT::v512i1) { 10700 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10701 NumVecs = 4; 10702 } 10703 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10704 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10705 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10706 DAG.getConstant(VecNum, dl, MVT::i64)); 10707 SDValue Store = 10708 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10709 SN->getPointerInfo().getWithOffset(Idx * 16), 10710 commonAlignment(Alignment, Idx * 16), 10711 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10712 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10713 DAG.getConstant(16, dl, BasePtr.getValueType())); 10714 Stores.push_back(Store); 10715 } 10716 SDValue TF = DAG.getTokenFactor(dl, Stores); 10717 return TF; 10718 } 10719 10720 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10721 SDLoc dl(Op); 10722 if (Op.getValueType() == MVT::v4i32) { 10723 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10724 10725 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10726 // +16 as shift amt. 10727 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10728 SDValue RHSSwap = // = vrlw RHS, 16 10729 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10730 10731 // Shrinkify inputs to v8i16. 10732 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10733 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10734 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10735 10736 // Low parts multiplied together, generating 32-bit results (we ignore the 10737 // top parts). 10738 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10739 LHS, RHS, DAG, dl, MVT::v4i32); 10740 10741 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10742 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10743 // Shift the high parts up 16 bits. 10744 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10745 Neg16, DAG, dl); 10746 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10747 } else if (Op.getValueType() == MVT::v16i8) { 10748 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10749 bool isLittleEndian = Subtarget.isLittleEndian(); 10750 10751 // Multiply the even 8-bit parts, producing 16-bit sums. 10752 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10753 LHS, RHS, DAG, dl, MVT::v8i16); 10754 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10755 10756 // Multiply the odd 8-bit parts, producing 16-bit sums. 10757 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10758 LHS, RHS, DAG, dl, MVT::v8i16); 10759 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10760 10761 // Merge the results together. Because vmuleub and vmuloub are 10762 // instructions with a big-endian bias, we must reverse the 10763 // element numbering and reverse the meaning of "odd" and "even" 10764 // when generating little endian code. 10765 int Ops[16]; 10766 for (unsigned i = 0; i != 8; ++i) { 10767 if (isLittleEndian) { 10768 Ops[i*2 ] = 2*i; 10769 Ops[i*2+1] = 2*i+16; 10770 } else { 10771 Ops[i*2 ] = 2*i+1; 10772 Ops[i*2+1] = 2*i+1+16; 10773 } 10774 } 10775 if (isLittleEndian) 10776 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10777 else 10778 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10779 } else { 10780 llvm_unreachable("Unknown mul to lower!"); 10781 } 10782 } 10783 10784 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10785 10786 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10787 10788 EVT VT = Op.getValueType(); 10789 assert(VT.isVector() && 10790 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10791 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10792 VT == MVT::v16i8) && 10793 "Unexpected vector element type!"); 10794 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10795 "Current subtarget doesn't support smax v2i64!"); 10796 10797 // For vector abs, it can be lowered to: 10798 // abs x 10799 // ==> 10800 // y = -x 10801 // smax(x, y) 10802 10803 SDLoc dl(Op); 10804 SDValue X = Op.getOperand(0); 10805 SDValue Zero = DAG.getConstant(0, dl, VT); 10806 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10807 10808 // SMAX patch https://reviews.llvm.org/D47332 10809 // hasn't landed yet, so use intrinsic first here. 10810 // TODO: Should use SMAX directly once SMAX patch landed 10811 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10812 if (VT == MVT::v2i64) 10813 BifID = Intrinsic::ppc_altivec_vmaxsd; 10814 else if (VT == MVT::v8i16) 10815 BifID = Intrinsic::ppc_altivec_vmaxsh; 10816 else if (VT == MVT::v16i8) 10817 BifID = Intrinsic::ppc_altivec_vmaxsb; 10818 10819 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10820 } 10821 10822 // Custom lowering for fpext vf32 to v2f64 10823 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10824 10825 assert(Op.getOpcode() == ISD::FP_EXTEND && 10826 "Should only be called for ISD::FP_EXTEND"); 10827 10828 // FIXME: handle extends from half precision float vectors on P9. 10829 // We only want to custom lower an extend from v2f32 to v2f64. 10830 if (Op.getValueType() != MVT::v2f64 || 10831 Op.getOperand(0).getValueType() != MVT::v2f32) 10832 return SDValue(); 10833 10834 SDLoc dl(Op); 10835 SDValue Op0 = Op.getOperand(0); 10836 10837 switch (Op0.getOpcode()) { 10838 default: 10839 return SDValue(); 10840 case ISD::EXTRACT_SUBVECTOR: { 10841 assert(Op0.getNumOperands() == 2 && 10842 isa<ConstantSDNode>(Op0->getOperand(1)) && 10843 "Node should have 2 operands with second one being a constant!"); 10844 10845 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10846 return SDValue(); 10847 10848 // Custom lower is only done for high or low doubleword. 10849 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10850 if (Idx % 2 != 0) 10851 return SDValue(); 10852 10853 // Since input is v4f32, at this point Idx is either 0 or 2. 10854 // Shift to get the doubleword position we want. 10855 int DWord = Idx >> 1; 10856 10857 // High and low word positions are different on little endian. 10858 if (Subtarget.isLittleEndian()) 10859 DWord ^= 0x1; 10860 10861 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10862 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10863 } 10864 case ISD::FADD: 10865 case ISD::FMUL: 10866 case ISD::FSUB: { 10867 SDValue NewLoad[2]; 10868 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10869 // Ensure both input are loads. 10870 SDValue LdOp = Op0.getOperand(i); 10871 if (LdOp.getOpcode() != ISD::LOAD) 10872 return SDValue(); 10873 // Generate new load node. 10874 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10875 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10876 NewLoad[i] = DAG.getMemIntrinsicNode( 10877 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10878 LD->getMemoryVT(), LD->getMemOperand()); 10879 } 10880 SDValue NewOp = 10881 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10882 NewLoad[1], Op0.getNode()->getFlags()); 10883 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10884 DAG.getConstant(0, dl, MVT::i32)); 10885 } 10886 case ISD::LOAD: { 10887 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10888 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10889 SDValue NewLd = DAG.getMemIntrinsicNode( 10890 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10891 LD->getMemoryVT(), LD->getMemOperand()); 10892 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10893 DAG.getConstant(0, dl, MVT::i32)); 10894 } 10895 } 10896 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10897 } 10898 10899 /// LowerOperation - Provide custom lowering hooks for some operations. 10900 /// 10901 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10902 switch (Op.getOpcode()) { 10903 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10904 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10905 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10906 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10907 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10908 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10909 case ISD::SETCC: return LowerSETCC(Op, DAG); 10910 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10911 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10912 10913 // Variable argument lowering. 10914 case ISD::VASTART: return LowerVASTART(Op, DAG); 10915 case ISD::VAARG: return LowerVAARG(Op, DAG); 10916 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10917 10918 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10919 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10920 case ISD::GET_DYNAMIC_AREA_OFFSET: 10921 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10922 10923 // Exception handling lowering. 10924 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10925 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10926 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10927 10928 case ISD::LOAD: return LowerLOAD(Op, DAG); 10929 case ISD::STORE: return LowerSTORE(Op, DAG); 10930 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10931 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10932 case ISD::STRICT_FP_TO_UINT: 10933 case ISD::STRICT_FP_TO_SINT: 10934 case ISD::FP_TO_UINT: 10935 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10936 case ISD::STRICT_UINT_TO_FP: 10937 case ISD::STRICT_SINT_TO_FP: 10938 case ISD::UINT_TO_FP: 10939 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10940 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10941 10942 // Lower 64-bit shifts. 10943 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10944 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10945 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10946 10947 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10948 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10949 10950 // Vector-related lowering. 10951 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10952 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10953 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10954 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10955 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10956 case ISD::MUL: return LowerMUL(Op, DAG); 10957 case ISD::ABS: return LowerABS(Op, DAG); 10958 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10959 case ISD::ROTL: return LowerROTL(Op, DAG); 10960 10961 // For counter-based loop handling. 10962 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10963 10964 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10965 10966 // Frame & Return address. 10967 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10968 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10969 10970 case ISD::INTRINSIC_VOID: 10971 return LowerINTRINSIC_VOID(Op, DAG); 10972 case ISD::BSWAP: 10973 return LowerBSWAP(Op, DAG); 10974 case ISD::ATOMIC_CMP_SWAP: 10975 return LowerATOMIC_CMP_SWAP(Op, DAG); 10976 } 10977 } 10978 10979 void PPCTargetLowering::LowerOperationWrapper(SDNode *N, 10980 SmallVectorImpl<SDValue> &Results, 10981 SelectionDAG &DAG) const { 10982 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10983 10984 if (!Res.getNode()) 10985 return; 10986 10987 // Take the return value as-is if original node has only one result. 10988 if (N->getNumValues() == 1) { 10989 Results.push_back(Res); 10990 return; 10991 } 10992 10993 // New node should have the same number of results. 10994 assert((N->getNumValues() == Res->getNumValues()) && 10995 "Lowering returned the wrong number of results!"); 10996 10997 for (unsigned i = 0; i < N->getNumValues(); ++i) 10998 Results.push_back(Res.getValue(i)); 10999 } 11000 11001 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11002 SmallVectorImpl<SDValue>&Results, 11003 SelectionDAG &DAG) const { 11004 SDLoc dl(N); 11005 switch (N->getOpcode()) { 11006 default: 11007 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11008 case ISD::READCYCLECOUNTER: { 11009 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11010 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11011 11012 Results.push_back( 11013 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11014 Results.push_back(RTB.getValue(2)); 11015 break; 11016 } 11017 case ISD::INTRINSIC_W_CHAIN: { 11018 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11019 Intrinsic::loop_decrement) 11020 break; 11021 11022 assert(N->getValueType(0) == MVT::i1 && 11023 "Unexpected result type for CTR decrement intrinsic"); 11024 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11025 N->getValueType(0)); 11026 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11027 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11028 N->getOperand(1)); 11029 11030 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11031 Results.push_back(NewInt.getValue(1)); 11032 break; 11033 } 11034 case ISD::VAARG: { 11035 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11036 return; 11037 11038 EVT VT = N->getValueType(0); 11039 11040 if (VT == MVT::i64) { 11041 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11042 11043 Results.push_back(NewNode); 11044 Results.push_back(NewNode.getValue(1)); 11045 } 11046 return; 11047 } 11048 case ISD::STRICT_FP_TO_SINT: 11049 case ISD::STRICT_FP_TO_UINT: 11050 case ISD::FP_TO_SINT: 11051 case ISD::FP_TO_UINT: 11052 // LowerFP_TO_INT() can only handle f32 and f64. 11053 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11054 MVT::ppcf128) 11055 return; 11056 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11057 return; 11058 case ISD::TRUNCATE: { 11059 if (!N->getValueType(0).isVector()) 11060 return; 11061 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11062 if (Lowered) 11063 Results.push_back(Lowered); 11064 return; 11065 } 11066 case ISD::FSHL: 11067 case ISD::FSHR: 11068 // Don't handle funnel shifts here. 11069 return; 11070 case ISD::BITCAST: 11071 // Don't handle bitcast here. 11072 return; 11073 case ISD::FP_EXTEND: 11074 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11075 if (Lowered) 11076 Results.push_back(Lowered); 11077 return; 11078 } 11079 } 11080 11081 //===----------------------------------------------------------------------===// 11082 // Other Lowering Code 11083 //===----------------------------------------------------------------------===// 11084 11085 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11086 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11087 Function *Func = Intrinsic::getDeclaration(M, Id); 11088 return Builder.CreateCall(Func, {}); 11089 } 11090 11091 // The mappings for emitLeading/TrailingFence is taken from 11092 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11093 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11094 Instruction *Inst, 11095 AtomicOrdering Ord) const { 11096 if (Ord == AtomicOrdering::SequentiallyConsistent) 11097 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11098 if (isReleaseOrStronger(Ord)) 11099 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11100 return nullptr; 11101 } 11102 11103 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11104 Instruction *Inst, 11105 AtomicOrdering Ord) const { 11106 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11107 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11108 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11109 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11110 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11111 return Builder.CreateCall( 11112 Intrinsic::getDeclaration( 11113 Builder.GetInsertBlock()->getParent()->getParent(), 11114 Intrinsic::ppc_cfence, {Inst->getType()}), 11115 {Inst}); 11116 // FIXME: Can use isync for rmw operation. 11117 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11118 } 11119 return nullptr; 11120 } 11121 11122 MachineBasicBlock * 11123 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11124 unsigned AtomicSize, 11125 unsigned BinOpcode, 11126 unsigned CmpOpcode, 11127 unsigned CmpPred) const { 11128 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11129 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11130 11131 auto LoadMnemonic = PPC::LDARX; 11132 auto StoreMnemonic = PPC::STDCX; 11133 switch (AtomicSize) { 11134 default: 11135 llvm_unreachable("Unexpected size of atomic entity"); 11136 case 1: 11137 LoadMnemonic = PPC::LBARX; 11138 StoreMnemonic = PPC::STBCX; 11139 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11140 break; 11141 case 2: 11142 LoadMnemonic = PPC::LHARX; 11143 StoreMnemonic = PPC::STHCX; 11144 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11145 break; 11146 case 4: 11147 LoadMnemonic = PPC::LWARX; 11148 StoreMnemonic = PPC::STWCX; 11149 break; 11150 case 8: 11151 LoadMnemonic = PPC::LDARX; 11152 StoreMnemonic = PPC::STDCX; 11153 break; 11154 } 11155 11156 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11157 MachineFunction *F = BB->getParent(); 11158 MachineFunction::iterator It = ++BB->getIterator(); 11159 11160 Register dest = MI.getOperand(0).getReg(); 11161 Register ptrA = MI.getOperand(1).getReg(); 11162 Register ptrB = MI.getOperand(2).getReg(); 11163 Register incr = MI.getOperand(3).getReg(); 11164 DebugLoc dl = MI.getDebugLoc(); 11165 11166 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11167 MachineBasicBlock *loop2MBB = 11168 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11169 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11170 F->insert(It, loopMBB); 11171 if (CmpOpcode) 11172 F->insert(It, loop2MBB); 11173 F->insert(It, exitMBB); 11174 exitMBB->splice(exitMBB->begin(), BB, 11175 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11176 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11177 11178 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11179 Register TmpReg = (!BinOpcode) ? incr : 11180 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11181 : &PPC::GPRCRegClass); 11182 11183 // thisMBB: 11184 // ... 11185 // fallthrough --> loopMBB 11186 BB->addSuccessor(loopMBB); 11187 11188 // loopMBB: 11189 // l[wd]arx dest, ptr 11190 // add r0, dest, incr 11191 // st[wd]cx. r0, ptr 11192 // bne- loopMBB 11193 // fallthrough --> exitMBB 11194 11195 // For max/min... 11196 // loopMBB: 11197 // l[wd]arx dest, ptr 11198 // cmpl?[wd] incr, dest 11199 // bgt exitMBB 11200 // loop2MBB: 11201 // st[wd]cx. dest, ptr 11202 // bne- loopMBB 11203 // fallthrough --> exitMBB 11204 11205 BB = loopMBB; 11206 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11207 .addReg(ptrA).addReg(ptrB); 11208 if (BinOpcode) 11209 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11210 if (CmpOpcode) { 11211 // Signed comparisons of byte or halfword values must be sign-extended. 11212 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11213 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11214 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11215 ExtReg).addReg(dest); 11216 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11217 .addReg(incr).addReg(ExtReg); 11218 } else 11219 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11220 .addReg(incr).addReg(dest); 11221 11222 BuildMI(BB, dl, TII->get(PPC::BCC)) 11223 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11224 BB->addSuccessor(loop2MBB); 11225 BB->addSuccessor(exitMBB); 11226 BB = loop2MBB; 11227 } 11228 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11229 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11230 BuildMI(BB, dl, TII->get(PPC::BCC)) 11231 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11232 BB->addSuccessor(loopMBB); 11233 BB->addSuccessor(exitMBB); 11234 11235 // exitMBB: 11236 // ... 11237 BB = exitMBB; 11238 return BB; 11239 } 11240 11241 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11242 MachineInstr &MI, MachineBasicBlock *BB, 11243 bool is8bit, // operation 11244 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11245 // If we support part-word atomic mnemonics, just use them 11246 if (Subtarget.hasPartwordAtomics()) 11247 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11248 CmpPred); 11249 11250 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11251 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11252 // In 64 bit mode we have to use 64 bits for addresses, even though the 11253 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11254 // registers without caring whether they're 32 or 64, but here we're 11255 // doing actual arithmetic on the addresses. 11256 bool is64bit = Subtarget.isPPC64(); 11257 bool isLittleEndian = Subtarget.isLittleEndian(); 11258 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11259 11260 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11261 MachineFunction *F = BB->getParent(); 11262 MachineFunction::iterator It = ++BB->getIterator(); 11263 11264 Register dest = MI.getOperand(0).getReg(); 11265 Register ptrA = MI.getOperand(1).getReg(); 11266 Register ptrB = MI.getOperand(2).getReg(); 11267 Register incr = MI.getOperand(3).getReg(); 11268 DebugLoc dl = MI.getDebugLoc(); 11269 11270 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11271 MachineBasicBlock *loop2MBB = 11272 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11273 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11274 F->insert(It, loopMBB); 11275 if (CmpOpcode) 11276 F->insert(It, loop2MBB); 11277 F->insert(It, exitMBB); 11278 exitMBB->splice(exitMBB->begin(), BB, 11279 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11280 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11281 11282 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11283 const TargetRegisterClass *RC = 11284 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11285 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11286 11287 Register PtrReg = RegInfo.createVirtualRegister(RC); 11288 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11289 Register ShiftReg = 11290 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11291 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11292 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11293 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11294 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11295 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11296 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11297 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11298 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11299 Register Ptr1Reg; 11300 Register TmpReg = 11301 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11302 11303 // thisMBB: 11304 // ... 11305 // fallthrough --> loopMBB 11306 BB->addSuccessor(loopMBB); 11307 11308 // The 4-byte load must be aligned, while a char or short may be 11309 // anywhere in the word. Hence all this nasty bookkeeping code. 11310 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11311 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11312 // xori shift, shift1, 24 [16] 11313 // rlwinm ptr, ptr1, 0, 0, 29 11314 // slw incr2, incr, shift 11315 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11316 // slw mask, mask2, shift 11317 // loopMBB: 11318 // lwarx tmpDest, ptr 11319 // add tmp, tmpDest, incr2 11320 // andc tmp2, tmpDest, mask 11321 // and tmp3, tmp, mask 11322 // or tmp4, tmp3, tmp2 11323 // stwcx. tmp4, ptr 11324 // bne- loopMBB 11325 // fallthrough --> exitMBB 11326 // srw dest, tmpDest, shift 11327 if (ptrA != ZeroReg) { 11328 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11329 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11330 .addReg(ptrA) 11331 .addReg(ptrB); 11332 } else { 11333 Ptr1Reg = ptrB; 11334 } 11335 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11336 // mode. 11337 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11338 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11339 .addImm(3) 11340 .addImm(27) 11341 .addImm(is8bit ? 28 : 27); 11342 if (!isLittleEndian) 11343 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11344 .addReg(Shift1Reg) 11345 .addImm(is8bit ? 24 : 16); 11346 if (is64bit) 11347 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11348 .addReg(Ptr1Reg) 11349 .addImm(0) 11350 .addImm(61); 11351 else 11352 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11353 .addReg(Ptr1Reg) 11354 .addImm(0) 11355 .addImm(0) 11356 .addImm(29); 11357 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11358 if (is8bit) 11359 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11360 else { 11361 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11362 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11363 .addReg(Mask3Reg) 11364 .addImm(65535); 11365 } 11366 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11367 .addReg(Mask2Reg) 11368 .addReg(ShiftReg); 11369 11370 BB = loopMBB; 11371 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11372 .addReg(ZeroReg) 11373 .addReg(PtrReg); 11374 if (BinOpcode) 11375 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11376 .addReg(Incr2Reg) 11377 .addReg(TmpDestReg); 11378 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11379 .addReg(TmpDestReg) 11380 .addReg(MaskReg); 11381 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11382 if (CmpOpcode) { 11383 // For unsigned comparisons, we can directly compare the shifted values. 11384 // For signed comparisons we shift and sign extend. 11385 Register SReg = RegInfo.createVirtualRegister(GPRC); 11386 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11387 .addReg(TmpDestReg) 11388 .addReg(MaskReg); 11389 unsigned ValueReg = SReg; 11390 unsigned CmpReg = Incr2Reg; 11391 if (CmpOpcode == PPC::CMPW) { 11392 ValueReg = RegInfo.createVirtualRegister(GPRC); 11393 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11394 .addReg(SReg) 11395 .addReg(ShiftReg); 11396 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11397 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11398 .addReg(ValueReg); 11399 ValueReg = ValueSReg; 11400 CmpReg = incr; 11401 } 11402 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11403 .addReg(CmpReg) 11404 .addReg(ValueReg); 11405 BuildMI(BB, dl, TII->get(PPC::BCC)) 11406 .addImm(CmpPred) 11407 .addReg(PPC::CR0) 11408 .addMBB(exitMBB); 11409 BB->addSuccessor(loop2MBB); 11410 BB->addSuccessor(exitMBB); 11411 BB = loop2MBB; 11412 } 11413 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11414 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11415 .addReg(Tmp4Reg) 11416 .addReg(ZeroReg) 11417 .addReg(PtrReg); 11418 BuildMI(BB, dl, TII->get(PPC::BCC)) 11419 .addImm(PPC::PRED_NE) 11420 .addReg(PPC::CR0) 11421 .addMBB(loopMBB); 11422 BB->addSuccessor(loopMBB); 11423 BB->addSuccessor(exitMBB); 11424 11425 // exitMBB: 11426 // ... 11427 BB = exitMBB; 11428 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11429 .addReg(TmpDestReg) 11430 .addReg(ShiftReg); 11431 return BB; 11432 } 11433 11434 llvm::MachineBasicBlock * 11435 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11436 MachineBasicBlock *MBB) const { 11437 DebugLoc DL = MI.getDebugLoc(); 11438 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11439 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11440 11441 MachineFunction *MF = MBB->getParent(); 11442 MachineRegisterInfo &MRI = MF->getRegInfo(); 11443 11444 const BasicBlock *BB = MBB->getBasicBlock(); 11445 MachineFunction::iterator I = ++MBB->getIterator(); 11446 11447 Register DstReg = MI.getOperand(0).getReg(); 11448 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11449 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11450 Register mainDstReg = MRI.createVirtualRegister(RC); 11451 Register restoreDstReg = MRI.createVirtualRegister(RC); 11452 11453 MVT PVT = getPointerTy(MF->getDataLayout()); 11454 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11455 "Invalid Pointer Size!"); 11456 // For v = setjmp(buf), we generate 11457 // 11458 // thisMBB: 11459 // SjLjSetup mainMBB 11460 // bl mainMBB 11461 // v_restore = 1 11462 // b sinkMBB 11463 // 11464 // mainMBB: 11465 // buf[LabelOffset] = LR 11466 // v_main = 0 11467 // 11468 // sinkMBB: 11469 // v = phi(main, restore) 11470 // 11471 11472 MachineBasicBlock *thisMBB = MBB; 11473 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11474 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11475 MF->insert(I, mainMBB); 11476 MF->insert(I, sinkMBB); 11477 11478 MachineInstrBuilder MIB; 11479 11480 // Transfer the remainder of BB and its successor edges to sinkMBB. 11481 sinkMBB->splice(sinkMBB->begin(), MBB, 11482 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11483 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11484 11485 // Note that the structure of the jmp_buf used here is not compatible 11486 // with that used by libc, and is not designed to be. Specifically, it 11487 // stores only those 'reserved' registers that LLVM does not otherwise 11488 // understand how to spill. Also, by convention, by the time this 11489 // intrinsic is called, Clang has already stored the frame address in the 11490 // first slot of the buffer and stack address in the third. Following the 11491 // X86 target code, we'll store the jump address in the second slot. We also 11492 // need to save the TOC pointer (R2) to handle jumps between shared 11493 // libraries, and that will be stored in the fourth slot. The thread 11494 // identifier (R13) is not affected. 11495 11496 // thisMBB: 11497 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11498 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11499 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11500 11501 // Prepare IP either in reg. 11502 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11503 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11504 Register BufReg = MI.getOperand(1).getReg(); 11505 11506 if (Subtarget.is64BitELFABI()) { 11507 setUsesTOCBasePtr(*MBB->getParent()); 11508 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11509 .addReg(PPC::X2) 11510 .addImm(TOCOffset) 11511 .addReg(BufReg) 11512 .cloneMemRefs(MI); 11513 } 11514 11515 // Naked functions never have a base pointer, and so we use r1. For all 11516 // other functions, this decision must be delayed until during PEI. 11517 unsigned BaseReg; 11518 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11519 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11520 else 11521 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11522 11523 MIB = BuildMI(*thisMBB, MI, DL, 11524 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11525 .addReg(BaseReg) 11526 .addImm(BPOffset) 11527 .addReg(BufReg) 11528 .cloneMemRefs(MI); 11529 11530 // Setup 11531 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11532 MIB.addRegMask(TRI->getNoPreservedMask()); 11533 11534 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11535 11536 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11537 .addMBB(mainMBB); 11538 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11539 11540 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11541 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11542 11543 // mainMBB: 11544 // mainDstReg = 0 11545 MIB = 11546 BuildMI(mainMBB, DL, 11547 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11548 11549 // Store IP 11550 if (Subtarget.isPPC64()) { 11551 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11552 .addReg(LabelReg) 11553 .addImm(LabelOffset) 11554 .addReg(BufReg); 11555 } else { 11556 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11557 .addReg(LabelReg) 11558 .addImm(LabelOffset) 11559 .addReg(BufReg); 11560 } 11561 MIB.cloneMemRefs(MI); 11562 11563 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11564 mainMBB->addSuccessor(sinkMBB); 11565 11566 // sinkMBB: 11567 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11568 TII->get(PPC::PHI), DstReg) 11569 .addReg(mainDstReg).addMBB(mainMBB) 11570 .addReg(restoreDstReg).addMBB(thisMBB); 11571 11572 MI.eraseFromParent(); 11573 return sinkMBB; 11574 } 11575 11576 MachineBasicBlock * 11577 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11578 MachineBasicBlock *MBB) const { 11579 DebugLoc DL = MI.getDebugLoc(); 11580 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11581 11582 MachineFunction *MF = MBB->getParent(); 11583 MachineRegisterInfo &MRI = MF->getRegInfo(); 11584 11585 MVT PVT = getPointerTy(MF->getDataLayout()); 11586 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11587 "Invalid Pointer Size!"); 11588 11589 const TargetRegisterClass *RC = 11590 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11591 Register Tmp = MRI.createVirtualRegister(RC); 11592 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11593 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11594 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11595 unsigned BP = 11596 (PVT == MVT::i64) 11597 ? PPC::X30 11598 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11599 : PPC::R30); 11600 11601 MachineInstrBuilder MIB; 11602 11603 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11604 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11605 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11606 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11607 11608 Register BufReg = MI.getOperand(0).getReg(); 11609 11610 // Reload FP (the jumped-to function may not have had a 11611 // frame pointer, and if so, then its r31 will be restored 11612 // as necessary). 11613 if (PVT == MVT::i64) { 11614 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11615 .addImm(0) 11616 .addReg(BufReg); 11617 } else { 11618 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11619 .addImm(0) 11620 .addReg(BufReg); 11621 } 11622 MIB.cloneMemRefs(MI); 11623 11624 // Reload IP 11625 if (PVT == MVT::i64) { 11626 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11627 .addImm(LabelOffset) 11628 .addReg(BufReg); 11629 } else { 11630 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11631 .addImm(LabelOffset) 11632 .addReg(BufReg); 11633 } 11634 MIB.cloneMemRefs(MI); 11635 11636 // Reload SP 11637 if (PVT == MVT::i64) { 11638 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11639 .addImm(SPOffset) 11640 .addReg(BufReg); 11641 } else { 11642 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11643 .addImm(SPOffset) 11644 .addReg(BufReg); 11645 } 11646 MIB.cloneMemRefs(MI); 11647 11648 // Reload BP 11649 if (PVT == MVT::i64) { 11650 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11651 .addImm(BPOffset) 11652 .addReg(BufReg); 11653 } else { 11654 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11655 .addImm(BPOffset) 11656 .addReg(BufReg); 11657 } 11658 MIB.cloneMemRefs(MI); 11659 11660 // Reload TOC 11661 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11662 setUsesTOCBasePtr(*MBB->getParent()); 11663 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11664 .addImm(TOCOffset) 11665 .addReg(BufReg) 11666 .cloneMemRefs(MI); 11667 } 11668 11669 // Jump 11670 BuildMI(*MBB, MI, DL, 11671 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11672 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11673 11674 MI.eraseFromParent(); 11675 return MBB; 11676 } 11677 11678 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11679 // If the function specifically requests inline stack probes, emit them. 11680 if (MF.getFunction().hasFnAttribute("probe-stack")) 11681 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11682 "inline-asm"; 11683 return false; 11684 } 11685 11686 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11687 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11688 unsigned StackAlign = TFI->getStackAlignment(); 11689 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11690 "Unexpected stack alignment"); 11691 // The default stack probe size is 4096 if the function has no 11692 // stack-probe-size attribute. 11693 unsigned StackProbeSize = 4096; 11694 const Function &Fn = MF.getFunction(); 11695 if (Fn.hasFnAttribute("stack-probe-size")) 11696 Fn.getFnAttribute("stack-probe-size") 11697 .getValueAsString() 11698 .getAsInteger(0, StackProbeSize); 11699 // Round down to the stack alignment. 11700 StackProbeSize &= ~(StackAlign - 1); 11701 return StackProbeSize ? StackProbeSize : StackAlign; 11702 } 11703 11704 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11705 // into three phases. In the first phase, it uses pseudo instruction 11706 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11707 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11708 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11709 // MaxCallFrameSize so that it can calculate correct data area pointer. 11710 MachineBasicBlock * 11711 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11712 MachineBasicBlock *MBB) const { 11713 const bool isPPC64 = Subtarget.isPPC64(); 11714 MachineFunction *MF = MBB->getParent(); 11715 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11716 DebugLoc DL = MI.getDebugLoc(); 11717 const unsigned ProbeSize = getStackProbeSize(*MF); 11718 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11719 MachineRegisterInfo &MRI = MF->getRegInfo(); 11720 // The CFG of probing stack looks as 11721 // +-----+ 11722 // | MBB | 11723 // +--+--+ 11724 // | 11725 // +----v----+ 11726 // +--->+ TestMBB +---+ 11727 // | +----+----+ | 11728 // | | | 11729 // | +-----v----+ | 11730 // +---+ BlockMBB | | 11731 // +----------+ | 11732 // | 11733 // +---------+ | 11734 // | TailMBB +<--+ 11735 // +---------+ 11736 // In MBB, calculate previous frame pointer and final stack pointer. 11737 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11738 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11739 // TailMBB is spliced via \p MI. 11740 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11741 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11742 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11743 11744 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11745 MF->insert(MBBIter, TestMBB); 11746 MF->insert(MBBIter, BlockMBB); 11747 MF->insert(MBBIter, TailMBB); 11748 11749 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11750 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11751 11752 Register DstReg = MI.getOperand(0).getReg(); 11753 Register NegSizeReg = MI.getOperand(1).getReg(); 11754 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11755 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11756 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11757 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11758 11759 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11760 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11761 // NegSize. 11762 unsigned ProbeOpc; 11763 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11764 ProbeOpc = 11765 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11766 else 11767 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11768 // and NegSizeReg will be allocated in the same phyreg to avoid 11769 // redundant copy when NegSizeReg has only one use which is current MI and 11770 // will be replaced by PREPARE_PROBED_ALLOCA then. 11771 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11772 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11773 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11774 .addDef(ActualNegSizeReg) 11775 .addReg(NegSizeReg) 11776 .add(MI.getOperand(2)) 11777 .add(MI.getOperand(3)); 11778 11779 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11780 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11781 FinalStackPtr) 11782 .addReg(SPReg) 11783 .addReg(ActualNegSizeReg); 11784 11785 // Materialize a scratch register for update. 11786 int64_t NegProbeSize = -(int64_t)ProbeSize; 11787 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11788 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11789 if (!isInt<16>(NegProbeSize)) { 11790 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11791 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11792 .addImm(NegProbeSize >> 16); 11793 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11794 ScratchReg) 11795 .addReg(TempReg) 11796 .addImm(NegProbeSize & 0xFFFF); 11797 } else 11798 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11799 .addImm(NegProbeSize); 11800 11801 { 11802 // Probing leading residual part. 11803 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11804 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11805 .addReg(ActualNegSizeReg) 11806 .addReg(ScratchReg); 11807 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11808 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11809 .addReg(Div) 11810 .addReg(ScratchReg); 11811 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11812 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11813 .addReg(Mul) 11814 .addReg(ActualNegSizeReg); 11815 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11816 .addReg(FramePointer) 11817 .addReg(SPReg) 11818 .addReg(NegMod); 11819 } 11820 11821 { 11822 // Remaining part should be multiple of ProbeSize. 11823 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11824 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11825 .addReg(SPReg) 11826 .addReg(FinalStackPtr); 11827 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11828 .addImm(PPC::PRED_EQ) 11829 .addReg(CmpResult) 11830 .addMBB(TailMBB); 11831 TestMBB->addSuccessor(BlockMBB); 11832 TestMBB->addSuccessor(TailMBB); 11833 } 11834 11835 { 11836 // Touch the block. 11837 // |P...|P...|P... 11838 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11839 .addReg(FramePointer) 11840 .addReg(SPReg) 11841 .addReg(ScratchReg); 11842 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11843 BlockMBB->addSuccessor(TestMBB); 11844 } 11845 11846 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11847 // DYNAREAOFFSET pseudo instruction to get the future result. 11848 Register MaxCallFrameSizeReg = 11849 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11850 BuildMI(TailMBB, DL, 11851 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11852 MaxCallFrameSizeReg) 11853 .add(MI.getOperand(2)) 11854 .add(MI.getOperand(3)); 11855 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11856 .addReg(SPReg) 11857 .addReg(MaxCallFrameSizeReg); 11858 11859 // Splice instructions after MI to TailMBB. 11860 TailMBB->splice(TailMBB->end(), MBB, 11861 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11862 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11863 MBB->addSuccessor(TestMBB); 11864 11865 // Delete the pseudo instruction. 11866 MI.eraseFromParent(); 11867 11868 ++NumDynamicAllocaProbed; 11869 return TailMBB; 11870 } 11871 11872 MachineBasicBlock * 11873 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11874 MachineBasicBlock *BB) const { 11875 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11876 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11877 if (Subtarget.is64BitELFABI() && 11878 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11879 !Subtarget.isUsingPCRelativeCalls()) { 11880 // Call lowering should have added an r2 operand to indicate a dependence 11881 // on the TOC base pointer value. It can't however, because there is no 11882 // way to mark the dependence as implicit there, and so the stackmap code 11883 // will confuse it with a regular operand. Instead, add the dependence 11884 // here. 11885 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11886 } 11887 11888 return emitPatchPoint(MI, BB); 11889 } 11890 11891 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11892 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11893 return emitEHSjLjSetJmp(MI, BB); 11894 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11895 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11896 return emitEHSjLjLongJmp(MI, BB); 11897 } 11898 11899 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11900 11901 // To "insert" these instructions we actually have to insert their 11902 // control-flow patterns. 11903 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11904 MachineFunction::iterator It = ++BB->getIterator(); 11905 11906 MachineFunction *F = BB->getParent(); 11907 11908 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11909 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11910 MI.getOpcode() == PPC::SELECT_I8) { 11911 SmallVector<MachineOperand, 2> Cond; 11912 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11913 MI.getOpcode() == PPC::SELECT_CC_I8) 11914 Cond.push_back(MI.getOperand(4)); 11915 else 11916 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11917 Cond.push_back(MI.getOperand(1)); 11918 11919 DebugLoc dl = MI.getDebugLoc(); 11920 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11921 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11922 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11923 MI.getOpcode() == PPC::SELECT_CC_F8 || 11924 MI.getOpcode() == PPC::SELECT_CC_F16 || 11925 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11926 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11927 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11928 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11929 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11930 MI.getOpcode() == PPC::SELECT_CC_SPE || 11931 MI.getOpcode() == PPC::SELECT_F4 || 11932 MI.getOpcode() == PPC::SELECT_F8 || 11933 MI.getOpcode() == PPC::SELECT_F16 || 11934 MI.getOpcode() == PPC::SELECT_SPE || 11935 MI.getOpcode() == PPC::SELECT_SPE4 || 11936 MI.getOpcode() == PPC::SELECT_VRRC || 11937 MI.getOpcode() == PPC::SELECT_VSFRC || 11938 MI.getOpcode() == PPC::SELECT_VSSRC || 11939 MI.getOpcode() == PPC::SELECT_VSRC) { 11940 // The incoming instruction knows the destination vreg to set, the 11941 // condition code register to branch on, the true/false values to 11942 // select between, and a branch opcode to use. 11943 11944 // thisMBB: 11945 // ... 11946 // TrueVal = ... 11947 // cmpTY ccX, r1, r2 11948 // bCC copy1MBB 11949 // fallthrough --> copy0MBB 11950 MachineBasicBlock *thisMBB = BB; 11951 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11952 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11953 DebugLoc dl = MI.getDebugLoc(); 11954 F->insert(It, copy0MBB); 11955 F->insert(It, sinkMBB); 11956 11957 // Transfer the remainder of BB and its successor edges to sinkMBB. 11958 sinkMBB->splice(sinkMBB->begin(), BB, 11959 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11960 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11961 11962 // Next, add the true and fallthrough blocks as its successors. 11963 BB->addSuccessor(copy0MBB); 11964 BB->addSuccessor(sinkMBB); 11965 11966 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11967 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11968 MI.getOpcode() == PPC::SELECT_F16 || 11969 MI.getOpcode() == PPC::SELECT_SPE4 || 11970 MI.getOpcode() == PPC::SELECT_SPE || 11971 MI.getOpcode() == PPC::SELECT_VRRC || 11972 MI.getOpcode() == PPC::SELECT_VSFRC || 11973 MI.getOpcode() == PPC::SELECT_VSSRC || 11974 MI.getOpcode() == PPC::SELECT_VSRC) { 11975 BuildMI(BB, dl, TII->get(PPC::BC)) 11976 .addReg(MI.getOperand(1).getReg()) 11977 .addMBB(sinkMBB); 11978 } else { 11979 unsigned SelectPred = MI.getOperand(4).getImm(); 11980 BuildMI(BB, dl, TII->get(PPC::BCC)) 11981 .addImm(SelectPred) 11982 .addReg(MI.getOperand(1).getReg()) 11983 .addMBB(sinkMBB); 11984 } 11985 11986 // copy0MBB: 11987 // %FalseValue = ... 11988 // # fallthrough to sinkMBB 11989 BB = copy0MBB; 11990 11991 // Update machine-CFG edges 11992 BB->addSuccessor(sinkMBB); 11993 11994 // sinkMBB: 11995 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11996 // ... 11997 BB = sinkMBB; 11998 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11999 .addReg(MI.getOperand(3).getReg()) 12000 .addMBB(copy0MBB) 12001 .addReg(MI.getOperand(2).getReg()) 12002 .addMBB(thisMBB); 12003 } else if (MI.getOpcode() == PPC::ReadTB) { 12004 // To read the 64-bit time-base register on a 32-bit target, we read the 12005 // two halves. Should the counter have wrapped while it was being read, we 12006 // need to try again. 12007 // ... 12008 // readLoop: 12009 // mfspr Rx,TBU # load from TBU 12010 // mfspr Ry,TB # load from TB 12011 // mfspr Rz,TBU # load from TBU 12012 // cmpw crX,Rx,Rz # check if 'old'='new' 12013 // bne readLoop # branch if they're not equal 12014 // ... 12015 12016 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12017 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12018 DebugLoc dl = MI.getDebugLoc(); 12019 F->insert(It, readMBB); 12020 F->insert(It, sinkMBB); 12021 12022 // Transfer the remainder of BB and its successor edges to sinkMBB. 12023 sinkMBB->splice(sinkMBB->begin(), BB, 12024 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12025 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12026 12027 BB->addSuccessor(readMBB); 12028 BB = readMBB; 12029 12030 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12031 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12032 Register LoReg = MI.getOperand(0).getReg(); 12033 Register HiReg = MI.getOperand(1).getReg(); 12034 12035 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12036 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12037 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12038 12039 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12040 12041 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12042 .addReg(HiReg) 12043 .addReg(ReadAgainReg); 12044 BuildMI(BB, dl, TII->get(PPC::BCC)) 12045 .addImm(PPC::PRED_NE) 12046 .addReg(CmpReg) 12047 .addMBB(readMBB); 12048 12049 BB->addSuccessor(readMBB); 12050 BB->addSuccessor(sinkMBB); 12051 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12052 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12053 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12054 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12055 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12056 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12057 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12058 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12059 12060 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12061 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12062 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12063 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12064 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12065 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12066 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12067 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12068 12069 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12070 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12071 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12072 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12073 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12074 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12075 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12076 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12077 12078 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12079 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12080 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12081 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12082 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12083 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12084 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12085 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12086 12087 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12088 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12089 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12090 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12091 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12092 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12093 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12094 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12095 12096 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12097 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12098 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12099 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12100 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12101 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12102 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12103 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12104 12105 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12106 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12107 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12108 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12109 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12110 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12111 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12112 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12113 12114 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12115 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12116 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12117 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12118 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12119 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12120 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12121 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12122 12123 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12124 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12125 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12126 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12127 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12128 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12129 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12130 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12131 12132 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12133 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12134 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12135 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12136 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12137 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12138 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12139 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12140 12141 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12142 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12143 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12144 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12145 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12146 BB = EmitAtomicBinary(MI, BB, 4, 0); 12147 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12148 BB = EmitAtomicBinary(MI, BB, 8, 0); 12149 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12150 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12151 (Subtarget.hasPartwordAtomics() && 12152 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12153 (Subtarget.hasPartwordAtomics() && 12154 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12155 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12156 12157 auto LoadMnemonic = PPC::LDARX; 12158 auto StoreMnemonic = PPC::STDCX; 12159 switch (MI.getOpcode()) { 12160 default: 12161 llvm_unreachable("Compare and swap of unknown size"); 12162 case PPC::ATOMIC_CMP_SWAP_I8: 12163 LoadMnemonic = PPC::LBARX; 12164 StoreMnemonic = PPC::STBCX; 12165 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12166 break; 12167 case PPC::ATOMIC_CMP_SWAP_I16: 12168 LoadMnemonic = PPC::LHARX; 12169 StoreMnemonic = PPC::STHCX; 12170 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12171 break; 12172 case PPC::ATOMIC_CMP_SWAP_I32: 12173 LoadMnemonic = PPC::LWARX; 12174 StoreMnemonic = PPC::STWCX; 12175 break; 12176 case PPC::ATOMIC_CMP_SWAP_I64: 12177 LoadMnemonic = PPC::LDARX; 12178 StoreMnemonic = PPC::STDCX; 12179 break; 12180 } 12181 Register dest = MI.getOperand(0).getReg(); 12182 Register ptrA = MI.getOperand(1).getReg(); 12183 Register ptrB = MI.getOperand(2).getReg(); 12184 Register oldval = MI.getOperand(3).getReg(); 12185 Register newval = MI.getOperand(4).getReg(); 12186 DebugLoc dl = MI.getDebugLoc(); 12187 12188 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12189 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12190 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12191 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12192 F->insert(It, loop1MBB); 12193 F->insert(It, loop2MBB); 12194 F->insert(It, midMBB); 12195 F->insert(It, exitMBB); 12196 exitMBB->splice(exitMBB->begin(), BB, 12197 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12198 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12199 12200 // thisMBB: 12201 // ... 12202 // fallthrough --> loopMBB 12203 BB->addSuccessor(loop1MBB); 12204 12205 // loop1MBB: 12206 // l[bhwd]arx dest, ptr 12207 // cmp[wd] dest, oldval 12208 // bne- midMBB 12209 // loop2MBB: 12210 // st[bhwd]cx. newval, ptr 12211 // bne- loopMBB 12212 // b exitBB 12213 // midMBB: 12214 // st[bhwd]cx. dest, ptr 12215 // exitBB: 12216 BB = loop1MBB; 12217 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12218 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12219 .addReg(oldval) 12220 .addReg(dest); 12221 BuildMI(BB, dl, TII->get(PPC::BCC)) 12222 .addImm(PPC::PRED_NE) 12223 .addReg(PPC::CR0) 12224 .addMBB(midMBB); 12225 BB->addSuccessor(loop2MBB); 12226 BB->addSuccessor(midMBB); 12227 12228 BB = loop2MBB; 12229 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12230 .addReg(newval) 12231 .addReg(ptrA) 12232 .addReg(ptrB); 12233 BuildMI(BB, dl, TII->get(PPC::BCC)) 12234 .addImm(PPC::PRED_NE) 12235 .addReg(PPC::CR0) 12236 .addMBB(loop1MBB); 12237 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12238 BB->addSuccessor(loop1MBB); 12239 BB->addSuccessor(exitMBB); 12240 12241 BB = midMBB; 12242 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12243 .addReg(dest) 12244 .addReg(ptrA) 12245 .addReg(ptrB); 12246 BB->addSuccessor(exitMBB); 12247 12248 // exitMBB: 12249 // ... 12250 BB = exitMBB; 12251 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12252 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12253 // We must use 64-bit registers for addresses when targeting 64-bit, 12254 // since we're actually doing arithmetic on them. Other registers 12255 // can be 32-bit. 12256 bool is64bit = Subtarget.isPPC64(); 12257 bool isLittleEndian = Subtarget.isLittleEndian(); 12258 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12259 12260 Register dest = MI.getOperand(0).getReg(); 12261 Register ptrA = MI.getOperand(1).getReg(); 12262 Register ptrB = MI.getOperand(2).getReg(); 12263 Register oldval = MI.getOperand(3).getReg(); 12264 Register newval = MI.getOperand(4).getReg(); 12265 DebugLoc dl = MI.getDebugLoc(); 12266 12267 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12268 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12269 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12270 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12271 F->insert(It, loop1MBB); 12272 F->insert(It, loop2MBB); 12273 F->insert(It, midMBB); 12274 F->insert(It, exitMBB); 12275 exitMBB->splice(exitMBB->begin(), BB, 12276 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12277 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12278 12279 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12280 const TargetRegisterClass *RC = 12281 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12282 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12283 12284 Register PtrReg = RegInfo.createVirtualRegister(RC); 12285 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12286 Register ShiftReg = 12287 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12288 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12289 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12290 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12291 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12292 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12293 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12294 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12295 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12296 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12297 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12298 Register Ptr1Reg; 12299 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12300 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12301 // thisMBB: 12302 // ... 12303 // fallthrough --> loopMBB 12304 BB->addSuccessor(loop1MBB); 12305 12306 // The 4-byte load must be aligned, while a char or short may be 12307 // anywhere in the word. Hence all this nasty bookkeeping code. 12308 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12309 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12310 // xori shift, shift1, 24 [16] 12311 // rlwinm ptr, ptr1, 0, 0, 29 12312 // slw newval2, newval, shift 12313 // slw oldval2, oldval,shift 12314 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12315 // slw mask, mask2, shift 12316 // and newval3, newval2, mask 12317 // and oldval3, oldval2, mask 12318 // loop1MBB: 12319 // lwarx tmpDest, ptr 12320 // and tmp, tmpDest, mask 12321 // cmpw tmp, oldval3 12322 // bne- midMBB 12323 // loop2MBB: 12324 // andc tmp2, tmpDest, mask 12325 // or tmp4, tmp2, newval3 12326 // stwcx. tmp4, ptr 12327 // bne- loop1MBB 12328 // b exitBB 12329 // midMBB: 12330 // stwcx. tmpDest, ptr 12331 // exitBB: 12332 // srw dest, tmpDest, shift 12333 if (ptrA != ZeroReg) { 12334 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12335 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12336 .addReg(ptrA) 12337 .addReg(ptrB); 12338 } else { 12339 Ptr1Reg = ptrB; 12340 } 12341 12342 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12343 // mode. 12344 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12345 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12346 .addImm(3) 12347 .addImm(27) 12348 .addImm(is8bit ? 28 : 27); 12349 if (!isLittleEndian) 12350 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12351 .addReg(Shift1Reg) 12352 .addImm(is8bit ? 24 : 16); 12353 if (is64bit) 12354 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12355 .addReg(Ptr1Reg) 12356 .addImm(0) 12357 .addImm(61); 12358 else 12359 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12360 .addReg(Ptr1Reg) 12361 .addImm(0) 12362 .addImm(0) 12363 .addImm(29); 12364 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12365 .addReg(newval) 12366 .addReg(ShiftReg); 12367 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12368 .addReg(oldval) 12369 .addReg(ShiftReg); 12370 if (is8bit) 12371 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12372 else { 12373 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12374 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12375 .addReg(Mask3Reg) 12376 .addImm(65535); 12377 } 12378 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12379 .addReg(Mask2Reg) 12380 .addReg(ShiftReg); 12381 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12382 .addReg(NewVal2Reg) 12383 .addReg(MaskReg); 12384 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12385 .addReg(OldVal2Reg) 12386 .addReg(MaskReg); 12387 12388 BB = loop1MBB; 12389 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12390 .addReg(ZeroReg) 12391 .addReg(PtrReg); 12392 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12393 .addReg(TmpDestReg) 12394 .addReg(MaskReg); 12395 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12396 .addReg(TmpReg) 12397 .addReg(OldVal3Reg); 12398 BuildMI(BB, dl, TII->get(PPC::BCC)) 12399 .addImm(PPC::PRED_NE) 12400 .addReg(PPC::CR0) 12401 .addMBB(midMBB); 12402 BB->addSuccessor(loop2MBB); 12403 BB->addSuccessor(midMBB); 12404 12405 BB = loop2MBB; 12406 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12407 .addReg(TmpDestReg) 12408 .addReg(MaskReg); 12409 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12410 .addReg(Tmp2Reg) 12411 .addReg(NewVal3Reg); 12412 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12413 .addReg(Tmp4Reg) 12414 .addReg(ZeroReg) 12415 .addReg(PtrReg); 12416 BuildMI(BB, dl, TII->get(PPC::BCC)) 12417 .addImm(PPC::PRED_NE) 12418 .addReg(PPC::CR0) 12419 .addMBB(loop1MBB); 12420 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12421 BB->addSuccessor(loop1MBB); 12422 BB->addSuccessor(exitMBB); 12423 12424 BB = midMBB; 12425 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12426 .addReg(TmpDestReg) 12427 .addReg(ZeroReg) 12428 .addReg(PtrReg); 12429 BB->addSuccessor(exitMBB); 12430 12431 // exitMBB: 12432 // ... 12433 BB = exitMBB; 12434 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12435 .addReg(TmpReg) 12436 .addReg(ShiftReg); 12437 } else if (MI.getOpcode() == PPC::FADDrtz) { 12438 // This pseudo performs an FADD with rounding mode temporarily forced 12439 // to round-to-zero. We emit this via custom inserter since the FPSCR 12440 // is not modeled at the SelectionDAG level. 12441 Register Dest = MI.getOperand(0).getReg(); 12442 Register Src1 = MI.getOperand(1).getReg(); 12443 Register Src2 = MI.getOperand(2).getReg(); 12444 DebugLoc dl = MI.getDebugLoc(); 12445 12446 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12447 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12448 12449 // Save FPSCR value. 12450 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12451 12452 // Set rounding mode to round-to-zero. 12453 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12454 .addImm(31) 12455 .addReg(PPC::RM, RegState::ImplicitDefine); 12456 12457 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12458 .addImm(30) 12459 .addReg(PPC::RM, RegState::ImplicitDefine); 12460 12461 // Perform addition. 12462 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12463 .addReg(Src1) 12464 .addReg(Src2); 12465 if (MI.getFlag(MachineInstr::NoFPExcept)) 12466 MIB.setMIFlag(MachineInstr::NoFPExcept); 12467 12468 // Restore FPSCR value. 12469 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12470 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12471 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12472 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12473 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12474 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12475 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12476 ? PPC::ANDI8_rec 12477 : PPC::ANDI_rec; 12478 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12479 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12480 12481 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12482 Register Dest = RegInfo.createVirtualRegister( 12483 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12484 12485 DebugLoc Dl = MI.getDebugLoc(); 12486 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12487 .addReg(MI.getOperand(1).getReg()) 12488 .addImm(1); 12489 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12490 MI.getOperand(0).getReg()) 12491 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12492 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12493 DebugLoc Dl = MI.getDebugLoc(); 12494 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12495 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12496 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12497 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12498 MI.getOperand(0).getReg()) 12499 .addReg(CRReg); 12500 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12501 DebugLoc Dl = MI.getDebugLoc(); 12502 unsigned Imm = MI.getOperand(1).getImm(); 12503 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12504 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12505 MI.getOperand(0).getReg()) 12506 .addReg(PPC::CR0EQ); 12507 } else if (MI.getOpcode() == PPC::SETRNDi) { 12508 DebugLoc dl = MI.getDebugLoc(); 12509 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12510 12511 // Save FPSCR value. 12512 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12513 12514 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12515 // the following settings: 12516 // 00 Round to nearest 12517 // 01 Round to 0 12518 // 10 Round to +inf 12519 // 11 Round to -inf 12520 12521 // When the operand is immediate, using the two least significant bits of 12522 // the immediate to set the bits 62:63 of FPSCR. 12523 unsigned Mode = MI.getOperand(1).getImm(); 12524 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12525 .addImm(31) 12526 .addReg(PPC::RM, RegState::ImplicitDefine); 12527 12528 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12529 .addImm(30) 12530 .addReg(PPC::RM, RegState::ImplicitDefine); 12531 } else if (MI.getOpcode() == PPC::SETRND) { 12532 DebugLoc dl = MI.getDebugLoc(); 12533 12534 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12535 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12536 // If the target doesn't have DirectMove, we should use stack to do the 12537 // conversion, because the target doesn't have the instructions like mtvsrd 12538 // or mfvsrd to do this conversion directly. 12539 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12540 if (Subtarget.hasDirectMove()) { 12541 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12542 .addReg(SrcReg); 12543 } else { 12544 // Use stack to do the register copy. 12545 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12546 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12547 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12548 if (RC == &PPC::F8RCRegClass) { 12549 // Copy register from F8RCRegClass to G8RCRegclass. 12550 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12551 "Unsupported RegClass."); 12552 12553 StoreOp = PPC::STFD; 12554 LoadOp = PPC::LD; 12555 } else { 12556 // Copy register from G8RCRegClass to F8RCRegclass. 12557 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12558 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12559 "Unsupported RegClass."); 12560 } 12561 12562 MachineFrameInfo &MFI = F->getFrameInfo(); 12563 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12564 12565 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12566 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12567 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12568 MFI.getObjectAlign(FrameIdx)); 12569 12570 // Store the SrcReg into the stack. 12571 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12572 .addReg(SrcReg) 12573 .addImm(0) 12574 .addFrameIndex(FrameIdx) 12575 .addMemOperand(MMOStore); 12576 12577 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12578 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12579 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12580 MFI.getObjectAlign(FrameIdx)); 12581 12582 // Load from the stack where SrcReg is stored, and save to DestReg, 12583 // so we have done the RegClass conversion from RegClass::SrcReg to 12584 // RegClass::DestReg. 12585 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12586 .addImm(0) 12587 .addFrameIndex(FrameIdx) 12588 .addMemOperand(MMOLoad); 12589 } 12590 }; 12591 12592 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12593 12594 // Save FPSCR value. 12595 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12596 12597 // When the operand is gprc register, use two least significant bits of the 12598 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12599 // 12600 // copy OldFPSCRTmpReg, OldFPSCRReg 12601 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12602 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12603 // copy NewFPSCRReg, NewFPSCRTmpReg 12604 // mtfsf 255, NewFPSCRReg 12605 MachineOperand SrcOp = MI.getOperand(1); 12606 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12607 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12608 12609 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12610 12611 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12612 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12613 12614 // The first operand of INSERT_SUBREG should be a register which has 12615 // subregisters, we only care about its RegClass, so we should use an 12616 // IMPLICIT_DEF register. 12617 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12618 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12619 .addReg(ImDefReg) 12620 .add(SrcOp) 12621 .addImm(1); 12622 12623 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12624 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12625 .addReg(OldFPSCRTmpReg) 12626 .addReg(ExtSrcReg) 12627 .addImm(0) 12628 .addImm(62); 12629 12630 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12631 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12632 12633 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12634 // bits of FPSCR. 12635 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12636 .addImm(255) 12637 .addReg(NewFPSCRReg) 12638 .addImm(0) 12639 .addImm(0); 12640 } else if (MI.getOpcode() == PPC::SETFLM) { 12641 DebugLoc Dl = MI.getDebugLoc(); 12642 12643 // Result of setflm is previous FPSCR content, so we need to save it first. 12644 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12645 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12646 12647 // Put bits in 32:63 to FPSCR. 12648 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12649 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12650 .addImm(255) 12651 .addReg(NewFPSCRReg) 12652 .addImm(0) 12653 .addImm(0); 12654 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12655 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12656 return emitProbedAlloca(MI, BB); 12657 } else { 12658 llvm_unreachable("Unexpected instr type to insert"); 12659 } 12660 12661 MI.eraseFromParent(); // The pseudo instruction is gone now. 12662 return BB; 12663 } 12664 12665 //===----------------------------------------------------------------------===// 12666 // Target Optimization Hooks 12667 //===----------------------------------------------------------------------===// 12668 12669 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12670 // For the estimates, convergence is quadratic, so we essentially double the 12671 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12672 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12673 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12674 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12675 if (VT.getScalarType() == MVT::f64) 12676 RefinementSteps++; 12677 return RefinementSteps; 12678 } 12679 12680 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12681 int Enabled, int &RefinementSteps, 12682 bool &UseOneConstNR, 12683 bool Reciprocal) const { 12684 EVT VT = Operand.getValueType(); 12685 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12686 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12687 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12688 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12689 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12690 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12691 12692 // The Newton-Raphson computation with a single constant does not provide 12693 // enough accuracy on some CPUs. 12694 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12695 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12696 } 12697 return SDValue(); 12698 } 12699 12700 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12701 int Enabled, 12702 int &RefinementSteps) const { 12703 EVT VT = Operand.getValueType(); 12704 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12705 (VT == MVT::f64 && Subtarget.hasFRE()) || 12706 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12707 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12708 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12709 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12710 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12711 } 12712 return SDValue(); 12713 } 12714 12715 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12716 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12717 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12718 // enabled for division), this functionality is redundant with the default 12719 // combiner logic (once the division -> reciprocal/multiply transformation 12720 // has taken place). As a result, this matters more for older cores than for 12721 // newer ones. 12722 12723 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12724 // reciprocal if there are two or more FDIVs (for embedded cores with only 12725 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12726 switch (Subtarget.getCPUDirective()) { 12727 default: 12728 return 3; 12729 case PPC::DIR_440: 12730 case PPC::DIR_A2: 12731 case PPC::DIR_E500: 12732 case PPC::DIR_E500mc: 12733 case PPC::DIR_E5500: 12734 return 2; 12735 } 12736 } 12737 12738 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12739 // collapsed, and so we need to look through chains of them. 12740 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12741 int64_t& Offset, SelectionDAG &DAG) { 12742 if (DAG.isBaseWithConstantOffset(Loc)) { 12743 Base = Loc.getOperand(0); 12744 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12745 12746 // The base might itself be a base plus an offset, and if so, accumulate 12747 // that as well. 12748 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12749 } 12750 } 12751 12752 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12753 unsigned Bytes, int Dist, 12754 SelectionDAG &DAG) { 12755 if (VT.getSizeInBits() / 8 != Bytes) 12756 return false; 12757 12758 SDValue BaseLoc = Base->getBasePtr(); 12759 if (Loc.getOpcode() == ISD::FrameIndex) { 12760 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12761 return false; 12762 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12763 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12764 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12765 int FS = MFI.getObjectSize(FI); 12766 int BFS = MFI.getObjectSize(BFI); 12767 if (FS != BFS || FS != (int)Bytes) return false; 12768 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12769 } 12770 12771 SDValue Base1 = Loc, Base2 = BaseLoc; 12772 int64_t Offset1 = 0, Offset2 = 0; 12773 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12774 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12775 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12776 return true; 12777 12778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12779 const GlobalValue *GV1 = nullptr; 12780 const GlobalValue *GV2 = nullptr; 12781 Offset1 = 0; 12782 Offset2 = 0; 12783 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12784 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12785 if (isGA1 && isGA2 && GV1 == GV2) 12786 return Offset1 == (Offset2 + Dist*Bytes); 12787 return false; 12788 } 12789 12790 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12791 // not enforce equality of the chain operands. 12792 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12793 unsigned Bytes, int Dist, 12794 SelectionDAG &DAG) { 12795 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12796 EVT VT = LS->getMemoryVT(); 12797 SDValue Loc = LS->getBasePtr(); 12798 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12799 } 12800 12801 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12802 EVT VT; 12803 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12804 default: return false; 12805 case Intrinsic::ppc_altivec_lvx: 12806 case Intrinsic::ppc_altivec_lvxl: 12807 case Intrinsic::ppc_vsx_lxvw4x: 12808 case Intrinsic::ppc_vsx_lxvw4x_be: 12809 VT = MVT::v4i32; 12810 break; 12811 case Intrinsic::ppc_vsx_lxvd2x: 12812 case Intrinsic::ppc_vsx_lxvd2x_be: 12813 VT = MVT::v2f64; 12814 break; 12815 case Intrinsic::ppc_altivec_lvebx: 12816 VT = MVT::i8; 12817 break; 12818 case Intrinsic::ppc_altivec_lvehx: 12819 VT = MVT::i16; 12820 break; 12821 case Intrinsic::ppc_altivec_lvewx: 12822 VT = MVT::i32; 12823 break; 12824 } 12825 12826 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12827 } 12828 12829 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12830 EVT VT; 12831 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12832 default: return false; 12833 case Intrinsic::ppc_altivec_stvx: 12834 case Intrinsic::ppc_altivec_stvxl: 12835 case Intrinsic::ppc_vsx_stxvw4x: 12836 VT = MVT::v4i32; 12837 break; 12838 case Intrinsic::ppc_vsx_stxvd2x: 12839 VT = MVT::v2f64; 12840 break; 12841 case Intrinsic::ppc_vsx_stxvw4x_be: 12842 VT = MVT::v4i32; 12843 break; 12844 case Intrinsic::ppc_vsx_stxvd2x_be: 12845 VT = MVT::v2f64; 12846 break; 12847 case Intrinsic::ppc_altivec_stvebx: 12848 VT = MVT::i8; 12849 break; 12850 case Intrinsic::ppc_altivec_stvehx: 12851 VT = MVT::i16; 12852 break; 12853 case Intrinsic::ppc_altivec_stvewx: 12854 VT = MVT::i32; 12855 break; 12856 } 12857 12858 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12859 } 12860 12861 return false; 12862 } 12863 12864 // Return true is there is a nearyby consecutive load to the one provided 12865 // (regardless of alignment). We search up and down the chain, looking though 12866 // token factors and other loads (but nothing else). As a result, a true result 12867 // indicates that it is safe to create a new consecutive load adjacent to the 12868 // load provided. 12869 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12870 SDValue Chain = LD->getChain(); 12871 EVT VT = LD->getMemoryVT(); 12872 12873 SmallSet<SDNode *, 16> LoadRoots; 12874 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12875 SmallSet<SDNode *, 16> Visited; 12876 12877 // First, search up the chain, branching to follow all token-factor operands. 12878 // If we find a consecutive load, then we're done, otherwise, record all 12879 // nodes just above the top-level loads and token factors. 12880 while (!Queue.empty()) { 12881 SDNode *ChainNext = Queue.pop_back_val(); 12882 if (!Visited.insert(ChainNext).second) 12883 continue; 12884 12885 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12886 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12887 return true; 12888 12889 if (!Visited.count(ChainLD->getChain().getNode())) 12890 Queue.push_back(ChainLD->getChain().getNode()); 12891 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12892 for (const SDUse &O : ChainNext->ops()) 12893 if (!Visited.count(O.getNode())) 12894 Queue.push_back(O.getNode()); 12895 } else 12896 LoadRoots.insert(ChainNext); 12897 } 12898 12899 // Second, search down the chain, starting from the top-level nodes recorded 12900 // in the first phase. These top-level nodes are the nodes just above all 12901 // loads and token factors. Starting with their uses, recursively look though 12902 // all loads (just the chain uses) and token factors to find a consecutive 12903 // load. 12904 Visited.clear(); 12905 Queue.clear(); 12906 12907 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12908 IE = LoadRoots.end(); I != IE; ++I) { 12909 Queue.push_back(*I); 12910 12911 while (!Queue.empty()) { 12912 SDNode *LoadRoot = Queue.pop_back_val(); 12913 if (!Visited.insert(LoadRoot).second) 12914 continue; 12915 12916 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12917 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12918 return true; 12919 12920 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12921 UE = LoadRoot->use_end(); UI != UE; ++UI) 12922 if (((isa<MemSDNode>(*UI) && 12923 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12924 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12925 Queue.push_back(*UI); 12926 } 12927 } 12928 12929 return false; 12930 } 12931 12932 /// This function is called when we have proved that a SETCC node can be replaced 12933 /// by subtraction (and other supporting instructions) so that the result of 12934 /// comparison is kept in a GPR instead of CR. This function is purely for 12935 /// codegen purposes and has some flags to guide the codegen process. 12936 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12937 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12938 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12939 12940 // Zero extend the operands to the largest legal integer. Originally, they 12941 // must be of a strictly smaller size. 12942 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12943 DAG.getConstant(Size, DL, MVT::i32)); 12944 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12945 DAG.getConstant(Size, DL, MVT::i32)); 12946 12947 // Swap if needed. Depends on the condition code. 12948 if (Swap) 12949 std::swap(Op0, Op1); 12950 12951 // Subtract extended integers. 12952 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12953 12954 // Move the sign bit to the least significant position and zero out the rest. 12955 // Now the least significant bit carries the result of original comparison. 12956 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12957 DAG.getConstant(Size - 1, DL, MVT::i32)); 12958 auto Final = Shifted; 12959 12960 // Complement the result if needed. Based on the condition code. 12961 if (Complement) 12962 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12963 DAG.getConstant(1, DL, MVT::i64)); 12964 12965 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12966 } 12967 12968 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12969 DAGCombinerInfo &DCI) const { 12970 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12971 12972 SelectionDAG &DAG = DCI.DAG; 12973 SDLoc DL(N); 12974 12975 // Size of integers being compared has a critical role in the following 12976 // analysis, so we prefer to do this when all types are legal. 12977 if (!DCI.isAfterLegalizeDAG()) 12978 return SDValue(); 12979 12980 // If all users of SETCC extend its value to a legal integer type 12981 // then we replace SETCC with a subtraction 12982 for (SDNode::use_iterator UI = N->use_begin(), 12983 UE = N->use_end(); UI != UE; ++UI) { 12984 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12985 return SDValue(); 12986 } 12987 12988 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12989 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12990 12991 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12992 12993 if (OpSize < Size) { 12994 switch (CC) { 12995 default: break; 12996 case ISD::SETULT: 12997 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12998 case ISD::SETULE: 12999 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13000 case ISD::SETUGT: 13001 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13002 case ISD::SETUGE: 13003 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13004 } 13005 } 13006 13007 return SDValue(); 13008 } 13009 13010 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13011 DAGCombinerInfo &DCI) const { 13012 SelectionDAG &DAG = DCI.DAG; 13013 SDLoc dl(N); 13014 13015 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13016 // If we're tracking CR bits, we need to be careful that we don't have: 13017 // trunc(binary-ops(zext(x), zext(y))) 13018 // or 13019 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13020 // such that we're unnecessarily moving things into GPRs when it would be 13021 // better to keep them in CR bits. 13022 13023 // Note that trunc here can be an actual i1 trunc, or can be the effective 13024 // truncation that comes from a setcc or select_cc. 13025 if (N->getOpcode() == ISD::TRUNCATE && 13026 N->getValueType(0) != MVT::i1) 13027 return SDValue(); 13028 13029 if (N->getOperand(0).getValueType() != MVT::i32 && 13030 N->getOperand(0).getValueType() != MVT::i64) 13031 return SDValue(); 13032 13033 if (N->getOpcode() == ISD::SETCC || 13034 N->getOpcode() == ISD::SELECT_CC) { 13035 // If we're looking at a comparison, then we need to make sure that the 13036 // high bits (all except for the first) don't matter the result. 13037 ISD::CondCode CC = 13038 cast<CondCodeSDNode>(N->getOperand( 13039 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13040 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13041 13042 if (ISD::isSignedIntSetCC(CC)) { 13043 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13044 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13045 return SDValue(); 13046 } else if (ISD::isUnsignedIntSetCC(CC)) { 13047 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13048 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13049 !DAG.MaskedValueIsZero(N->getOperand(1), 13050 APInt::getHighBitsSet(OpBits, OpBits-1))) 13051 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13052 : SDValue()); 13053 } else { 13054 // This is neither a signed nor an unsigned comparison, just make sure 13055 // that the high bits are equal. 13056 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13057 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13058 13059 // We don't really care about what is known about the first bit (if 13060 // anything), so clear it in all masks prior to comparing them. 13061 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13062 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13063 13064 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13065 return SDValue(); 13066 } 13067 } 13068 13069 // We now know that the higher-order bits are irrelevant, we just need to 13070 // make sure that all of the intermediate operations are bit operations, and 13071 // all inputs are extensions. 13072 if (N->getOperand(0).getOpcode() != ISD::AND && 13073 N->getOperand(0).getOpcode() != ISD::OR && 13074 N->getOperand(0).getOpcode() != ISD::XOR && 13075 N->getOperand(0).getOpcode() != ISD::SELECT && 13076 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13077 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13078 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13079 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13080 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13081 return SDValue(); 13082 13083 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13084 N->getOperand(1).getOpcode() != ISD::AND && 13085 N->getOperand(1).getOpcode() != ISD::OR && 13086 N->getOperand(1).getOpcode() != ISD::XOR && 13087 N->getOperand(1).getOpcode() != ISD::SELECT && 13088 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13089 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13090 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13091 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13092 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13093 return SDValue(); 13094 13095 SmallVector<SDValue, 4> Inputs; 13096 SmallVector<SDValue, 8> BinOps, PromOps; 13097 SmallPtrSet<SDNode *, 16> Visited; 13098 13099 for (unsigned i = 0; i < 2; ++i) { 13100 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13101 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13102 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13103 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13104 isa<ConstantSDNode>(N->getOperand(i))) 13105 Inputs.push_back(N->getOperand(i)); 13106 else 13107 BinOps.push_back(N->getOperand(i)); 13108 13109 if (N->getOpcode() == ISD::TRUNCATE) 13110 break; 13111 } 13112 13113 // Visit all inputs, collect all binary operations (and, or, xor and 13114 // select) that are all fed by extensions. 13115 while (!BinOps.empty()) { 13116 SDValue BinOp = BinOps.back(); 13117 BinOps.pop_back(); 13118 13119 if (!Visited.insert(BinOp.getNode()).second) 13120 continue; 13121 13122 PromOps.push_back(BinOp); 13123 13124 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13125 // The condition of the select is not promoted. 13126 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13127 continue; 13128 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13129 continue; 13130 13131 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13132 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13133 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13134 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13135 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13136 Inputs.push_back(BinOp.getOperand(i)); 13137 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13138 BinOp.getOperand(i).getOpcode() == ISD::OR || 13139 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13140 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13141 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13142 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13143 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13144 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13145 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13146 BinOps.push_back(BinOp.getOperand(i)); 13147 } else { 13148 // We have an input that is not an extension or another binary 13149 // operation; we'll abort this transformation. 13150 return SDValue(); 13151 } 13152 } 13153 } 13154 13155 // Make sure that this is a self-contained cluster of operations (which 13156 // is not quite the same thing as saying that everything has only one 13157 // use). 13158 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13159 if (isa<ConstantSDNode>(Inputs[i])) 13160 continue; 13161 13162 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13163 UE = Inputs[i].getNode()->use_end(); 13164 UI != UE; ++UI) { 13165 SDNode *User = *UI; 13166 if (User != N && !Visited.count(User)) 13167 return SDValue(); 13168 13169 // Make sure that we're not going to promote the non-output-value 13170 // operand(s) or SELECT or SELECT_CC. 13171 // FIXME: Although we could sometimes handle this, and it does occur in 13172 // practice that one of the condition inputs to the select is also one of 13173 // the outputs, we currently can't deal with this. 13174 if (User->getOpcode() == ISD::SELECT) { 13175 if (User->getOperand(0) == Inputs[i]) 13176 return SDValue(); 13177 } else if (User->getOpcode() == ISD::SELECT_CC) { 13178 if (User->getOperand(0) == Inputs[i] || 13179 User->getOperand(1) == Inputs[i]) 13180 return SDValue(); 13181 } 13182 } 13183 } 13184 13185 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13186 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13187 UE = PromOps[i].getNode()->use_end(); 13188 UI != UE; ++UI) { 13189 SDNode *User = *UI; 13190 if (User != N && !Visited.count(User)) 13191 return SDValue(); 13192 13193 // Make sure that we're not going to promote the non-output-value 13194 // operand(s) or SELECT or SELECT_CC. 13195 // FIXME: Although we could sometimes handle this, and it does occur in 13196 // practice that one of the condition inputs to the select is also one of 13197 // the outputs, we currently can't deal with this. 13198 if (User->getOpcode() == ISD::SELECT) { 13199 if (User->getOperand(0) == PromOps[i]) 13200 return SDValue(); 13201 } else if (User->getOpcode() == ISD::SELECT_CC) { 13202 if (User->getOperand(0) == PromOps[i] || 13203 User->getOperand(1) == PromOps[i]) 13204 return SDValue(); 13205 } 13206 } 13207 } 13208 13209 // Replace all inputs with the extension operand. 13210 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13211 // Constants may have users outside the cluster of to-be-promoted nodes, 13212 // and so we need to replace those as we do the promotions. 13213 if (isa<ConstantSDNode>(Inputs[i])) 13214 continue; 13215 else 13216 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13217 } 13218 13219 std::list<HandleSDNode> PromOpHandles; 13220 for (auto &PromOp : PromOps) 13221 PromOpHandles.emplace_back(PromOp); 13222 13223 // Replace all operations (these are all the same, but have a different 13224 // (i1) return type). DAG.getNode will validate that the types of 13225 // a binary operator match, so go through the list in reverse so that 13226 // we've likely promoted both operands first. Any intermediate truncations or 13227 // extensions disappear. 13228 while (!PromOpHandles.empty()) { 13229 SDValue PromOp = PromOpHandles.back().getValue(); 13230 PromOpHandles.pop_back(); 13231 13232 if (PromOp.getOpcode() == ISD::TRUNCATE || 13233 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13234 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13235 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13236 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13237 PromOp.getOperand(0).getValueType() != MVT::i1) { 13238 // The operand is not yet ready (see comment below). 13239 PromOpHandles.emplace_front(PromOp); 13240 continue; 13241 } 13242 13243 SDValue RepValue = PromOp.getOperand(0); 13244 if (isa<ConstantSDNode>(RepValue)) 13245 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13246 13247 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13248 continue; 13249 } 13250 13251 unsigned C; 13252 switch (PromOp.getOpcode()) { 13253 default: C = 0; break; 13254 case ISD::SELECT: C = 1; break; 13255 case ISD::SELECT_CC: C = 2; break; 13256 } 13257 13258 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13259 PromOp.getOperand(C).getValueType() != MVT::i1) || 13260 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13261 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13262 // The to-be-promoted operands of this node have not yet been 13263 // promoted (this should be rare because we're going through the 13264 // list backward, but if one of the operands has several users in 13265 // this cluster of to-be-promoted nodes, it is possible). 13266 PromOpHandles.emplace_front(PromOp); 13267 continue; 13268 } 13269 13270 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13271 PromOp.getNode()->op_end()); 13272 13273 // If there are any constant inputs, make sure they're replaced now. 13274 for (unsigned i = 0; i < 2; ++i) 13275 if (isa<ConstantSDNode>(Ops[C+i])) 13276 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13277 13278 DAG.ReplaceAllUsesOfValueWith(PromOp, 13279 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13280 } 13281 13282 // Now we're left with the initial truncation itself. 13283 if (N->getOpcode() == ISD::TRUNCATE) 13284 return N->getOperand(0); 13285 13286 // Otherwise, this is a comparison. The operands to be compared have just 13287 // changed type (to i1), but everything else is the same. 13288 return SDValue(N, 0); 13289 } 13290 13291 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13292 DAGCombinerInfo &DCI) const { 13293 SelectionDAG &DAG = DCI.DAG; 13294 SDLoc dl(N); 13295 13296 // If we're tracking CR bits, we need to be careful that we don't have: 13297 // zext(binary-ops(trunc(x), trunc(y))) 13298 // or 13299 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13300 // such that we're unnecessarily moving things into CR bits that can more 13301 // efficiently stay in GPRs. Note that if we're not certain that the high 13302 // bits are set as required by the final extension, we still may need to do 13303 // some masking to get the proper behavior. 13304 13305 // This same functionality is important on PPC64 when dealing with 13306 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13307 // the return values of functions. Because it is so similar, it is handled 13308 // here as well. 13309 13310 if (N->getValueType(0) != MVT::i32 && 13311 N->getValueType(0) != MVT::i64) 13312 return SDValue(); 13313 13314 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13315 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13316 return SDValue(); 13317 13318 if (N->getOperand(0).getOpcode() != ISD::AND && 13319 N->getOperand(0).getOpcode() != ISD::OR && 13320 N->getOperand(0).getOpcode() != ISD::XOR && 13321 N->getOperand(0).getOpcode() != ISD::SELECT && 13322 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13323 return SDValue(); 13324 13325 SmallVector<SDValue, 4> Inputs; 13326 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13327 SmallPtrSet<SDNode *, 16> Visited; 13328 13329 // Visit all inputs, collect all binary operations (and, or, xor and 13330 // select) that are all fed by truncations. 13331 while (!BinOps.empty()) { 13332 SDValue BinOp = BinOps.back(); 13333 BinOps.pop_back(); 13334 13335 if (!Visited.insert(BinOp.getNode()).second) 13336 continue; 13337 13338 PromOps.push_back(BinOp); 13339 13340 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13341 // The condition of the select is not promoted. 13342 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13343 continue; 13344 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13345 continue; 13346 13347 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13348 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13349 Inputs.push_back(BinOp.getOperand(i)); 13350 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13351 BinOp.getOperand(i).getOpcode() == ISD::OR || 13352 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13353 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13354 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13355 BinOps.push_back(BinOp.getOperand(i)); 13356 } else { 13357 // We have an input that is not a truncation or another binary 13358 // operation; we'll abort this transformation. 13359 return SDValue(); 13360 } 13361 } 13362 } 13363 13364 // The operands of a select that must be truncated when the select is 13365 // promoted because the operand is actually part of the to-be-promoted set. 13366 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13367 13368 // Make sure that this is a self-contained cluster of operations (which 13369 // is not quite the same thing as saying that everything has only one 13370 // use). 13371 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13372 if (isa<ConstantSDNode>(Inputs[i])) 13373 continue; 13374 13375 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13376 UE = Inputs[i].getNode()->use_end(); 13377 UI != UE; ++UI) { 13378 SDNode *User = *UI; 13379 if (User != N && !Visited.count(User)) 13380 return SDValue(); 13381 13382 // If we're going to promote the non-output-value operand(s) or SELECT or 13383 // SELECT_CC, record them for truncation. 13384 if (User->getOpcode() == ISD::SELECT) { 13385 if (User->getOperand(0) == Inputs[i]) 13386 SelectTruncOp[0].insert(std::make_pair(User, 13387 User->getOperand(0).getValueType())); 13388 } else if (User->getOpcode() == ISD::SELECT_CC) { 13389 if (User->getOperand(0) == Inputs[i]) 13390 SelectTruncOp[0].insert(std::make_pair(User, 13391 User->getOperand(0).getValueType())); 13392 if (User->getOperand(1) == Inputs[i]) 13393 SelectTruncOp[1].insert(std::make_pair(User, 13394 User->getOperand(1).getValueType())); 13395 } 13396 } 13397 } 13398 13399 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13400 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13401 UE = PromOps[i].getNode()->use_end(); 13402 UI != UE; ++UI) { 13403 SDNode *User = *UI; 13404 if (User != N && !Visited.count(User)) 13405 return SDValue(); 13406 13407 // If we're going to promote the non-output-value operand(s) or SELECT or 13408 // SELECT_CC, record them for truncation. 13409 if (User->getOpcode() == ISD::SELECT) { 13410 if (User->getOperand(0) == PromOps[i]) 13411 SelectTruncOp[0].insert(std::make_pair(User, 13412 User->getOperand(0).getValueType())); 13413 } else if (User->getOpcode() == ISD::SELECT_CC) { 13414 if (User->getOperand(0) == PromOps[i]) 13415 SelectTruncOp[0].insert(std::make_pair(User, 13416 User->getOperand(0).getValueType())); 13417 if (User->getOperand(1) == PromOps[i]) 13418 SelectTruncOp[1].insert(std::make_pair(User, 13419 User->getOperand(1).getValueType())); 13420 } 13421 } 13422 } 13423 13424 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13425 bool ReallyNeedsExt = false; 13426 if (N->getOpcode() != ISD::ANY_EXTEND) { 13427 // If all of the inputs are not already sign/zero extended, then 13428 // we'll still need to do that at the end. 13429 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13430 if (isa<ConstantSDNode>(Inputs[i])) 13431 continue; 13432 13433 unsigned OpBits = 13434 Inputs[i].getOperand(0).getValueSizeInBits(); 13435 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13436 13437 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13438 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13439 APInt::getHighBitsSet(OpBits, 13440 OpBits-PromBits))) || 13441 (N->getOpcode() == ISD::SIGN_EXTEND && 13442 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13443 (OpBits-(PromBits-1)))) { 13444 ReallyNeedsExt = true; 13445 break; 13446 } 13447 } 13448 } 13449 13450 // Replace all inputs, either with the truncation operand, or a 13451 // truncation or extension to the final output type. 13452 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13453 // Constant inputs need to be replaced with the to-be-promoted nodes that 13454 // use them because they might have users outside of the cluster of 13455 // promoted nodes. 13456 if (isa<ConstantSDNode>(Inputs[i])) 13457 continue; 13458 13459 SDValue InSrc = Inputs[i].getOperand(0); 13460 if (Inputs[i].getValueType() == N->getValueType(0)) 13461 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13462 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13463 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13464 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13465 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13466 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13467 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13468 else 13469 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13470 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13471 } 13472 13473 std::list<HandleSDNode> PromOpHandles; 13474 for (auto &PromOp : PromOps) 13475 PromOpHandles.emplace_back(PromOp); 13476 13477 // Replace all operations (these are all the same, but have a different 13478 // (promoted) return type). DAG.getNode will validate that the types of 13479 // a binary operator match, so go through the list in reverse so that 13480 // we've likely promoted both operands first. 13481 while (!PromOpHandles.empty()) { 13482 SDValue PromOp = PromOpHandles.back().getValue(); 13483 PromOpHandles.pop_back(); 13484 13485 unsigned C; 13486 switch (PromOp.getOpcode()) { 13487 default: C = 0; break; 13488 case ISD::SELECT: C = 1; break; 13489 case ISD::SELECT_CC: C = 2; break; 13490 } 13491 13492 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13493 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13494 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13495 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13496 // The to-be-promoted operands of this node have not yet been 13497 // promoted (this should be rare because we're going through the 13498 // list backward, but if one of the operands has several users in 13499 // this cluster of to-be-promoted nodes, it is possible). 13500 PromOpHandles.emplace_front(PromOp); 13501 continue; 13502 } 13503 13504 // For SELECT and SELECT_CC nodes, we do a similar check for any 13505 // to-be-promoted comparison inputs. 13506 if (PromOp.getOpcode() == ISD::SELECT || 13507 PromOp.getOpcode() == ISD::SELECT_CC) { 13508 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13509 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13510 (SelectTruncOp[1].count(PromOp.getNode()) && 13511 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13512 PromOpHandles.emplace_front(PromOp); 13513 continue; 13514 } 13515 } 13516 13517 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13518 PromOp.getNode()->op_end()); 13519 13520 // If this node has constant inputs, then they'll need to be promoted here. 13521 for (unsigned i = 0; i < 2; ++i) { 13522 if (!isa<ConstantSDNode>(Ops[C+i])) 13523 continue; 13524 if (Ops[C+i].getValueType() == N->getValueType(0)) 13525 continue; 13526 13527 if (N->getOpcode() == ISD::SIGN_EXTEND) 13528 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13529 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13530 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13531 else 13532 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13533 } 13534 13535 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13536 // truncate them again to the original value type. 13537 if (PromOp.getOpcode() == ISD::SELECT || 13538 PromOp.getOpcode() == ISD::SELECT_CC) { 13539 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13540 if (SI0 != SelectTruncOp[0].end()) 13541 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13542 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13543 if (SI1 != SelectTruncOp[1].end()) 13544 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13545 } 13546 13547 DAG.ReplaceAllUsesOfValueWith(PromOp, 13548 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13549 } 13550 13551 // Now we're left with the initial extension itself. 13552 if (!ReallyNeedsExt) 13553 return N->getOperand(0); 13554 13555 // To zero extend, just mask off everything except for the first bit (in the 13556 // i1 case). 13557 if (N->getOpcode() == ISD::ZERO_EXTEND) 13558 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13559 DAG.getConstant(APInt::getLowBitsSet( 13560 N->getValueSizeInBits(0), PromBits), 13561 dl, N->getValueType(0))); 13562 13563 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13564 "Invalid extension type"); 13565 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13566 SDValue ShiftCst = 13567 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13568 return DAG.getNode( 13569 ISD::SRA, dl, N->getValueType(0), 13570 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13571 ShiftCst); 13572 } 13573 13574 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13575 DAGCombinerInfo &DCI) const { 13576 assert(N->getOpcode() == ISD::SETCC && 13577 "Should be called with a SETCC node"); 13578 13579 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13580 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13581 SDValue LHS = N->getOperand(0); 13582 SDValue RHS = N->getOperand(1); 13583 13584 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13585 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13586 LHS.hasOneUse()) 13587 std::swap(LHS, RHS); 13588 13589 // x == 0-y --> x+y == 0 13590 // x != 0-y --> x+y != 0 13591 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13592 RHS.hasOneUse()) { 13593 SDLoc DL(N); 13594 SelectionDAG &DAG = DCI.DAG; 13595 EVT VT = N->getValueType(0); 13596 EVT OpVT = LHS.getValueType(); 13597 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13598 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13599 } 13600 } 13601 13602 return DAGCombineTruncBoolExt(N, DCI); 13603 } 13604 13605 // Is this an extending load from an f32 to an f64? 13606 static bool isFPExtLoad(SDValue Op) { 13607 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13608 return LD->getExtensionType() == ISD::EXTLOAD && 13609 Op.getValueType() == MVT::f64; 13610 return false; 13611 } 13612 13613 /// Reduces the number of fp-to-int conversion when building a vector. 13614 /// 13615 /// If this vector is built out of floating to integer conversions, 13616 /// transform it to a vector built out of floating point values followed by a 13617 /// single floating to integer conversion of the vector. 13618 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13619 /// becomes (fptosi (build_vector ($A, $B, ...))) 13620 SDValue PPCTargetLowering:: 13621 combineElementTruncationToVectorTruncation(SDNode *N, 13622 DAGCombinerInfo &DCI) const { 13623 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13624 "Should be called with a BUILD_VECTOR node"); 13625 13626 SelectionDAG &DAG = DCI.DAG; 13627 SDLoc dl(N); 13628 13629 SDValue FirstInput = N->getOperand(0); 13630 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13631 "The input operand must be an fp-to-int conversion."); 13632 13633 // This combine happens after legalization so the fp_to_[su]i nodes are 13634 // already converted to PPCSISD nodes. 13635 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13636 if (FirstConversion == PPCISD::FCTIDZ || 13637 FirstConversion == PPCISD::FCTIDUZ || 13638 FirstConversion == PPCISD::FCTIWZ || 13639 FirstConversion == PPCISD::FCTIWUZ) { 13640 bool IsSplat = true; 13641 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13642 FirstConversion == PPCISD::FCTIWUZ; 13643 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13644 SmallVector<SDValue, 4> Ops; 13645 EVT TargetVT = N->getValueType(0); 13646 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13647 SDValue NextOp = N->getOperand(i); 13648 if (NextOp.getOpcode() != PPCISD::MFVSR) 13649 return SDValue(); 13650 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13651 if (NextConversion != FirstConversion) 13652 return SDValue(); 13653 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13654 // This is not valid if the input was originally double precision. It is 13655 // also not profitable to do unless this is an extending load in which 13656 // case doing this combine will allow us to combine consecutive loads. 13657 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13658 return SDValue(); 13659 if (N->getOperand(i) != FirstInput) 13660 IsSplat = false; 13661 } 13662 13663 // If this is a splat, we leave it as-is since there will be only a single 13664 // fp-to-int conversion followed by a splat of the integer. This is better 13665 // for 32-bit and smaller ints and neutral for 64-bit ints. 13666 if (IsSplat) 13667 return SDValue(); 13668 13669 // Now that we know we have the right type of node, get its operands 13670 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13671 SDValue In = N->getOperand(i).getOperand(0); 13672 if (Is32Bit) { 13673 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13674 // here, we know that all inputs are extending loads so this is safe). 13675 if (In.isUndef()) 13676 Ops.push_back(DAG.getUNDEF(SrcVT)); 13677 else { 13678 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13679 MVT::f32, In.getOperand(0), 13680 DAG.getIntPtrConstant(1, dl)); 13681 Ops.push_back(Trunc); 13682 } 13683 } else 13684 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13685 } 13686 13687 unsigned Opcode; 13688 if (FirstConversion == PPCISD::FCTIDZ || 13689 FirstConversion == PPCISD::FCTIWZ) 13690 Opcode = ISD::FP_TO_SINT; 13691 else 13692 Opcode = ISD::FP_TO_UINT; 13693 13694 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13695 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13696 return DAG.getNode(Opcode, dl, TargetVT, BV); 13697 } 13698 return SDValue(); 13699 } 13700 13701 /// Reduce the number of loads when building a vector. 13702 /// 13703 /// Building a vector out of multiple loads can be converted to a load 13704 /// of the vector type if the loads are consecutive. If the loads are 13705 /// consecutive but in descending order, a shuffle is added at the end 13706 /// to reorder the vector. 13707 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13708 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13709 "Should be called with a BUILD_VECTOR node"); 13710 13711 SDLoc dl(N); 13712 13713 // Return early for non byte-sized type, as they can't be consecutive. 13714 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13715 return SDValue(); 13716 13717 bool InputsAreConsecutiveLoads = true; 13718 bool InputsAreReverseConsecutive = true; 13719 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13720 SDValue FirstInput = N->getOperand(0); 13721 bool IsRoundOfExtLoad = false; 13722 13723 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13724 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13725 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13726 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13727 } 13728 // Not a build vector of (possibly fp_rounded) loads. 13729 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13730 N->getNumOperands() == 1) 13731 return SDValue(); 13732 13733 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13734 // If any inputs are fp_round(extload), they all must be. 13735 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13736 return SDValue(); 13737 13738 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13739 N->getOperand(i); 13740 if (NextInput.getOpcode() != ISD::LOAD) 13741 return SDValue(); 13742 13743 SDValue PreviousInput = 13744 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13745 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13746 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13747 13748 // If any inputs are fp_round(extload), they all must be. 13749 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13750 return SDValue(); 13751 13752 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13753 InputsAreConsecutiveLoads = false; 13754 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13755 InputsAreReverseConsecutive = false; 13756 13757 // Exit early if the loads are neither consecutive nor reverse consecutive. 13758 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13759 return SDValue(); 13760 } 13761 13762 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13763 "The loads cannot be both consecutive and reverse consecutive."); 13764 13765 SDValue FirstLoadOp = 13766 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13767 SDValue LastLoadOp = 13768 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13769 N->getOperand(N->getNumOperands()-1); 13770 13771 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13772 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13773 if (InputsAreConsecutiveLoads) { 13774 assert(LD1 && "Input needs to be a LoadSDNode."); 13775 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13776 LD1->getBasePtr(), LD1->getPointerInfo(), 13777 LD1->getAlignment()); 13778 } 13779 if (InputsAreReverseConsecutive) { 13780 assert(LDL && "Input needs to be a LoadSDNode."); 13781 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13782 LDL->getBasePtr(), LDL->getPointerInfo(), 13783 LDL->getAlignment()); 13784 SmallVector<int, 16> Ops; 13785 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13786 Ops.push_back(i); 13787 13788 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13789 DAG.getUNDEF(N->getValueType(0)), Ops); 13790 } 13791 return SDValue(); 13792 } 13793 13794 // This function adds the required vector_shuffle needed to get 13795 // the elements of the vector extract in the correct position 13796 // as specified by the CorrectElems encoding. 13797 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13798 SDValue Input, uint64_t Elems, 13799 uint64_t CorrectElems) { 13800 SDLoc dl(N); 13801 13802 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13803 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13804 13805 // Knowing the element indices being extracted from the original 13806 // vector and the order in which they're being inserted, just put 13807 // them at element indices required for the instruction. 13808 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13809 if (DAG.getDataLayout().isLittleEndian()) 13810 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13811 else 13812 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13813 CorrectElems = CorrectElems >> 8; 13814 Elems = Elems >> 8; 13815 } 13816 13817 SDValue Shuffle = 13818 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13819 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13820 13821 EVT VT = N->getValueType(0); 13822 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13823 13824 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13825 Input.getValueType().getVectorElementType(), 13826 VT.getVectorNumElements()); 13827 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13828 DAG.getValueType(ExtVT)); 13829 } 13830 13831 // Look for build vector patterns where input operands come from sign 13832 // extended vector_extract elements of specific indices. If the correct indices 13833 // aren't used, add a vector shuffle to fix up the indices and create 13834 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13835 // during instruction selection. 13836 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13837 // This array encodes the indices that the vector sign extend instructions 13838 // extract from when extending from one type to another for both BE and LE. 13839 // The right nibble of each byte corresponds to the LE incides. 13840 // and the left nibble of each byte corresponds to the BE incides. 13841 // For example: 0x3074B8FC byte->word 13842 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13843 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13844 // For example: 0x000070F8 byte->double word 13845 // For LE: the allowed indices are: 0x0,0x8 13846 // For BE: the allowed indices are: 0x7,0xF 13847 uint64_t TargetElems[] = { 13848 0x3074B8FC, // b->w 13849 0x000070F8, // b->d 13850 0x10325476, // h->w 13851 0x00003074, // h->d 13852 0x00001032, // w->d 13853 }; 13854 13855 uint64_t Elems = 0; 13856 int Index; 13857 SDValue Input; 13858 13859 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13860 if (!Op) 13861 return false; 13862 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13863 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13864 return false; 13865 13866 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13867 // of the right width. 13868 SDValue Extract = Op.getOperand(0); 13869 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13870 Extract = Extract.getOperand(0); 13871 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13872 return false; 13873 13874 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13875 if (!ExtOp) 13876 return false; 13877 13878 Index = ExtOp->getZExtValue(); 13879 if (Input && Input != Extract.getOperand(0)) 13880 return false; 13881 13882 if (!Input) 13883 Input = Extract.getOperand(0); 13884 13885 Elems = Elems << 8; 13886 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13887 Elems |= Index; 13888 13889 return true; 13890 }; 13891 13892 // If the build vector operands aren't sign extended vector extracts, 13893 // of the same input vector, then return. 13894 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13895 if (!isSExtOfVecExtract(N->getOperand(i))) { 13896 return SDValue(); 13897 } 13898 } 13899 13900 // If the vector extract indicies are not correct, add the appropriate 13901 // vector_shuffle. 13902 int TgtElemArrayIdx; 13903 int InputSize = Input.getValueType().getScalarSizeInBits(); 13904 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13905 if (InputSize + OutputSize == 40) 13906 TgtElemArrayIdx = 0; 13907 else if (InputSize + OutputSize == 72) 13908 TgtElemArrayIdx = 1; 13909 else if (InputSize + OutputSize == 48) 13910 TgtElemArrayIdx = 2; 13911 else if (InputSize + OutputSize == 80) 13912 TgtElemArrayIdx = 3; 13913 else if (InputSize + OutputSize == 96) 13914 TgtElemArrayIdx = 4; 13915 else 13916 return SDValue(); 13917 13918 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13919 CorrectElems = DAG.getDataLayout().isLittleEndian() 13920 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13921 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13922 if (Elems != CorrectElems) { 13923 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13924 } 13925 13926 // Regular lowering will catch cases where a shuffle is not needed. 13927 return SDValue(); 13928 } 13929 13930 // Look for the pattern of a load from a narrow width to i128, feeding 13931 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13932 // (LXVRZX). This node represents a zero extending load that will be matched 13933 // to the Load VSX Vector Rightmost instructions. 13934 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13935 SDLoc DL(N); 13936 13937 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13938 if (N->getValueType(0) != MVT::v1i128) 13939 return SDValue(); 13940 13941 SDValue Operand = N->getOperand(0); 13942 // Proceed with the transformation if the operand to the BUILD_VECTOR 13943 // is a load instruction. 13944 if (Operand.getOpcode() != ISD::LOAD) 13945 return SDValue(); 13946 13947 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13948 EVT MemoryType = LD->getMemoryVT(); 13949 13950 // This transformation is only valid if the we are loading either a byte, 13951 // halfword, word, or doubleword. 13952 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13953 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13954 13955 // Ensure that the load from the narrow width is being zero extended to i128. 13956 if (!ValidLDType || 13957 (LD->getExtensionType() != ISD::ZEXTLOAD && 13958 LD->getExtensionType() != ISD::EXTLOAD)) 13959 return SDValue(); 13960 13961 SDValue LoadOps[] = { 13962 LD->getChain(), LD->getBasePtr(), 13963 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13964 13965 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13966 DAG.getVTList(MVT::v1i128, MVT::Other), 13967 LoadOps, MemoryType, LD->getMemOperand()); 13968 } 13969 13970 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13971 DAGCombinerInfo &DCI) const { 13972 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13973 "Should be called with a BUILD_VECTOR node"); 13974 13975 SelectionDAG &DAG = DCI.DAG; 13976 SDLoc dl(N); 13977 13978 if (!Subtarget.hasVSX()) 13979 return SDValue(); 13980 13981 // The target independent DAG combiner will leave a build_vector of 13982 // float-to-int conversions intact. We can generate MUCH better code for 13983 // a float-to-int conversion of a vector of floats. 13984 SDValue FirstInput = N->getOperand(0); 13985 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13986 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13987 if (Reduced) 13988 return Reduced; 13989 } 13990 13991 // If we're building a vector out of consecutive loads, just load that 13992 // vector type. 13993 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13994 if (Reduced) 13995 return Reduced; 13996 13997 // If we're building a vector out of extended elements from another vector 13998 // we have P9 vector integer extend instructions. The code assumes legal 13999 // input types (i.e. it can't handle things like v4i16) so do not run before 14000 // legalization. 14001 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14002 Reduced = combineBVOfVecSExt(N, DAG); 14003 if (Reduced) 14004 return Reduced; 14005 } 14006 14007 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14008 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14009 // is a load from <valid narrow width> to i128. 14010 if (Subtarget.isISA3_1()) { 14011 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14012 if (BVOfZLoad) 14013 return BVOfZLoad; 14014 } 14015 14016 if (N->getValueType(0) != MVT::v2f64) 14017 return SDValue(); 14018 14019 // Looking for: 14020 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14021 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14022 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14023 return SDValue(); 14024 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14025 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14026 return SDValue(); 14027 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14028 return SDValue(); 14029 14030 SDValue Ext1 = FirstInput.getOperand(0); 14031 SDValue Ext2 = N->getOperand(1).getOperand(0); 14032 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14033 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14034 return SDValue(); 14035 14036 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14037 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14038 if (!Ext1Op || !Ext2Op) 14039 return SDValue(); 14040 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14041 Ext1.getOperand(0) != Ext2.getOperand(0)) 14042 return SDValue(); 14043 14044 int FirstElem = Ext1Op->getZExtValue(); 14045 int SecondElem = Ext2Op->getZExtValue(); 14046 int SubvecIdx; 14047 if (FirstElem == 0 && SecondElem == 1) 14048 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14049 else if (FirstElem == 2 && SecondElem == 3) 14050 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14051 else 14052 return SDValue(); 14053 14054 SDValue SrcVec = Ext1.getOperand(0); 14055 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14056 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14057 return DAG.getNode(NodeType, dl, MVT::v2f64, 14058 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14059 } 14060 14061 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14062 DAGCombinerInfo &DCI) const { 14063 assert((N->getOpcode() == ISD::SINT_TO_FP || 14064 N->getOpcode() == ISD::UINT_TO_FP) && 14065 "Need an int -> FP conversion node here"); 14066 14067 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14068 return SDValue(); 14069 14070 SelectionDAG &DAG = DCI.DAG; 14071 SDLoc dl(N); 14072 SDValue Op(N, 0); 14073 14074 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14075 // from the hardware. 14076 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14077 return SDValue(); 14078 if (!Op.getOperand(0).getValueType().isSimple()) 14079 return SDValue(); 14080 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14081 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14082 return SDValue(); 14083 14084 SDValue FirstOperand(Op.getOperand(0)); 14085 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14086 (FirstOperand.getValueType() == MVT::i8 || 14087 FirstOperand.getValueType() == MVT::i16); 14088 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14089 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14090 bool DstDouble = Op.getValueType() == MVT::f64; 14091 unsigned ConvOp = Signed ? 14092 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14093 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14094 SDValue WidthConst = 14095 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14096 dl, false); 14097 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14098 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14099 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14100 DAG.getVTList(MVT::f64, MVT::Other), 14101 Ops, MVT::i8, LDN->getMemOperand()); 14102 14103 // For signed conversion, we need to sign-extend the value in the VSR 14104 if (Signed) { 14105 SDValue ExtOps[] = { Ld, WidthConst }; 14106 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14107 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14108 } else 14109 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14110 } 14111 14112 14113 // For i32 intermediate values, unfortunately, the conversion functions 14114 // leave the upper 32 bits of the value are undefined. Within the set of 14115 // scalar instructions, we have no method for zero- or sign-extending the 14116 // value. Thus, we cannot handle i32 intermediate values here. 14117 if (Op.getOperand(0).getValueType() == MVT::i32) 14118 return SDValue(); 14119 14120 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14121 "UINT_TO_FP is supported only with FPCVT"); 14122 14123 // If we have FCFIDS, then use it when converting to single-precision. 14124 // Otherwise, convert to double-precision and then round. 14125 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14126 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14127 : PPCISD::FCFIDS) 14128 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14129 : PPCISD::FCFID); 14130 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14131 ? MVT::f32 14132 : MVT::f64; 14133 14134 // If we're converting from a float, to an int, and back to a float again, 14135 // then we don't need the store/load pair at all. 14136 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14137 Subtarget.hasFPCVT()) || 14138 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14139 SDValue Src = Op.getOperand(0).getOperand(0); 14140 if (Src.getValueType() == MVT::f32) { 14141 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14142 DCI.AddToWorklist(Src.getNode()); 14143 } else if (Src.getValueType() != MVT::f64) { 14144 // Make sure that we don't pick up a ppc_fp128 source value. 14145 return SDValue(); 14146 } 14147 14148 unsigned FCTOp = 14149 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14150 PPCISD::FCTIDUZ; 14151 14152 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14153 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14154 14155 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14156 FP = DAG.getNode(ISD::FP_ROUND, dl, 14157 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14158 DCI.AddToWorklist(FP.getNode()); 14159 } 14160 14161 return FP; 14162 } 14163 14164 return SDValue(); 14165 } 14166 14167 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14168 // builtins) into loads with swaps. 14169 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14170 DAGCombinerInfo &DCI) const { 14171 SelectionDAG &DAG = DCI.DAG; 14172 SDLoc dl(N); 14173 SDValue Chain; 14174 SDValue Base; 14175 MachineMemOperand *MMO; 14176 14177 switch (N->getOpcode()) { 14178 default: 14179 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14180 case ISD::LOAD: { 14181 LoadSDNode *LD = cast<LoadSDNode>(N); 14182 Chain = LD->getChain(); 14183 Base = LD->getBasePtr(); 14184 MMO = LD->getMemOperand(); 14185 // If the MMO suggests this isn't a load of a full vector, leave 14186 // things alone. For a built-in, we have to make the change for 14187 // correctness, so if there is a size problem that will be a bug. 14188 if (MMO->getSize() < 16) 14189 return SDValue(); 14190 break; 14191 } 14192 case ISD::INTRINSIC_W_CHAIN: { 14193 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14194 Chain = Intrin->getChain(); 14195 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14196 // us what we want. Get operand 2 instead. 14197 Base = Intrin->getOperand(2); 14198 MMO = Intrin->getMemOperand(); 14199 break; 14200 } 14201 } 14202 14203 MVT VecTy = N->getValueType(0).getSimpleVT(); 14204 14205 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14206 // aligned and the type is a vector with elements up to 4 bytes 14207 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14208 VecTy.getScalarSizeInBits() <= 32) { 14209 return SDValue(); 14210 } 14211 14212 SDValue LoadOps[] = { Chain, Base }; 14213 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14214 DAG.getVTList(MVT::v2f64, MVT::Other), 14215 LoadOps, MVT::v2f64, MMO); 14216 14217 DCI.AddToWorklist(Load.getNode()); 14218 Chain = Load.getValue(1); 14219 SDValue Swap = DAG.getNode( 14220 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14221 DCI.AddToWorklist(Swap.getNode()); 14222 14223 // Add a bitcast if the resulting load type doesn't match v2f64. 14224 if (VecTy != MVT::v2f64) { 14225 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14226 DCI.AddToWorklist(N.getNode()); 14227 // Package {bitcast value, swap's chain} to match Load's shape. 14228 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14229 N, Swap.getValue(1)); 14230 } 14231 14232 return Swap; 14233 } 14234 14235 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14236 // builtins) into stores with swaps. 14237 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14238 DAGCombinerInfo &DCI) const { 14239 SelectionDAG &DAG = DCI.DAG; 14240 SDLoc dl(N); 14241 SDValue Chain; 14242 SDValue Base; 14243 unsigned SrcOpnd; 14244 MachineMemOperand *MMO; 14245 14246 switch (N->getOpcode()) { 14247 default: 14248 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14249 case ISD::STORE: { 14250 StoreSDNode *ST = cast<StoreSDNode>(N); 14251 Chain = ST->getChain(); 14252 Base = ST->getBasePtr(); 14253 MMO = ST->getMemOperand(); 14254 SrcOpnd = 1; 14255 // If the MMO suggests this isn't a store of a full vector, leave 14256 // things alone. For a built-in, we have to make the change for 14257 // correctness, so if there is a size problem that will be a bug. 14258 if (MMO->getSize() < 16) 14259 return SDValue(); 14260 break; 14261 } 14262 case ISD::INTRINSIC_VOID: { 14263 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14264 Chain = Intrin->getChain(); 14265 // Intrin->getBasePtr() oddly does not get what we want. 14266 Base = Intrin->getOperand(3); 14267 MMO = Intrin->getMemOperand(); 14268 SrcOpnd = 2; 14269 break; 14270 } 14271 } 14272 14273 SDValue Src = N->getOperand(SrcOpnd); 14274 MVT VecTy = Src.getValueType().getSimpleVT(); 14275 14276 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14277 // aligned and the type is a vector with elements up to 4 bytes 14278 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14279 VecTy.getScalarSizeInBits() <= 32) { 14280 return SDValue(); 14281 } 14282 14283 // All stores are done as v2f64 and possible bit cast. 14284 if (VecTy != MVT::v2f64) { 14285 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14286 DCI.AddToWorklist(Src.getNode()); 14287 } 14288 14289 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14290 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14291 DCI.AddToWorklist(Swap.getNode()); 14292 Chain = Swap.getValue(1); 14293 SDValue StoreOps[] = { Chain, Swap, Base }; 14294 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14295 DAG.getVTList(MVT::Other), 14296 StoreOps, VecTy, MMO); 14297 DCI.AddToWorklist(Store.getNode()); 14298 return Store; 14299 } 14300 14301 // Handle DAG combine for STORE (FP_TO_INT F). 14302 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14303 DAGCombinerInfo &DCI) const { 14304 14305 SelectionDAG &DAG = DCI.DAG; 14306 SDLoc dl(N); 14307 unsigned Opcode = N->getOperand(1).getOpcode(); 14308 14309 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14310 && "Not a FP_TO_INT Instruction!"); 14311 14312 SDValue Val = N->getOperand(1).getOperand(0); 14313 EVT Op1VT = N->getOperand(1).getValueType(); 14314 EVT ResVT = Val.getValueType(); 14315 14316 if (!isTypeLegal(ResVT)) 14317 return SDValue(); 14318 14319 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14320 bool ValidTypeForStoreFltAsInt = 14321 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14322 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14323 14324 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14325 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14326 return SDValue(); 14327 14328 // Extend f32 values to f64 14329 if (ResVT.getScalarSizeInBits() == 32) { 14330 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14331 DCI.AddToWorklist(Val.getNode()); 14332 } 14333 14334 // Set signed or unsigned conversion opcode. 14335 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14336 PPCISD::FP_TO_SINT_IN_VSR : 14337 PPCISD::FP_TO_UINT_IN_VSR; 14338 14339 Val = DAG.getNode(ConvOpcode, 14340 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14341 DCI.AddToWorklist(Val.getNode()); 14342 14343 // Set number of bytes being converted. 14344 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14345 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14346 DAG.getIntPtrConstant(ByteSize, dl, false), 14347 DAG.getValueType(Op1VT) }; 14348 14349 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14350 DAG.getVTList(MVT::Other), Ops, 14351 cast<StoreSDNode>(N)->getMemoryVT(), 14352 cast<StoreSDNode>(N)->getMemOperand()); 14353 14354 DCI.AddToWorklist(Val.getNode()); 14355 return Val; 14356 } 14357 14358 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14359 // Check that the source of the element keeps flipping 14360 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14361 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14362 for (int i = 1, e = Mask.size(); i < e; i++) { 14363 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14364 return false; 14365 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14366 return false; 14367 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14368 } 14369 return true; 14370 } 14371 14372 static bool isSplatBV(SDValue Op) { 14373 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14374 return false; 14375 SDValue FirstOp; 14376 14377 // Find first non-undef input. 14378 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14379 FirstOp = Op.getOperand(i); 14380 if (!FirstOp.isUndef()) 14381 break; 14382 } 14383 14384 // All inputs are undef or the same as the first non-undef input. 14385 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14386 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14387 return false; 14388 return true; 14389 } 14390 14391 static SDValue isScalarToVec(SDValue Op) { 14392 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14393 return Op; 14394 if (Op.getOpcode() != ISD::BITCAST) 14395 return SDValue(); 14396 Op = Op.getOperand(0); 14397 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14398 return Op; 14399 return SDValue(); 14400 } 14401 14402 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14403 int LHSMaxIdx, int RHSMinIdx, 14404 int RHSMaxIdx, int HalfVec) { 14405 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14406 int Idx = ShuffV[i]; 14407 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14408 ShuffV[i] += HalfVec; 14409 } 14410 return; 14411 } 14412 14413 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14414 // the original is: 14415 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14416 // In such a case, just change the shuffle mask to extract the element 14417 // from the permuted index. 14418 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14419 SDLoc dl(OrigSToV); 14420 EVT VT = OrigSToV.getValueType(); 14421 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14422 "Expecting a SCALAR_TO_VECTOR here"); 14423 SDValue Input = OrigSToV.getOperand(0); 14424 14425 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14426 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14427 SDValue OrigVector = Input.getOperand(0); 14428 14429 // Can't handle non-const element indices or different vector types 14430 // for the input to the extract and the output of the scalar_to_vector. 14431 if (Idx && VT == OrigVector.getValueType()) { 14432 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14433 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14434 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14435 } 14436 } 14437 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14438 OrigSToV.getOperand(0)); 14439 } 14440 14441 // On little endian subtargets, combine shuffles such as: 14442 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14443 // into: 14444 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14445 // because the latter can be matched to a single instruction merge. 14446 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14447 // to put the value into element zero. Adjust the shuffle mask so that the 14448 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14449 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14450 SelectionDAG &DAG) const { 14451 SDValue LHS = SVN->getOperand(0); 14452 SDValue RHS = SVN->getOperand(1); 14453 auto Mask = SVN->getMask(); 14454 int NumElts = LHS.getValueType().getVectorNumElements(); 14455 SDValue Res(SVN, 0); 14456 SDLoc dl(SVN); 14457 14458 // None of these combines are useful on big endian systems since the ISA 14459 // already has a big endian bias. 14460 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14461 return Res; 14462 14463 // If this is not a shuffle of a shuffle and the first element comes from 14464 // the second vector, canonicalize to the commuted form. This will make it 14465 // more likely to match one of the single instruction patterns. 14466 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14467 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14468 std::swap(LHS, RHS); 14469 Res = DAG.getCommutedVectorShuffle(*SVN); 14470 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14471 } 14472 14473 // Adjust the shuffle mask if either input vector comes from a 14474 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14475 // form (to prevent the need for a swap). 14476 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14477 SDValue SToVLHS = isScalarToVec(LHS); 14478 SDValue SToVRHS = isScalarToVec(RHS); 14479 if (SToVLHS || SToVRHS) { 14480 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14481 : SToVRHS.getValueType().getVectorNumElements(); 14482 int NumEltsOut = ShuffV.size(); 14483 14484 // Initially assume that neither input is permuted. These will be adjusted 14485 // accordingly if either input is. 14486 int LHSMaxIdx = -1; 14487 int RHSMinIdx = -1; 14488 int RHSMaxIdx = -1; 14489 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14490 14491 // Get the permuted scalar to vector nodes for the source(s) that come from 14492 // ISD::SCALAR_TO_VECTOR. 14493 if (SToVLHS) { 14494 // Set up the values for the shuffle vector fixup. 14495 LHSMaxIdx = NumEltsOut / NumEltsIn; 14496 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14497 if (SToVLHS.getValueType() != LHS.getValueType()) 14498 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14499 LHS = SToVLHS; 14500 } 14501 if (SToVRHS) { 14502 RHSMinIdx = NumEltsOut; 14503 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14504 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14505 if (SToVRHS.getValueType() != RHS.getValueType()) 14506 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14507 RHS = SToVRHS; 14508 } 14509 14510 // Fix up the shuffle mask to reflect where the desired element actually is. 14511 // The minimum and maximum indices that correspond to element zero for both 14512 // the LHS and RHS are computed and will control which shuffle mask entries 14513 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14514 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14515 // HalfVec to refer to the corresponding element in the permuted vector. 14516 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14517 HalfVec); 14518 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14519 14520 // We may have simplified away the shuffle. We won't be able to do anything 14521 // further with it here. 14522 if (!isa<ShuffleVectorSDNode>(Res)) 14523 return Res; 14524 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14525 } 14526 14527 // The common case after we commuted the shuffle is that the RHS is a splat 14528 // and we have elements coming in from the splat at indices that are not 14529 // conducive to using a merge. 14530 // Example: 14531 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14532 if (!isSplatBV(RHS)) 14533 return Res; 14534 14535 // We are looking for a mask such that all even elements are from 14536 // one vector and all odd elements from the other. 14537 if (!isAlternatingShuffMask(Mask, NumElts)) 14538 return Res; 14539 14540 // Adjust the mask so we are pulling in the same index from the splat 14541 // as the index from the interesting vector in consecutive elements. 14542 // Example (even elements from first vector): 14543 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14544 if (Mask[0] < NumElts) 14545 for (int i = 1, e = Mask.size(); i < e; i += 2) 14546 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14547 // Example (odd elements from first vector): 14548 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14549 else 14550 for (int i = 0, e = Mask.size(); i < e; i += 2) 14551 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14552 14553 // If the RHS has undefs, we need to remove them since we may have created 14554 // a shuffle that adds those instead of the splat value. 14555 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14556 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14557 14558 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14559 return Res; 14560 } 14561 14562 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14563 LSBaseSDNode *LSBase, 14564 DAGCombinerInfo &DCI) const { 14565 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14566 "Not a reverse memop pattern!"); 14567 14568 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14569 auto Mask = SVN->getMask(); 14570 int i = 0; 14571 auto I = Mask.rbegin(); 14572 auto E = Mask.rend(); 14573 14574 for (; I != E; ++I) { 14575 if (*I != i) 14576 return false; 14577 i++; 14578 } 14579 return true; 14580 }; 14581 14582 SelectionDAG &DAG = DCI.DAG; 14583 EVT VT = SVN->getValueType(0); 14584 14585 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14586 return SDValue(); 14587 14588 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14589 // See comment in PPCVSXSwapRemoval.cpp. 14590 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14591 if (!Subtarget.hasP9Vector()) 14592 return SDValue(); 14593 14594 if(!IsElementReverse(SVN)) 14595 return SDValue(); 14596 14597 if (LSBase->getOpcode() == ISD::LOAD) { 14598 SDLoc dl(SVN); 14599 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14600 return DAG.getMemIntrinsicNode( 14601 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14602 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14603 } 14604 14605 if (LSBase->getOpcode() == ISD::STORE) { 14606 SDLoc dl(LSBase); 14607 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14608 LSBase->getBasePtr()}; 14609 return DAG.getMemIntrinsicNode( 14610 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14611 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14612 } 14613 14614 llvm_unreachable("Expected a load or store node here"); 14615 } 14616 14617 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14618 DAGCombinerInfo &DCI) const { 14619 SelectionDAG &DAG = DCI.DAG; 14620 SDLoc dl(N); 14621 switch (N->getOpcode()) { 14622 default: break; 14623 case ISD::ADD: 14624 return combineADD(N, DCI); 14625 case ISD::SHL: 14626 return combineSHL(N, DCI); 14627 case ISD::SRA: 14628 return combineSRA(N, DCI); 14629 case ISD::SRL: 14630 return combineSRL(N, DCI); 14631 case ISD::MUL: 14632 return combineMUL(N, DCI); 14633 case ISD::FMA: 14634 case PPCISD::FNMSUB: 14635 return combineFMALike(N, DCI); 14636 case PPCISD::SHL: 14637 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14638 return N->getOperand(0); 14639 break; 14640 case PPCISD::SRL: 14641 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14642 return N->getOperand(0); 14643 break; 14644 case PPCISD::SRA: 14645 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14646 if (C->isNullValue() || // 0 >>s V -> 0. 14647 C->isAllOnesValue()) // -1 >>s V -> -1. 14648 return N->getOperand(0); 14649 } 14650 break; 14651 case ISD::SIGN_EXTEND: 14652 case ISD::ZERO_EXTEND: 14653 case ISD::ANY_EXTEND: 14654 return DAGCombineExtBoolTrunc(N, DCI); 14655 case ISD::TRUNCATE: 14656 return combineTRUNCATE(N, DCI); 14657 case ISD::SETCC: 14658 if (SDValue CSCC = combineSetCC(N, DCI)) 14659 return CSCC; 14660 LLVM_FALLTHROUGH; 14661 case ISD::SELECT_CC: 14662 return DAGCombineTruncBoolExt(N, DCI); 14663 case ISD::SINT_TO_FP: 14664 case ISD::UINT_TO_FP: 14665 return combineFPToIntToFP(N, DCI); 14666 case ISD::VECTOR_SHUFFLE: 14667 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14668 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14669 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14670 } 14671 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14672 case ISD::STORE: { 14673 14674 EVT Op1VT = N->getOperand(1).getValueType(); 14675 unsigned Opcode = N->getOperand(1).getOpcode(); 14676 14677 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14678 SDValue Val= combineStoreFPToInt(N, DCI); 14679 if (Val) 14680 return Val; 14681 } 14682 14683 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14684 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14685 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14686 if (Val) 14687 return Val; 14688 } 14689 14690 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14691 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14692 N->getOperand(1).getNode()->hasOneUse() && 14693 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14694 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14695 14696 // STBRX can only handle simple types and it makes no sense to store less 14697 // two bytes in byte-reversed order. 14698 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14699 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14700 break; 14701 14702 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14703 // Do an any-extend to 32-bits if this is a half-word input. 14704 if (BSwapOp.getValueType() == MVT::i16) 14705 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14706 14707 // If the type of BSWAP operand is wider than stored memory width 14708 // it need to be shifted to the right side before STBRX. 14709 if (Op1VT.bitsGT(mVT)) { 14710 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14711 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14712 DAG.getConstant(Shift, dl, MVT::i32)); 14713 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14714 if (Op1VT == MVT::i64) 14715 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14716 } 14717 14718 SDValue Ops[] = { 14719 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14720 }; 14721 return 14722 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14723 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14724 cast<StoreSDNode>(N)->getMemOperand()); 14725 } 14726 14727 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14728 // So it can increase the chance of CSE constant construction. 14729 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14730 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14731 // Need to sign-extended to 64-bits to handle negative values. 14732 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14733 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14734 MemVT.getSizeInBits()); 14735 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14736 14737 // DAG.getTruncStore() can't be used here because it doesn't accept 14738 // the general (base + offset) addressing mode. 14739 // So we use UpdateNodeOperands and setTruncatingStore instead. 14740 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14741 N->getOperand(3)); 14742 cast<StoreSDNode>(N)->setTruncatingStore(true); 14743 return SDValue(N, 0); 14744 } 14745 14746 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14747 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14748 if (Op1VT.isSimple()) { 14749 MVT StoreVT = Op1VT.getSimpleVT(); 14750 if (Subtarget.needsSwapsForVSXMemOps() && 14751 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14752 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14753 return expandVSXStoreForLE(N, DCI); 14754 } 14755 break; 14756 } 14757 case ISD::LOAD: { 14758 LoadSDNode *LD = cast<LoadSDNode>(N); 14759 EVT VT = LD->getValueType(0); 14760 14761 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14762 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14763 if (VT.isSimple()) { 14764 MVT LoadVT = VT.getSimpleVT(); 14765 if (Subtarget.needsSwapsForVSXMemOps() && 14766 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14767 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14768 return expandVSXLoadForLE(N, DCI); 14769 } 14770 14771 // We sometimes end up with a 64-bit integer load, from which we extract 14772 // two single-precision floating-point numbers. This happens with 14773 // std::complex<float>, and other similar structures, because of the way we 14774 // canonicalize structure copies. However, if we lack direct moves, 14775 // then the final bitcasts from the extracted integer values to the 14776 // floating-point numbers turn into store/load pairs. Even with direct moves, 14777 // just loading the two floating-point numbers is likely better. 14778 auto ReplaceTwoFloatLoad = [&]() { 14779 if (VT != MVT::i64) 14780 return false; 14781 14782 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14783 LD->isVolatile()) 14784 return false; 14785 14786 // We're looking for a sequence like this: 14787 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14788 // t16: i64 = srl t13, Constant:i32<32> 14789 // t17: i32 = truncate t16 14790 // t18: f32 = bitcast t17 14791 // t19: i32 = truncate t13 14792 // t20: f32 = bitcast t19 14793 14794 if (!LD->hasNUsesOfValue(2, 0)) 14795 return false; 14796 14797 auto UI = LD->use_begin(); 14798 while (UI.getUse().getResNo() != 0) ++UI; 14799 SDNode *Trunc = *UI++; 14800 while (UI.getUse().getResNo() != 0) ++UI; 14801 SDNode *RightShift = *UI; 14802 if (Trunc->getOpcode() != ISD::TRUNCATE) 14803 std::swap(Trunc, RightShift); 14804 14805 if (Trunc->getOpcode() != ISD::TRUNCATE || 14806 Trunc->getValueType(0) != MVT::i32 || 14807 !Trunc->hasOneUse()) 14808 return false; 14809 if (RightShift->getOpcode() != ISD::SRL || 14810 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14811 RightShift->getConstantOperandVal(1) != 32 || 14812 !RightShift->hasOneUse()) 14813 return false; 14814 14815 SDNode *Trunc2 = *RightShift->use_begin(); 14816 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14817 Trunc2->getValueType(0) != MVT::i32 || 14818 !Trunc2->hasOneUse()) 14819 return false; 14820 14821 SDNode *Bitcast = *Trunc->use_begin(); 14822 SDNode *Bitcast2 = *Trunc2->use_begin(); 14823 14824 if (Bitcast->getOpcode() != ISD::BITCAST || 14825 Bitcast->getValueType(0) != MVT::f32) 14826 return false; 14827 if (Bitcast2->getOpcode() != ISD::BITCAST || 14828 Bitcast2->getValueType(0) != MVT::f32) 14829 return false; 14830 14831 if (Subtarget.isLittleEndian()) 14832 std::swap(Bitcast, Bitcast2); 14833 14834 // Bitcast has the second float (in memory-layout order) and Bitcast2 14835 // has the first one. 14836 14837 SDValue BasePtr = LD->getBasePtr(); 14838 if (LD->isIndexed()) { 14839 assert(LD->getAddressingMode() == ISD::PRE_INC && 14840 "Non-pre-inc AM on PPC?"); 14841 BasePtr = 14842 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14843 LD->getOffset()); 14844 } 14845 14846 auto MMOFlags = 14847 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14848 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14849 LD->getPointerInfo(), LD->getAlignment(), 14850 MMOFlags, LD->getAAInfo()); 14851 SDValue AddPtr = 14852 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14853 BasePtr, DAG.getIntPtrConstant(4, dl)); 14854 SDValue FloatLoad2 = DAG.getLoad( 14855 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14856 LD->getPointerInfo().getWithOffset(4), 14857 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14858 14859 if (LD->isIndexed()) { 14860 // Note that DAGCombine should re-form any pre-increment load(s) from 14861 // what is produced here if that makes sense. 14862 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14863 } 14864 14865 DCI.CombineTo(Bitcast2, FloatLoad); 14866 DCI.CombineTo(Bitcast, FloatLoad2); 14867 14868 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14869 SDValue(FloatLoad2.getNode(), 1)); 14870 return true; 14871 }; 14872 14873 if (ReplaceTwoFloatLoad()) 14874 return SDValue(N, 0); 14875 14876 EVT MemVT = LD->getMemoryVT(); 14877 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14878 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14879 if (LD->isUnindexed() && VT.isVector() && 14880 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14881 // P8 and later hardware should just use LOAD. 14882 !Subtarget.hasP8Vector() && 14883 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14884 VT == MVT::v4f32))) && 14885 LD->getAlign() < ABIAlignment) { 14886 // This is a type-legal unaligned Altivec load. 14887 SDValue Chain = LD->getChain(); 14888 SDValue Ptr = LD->getBasePtr(); 14889 bool isLittleEndian = Subtarget.isLittleEndian(); 14890 14891 // This implements the loading of unaligned vectors as described in 14892 // the venerable Apple Velocity Engine overview. Specifically: 14893 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14894 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14895 // 14896 // The general idea is to expand a sequence of one or more unaligned 14897 // loads into an alignment-based permutation-control instruction (lvsl 14898 // or lvsr), a series of regular vector loads (which always truncate 14899 // their input address to an aligned address), and a series of 14900 // permutations. The results of these permutations are the requested 14901 // loaded values. The trick is that the last "extra" load is not taken 14902 // from the address you might suspect (sizeof(vector) bytes after the 14903 // last requested load), but rather sizeof(vector) - 1 bytes after the 14904 // last requested vector. The point of this is to avoid a page fault if 14905 // the base address happened to be aligned. This works because if the 14906 // base address is aligned, then adding less than a full vector length 14907 // will cause the last vector in the sequence to be (re)loaded. 14908 // Otherwise, the next vector will be fetched as you might suspect was 14909 // necessary. 14910 14911 // We might be able to reuse the permutation generation from 14912 // a different base address offset from this one by an aligned amount. 14913 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14914 // optimization later. 14915 Intrinsic::ID Intr, IntrLD, IntrPerm; 14916 MVT PermCntlTy, PermTy, LDTy; 14917 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14918 : Intrinsic::ppc_altivec_lvsl; 14919 IntrLD = Intrinsic::ppc_altivec_lvx; 14920 IntrPerm = Intrinsic::ppc_altivec_vperm; 14921 PermCntlTy = MVT::v16i8; 14922 PermTy = MVT::v4i32; 14923 LDTy = MVT::v4i32; 14924 14925 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14926 14927 // Create the new MMO for the new base load. It is like the original MMO, 14928 // but represents an area in memory almost twice the vector size centered 14929 // on the original address. If the address is unaligned, we might start 14930 // reading up to (sizeof(vector)-1) bytes below the address of the 14931 // original unaligned load. 14932 MachineFunction &MF = DAG.getMachineFunction(); 14933 MachineMemOperand *BaseMMO = 14934 MF.getMachineMemOperand(LD->getMemOperand(), 14935 -(long)MemVT.getStoreSize()+1, 14936 2*MemVT.getStoreSize()-1); 14937 14938 // Create the new base load. 14939 SDValue LDXIntID = 14940 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14941 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14942 SDValue BaseLoad = 14943 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14944 DAG.getVTList(PermTy, MVT::Other), 14945 BaseLoadOps, LDTy, BaseMMO); 14946 14947 // Note that the value of IncOffset (which is provided to the next 14948 // load's pointer info offset value, and thus used to calculate the 14949 // alignment), and the value of IncValue (which is actually used to 14950 // increment the pointer value) are different! This is because we 14951 // require the next load to appear to be aligned, even though it 14952 // is actually offset from the base pointer by a lesser amount. 14953 int IncOffset = VT.getSizeInBits() / 8; 14954 int IncValue = IncOffset; 14955 14956 // Walk (both up and down) the chain looking for another load at the real 14957 // (aligned) offset (the alignment of the other load does not matter in 14958 // this case). If found, then do not use the offset reduction trick, as 14959 // that will prevent the loads from being later combined (as they would 14960 // otherwise be duplicates). 14961 if (!findConsecutiveLoad(LD, DAG)) 14962 --IncValue; 14963 14964 SDValue Increment = 14965 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14966 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14967 14968 MachineMemOperand *ExtraMMO = 14969 MF.getMachineMemOperand(LD->getMemOperand(), 14970 1, 2*MemVT.getStoreSize()-1); 14971 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14972 SDValue ExtraLoad = 14973 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14974 DAG.getVTList(PermTy, MVT::Other), 14975 ExtraLoadOps, LDTy, ExtraMMO); 14976 14977 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14978 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14979 14980 // Because vperm has a big-endian bias, we must reverse the order 14981 // of the input vectors and complement the permute control vector 14982 // when generating little endian code. We have already handled the 14983 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14984 // and ExtraLoad here. 14985 SDValue Perm; 14986 if (isLittleEndian) 14987 Perm = BuildIntrinsicOp(IntrPerm, 14988 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14989 else 14990 Perm = BuildIntrinsicOp(IntrPerm, 14991 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14992 14993 if (VT != PermTy) 14994 Perm = Subtarget.hasAltivec() 14995 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14996 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14997 DAG.getTargetConstant(1, dl, MVT::i64)); 14998 // second argument is 1 because this rounding 14999 // is always exact. 15000 15001 // The output of the permutation is our loaded result, the TokenFactor is 15002 // our new chain. 15003 DCI.CombineTo(N, Perm, TF); 15004 return SDValue(N, 0); 15005 } 15006 } 15007 break; 15008 case ISD::INTRINSIC_WO_CHAIN: { 15009 bool isLittleEndian = Subtarget.isLittleEndian(); 15010 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15011 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15012 : Intrinsic::ppc_altivec_lvsl); 15013 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15014 SDValue Add = N->getOperand(1); 15015 15016 int Bits = 4 /* 16 byte alignment */; 15017 15018 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15019 APInt::getAllOnesValue(Bits /* alignment */) 15020 .zext(Add.getScalarValueSizeInBits()))) { 15021 SDNode *BasePtr = Add->getOperand(0).getNode(); 15022 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15023 UE = BasePtr->use_end(); 15024 UI != UE; ++UI) { 15025 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15026 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15027 IID) { 15028 // We've found another LVSL/LVSR, and this address is an aligned 15029 // multiple of that one. The results will be the same, so use the 15030 // one we've just found instead. 15031 15032 return SDValue(*UI, 0); 15033 } 15034 } 15035 } 15036 15037 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15038 SDNode *BasePtr = Add->getOperand(0).getNode(); 15039 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15040 UE = BasePtr->use_end(); UI != UE; ++UI) { 15041 if (UI->getOpcode() == ISD::ADD && 15042 isa<ConstantSDNode>(UI->getOperand(1)) && 15043 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15044 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15045 (1ULL << Bits) == 0) { 15046 SDNode *OtherAdd = *UI; 15047 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15048 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15049 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15050 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15051 return SDValue(*VI, 0); 15052 } 15053 } 15054 } 15055 } 15056 } 15057 } 15058 15059 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15060 // Expose the vabsduw/h/b opportunity for down stream 15061 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15062 (IID == Intrinsic::ppc_altivec_vmaxsw || 15063 IID == Intrinsic::ppc_altivec_vmaxsh || 15064 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15065 SDValue V1 = N->getOperand(1); 15066 SDValue V2 = N->getOperand(2); 15067 if ((V1.getSimpleValueType() == MVT::v4i32 || 15068 V1.getSimpleValueType() == MVT::v8i16 || 15069 V1.getSimpleValueType() == MVT::v16i8) && 15070 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15071 // (0-a, a) 15072 if (V1.getOpcode() == ISD::SUB && 15073 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15074 V1.getOperand(1) == V2) { 15075 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15076 } 15077 // (a, 0-a) 15078 if (V2.getOpcode() == ISD::SUB && 15079 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15080 V2.getOperand(1) == V1) { 15081 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15082 } 15083 // (x-y, y-x) 15084 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15085 V1.getOperand(0) == V2.getOperand(1) && 15086 V1.getOperand(1) == V2.getOperand(0)) { 15087 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15088 } 15089 } 15090 } 15091 } 15092 15093 break; 15094 case ISD::INTRINSIC_W_CHAIN: 15095 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15096 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15097 if (Subtarget.needsSwapsForVSXMemOps()) { 15098 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15099 default: 15100 break; 15101 case Intrinsic::ppc_vsx_lxvw4x: 15102 case Intrinsic::ppc_vsx_lxvd2x: 15103 return expandVSXLoadForLE(N, DCI); 15104 } 15105 } 15106 break; 15107 case ISD::INTRINSIC_VOID: 15108 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15109 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15110 if (Subtarget.needsSwapsForVSXMemOps()) { 15111 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15112 default: 15113 break; 15114 case Intrinsic::ppc_vsx_stxvw4x: 15115 case Intrinsic::ppc_vsx_stxvd2x: 15116 return expandVSXStoreForLE(N, DCI); 15117 } 15118 } 15119 break; 15120 case ISD::BSWAP: 15121 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15122 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15123 N->getOperand(0).hasOneUse() && 15124 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15125 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15126 N->getValueType(0) == MVT::i64))) { 15127 SDValue Load = N->getOperand(0); 15128 LoadSDNode *LD = cast<LoadSDNode>(Load); 15129 // Create the byte-swapping load. 15130 SDValue Ops[] = { 15131 LD->getChain(), // Chain 15132 LD->getBasePtr(), // Ptr 15133 DAG.getValueType(N->getValueType(0)) // VT 15134 }; 15135 SDValue BSLoad = 15136 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15137 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15138 MVT::i64 : MVT::i32, MVT::Other), 15139 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15140 15141 // If this is an i16 load, insert the truncate. 15142 SDValue ResVal = BSLoad; 15143 if (N->getValueType(0) == MVT::i16) 15144 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15145 15146 // First, combine the bswap away. This makes the value produced by the 15147 // load dead. 15148 DCI.CombineTo(N, ResVal); 15149 15150 // Next, combine the load away, we give it a bogus result value but a real 15151 // chain result. The result value is dead because the bswap is dead. 15152 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15153 15154 // Return N so it doesn't get rechecked! 15155 return SDValue(N, 0); 15156 } 15157 break; 15158 case PPCISD::VCMP: 15159 // If a VCMPo node already exists with exactly the same operands as this 15160 // node, use its result instead of this node (VCMPo computes both a CR6 and 15161 // a normal output). 15162 // 15163 if (!N->getOperand(0).hasOneUse() && 15164 !N->getOperand(1).hasOneUse() && 15165 !N->getOperand(2).hasOneUse()) { 15166 15167 // Scan all of the users of the LHS, looking for VCMPo's that match. 15168 SDNode *VCMPoNode = nullptr; 15169 15170 SDNode *LHSN = N->getOperand(0).getNode(); 15171 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15172 UI != E; ++UI) 15173 if (UI->getOpcode() == PPCISD::VCMPo && 15174 UI->getOperand(1) == N->getOperand(1) && 15175 UI->getOperand(2) == N->getOperand(2) && 15176 UI->getOperand(0) == N->getOperand(0)) { 15177 VCMPoNode = *UI; 15178 break; 15179 } 15180 15181 // If there is no VCMPo node, or if the flag value has a single use, don't 15182 // transform this. 15183 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 15184 break; 15185 15186 // Look at the (necessarily single) use of the flag value. If it has a 15187 // chain, this transformation is more complex. Note that multiple things 15188 // could use the value result, which we should ignore. 15189 SDNode *FlagUser = nullptr; 15190 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 15191 FlagUser == nullptr; ++UI) { 15192 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 15193 SDNode *User = *UI; 15194 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15195 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 15196 FlagUser = User; 15197 break; 15198 } 15199 } 15200 } 15201 15202 // If the user is a MFOCRF instruction, we know this is safe. 15203 // Otherwise we give up for right now. 15204 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15205 return SDValue(VCMPoNode, 0); 15206 } 15207 break; 15208 case ISD::BRCOND: { 15209 SDValue Cond = N->getOperand(1); 15210 SDValue Target = N->getOperand(2); 15211 15212 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15213 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15214 Intrinsic::loop_decrement) { 15215 15216 // We now need to make the intrinsic dead (it cannot be instruction 15217 // selected). 15218 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15219 assert(Cond.getNode()->hasOneUse() && 15220 "Counter decrement has more than one use"); 15221 15222 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15223 N->getOperand(0), Target); 15224 } 15225 } 15226 break; 15227 case ISD::BR_CC: { 15228 // If this is a branch on an altivec predicate comparison, lower this so 15229 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15230 // lowering is done pre-legalize, because the legalizer lowers the predicate 15231 // compare down to code that is difficult to reassemble. 15232 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15233 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15234 15235 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15236 // value. If so, pass-through the AND to get to the intrinsic. 15237 if (LHS.getOpcode() == ISD::AND && 15238 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15239 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15240 Intrinsic::loop_decrement && 15241 isa<ConstantSDNode>(LHS.getOperand(1)) && 15242 !isNullConstant(LHS.getOperand(1))) 15243 LHS = LHS.getOperand(0); 15244 15245 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15246 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15247 Intrinsic::loop_decrement && 15248 isa<ConstantSDNode>(RHS)) { 15249 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15250 "Counter decrement comparison is not EQ or NE"); 15251 15252 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15253 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15254 (CC == ISD::SETNE && !Val); 15255 15256 // We now need to make the intrinsic dead (it cannot be instruction 15257 // selected). 15258 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15259 assert(LHS.getNode()->hasOneUse() && 15260 "Counter decrement has more than one use"); 15261 15262 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15263 N->getOperand(0), N->getOperand(4)); 15264 } 15265 15266 int CompareOpc; 15267 bool isDot; 15268 15269 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15270 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15271 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15272 assert(isDot && "Can't compare against a vector result!"); 15273 15274 // If this is a comparison against something other than 0/1, then we know 15275 // that the condition is never/always true. 15276 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15277 if (Val != 0 && Val != 1) { 15278 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15279 return N->getOperand(0); 15280 // Always !=, turn it into an unconditional branch. 15281 return DAG.getNode(ISD::BR, dl, MVT::Other, 15282 N->getOperand(0), N->getOperand(4)); 15283 } 15284 15285 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15286 15287 // Create the PPCISD altivec 'dot' comparison node. 15288 SDValue Ops[] = { 15289 LHS.getOperand(2), // LHS of compare 15290 LHS.getOperand(3), // RHS of compare 15291 DAG.getConstant(CompareOpc, dl, MVT::i32) 15292 }; 15293 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15294 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15295 15296 // Unpack the result based on how the target uses it. 15297 PPC::Predicate CompOpc; 15298 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15299 default: // Can't happen, don't crash on invalid number though. 15300 case 0: // Branch on the value of the EQ bit of CR6. 15301 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15302 break; 15303 case 1: // Branch on the inverted value of the EQ bit of CR6. 15304 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15305 break; 15306 case 2: // Branch on the value of the LT bit of CR6. 15307 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15308 break; 15309 case 3: // Branch on the inverted value of the LT bit of CR6. 15310 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15311 break; 15312 } 15313 15314 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15315 DAG.getConstant(CompOpc, dl, MVT::i32), 15316 DAG.getRegister(PPC::CR6, MVT::i32), 15317 N->getOperand(4), CompNode.getValue(1)); 15318 } 15319 break; 15320 } 15321 case ISD::BUILD_VECTOR: 15322 return DAGCombineBuildVector(N, DCI); 15323 case ISD::ABS: 15324 return combineABS(N, DCI); 15325 case ISD::VSELECT: 15326 return combineVSelect(N, DCI); 15327 } 15328 15329 return SDValue(); 15330 } 15331 15332 SDValue 15333 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15334 SelectionDAG &DAG, 15335 SmallVectorImpl<SDNode *> &Created) const { 15336 // fold (sdiv X, pow2) 15337 EVT VT = N->getValueType(0); 15338 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15339 return SDValue(); 15340 if ((VT != MVT::i32 && VT != MVT::i64) || 15341 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15342 return SDValue(); 15343 15344 SDLoc DL(N); 15345 SDValue N0 = N->getOperand(0); 15346 15347 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15348 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15349 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15350 15351 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15352 Created.push_back(Op.getNode()); 15353 15354 if (IsNegPow2) { 15355 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15356 Created.push_back(Op.getNode()); 15357 } 15358 15359 return Op; 15360 } 15361 15362 //===----------------------------------------------------------------------===// 15363 // Inline Assembly Support 15364 //===----------------------------------------------------------------------===// 15365 15366 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15367 KnownBits &Known, 15368 const APInt &DemandedElts, 15369 const SelectionDAG &DAG, 15370 unsigned Depth) const { 15371 Known.resetAll(); 15372 switch (Op.getOpcode()) { 15373 default: break; 15374 case PPCISD::LBRX: { 15375 // lhbrx is known to have the top bits cleared out. 15376 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15377 Known.Zero = 0xFFFF0000; 15378 break; 15379 } 15380 case ISD::INTRINSIC_WO_CHAIN: { 15381 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15382 default: break; 15383 case Intrinsic::ppc_altivec_vcmpbfp_p: 15384 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15385 case Intrinsic::ppc_altivec_vcmpequb_p: 15386 case Intrinsic::ppc_altivec_vcmpequh_p: 15387 case Intrinsic::ppc_altivec_vcmpequw_p: 15388 case Intrinsic::ppc_altivec_vcmpequd_p: 15389 case Intrinsic::ppc_altivec_vcmpequq_p: 15390 case Intrinsic::ppc_altivec_vcmpgefp_p: 15391 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15392 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15393 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15394 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15395 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15396 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15397 case Intrinsic::ppc_altivec_vcmpgtub_p: 15398 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15399 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15400 case Intrinsic::ppc_altivec_vcmpgtud_p: 15401 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15402 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15403 break; 15404 } 15405 } 15406 } 15407 } 15408 15409 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15410 switch (Subtarget.getCPUDirective()) { 15411 default: break; 15412 case PPC::DIR_970: 15413 case PPC::DIR_PWR4: 15414 case PPC::DIR_PWR5: 15415 case PPC::DIR_PWR5X: 15416 case PPC::DIR_PWR6: 15417 case PPC::DIR_PWR6X: 15418 case PPC::DIR_PWR7: 15419 case PPC::DIR_PWR8: 15420 case PPC::DIR_PWR9: 15421 case PPC::DIR_PWR10: 15422 case PPC::DIR_PWR_FUTURE: { 15423 if (!ML) 15424 break; 15425 15426 if (!DisableInnermostLoopAlign32) { 15427 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15428 // so that we can decrease cache misses and branch-prediction misses. 15429 // Actual alignment of the loop will depend on the hotness check and other 15430 // logic in alignBlocks. 15431 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15432 return Align(32); 15433 } 15434 15435 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15436 15437 // For small loops (between 5 and 8 instructions), align to a 32-byte 15438 // boundary so that the entire loop fits in one instruction-cache line. 15439 uint64_t LoopSize = 0; 15440 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15441 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15442 LoopSize += TII->getInstSizeInBytes(*J); 15443 if (LoopSize > 32) 15444 break; 15445 } 15446 15447 if (LoopSize > 16 && LoopSize <= 32) 15448 return Align(32); 15449 15450 break; 15451 } 15452 } 15453 15454 return TargetLowering::getPrefLoopAlignment(ML); 15455 } 15456 15457 /// getConstraintType - Given a constraint, return the type of 15458 /// constraint it is for this target. 15459 PPCTargetLowering::ConstraintType 15460 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15461 if (Constraint.size() == 1) { 15462 switch (Constraint[0]) { 15463 default: break; 15464 case 'b': 15465 case 'r': 15466 case 'f': 15467 case 'd': 15468 case 'v': 15469 case 'y': 15470 return C_RegisterClass; 15471 case 'Z': 15472 // FIXME: While Z does indicate a memory constraint, it specifically 15473 // indicates an r+r address (used in conjunction with the 'y' modifier 15474 // in the replacement string). Currently, we're forcing the base 15475 // register to be r0 in the asm printer (which is interpreted as zero) 15476 // and forming the complete address in the second register. This is 15477 // suboptimal. 15478 return C_Memory; 15479 } 15480 } else if (Constraint == "wc") { // individual CR bits. 15481 return C_RegisterClass; 15482 } else if (Constraint == "wa" || Constraint == "wd" || 15483 Constraint == "wf" || Constraint == "ws" || 15484 Constraint == "wi" || Constraint == "ww") { 15485 return C_RegisterClass; // VSX registers. 15486 } 15487 return TargetLowering::getConstraintType(Constraint); 15488 } 15489 15490 /// Examine constraint type and operand type and determine a weight value. 15491 /// This object must already have been set up with the operand type 15492 /// and the current alternative constraint selected. 15493 TargetLowering::ConstraintWeight 15494 PPCTargetLowering::getSingleConstraintMatchWeight( 15495 AsmOperandInfo &info, const char *constraint) const { 15496 ConstraintWeight weight = CW_Invalid; 15497 Value *CallOperandVal = info.CallOperandVal; 15498 // If we don't have a value, we can't do a match, 15499 // but allow it at the lowest weight. 15500 if (!CallOperandVal) 15501 return CW_Default; 15502 Type *type = CallOperandVal->getType(); 15503 15504 // Look at the constraint type. 15505 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15506 return CW_Register; // an individual CR bit. 15507 else if ((StringRef(constraint) == "wa" || 15508 StringRef(constraint) == "wd" || 15509 StringRef(constraint) == "wf") && 15510 type->isVectorTy()) 15511 return CW_Register; 15512 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15513 return CW_Register; // just hold 64-bit integers data. 15514 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15515 return CW_Register; 15516 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15517 return CW_Register; 15518 15519 switch (*constraint) { 15520 default: 15521 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15522 break; 15523 case 'b': 15524 if (type->isIntegerTy()) 15525 weight = CW_Register; 15526 break; 15527 case 'f': 15528 if (type->isFloatTy()) 15529 weight = CW_Register; 15530 break; 15531 case 'd': 15532 if (type->isDoubleTy()) 15533 weight = CW_Register; 15534 break; 15535 case 'v': 15536 if (type->isVectorTy()) 15537 weight = CW_Register; 15538 break; 15539 case 'y': 15540 weight = CW_Register; 15541 break; 15542 case 'Z': 15543 weight = CW_Memory; 15544 break; 15545 } 15546 return weight; 15547 } 15548 15549 std::pair<unsigned, const TargetRegisterClass *> 15550 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15551 StringRef Constraint, 15552 MVT VT) const { 15553 if (Constraint.size() == 1) { 15554 // GCC RS6000 Constraint Letters 15555 switch (Constraint[0]) { 15556 case 'b': // R1-R31 15557 if (VT == MVT::i64 && Subtarget.isPPC64()) 15558 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15559 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15560 case 'r': // R0-R31 15561 if (VT == MVT::i64 && Subtarget.isPPC64()) 15562 return std::make_pair(0U, &PPC::G8RCRegClass); 15563 return std::make_pair(0U, &PPC::GPRCRegClass); 15564 // 'd' and 'f' constraints are both defined to be "the floating point 15565 // registers", where one is for 32-bit and the other for 64-bit. We don't 15566 // really care overly much here so just give them all the same reg classes. 15567 case 'd': 15568 case 'f': 15569 if (Subtarget.hasSPE()) { 15570 if (VT == MVT::f32 || VT == MVT::i32) 15571 return std::make_pair(0U, &PPC::GPRCRegClass); 15572 if (VT == MVT::f64 || VT == MVT::i64) 15573 return std::make_pair(0U, &PPC::SPERCRegClass); 15574 } else { 15575 if (VT == MVT::f32 || VT == MVT::i32) 15576 return std::make_pair(0U, &PPC::F4RCRegClass); 15577 if (VT == MVT::f64 || VT == MVT::i64) 15578 return std::make_pair(0U, &PPC::F8RCRegClass); 15579 } 15580 break; 15581 case 'v': 15582 if (Subtarget.hasAltivec()) 15583 return std::make_pair(0U, &PPC::VRRCRegClass); 15584 break; 15585 case 'y': // crrc 15586 return std::make_pair(0U, &PPC::CRRCRegClass); 15587 } 15588 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15589 // An individual CR bit. 15590 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15591 } else if ((Constraint == "wa" || Constraint == "wd" || 15592 Constraint == "wf" || Constraint == "wi") && 15593 Subtarget.hasVSX()) { 15594 return std::make_pair(0U, &PPC::VSRCRegClass); 15595 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15596 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15597 return std::make_pair(0U, &PPC::VSSRCRegClass); 15598 else 15599 return std::make_pair(0U, &PPC::VSFRCRegClass); 15600 } 15601 15602 // If we name a VSX register, we can't defer to the base class because it 15603 // will not recognize the correct register (their names will be VSL{0-31} 15604 // and V{0-31} so they won't match). So we match them here. 15605 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15606 int VSNum = atoi(Constraint.data() + 3); 15607 assert(VSNum >= 0 && VSNum <= 63 && 15608 "Attempted to access a vsr out of range"); 15609 if (VSNum < 32) 15610 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15611 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15612 } 15613 std::pair<unsigned, const TargetRegisterClass *> R = 15614 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15615 15616 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15617 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15618 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15619 // register. 15620 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15621 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15622 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15623 PPC::GPRCRegClass.contains(R.first)) 15624 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15625 PPC::sub_32, &PPC::G8RCRegClass), 15626 &PPC::G8RCRegClass); 15627 15628 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15629 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15630 R.first = PPC::CR0; 15631 R.second = &PPC::CRRCRegClass; 15632 } 15633 15634 return R; 15635 } 15636 15637 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15638 /// vector. If it is invalid, don't add anything to Ops. 15639 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15640 std::string &Constraint, 15641 std::vector<SDValue>&Ops, 15642 SelectionDAG &DAG) const { 15643 SDValue Result; 15644 15645 // Only support length 1 constraints. 15646 if (Constraint.length() > 1) return; 15647 15648 char Letter = Constraint[0]; 15649 switch (Letter) { 15650 default: break; 15651 case 'I': 15652 case 'J': 15653 case 'K': 15654 case 'L': 15655 case 'M': 15656 case 'N': 15657 case 'O': 15658 case 'P': { 15659 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15660 if (!CST) return; // Must be an immediate to match. 15661 SDLoc dl(Op); 15662 int64_t Value = CST->getSExtValue(); 15663 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15664 // numbers are printed as such. 15665 switch (Letter) { 15666 default: llvm_unreachable("Unknown constraint letter!"); 15667 case 'I': // "I" is a signed 16-bit constant. 15668 if (isInt<16>(Value)) 15669 Result = DAG.getTargetConstant(Value, dl, TCVT); 15670 break; 15671 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15672 if (isShiftedUInt<16, 16>(Value)) 15673 Result = DAG.getTargetConstant(Value, dl, TCVT); 15674 break; 15675 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15676 if (isShiftedInt<16, 16>(Value)) 15677 Result = DAG.getTargetConstant(Value, dl, TCVT); 15678 break; 15679 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15680 if (isUInt<16>(Value)) 15681 Result = DAG.getTargetConstant(Value, dl, TCVT); 15682 break; 15683 case 'M': // "M" is a constant that is greater than 31. 15684 if (Value > 31) 15685 Result = DAG.getTargetConstant(Value, dl, TCVT); 15686 break; 15687 case 'N': // "N" is a positive constant that is an exact power of two. 15688 if (Value > 0 && isPowerOf2_64(Value)) 15689 Result = DAG.getTargetConstant(Value, dl, TCVT); 15690 break; 15691 case 'O': // "O" is the constant zero. 15692 if (Value == 0) 15693 Result = DAG.getTargetConstant(Value, dl, TCVT); 15694 break; 15695 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15696 if (isInt<16>(-Value)) 15697 Result = DAG.getTargetConstant(Value, dl, TCVT); 15698 break; 15699 } 15700 break; 15701 } 15702 } 15703 15704 if (Result.getNode()) { 15705 Ops.push_back(Result); 15706 return; 15707 } 15708 15709 // Handle standard constraint letters. 15710 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15711 } 15712 15713 // isLegalAddressingMode - Return true if the addressing mode represented 15714 // by AM is legal for this target, for a load/store of the specified type. 15715 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15716 const AddrMode &AM, Type *Ty, 15717 unsigned AS, 15718 Instruction *I) const { 15719 // Vector type r+i form is supported since power9 as DQ form. We don't check 15720 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15721 // imm form is preferred and the offset can be adjusted to use imm form later 15722 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15723 // max offset to check legal addressing mode, we should be a little aggressive 15724 // to contain other offsets for that LSRUse. 15725 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15726 return false; 15727 15728 // PPC allows a sign-extended 16-bit immediate field. 15729 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15730 return false; 15731 15732 // No global is ever allowed as a base. 15733 if (AM.BaseGV) 15734 return false; 15735 15736 // PPC only support r+r, 15737 switch (AM.Scale) { 15738 case 0: // "r+i" or just "i", depending on HasBaseReg. 15739 break; 15740 case 1: 15741 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15742 return false; 15743 // Otherwise we have r+r or r+i. 15744 break; 15745 case 2: 15746 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15747 return false; 15748 // Allow 2*r as r+r. 15749 break; 15750 default: 15751 // No other scales are supported. 15752 return false; 15753 } 15754 15755 return true; 15756 } 15757 15758 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15759 SelectionDAG &DAG) const { 15760 MachineFunction &MF = DAG.getMachineFunction(); 15761 MachineFrameInfo &MFI = MF.getFrameInfo(); 15762 MFI.setReturnAddressIsTaken(true); 15763 15764 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15765 return SDValue(); 15766 15767 SDLoc dl(Op); 15768 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15769 15770 // Make sure the function does not optimize away the store of the RA to 15771 // the stack. 15772 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15773 FuncInfo->setLRStoreRequired(); 15774 bool isPPC64 = Subtarget.isPPC64(); 15775 auto PtrVT = getPointerTy(MF.getDataLayout()); 15776 15777 if (Depth > 0) { 15778 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15779 SDValue Offset = 15780 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15781 isPPC64 ? MVT::i64 : MVT::i32); 15782 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15783 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15784 MachinePointerInfo()); 15785 } 15786 15787 // Just load the return address off the stack. 15788 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15789 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15790 MachinePointerInfo()); 15791 } 15792 15793 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15794 SelectionDAG &DAG) const { 15795 SDLoc dl(Op); 15796 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15797 15798 MachineFunction &MF = DAG.getMachineFunction(); 15799 MachineFrameInfo &MFI = MF.getFrameInfo(); 15800 MFI.setFrameAddressIsTaken(true); 15801 15802 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15803 bool isPPC64 = PtrVT == MVT::i64; 15804 15805 // Naked functions never have a frame pointer, and so we use r1. For all 15806 // other functions, this decision must be delayed until during PEI. 15807 unsigned FrameReg; 15808 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15809 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15810 else 15811 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15812 15813 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15814 PtrVT); 15815 while (Depth--) 15816 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15817 FrameAddr, MachinePointerInfo()); 15818 return FrameAddr; 15819 } 15820 15821 // FIXME? Maybe this could be a TableGen attribute on some registers and 15822 // this table could be generated automatically from RegInfo. 15823 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15824 const MachineFunction &MF) const { 15825 bool isPPC64 = Subtarget.isPPC64(); 15826 15827 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15828 if (!is64Bit && VT != LLT::scalar(32)) 15829 report_fatal_error("Invalid register global variable type"); 15830 15831 Register Reg = StringSwitch<Register>(RegName) 15832 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15833 .Case("r2", isPPC64 ? Register() : PPC::R2) 15834 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15835 .Default(Register()); 15836 15837 if (Reg) 15838 return Reg; 15839 report_fatal_error("Invalid register name global variable"); 15840 } 15841 15842 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15843 // 32-bit SVR4 ABI access everything as got-indirect. 15844 if (Subtarget.is32BitELFABI()) 15845 return true; 15846 15847 // AIX accesses everything indirectly through the TOC, which is similar to 15848 // the GOT. 15849 if (Subtarget.isAIXABI()) 15850 return true; 15851 15852 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15853 // If it is small or large code model, module locals are accessed 15854 // indirectly by loading their address from .toc/.got. 15855 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15856 return true; 15857 15858 // JumpTable and BlockAddress are accessed as got-indirect. 15859 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15860 return true; 15861 15862 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15863 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15864 15865 return false; 15866 } 15867 15868 bool 15869 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15870 // The PowerPC target isn't yet aware of offsets. 15871 return false; 15872 } 15873 15874 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15875 const CallInst &I, 15876 MachineFunction &MF, 15877 unsigned Intrinsic) const { 15878 switch (Intrinsic) { 15879 case Intrinsic::ppc_altivec_lvx: 15880 case Intrinsic::ppc_altivec_lvxl: 15881 case Intrinsic::ppc_altivec_lvebx: 15882 case Intrinsic::ppc_altivec_lvehx: 15883 case Intrinsic::ppc_altivec_lvewx: 15884 case Intrinsic::ppc_vsx_lxvd2x: 15885 case Intrinsic::ppc_vsx_lxvw4x: 15886 case Intrinsic::ppc_vsx_lxvd2x_be: 15887 case Intrinsic::ppc_vsx_lxvw4x_be: 15888 case Intrinsic::ppc_vsx_lxvl: 15889 case Intrinsic::ppc_vsx_lxvll: { 15890 EVT VT; 15891 switch (Intrinsic) { 15892 case Intrinsic::ppc_altivec_lvebx: 15893 VT = MVT::i8; 15894 break; 15895 case Intrinsic::ppc_altivec_lvehx: 15896 VT = MVT::i16; 15897 break; 15898 case Intrinsic::ppc_altivec_lvewx: 15899 VT = MVT::i32; 15900 break; 15901 case Intrinsic::ppc_vsx_lxvd2x: 15902 case Intrinsic::ppc_vsx_lxvd2x_be: 15903 VT = MVT::v2f64; 15904 break; 15905 default: 15906 VT = MVT::v4i32; 15907 break; 15908 } 15909 15910 Info.opc = ISD::INTRINSIC_W_CHAIN; 15911 Info.memVT = VT; 15912 Info.ptrVal = I.getArgOperand(0); 15913 Info.offset = -VT.getStoreSize()+1; 15914 Info.size = 2*VT.getStoreSize()-1; 15915 Info.align = Align(1); 15916 Info.flags = MachineMemOperand::MOLoad; 15917 return true; 15918 } 15919 case Intrinsic::ppc_altivec_stvx: 15920 case Intrinsic::ppc_altivec_stvxl: 15921 case Intrinsic::ppc_altivec_stvebx: 15922 case Intrinsic::ppc_altivec_stvehx: 15923 case Intrinsic::ppc_altivec_stvewx: 15924 case Intrinsic::ppc_vsx_stxvd2x: 15925 case Intrinsic::ppc_vsx_stxvw4x: 15926 case Intrinsic::ppc_vsx_stxvd2x_be: 15927 case Intrinsic::ppc_vsx_stxvw4x_be: 15928 case Intrinsic::ppc_vsx_stxvl: 15929 case Intrinsic::ppc_vsx_stxvll: { 15930 EVT VT; 15931 switch (Intrinsic) { 15932 case Intrinsic::ppc_altivec_stvebx: 15933 VT = MVT::i8; 15934 break; 15935 case Intrinsic::ppc_altivec_stvehx: 15936 VT = MVT::i16; 15937 break; 15938 case Intrinsic::ppc_altivec_stvewx: 15939 VT = MVT::i32; 15940 break; 15941 case Intrinsic::ppc_vsx_stxvd2x: 15942 case Intrinsic::ppc_vsx_stxvd2x_be: 15943 VT = MVT::v2f64; 15944 break; 15945 default: 15946 VT = MVT::v4i32; 15947 break; 15948 } 15949 15950 Info.opc = ISD::INTRINSIC_VOID; 15951 Info.memVT = VT; 15952 Info.ptrVal = I.getArgOperand(1); 15953 Info.offset = -VT.getStoreSize()+1; 15954 Info.size = 2*VT.getStoreSize()-1; 15955 Info.align = Align(1); 15956 Info.flags = MachineMemOperand::MOStore; 15957 return true; 15958 } 15959 default: 15960 break; 15961 } 15962 15963 return false; 15964 } 15965 15966 /// It returns EVT::Other if the type should be determined using generic 15967 /// target-independent logic. 15968 EVT PPCTargetLowering::getOptimalMemOpType( 15969 const MemOp &Op, const AttributeList &FuncAttributes) const { 15970 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15971 // We should use Altivec/VSX loads and stores when available. For unaligned 15972 // addresses, unaligned VSX loads are only fast starting with the P8. 15973 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15974 (Op.isAligned(Align(16)) || 15975 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15976 return MVT::v4i32; 15977 } 15978 15979 if (Subtarget.isPPC64()) { 15980 return MVT::i64; 15981 } 15982 15983 return MVT::i32; 15984 } 15985 15986 /// Returns true if it is beneficial to convert a load of a constant 15987 /// to just the constant itself. 15988 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15989 Type *Ty) const { 15990 assert(Ty->isIntegerTy()); 15991 15992 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15993 return !(BitSize == 0 || BitSize > 64); 15994 } 15995 15996 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15997 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15998 return false; 15999 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16000 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16001 return NumBits1 == 64 && NumBits2 == 32; 16002 } 16003 16004 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16005 if (!VT1.isInteger() || !VT2.isInteger()) 16006 return false; 16007 unsigned NumBits1 = VT1.getSizeInBits(); 16008 unsigned NumBits2 = VT2.getSizeInBits(); 16009 return NumBits1 == 64 && NumBits2 == 32; 16010 } 16011 16012 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16013 // Generally speaking, zexts are not free, but they are free when they can be 16014 // folded with other operations. 16015 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16016 EVT MemVT = LD->getMemoryVT(); 16017 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16018 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16019 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16020 LD->getExtensionType() == ISD::ZEXTLOAD)) 16021 return true; 16022 } 16023 16024 // FIXME: Add other cases... 16025 // - 32-bit shifts with a zext to i64 16026 // - zext after ctlz, bswap, etc. 16027 // - zext after and by a constant mask 16028 16029 return TargetLowering::isZExtFree(Val, VT2); 16030 } 16031 16032 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16033 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16034 "invalid fpext types"); 16035 // Extending to float128 is not free. 16036 if (DestVT == MVT::f128) 16037 return false; 16038 return true; 16039 } 16040 16041 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16042 return isInt<16>(Imm) || isUInt<16>(Imm); 16043 } 16044 16045 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16046 return isInt<16>(Imm) || isUInt<16>(Imm); 16047 } 16048 16049 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16050 unsigned, 16051 unsigned, 16052 MachineMemOperand::Flags, 16053 bool *Fast) const { 16054 if (DisablePPCUnaligned) 16055 return false; 16056 16057 // PowerPC supports unaligned memory access for simple non-vector types. 16058 // Although accessing unaligned addresses is not as efficient as accessing 16059 // aligned addresses, it is generally more efficient than manual expansion, 16060 // and generally only traps for software emulation when crossing page 16061 // boundaries. 16062 16063 if (!VT.isSimple()) 16064 return false; 16065 16066 if (VT.isFloatingPoint() && !VT.isVector() && 16067 !Subtarget.allowsUnalignedFPAccess()) 16068 return false; 16069 16070 if (VT.getSimpleVT().isVector()) { 16071 if (Subtarget.hasVSX()) { 16072 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16073 VT != MVT::v4f32 && VT != MVT::v4i32) 16074 return false; 16075 } else { 16076 return false; 16077 } 16078 } 16079 16080 if (VT == MVT::ppcf128) 16081 return false; 16082 16083 if (Fast) 16084 *Fast = true; 16085 16086 return true; 16087 } 16088 16089 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16090 SDValue C) const { 16091 // Check integral scalar types. 16092 if (!VT.isScalarInteger()) 16093 return false; 16094 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16095 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16096 return false; 16097 // This transformation will generate >= 2 operations. But the following 16098 // cases will generate <= 2 instructions during ISEL. So exclude them. 16099 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16100 // HW instruction, ie. MULLI 16101 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16102 // instruction is needed than case 1, ie. MULLI and RLDICR 16103 int64_t Imm = ConstNode->getSExtValue(); 16104 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16105 Imm >>= Shift; 16106 if (isInt<16>(Imm)) 16107 return false; 16108 uint64_t UImm = static_cast<uint64_t>(Imm); 16109 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16110 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16111 return true; 16112 } 16113 return false; 16114 } 16115 16116 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16117 EVT VT) const { 16118 return isFMAFasterThanFMulAndFAdd( 16119 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16120 } 16121 16122 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16123 Type *Ty) const { 16124 switch (Ty->getScalarType()->getTypeID()) { 16125 case Type::FloatTyID: 16126 case Type::DoubleTyID: 16127 return true; 16128 case Type::FP128TyID: 16129 return Subtarget.hasP9Vector(); 16130 default: 16131 return false; 16132 } 16133 } 16134 16135 // FIXME: add more patterns which are not profitable to hoist. 16136 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16137 if (!I->hasOneUse()) 16138 return true; 16139 16140 Instruction *User = I->user_back(); 16141 assert(User && "A single use instruction with no uses."); 16142 16143 switch (I->getOpcode()) { 16144 case Instruction::FMul: { 16145 // Don't break FMA, PowerPC prefers FMA. 16146 if (User->getOpcode() != Instruction::FSub && 16147 User->getOpcode() != Instruction::FAdd) 16148 return true; 16149 16150 const TargetOptions &Options = getTargetMachine().Options; 16151 const Function *F = I->getFunction(); 16152 const DataLayout &DL = F->getParent()->getDataLayout(); 16153 Type *Ty = User->getOperand(0)->getType(); 16154 16155 return !( 16156 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16157 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16158 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16159 } 16160 case Instruction::Load: { 16161 // Don't break "store (load float*)" pattern, this pattern will be combined 16162 // to "store (load int32)" in later InstCombine pass. See function 16163 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16164 // cycles than loading a 32 bit integer. 16165 LoadInst *LI = cast<LoadInst>(I); 16166 // For the loads that combineLoadToOperationType does nothing, like 16167 // ordered load, it should be profitable to hoist them. 16168 // For swifterror load, it can only be used for pointer to pointer type, so 16169 // later type check should get rid of this case. 16170 if (!LI->isUnordered()) 16171 return true; 16172 16173 if (User->getOpcode() != Instruction::Store) 16174 return true; 16175 16176 if (I->getType()->getTypeID() != Type::FloatTyID) 16177 return true; 16178 16179 return false; 16180 } 16181 default: 16182 return true; 16183 } 16184 return true; 16185 } 16186 16187 const MCPhysReg * 16188 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16189 // LR is a callee-save register, but we must treat it as clobbered by any call 16190 // site. Hence we include LR in the scratch registers, which are in turn added 16191 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16192 // to CTR, which is used by any indirect call. 16193 static const MCPhysReg ScratchRegs[] = { 16194 PPC::X12, PPC::LR8, PPC::CTR8, 0 16195 }; 16196 16197 return ScratchRegs; 16198 } 16199 16200 Register PPCTargetLowering::getExceptionPointerRegister( 16201 const Constant *PersonalityFn) const { 16202 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16203 } 16204 16205 Register PPCTargetLowering::getExceptionSelectorRegister( 16206 const Constant *PersonalityFn) const { 16207 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16208 } 16209 16210 bool 16211 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16212 EVT VT , unsigned DefinedValues) const { 16213 if (VT == MVT::v2i64) 16214 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16215 16216 if (Subtarget.hasVSX()) 16217 return true; 16218 16219 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16220 } 16221 16222 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16223 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16224 return TargetLowering::getSchedulingPreference(N); 16225 16226 return Sched::ILP; 16227 } 16228 16229 // Create a fast isel object. 16230 FastISel * 16231 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16232 const TargetLibraryInfo *LibInfo) const { 16233 return PPC::createFastISel(FuncInfo, LibInfo); 16234 } 16235 16236 // 'Inverted' means the FMA opcode after negating one multiplicand. 16237 // For example, (fma -a b c) = (fnmsub a b c) 16238 static unsigned invertFMAOpcode(unsigned Opc) { 16239 switch (Opc) { 16240 default: 16241 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16242 case ISD::FMA: 16243 return PPCISD::FNMSUB; 16244 case PPCISD::FNMSUB: 16245 return ISD::FMA; 16246 } 16247 } 16248 16249 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16250 bool LegalOps, bool OptForSize, 16251 NegatibleCost &Cost, 16252 unsigned Depth) const { 16253 if (Depth > SelectionDAG::MaxRecursionDepth) 16254 return SDValue(); 16255 16256 unsigned Opc = Op.getOpcode(); 16257 EVT VT = Op.getValueType(); 16258 SDNodeFlags Flags = Op.getNode()->getFlags(); 16259 16260 switch (Opc) { 16261 case PPCISD::FNMSUB: 16262 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16263 break; 16264 16265 const TargetOptions &Options = getTargetMachine().Options; 16266 SDValue N0 = Op.getOperand(0); 16267 SDValue N1 = Op.getOperand(1); 16268 SDValue N2 = Op.getOperand(2); 16269 SDLoc Loc(Op); 16270 16271 NegatibleCost N2Cost = NegatibleCost::Expensive; 16272 SDValue NegN2 = 16273 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16274 16275 if (!NegN2) 16276 return SDValue(); 16277 16278 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16279 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16280 // These transformations may change sign of zeroes. For example, 16281 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16282 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16283 // Try and choose the cheaper one to negate. 16284 NegatibleCost N0Cost = NegatibleCost::Expensive; 16285 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16286 N0Cost, Depth + 1); 16287 16288 NegatibleCost N1Cost = NegatibleCost::Expensive; 16289 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16290 N1Cost, Depth + 1); 16291 16292 if (NegN0 && N0Cost <= N1Cost) { 16293 Cost = std::min(N0Cost, N2Cost); 16294 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16295 } else if (NegN1) { 16296 Cost = std::min(N1Cost, N2Cost); 16297 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16298 } 16299 } 16300 16301 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16302 if (isOperationLegal(ISD::FMA, VT)) { 16303 Cost = N2Cost; 16304 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16305 } 16306 16307 break; 16308 } 16309 16310 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16311 Cost, Depth); 16312 } 16313 16314 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16315 bool PPCTargetLowering::useLoadStackGuardNode() const { 16316 if (!Subtarget.isTargetLinux()) 16317 return TargetLowering::useLoadStackGuardNode(); 16318 return true; 16319 } 16320 16321 // Override to disable global variable loading on Linux. 16322 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16323 if (!Subtarget.isTargetLinux()) 16324 return TargetLowering::insertSSPDeclarations(M); 16325 } 16326 16327 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16328 bool ForCodeSize) const { 16329 if (!VT.isSimple() || !Subtarget.hasVSX()) 16330 return false; 16331 16332 switch(VT.getSimpleVT().SimpleTy) { 16333 default: 16334 // For FP types that are currently not supported by PPC backend, return 16335 // false. Examples: f16, f80. 16336 return false; 16337 case MVT::f32: 16338 case MVT::f64: 16339 if (Subtarget.hasPrefixInstrs()) { 16340 // With prefixed instructions, we can materialize anything that can be 16341 // represented with a 32-bit immediate, not just positive zero. 16342 APFloat APFloatOfImm = Imm; 16343 return convertToNonDenormSingle(APFloatOfImm); 16344 } 16345 LLVM_FALLTHROUGH; 16346 case MVT::ppcf128: 16347 return Imm.isPosZero(); 16348 } 16349 } 16350 16351 // For vector shift operation op, fold 16352 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16353 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16354 SelectionDAG &DAG) { 16355 SDValue N0 = N->getOperand(0); 16356 SDValue N1 = N->getOperand(1); 16357 EVT VT = N0.getValueType(); 16358 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16359 unsigned Opcode = N->getOpcode(); 16360 unsigned TargetOpcode; 16361 16362 switch (Opcode) { 16363 default: 16364 llvm_unreachable("Unexpected shift operation"); 16365 case ISD::SHL: 16366 TargetOpcode = PPCISD::SHL; 16367 break; 16368 case ISD::SRL: 16369 TargetOpcode = PPCISD::SRL; 16370 break; 16371 case ISD::SRA: 16372 TargetOpcode = PPCISD::SRA; 16373 break; 16374 } 16375 16376 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16377 N1->getOpcode() == ISD::AND) 16378 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16379 if (Mask->getZExtValue() == OpSizeInBits - 1) 16380 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16381 16382 return SDValue(); 16383 } 16384 16385 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16386 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16387 return Value; 16388 16389 SDValue N0 = N->getOperand(0); 16390 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16391 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16392 N0.getOpcode() != ISD::SIGN_EXTEND || 16393 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16394 N->getValueType(0) != MVT::i64) 16395 return SDValue(); 16396 16397 // We can't save an operation here if the value is already extended, and 16398 // the existing shift is easier to combine. 16399 SDValue ExtsSrc = N0.getOperand(0); 16400 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16401 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16402 return SDValue(); 16403 16404 SDLoc DL(N0); 16405 SDValue ShiftBy = SDValue(CN1, 0); 16406 // We want the shift amount to be i32 on the extswli, but the shift could 16407 // have an i64. 16408 if (ShiftBy.getValueType() == MVT::i64) 16409 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16410 16411 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16412 ShiftBy); 16413 } 16414 16415 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16416 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16417 return Value; 16418 16419 return SDValue(); 16420 } 16421 16422 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16423 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16424 return Value; 16425 16426 return SDValue(); 16427 } 16428 16429 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16430 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16431 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16432 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16433 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16434 const PPCSubtarget &Subtarget) { 16435 if (!Subtarget.isPPC64()) 16436 return SDValue(); 16437 16438 SDValue LHS = N->getOperand(0); 16439 SDValue RHS = N->getOperand(1); 16440 16441 auto isZextOfCompareWithConstant = [](SDValue Op) { 16442 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16443 Op.getValueType() != MVT::i64) 16444 return false; 16445 16446 SDValue Cmp = Op.getOperand(0); 16447 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16448 Cmp.getOperand(0).getValueType() != MVT::i64) 16449 return false; 16450 16451 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16452 int64_t NegConstant = 0 - Constant->getSExtValue(); 16453 // Due to the limitations of the addi instruction, 16454 // -C is required to be [-32768, 32767]. 16455 return isInt<16>(NegConstant); 16456 } 16457 16458 return false; 16459 }; 16460 16461 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16462 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16463 16464 // If there is a pattern, canonicalize a zext operand to the RHS. 16465 if (LHSHasPattern && !RHSHasPattern) 16466 std::swap(LHS, RHS); 16467 else if (!LHSHasPattern && !RHSHasPattern) 16468 return SDValue(); 16469 16470 SDLoc DL(N); 16471 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16472 SDValue Cmp = RHS.getOperand(0); 16473 SDValue Z = Cmp.getOperand(0); 16474 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16475 16476 assert(Constant && "Constant Should not be a null pointer."); 16477 int64_t NegConstant = 0 - Constant->getSExtValue(); 16478 16479 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16480 default: break; 16481 case ISD::SETNE: { 16482 // when C == 0 16483 // --> addze X, (addic Z, -1).carry 16484 // / 16485 // add X, (zext(setne Z, C))-- 16486 // \ when -32768 <= -C <= 32767 && C != 0 16487 // --> addze X, (addic (addi Z, -C), -1).carry 16488 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16489 DAG.getConstant(NegConstant, DL, MVT::i64)); 16490 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16491 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16492 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16493 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16494 SDValue(Addc.getNode(), 1)); 16495 } 16496 case ISD::SETEQ: { 16497 // when C == 0 16498 // --> addze X, (subfic Z, 0).carry 16499 // / 16500 // add X, (zext(sete Z, C))-- 16501 // \ when -32768 <= -C <= 32767 && C != 0 16502 // --> addze X, (subfic (addi Z, -C), 0).carry 16503 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16504 DAG.getConstant(NegConstant, DL, MVT::i64)); 16505 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16506 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16507 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16508 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16509 SDValue(Subc.getNode(), 1)); 16510 } 16511 } 16512 16513 return SDValue(); 16514 } 16515 16516 // Transform 16517 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16518 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16519 // In this case both C1 and C2 must be known constants. 16520 // C1+C2 must fit into a 34 bit signed integer. 16521 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16522 const PPCSubtarget &Subtarget) { 16523 if (!Subtarget.isUsingPCRelativeCalls()) 16524 return SDValue(); 16525 16526 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16527 // If we find that node try to cast the Global Address and the Constant. 16528 SDValue LHS = N->getOperand(0); 16529 SDValue RHS = N->getOperand(1); 16530 16531 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16532 std::swap(LHS, RHS); 16533 16534 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16535 return SDValue(); 16536 16537 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16538 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16539 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16540 16541 // Check that both casts succeeded. 16542 if (!GSDN || !ConstNode) 16543 return SDValue(); 16544 16545 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16546 SDLoc DL(GSDN); 16547 16548 // The signed int offset needs to fit in 34 bits. 16549 if (!isInt<34>(NewOffset)) 16550 return SDValue(); 16551 16552 // The new global address is a copy of the old global address except 16553 // that it has the updated Offset. 16554 SDValue GA = 16555 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16556 NewOffset, GSDN->getTargetFlags()); 16557 SDValue MatPCRel = 16558 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16559 return MatPCRel; 16560 } 16561 16562 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16563 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16564 return Value; 16565 16566 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16567 return Value; 16568 16569 return SDValue(); 16570 } 16571 16572 // Detect TRUNCATE operations on bitcasts of float128 values. 16573 // What we are looking for here is the situtation where we extract a subset 16574 // of bits from a 128 bit float. 16575 // This can be of two forms: 16576 // 1) BITCAST of f128 feeding TRUNCATE 16577 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16578 // The reason this is required is because we do not have a legal i128 type 16579 // and so we want to prevent having to store the f128 and then reload part 16580 // of it. 16581 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16582 DAGCombinerInfo &DCI) const { 16583 // If we are using CRBits then try that first. 16584 if (Subtarget.useCRBits()) { 16585 // Check if CRBits did anything and return that if it did. 16586 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16587 return CRTruncValue; 16588 } 16589 16590 SDLoc dl(N); 16591 SDValue Op0 = N->getOperand(0); 16592 16593 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16594 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16595 EVT VT = N->getValueType(0); 16596 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16597 return SDValue(); 16598 SDValue Sub = Op0.getOperand(0); 16599 if (Sub.getOpcode() == ISD::SUB) { 16600 SDValue SubOp0 = Sub.getOperand(0); 16601 SDValue SubOp1 = Sub.getOperand(1); 16602 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16603 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16604 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16605 SubOp1.getOperand(0), 16606 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16607 } 16608 } 16609 } 16610 16611 // Looking for a truncate of i128 to i64. 16612 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16613 return SDValue(); 16614 16615 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16616 16617 // SRL feeding TRUNCATE. 16618 if (Op0.getOpcode() == ISD::SRL) { 16619 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16620 // The right shift has to be by 64 bits. 16621 if (!ConstNode || ConstNode->getZExtValue() != 64) 16622 return SDValue(); 16623 16624 // Switch the element number to extract. 16625 EltToExtract = EltToExtract ? 0 : 1; 16626 // Update Op0 past the SRL. 16627 Op0 = Op0.getOperand(0); 16628 } 16629 16630 // BITCAST feeding a TRUNCATE possibly via SRL. 16631 if (Op0.getOpcode() == ISD::BITCAST && 16632 Op0.getValueType() == MVT::i128 && 16633 Op0.getOperand(0).getValueType() == MVT::f128) { 16634 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16635 return DCI.DAG.getNode( 16636 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16637 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16638 } 16639 return SDValue(); 16640 } 16641 16642 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16643 SelectionDAG &DAG = DCI.DAG; 16644 16645 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16646 if (!ConstOpOrElement) 16647 return SDValue(); 16648 16649 // An imul is usually smaller than the alternative sequence for legal type. 16650 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16651 isOperationLegal(ISD::MUL, N->getValueType(0))) 16652 return SDValue(); 16653 16654 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16655 switch (this->Subtarget.getCPUDirective()) { 16656 default: 16657 // TODO: enhance the condition for subtarget before pwr8 16658 return false; 16659 case PPC::DIR_PWR8: 16660 // type mul add shl 16661 // scalar 4 1 1 16662 // vector 7 2 2 16663 return true; 16664 case PPC::DIR_PWR9: 16665 case PPC::DIR_PWR10: 16666 case PPC::DIR_PWR_FUTURE: 16667 // type mul add shl 16668 // scalar 5 2 2 16669 // vector 7 2 2 16670 16671 // The cycle RATIO of related operations are showed as a table above. 16672 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16673 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16674 // are 4, it is always profitable; but for 3 instrs patterns 16675 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16676 // So we should only do it for vector type. 16677 return IsAddOne && IsNeg ? VT.isVector() : true; 16678 } 16679 }; 16680 16681 EVT VT = N->getValueType(0); 16682 SDLoc DL(N); 16683 16684 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16685 bool IsNeg = MulAmt.isNegative(); 16686 APInt MulAmtAbs = MulAmt.abs(); 16687 16688 if ((MulAmtAbs - 1).isPowerOf2()) { 16689 // (mul x, 2^N + 1) => (add (shl x, N), x) 16690 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16691 16692 if (!IsProfitable(IsNeg, true, VT)) 16693 return SDValue(); 16694 16695 SDValue Op0 = N->getOperand(0); 16696 SDValue Op1 = 16697 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16698 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16699 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16700 16701 if (!IsNeg) 16702 return Res; 16703 16704 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16705 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16706 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16707 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16708 16709 if (!IsProfitable(IsNeg, false, VT)) 16710 return SDValue(); 16711 16712 SDValue Op0 = N->getOperand(0); 16713 SDValue Op1 = 16714 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16715 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16716 16717 if (!IsNeg) 16718 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16719 else 16720 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16721 16722 } else { 16723 return SDValue(); 16724 } 16725 } 16726 16727 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16728 // in combiner since we need to check SD flags and other subtarget features. 16729 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16730 DAGCombinerInfo &DCI) const { 16731 SDValue N0 = N->getOperand(0); 16732 SDValue N1 = N->getOperand(1); 16733 SDValue N2 = N->getOperand(2); 16734 SDNodeFlags Flags = N->getFlags(); 16735 EVT VT = N->getValueType(0); 16736 SelectionDAG &DAG = DCI.DAG; 16737 const TargetOptions &Options = getTargetMachine().Options; 16738 unsigned Opc = N->getOpcode(); 16739 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16740 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16741 SDLoc Loc(N); 16742 16743 if (!isOperationLegal(ISD::FMA, VT)) 16744 return SDValue(); 16745 16746 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16747 // since (fnmsub a b c)=-0 while c-ab=+0. 16748 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16749 return SDValue(); 16750 16751 // (fma (fneg a) b c) => (fnmsub a b c) 16752 // (fnmsub (fneg a) b c) => (fma a b c) 16753 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16754 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16755 16756 // (fma a (fneg b) c) => (fnmsub a b c) 16757 // (fnmsub a (fneg b) c) => (fma a b c) 16758 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16759 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16760 16761 return SDValue(); 16762 } 16763 16764 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16765 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16766 if (!Subtarget.is64BitELFABI()) 16767 return false; 16768 16769 // If not a tail call then no need to proceed. 16770 if (!CI->isTailCall()) 16771 return false; 16772 16773 // If sibling calls have been disabled and tail-calls aren't guaranteed 16774 // there is no reason to duplicate. 16775 auto &TM = getTargetMachine(); 16776 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16777 return false; 16778 16779 // Can't tail call a function called indirectly, or if it has variadic args. 16780 const Function *Callee = CI->getCalledFunction(); 16781 if (!Callee || Callee->isVarArg()) 16782 return false; 16783 16784 // Make sure the callee and caller calling conventions are eligible for tco. 16785 const Function *Caller = CI->getParent()->getParent(); 16786 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16787 CI->getCallingConv())) 16788 return false; 16789 16790 // If the function is local then we have a good chance at tail-calling it 16791 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16792 } 16793 16794 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16795 if (!Subtarget.hasVSX()) 16796 return false; 16797 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16798 return true; 16799 return VT == MVT::f32 || VT == MVT::f64 || 16800 VT == MVT::v4f32 || VT == MVT::v2f64; 16801 } 16802 16803 bool PPCTargetLowering:: 16804 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16805 const Value *Mask = AndI.getOperand(1); 16806 // If the mask is suitable for andi. or andis. we should sink the and. 16807 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16808 // Can't handle constants wider than 64-bits. 16809 if (CI->getBitWidth() > 64) 16810 return false; 16811 int64_t ConstVal = CI->getZExtValue(); 16812 return isUInt<16>(ConstVal) || 16813 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16814 } 16815 16816 // For non-constant masks, we can always use the record-form and. 16817 return true; 16818 } 16819 16820 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16821 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16822 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16823 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16824 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16825 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16826 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16827 assert(Subtarget.hasP9Altivec() && 16828 "Only combine this when P9 altivec supported!"); 16829 EVT VT = N->getValueType(0); 16830 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16831 return SDValue(); 16832 16833 SelectionDAG &DAG = DCI.DAG; 16834 SDLoc dl(N); 16835 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16836 // Even for signed integers, if it's known to be positive (as signed 16837 // integer) due to zero-extended inputs. 16838 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16839 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16840 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16841 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16842 (SubOpcd1 == ISD::ZERO_EXTEND || 16843 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16844 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16845 N->getOperand(0)->getOperand(0), 16846 N->getOperand(0)->getOperand(1), 16847 DAG.getTargetConstant(0, dl, MVT::i32)); 16848 } 16849 16850 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16851 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16852 N->getOperand(0).hasOneUse()) { 16853 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16854 N->getOperand(0)->getOperand(0), 16855 N->getOperand(0)->getOperand(1), 16856 DAG.getTargetConstant(1, dl, MVT::i32)); 16857 } 16858 } 16859 16860 return SDValue(); 16861 } 16862 16863 // For type v4i32/v8ii16/v16i8, transform 16864 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16865 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16866 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16867 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16868 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16869 DAGCombinerInfo &DCI) const { 16870 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16871 assert(Subtarget.hasP9Altivec() && 16872 "Only combine this when P9 altivec supported!"); 16873 16874 SelectionDAG &DAG = DCI.DAG; 16875 SDLoc dl(N); 16876 SDValue Cond = N->getOperand(0); 16877 SDValue TrueOpnd = N->getOperand(1); 16878 SDValue FalseOpnd = N->getOperand(2); 16879 EVT VT = N->getOperand(1).getValueType(); 16880 16881 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16882 FalseOpnd.getOpcode() != ISD::SUB) 16883 return SDValue(); 16884 16885 // ABSD only available for type v4i32/v8i16/v16i8 16886 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16887 return SDValue(); 16888 16889 // At least to save one more dependent computation 16890 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16891 return SDValue(); 16892 16893 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16894 16895 // Can only handle unsigned comparison here 16896 switch (CC) { 16897 default: 16898 return SDValue(); 16899 case ISD::SETUGT: 16900 case ISD::SETUGE: 16901 break; 16902 case ISD::SETULT: 16903 case ISD::SETULE: 16904 std::swap(TrueOpnd, FalseOpnd); 16905 break; 16906 } 16907 16908 SDValue CmpOpnd1 = Cond.getOperand(0); 16909 SDValue CmpOpnd2 = Cond.getOperand(1); 16910 16911 // SETCC CmpOpnd1 CmpOpnd2 cond 16912 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16913 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16914 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16915 TrueOpnd.getOperand(1) == CmpOpnd2 && 16916 FalseOpnd.getOperand(0) == CmpOpnd2 && 16917 FalseOpnd.getOperand(1) == CmpOpnd1) { 16918 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16919 CmpOpnd1, CmpOpnd2, 16920 DAG.getTargetConstant(0, dl, MVT::i32)); 16921 } 16922 16923 return SDValue(); 16924 } 16925