1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 139 140 // FIXME: Remove this once the bug has been fixed! 141 extern cl::opt<bool> ANDIGlueBug; 142 143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 144 const PPCSubtarget &STI) 145 : TargetLowering(TM), Subtarget(STI) { 146 // Initialize map that relates the PPC addressing modes to the computed flags 147 // of a load/store instruction. The map is used to determine the optimal 148 // addressing mode when selecting load and stores. 149 initializeAddrModeMap(); 150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 151 // arguments are at least 4/8 bytes aligned. 152 bool isPPC64 = Subtarget.isPPC64(); 153 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 154 155 // Set up the register classes. 156 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 157 if (!useSoftFloat()) { 158 if (hasSPE()) { 159 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 160 // EFPU2 APU only supports f32 161 if (!Subtarget.hasEFPU2()) 162 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 163 } else { 164 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 165 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 166 } 167 } 168 169 // Match BITREVERSE to customized fast code sequence in the td file. 170 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 171 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 172 173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // Custom lower inline assembly to check for special registers. 177 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 178 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 179 180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 181 for (MVT VT : MVT::integer_valuetypes()) { 182 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 183 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 184 } 185 186 if (Subtarget.isISA3_0()) { 187 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 188 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 189 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 190 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 191 } else { 192 // No extending loads from f16 or HW conversions back and forth. 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 195 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 197 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 198 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 199 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 200 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 201 } 202 203 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 204 205 // PowerPC has pre-inc load and store's. 206 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 211 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 216 if (!Subtarget.hasSPE()) { 217 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 218 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 221 } 222 223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 224 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 225 for (MVT VT : ScalarIntVTs) { 226 setOperationAction(ISD::ADDC, VT, Legal); 227 setOperationAction(ISD::ADDE, VT, Legal); 228 setOperationAction(ISD::SUBC, VT, Legal); 229 setOperationAction(ISD::SUBE, VT, Legal); 230 } 231 232 if (Subtarget.useCRBits()) { 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 234 235 if (isPPC64 || Subtarget.hasFPCVT()) { 236 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 } else { 264 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 265 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 268 } 269 270 // PowerPC does not support direct load/store of condition registers. 271 setOperationAction(ISD::LOAD, MVT::i1, Custom); 272 setOperationAction(ISD::STORE, MVT::i1, Custom); 273 274 // FIXME: Remove this once the ANDI glue bug is fixed: 275 if (ANDIGlueBug) 276 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 277 278 for (MVT VT : MVT::integer_valuetypes()) { 279 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 281 setTruncStoreAction(VT, MVT::i1, Expand); 282 } 283 284 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 285 } 286 287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 288 // PPC (the libcall is not available). 289 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 291 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 292 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 293 294 // We do not currently implement these libm ops for PowerPC. 295 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 296 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 297 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 298 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 299 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 300 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 301 302 // PowerPC has no SREM/UREM instructions unless we are on P9 303 // On P9 we may use a hardware instruction to compute the remainder. 304 // When the result of both the remainder and the division is required it is 305 // more efficient to compute the remainder from the result of the division 306 // rather than use the remainder instruction. The instructions are legalized 307 // directly because the DivRemPairsPass performs the transformation at the IR 308 // level. 309 if (Subtarget.isISA3_0()) { 310 setOperationAction(ISD::SREM, MVT::i32, Legal); 311 setOperationAction(ISD::UREM, MVT::i32, Legal); 312 setOperationAction(ISD::SREM, MVT::i64, Legal); 313 setOperationAction(ISD::UREM, MVT::i64, Legal); 314 } else { 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UREM, MVT::i32, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UREM, MVT::i64, Expand); 319 } 320 321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 322 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 323 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 324 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 325 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 326 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 327 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 328 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 329 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 330 331 // Handle constrained floating-point operations of scalar. 332 // TODO: Handle SPE specific operation. 333 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 334 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 335 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 336 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 338 339 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 343 344 if (!Subtarget.hasSPE()) { 345 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasVSX()) { 350 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFSQRT()) { 355 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFPRND()) { 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 364 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 369 } 370 371 // We don't support sin/cos/sqrt/fmod/pow 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 375 setOperationAction(ISD::FREM , MVT::f64, Expand); 376 setOperationAction(ISD::FPOW , MVT::f64, Expand); 377 setOperationAction(ISD::FSIN , MVT::f32, Expand); 378 setOperationAction(ISD::FCOS , MVT::f32, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 380 setOperationAction(ISD::FREM , MVT::f32, Expand); 381 setOperationAction(ISD::FPOW , MVT::f32, Expand); 382 if (Subtarget.hasSPE()) { 383 setOperationAction(ISD::FMA , MVT::f64, Expand); 384 setOperationAction(ISD::FMA , MVT::f32, Expand); 385 } else { 386 setOperationAction(ISD::FMA , MVT::f64, Legal); 387 setOperationAction(ISD::FMA , MVT::f32, Legal); 388 } 389 390 if (Subtarget.hasSPE()) 391 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 392 393 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 394 395 // If we're enabling GP optimizations, use hardware square root 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 398 Subtarget.hasFRE())) 399 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 400 401 if (!Subtarget.hasFSQRT() && 402 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 403 Subtarget.hasFRES())) 404 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 405 406 if (Subtarget.hasFCPSGN()) { 407 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 408 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 409 } else { 410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 412 } 413 414 if (Subtarget.hasFPRND()) { 415 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 418 setOperationAction(ISD::FROUND, MVT::f64, Legal); 419 420 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 421 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 422 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 423 setOperationAction(ISD::FROUND, MVT::f32, Legal); 424 } 425 426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 427 // to speed up scalar BSWAP64. 428 // CTPOP or CTTZ were introduced in P8/P9 respectively 429 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 430 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 431 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 432 else 433 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 434 if (Subtarget.isISA3_0()) { 435 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 436 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 437 } else { 438 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 439 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 440 } 441 442 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 443 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 444 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 445 } else { 446 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 447 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 448 } 449 450 // PowerPC does not have ROTR 451 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 452 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 453 454 if (!Subtarget.useCRBits()) { 455 // PowerPC does not have Select 456 setOperationAction(ISD::SELECT, MVT::i32, Expand); 457 setOperationAction(ISD::SELECT, MVT::i64, Expand); 458 setOperationAction(ISD::SELECT, MVT::f32, Expand); 459 setOperationAction(ISD::SELECT, MVT::f64, Expand); 460 } 461 462 // PowerPC wants to turn select_cc of FP into fsel when possible. 463 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 464 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 465 466 // PowerPC wants to optimize integer setcc a bit 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::SETCC, MVT::i32, Custom); 469 470 if (Subtarget.hasFPU()) { 471 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 472 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 473 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 474 475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 476 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 478 } 479 480 // PowerPC does not have BRCOND which requires SetCC 481 if (!Subtarget.useCRBits()) 482 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 483 484 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 485 486 if (Subtarget.hasSPE()) { 487 // SPE has built-in conversions 488 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 490 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 492 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 493 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 494 495 // SPE supports signaling compare of f32/f64. 496 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 498 } else { 499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 500 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 502 503 // PowerPC does not have [U|S]INT_TO_FP 504 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 508 } 509 510 if (Subtarget.hasDirectMove() && isPPC64) { 511 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 512 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 513 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 514 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 515 if (TM.Options.UnsafeFPMath) { 516 setOperationAction(ISD::LRINT, MVT::f64, Legal); 517 setOperationAction(ISD::LRINT, MVT::f32, Legal); 518 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 519 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 520 setOperationAction(ISD::LROUND, MVT::f64, Legal); 521 setOperationAction(ISD::LROUND, MVT::f32, Legal); 522 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 523 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 524 } 525 } else { 526 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 527 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 528 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 529 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 530 } 531 532 // We cannot sextinreg(i1). Expand to shifts. 533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 534 535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 537 // support continuation, user-level threading, and etc.. As a result, no 538 // other SjLj exception interfaces are implemented and please don't build 539 // your own exception handling based on them. 540 // LLVM/Clang supports zero-cost DWARF exception handling. 541 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 542 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 543 544 // We want to legalize GlobalAddress and ConstantPool nodes into the 545 // appropriate instructions to materialize the address. 546 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 551 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 552 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 553 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 554 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 555 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 556 557 // TRAP is legal. 558 setOperationAction(ISD::TRAP, MVT::Other, Legal); 559 560 // TRAMPOLINE is custom lowered. 561 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 562 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 563 564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 565 setOperationAction(ISD::VASTART , MVT::Other, Custom); 566 567 if (Subtarget.is64BitELFABI()) { 568 // VAARG always uses double-word chunks, so promote anything smaller. 569 setOperationAction(ISD::VAARG, MVT::i1, Promote); 570 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 571 setOperationAction(ISD::VAARG, MVT::i8, Promote); 572 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 573 setOperationAction(ISD::VAARG, MVT::i16, Promote); 574 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 575 setOperationAction(ISD::VAARG, MVT::i32, Promote); 576 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 577 setOperationAction(ISD::VAARG, MVT::Other, Expand); 578 } else if (Subtarget.is32BitELFABI()) { 579 // VAARG is custom lowered with the 32-bit SVR4 ABI. 580 setOperationAction(ISD::VAARG, MVT::Other, Custom); 581 setOperationAction(ISD::VAARG, MVT::i64, Custom); 582 } else 583 setOperationAction(ISD::VAARG, MVT::Other, Expand); 584 585 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 586 if (Subtarget.is32BitELFABI()) 587 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 588 else 589 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 590 591 // Use the default implementation. 592 setOperationAction(ISD::VAEND , MVT::Other, Expand); 593 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 594 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 595 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 599 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 600 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 601 602 // We want to custom lower some of our intrinsics. 603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 604 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 605 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 606 607 // To handle counter-based loop conditions. 608 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 609 610 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 611 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 612 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 613 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 614 615 // Comparisons that require checking two conditions. 616 if (Subtarget.hasSPE()) { 617 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 619 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 620 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 621 } 622 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 623 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 624 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 625 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 626 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 627 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 628 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 629 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 630 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 631 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 632 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 633 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 634 635 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 636 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 637 638 if (Subtarget.has64BitSupport()) { 639 // They also have instructions for converting between i64 and fp. 640 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 641 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 642 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 643 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 644 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 645 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 646 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 647 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 648 // This is just the low 32 bits of a (signed) fp->i64 conversion. 649 // We cannot do this with Promote because i64 is not a legal type. 650 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 651 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 652 653 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 654 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 655 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 656 } 657 } else { 658 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 659 if (Subtarget.hasSPE()) { 660 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 661 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 662 } else { 663 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 664 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 665 } 666 } 667 668 // With the instructions enabled under FPCVT, we can do everything. 669 if (Subtarget.hasFPCVT()) { 670 if (Subtarget.has64BitSupport()) { 671 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 672 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 673 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 674 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 675 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 676 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 677 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 678 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 679 } 680 681 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 682 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 683 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 684 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 685 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 686 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 687 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 688 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 689 } 690 691 if (Subtarget.use64BitRegs()) { 692 // 64-bit PowerPC implementations can support i64 types directly 693 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 694 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 695 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 696 // 64-bit PowerPC wants to expand i128 shifts itself. 697 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 698 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 699 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 700 } else { 701 // 32-bit PowerPC wants to expand i64 shifts itself. 702 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 703 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 704 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 705 } 706 707 // PowerPC has better expansions for funnel shifts than the generic 708 // TargetLowering::expandFunnelShift. 709 if (Subtarget.has64BitSupport()) { 710 setOperationAction(ISD::FSHL, MVT::i64, Custom); 711 setOperationAction(ISD::FSHR, MVT::i64, Custom); 712 } 713 setOperationAction(ISD::FSHL, MVT::i32, Custom); 714 setOperationAction(ISD::FSHR, MVT::i32, Custom); 715 716 if (Subtarget.hasVSX()) { 717 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 718 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 719 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 720 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 721 } 722 723 if (Subtarget.hasAltivec()) { 724 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 725 setOperationAction(ISD::SADDSAT, VT, Legal); 726 setOperationAction(ISD::SSUBSAT, VT, Legal); 727 setOperationAction(ISD::UADDSAT, VT, Legal); 728 setOperationAction(ISD::USUBSAT, VT, Legal); 729 } 730 // First set operation action for all vector types to expand. Then we 731 // will selectively turn on ones that can be effectively codegen'd. 732 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 733 // add/sub are legal for all supported vector VT's. 734 setOperationAction(ISD::ADD, VT, Legal); 735 setOperationAction(ISD::SUB, VT, Legal); 736 737 // For v2i64, these are only valid with P8Vector. This is corrected after 738 // the loop. 739 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 740 setOperationAction(ISD::SMAX, VT, Legal); 741 setOperationAction(ISD::SMIN, VT, Legal); 742 setOperationAction(ISD::UMAX, VT, Legal); 743 setOperationAction(ISD::UMIN, VT, Legal); 744 } 745 else { 746 setOperationAction(ISD::SMAX, VT, Expand); 747 setOperationAction(ISD::SMIN, VT, Expand); 748 setOperationAction(ISD::UMAX, VT, Expand); 749 setOperationAction(ISD::UMIN, VT, Expand); 750 } 751 752 if (Subtarget.hasVSX()) { 753 setOperationAction(ISD::FMAXNUM, VT, Legal); 754 setOperationAction(ISD::FMINNUM, VT, Legal); 755 } 756 757 // Vector instructions introduced in P8 758 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 759 setOperationAction(ISD::CTPOP, VT, Legal); 760 setOperationAction(ISD::CTLZ, VT, Legal); 761 } 762 else { 763 setOperationAction(ISD::CTPOP, VT, Expand); 764 setOperationAction(ISD::CTLZ, VT, Expand); 765 } 766 767 // Vector instructions introduced in P9 768 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 769 setOperationAction(ISD::CTTZ, VT, Legal); 770 else 771 setOperationAction(ISD::CTTZ, VT, Expand); 772 773 // We promote all shuffles to v16i8. 774 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 775 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 776 777 // We promote all non-typed operations to v4i32. 778 setOperationAction(ISD::AND , VT, Promote); 779 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 780 setOperationAction(ISD::OR , VT, Promote); 781 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 782 setOperationAction(ISD::XOR , VT, Promote); 783 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 784 setOperationAction(ISD::LOAD , VT, Promote); 785 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 786 setOperationAction(ISD::SELECT, VT, Promote); 787 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 788 setOperationAction(ISD::VSELECT, VT, Legal); 789 setOperationAction(ISD::SELECT_CC, VT, Promote); 790 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 791 setOperationAction(ISD::STORE, VT, Promote); 792 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 793 794 // No other operations are legal. 795 setOperationAction(ISD::MUL , VT, Expand); 796 setOperationAction(ISD::SDIV, VT, Expand); 797 setOperationAction(ISD::SREM, VT, Expand); 798 setOperationAction(ISD::UDIV, VT, Expand); 799 setOperationAction(ISD::UREM, VT, Expand); 800 setOperationAction(ISD::FDIV, VT, Expand); 801 setOperationAction(ISD::FREM, VT, Expand); 802 setOperationAction(ISD::FNEG, VT, Expand); 803 setOperationAction(ISD::FSQRT, VT, Expand); 804 setOperationAction(ISD::FLOG, VT, Expand); 805 setOperationAction(ISD::FLOG10, VT, Expand); 806 setOperationAction(ISD::FLOG2, VT, Expand); 807 setOperationAction(ISD::FEXP, VT, Expand); 808 setOperationAction(ISD::FEXP2, VT, Expand); 809 setOperationAction(ISD::FSIN, VT, Expand); 810 setOperationAction(ISD::FCOS, VT, Expand); 811 setOperationAction(ISD::FABS, VT, Expand); 812 setOperationAction(ISD::FFLOOR, VT, Expand); 813 setOperationAction(ISD::FCEIL, VT, Expand); 814 setOperationAction(ISD::FTRUNC, VT, Expand); 815 setOperationAction(ISD::FRINT, VT, Expand); 816 setOperationAction(ISD::FNEARBYINT, VT, Expand); 817 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 818 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 819 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 820 setOperationAction(ISD::MULHU, VT, Expand); 821 setOperationAction(ISD::MULHS, VT, Expand); 822 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 823 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 824 setOperationAction(ISD::UDIVREM, VT, Expand); 825 setOperationAction(ISD::SDIVREM, VT, Expand); 826 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 827 setOperationAction(ISD::FPOW, VT, Expand); 828 setOperationAction(ISD::BSWAP, VT, Expand); 829 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 830 setOperationAction(ISD::ROTL, VT, Expand); 831 setOperationAction(ISD::ROTR, VT, Expand); 832 833 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 834 setTruncStoreAction(VT, InnerVT, Expand); 835 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 836 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 837 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 838 } 839 } 840 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 841 if (!Subtarget.hasP8Vector()) { 842 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 843 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 844 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 845 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 846 } 847 848 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 849 // with merges, splats, etc. 850 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 851 852 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 853 // are cheap, so handle them before they get expanded to scalar. 854 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 855 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 856 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 857 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 858 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 859 860 setOperationAction(ISD::AND , MVT::v4i32, Legal); 861 setOperationAction(ISD::OR , MVT::v4i32, Legal); 862 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 863 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 864 setOperationAction(ISD::SELECT, MVT::v4i32, 865 Subtarget.useCRBits() ? Legal : Expand); 866 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 867 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 868 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 869 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 870 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 871 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 872 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 873 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 874 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 875 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 876 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 877 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 878 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 879 880 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 881 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 882 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 883 if (Subtarget.hasAltivec()) 884 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 885 setOperationAction(ISD::ROTL, VT, Legal); 886 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 887 if (Subtarget.hasP8Altivec()) 888 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 889 890 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 891 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 892 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 893 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 894 895 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 896 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 897 898 if (Subtarget.hasVSX()) { 899 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 900 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 901 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 902 } 903 904 if (Subtarget.hasP8Altivec()) 905 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 906 else 907 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 908 909 if (Subtarget.isISA3_1()) { 910 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 911 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 912 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 913 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 914 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 915 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 916 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 917 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 918 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 919 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 920 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 921 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 922 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 923 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 924 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 925 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 926 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 927 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 928 } 929 930 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 931 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 932 933 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 934 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 935 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 937 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 938 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 939 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 940 941 // Altivec does not contain unordered floating-point compare instructions 942 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 943 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 944 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 945 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 946 947 if (Subtarget.hasVSX()) { 948 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 949 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 950 if (Subtarget.hasP8Vector()) { 951 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 952 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 953 } 954 if (Subtarget.hasDirectMove() && isPPC64) { 955 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 956 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 957 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 958 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 959 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 961 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 962 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 963 } 964 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 965 966 // The nearbyint variants are not allowed to raise the inexact exception 967 // so we can only code-gen them with unsafe math. 968 if (TM.Options.UnsafeFPMath) { 969 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 970 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 971 } 972 973 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 974 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 975 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 976 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 977 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 978 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 979 setOperationAction(ISD::FROUND, MVT::f64, Legal); 980 setOperationAction(ISD::FRINT, MVT::f64, Legal); 981 982 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 983 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 984 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 985 setOperationAction(ISD::FROUND, MVT::f32, Legal); 986 setOperationAction(ISD::FRINT, MVT::f32, Legal); 987 988 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 989 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 990 991 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 992 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 993 994 // Share the Altivec comparison restrictions. 995 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 996 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 997 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 998 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 999 1000 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1001 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1002 1003 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1004 1005 if (Subtarget.hasP8Vector()) 1006 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1007 1008 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1009 1010 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1011 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1012 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1013 1014 if (Subtarget.hasP8Altivec()) { 1015 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1016 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1017 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1018 1019 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1020 // SRL, but not for SRA because of the instructions available: 1021 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1022 // doing 1023 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1024 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1025 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1026 1027 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1028 } 1029 else { 1030 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1031 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1032 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1033 1034 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1035 1036 // VSX v2i64 only supports non-arithmetic operations. 1037 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1038 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1039 } 1040 1041 if (Subtarget.isISA3_1()) 1042 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1043 else 1044 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1045 1046 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1047 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1048 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1049 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1050 1051 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1052 1053 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1054 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1055 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1056 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1058 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1059 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1060 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1061 1062 // Custom handling for partial vectors of integers converted to 1063 // floating point. We already have optimal handling for v2i32 through 1064 // the DAG combine, so those aren't necessary. 1065 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1066 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1067 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1068 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1069 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1070 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1071 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1072 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1073 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1074 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1075 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1076 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1077 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1079 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1080 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1081 1082 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1083 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1084 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1086 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1087 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1088 1089 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1090 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1091 1092 // Handle constrained floating-point operations of vector. 1093 // The predictor is `hasVSX` because altivec instruction has 1094 // no exception but VSX vector instruction has. 1095 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1101 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1102 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1103 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1104 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1105 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1106 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1107 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1108 1109 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1115 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1116 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1117 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1118 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1119 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1120 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1121 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1122 1123 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1124 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1125 1126 for (MVT FPT : MVT::fp_valuetypes()) 1127 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1128 1129 // Expand the SELECT to SELECT_CC 1130 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1131 1132 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1133 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1134 1135 // No implementation for these ops for PowerPC. 1136 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1137 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1138 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1139 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1140 setOperationAction(ISD::FREM, MVT::f128, Expand); 1141 } 1142 1143 if (Subtarget.hasP8Altivec()) { 1144 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1145 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1146 } 1147 1148 if (Subtarget.hasP9Vector()) { 1149 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1150 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1151 1152 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1153 // SRL, but not for SRA because of the instructions available: 1154 // VS{RL} and VS{RL}O. 1155 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1156 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1157 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1158 1159 setOperationAction(ISD::FADD, MVT::f128, Legal); 1160 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1161 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1162 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1163 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1164 1165 setOperationAction(ISD::FMA, MVT::f128, Legal); 1166 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1167 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1168 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1169 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1170 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1171 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1172 1173 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1174 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1175 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1176 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1177 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1178 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1179 1180 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1181 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1182 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1183 1184 // Handle constrained floating-point operations of fp128 1185 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1191 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1192 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1193 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1194 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1195 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1196 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1197 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1198 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1199 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1200 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1201 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1202 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1203 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1204 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1205 } else if (Subtarget.hasVSX()) { 1206 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1207 setOperationAction(ISD::STORE, MVT::f128, Promote); 1208 1209 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1210 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1211 1212 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1213 // fp_to_uint and int_to_fp. 1214 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1215 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1216 1217 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1218 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1219 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1220 setOperationAction(ISD::FABS, MVT::f128, Expand); 1221 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1222 setOperationAction(ISD::FMA, MVT::f128, Expand); 1223 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1224 1225 // Expand the fp_extend if the target type is fp128. 1226 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1227 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1228 1229 // Expand the fp_round if the source type is fp128. 1230 for (MVT VT : {MVT::f32, MVT::f64}) { 1231 setOperationAction(ISD::FP_ROUND, VT, Custom); 1232 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1233 } 1234 1235 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1236 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1237 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1238 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1239 1240 // Lower following f128 select_cc pattern: 1241 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1242 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1243 1244 // We need to handle f128 SELECT_CC with integer result type. 1245 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1246 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1247 } 1248 1249 if (Subtarget.hasP9Altivec()) { 1250 if (Subtarget.isISA3_1()) { 1251 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1252 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1253 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1254 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1255 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal); 1256 } else { 1257 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1258 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1259 } 1260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1267 } 1268 } 1269 1270 if (Subtarget.pairedVectorMemops()) { 1271 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1272 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1273 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1274 } 1275 if (Subtarget.hasMMA()) { 1276 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1277 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1278 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1279 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1280 } 1281 1282 if (Subtarget.has64BitSupport()) 1283 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1284 1285 if (Subtarget.isISA3_1()) 1286 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1287 1288 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1289 1290 if (!isPPC64) { 1291 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1292 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1293 } 1294 1295 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1296 setMaxAtomicSizeInBitsSupported(128); 1297 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1298 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1299 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1300 } 1301 1302 setBooleanContents(ZeroOrOneBooleanContent); 1303 1304 if (Subtarget.hasAltivec()) { 1305 // Altivec instructions set fields to all zeros or all ones. 1306 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1307 } 1308 1309 if (!isPPC64) { 1310 // These libcalls are not available in 32-bit. 1311 setLibcallName(RTLIB::SHL_I128, nullptr); 1312 setLibcallName(RTLIB::SRL_I128, nullptr); 1313 setLibcallName(RTLIB::SRA_I128, nullptr); 1314 setLibcallName(RTLIB::MULO_I64, nullptr); 1315 } 1316 1317 if (!isPPC64) 1318 setMaxAtomicSizeInBitsSupported(32); 1319 1320 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1321 1322 // We have target-specific dag combine patterns for the following nodes: 1323 setTargetDAGCombine(ISD::ADD); 1324 setTargetDAGCombine(ISD::SHL); 1325 setTargetDAGCombine(ISD::SRA); 1326 setTargetDAGCombine(ISD::SRL); 1327 setTargetDAGCombine(ISD::MUL); 1328 setTargetDAGCombine(ISD::FMA); 1329 setTargetDAGCombine(ISD::SINT_TO_FP); 1330 setTargetDAGCombine(ISD::BUILD_VECTOR); 1331 if (Subtarget.hasFPCVT()) 1332 setTargetDAGCombine(ISD::UINT_TO_FP); 1333 setTargetDAGCombine(ISD::LOAD); 1334 setTargetDAGCombine(ISD::STORE); 1335 setTargetDAGCombine(ISD::BR_CC); 1336 if (Subtarget.useCRBits()) 1337 setTargetDAGCombine(ISD::BRCOND); 1338 setTargetDAGCombine(ISD::BSWAP); 1339 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1340 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1341 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1342 1343 setTargetDAGCombine(ISD::SIGN_EXTEND); 1344 setTargetDAGCombine(ISD::ZERO_EXTEND); 1345 setTargetDAGCombine(ISD::ANY_EXTEND); 1346 1347 setTargetDAGCombine(ISD::TRUNCATE); 1348 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1349 1350 1351 if (Subtarget.useCRBits()) { 1352 setTargetDAGCombine(ISD::TRUNCATE); 1353 setTargetDAGCombine(ISD::SETCC); 1354 setTargetDAGCombine(ISD::SELECT_CC); 1355 } 1356 1357 if (Subtarget.hasP9Altivec()) { 1358 setTargetDAGCombine(ISD::ABS); 1359 setTargetDAGCombine(ISD::VSELECT); 1360 } 1361 1362 setLibcallName(RTLIB::LOG_F128, "logf128"); 1363 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1364 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1365 setLibcallName(RTLIB::EXP_F128, "expf128"); 1366 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1367 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1368 setLibcallName(RTLIB::COS_F128, "cosf128"); 1369 setLibcallName(RTLIB::POW_F128, "powf128"); 1370 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1371 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1372 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1373 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1374 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1375 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1376 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1377 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1378 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1379 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1380 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1381 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1382 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1383 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1384 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1385 1386 // With 32 condition bits, we don't need to sink (and duplicate) compares 1387 // aggressively in CodeGenPrep. 1388 if (Subtarget.useCRBits()) { 1389 setHasMultipleConditionRegisters(); 1390 setJumpIsExpensive(); 1391 } 1392 1393 setMinFunctionAlignment(Align(4)); 1394 1395 switch (Subtarget.getCPUDirective()) { 1396 default: break; 1397 case PPC::DIR_970: 1398 case PPC::DIR_A2: 1399 case PPC::DIR_E500: 1400 case PPC::DIR_E500mc: 1401 case PPC::DIR_E5500: 1402 case PPC::DIR_PWR4: 1403 case PPC::DIR_PWR5: 1404 case PPC::DIR_PWR5X: 1405 case PPC::DIR_PWR6: 1406 case PPC::DIR_PWR6X: 1407 case PPC::DIR_PWR7: 1408 case PPC::DIR_PWR8: 1409 case PPC::DIR_PWR9: 1410 case PPC::DIR_PWR10: 1411 case PPC::DIR_PWR_FUTURE: 1412 setPrefLoopAlignment(Align(16)); 1413 setPrefFunctionAlignment(Align(16)); 1414 break; 1415 } 1416 1417 if (Subtarget.enableMachineScheduler()) 1418 setSchedulingPreference(Sched::Source); 1419 else 1420 setSchedulingPreference(Sched::Hybrid); 1421 1422 computeRegisterProperties(STI.getRegisterInfo()); 1423 1424 // The Freescale cores do better with aggressive inlining of memcpy and 1425 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1426 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1427 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1428 MaxStoresPerMemset = 32; 1429 MaxStoresPerMemsetOptSize = 16; 1430 MaxStoresPerMemcpy = 32; 1431 MaxStoresPerMemcpyOptSize = 8; 1432 MaxStoresPerMemmove = 32; 1433 MaxStoresPerMemmoveOptSize = 8; 1434 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1435 // The A2 also benefits from (very) aggressive inlining of memcpy and 1436 // friends. The overhead of a the function call, even when warm, can be 1437 // over one hundred cycles. 1438 MaxStoresPerMemset = 128; 1439 MaxStoresPerMemcpy = 128; 1440 MaxStoresPerMemmove = 128; 1441 MaxLoadsPerMemcmp = 128; 1442 } else { 1443 MaxLoadsPerMemcmp = 8; 1444 MaxLoadsPerMemcmpOptSize = 4; 1445 } 1446 1447 IsStrictFPEnabled = true; 1448 1449 // Let the subtarget (CPU) decide if a predictable select is more expensive 1450 // than the corresponding branch. This information is used in CGP to decide 1451 // when to convert selects into branches. 1452 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1453 } 1454 1455 // *********************************** NOTE ************************************ 1456 // For selecting load and store instructions, the addressing modes are defined 1457 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1458 // patterns to match the load the store instructions. 1459 // 1460 // The TD definitions for the addressing modes correspond to their respective 1461 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1462 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1463 // address mode flags of a particular node. Afterwards, the computed address 1464 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1465 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1466 // accordingly, based on the preferred addressing mode. 1467 // 1468 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1469 // MemOpFlags contains all the possible flags that can be used to compute the 1470 // optimal addressing mode for load and store instructions. 1471 // AddrMode contains all the possible load and store addressing modes available 1472 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1473 // 1474 // When adding new load and store instructions, it is possible that new address 1475 // flags may need to be added into MemOpFlags, and a new addressing mode will 1476 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1477 // of the minimal and main distinguishing address flags for the new load/store 1478 // instructions) will need to be added into initializeAddrModeMap() below. 1479 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1480 // need to be updated to account for selecting the optimal addressing mode. 1481 // ***************************************************************************** 1482 /// Initialize the map that relates the different addressing modes of the load 1483 /// and store instructions to a set of flags. This ensures the load/store 1484 /// instruction is correctly matched during instruction selection. 1485 void PPCTargetLowering::initializeAddrModeMap() { 1486 AddrModesMap[PPC::AM_DForm] = { 1487 // LWZ, STW 1488 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1489 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1490 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1491 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1492 // LBZ, LHZ, STB, STH 1493 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1494 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1495 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1496 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1497 // LHA 1498 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1499 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1500 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1501 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1502 // LFS, LFD, STFS, STFD 1503 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1504 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1505 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1506 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1507 }; 1508 AddrModesMap[PPC::AM_DSForm] = { 1509 // LWA 1510 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1511 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1512 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1513 // LD, STD 1514 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1515 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1516 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1517 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1518 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1519 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1520 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1521 }; 1522 AddrModesMap[PPC::AM_DQForm] = { 1523 // LXV, STXV 1524 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1525 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1526 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1527 }; 1528 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1529 PPC::MOF_SubtargetP10}; 1530 // TODO: Add mapping for quadword load/store. 1531 } 1532 1533 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1534 /// the desired ByVal argument alignment. 1535 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1536 if (MaxAlign == MaxMaxAlign) 1537 return; 1538 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1539 if (MaxMaxAlign >= 32 && 1540 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1541 MaxAlign = Align(32); 1542 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1543 MaxAlign < 16) 1544 MaxAlign = Align(16); 1545 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1546 Align EltAlign; 1547 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1548 if (EltAlign > MaxAlign) 1549 MaxAlign = EltAlign; 1550 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1551 for (auto *EltTy : STy->elements()) { 1552 Align EltAlign; 1553 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1554 if (EltAlign > MaxAlign) 1555 MaxAlign = EltAlign; 1556 if (MaxAlign == MaxMaxAlign) 1557 break; 1558 } 1559 } 1560 } 1561 1562 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1563 /// function arguments in the caller parameter area. 1564 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1565 const DataLayout &DL) const { 1566 // 16byte and wider vectors are passed on 16byte boundary. 1567 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1568 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1569 if (Subtarget.hasAltivec()) 1570 getMaxByValAlign(Ty, Alignment, Align(16)); 1571 return Alignment.value(); 1572 } 1573 1574 bool PPCTargetLowering::useSoftFloat() const { 1575 return Subtarget.useSoftFloat(); 1576 } 1577 1578 bool PPCTargetLowering::hasSPE() const { 1579 return Subtarget.hasSPE(); 1580 } 1581 1582 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1583 return VT.isScalarInteger(); 1584 } 1585 1586 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1587 switch ((PPCISD::NodeType)Opcode) { 1588 case PPCISD::FIRST_NUMBER: break; 1589 case PPCISD::FSEL: return "PPCISD::FSEL"; 1590 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1591 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1592 case PPCISD::FCFID: return "PPCISD::FCFID"; 1593 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1594 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1595 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1596 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1597 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1598 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1599 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1600 case PPCISD::FP_TO_UINT_IN_VSR: 1601 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1602 case PPCISD::FP_TO_SINT_IN_VSR: 1603 return "PPCISD::FP_TO_SINT_IN_VSR"; 1604 case PPCISD::FRE: return "PPCISD::FRE"; 1605 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1606 case PPCISD::FTSQRT: 1607 return "PPCISD::FTSQRT"; 1608 case PPCISD::FSQRT: 1609 return "PPCISD::FSQRT"; 1610 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1611 case PPCISD::VPERM: return "PPCISD::VPERM"; 1612 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1613 case PPCISD::XXSPLTI_SP_TO_DP: 1614 return "PPCISD::XXSPLTI_SP_TO_DP"; 1615 case PPCISD::XXSPLTI32DX: 1616 return "PPCISD::XXSPLTI32DX"; 1617 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1618 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1619 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1620 case PPCISD::CMPB: return "PPCISD::CMPB"; 1621 case PPCISD::Hi: return "PPCISD::Hi"; 1622 case PPCISD::Lo: return "PPCISD::Lo"; 1623 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1624 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1625 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1626 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1627 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1628 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1629 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1630 case PPCISD::SRL: return "PPCISD::SRL"; 1631 case PPCISD::SRA: return "PPCISD::SRA"; 1632 case PPCISD::SHL: return "PPCISD::SHL"; 1633 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1634 case PPCISD::CALL: return "PPCISD::CALL"; 1635 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1636 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1637 case PPCISD::CALL_RM: 1638 return "PPCISD::CALL_RM"; 1639 case PPCISD::CALL_NOP_RM: 1640 return "PPCISD::CALL_NOP_RM"; 1641 case PPCISD::CALL_NOTOC_RM: 1642 return "PPCISD::CALL_NOTOC_RM"; 1643 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1644 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1645 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1646 case PPCISD::BCTRL_RM: 1647 return "PPCISD::BCTRL_RM"; 1648 case PPCISD::BCTRL_LOAD_TOC_RM: 1649 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1650 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1651 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1652 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1653 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1654 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1655 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1656 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1657 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1658 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1659 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1660 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1661 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1662 case PPCISD::ANDI_rec_1_EQ_BIT: 1663 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1664 case PPCISD::ANDI_rec_1_GT_BIT: 1665 return "PPCISD::ANDI_rec_1_GT_BIT"; 1666 case PPCISD::VCMP: return "PPCISD::VCMP"; 1667 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1668 case PPCISD::LBRX: return "PPCISD::LBRX"; 1669 case PPCISD::STBRX: return "PPCISD::STBRX"; 1670 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1671 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1672 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1673 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1674 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1675 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1676 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1677 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1678 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1679 case PPCISD::ST_VSR_SCAL_INT: 1680 return "PPCISD::ST_VSR_SCAL_INT"; 1681 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1682 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1683 case PPCISD::BDZ: return "PPCISD::BDZ"; 1684 case PPCISD::MFFS: return "PPCISD::MFFS"; 1685 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1686 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1687 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1688 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1689 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1690 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1691 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1692 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1693 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1694 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1695 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1696 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1697 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1698 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1699 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1700 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1701 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1702 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1703 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1704 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1705 case PPCISD::PADDI_DTPREL: 1706 return "PPCISD::PADDI_DTPREL"; 1707 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1708 case PPCISD::SC: return "PPCISD::SC"; 1709 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1710 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1711 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1712 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1713 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1714 case PPCISD::VABSD: return "PPCISD::VABSD"; 1715 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1716 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1717 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1718 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1719 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1720 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1721 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1722 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1723 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1724 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1725 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1726 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1727 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1728 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1729 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1730 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1731 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1732 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1733 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1734 case PPCISD::STRICT_FADDRTZ: 1735 return "PPCISD::STRICT_FADDRTZ"; 1736 case PPCISD::STRICT_FCTIDZ: 1737 return "PPCISD::STRICT_FCTIDZ"; 1738 case PPCISD::STRICT_FCTIWZ: 1739 return "PPCISD::STRICT_FCTIWZ"; 1740 case PPCISD::STRICT_FCTIDUZ: 1741 return "PPCISD::STRICT_FCTIDUZ"; 1742 case PPCISD::STRICT_FCTIWUZ: 1743 return "PPCISD::STRICT_FCTIWUZ"; 1744 case PPCISD::STRICT_FCFID: 1745 return "PPCISD::STRICT_FCFID"; 1746 case PPCISD::STRICT_FCFIDU: 1747 return "PPCISD::STRICT_FCFIDU"; 1748 case PPCISD::STRICT_FCFIDS: 1749 return "PPCISD::STRICT_FCFIDS"; 1750 case PPCISD::STRICT_FCFIDUS: 1751 return "PPCISD::STRICT_FCFIDUS"; 1752 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1753 } 1754 return nullptr; 1755 } 1756 1757 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1758 EVT VT) const { 1759 if (!VT.isVector()) 1760 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1761 1762 return VT.changeVectorElementTypeToInteger(); 1763 } 1764 1765 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1766 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1767 return true; 1768 } 1769 1770 //===----------------------------------------------------------------------===// 1771 // Node matching predicates, for use by the tblgen matching code. 1772 //===----------------------------------------------------------------------===// 1773 1774 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1775 static bool isFloatingPointZero(SDValue Op) { 1776 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1777 return CFP->getValueAPF().isZero(); 1778 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1779 // Maybe this has already been legalized into the constant pool? 1780 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1781 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1782 return CFP->getValueAPF().isZero(); 1783 } 1784 return false; 1785 } 1786 1787 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1788 /// true if Op is undef or if it matches the specified value. 1789 static bool isConstantOrUndef(int Op, int Val) { 1790 return Op < 0 || Op == Val; 1791 } 1792 1793 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1794 /// VPKUHUM instruction. 1795 /// The ShuffleKind distinguishes between big-endian operations with 1796 /// two different inputs (0), either-endian operations with two identical 1797 /// inputs (1), and little-endian operations with two different inputs (2). 1798 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1799 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1800 SelectionDAG &DAG) { 1801 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1802 if (ShuffleKind == 0) { 1803 if (IsLE) 1804 return false; 1805 for (unsigned i = 0; i != 16; ++i) 1806 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1807 return false; 1808 } else if (ShuffleKind == 2) { 1809 if (!IsLE) 1810 return false; 1811 for (unsigned i = 0; i != 16; ++i) 1812 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1813 return false; 1814 } else if (ShuffleKind == 1) { 1815 unsigned j = IsLE ? 0 : 1; 1816 for (unsigned i = 0; i != 8; ++i) 1817 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1818 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1819 return false; 1820 } 1821 return true; 1822 } 1823 1824 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1825 /// VPKUWUM instruction. 1826 /// The ShuffleKind distinguishes between big-endian operations with 1827 /// two different inputs (0), either-endian operations with two identical 1828 /// inputs (1), and little-endian operations with two different inputs (2). 1829 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1830 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1831 SelectionDAG &DAG) { 1832 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1833 if (ShuffleKind == 0) { 1834 if (IsLE) 1835 return false; 1836 for (unsigned i = 0; i != 16; i += 2) 1837 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1838 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1839 return false; 1840 } else if (ShuffleKind == 2) { 1841 if (!IsLE) 1842 return false; 1843 for (unsigned i = 0; i != 16; i += 2) 1844 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1845 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1846 return false; 1847 } else if (ShuffleKind == 1) { 1848 unsigned j = IsLE ? 0 : 2; 1849 for (unsigned i = 0; i != 8; i += 2) 1850 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1851 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1852 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1853 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1854 return false; 1855 } 1856 return true; 1857 } 1858 1859 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1860 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1861 /// current subtarget. 1862 /// 1863 /// The ShuffleKind distinguishes between big-endian operations with 1864 /// two different inputs (0), either-endian operations with two identical 1865 /// inputs (1), and little-endian operations with two different inputs (2). 1866 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1867 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1868 SelectionDAG &DAG) { 1869 const PPCSubtarget& Subtarget = 1870 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1871 if (!Subtarget.hasP8Vector()) 1872 return false; 1873 1874 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1875 if (ShuffleKind == 0) { 1876 if (IsLE) 1877 return false; 1878 for (unsigned i = 0; i != 16; i += 4) 1879 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1880 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1881 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1882 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1883 return false; 1884 } else if (ShuffleKind == 2) { 1885 if (!IsLE) 1886 return false; 1887 for (unsigned i = 0; i != 16; i += 4) 1888 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1889 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1890 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1891 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1892 return false; 1893 } else if (ShuffleKind == 1) { 1894 unsigned j = IsLE ? 0 : 4; 1895 for (unsigned i = 0; i != 8; i += 4) 1896 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1897 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1898 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1899 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1900 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1901 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1902 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1903 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1904 return false; 1905 } 1906 return true; 1907 } 1908 1909 /// isVMerge - Common function, used to match vmrg* shuffles. 1910 /// 1911 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1912 unsigned LHSStart, unsigned RHSStart) { 1913 if (N->getValueType(0) != MVT::v16i8) 1914 return false; 1915 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1916 "Unsupported merge size!"); 1917 1918 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1919 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1920 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1921 LHSStart+j+i*UnitSize) || 1922 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1923 RHSStart+j+i*UnitSize)) 1924 return false; 1925 } 1926 return true; 1927 } 1928 1929 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1930 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1931 /// The ShuffleKind distinguishes between big-endian merges with two 1932 /// different inputs (0), either-endian merges with two identical inputs (1), 1933 /// and little-endian merges with two different inputs (2). For the latter, 1934 /// the input operands are swapped (see PPCInstrAltivec.td). 1935 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1936 unsigned ShuffleKind, SelectionDAG &DAG) { 1937 if (DAG.getDataLayout().isLittleEndian()) { 1938 if (ShuffleKind == 1) // unary 1939 return isVMerge(N, UnitSize, 0, 0); 1940 else if (ShuffleKind == 2) // swapped 1941 return isVMerge(N, UnitSize, 0, 16); 1942 else 1943 return false; 1944 } else { 1945 if (ShuffleKind == 1) // unary 1946 return isVMerge(N, UnitSize, 8, 8); 1947 else if (ShuffleKind == 0) // normal 1948 return isVMerge(N, UnitSize, 8, 24); 1949 else 1950 return false; 1951 } 1952 } 1953 1954 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1955 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1956 /// The ShuffleKind distinguishes between big-endian merges with two 1957 /// different inputs (0), either-endian merges with two identical inputs (1), 1958 /// and little-endian merges with two different inputs (2). For the latter, 1959 /// the input operands are swapped (see PPCInstrAltivec.td). 1960 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1961 unsigned ShuffleKind, SelectionDAG &DAG) { 1962 if (DAG.getDataLayout().isLittleEndian()) { 1963 if (ShuffleKind == 1) // unary 1964 return isVMerge(N, UnitSize, 8, 8); 1965 else if (ShuffleKind == 2) // swapped 1966 return isVMerge(N, UnitSize, 8, 24); 1967 else 1968 return false; 1969 } else { 1970 if (ShuffleKind == 1) // unary 1971 return isVMerge(N, UnitSize, 0, 0); 1972 else if (ShuffleKind == 0) // normal 1973 return isVMerge(N, UnitSize, 0, 16); 1974 else 1975 return false; 1976 } 1977 } 1978 1979 /** 1980 * Common function used to match vmrgew and vmrgow shuffles 1981 * 1982 * The indexOffset determines whether to look for even or odd words in 1983 * the shuffle mask. This is based on the of the endianness of the target 1984 * machine. 1985 * - Little Endian: 1986 * - Use offset of 0 to check for odd elements 1987 * - Use offset of 4 to check for even elements 1988 * - Big Endian: 1989 * - Use offset of 0 to check for even elements 1990 * - Use offset of 4 to check for odd elements 1991 * A detailed description of the vector element ordering for little endian and 1992 * big endian can be found at 1993 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1994 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1995 * compiler differences mean to you 1996 * 1997 * The mask to the shuffle vector instruction specifies the indices of the 1998 * elements from the two input vectors to place in the result. The elements are 1999 * numbered in array-access order, starting with the first vector. These vectors 2000 * are always of type v16i8, thus each vector will contain 16 elements of size 2001 * 8. More info on the shuffle vector can be found in the 2002 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2003 * Language Reference. 2004 * 2005 * The RHSStartValue indicates whether the same input vectors are used (unary) 2006 * or two different input vectors are used, based on the following: 2007 * - If the instruction uses the same vector for both inputs, the range of the 2008 * indices will be 0 to 15. In this case, the RHSStart value passed should 2009 * be 0. 2010 * - If the instruction has two different vectors then the range of the 2011 * indices will be 0 to 31. In this case, the RHSStart value passed should 2012 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2013 * to 31 specify elements in the second vector). 2014 * 2015 * \param[in] N The shuffle vector SD Node to analyze 2016 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2017 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2018 * vector to the shuffle_vector instruction 2019 * \return true iff this shuffle vector represents an even or odd word merge 2020 */ 2021 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2022 unsigned RHSStartValue) { 2023 if (N->getValueType(0) != MVT::v16i8) 2024 return false; 2025 2026 for (unsigned i = 0; i < 2; ++i) 2027 for (unsigned j = 0; j < 4; ++j) 2028 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2029 i*RHSStartValue+j+IndexOffset) || 2030 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2031 i*RHSStartValue+j+IndexOffset+8)) 2032 return false; 2033 return true; 2034 } 2035 2036 /** 2037 * Determine if the specified shuffle mask is suitable for the vmrgew or 2038 * vmrgow instructions. 2039 * 2040 * \param[in] N The shuffle vector SD Node to analyze 2041 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2042 * \param[in] ShuffleKind Identify the type of merge: 2043 * - 0 = big-endian merge with two different inputs; 2044 * - 1 = either-endian merge with two identical inputs; 2045 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2046 * little-endian merges). 2047 * \param[in] DAG The current SelectionDAG 2048 * \return true iff this shuffle mask 2049 */ 2050 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2051 unsigned ShuffleKind, SelectionDAG &DAG) { 2052 if (DAG.getDataLayout().isLittleEndian()) { 2053 unsigned indexOffset = CheckEven ? 4 : 0; 2054 if (ShuffleKind == 1) // Unary 2055 return isVMerge(N, indexOffset, 0); 2056 else if (ShuffleKind == 2) // swapped 2057 return isVMerge(N, indexOffset, 16); 2058 else 2059 return false; 2060 } 2061 else { 2062 unsigned indexOffset = CheckEven ? 0 : 4; 2063 if (ShuffleKind == 1) // Unary 2064 return isVMerge(N, indexOffset, 0); 2065 else if (ShuffleKind == 0) // Normal 2066 return isVMerge(N, indexOffset, 16); 2067 else 2068 return false; 2069 } 2070 return false; 2071 } 2072 2073 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2074 /// amount, otherwise return -1. 2075 /// The ShuffleKind distinguishes between big-endian operations with two 2076 /// different inputs (0), either-endian operations with two identical inputs 2077 /// (1), and little-endian operations with two different inputs (2). For the 2078 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2079 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2080 SelectionDAG &DAG) { 2081 if (N->getValueType(0) != MVT::v16i8) 2082 return -1; 2083 2084 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2085 2086 // Find the first non-undef value in the shuffle mask. 2087 unsigned i; 2088 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2089 /*search*/; 2090 2091 if (i == 16) return -1; // all undef. 2092 2093 // Otherwise, check to see if the rest of the elements are consecutively 2094 // numbered from this value. 2095 unsigned ShiftAmt = SVOp->getMaskElt(i); 2096 if (ShiftAmt < i) return -1; 2097 2098 ShiftAmt -= i; 2099 bool isLE = DAG.getDataLayout().isLittleEndian(); 2100 2101 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2102 // Check the rest of the elements to see if they are consecutive. 2103 for (++i; i != 16; ++i) 2104 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2105 return -1; 2106 } else if (ShuffleKind == 1) { 2107 // Check the rest of the elements to see if they are consecutive. 2108 for (++i; i != 16; ++i) 2109 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2110 return -1; 2111 } else 2112 return -1; 2113 2114 if (isLE) 2115 ShiftAmt = 16 - ShiftAmt; 2116 2117 return ShiftAmt; 2118 } 2119 2120 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2121 /// specifies a splat of a single element that is suitable for input to 2122 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2123 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2124 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2125 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2126 2127 // The consecutive indices need to specify an element, not part of two 2128 // different elements. So abandon ship early if this isn't the case. 2129 if (N->getMaskElt(0) % EltSize != 0) 2130 return false; 2131 2132 // This is a splat operation if each element of the permute is the same, and 2133 // if the value doesn't reference the second vector. 2134 unsigned ElementBase = N->getMaskElt(0); 2135 2136 // FIXME: Handle UNDEF elements too! 2137 if (ElementBase >= 16) 2138 return false; 2139 2140 // Check that the indices are consecutive, in the case of a multi-byte element 2141 // splatted with a v16i8 mask. 2142 for (unsigned i = 1; i != EltSize; ++i) 2143 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2144 return false; 2145 2146 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2147 if (N->getMaskElt(i) < 0) continue; 2148 for (unsigned j = 0; j != EltSize; ++j) 2149 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2150 return false; 2151 } 2152 return true; 2153 } 2154 2155 /// Check that the mask is shuffling N byte elements. Within each N byte 2156 /// element of the mask, the indices could be either in increasing or 2157 /// decreasing order as long as they are consecutive. 2158 /// \param[in] N the shuffle vector SD Node to analyze 2159 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2160 /// Word/DoubleWord/QuadWord). 2161 /// \param[in] StepLen the delta indices number among the N byte element, if 2162 /// the mask is in increasing/decreasing order then it is 1/-1. 2163 /// \return true iff the mask is shuffling N byte elements. 2164 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2165 int StepLen) { 2166 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2167 "Unexpected element width."); 2168 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2169 2170 unsigned NumOfElem = 16 / Width; 2171 unsigned MaskVal[16]; // Width is never greater than 16 2172 for (unsigned i = 0; i < NumOfElem; ++i) { 2173 MaskVal[0] = N->getMaskElt(i * Width); 2174 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2175 return false; 2176 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2177 return false; 2178 } 2179 2180 for (unsigned int j = 1; j < Width; ++j) { 2181 MaskVal[j] = N->getMaskElt(i * Width + j); 2182 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2183 return false; 2184 } 2185 } 2186 } 2187 2188 return true; 2189 } 2190 2191 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2192 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2193 if (!isNByteElemShuffleMask(N, 4, 1)) 2194 return false; 2195 2196 // Now we look at mask elements 0,4,8,12 2197 unsigned M0 = N->getMaskElt(0) / 4; 2198 unsigned M1 = N->getMaskElt(4) / 4; 2199 unsigned M2 = N->getMaskElt(8) / 4; 2200 unsigned M3 = N->getMaskElt(12) / 4; 2201 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2202 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2203 2204 // Below, let H and L be arbitrary elements of the shuffle mask 2205 // where H is in the range [4,7] and L is in the range [0,3]. 2206 // H, 1, 2, 3 or L, 5, 6, 7 2207 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2208 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2209 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2210 InsertAtByte = IsLE ? 12 : 0; 2211 Swap = M0 < 4; 2212 return true; 2213 } 2214 // 0, H, 2, 3 or 4, L, 6, 7 2215 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2216 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2217 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2218 InsertAtByte = IsLE ? 8 : 4; 2219 Swap = M1 < 4; 2220 return true; 2221 } 2222 // 0, 1, H, 3 or 4, 5, L, 7 2223 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2224 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2225 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2226 InsertAtByte = IsLE ? 4 : 8; 2227 Swap = M2 < 4; 2228 return true; 2229 } 2230 // 0, 1, 2, H or 4, 5, 6, L 2231 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2232 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2233 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2234 InsertAtByte = IsLE ? 0 : 12; 2235 Swap = M3 < 4; 2236 return true; 2237 } 2238 2239 // If both vector operands for the shuffle are the same vector, the mask will 2240 // contain only elements from the first one and the second one will be undef. 2241 if (N->getOperand(1).isUndef()) { 2242 ShiftElts = 0; 2243 Swap = true; 2244 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2245 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2246 InsertAtByte = IsLE ? 12 : 0; 2247 return true; 2248 } 2249 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2250 InsertAtByte = IsLE ? 8 : 4; 2251 return true; 2252 } 2253 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2254 InsertAtByte = IsLE ? 4 : 8; 2255 return true; 2256 } 2257 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2258 InsertAtByte = IsLE ? 0 : 12; 2259 return true; 2260 } 2261 } 2262 2263 return false; 2264 } 2265 2266 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2267 bool &Swap, bool IsLE) { 2268 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2269 // Ensure each byte index of the word is consecutive. 2270 if (!isNByteElemShuffleMask(N, 4, 1)) 2271 return false; 2272 2273 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2274 unsigned M0 = N->getMaskElt(0) / 4; 2275 unsigned M1 = N->getMaskElt(4) / 4; 2276 unsigned M2 = N->getMaskElt(8) / 4; 2277 unsigned M3 = N->getMaskElt(12) / 4; 2278 2279 // If both vector operands for the shuffle are the same vector, the mask will 2280 // contain only elements from the first one and the second one will be undef. 2281 if (N->getOperand(1).isUndef()) { 2282 assert(M0 < 4 && "Indexing into an undef vector?"); 2283 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2284 return false; 2285 2286 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2287 Swap = false; 2288 return true; 2289 } 2290 2291 // Ensure each word index of the ShuffleVector Mask is consecutive. 2292 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2293 return false; 2294 2295 if (IsLE) { 2296 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2297 // Input vectors don't need to be swapped if the leading element 2298 // of the result is one of the 3 left elements of the second vector 2299 // (or if there is no shift to be done at all). 2300 Swap = false; 2301 ShiftElts = (8 - M0) % 8; 2302 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2303 // Input vectors need to be swapped if the leading element 2304 // of the result is one of the 3 left elements of the first vector 2305 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2306 Swap = true; 2307 ShiftElts = (4 - M0) % 4; 2308 } 2309 2310 return true; 2311 } else { // BE 2312 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2313 // Input vectors don't need to be swapped if the leading element 2314 // of the result is one of the 4 elements of the first vector. 2315 Swap = false; 2316 ShiftElts = M0; 2317 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2318 // Input vectors need to be swapped if the leading element 2319 // of the result is one of the 4 elements of the right vector. 2320 Swap = true; 2321 ShiftElts = M0 - 4; 2322 } 2323 2324 return true; 2325 } 2326 } 2327 2328 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2329 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2330 2331 if (!isNByteElemShuffleMask(N, Width, -1)) 2332 return false; 2333 2334 for (int i = 0; i < 16; i += Width) 2335 if (N->getMaskElt(i) != i + Width - 1) 2336 return false; 2337 2338 return true; 2339 } 2340 2341 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2342 return isXXBRShuffleMaskHelper(N, 2); 2343 } 2344 2345 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2346 return isXXBRShuffleMaskHelper(N, 4); 2347 } 2348 2349 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2350 return isXXBRShuffleMaskHelper(N, 8); 2351 } 2352 2353 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2354 return isXXBRShuffleMaskHelper(N, 16); 2355 } 2356 2357 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2358 /// if the inputs to the instruction should be swapped and set \p DM to the 2359 /// value for the immediate. 2360 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2361 /// AND element 0 of the result comes from the first input (LE) or second input 2362 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2363 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2364 /// mask. 2365 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2366 bool &Swap, bool IsLE) { 2367 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2368 2369 // Ensure each byte index of the double word is consecutive. 2370 if (!isNByteElemShuffleMask(N, 8, 1)) 2371 return false; 2372 2373 unsigned M0 = N->getMaskElt(0) / 8; 2374 unsigned M1 = N->getMaskElt(8) / 8; 2375 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2376 2377 // If both vector operands for the shuffle are the same vector, the mask will 2378 // contain only elements from the first one and the second one will be undef. 2379 if (N->getOperand(1).isUndef()) { 2380 if ((M0 | M1) < 2) { 2381 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2382 Swap = false; 2383 return true; 2384 } else 2385 return false; 2386 } 2387 2388 if (IsLE) { 2389 if (M0 > 1 && M1 < 2) { 2390 Swap = false; 2391 } else if (M0 < 2 && M1 > 1) { 2392 M0 = (M0 + 2) % 4; 2393 M1 = (M1 + 2) % 4; 2394 Swap = true; 2395 } else 2396 return false; 2397 2398 // Note: if control flow comes here that means Swap is already set above 2399 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2400 return true; 2401 } else { // BE 2402 if (M0 < 2 && M1 > 1) { 2403 Swap = false; 2404 } else if (M0 > 1 && M1 < 2) { 2405 M0 = (M0 + 2) % 4; 2406 M1 = (M1 + 2) % 4; 2407 Swap = true; 2408 } else 2409 return false; 2410 2411 // Note: if control flow comes here that means Swap is already set above 2412 DM = (M0 << 1) + (M1 & 1); 2413 return true; 2414 } 2415 } 2416 2417 2418 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2419 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2420 /// elements are counted from the left of the vector register). 2421 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2422 SelectionDAG &DAG) { 2423 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2424 assert(isSplatShuffleMask(SVOp, EltSize)); 2425 if (DAG.getDataLayout().isLittleEndian()) 2426 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2427 else 2428 return SVOp->getMaskElt(0) / EltSize; 2429 } 2430 2431 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2432 /// by using a vspltis[bhw] instruction of the specified element size, return 2433 /// the constant being splatted. The ByteSize field indicates the number of 2434 /// bytes of each element [124] -> [bhw]. 2435 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2436 SDValue OpVal; 2437 2438 // If ByteSize of the splat is bigger than the element size of the 2439 // build_vector, then we have a case where we are checking for a splat where 2440 // multiple elements of the buildvector are folded together into a single 2441 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2442 unsigned EltSize = 16/N->getNumOperands(); 2443 if (EltSize < ByteSize) { 2444 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2445 SDValue UniquedVals[4]; 2446 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2447 2448 // See if all of the elements in the buildvector agree across. 2449 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2450 if (N->getOperand(i).isUndef()) continue; 2451 // If the element isn't a constant, bail fully out. 2452 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2453 2454 if (!UniquedVals[i&(Multiple-1)].getNode()) 2455 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2456 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2457 return SDValue(); // no match. 2458 } 2459 2460 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2461 // either constant or undef values that are identical for each chunk. See 2462 // if these chunks can form into a larger vspltis*. 2463 2464 // Check to see if all of the leading entries are either 0 or -1. If 2465 // neither, then this won't fit into the immediate field. 2466 bool LeadingZero = true; 2467 bool LeadingOnes = true; 2468 for (unsigned i = 0; i != Multiple-1; ++i) { 2469 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2470 2471 LeadingZero &= isNullConstant(UniquedVals[i]); 2472 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2473 } 2474 // Finally, check the least significant entry. 2475 if (LeadingZero) { 2476 if (!UniquedVals[Multiple-1].getNode()) 2477 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2478 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2479 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2480 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2481 } 2482 if (LeadingOnes) { 2483 if (!UniquedVals[Multiple-1].getNode()) 2484 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2485 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2486 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2487 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2488 } 2489 2490 return SDValue(); 2491 } 2492 2493 // Check to see if this buildvec has a single non-undef value in its elements. 2494 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2495 if (N->getOperand(i).isUndef()) continue; 2496 if (!OpVal.getNode()) 2497 OpVal = N->getOperand(i); 2498 else if (OpVal != N->getOperand(i)) 2499 return SDValue(); 2500 } 2501 2502 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2503 2504 unsigned ValSizeInBytes = EltSize; 2505 uint64_t Value = 0; 2506 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2507 Value = CN->getZExtValue(); 2508 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2509 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2510 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2511 } 2512 2513 // If the splat value is larger than the element value, then we can never do 2514 // this splat. The only case that we could fit the replicated bits into our 2515 // immediate field for would be zero, and we prefer to use vxor for it. 2516 if (ValSizeInBytes < ByteSize) return SDValue(); 2517 2518 // If the element value is larger than the splat value, check if it consists 2519 // of a repeated bit pattern of size ByteSize. 2520 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2521 return SDValue(); 2522 2523 // Properly sign extend the value. 2524 int MaskVal = SignExtend32(Value, ByteSize * 8); 2525 2526 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2527 if (MaskVal == 0) return SDValue(); 2528 2529 // Finally, if this value fits in a 5 bit sext field, return it 2530 if (SignExtend32<5>(MaskVal) == MaskVal) 2531 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2532 return SDValue(); 2533 } 2534 2535 //===----------------------------------------------------------------------===// 2536 // Addressing Mode Selection 2537 //===----------------------------------------------------------------------===// 2538 2539 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2540 /// or 64-bit immediate, and if the value can be accurately represented as a 2541 /// sign extension from a 16-bit value. If so, this returns true and the 2542 /// immediate. 2543 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2544 if (!isa<ConstantSDNode>(N)) 2545 return false; 2546 2547 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2548 if (N->getValueType(0) == MVT::i32) 2549 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2550 else 2551 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2552 } 2553 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2554 return isIntS16Immediate(Op.getNode(), Imm); 2555 } 2556 2557 /// Used when computing address flags for selecting loads and stores. 2558 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2559 /// An OR of two provably disjoint values is equivalent to an ADD. 2560 /// Most PPC load/store instructions compute the effective address as a sum, 2561 /// so doing this conversion is useful. 2562 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2563 if (N.getOpcode() != ISD::OR) 2564 return false; 2565 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2566 if (!LHSKnown.Zero.getBoolValue()) 2567 return false; 2568 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2569 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2570 } 2571 2572 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2573 /// be represented as an indexed [r+r] operation. 2574 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2575 SDValue &Index, 2576 SelectionDAG &DAG) const { 2577 for (SDNode *U : N->uses()) { 2578 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2579 if (Memop->getMemoryVT() == MVT::f64) { 2580 Base = N.getOperand(0); 2581 Index = N.getOperand(1); 2582 return true; 2583 } 2584 } 2585 } 2586 return false; 2587 } 2588 2589 /// isIntS34Immediate - This method tests if value of node given can be 2590 /// accurately represented as a sign extension from a 34-bit value. If so, 2591 /// this returns true and the immediate. 2592 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2593 if (!isa<ConstantSDNode>(N)) 2594 return false; 2595 2596 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2597 return isInt<34>(Imm); 2598 } 2599 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2600 return isIntS34Immediate(Op.getNode(), Imm); 2601 } 2602 2603 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2604 /// can be represented as an indexed [r+r] operation. Returns false if it 2605 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2606 /// non-zero and N can be represented by a base register plus a signed 16-bit 2607 /// displacement, make a more precise judgement by checking (displacement % \p 2608 /// EncodingAlignment). 2609 bool PPCTargetLowering::SelectAddressRegReg( 2610 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2611 MaybeAlign EncodingAlignment) const { 2612 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2613 // a [pc+imm]. 2614 if (SelectAddressPCRel(N, Base)) 2615 return false; 2616 2617 int16_t Imm = 0; 2618 if (N.getOpcode() == ISD::ADD) { 2619 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2620 // SPE load/store can only handle 8-bit offsets. 2621 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2622 return true; 2623 if (isIntS16Immediate(N.getOperand(1), Imm) && 2624 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2625 return false; // r+i 2626 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2627 return false; // r+i 2628 2629 Base = N.getOperand(0); 2630 Index = N.getOperand(1); 2631 return true; 2632 } else if (N.getOpcode() == ISD::OR) { 2633 if (isIntS16Immediate(N.getOperand(1), Imm) && 2634 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2635 return false; // r+i can fold it if we can. 2636 2637 // If this is an or of disjoint bitfields, we can codegen this as an add 2638 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2639 // disjoint. 2640 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2641 2642 if (LHSKnown.Zero.getBoolValue()) { 2643 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2644 // If all of the bits are known zero on the LHS or RHS, the add won't 2645 // carry. 2646 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2647 Base = N.getOperand(0); 2648 Index = N.getOperand(1); 2649 return true; 2650 } 2651 } 2652 } 2653 2654 return false; 2655 } 2656 2657 // If we happen to be doing an i64 load or store into a stack slot that has 2658 // less than a 4-byte alignment, then the frame-index elimination may need to 2659 // use an indexed load or store instruction (because the offset may not be a 2660 // multiple of 4). The extra register needed to hold the offset comes from the 2661 // register scavenger, and it is possible that the scavenger will need to use 2662 // an emergency spill slot. As a result, we need to make sure that a spill slot 2663 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2664 // stack slot. 2665 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2666 // FIXME: This does not handle the LWA case. 2667 if (VT != MVT::i64) 2668 return; 2669 2670 // NOTE: We'll exclude negative FIs here, which come from argument 2671 // lowering, because there are no known test cases triggering this problem 2672 // using packed structures (or similar). We can remove this exclusion if 2673 // we find such a test case. The reason why this is so test-case driven is 2674 // because this entire 'fixup' is only to prevent crashes (from the 2675 // register scavenger) on not-really-valid inputs. For example, if we have: 2676 // %a = alloca i1 2677 // %b = bitcast i1* %a to i64* 2678 // store i64* a, i64 b 2679 // then the store should really be marked as 'align 1', but is not. If it 2680 // were marked as 'align 1' then the indexed form would have been 2681 // instruction-selected initially, and the problem this 'fixup' is preventing 2682 // won't happen regardless. 2683 if (FrameIdx < 0) 2684 return; 2685 2686 MachineFunction &MF = DAG.getMachineFunction(); 2687 MachineFrameInfo &MFI = MF.getFrameInfo(); 2688 2689 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2690 return; 2691 2692 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2693 FuncInfo->setHasNonRISpills(); 2694 } 2695 2696 /// Returns true if the address N can be represented by a base register plus 2697 /// a signed 16-bit displacement [r+imm], and if it is not better 2698 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2699 /// displacements that are multiples of that value. 2700 bool PPCTargetLowering::SelectAddressRegImm( 2701 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2702 MaybeAlign EncodingAlignment) const { 2703 // FIXME dl should come from parent load or store, not from address 2704 SDLoc dl(N); 2705 2706 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2707 // a [pc+imm]. 2708 if (SelectAddressPCRel(N, Base)) 2709 return false; 2710 2711 // If this can be more profitably realized as r+r, fail. 2712 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2713 return false; 2714 2715 if (N.getOpcode() == ISD::ADD) { 2716 int16_t imm = 0; 2717 if (isIntS16Immediate(N.getOperand(1), imm) && 2718 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2719 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2720 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2721 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2722 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2723 } else { 2724 Base = N.getOperand(0); 2725 } 2726 return true; // [r+i] 2727 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2728 // Match LOAD (ADD (X, Lo(G))). 2729 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2730 && "Cannot handle constant offsets yet!"); 2731 Disp = N.getOperand(1).getOperand(0); // The global address. 2732 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2733 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2734 Disp.getOpcode() == ISD::TargetConstantPool || 2735 Disp.getOpcode() == ISD::TargetJumpTable); 2736 Base = N.getOperand(0); 2737 return true; // [&g+r] 2738 } 2739 } else if (N.getOpcode() == ISD::OR) { 2740 int16_t imm = 0; 2741 if (isIntS16Immediate(N.getOperand(1), imm) && 2742 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2743 // If this is an or of disjoint bitfields, we can codegen this as an add 2744 // (for better address arithmetic) if the LHS and RHS of the OR are 2745 // provably disjoint. 2746 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2747 2748 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2749 // If all of the bits are known zero on the LHS or RHS, the add won't 2750 // carry. 2751 if (FrameIndexSDNode *FI = 2752 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2753 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2754 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2755 } else { 2756 Base = N.getOperand(0); 2757 } 2758 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2759 return true; 2760 } 2761 } 2762 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2763 // Loading from a constant address. 2764 2765 // If this address fits entirely in a 16-bit sext immediate field, codegen 2766 // this as "d, 0" 2767 int16_t Imm; 2768 if (isIntS16Immediate(CN, Imm) && 2769 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2770 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2771 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2772 CN->getValueType(0)); 2773 return true; 2774 } 2775 2776 // Handle 32-bit sext immediates with LIS + addr mode. 2777 if ((CN->getValueType(0) == MVT::i32 || 2778 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2779 (!EncodingAlignment || 2780 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2781 int Addr = (int)CN->getZExtValue(); 2782 2783 // Otherwise, break this down into an LIS + disp. 2784 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2785 2786 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2787 MVT::i32); 2788 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2789 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2790 return true; 2791 } 2792 } 2793 2794 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2795 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2796 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2797 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2798 } else 2799 Base = N; 2800 return true; // [r+0] 2801 } 2802 2803 /// Similar to the 16-bit case but for instructions that take a 34-bit 2804 /// displacement field (prefixed loads/stores). 2805 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2806 SDValue &Base, 2807 SelectionDAG &DAG) const { 2808 // Only on 64-bit targets. 2809 if (N.getValueType() != MVT::i64) 2810 return false; 2811 2812 SDLoc dl(N); 2813 int64_t Imm = 0; 2814 2815 if (N.getOpcode() == ISD::ADD) { 2816 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2817 return false; 2818 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2819 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2820 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2821 else 2822 Base = N.getOperand(0); 2823 return true; 2824 } 2825 2826 if (N.getOpcode() == ISD::OR) { 2827 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2828 return false; 2829 // If this is an or of disjoint bitfields, we can codegen this as an add 2830 // (for better address arithmetic) if the LHS and RHS of the OR are 2831 // provably disjoint. 2832 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2833 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2834 return false; 2835 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2836 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2837 else 2838 Base = N.getOperand(0); 2839 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2840 return true; 2841 } 2842 2843 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2844 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2845 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2846 return true; 2847 } 2848 2849 return false; 2850 } 2851 2852 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2853 /// represented as an indexed [r+r] operation. 2854 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2855 SDValue &Index, 2856 SelectionDAG &DAG) const { 2857 // Check to see if we can easily represent this as an [r+r] address. This 2858 // will fail if it thinks that the address is more profitably represented as 2859 // reg+imm, e.g. where imm = 0. 2860 if (SelectAddressRegReg(N, Base, Index, DAG)) 2861 return true; 2862 2863 // If the address is the result of an add, we will utilize the fact that the 2864 // address calculation includes an implicit add. However, we can reduce 2865 // register pressure if we do not materialize a constant just for use as the 2866 // index register. We only get rid of the add if it is not an add of a 2867 // value and a 16-bit signed constant and both have a single use. 2868 int16_t imm = 0; 2869 if (N.getOpcode() == ISD::ADD && 2870 (!isIntS16Immediate(N.getOperand(1), imm) || 2871 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2872 Base = N.getOperand(0); 2873 Index = N.getOperand(1); 2874 return true; 2875 } 2876 2877 // Otherwise, do it the hard way, using R0 as the base register. 2878 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2879 N.getValueType()); 2880 Index = N; 2881 return true; 2882 } 2883 2884 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2885 Ty *PCRelCand = dyn_cast<Ty>(N); 2886 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2887 } 2888 2889 /// Returns true if this address is a PC Relative address. 2890 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2891 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2892 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2893 // This is a materialize PC Relative node. Always select this as PC Relative. 2894 Base = N; 2895 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2896 return true; 2897 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2898 isValidPCRelNode<GlobalAddressSDNode>(N) || 2899 isValidPCRelNode<JumpTableSDNode>(N) || 2900 isValidPCRelNode<BlockAddressSDNode>(N)) 2901 return true; 2902 return false; 2903 } 2904 2905 /// Returns true if we should use a direct load into vector instruction 2906 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2907 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2908 2909 // If there are any other uses other than scalar to vector, then we should 2910 // keep it as a scalar load -> direct move pattern to prevent multiple 2911 // loads. 2912 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2913 if (!LD) 2914 return false; 2915 2916 EVT MemVT = LD->getMemoryVT(); 2917 if (!MemVT.isSimple()) 2918 return false; 2919 switch(MemVT.getSimpleVT().SimpleTy) { 2920 case MVT::i64: 2921 break; 2922 case MVT::i32: 2923 if (!ST.hasP8Vector()) 2924 return false; 2925 break; 2926 case MVT::i16: 2927 case MVT::i8: 2928 if (!ST.hasP9Vector()) 2929 return false; 2930 break; 2931 default: 2932 return false; 2933 } 2934 2935 SDValue LoadedVal(N, 0); 2936 if (!LoadedVal.hasOneUse()) 2937 return false; 2938 2939 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2940 UI != UE; ++UI) 2941 if (UI.getUse().get().getResNo() == 0 && 2942 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2943 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2944 return false; 2945 2946 return true; 2947 } 2948 2949 /// getPreIndexedAddressParts - returns true by value, base pointer and 2950 /// offset pointer and addressing mode by reference if the node's address 2951 /// can be legally represented as pre-indexed load / store address. 2952 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2953 SDValue &Offset, 2954 ISD::MemIndexedMode &AM, 2955 SelectionDAG &DAG) const { 2956 if (DisablePPCPreinc) return false; 2957 2958 bool isLoad = true; 2959 SDValue Ptr; 2960 EVT VT; 2961 unsigned Alignment; 2962 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2963 Ptr = LD->getBasePtr(); 2964 VT = LD->getMemoryVT(); 2965 Alignment = LD->getAlignment(); 2966 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2967 Ptr = ST->getBasePtr(); 2968 VT = ST->getMemoryVT(); 2969 Alignment = ST->getAlignment(); 2970 isLoad = false; 2971 } else 2972 return false; 2973 2974 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2975 // instructions because we can fold these into a more efficient instruction 2976 // instead, (such as LXSD). 2977 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2978 return false; 2979 } 2980 2981 // PowerPC doesn't have preinc load/store instructions for vectors 2982 if (VT.isVector()) 2983 return false; 2984 2985 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2986 // Common code will reject creating a pre-inc form if the base pointer 2987 // is a frame index, or if N is a store and the base pointer is either 2988 // the same as or a predecessor of the value being stored. Check for 2989 // those situations here, and try with swapped Base/Offset instead. 2990 bool Swap = false; 2991 2992 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2993 Swap = true; 2994 else if (!isLoad) { 2995 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2996 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2997 Swap = true; 2998 } 2999 3000 if (Swap) 3001 std::swap(Base, Offset); 3002 3003 AM = ISD::PRE_INC; 3004 return true; 3005 } 3006 3007 // LDU/STU can only handle immediates that are a multiple of 4. 3008 if (VT != MVT::i64) { 3009 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3010 return false; 3011 } else { 3012 // LDU/STU need an address with at least 4-byte alignment. 3013 if (Alignment < 4) 3014 return false; 3015 3016 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3017 return false; 3018 } 3019 3020 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3021 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3022 // sext i32 to i64 when addr mode is r+i. 3023 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3024 LD->getExtensionType() == ISD::SEXTLOAD && 3025 isa<ConstantSDNode>(Offset)) 3026 return false; 3027 } 3028 3029 AM = ISD::PRE_INC; 3030 return true; 3031 } 3032 3033 //===----------------------------------------------------------------------===// 3034 // LowerOperation implementation 3035 //===----------------------------------------------------------------------===// 3036 3037 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3038 /// and LoOpFlags to the target MO flags. 3039 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3040 unsigned &HiOpFlags, unsigned &LoOpFlags, 3041 const GlobalValue *GV = nullptr) { 3042 HiOpFlags = PPCII::MO_HA; 3043 LoOpFlags = PPCII::MO_LO; 3044 3045 // Don't use the pic base if not in PIC relocation model. 3046 if (IsPIC) { 3047 HiOpFlags |= PPCII::MO_PIC_FLAG; 3048 LoOpFlags |= PPCII::MO_PIC_FLAG; 3049 } 3050 } 3051 3052 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3053 SelectionDAG &DAG) { 3054 SDLoc DL(HiPart); 3055 EVT PtrVT = HiPart.getValueType(); 3056 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3057 3058 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3059 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3060 3061 // With PIC, the first instruction is actually "GR+hi(&G)". 3062 if (isPIC) 3063 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3064 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3065 3066 // Generate non-pic code that has direct accesses to the constant pool. 3067 // The address of the global is just (hi(&g)+lo(&g)). 3068 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3069 } 3070 3071 static void setUsesTOCBasePtr(MachineFunction &MF) { 3072 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3073 FuncInfo->setUsesTOCBasePtr(); 3074 } 3075 3076 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3077 setUsesTOCBasePtr(DAG.getMachineFunction()); 3078 } 3079 3080 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3081 SDValue GA) const { 3082 const bool Is64Bit = Subtarget.isPPC64(); 3083 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3084 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3085 : Subtarget.isAIXABI() 3086 ? DAG.getRegister(PPC::R2, VT) 3087 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3088 SDValue Ops[] = { GA, Reg }; 3089 return DAG.getMemIntrinsicNode( 3090 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3091 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3092 MachineMemOperand::MOLoad); 3093 } 3094 3095 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3096 SelectionDAG &DAG) const { 3097 EVT PtrVT = Op.getValueType(); 3098 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3099 const Constant *C = CP->getConstVal(); 3100 3101 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3102 // The actual address of the GlobalValue is stored in the TOC. 3103 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3104 if (Subtarget.isUsingPCRelativeCalls()) { 3105 SDLoc DL(CP); 3106 EVT Ty = getPointerTy(DAG.getDataLayout()); 3107 SDValue ConstPool = DAG.getTargetConstantPool( 3108 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3109 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3110 } 3111 setUsesTOCBasePtr(DAG); 3112 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3113 return getTOCEntry(DAG, SDLoc(CP), GA); 3114 } 3115 3116 unsigned MOHiFlag, MOLoFlag; 3117 bool IsPIC = isPositionIndependent(); 3118 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3119 3120 if (IsPIC && Subtarget.isSVR4ABI()) { 3121 SDValue GA = 3122 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3123 return getTOCEntry(DAG, SDLoc(CP), GA); 3124 } 3125 3126 SDValue CPIHi = 3127 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3128 SDValue CPILo = 3129 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3130 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3131 } 3132 3133 // For 64-bit PowerPC, prefer the more compact relative encodings. 3134 // This trades 32 bits per jump table entry for one or two instructions 3135 // on the jump site. 3136 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3137 if (isJumpTableRelative()) 3138 return MachineJumpTableInfo::EK_LabelDifference32; 3139 3140 return TargetLowering::getJumpTableEncoding(); 3141 } 3142 3143 bool PPCTargetLowering::isJumpTableRelative() const { 3144 if (UseAbsoluteJumpTables) 3145 return false; 3146 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3147 return true; 3148 return TargetLowering::isJumpTableRelative(); 3149 } 3150 3151 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3152 SelectionDAG &DAG) const { 3153 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3154 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3155 3156 switch (getTargetMachine().getCodeModel()) { 3157 case CodeModel::Small: 3158 case CodeModel::Medium: 3159 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3160 default: 3161 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3162 getPointerTy(DAG.getDataLayout())); 3163 } 3164 } 3165 3166 const MCExpr * 3167 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3168 unsigned JTI, 3169 MCContext &Ctx) const { 3170 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3171 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3172 3173 switch (getTargetMachine().getCodeModel()) { 3174 case CodeModel::Small: 3175 case CodeModel::Medium: 3176 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3177 default: 3178 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3179 } 3180 } 3181 3182 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3183 EVT PtrVT = Op.getValueType(); 3184 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3185 3186 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3187 if (Subtarget.isUsingPCRelativeCalls()) { 3188 SDLoc DL(JT); 3189 EVT Ty = getPointerTy(DAG.getDataLayout()); 3190 SDValue GA = 3191 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3192 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3193 return MatAddr; 3194 } 3195 3196 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3197 // The actual address of the GlobalValue is stored in the TOC. 3198 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3199 setUsesTOCBasePtr(DAG); 3200 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3201 return getTOCEntry(DAG, SDLoc(JT), GA); 3202 } 3203 3204 unsigned MOHiFlag, MOLoFlag; 3205 bool IsPIC = isPositionIndependent(); 3206 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3207 3208 if (IsPIC && Subtarget.isSVR4ABI()) { 3209 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3210 PPCII::MO_PIC_FLAG); 3211 return getTOCEntry(DAG, SDLoc(GA), GA); 3212 } 3213 3214 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3215 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3216 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3217 } 3218 3219 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3220 SelectionDAG &DAG) const { 3221 EVT PtrVT = Op.getValueType(); 3222 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3223 const BlockAddress *BA = BASDN->getBlockAddress(); 3224 3225 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3226 if (Subtarget.isUsingPCRelativeCalls()) { 3227 SDLoc DL(BASDN); 3228 EVT Ty = getPointerTy(DAG.getDataLayout()); 3229 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3230 PPCII::MO_PCREL_FLAG); 3231 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3232 return MatAddr; 3233 } 3234 3235 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3236 // The actual BlockAddress is stored in the TOC. 3237 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3238 setUsesTOCBasePtr(DAG); 3239 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3240 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3241 } 3242 3243 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3244 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3245 return getTOCEntry( 3246 DAG, SDLoc(BASDN), 3247 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3248 3249 unsigned MOHiFlag, MOLoFlag; 3250 bool IsPIC = isPositionIndependent(); 3251 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3252 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3253 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3254 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3255 } 3256 3257 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3258 SelectionDAG &DAG) const { 3259 if (Subtarget.isAIXABI()) 3260 return LowerGlobalTLSAddressAIX(Op, DAG); 3261 3262 return LowerGlobalTLSAddressLinux(Op, DAG); 3263 } 3264 3265 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3266 SelectionDAG &DAG) const { 3267 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3268 3269 if (DAG.getTarget().useEmulatedTLS()) 3270 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3271 3272 SDLoc dl(GA); 3273 const GlobalValue *GV = GA->getGlobal(); 3274 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3275 3276 // The general-dynamic model is the only access model supported for now, so 3277 // all the GlobalTLSAddress nodes are lowered with this model. 3278 // We need to generate two TOC entries, one for the variable offset, one for 3279 // the region handle. The global address for the TOC entry of the region 3280 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3281 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3282 SDValue VariableOffsetTGA = 3283 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3284 SDValue RegionHandleTGA = 3285 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3286 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3287 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3288 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3289 RegionHandle); 3290 } 3291 3292 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3293 SelectionDAG &DAG) const { 3294 // FIXME: TLS addresses currently use medium model code sequences, 3295 // which is the most useful form. Eventually support for small and 3296 // large models could be added if users need it, at the cost of 3297 // additional complexity. 3298 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3299 if (DAG.getTarget().useEmulatedTLS()) 3300 return LowerToTLSEmulatedModel(GA, DAG); 3301 3302 SDLoc dl(GA); 3303 const GlobalValue *GV = GA->getGlobal(); 3304 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3305 bool is64bit = Subtarget.isPPC64(); 3306 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3307 PICLevel::Level picLevel = M->getPICLevel(); 3308 3309 const TargetMachine &TM = getTargetMachine(); 3310 TLSModel::Model Model = TM.getTLSModel(GV); 3311 3312 if (Model == TLSModel::LocalExec) { 3313 if (Subtarget.isUsingPCRelativeCalls()) { 3314 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3315 SDValue TGA = DAG.getTargetGlobalAddress( 3316 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3317 SDValue MatAddr = 3318 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3319 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3320 } 3321 3322 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3323 PPCII::MO_TPREL_HA); 3324 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3325 PPCII::MO_TPREL_LO); 3326 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3327 : DAG.getRegister(PPC::R2, MVT::i32); 3328 3329 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3330 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3331 } 3332 3333 if (Model == TLSModel::InitialExec) { 3334 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3335 SDValue TGA = DAG.getTargetGlobalAddress( 3336 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3337 SDValue TGATLS = DAG.getTargetGlobalAddress( 3338 GV, dl, PtrVT, 0, 3339 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3340 SDValue TPOffset; 3341 if (IsPCRel) { 3342 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3343 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3344 MachinePointerInfo()); 3345 } else { 3346 SDValue GOTPtr; 3347 if (is64bit) { 3348 setUsesTOCBasePtr(DAG); 3349 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3350 GOTPtr = 3351 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3352 } else { 3353 if (!TM.isPositionIndependent()) 3354 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3355 else if (picLevel == PICLevel::SmallPIC) 3356 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3357 else 3358 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3359 } 3360 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3361 } 3362 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3363 } 3364 3365 if (Model == TLSModel::GeneralDynamic) { 3366 if (Subtarget.isUsingPCRelativeCalls()) { 3367 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3368 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3369 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3370 } 3371 3372 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3373 SDValue GOTPtr; 3374 if (is64bit) { 3375 setUsesTOCBasePtr(DAG); 3376 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3377 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3378 GOTReg, TGA); 3379 } else { 3380 if (picLevel == PICLevel::SmallPIC) 3381 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3382 else 3383 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3384 } 3385 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3386 GOTPtr, TGA, TGA); 3387 } 3388 3389 if (Model == TLSModel::LocalDynamic) { 3390 if (Subtarget.isUsingPCRelativeCalls()) { 3391 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3392 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3393 SDValue MatPCRel = 3394 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3395 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3396 } 3397 3398 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3399 SDValue GOTPtr; 3400 if (is64bit) { 3401 setUsesTOCBasePtr(DAG); 3402 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3403 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3404 GOTReg, TGA); 3405 } else { 3406 if (picLevel == PICLevel::SmallPIC) 3407 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3408 else 3409 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3410 } 3411 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3412 PtrVT, GOTPtr, TGA, TGA); 3413 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3414 PtrVT, TLSAddr, TGA); 3415 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3416 } 3417 3418 llvm_unreachable("Unknown TLS model!"); 3419 } 3420 3421 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3422 SelectionDAG &DAG) const { 3423 EVT PtrVT = Op.getValueType(); 3424 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3425 SDLoc DL(GSDN); 3426 const GlobalValue *GV = GSDN->getGlobal(); 3427 3428 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3429 // The actual address of the GlobalValue is stored in the TOC. 3430 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3431 if (Subtarget.isUsingPCRelativeCalls()) { 3432 EVT Ty = getPointerTy(DAG.getDataLayout()); 3433 if (isAccessedAsGotIndirect(Op)) { 3434 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3435 PPCII::MO_PCREL_FLAG | 3436 PPCII::MO_GOT_FLAG); 3437 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3438 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3439 MachinePointerInfo()); 3440 return Load; 3441 } else { 3442 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3443 PPCII::MO_PCREL_FLAG); 3444 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3445 } 3446 } 3447 setUsesTOCBasePtr(DAG); 3448 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3449 return getTOCEntry(DAG, DL, GA); 3450 } 3451 3452 unsigned MOHiFlag, MOLoFlag; 3453 bool IsPIC = isPositionIndependent(); 3454 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3455 3456 if (IsPIC && Subtarget.isSVR4ABI()) { 3457 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3458 GSDN->getOffset(), 3459 PPCII::MO_PIC_FLAG); 3460 return getTOCEntry(DAG, DL, GA); 3461 } 3462 3463 SDValue GAHi = 3464 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3465 SDValue GALo = 3466 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3467 3468 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3469 } 3470 3471 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3472 bool IsStrict = Op->isStrictFPOpcode(); 3473 ISD::CondCode CC = 3474 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3475 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3476 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3477 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3478 EVT LHSVT = LHS.getValueType(); 3479 SDLoc dl(Op); 3480 3481 // Soften the setcc with libcall if it is fp128. 3482 if (LHSVT == MVT::f128) { 3483 assert(!Subtarget.hasP9Vector() && 3484 "SETCC for f128 is already legal under Power9!"); 3485 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3486 Op->getOpcode() == ISD::STRICT_FSETCCS); 3487 if (RHS.getNode()) 3488 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3489 DAG.getCondCode(CC)); 3490 if (IsStrict) 3491 return DAG.getMergeValues({LHS, Chain}, dl); 3492 return LHS; 3493 } 3494 3495 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3496 3497 if (Op.getValueType() == MVT::v2i64) { 3498 // When the operands themselves are v2i64 values, we need to do something 3499 // special because VSX has no underlying comparison operations for these. 3500 if (LHS.getValueType() == MVT::v2i64) { 3501 // Equality can be handled by casting to the legal type for Altivec 3502 // comparisons, everything else needs to be expanded. 3503 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3504 return SDValue(); 3505 SDValue SetCC32 = DAG.getSetCC( 3506 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3507 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3508 int ShuffV[] = {1, 0, 3, 2}; 3509 SDValue Shuff = 3510 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3511 return DAG.getBitcast(MVT::v2i64, 3512 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3513 dl, MVT::v4i32, Shuff, SetCC32)); 3514 } 3515 3516 // We handle most of these in the usual way. 3517 return Op; 3518 } 3519 3520 // If we're comparing for equality to zero, expose the fact that this is 3521 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3522 // fold the new nodes. 3523 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3524 return V; 3525 3526 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3527 // Leave comparisons against 0 and -1 alone for now, since they're usually 3528 // optimized. FIXME: revisit this when we can custom lower all setcc 3529 // optimizations. 3530 if (C->isAllOnes() || C->isZero()) 3531 return SDValue(); 3532 } 3533 3534 // If we have an integer seteq/setne, turn it into a compare against zero 3535 // by xor'ing the rhs with the lhs, which is faster than setting a 3536 // condition register, reading it back out, and masking the correct bit. The 3537 // normal approach here uses sub to do this instead of xor. Using xor exposes 3538 // the result to other bit-twiddling opportunities. 3539 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3540 EVT VT = Op.getValueType(); 3541 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3542 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3543 } 3544 return SDValue(); 3545 } 3546 3547 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3548 SDNode *Node = Op.getNode(); 3549 EVT VT = Node->getValueType(0); 3550 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3551 SDValue InChain = Node->getOperand(0); 3552 SDValue VAListPtr = Node->getOperand(1); 3553 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3554 SDLoc dl(Node); 3555 3556 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3557 3558 // gpr_index 3559 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3560 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3561 InChain = GprIndex.getValue(1); 3562 3563 if (VT == MVT::i64) { 3564 // Check if GprIndex is even 3565 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3566 DAG.getConstant(1, dl, MVT::i32)); 3567 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3568 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3569 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3570 DAG.getConstant(1, dl, MVT::i32)); 3571 // Align GprIndex to be even if it isn't 3572 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3573 GprIndex); 3574 } 3575 3576 // fpr index is 1 byte after gpr 3577 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3578 DAG.getConstant(1, dl, MVT::i32)); 3579 3580 // fpr 3581 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3582 FprPtr, MachinePointerInfo(SV), MVT::i8); 3583 InChain = FprIndex.getValue(1); 3584 3585 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3586 DAG.getConstant(8, dl, MVT::i32)); 3587 3588 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3589 DAG.getConstant(4, dl, MVT::i32)); 3590 3591 // areas 3592 SDValue OverflowArea = 3593 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3594 InChain = OverflowArea.getValue(1); 3595 3596 SDValue RegSaveArea = 3597 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3598 InChain = RegSaveArea.getValue(1); 3599 3600 // select overflow_area if index > 8 3601 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3602 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3603 3604 // adjustment constant gpr_index * 4/8 3605 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3606 VT.isInteger() ? GprIndex : FprIndex, 3607 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3608 MVT::i32)); 3609 3610 // OurReg = RegSaveArea + RegConstant 3611 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3612 RegConstant); 3613 3614 // Floating types are 32 bytes into RegSaveArea 3615 if (VT.isFloatingPoint()) 3616 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3617 DAG.getConstant(32, dl, MVT::i32)); 3618 3619 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3620 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3621 VT.isInteger() ? GprIndex : FprIndex, 3622 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3623 MVT::i32)); 3624 3625 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3626 VT.isInteger() ? VAListPtr : FprPtr, 3627 MachinePointerInfo(SV), MVT::i8); 3628 3629 // determine if we should load from reg_save_area or overflow_area 3630 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3631 3632 // increase overflow_area by 4/8 if gpr/fpr > 8 3633 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3634 DAG.getConstant(VT.isInteger() ? 4 : 8, 3635 dl, MVT::i32)); 3636 3637 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3638 OverflowAreaPlusN); 3639 3640 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3641 MachinePointerInfo(), MVT::i32); 3642 3643 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3644 } 3645 3646 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3647 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3648 3649 // We have to copy the entire va_list struct: 3650 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3651 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3652 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3653 false, true, false, MachinePointerInfo(), 3654 MachinePointerInfo()); 3655 } 3656 3657 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3658 SelectionDAG &DAG) const { 3659 if (Subtarget.isAIXABI()) 3660 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3661 3662 return Op.getOperand(0); 3663 } 3664 3665 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3666 MachineFunction &MF = DAG.getMachineFunction(); 3667 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3668 3669 assert((Op.getOpcode() == ISD::INLINEASM || 3670 Op.getOpcode() == ISD::INLINEASM_BR) && 3671 "Expecting Inline ASM node."); 3672 3673 // If an LR store is already known to be required then there is not point in 3674 // checking this ASM as well. 3675 if (MFI.isLRStoreRequired()) 3676 return Op; 3677 3678 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3679 // type MVT::Glue. We want to ignore this last operand if that is the case. 3680 unsigned NumOps = Op.getNumOperands(); 3681 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3682 --NumOps; 3683 3684 // Check all operands that may contain the LR. 3685 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3686 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3687 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3688 ++i; // Skip the ID value. 3689 3690 switch (InlineAsm::getKind(Flags)) { 3691 default: 3692 llvm_unreachable("Bad flags!"); 3693 case InlineAsm::Kind_RegUse: 3694 case InlineAsm::Kind_Imm: 3695 case InlineAsm::Kind_Mem: 3696 i += NumVals; 3697 break; 3698 case InlineAsm::Kind_Clobber: 3699 case InlineAsm::Kind_RegDef: 3700 case InlineAsm::Kind_RegDefEarlyClobber: { 3701 for (; NumVals; --NumVals, ++i) { 3702 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3703 if (Reg != PPC::LR && Reg != PPC::LR8) 3704 continue; 3705 MFI.setLRStoreRequired(); 3706 return Op; 3707 } 3708 break; 3709 } 3710 } 3711 } 3712 3713 return Op; 3714 } 3715 3716 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3717 SelectionDAG &DAG) const { 3718 if (Subtarget.isAIXABI()) 3719 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3720 3721 SDValue Chain = Op.getOperand(0); 3722 SDValue Trmp = Op.getOperand(1); // trampoline 3723 SDValue FPtr = Op.getOperand(2); // nested function 3724 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3725 SDLoc dl(Op); 3726 3727 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3728 bool isPPC64 = (PtrVT == MVT::i64); 3729 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3730 3731 TargetLowering::ArgListTy Args; 3732 TargetLowering::ArgListEntry Entry; 3733 3734 Entry.Ty = IntPtrTy; 3735 Entry.Node = Trmp; Args.push_back(Entry); 3736 3737 // TrampSize == (isPPC64 ? 48 : 40); 3738 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3739 isPPC64 ? MVT::i64 : MVT::i32); 3740 Args.push_back(Entry); 3741 3742 Entry.Node = FPtr; Args.push_back(Entry); 3743 Entry.Node = Nest; Args.push_back(Entry); 3744 3745 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3746 TargetLowering::CallLoweringInfo CLI(DAG); 3747 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3748 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3749 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3750 3751 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3752 return CallResult.second; 3753 } 3754 3755 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3756 MachineFunction &MF = DAG.getMachineFunction(); 3757 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3758 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3759 3760 SDLoc dl(Op); 3761 3762 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3763 // vastart just stores the address of the VarArgsFrameIndex slot into the 3764 // memory location argument. 3765 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3766 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3767 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3768 MachinePointerInfo(SV)); 3769 } 3770 3771 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3772 // We suppose the given va_list is already allocated. 3773 // 3774 // typedef struct { 3775 // char gpr; /* index into the array of 8 GPRs 3776 // * stored in the register save area 3777 // * gpr=0 corresponds to r3, 3778 // * gpr=1 to r4, etc. 3779 // */ 3780 // char fpr; /* index into the array of 8 FPRs 3781 // * stored in the register save area 3782 // * fpr=0 corresponds to f1, 3783 // * fpr=1 to f2, etc. 3784 // */ 3785 // char *overflow_arg_area; 3786 // /* location on stack that holds 3787 // * the next overflow argument 3788 // */ 3789 // char *reg_save_area; 3790 // /* where r3:r10 and f1:f8 (if saved) 3791 // * are stored 3792 // */ 3793 // } va_list[1]; 3794 3795 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3796 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3797 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3798 PtrVT); 3799 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3800 PtrVT); 3801 3802 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3803 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3804 3805 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3806 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3807 3808 uint64_t FPROffset = 1; 3809 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3810 3811 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3812 3813 // Store first byte : number of int regs 3814 SDValue firstStore = 3815 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3816 MachinePointerInfo(SV), MVT::i8); 3817 uint64_t nextOffset = FPROffset; 3818 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3819 ConstFPROffset); 3820 3821 // Store second byte : number of float regs 3822 SDValue secondStore = 3823 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3824 MachinePointerInfo(SV, nextOffset), MVT::i8); 3825 nextOffset += StackOffset; 3826 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3827 3828 // Store second word : arguments given on stack 3829 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3830 MachinePointerInfo(SV, nextOffset)); 3831 nextOffset += FrameOffset; 3832 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3833 3834 // Store third word : arguments given in registers 3835 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3836 MachinePointerInfo(SV, nextOffset)); 3837 } 3838 3839 /// FPR - The set of FP registers that should be allocated for arguments 3840 /// on Darwin and AIX. 3841 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3842 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3843 PPC::F11, PPC::F12, PPC::F13}; 3844 3845 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3846 /// the stack. 3847 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3848 unsigned PtrByteSize) { 3849 unsigned ArgSize = ArgVT.getStoreSize(); 3850 if (Flags.isByVal()) 3851 ArgSize = Flags.getByValSize(); 3852 3853 // Round up to multiples of the pointer size, except for array members, 3854 // which are always packed. 3855 if (!Flags.isInConsecutiveRegs()) 3856 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3857 3858 return ArgSize; 3859 } 3860 3861 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3862 /// on the stack. 3863 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3864 ISD::ArgFlagsTy Flags, 3865 unsigned PtrByteSize) { 3866 Align Alignment(PtrByteSize); 3867 3868 // Altivec parameters are padded to a 16 byte boundary. 3869 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3870 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3871 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3872 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3873 Alignment = Align(16); 3874 3875 // ByVal parameters are aligned as requested. 3876 if (Flags.isByVal()) { 3877 auto BVAlign = Flags.getNonZeroByValAlign(); 3878 if (BVAlign > PtrByteSize) { 3879 if (BVAlign.value() % PtrByteSize != 0) 3880 llvm_unreachable( 3881 "ByVal alignment is not a multiple of the pointer size"); 3882 3883 Alignment = BVAlign; 3884 } 3885 } 3886 3887 // Array members are always packed to their original alignment. 3888 if (Flags.isInConsecutiveRegs()) { 3889 // If the array member was split into multiple registers, the first 3890 // needs to be aligned to the size of the full type. (Except for 3891 // ppcf128, which is only aligned as its f64 components.) 3892 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3893 Alignment = Align(OrigVT.getStoreSize()); 3894 else 3895 Alignment = Align(ArgVT.getStoreSize()); 3896 } 3897 3898 return Alignment; 3899 } 3900 3901 /// CalculateStackSlotUsed - Return whether this argument will use its 3902 /// stack slot (instead of being passed in registers). ArgOffset, 3903 /// AvailableFPRs, and AvailableVRs must hold the current argument 3904 /// position, and will be updated to account for this argument. 3905 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3906 unsigned PtrByteSize, unsigned LinkageSize, 3907 unsigned ParamAreaSize, unsigned &ArgOffset, 3908 unsigned &AvailableFPRs, 3909 unsigned &AvailableVRs) { 3910 bool UseMemory = false; 3911 3912 // Respect alignment of argument on the stack. 3913 Align Alignment = 3914 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3915 ArgOffset = alignTo(ArgOffset, Alignment); 3916 // If there's no space left in the argument save area, we must 3917 // use memory (this check also catches zero-sized arguments). 3918 if (ArgOffset >= LinkageSize + ParamAreaSize) 3919 UseMemory = true; 3920 3921 // Allocate argument on the stack. 3922 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3923 if (Flags.isInConsecutiveRegsLast()) 3924 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3925 // If we overran the argument save area, we must use memory 3926 // (this check catches arguments passed partially in memory) 3927 if (ArgOffset > LinkageSize + ParamAreaSize) 3928 UseMemory = true; 3929 3930 // However, if the argument is actually passed in an FPR or a VR, 3931 // we don't use memory after all. 3932 if (!Flags.isByVal()) { 3933 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3934 if (AvailableFPRs > 0) { 3935 --AvailableFPRs; 3936 return false; 3937 } 3938 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3939 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3940 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3941 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3942 if (AvailableVRs > 0) { 3943 --AvailableVRs; 3944 return false; 3945 } 3946 } 3947 3948 return UseMemory; 3949 } 3950 3951 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3952 /// ensure minimum alignment required for target. 3953 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3954 unsigned NumBytes) { 3955 return alignTo(NumBytes, Lowering->getStackAlign()); 3956 } 3957 3958 SDValue PPCTargetLowering::LowerFormalArguments( 3959 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3960 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3961 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3962 if (Subtarget.isAIXABI()) 3963 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3964 InVals); 3965 if (Subtarget.is64BitELFABI()) 3966 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3967 InVals); 3968 assert(Subtarget.is32BitELFABI()); 3969 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3970 InVals); 3971 } 3972 3973 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3974 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3975 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3976 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3977 3978 // 32-bit SVR4 ABI Stack Frame Layout: 3979 // +-----------------------------------+ 3980 // +--> | Back chain | 3981 // | +-----------------------------------+ 3982 // | | Floating-point register save area | 3983 // | +-----------------------------------+ 3984 // | | General register save area | 3985 // | +-----------------------------------+ 3986 // | | CR save word | 3987 // | +-----------------------------------+ 3988 // | | VRSAVE save word | 3989 // | +-----------------------------------+ 3990 // | | Alignment padding | 3991 // | +-----------------------------------+ 3992 // | | Vector register save area | 3993 // | +-----------------------------------+ 3994 // | | Local variable space | 3995 // | +-----------------------------------+ 3996 // | | Parameter list area | 3997 // | +-----------------------------------+ 3998 // | | LR save word | 3999 // | +-----------------------------------+ 4000 // SP--> +--- | Back chain | 4001 // +-----------------------------------+ 4002 // 4003 // Specifications: 4004 // System V Application Binary Interface PowerPC Processor Supplement 4005 // AltiVec Technology Programming Interface Manual 4006 4007 MachineFunction &MF = DAG.getMachineFunction(); 4008 MachineFrameInfo &MFI = MF.getFrameInfo(); 4009 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4010 4011 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4012 // Potential tail calls could cause overwriting of argument stack slots. 4013 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4014 (CallConv == CallingConv::Fast)); 4015 const Align PtrAlign(4); 4016 4017 // Assign locations to all of the incoming arguments. 4018 SmallVector<CCValAssign, 16> ArgLocs; 4019 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4020 *DAG.getContext()); 4021 4022 // Reserve space for the linkage area on the stack. 4023 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4024 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4025 if (useSoftFloat()) 4026 CCInfo.PreAnalyzeFormalArguments(Ins); 4027 4028 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4029 CCInfo.clearWasPPCF128(); 4030 4031 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4032 CCValAssign &VA = ArgLocs[i]; 4033 4034 // Arguments stored in registers. 4035 if (VA.isRegLoc()) { 4036 const TargetRegisterClass *RC; 4037 EVT ValVT = VA.getValVT(); 4038 4039 switch (ValVT.getSimpleVT().SimpleTy) { 4040 default: 4041 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4042 case MVT::i1: 4043 case MVT::i32: 4044 RC = &PPC::GPRCRegClass; 4045 break; 4046 case MVT::f32: 4047 if (Subtarget.hasP8Vector()) 4048 RC = &PPC::VSSRCRegClass; 4049 else if (Subtarget.hasSPE()) 4050 RC = &PPC::GPRCRegClass; 4051 else 4052 RC = &PPC::F4RCRegClass; 4053 break; 4054 case MVT::f64: 4055 if (Subtarget.hasVSX()) 4056 RC = &PPC::VSFRCRegClass; 4057 else if (Subtarget.hasSPE()) 4058 // SPE passes doubles in GPR pairs. 4059 RC = &PPC::GPRCRegClass; 4060 else 4061 RC = &PPC::F8RCRegClass; 4062 break; 4063 case MVT::v16i8: 4064 case MVT::v8i16: 4065 case MVT::v4i32: 4066 RC = &PPC::VRRCRegClass; 4067 break; 4068 case MVT::v4f32: 4069 RC = &PPC::VRRCRegClass; 4070 break; 4071 case MVT::v2f64: 4072 case MVT::v2i64: 4073 RC = &PPC::VRRCRegClass; 4074 break; 4075 } 4076 4077 SDValue ArgValue; 4078 // Transform the arguments stored in physical registers into 4079 // virtual ones. 4080 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4081 assert(i + 1 < e && "No second half of double precision argument"); 4082 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4083 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4084 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4085 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4086 if (!Subtarget.isLittleEndian()) 4087 std::swap (ArgValueLo, ArgValueHi); 4088 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4089 ArgValueHi); 4090 } else { 4091 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4092 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4093 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4094 if (ValVT == MVT::i1) 4095 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4096 } 4097 4098 InVals.push_back(ArgValue); 4099 } else { 4100 // Argument stored in memory. 4101 assert(VA.isMemLoc()); 4102 4103 // Get the extended size of the argument type in stack 4104 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4105 // Get the actual size of the argument type 4106 unsigned ObjSize = VA.getValVT().getStoreSize(); 4107 unsigned ArgOffset = VA.getLocMemOffset(); 4108 // Stack objects in PPC32 are right justified. 4109 ArgOffset += ArgSize - ObjSize; 4110 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4111 4112 // Create load nodes to retrieve arguments from the stack. 4113 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4114 InVals.push_back( 4115 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4116 } 4117 } 4118 4119 // Assign locations to all of the incoming aggregate by value arguments. 4120 // Aggregates passed by value are stored in the local variable space of the 4121 // caller's stack frame, right above the parameter list area. 4122 SmallVector<CCValAssign, 16> ByValArgLocs; 4123 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4124 ByValArgLocs, *DAG.getContext()); 4125 4126 // Reserve stack space for the allocations in CCInfo. 4127 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4128 4129 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4130 4131 // Area that is at least reserved in the caller of this function. 4132 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4133 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4134 4135 // Set the size that is at least reserved in caller of this function. Tail 4136 // call optimized function's reserved stack space needs to be aligned so that 4137 // taking the difference between two stack areas will result in an aligned 4138 // stack. 4139 MinReservedArea = 4140 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4141 FuncInfo->setMinReservedArea(MinReservedArea); 4142 4143 SmallVector<SDValue, 8> MemOps; 4144 4145 // If the function takes variable number of arguments, make a frame index for 4146 // the start of the first vararg value... for expansion of llvm.va_start. 4147 if (isVarArg) { 4148 static const MCPhysReg GPArgRegs[] = { 4149 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4150 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4151 }; 4152 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4153 4154 static const MCPhysReg FPArgRegs[] = { 4155 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4156 PPC::F8 4157 }; 4158 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4159 4160 if (useSoftFloat() || hasSPE()) 4161 NumFPArgRegs = 0; 4162 4163 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4164 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4165 4166 // Make room for NumGPArgRegs and NumFPArgRegs. 4167 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4168 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4169 4170 FuncInfo->setVarArgsStackOffset( 4171 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4172 CCInfo.getNextStackOffset(), true)); 4173 4174 FuncInfo->setVarArgsFrameIndex( 4175 MFI.CreateStackObject(Depth, Align(8), false)); 4176 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4177 4178 // The fixed integer arguments of a variadic function are stored to the 4179 // VarArgsFrameIndex on the stack so that they may be loaded by 4180 // dereferencing the result of va_next. 4181 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4182 // Get an existing live-in vreg, or add a new one. 4183 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4184 if (!VReg) 4185 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4186 4187 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4188 SDValue Store = 4189 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4190 MemOps.push_back(Store); 4191 // Increment the address by four for the next argument to store 4192 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4193 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4194 } 4195 4196 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4197 // is set. 4198 // The double arguments are stored to the VarArgsFrameIndex 4199 // on the stack. 4200 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4201 // Get an existing live-in vreg, or add a new one. 4202 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4203 if (!VReg) 4204 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4205 4206 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4207 SDValue Store = 4208 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4209 MemOps.push_back(Store); 4210 // Increment the address by eight for the next argument to store 4211 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4212 PtrVT); 4213 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4214 } 4215 } 4216 4217 if (!MemOps.empty()) 4218 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4219 4220 return Chain; 4221 } 4222 4223 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4224 // value to MVT::i64 and then truncate to the correct register size. 4225 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4226 EVT ObjectVT, SelectionDAG &DAG, 4227 SDValue ArgVal, 4228 const SDLoc &dl) const { 4229 if (Flags.isSExt()) 4230 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4231 DAG.getValueType(ObjectVT)); 4232 else if (Flags.isZExt()) 4233 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4234 DAG.getValueType(ObjectVT)); 4235 4236 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4237 } 4238 4239 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4240 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4241 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4242 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4243 // TODO: add description of PPC stack frame format, or at least some docs. 4244 // 4245 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4246 bool isLittleEndian = Subtarget.isLittleEndian(); 4247 MachineFunction &MF = DAG.getMachineFunction(); 4248 MachineFrameInfo &MFI = MF.getFrameInfo(); 4249 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4250 4251 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4252 "fastcc not supported on varargs functions"); 4253 4254 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4255 // Potential tail calls could cause overwriting of argument stack slots. 4256 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4257 (CallConv == CallingConv::Fast)); 4258 unsigned PtrByteSize = 8; 4259 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4260 4261 static const MCPhysReg GPR[] = { 4262 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4263 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4264 }; 4265 static const MCPhysReg VR[] = { 4266 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4267 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4268 }; 4269 4270 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4271 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4272 const unsigned Num_VR_Regs = array_lengthof(VR); 4273 4274 // Do a first pass over the arguments to determine whether the ABI 4275 // guarantees that our caller has allocated the parameter save area 4276 // on its stack frame. In the ELFv1 ABI, this is always the case; 4277 // in the ELFv2 ABI, it is true if this is a vararg function or if 4278 // any parameter is located in a stack slot. 4279 4280 bool HasParameterArea = !isELFv2ABI || isVarArg; 4281 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4282 unsigned NumBytes = LinkageSize; 4283 unsigned AvailableFPRs = Num_FPR_Regs; 4284 unsigned AvailableVRs = Num_VR_Regs; 4285 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4286 if (Ins[i].Flags.isNest()) 4287 continue; 4288 4289 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4290 PtrByteSize, LinkageSize, ParamAreaSize, 4291 NumBytes, AvailableFPRs, AvailableVRs)) 4292 HasParameterArea = true; 4293 } 4294 4295 // Add DAG nodes to load the arguments or copy them out of registers. On 4296 // entry to a function on PPC, the arguments start after the linkage area, 4297 // although the first ones are often in registers. 4298 4299 unsigned ArgOffset = LinkageSize; 4300 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4301 SmallVector<SDValue, 8> MemOps; 4302 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4303 unsigned CurArgIdx = 0; 4304 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4305 SDValue ArgVal; 4306 bool needsLoad = false; 4307 EVT ObjectVT = Ins[ArgNo].VT; 4308 EVT OrigVT = Ins[ArgNo].ArgVT; 4309 unsigned ObjSize = ObjectVT.getStoreSize(); 4310 unsigned ArgSize = ObjSize; 4311 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4312 if (Ins[ArgNo].isOrigArg()) { 4313 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4314 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4315 } 4316 // We re-align the argument offset for each argument, except when using the 4317 // fast calling convention, when we need to make sure we do that only when 4318 // we'll actually use a stack slot. 4319 unsigned CurArgOffset; 4320 Align Alignment; 4321 auto ComputeArgOffset = [&]() { 4322 /* Respect alignment of argument on the stack. */ 4323 Alignment = 4324 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4325 ArgOffset = alignTo(ArgOffset, Alignment); 4326 CurArgOffset = ArgOffset; 4327 }; 4328 4329 if (CallConv != CallingConv::Fast) { 4330 ComputeArgOffset(); 4331 4332 /* Compute GPR index associated with argument offset. */ 4333 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4334 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4335 } 4336 4337 // FIXME the codegen can be much improved in some cases. 4338 // We do not have to keep everything in memory. 4339 if (Flags.isByVal()) { 4340 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4341 4342 if (CallConv == CallingConv::Fast) 4343 ComputeArgOffset(); 4344 4345 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4346 ObjSize = Flags.getByValSize(); 4347 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4348 // Empty aggregate parameters do not take up registers. Examples: 4349 // struct { } a; 4350 // union { } b; 4351 // int c[0]; 4352 // etc. However, we have to provide a place-holder in InVals, so 4353 // pretend we have an 8-byte item at the current address for that 4354 // purpose. 4355 if (!ObjSize) { 4356 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4357 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4358 InVals.push_back(FIN); 4359 continue; 4360 } 4361 4362 // Create a stack object covering all stack doublewords occupied 4363 // by the argument. If the argument is (fully or partially) on 4364 // the stack, or if the argument is fully in registers but the 4365 // caller has allocated the parameter save anyway, we can refer 4366 // directly to the caller's stack frame. Otherwise, create a 4367 // local copy in our own frame. 4368 int FI; 4369 if (HasParameterArea || 4370 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4371 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4372 else 4373 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4374 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4375 4376 // Handle aggregates smaller than 8 bytes. 4377 if (ObjSize < PtrByteSize) { 4378 // The value of the object is its address, which differs from the 4379 // address of the enclosing doubleword on big-endian systems. 4380 SDValue Arg = FIN; 4381 if (!isLittleEndian) { 4382 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4383 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4384 } 4385 InVals.push_back(Arg); 4386 4387 if (GPR_idx != Num_GPR_Regs) { 4388 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4389 FuncInfo->addLiveInAttr(VReg, Flags); 4390 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4391 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4392 SDValue Store = 4393 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4394 MachinePointerInfo(&*FuncArg), ObjType); 4395 MemOps.push_back(Store); 4396 } 4397 // Whether we copied from a register or not, advance the offset 4398 // into the parameter save area by a full doubleword. 4399 ArgOffset += PtrByteSize; 4400 continue; 4401 } 4402 4403 // The value of the object is its address, which is the address of 4404 // its first stack doubleword. 4405 InVals.push_back(FIN); 4406 4407 // Store whatever pieces of the object are in registers to memory. 4408 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4409 if (GPR_idx == Num_GPR_Regs) 4410 break; 4411 4412 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4413 FuncInfo->addLiveInAttr(VReg, Flags); 4414 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4415 SDValue Addr = FIN; 4416 if (j) { 4417 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4418 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4419 } 4420 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4421 MachinePointerInfo(&*FuncArg, j)); 4422 MemOps.push_back(Store); 4423 ++GPR_idx; 4424 } 4425 ArgOffset += ArgSize; 4426 continue; 4427 } 4428 4429 switch (ObjectVT.getSimpleVT().SimpleTy) { 4430 default: llvm_unreachable("Unhandled argument type!"); 4431 case MVT::i1: 4432 case MVT::i32: 4433 case MVT::i64: 4434 if (Flags.isNest()) { 4435 // The 'nest' parameter, if any, is passed in R11. 4436 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4437 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4438 4439 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4440 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4441 4442 break; 4443 } 4444 4445 // These can be scalar arguments or elements of an integer array type 4446 // passed directly. Clang may use those instead of "byval" aggregate 4447 // types to avoid forcing arguments to memory unnecessarily. 4448 if (GPR_idx != Num_GPR_Regs) { 4449 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4450 FuncInfo->addLiveInAttr(VReg, Flags); 4451 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4452 4453 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4454 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4455 // value to MVT::i64 and then truncate to the correct register size. 4456 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4457 } else { 4458 if (CallConv == CallingConv::Fast) 4459 ComputeArgOffset(); 4460 4461 needsLoad = true; 4462 ArgSize = PtrByteSize; 4463 } 4464 if (CallConv != CallingConv::Fast || needsLoad) 4465 ArgOffset += 8; 4466 break; 4467 4468 case MVT::f32: 4469 case MVT::f64: 4470 // These can be scalar arguments or elements of a float array type 4471 // passed directly. The latter are used to implement ELFv2 homogenous 4472 // float aggregates. 4473 if (FPR_idx != Num_FPR_Regs) { 4474 unsigned VReg; 4475 4476 if (ObjectVT == MVT::f32) 4477 VReg = MF.addLiveIn(FPR[FPR_idx], 4478 Subtarget.hasP8Vector() 4479 ? &PPC::VSSRCRegClass 4480 : &PPC::F4RCRegClass); 4481 else 4482 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4483 ? &PPC::VSFRCRegClass 4484 : &PPC::F8RCRegClass); 4485 4486 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4487 ++FPR_idx; 4488 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4489 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4490 // once we support fp <-> gpr moves. 4491 4492 // This can only ever happen in the presence of f32 array types, 4493 // since otherwise we never run out of FPRs before running out 4494 // of GPRs. 4495 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4496 FuncInfo->addLiveInAttr(VReg, Flags); 4497 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4498 4499 if (ObjectVT == MVT::f32) { 4500 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4501 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4502 DAG.getConstant(32, dl, MVT::i32)); 4503 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4504 } 4505 4506 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4507 } else { 4508 if (CallConv == CallingConv::Fast) 4509 ComputeArgOffset(); 4510 4511 needsLoad = true; 4512 } 4513 4514 // When passing an array of floats, the array occupies consecutive 4515 // space in the argument area; only round up to the next doubleword 4516 // at the end of the array. Otherwise, each float takes 8 bytes. 4517 if (CallConv != CallingConv::Fast || needsLoad) { 4518 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4519 ArgOffset += ArgSize; 4520 if (Flags.isInConsecutiveRegsLast()) 4521 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4522 } 4523 break; 4524 case MVT::v4f32: 4525 case MVT::v4i32: 4526 case MVT::v8i16: 4527 case MVT::v16i8: 4528 case MVT::v2f64: 4529 case MVT::v2i64: 4530 case MVT::v1i128: 4531 case MVT::f128: 4532 // These can be scalar arguments or elements of a vector array type 4533 // passed directly. The latter are used to implement ELFv2 homogenous 4534 // vector aggregates. 4535 if (VR_idx != Num_VR_Regs) { 4536 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4537 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4538 ++VR_idx; 4539 } else { 4540 if (CallConv == CallingConv::Fast) 4541 ComputeArgOffset(); 4542 needsLoad = true; 4543 } 4544 if (CallConv != CallingConv::Fast || needsLoad) 4545 ArgOffset += 16; 4546 break; 4547 } 4548 4549 // We need to load the argument to a virtual register if we determined 4550 // above that we ran out of physical registers of the appropriate type. 4551 if (needsLoad) { 4552 if (ObjSize < ArgSize && !isLittleEndian) 4553 CurArgOffset += ArgSize - ObjSize; 4554 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4555 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4556 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4557 } 4558 4559 InVals.push_back(ArgVal); 4560 } 4561 4562 // Area that is at least reserved in the caller of this function. 4563 unsigned MinReservedArea; 4564 if (HasParameterArea) 4565 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4566 else 4567 MinReservedArea = LinkageSize; 4568 4569 // Set the size that is at least reserved in caller of this function. Tail 4570 // call optimized functions' reserved stack space needs to be aligned so that 4571 // taking the difference between two stack areas will result in an aligned 4572 // stack. 4573 MinReservedArea = 4574 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4575 FuncInfo->setMinReservedArea(MinReservedArea); 4576 4577 // If the function takes variable number of arguments, make a frame index for 4578 // the start of the first vararg value... for expansion of llvm.va_start. 4579 // On ELFv2ABI spec, it writes: 4580 // C programs that are intended to be *portable* across different compilers 4581 // and architectures must use the header file <stdarg.h> to deal with variable 4582 // argument lists. 4583 if (isVarArg && MFI.hasVAStart()) { 4584 int Depth = ArgOffset; 4585 4586 FuncInfo->setVarArgsFrameIndex( 4587 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4588 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4589 4590 // If this function is vararg, store any remaining integer argument regs 4591 // to their spots on the stack so that they may be loaded by dereferencing 4592 // the result of va_next. 4593 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4594 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4595 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4596 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4597 SDValue Store = 4598 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4599 MemOps.push_back(Store); 4600 // Increment the address by four for the next argument to store 4601 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4602 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4603 } 4604 } 4605 4606 if (!MemOps.empty()) 4607 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4608 4609 return Chain; 4610 } 4611 4612 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4613 /// adjusted to accommodate the arguments for the tailcall. 4614 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4615 unsigned ParamSize) { 4616 4617 if (!isTailCall) return 0; 4618 4619 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4620 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4621 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4622 // Remember only if the new adjustment is bigger. 4623 if (SPDiff < FI->getTailCallSPDelta()) 4624 FI->setTailCallSPDelta(SPDiff); 4625 4626 return SPDiff; 4627 } 4628 4629 static bool isFunctionGlobalAddress(SDValue Callee); 4630 4631 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4632 const TargetMachine &TM) { 4633 // It does not make sense to call callsShareTOCBase() with a caller that 4634 // is PC Relative since PC Relative callers do not have a TOC. 4635 #ifndef NDEBUG 4636 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4637 assert(!STICaller->isUsingPCRelativeCalls() && 4638 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4639 #endif 4640 4641 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4642 // don't have enough information to determine if the caller and callee share 4643 // the same TOC base, so we have to pessimistically assume they don't for 4644 // correctness. 4645 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4646 if (!G) 4647 return false; 4648 4649 const GlobalValue *GV = G->getGlobal(); 4650 4651 // If the callee is preemptable, then the static linker will use a plt-stub 4652 // which saves the toc to the stack, and needs a nop after the call 4653 // instruction to convert to a toc-restore. 4654 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4655 return false; 4656 4657 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4658 // We may need a TOC restore in the situation where the caller requires a 4659 // valid TOC but the callee is PC Relative and does not. 4660 const Function *F = dyn_cast<Function>(GV); 4661 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4662 4663 // If we have an Alias we can try to get the function from there. 4664 if (Alias) { 4665 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4666 F = dyn_cast<Function>(GlobalObj); 4667 } 4668 4669 // If we still have no valid function pointer we do not have enough 4670 // information to determine if the callee uses PC Relative calls so we must 4671 // assume that it does. 4672 if (!F) 4673 return false; 4674 4675 // If the callee uses PC Relative we cannot guarantee that the callee won't 4676 // clobber the TOC of the caller and so we must assume that the two 4677 // functions do not share a TOC base. 4678 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4679 if (STICallee->isUsingPCRelativeCalls()) 4680 return false; 4681 4682 // If the GV is not a strong definition then we need to assume it can be 4683 // replaced by another function at link time. The function that replaces 4684 // it may not share the same TOC as the caller since the callee may be 4685 // replaced by a PC Relative version of the same function. 4686 if (!GV->isStrongDefinitionForLinker()) 4687 return false; 4688 4689 // The medium and large code models are expected to provide a sufficiently 4690 // large TOC to provide all data addressing needs of a module with a 4691 // single TOC. 4692 if (CodeModel::Medium == TM.getCodeModel() || 4693 CodeModel::Large == TM.getCodeModel()) 4694 return true; 4695 4696 // Any explicitly-specified sections and section prefixes must also match. 4697 // Also, if we're using -ffunction-sections, then each function is always in 4698 // a different section (the same is true for COMDAT functions). 4699 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4700 GV->getSection() != Caller->getSection()) 4701 return false; 4702 if (const auto *F = dyn_cast<Function>(GV)) { 4703 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4704 return false; 4705 } 4706 4707 return true; 4708 } 4709 4710 static bool 4711 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4712 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4713 assert(Subtarget.is64BitELFABI()); 4714 4715 const unsigned PtrByteSize = 8; 4716 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4717 4718 static const MCPhysReg GPR[] = { 4719 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4720 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4721 }; 4722 static const MCPhysReg VR[] = { 4723 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4724 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4725 }; 4726 4727 const unsigned NumGPRs = array_lengthof(GPR); 4728 const unsigned NumFPRs = 13; 4729 const unsigned NumVRs = array_lengthof(VR); 4730 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4731 4732 unsigned NumBytes = LinkageSize; 4733 unsigned AvailableFPRs = NumFPRs; 4734 unsigned AvailableVRs = NumVRs; 4735 4736 for (const ISD::OutputArg& Param : Outs) { 4737 if (Param.Flags.isNest()) continue; 4738 4739 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4740 LinkageSize, ParamAreaSize, NumBytes, 4741 AvailableFPRs, AvailableVRs)) 4742 return true; 4743 } 4744 return false; 4745 } 4746 4747 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4748 if (CB.arg_size() != CallerFn->arg_size()) 4749 return false; 4750 4751 auto CalleeArgIter = CB.arg_begin(); 4752 auto CalleeArgEnd = CB.arg_end(); 4753 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4754 4755 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4756 const Value* CalleeArg = *CalleeArgIter; 4757 const Value* CallerArg = &(*CallerArgIter); 4758 if (CalleeArg == CallerArg) 4759 continue; 4760 4761 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4762 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4763 // } 4764 // 1st argument of callee is undef and has the same type as caller. 4765 if (CalleeArg->getType() == CallerArg->getType() && 4766 isa<UndefValue>(CalleeArg)) 4767 continue; 4768 4769 return false; 4770 } 4771 4772 return true; 4773 } 4774 4775 // Returns true if TCO is possible between the callers and callees 4776 // calling conventions. 4777 static bool 4778 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4779 CallingConv::ID CalleeCC) { 4780 // Tail calls are possible with fastcc and ccc. 4781 auto isTailCallableCC = [] (CallingConv::ID CC){ 4782 return CC == CallingConv::C || CC == CallingConv::Fast; 4783 }; 4784 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4785 return false; 4786 4787 // We can safely tail call both fastcc and ccc callees from a c calling 4788 // convention caller. If the caller is fastcc, we may have less stack space 4789 // than a non-fastcc caller with the same signature so disable tail-calls in 4790 // that case. 4791 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4792 } 4793 4794 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4795 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4796 const SmallVectorImpl<ISD::OutputArg> &Outs, 4797 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4798 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4799 4800 if (DisableSCO && !TailCallOpt) return false; 4801 4802 // Variadic argument functions are not supported. 4803 if (isVarArg) return false; 4804 4805 auto &Caller = DAG.getMachineFunction().getFunction(); 4806 // Check that the calling conventions are compatible for tco. 4807 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4808 return false; 4809 4810 // Caller contains any byval parameter is not supported. 4811 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4812 return false; 4813 4814 // Callee contains any byval parameter is not supported, too. 4815 // Note: This is a quick work around, because in some cases, e.g. 4816 // caller's stack size > callee's stack size, we are still able to apply 4817 // sibling call optimization. For example, gcc is able to do SCO for caller1 4818 // in the following example, but not for caller2. 4819 // struct test { 4820 // long int a; 4821 // char ary[56]; 4822 // } gTest; 4823 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4824 // b->a = v.a; 4825 // return 0; 4826 // } 4827 // void caller1(struct test a, struct test c, struct test *b) { 4828 // callee(gTest, b); } 4829 // void caller2(struct test *b) { callee(gTest, b); } 4830 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4831 return false; 4832 4833 // If callee and caller use different calling conventions, we cannot pass 4834 // parameters on stack since offsets for the parameter area may be different. 4835 if (Caller.getCallingConv() != CalleeCC && 4836 needStackSlotPassParameters(Subtarget, Outs)) 4837 return false; 4838 4839 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4840 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4841 // callee potentially have different TOC bases then we cannot tail call since 4842 // we need to restore the TOC pointer after the call. 4843 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4844 // We cannot guarantee this for indirect calls or calls to external functions. 4845 // When PC-Relative addressing is used, the concept of the TOC is no longer 4846 // applicable so this check is not required. 4847 // Check first for indirect calls. 4848 if (!Subtarget.isUsingPCRelativeCalls() && 4849 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4850 return false; 4851 4852 // Check if we share the TOC base. 4853 if (!Subtarget.isUsingPCRelativeCalls() && 4854 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4855 return false; 4856 4857 // TCO allows altering callee ABI, so we don't have to check further. 4858 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4859 return true; 4860 4861 if (DisableSCO) return false; 4862 4863 // If callee use the same argument list that caller is using, then we can 4864 // apply SCO on this case. If it is not, then we need to check if callee needs 4865 // stack for passing arguments. 4866 // PC Relative tail calls may not have a CallBase. 4867 // If there is no CallBase we cannot verify if we have the same argument 4868 // list so assume that we don't have the same argument list. 4869 if (CB && !hasSameArgumentList(&Caller, *CB) && 4870 needStackSlotPassParameters(Subtarget, Outs)) 4871 return false; 4872 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4873 return false; 4874 4875 return true; 4876 } 4877 4878 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4879 /// for tail call optimization. Targets which want to do tail call 4880 /// optimization should implement this function. 4881 bool 4882 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4883 CallingConv::ID CalleeCC, 4884 bool isVarArg, 4885 const SmallVectorImpl<ISD::InputArg> &Ins, 4886 SelectionDAG& DAG) const { 4887 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4888 return false; 4889 4890 // Variable argument functions are not supported. 4891 if (isVarArg) 4892 return false; 4893 4894 MachineFunction &MF = DAG.getMachineFunction(); 4895 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4896 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4897 // Functions containing by val parameters are not supported. 4898 for (unsigned i = 0; i != Ins.size(); i++) { 4899 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4900 if (Flags.isByVal()) return false; 4901 } 4902 4903 // Non-PIC/GOT tail calls are supported. 4904 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4905 return true; 4906 4907 // At the moment we can only do local tail calls (in same module, hidden 4908 // or protected) if we are generating PIC. 4909 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4910 return G->getGlobal()->hasHiddenVisibility() 4911 || G->getGlobal()->hasProtectedVisibility(); 4912 } 4913 4914 return false; 4915 } 4916 4917 /// isCallCompatibleAddress - Return the immediate to use if the specified 4918 /// 32-bit value is representable in the immediate field of a BxA instruction. 4919 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4920 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4921 if (!C) return nullptr; 4922 4923 int Addr = C->getZExtValue(); 4924 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4925 SignExtend32<26>(Addr) != Addr) 4926 return nullptr; // Top 6 bits have to be sext of immediate. 4927 4928 return DAG 4929 .getConstant( 4930 (int)C->getZExtValue() >> 2, SDLoc(Op), 4931 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4932 .getNode(); 4933 } 4934 4935 namespace { 4936 4937 struct TailCallArgumentInfo { 4938 SDValue Arg; 4939 SDValue FrameIdxOp; 4940 int FrameIdx = 0; 4941 4942 TailCallArgumentInfo() = default; 4943 }; 4944 4945 } // end anonymous namespace 4946 4947 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4948 static void StoreTailCallArgumentsToStackSlot( 4949 SelectionDAG &DAG, SDValue Chain, 4950 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4951 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4952 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4953 SDValue Arg = TailCallArgs[i].Arg; 4954 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4955 int FI = TailCallArgs[i].FrameIdx; 4956 // Store relative to framepointer. 4957 MemOpChains.push_back(DAG.getStore( 4958 Chain, dl, Arg, FIN, 4959 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4960 } 4961 } 4962 4963 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4964 /// the appropriate stack slot for the tail call optimized function call. 4965 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4966 SDValue OldRetAddr, SDValue OldFP, 4967 int SPDiff, const SDLoc &dl) { 4968 if (SPDiff) { 4969 // Calculate the new stack slot for the return address. 4970 MachineFunction &MF = DAG.getMachineFunction(); 4971 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4972 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4973 bool isPPC64 = Subtarget.isPPC64(); 4974 int SlotSize = isPPC64 ? 8 : 4; 4975 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4976 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4977 NewRetAddrLoc, true); 4978 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4979 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4980 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4981 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4982 } 4983 return Chain; 4984 } 4985 4986 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4987 /// the position of the argument. 4988 static void 4989 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4990 SDValue Arg, int SPDiff, unsigned ArgOffset, 4991 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4992 int Offset = ArgOffset + SPDiff; 4993 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4994 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4995 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4996 SDValue FIN = DAG.getFrameIndex(FI, VT); 4997 TailCallArgumentInfo Info; 4998 Info.Arg = Arg; 4999 Info.FrameIdxOp = FIN; 5000 Info.FrameIdx = FI; 5001 TailCallArguments.push_back(Info); 5002 } 5003 5004 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5005 /// stack slot. Returns the chain as result and the loaded frame pointers in 5006 /// LROpOut/FPOpout. Used when tail calling. 5007 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5008 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5009 SDValue &FPOpOut, const SDLoc &dl) const { 5010 if (SPDiff) { 5011 // Load the LR and FP stack slot for later adjusting. 5012 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5013 LROpOut = getReturnAddrFrameIndex(DAG); 5014 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5015 Chain = SDValue(LROpOut.getNode(), 1); 5016 } 5017 return Chain; 5018 } 5019 5020 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5021 /// by "Src" to address "Dst" of size "Size". Alignment information is 5022 /// specified by the specific parameter attribute. The copy will be passed as 5023 /// a byval function parameter. 5024 /// Sometimes what we are copying is the end of a larger object, the part that 5025 /// does not fit in registers. 5026 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5027 SDValue Chain, ISD::ArgFlagsTy Flags, 5028 SelectionDAG &DAG, const SDLoc &dl) { 5029 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5030 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5031 Flags.getNonZeroByValAlign(), false, false, false, 5032 MachinePointerInfo(), MachinePointerInfo()); 5033 } 5034 5035 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5036 /// tail calls. 5037 static void LowerMemOpCallTo( 5038 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5039 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5040 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5041 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5042 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5043 if (!isTailCall) { 5044 if (isVector) { 5045 SDValue StackPtr; 5046 if (isPPC64) 5047 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5048 else 5049 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5050 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5051 DAG.getConstant(ArgOffset, dl, PtrVT)); 5052 } 5053 MemOpChains.push_back( 5054 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5055 // Calculate and remember argument location. 5056 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5057 TailCallArguments); 5058 } 5059 5060 static void 5061 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5062 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5063 SDValue FPOp, 5064 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5065 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5066 // might overwrite each other in case of tail call optimization. 5067 SmallVector<SDValue, 8> MemOpChains2; 5068 // Do not flag preceding copytoreg stuff together with the following stuff. 5069 InFlag = SDValue(); 5070 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5071 MemOpChains2, dl); 5072 if (!MemOpChains2.empty()) 5073 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5074 5075 // Store the return address to the appropriate stack slot. 5076 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5077 5078 // Emit callseq_end just before tailcall node. 5079 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5080 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5081 InFlag = Chain.getValue(1); 5082 } 5083 5084 // Is this global address that of a function that can be called by name? (as 5085 // opposed to something that must hold a descriptor for an indirect call). 5086 static bool isFunctionGlobalAddress(SDValue Callee) { 5087 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5088 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5089 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5090 return false; 5091 5092 return G->getGlobal()->getValueType()->isFunctionTy(); 5093 } 5094 5095 return false; 5096 } 5097 5098 SDValue PPCTargetLowering::LowerCallResult( 5099 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5100 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5101 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5102 SmallVector<CCValAssign, 16> RVLocs; 5103 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5104 *DAG.getContext()); 5105 5106 CCRetInfo.AnalyzeCallResult( 5107 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5108 ? RetCC_PPC_Cold 5109 : RetCC_PPC); 5110 5111 // Copy all of the result registers out of their specified physreg. 5112 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5113 CCValAssign &VA = RVLocs[i]; 5114 assert(VA.isRegLoc() && "Can only return in registers!"); 5115 5116 SDValue Val; 5117 5118 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5119 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5120 InFlag); 5121 Chain = Lo.getValue(1); 5122 InFlag = Lo.getValue(2); 5123 VA = RVLocs[++i]; // skip ahead to next loc 5124 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5125 InFlag); 5126 Chain = Hi.getValue(1); 5127 InFlag = Hi.getValue(2); 5128 if (!Subtarget.isLittleEndian()) 5129 std::swap (Lo, Hi); 5130 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5131 } else { 5132 Val = DAG.getCopyFromReg(Chain, dl, 5133 VA.getLocReg(), VA.getLocVT(), InFlag); 5134 Chain = Val.getValue(1); 5135 InFlag = Val.getValue(2); 5136 } 5137 5138 switch (VA.getLocInfo()) { 5139 default: llvm_unreachable("Unknown loc info!"); 5140 case CCValAssign::Full: break; 5141 case CCValAssign::AExt: 5142 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5143 break; 5144 case CCValAssign::ZExt: 5145 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5146 DAG.getValueType(VA.getValVT())); 5147 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5148 break; 5149 case CCValAssign::SExt: 5150 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5151 DAG.getValueType(VA.getValVT())); 5152 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5153 break; 5154 } 5155 5156 InVals.push_back(Val); 5157 } 5158 5159 return Chain; 5160 } 5161 5162 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5163 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5164 // PatchPoint calls are not indirect. 5165 if (isPatchPoint) 5166 return false; 5167 5168 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5169 return false; 5170 5171 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5172 // becuase the immediate function pointer points to a descriptor instead of 5173 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5174 // pointer immediate points to the global entry point, while the BLA would 5175 // need to jump to the local entry point (see rL211174). 5176 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5177 isBLACompatibleAddress(Callee, DAG)) 5178 return false; 5179 5180 return true; 5181 } 5182 5183 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5184 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5185 return Subtarget.isAIXABI() || 5186 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5187 } 5188 5189 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5190 const Function &Caller, const SDValue &Callee, 5191 const PPCSubtarget &Subtarget, 5192 const TargetMachine &TM, 5193 bool IsStrictFPCall = false) { 5194 if (CFlags.IsTailCall) 5195 return PPCISD::TC_RETURN; 5196 5197 unsigned RetOpc = 0; 5198 // This is a call through a function pointer. 5199 if (CFlags.IsIndirect) { 5200 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5201 // indirect calls. The save of the caller's TOC pointer to the stack will be 5202 // inserted into the DAG as part of call lowering. The restore of the TOC 5203 // pointer is modeled by using a pseudo instruction for the call opcode that 5204 // represents the 2 instruction sequence of an indirect branch and link, 5205 // immediately followed by a load of the TOC pointer from the the stack save 5206 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5207 // as it is not saved or used. 5208 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5209 : PPCISD::BCTRL; 5210 } else if (Subtarget.isUsingPCRelativeCalls()) { 5211 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5212 RetOpc = PPCISD::CALL_NOTOC; 5213 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5214 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5215 // immediately following the call instruction if the caller and callee may 5216 // have different TOC bases. At link time if the linker determines the calls 5217 // may not share a TOC base, the call is redirected to a trampoline inserted 5218 // by the linker. The trampoline will (among other things) save the callers 5219 // TOC pointer at an ABI designated offset in the linkage area and the 5220 // linker will rewrite the nop to be a load of the TOC pointer from the 5221 // linkage area into gpr2. 5222 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5223 : PPCISD::CALL_NOP; 5224 else 5225 RetOpc = PPCISD::CALL; 5226 if (IsStrictFPCall) { 5227 switch (RetOpc) { 5228 default: 5229 llvm_unreachable("Unknown call opcode"); 5230 case PPCISD::BCTRL_LOAD_TOC: 5231 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5232 break; 5233 case PPCISD::BCTRL: 5234 RetOpc = PPCISD::BCTRL_RM; 5235 break; 5236 case PPCISD::CALL_NOTOC: 5237 RetOpc = PPCISD::CALL_NOTOC_RM; 5238 break; 5239 case PPCISD::CALL: 5240 RetOpc = PPCISD::CALL_RM; 5241 break; 5242 case PPCISD::CALL_NOP: 5243 RetOpc = PPCISD::CALL_NOP_RM; 5244 break; 5245 } 5246 } 5247 return RetOpc; 5248 } 5249 5250 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5251 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5252 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5253 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5254 return SDValue(Dest, 0); 5255 5256 // Returns true if the callee is local, and false otherwise. 5257 auto isLocalCallee = [&]() { 5258 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5259 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5260 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5261 5262 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5263 !isa_and_nonnull<GlobalIFunc>(GV); 5264 }; 5265 5266 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5267 // a static relocation model causes some versions of GNU LD (2.17.50, at 5268 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5269 // built with secure-PLT. 5270 bool UsePlt = 5271 Subtarget.is32BitELFABI() && !isLocalCallee() && 5272 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5273 5274 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5275 const TargetMachine &TM = Subtarget.getTargetMachine(); 5276 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5277 MCSymbolXCOFF *S = 5278 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5279 5280 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5281 return DAG.getMCSymbol(S, PtrVT); 5282 }; 5283 5284 if (isFunctionGlobalAddress(Callee)) { 5285 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5286 5287 if (Subtarget.isAIXABI()) { 5288 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5289 return getAIXFuncEntryPointSymbolSDNode(GV); 5290 } 5291 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5292 UsePlt ? PPCII::MO_PLT : 0); 5293 } 5294 5295 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5296 const char *SymName = S->getSymbol(); 5297 if (Subtarget.isAIXABI()) { 5298 // If there exists a user-declared function whose name is the same as the 5299 // ExternalSymbol's, then we pick up the user-declared version. 5300 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5301 if (const Function *F = 5302 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5303 return getAIXFuncEntryPointSymbolSDNode(F); 5304 5305 // On AIX, direct function calls reference the symbol for the function's 5306 // entry point, which is named by prepending a "." before the function's 5307 // C-linkage name. A Qualname is returned here because an external 5308 // function entry point is a csect with XTY_ER property. 5309 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5310 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5311 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5312 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5313 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5314 return Sec->getQualNameSymbol(); 5315 }; 5316 5317 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5318 } 5319 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5320 UsePlt ? PPCII::MO_PLT : 0); 5321 } 5322 5323 // No transformation needed. 5324 assert(Callee.getNode() && "What no callee?"); 5325 return Callee; 5326 } 5327 5328 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5329 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5330 "Expected a CALLSEQ_STARTSDNode."); 5331 5332 // The last operand is the chain, except when the node has glue. If the node 5333 // has glue, then the last operand is the glue, and the chain is the second 5334 // last operand. 5335 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5336 if (LastValue.getValueType() != MVT::Glue) 5337 return LastValue; 5338 5339 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5340 } 5341 5342 // Creates the node that moves a functions address into the count register 5343 // to prepare for an indirect call instruction. 5344 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5345 SDValue &Glue, SDValue &Chain, 5346 const SDLoc &dl) { 5347 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5348 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5349 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5350 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5351 // The glue is the second value produced. 5352 Glue = Chain.getValue(1); 5353 } 5354 5355 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5356 SDValue &Glue, SDValue &Chain, 5357 SDValue CallSeqStart, 5358 const CallBase *CB, const SDLoc &dl, 5359 bool hasNest, 5360 const PPCSubtarget &Subtarget) { 5361 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5362 // entry point, but to the function descriptor (the function entry point 5363 // address is part of the function descriptor though). 5364 // The function descriptor is a three doubleword structure with the 5365 // following fields: function entry point, TOC base address and 5366 // environment pointer. 5367 // Thus for a call through a function pointer, the following actions need 5368 // to be performed: 5369 // 1. Save the TOC of the caller in the TOC save area of its stack 5370 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5371 // 2. Load the address of the function entry point from the function 5372 // descriptor. 5373 // 3. Load the TOC of the callee from the function descriptor into r2. 5374 // 4. Load the environment pointer from the function descriptor into 5375 // r11. 5376 // 5. Branch to the function entry point address. 5377 // 6. On return of the callee, the TOC of the caller needs to be 5378 // restored (this is done in FinishCall()). 5379 // 5380 // The loads are scheduled at the beginning of the call sequence, and the 5381 // register copies are flagged together to ensure that no other 5382 // operations can be scheduled in between. E.g. without flagging the 5383 // copies together, a TOC access in the caller could be scheduled between 5384 // the assignment of the callee TOC and the branch to the callee, which leads 5385 // to incorrect code. 5386 5387 // Start by loading the function address from the descriptor. 5388 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5389 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5390 ? (MachineMemOperand::MODereferenceable | 5391 MachineMemOperand::MOInvariant) 5392 : MachineMemOperand::MONone; 5393 5394 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5395 5396 // Registers used in building the DAG. 5397 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5398 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5399 5400 // Offsets of descriptor members. 5401 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5402 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5403 5404 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5405 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5406 5407 // One load for the functions entry point address. 5408 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5409 Alignment, MMOFlags); 5410 5411 // One for loading the TOC anchor for the module that contains the called 5412 // function. 5413 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5414 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5415 SDValue TOCPtr = 5416 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5417 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5418 5419 // One for loading the environment pointer. 5420 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5421 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5422 SDValue LoadEnvPtr = 5423 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5424 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5425 5426 5427 // Then copy the newly loaded TOC anchor to the TOC pointer. 5428 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5429 Chain = TOCVal.getValue(0); 5430 Glue = TOCVal.getValue(1); 5431 5432 // If the function call has an explicit 'nest' parameter, it takes the 5433 // place of the environment pointer. 5434 assert((!hasNest || !Subtarget.isAIXABI()) && 5435 "Nest parameter is not supported on AIX."); 5436 if (!hasNest) { 5437 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5438 Chain = EnvVal.getValue(0); 5439 Glue = EnvVal.getValue(1); 5440 } 5441 5442 // The rest of the indirect call sequence is the same as the non-descriptor 5443 // DAG. 5444 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5445 } 5446 5447 static void 5448 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5449 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5450 SelectionDAG &DAG, 5451 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5452 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5453 const PPCSubtarget &Subtarget) { 5454 const bool IsPPC64 = Subtarget.isPPC64(); 5455 // MVT for a general purpose register. 5456 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5457 5458 // First operand is always the chain. 5459 Ops.push_back(Chain); 5460 5461 // If it's a direct call pass the callee as the second operand. 5462 if (!CFlags.IsIndirect) 5463 Ops.push_back(Callee); 5464 else { 5465 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5466 5467 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5468 // on the stack (this would have been done in `LowerCall_64SVR4` or 5469 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5470 // represents both the indirect branch and a load that restores the TOC 5471 // pointer from the linkage area. The operand for the TOC restore is an add 5472 // of the TOC save offset to the stack pointer. This must be the second 5473 // operand: after the chain input but before any other variadic arguments. 5474 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5475 // saved or used. 5476 if (isTOCSaveRestoreRequired(Subtarget)) { 5477 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5478 5479 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5480 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5481 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5482 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5483 Ops.push_back(AddTOC); 5484 } 5485 5486 // Add the register used for the environment pointer. 5487 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5488 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5489 RegVT)); 5490 5491 5492 // Add CTR register as callee so a bctr can be emitted later. 5493 if (CFlags.IsTailCall) 5494 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5495 } 5496 5497 // If this is a tail call add stack pointer delta. 5498 if (CFlags.IsTailCall) 5499 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5500 5501 // Add argument registers to the end of the list so that they are known live 5502 // into the call. 5503 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5504 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5505 RegsToPass[i].second.getValueType())); 5506 5507 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5508 // no way to mark dependencies as implicit here. 5509 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5510 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5511 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5512 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5513 5514 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5515 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5516 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5517 5518 // Add a register mask operand representing the call-preserved registers. 5519 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5520 const uint32_t *Mask = 5521 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5522 assert(Mask && "Missing call preserved mask for calling convention"); 5523 Ops.push_back(DAG.getRegisterMask(Mask)); 5524 5525 // If the glue is valid, it is the last operand. 5526 if (Glue.getNode()) 5527 Ops.push_back(Glue); 5528 } 5529 5530 SDValue PPCTargetLowering::FinishCall( 5531 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5532 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5533 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5534 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5535 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5536 5537 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5538 Subtarget.isAIXABI()) 5539 setUsesTOCBasePtr(DAG); 5540 5541 unsigned CallOpc = 5542 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5543 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5544 5545 if (!CFlags.IsIndirect) 5546 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5547 else if (Subtarget.usesFunctionDescriptors()) 5548 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5549 dl, CFlags.HasNest, Subtarget); 5550 else 5551 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5552 5553 // Build the operand list for the call instruction. 5554 SmallVector<SDValue, 8> Ops; 5555 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5556 SPDiff, Subtarget); 5557 5558 // Emit tail call. 5559 if (CFlags.IsTailCall) { 5560 // Indirect tail call when using PC Relative calls do not have the same 5561 // constraints. 5562 assert(((Callee.getOpcode() == ISD::Register && 5563 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5564 Callee.getOpcode() == ISD::TargetExternalSymbol || 5565 Callee.getOpcode() == ISD::TargetGlobalAddress || 5566 isa<ConstantSDNode>(Callee) || 5567 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5568 "Expecting a global address, external symbol, absolute value, " 5569 "register or an indirect tail call when PC Relative calls are " 5570 "used."); 5571 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5572 assert(CallOpc == PPCISD::TC_RETURN && 5573 "Unexpected call opcode for a tail call."); 5574 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5575 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5576 } 5577 5578 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5579 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5580 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5581 Glue = Chain.getValue(1); 5582 5583 // When performing tail call optimization the callee pops its arguments off 5584 // the stack. Account for this here so these bytes can be pushed back on in 5585 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5586 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5587 getTargetMachine().Options.GuaranteedTailCallOpt) 5588 ? NumBytes 5589 : 0; 5590 5591 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5592 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5593 Glue, dl); 5594 Glue = Chain.getValue(1); 5595 5596 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5597 DAG, InVals); 5598 } 5599 5600 SDValue 5601 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5602 SmallVectorImpl<SDValue> &InVals) const { 5603 SelectionDAG &DAG = CLI.DAG; 5604 SDLoc &dl = CLI.DL; 5605 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5606 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5607 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5608 SDValue Chain = CLI.Chain; 5609 SDValue Callee = CLI.Callee; 5610 bool &isTailCall = CLI.IsTailCall; 5611 CallingConv::ID CallConv = CLI.CallConv; 5612 bool isVarArg = CLI.IsVarArg; 5613 bool isPatchPoint = CLI.IsPatchPoint; 5614 const CallBase *CB = CLI.CB; 5615 5616 if (isTailCall) { 5617 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5618 isTailCall = false; 5619 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5620 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5621 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5622 else 5623 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5624 Ins, DAG); 5625 if (isTailCall) { 5626 ++NumTailCalls; 5627 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5628 ++NumSiblingCalls; 5629 5630 // PC Relative calls no longer guarantee that the callee is a Global 5631 // Address Node. The callee could be an indirect tail call in which 5632 // case the SDValue for the callee could be a load (to load the address 5633 // of a function pointer) or it may be a register copy (to move the 5634 // address of the callee from a function parameter into a virtual 5635 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5636 assert((Subtarget.isUsingPCRelativeCalls() || 5637 isa<GlobalAddressSDNode>(Callee)) && 5638 "Callee should be an llvm::Function object."); 5639 5640 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5641 << "\nTCO callee: "); 5642 LLVM_DEBUG(Callee.dump()); 5643 } 5644 } 5645 5646 if (!isTailCall && CB && CB->isMustTailCall()) 5647 report_fatal_error("failed to perform tail call elimination on a call " 5648 "site marked musttail"); 5649 5650 // When long calls (i.e. indirect calls) are always used, calls are always 5651 // made via function pointer. If we have a function name, first translate it 5652 // into a pointer. 5653 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5654 !isTailCall) 5655 Callee = LowerGlobalAddress(Callee, DAG); 5656 5657 CallFlags CFlags( 5658 CallConv, isTailCall, isVarArg, isPatchPoint, 5659 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5660 // hasNest 5661 Subtarget.is64BitELFABI() && 5662 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5663 CLI.NoMerge); 5664 5665 if (Subtarget.isAIXABI()) 5666 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5667 InVals, CB); 5668 5669 assert(Subtarget.isSVR4ABI()); 5670 if (Subtarget.isPPC64()) 5671 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5672 InVals, CB); 5673 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5674 InVals, CB); 5675 } 5676 5677 SDValue PPCTargetLowering::LowerCall_32SVR4( 5678 SDValue Chain, SDValue Callee, CallFlags CFlags, 5679 const SmallVectorImpl<ISD::OutputArg> &Outs, 5680 const SmallVectorImpl<SDValue> &OutVals, 5681 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5682 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5683 const CallBase *CB) const { 5684 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5685 // of the 32-bit SVR4 ABI stack frame layout. 5686 5687 const CallingConv::ID CallConv = CFlags.CallConv; 5688 const bool IsVarArg = CFlags.IsVarArg; 5689 const bool IsTailCall = CFlags.IsTailCall; 5690 5691 assert((CallConv == CallingConv::C || 5692 CallConv == CallingConv::Cold || 5693 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5694 5695 const Align PtrAlign(4); 5696 5697 MachineFunction &MF = DAG.getMachineFunction(); 5698 5699 // Mark this function as potentially containing a function that contains a 5700 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5701 // and restoring the callers stack pointer in this functions epilog. This is 5702 // done because by tail calling the called function might overwrite the value 5703 // in this function's (MF) stack pointer stack slot 0(SP). 5704 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5705 CallConv == CallingConv::Fast) 5706 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5707 5708 // Count how many bytes are to be pushed on the stack, including the linkage 5709 // area, parameter list area and the part of the local variable space which 5710 // contains copies of aggregates which are passed by value. 5711 5712 // Assign locations to all of the outgoing arguments. 5713 SmallVector<CCValAssign, 16> ArgLocs; 5714 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5715 5716 // Reserve space for the linkage area on the stack. 5717 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5718 PtrAlign); 5719 if (useSoftFloat()) 5720 CCInfo.PreAnalyzeCallOperands(Outs); 5721 5722 if (IsVarArg) { 5723 // Handle fixed and variable vector arguments differently. 5724 // Fixed vector arguments go into registers as long as registers are 5725 // available. Variable vector arguments always go into memory. 5726 unsigned NumArgs = Outs.size(); 5727 5728 for (unsigned i = 0; i != NumArgs; ++i) { 5729 MVT ArgVT = Outs[i].VT; 5730 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5731 bool Result; 5732 5733 if (Outs[i].IsFixed) { 5734 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5735 CCInfo); 5736 } else { 5737 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5738 ArgFlags, CCInfo); 5739 } 5740 5741 if (Result) { 5742 #ifndef NDEBUG 5743 errs() << "Call operand #" << i << " has unhandled type " 5744 << EVT(ArgVT).getEVTString() << "\n"; 5745 #endif 5746 llvm_unreachable(nullptr); 5747 } 5748 } 5749 } else { 5750 // All arguments are treated the same. 5751 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5752 } 5753 CCInfo.clearWasPPCF128(); 5754 5755 // Assign locations to all of the outgoing aggregate by value arguments. 5756 SmallVector<CCValAssign, 16> ByValArgLocs; 5757 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5758 5759 // Reserve stack space for the allocations in CCInfo. 5760 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5761 5762 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5763 5764 // Size of the linkage area, parameter list area and the part of the local 5765 // space variable where copies of aggregates which are passed by value are 5766 // stored. 5767 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5768 5769 // Calculate by how many bytes the stack has to be adjusted in case of tail 5770 // call optimization. 5771 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5772 5773 // Adjust the stack pointer for the new arguments... 5774 // These operations are automatically eliminated by the prolog/epilog pass 5775 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5776 SDValue CallSeqStart = Chain; 5777 5778 // Load the return address and frame pointer so it can be moved somewhere else 5779 // later. 5780 SDValue LROp, FPOp; 5781 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5782 5783 // Set up a copy of the stack pointer for use loading and storing any 5784 // arguments that may not fit in the registers available for argument 5785 // passing. 5786 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5787 5788 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5789 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5790 SmallVector<SDValue, 8> MemOpChains; 5791 5792 bool seenFloatArg = false; 5793 // Walk the register/memloc assignments, inserting copies/loads. 5794 // i - Tracks the index into the list of registers allocated for the call 5795 // RealArgIdx - Tracks the index into the list of actual function arguments 5796 // j - Tracks the index into the list of byval arguments 5797 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5798 i != e; 5799 ++i, ++RealArgIdx) { 5800 CCValAssign &VA = ArgLocs[i]; 5801 SDValue Arg = OutVals[RealArgIdx]; 5802 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5803 5804 if (Flags.isByVal()) { 5805 // Argument is an aggregate which is passed by value, thus we need to 5806 // create a copy of it in the local variable space of the current stack 5807 // frame (which is the stack frame of the caller) and pass the address of 5808 // this copy to the callee. 5809 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5810 CCValAssign &ByValVA = ByValArgLocs[j++]; 5811 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5812 5813 // Memory reserved in the local variable space of the callers stack frame. 5814 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5815 5816 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5817 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5818 StackPtr, PtrOff); 5819 5820 // Create a copy of the argument in the local area of the current 5821 // stack frame. 5822 SDValue MemcpyCall = 5823 CreateCopyOfByValArgument(Arg, PtrOff, 5824 CallSeqStart.getNode()->getOperand(0), 5825 Flags, DAG, dl); 5826 5827 // This must go outside the CALLSEQ_START..END. 5828 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5829 SDLoc(MemcpyCall)); 5830 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5831 NewCallSeqStart.getNode()); 5832 Chain = CallSeqStart = NewCallSeqStart; 5833 5834 // Pass the address of the aggregate copy on the stack either in a 5835 // physical register or in the parameter list area of the current stack 5836 // frame to the callee. 5837 Arg = PtrOff; 5838 } 5839 5840 // When useCRBits() is true, there can be i1 arguments. 5841 // It is because getRegisterType(MVT::i1) => MVT::i1, 5842 // and for other integer types getRegisterType() => MVT::i32. 5843 // Extend i1 and ensure callee will get i32. 5844 if (Arg.getValueType() == MVT::i1) 5845 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5846 dl, MVT::i32, Arg); 5847 5848 if (VA.isRegLoc()) { 5849 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5850 // Put argument in a physical register. 5851 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5852 bool IsLE = Subtarget.isLittleEndian(); 5853 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5854 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5855 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5856 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5857 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5858 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5859 SVal.getValue(0))); 5860 } else 5861 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5862 } else { 5863 // Put argument in the parameter list area of the current stack frame. 5864 assert(VA.isMemLoc()); 5865 unsigned LocMemOffset = VA.getLocMemOffset(); 5866 5867 if (!IsTailCall) { 5868 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5869 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5870 StackPtr, PtrOff); 5871 5872 MemOpChains.push_back( 5873 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5874 } else { 5875 // Calculate and remember argument location. 5876 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5877 TailCallArguments); 5878 } 5879 } 5880 } 5881 5882 if (!MemOpChains.empty()) 5883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5884 5885 // Build a sequence of copy-to-reg nodes chained together with token chain 5886 // and flag operands which copy the outgoing args into the appropriate regs. 5887 SDValue InFlag; 5888 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5889 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5890 RegsToPass[i].second, InFlag); 5891 InFlag = Chain.getValue(1); 5892 } 5893 5894 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5895 // registers. 5896 if (IsVarArg) { 5897 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5898 SDValue Ops[] = { Chain, InFlag }; 5899 5900 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5901 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5902 5903 InFlag = Chain.getValue(1); 5904 } 5905 5906 if (IsTailCall) 5907 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5908 TailCallArguments); 5909 5910 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5911 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5912 } 5913 5914 // Copy an argument into memory, being careful to do this outside the 5915 // call sequence for the call to which the argument belongs. 5916 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5917 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5918 SelectionDAG &DAG, const SDLoc &dl) const { 5919 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5920 CallSeqStart.getNode()->getOperand(0), 5921 Flags, DAG, dl); 5922 // The MEMCPY must go outside the CALLSEQ_START..END. 5923 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5924 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5925 SDLoc(MemcpyCall)); 5926 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5927 NewCallSeqStart.getNode()); 5928 return NewCallSeqStart; 5929 } 5930 5931 SDValue PPCTargetLowering::LowerCall_64SVR4( 5932 SDValue Chain, SDValue Callee, CallFlags CFlags, 5933 const SmallVectorImpl<ISD::OutputArg> &Outs, 5934 const SmallVectorImpl<SDValue> &OutVals, 5935 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5936 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5937 const CallBase *CB) const { 5938 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5939 bool isLittleEndian = Subtarget.isLittleEndian(); 5940 unsigned NumOps = Outs.size(); 5941 bool IsSibCall = false; 5942 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5943 5944 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5945 unsigned PtrByteSize = 8; 5946 5947 MachineFunction &MF = DAG.getMachineFunction(); 5948 5949 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5950 IsSibCall = true; 5951 5952 // Mark this function as potentially containing a function that contains a 5953 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5954 // and restoring the callers stack pointer in this functions epilog. This is 5955 // done because by tail calling the called function might overwrite the value 5956 // in this function's (MF) stack pointer stack slot 0(SP). 5957 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5958 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5959 5960 assert(!(IsFastCall && CFlags.IsVarArg) && 5961 "fastcc not supported on varargs functions"); 5962 5963 // Count how many bytes are to be pushed on the stack, including the linkage 5964 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5965 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5966 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5967 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5968 unsigned NumBytes = LinkageSize; 5969 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5970 5971 static const MCPhysReg GPR[] = { 5972 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5973 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5974 }; 5975 static const MCPhysReg VR[] = { 5976 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5977 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5978 }; 5979 5980 const unsigned NumGPRs = array_lengthof(GPR); 5981 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5982 const unsigned NumVRs = array_lengthof(VR); 5983 5984 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5985 // can be passed to the callee in registers. 5986 // For the fast calling convention, there is another check below. 5987 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5988 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5989 if (!HasParameterArea) { 5990 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5991 unsigned AvailableFPRs = NumFPRs; 5992 unsigned AvailableVRs = NumVRs; 5993 unsigned NumBytesTmp = NumBytes; 5994 for (unsigned i = 0; i != NumOps; ++i) { 5995 if (Outs[i].Flags.isNest()) continue; 5996 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5997 PtrByteSize, LinkageSize, ParamAreaSize, 5998 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5999 HasParameterArea = true; 6000 } 6001 } 6002 6003 // When using the fast calling convention, we don't provide backing for 6004 // arguments that will be in registers. 6005 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6006 6007 // Avoid allocating parameter area for fastcc functions if all the arguments 6008 // can be passed in the registers. 6009 if (IsFastCall) 6010 HasParameterArea = false; 6011 6012 // Add up all the space actually used. 6013 for (unsigned i = 0; i != NumOps; ++i) { 6014 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6015 EVT ArgVT = Outs[i].VT; 6016 EVT OrigVT = Outs[i].ArgVT; 6017 6018 if (Flags.isNest()) 6019 continue; 6020 6021 if (IsFastCall) { 6022 if (Flags.isByVal()) { 6023 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6024 if (NumGPRsUsed > NumGPRs) 6025 HasParameterArea = true; 6026 } else { 6027 switch (ArgVT.getSimpleVT().SimpleTy) { 6028 default: llvm_unreachable("Unexpected ValueType for argument!"); 6029 case MVT::i1: 6030 case MVT::i32: 6031 case MVT::i64: 6032 if (++NumGPRsUsed <= NumGPRs) 6033 continue; 6034 break; 6035 case MVT::v4i32: 6036 case MVT::v8i16: 6037 case MVT::v16i8: 6038 case MVT::v2f64: 6039 case MVT::v2i64: 6040 case MVT::v1i128: 6041 case MVT::f128: 6042 if (++NumVRsUsed <= NumVRs) 6043 continue; 6044 break; 6045 case MVT::v4f32: 6046 if (++NumVRsUsed <= NumVRs) 6047 continue; 6048 break; 6049 case MVT::f32: 6050 case MVT::f64: 6051 if (++NumFPRsUsed <= NumFPRs) 6052 continue; 6053 break; 6054 } 6055 HasParameterArea = true; 6056 } 6057 } 6058 6059 /* Respect alignment of argument on the stack. */ 6060 auto Alignement = 6061 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6062 NumBytes = alignTo(NumBytes, Alignement); 6063 6064 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6065 if (Flags.isInConsecutiveRegsLast()) 6066 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6067 } 6068 6069 unsigned NumBytesActuallyUsed = NumBytes; 6070 6071 // In the old ELFv1 ABI, 6072 // the prolog code of the callee may store up to 8 GPR argument registers to 6073 // the stack, allowing va_start to index over them in memory if its varargs. 6074 // Because we cannot tell if this is needed on the caller side, we have to 6075 // conservatively assume that it is needed. As such, make sure we have at 6076 // least enough stack space for the caller to store the 8 GPRs. 6077 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6078 // really requires memory operands, e.g. a vararg function. 6079 if (HasParameterArea) 6080 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6081 else 6082 NumBytes = LinkageSize; 6083 6084 // Tail call needs the stack to be aligned. 6085 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6086 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6087 6088 int SPDiff = 0; 6089 6090 // Calculate by how many bytes the stack has to be adjusted in case of tail 6091 // call optimization. 6092 if (!IsSibCall) 6093 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6094 6095 // To protect arguments on the stack from being clobbered in a tail call, 6096 // force all the loads to happen before doing any other lowering. 6097 if (CFlags.IsTailCall) 6098 Chain = DAG.getStackArgumentTokenFactor(Chain); 6099 6100 // Adjust the stack pointer for the new arguments... 6101 // These operations are automatically eliminated by the prolog/epilog pass 6102 if (!IsSibCall) 6103 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6104 SDValue CallSeqStart = Chain; 6105 6106 // Load the return address and frame pointer so it can be move somewhere else 6107 // later. 6108 SDValue LROp, FPOp; 6109 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6110 6111 // Set up a copy of the stack pointer for use loading and storing any 6112 // arguments that may not fit in the registers available for argument 6113 // passing. 6114 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6115 6116 // Figure out which arguments are going to go in registers, and which in 6117 // memory. Also, if this is a vararg function, floating point operations 6118 // must be stored to our stack, and loaded into integer regs as well, if 6119 // any integer regs are available for argument passing. 6120 unsigned ArgOffset = LinkageSize; 6121 6122 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6123 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6124 6125 SmallVector<SDValue, 8> MemOpChains; 6126 for (unsigned i = 0; i != NumOps; ++i) { 6127 SDValue Arg = OutVals[i]; 6128 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6129 EVT ArgVT = Outs[i].VT; 6130 EVT OrigVT = Outs[i].ArgVT; 6131 6132 // PtrOff will be used to store the current argument to the stack if a 6133 // register cannot be found for it. 6134 SDValue PtrOff; 6135 6136 // We re-align the argument offset for each argument, except when using the 6137 // fast calling convention, when we need to make sure we do that only when 6138 // we'll actually use a stack slot. 6139 auto ComputePtrOff = [&]() { 6140 /* Respect alignment of argument on the stack. */ 6141 auto Alignment = 6142 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6143 ArgOffset = alignTo(ArgOffset, Alignment); 6144 6145 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6146 6147 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6148 }; 6149 6150 if (!IsFastCall) { 6151 ComputePtrOff(); 6152 6153 /* Compute GPR index associated with argument offset. */ 6154 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6155 GPR_idx = std::min(GPR_idx, NumGPRs); 6156 } 6157 6158 // Promote integers to 64-bit values. 6159 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6160 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6161 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6162 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6163 } 6164 6165 // FIXME memcpy is used way more than necessary. Correctness first. 6166 // Note: "by value" is code for passing a structure by value, not 6167 // basic types. 6168 if (Flags.isByVal()) { 6169 // Note: Size includes alignment padding, so 6170 // struct x { short a; char b; } 6171 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6172 // These are the proper values we need for right-justifying the 6173 // aggregate in a parameter register. 6174 unsigned Size = Flags.getByValSize(); 6175 6176 // An empty aggregate parameter takes up no storage and no 6177 // registers. 6178 if (Size == 0) 6179 continue; 6180 6181 if (IsFastCall) 6182 ComputePtrOff(); 6183 6184 // All aggregates smaller than 8 bytes must be passed right-justified. 6185 if (Size==1 || Size==2 || Size==4) { 6186 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6187 if (GPR_idx != NumGPRs) { 6188 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6189 MachinePointerInfo(), VT); 6190 MemOpChains.push_back(Load.getValue(1)); 6191 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6192 6193 ArgOffset += PtrByteSize; 6194 continue; 6195 } 6196 } 6197 6198 if (GPR_idx == NumGPRs && Size < 8) { 6199 SDValue AddPtr = PtrOff; 6200 if (!isLittleEndian) { 6201 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6202 PtrOff.getValueType()); 6203 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6204 } 6205 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6206 CallSeqStart, 6207 Flags, DAG, dl); 6208 ArgOffset += PtrByteSize; 6209 continue; 6210 } 6211 // Copy the object to parameter save area if it can not be entirely passed 6212 // by registers. 6213 // FIXME: we only need to copy the parts which need to be passed in 6214 // parameter save area. For the parts passed by registers, we don't need 6215 // to copy them to the stack although we need to allocate space for them 6216 // in parameter save area. 6217 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6218 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6219 CallSeqStart, 6220 Flags, DAG, dl); 6221 6222 // When a register is available, pass a small aggregate right-justified. 6223 if (Size < 8 && GPR_idx != NumGPRs) { 6224 // The easiest way to get this right-justified in a register 6225 // is to copy the structure into the rightmost portion of a 6226 // local variable slot, then load the whole slot into the 6227 // register. 6228 // FIXME: The memcpy seems to produce pretty awful code for 6229 // small aggregates, particularly for packed ones. 6230 // FIXME: It would be preferable to use the slot in the 6231 // parameter save area instead of a new local variable. 6232 SDValue AddPtr = PtrOff; 6233 if (!isLittleEndian) { 6234 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6235 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6236 } 6237 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6238 CallSeqStart, 6239 Flags, DAG, dl); 6240 6241 // Load the slot into the register. 6242 SDValue Load = 6243 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6244 MemOpChains.push_back(Load.getValue(1)); 6245 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6246 6247 // Done with this argument. 6248 ArgOffset += PtrByteSize; 6249 continue; 6250 } 6251 6252 // For aggregates larger than PtrByteSize, copy the pieces of the 6253 // object that fit into registers from the parameter save area. 6254 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6255 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6256 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6257 if (GPR_idx != NumGPRs) { 6258 SDValue Load = 6259 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6260 MemOpChains.push_back(Load.getValue(1)); 6261 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6262 ArgOffset += PtrByteSize; 6263 } else { 6264 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6265 break; 6266 } 6267 } 6268 continue; 6269 } 6270 6271 switch (Arg.getSimpleValueType().SimpleTy) { 6272 default: llvm_unreachable("Unexpected ValueType for argument!"); 6273 case MVT::i1: 6274 case MVT::i32: 6275 case MVT::i64: 6276 if (Flags.isNest()) { 6277 // The 'nest' parameter, if any, is passed in R11. 6278 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6279 break; 6280 } 6281 6282 // These can be scalar arguments or elements of an integer array type 6283 // passed directly. Clang may use those instead of "byval" aggregate 6284 // types to avoid forcing arguments to memory unnecessarily. 6285 if (GPR_idx != NumGPRs) { 6286 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6287 } else { 6288 if (IsFastCall) 6289 ComputePtrOff(); 6290 6291 assert(HasParameterArea && 6292 "Parameter area must exist to pass an argument in memory."); 6293 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6294 true, CFlags.IsTailCall, false, MemOpChains, 6295 TailCallArguments, dl); 6296 if (IsFastCall) 6297 ArgOffset += PtrByteSize; 6298 } 6299 if (!IsFastCall) 6300 ArgOffset += PtrByteSize; 6301 break; 6302 case MVT::f32: 6303 case MVT::f64: { 6304 // These can be scalar arguments or elements of a float array type 6305 // passed directly. The latter are used to implement ELFv2 homogenous 6306 // float aggregates. 6307 6308 // Named arguments go into FPRs first, and once they overflow, the 6309 // remaining arguments go into GPRs and then the parameter save area. 6310 // Unnamed arguments for vararg functions always go to GPRs and 6311 // then the parameter save area. For now, put all arguments to vararg 6312 // routines always in both locations (FPR *and* GPR or stack slot). 6313 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6314 bool NeededLoad = false; 6315 6316 // First load the argument into the next available FPR. 6317 if (FPR_idx != NumFPRs) 6318 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6319 6320 // Next, load the argument into GPR or stack slot if needed. 6321 if (!NeedGPROrStack) 6322 ; 6323 else if (GPR_idx != NumGPRs && !IsFastCall) { 6324 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6325 // once we support fp <-> gpr moves. 6326 6327 // In the non-vararg case, this can only ever happen in the 6328 // presence of f32 array types, since otherwise we never run 6329 // out of FPRs before running out of GPRs. 6330 SDValue ArgVal; 6331 6332 // Double values are always passed in a single GPR. 6333 if (Arg.getValueType() != MVT::f32) { 6334 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6335 6336 // Non-array float values are extended and passed in a GPR. 6337 } else if (!Flags.isInConsecutiveRegs()) { 6338 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6339 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6340 6341 // If we have an array of floats, we collect every odd element 6342 // together with its predecessor into one GPR. 6343 } else if (ArgOffset % PtrByteSize != 0) { 6344 SDValue Lo, Hi; 6345 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6346 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6347 if (!isLittleEndian) 6348 std::swap(Lo, Hi); 6349 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6350 6351 // The final element, if even, goes into the first half of a GPR. 6352 } else if (Flags.isInConsecutiveRegsLast()) { 6353 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6354 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6355 if (!isLittleEndian) 6356 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6357 DAG.getConstant(32, dl, MVT::i32)); 6358 6359 // Non-final even elements are skipped; they will be handled 6360 // together the with subsequent argument on the next go-around. 6361 } else 6362 ArgVal = SDValue(); 6363 6364 if (ArgVal.getNode()) 6365 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6366 } else { 6367 if (IsFastCall) 6368 ComputePtrOff(); 6369 6370 // Single-precision floating-point values are mapped to the 6371 // second (rightmost) word of the stack doubleword. 6372 if (Arg.getValueType() == MVT::f32 && 6373 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6374 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6375 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6376 } 6377 6378 assert(HasParameterArea && 6379 "Parameter area must exist to pass an argument in memory."); 6380 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6381 true, CFlags.IsTailCall, false, MemOpChains, 6382 TailCallArguments, dl); 6383 6384 NeededLoad = true; 6385 } 6386 // When passing an array of floats, the array occupies consecutive 6387 // space in the argument area; only round up to the next doubleword 6388 // at the end of the array. Otherwise, each float takes 8 bytes. 6389 if (!IsFastCall || NeededLoad) { 6390 ArgOffset += (Arg.getValueType() == MVT::f32 && 6391 Flags.isInConsecutiveRegs()) ? 4 : 8; 6392 if (Flags.isInConsecutiveRegsLast()) 6393 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6394 } 6395 break; 6396 } 6397 case MVT::v4f32: 6398 case MVT::v4i32: 6399 case MVT::v8i16: 6400 case MVT::v16i8: 6401 case MVT::v2f64: 6402 case MVT::v2i64: 6403 case MVT::v1i128: 6404 case MVT::f128: 6405 // These can be scalar arguments or elements of a vector array type 6406 // passed directly. The latter are used to implement ELFv2 homogenous 6407 // vector aggregates. 6408 6409 // For a varargs call, named arguments go into VRs or on the stack as 6410 // usual; unnamed arguments always go to the stack or the corresponding 6411 // GPRs when within range. For now, we always put the value in both 6412 // locations (or even all three). 6413 if (CFlags.IsVarArg) { 6414 assert(HasParameterArea && 6415 "Parameter area must exist if we have a varargs call."); 6416 // We could elide this store in the case where the object fits 6417 // entirely in R registers. Maybe later. 6418 SDValue Store = 6419 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6420 MemOpChains.push_back(Store); 6421 if (VR_idx != NumVRs) { 6422 SDValue Load = 6423 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6424 MemOpChains.push_back(Load.getValue(1)); 6425 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6426 } 6427 ArgOffset += 16; 6428 for (unsigned i=0; i<16; i+=PtrByteSize) { 6429 if (GPR_idx == NumGPRs) 6430 break; 6431 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6432 DAG.getConstant(i, dl, PtrVT)); 6433 SDValue Load = 6434 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6435 MemOpChains.push_back(Load.getValue(1)); 6436 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6437 } 6438 break; 6439 } 6440 6441 // Non-varargs Altivec params go into VRs or on the stack. 6442 if (VR_idx != NumVRs) { 6443 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6444 } else { 6445 if (IsFastCall) 6446 ComputePtrOff(); 6447 6448 assert(HasParameterArea && 6449 "Parameter area must exist to pass an argument in memory."); 6450 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6451 true, CFlags.IsTailCall, true, MemOpChains, 6452 TailCallArguments, dl); 6453 if (IsFastCall) 6454 ArgOffset += 16; 6455 } 6456 6457 if (!IsFastCall) 6458 ArgOffset += 16; 6459 break; 6460 } 6461 } 6462 6463 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6464 "mismatch in size of parameter area"); 6465 (void)NumBytesActuallyUsed; 6466 6467 if (!MemOpChains.empty()) 6468 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6469 6470 // Check if this is an indirect call (MTCTR/BCTRL). 6471 // See prepareDescriptorIndirectCall and buildCallOperands for more 6472 // information about calls through function pointers in the 64-bit SVR4 ABI. 6473 if (CFlags.IsIndirect) { 6474 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6475 // caller in the TOC save area. 6476 if (isTOCSaveRestoreRequired(Subtarget)) { 6477 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6478 // Load r2 into a virtual register and store it to the TOC save area. 6479 setUsesTOCBasePtr(DAG); 6480 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6481 // TOC save area offset. 6482 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6483 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6484 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6485 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6486 MachinePointerInfo::getStack( 6487 DAG.getMachineFunction(), TOCSaveOffset)); 6488 } 6489 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6490 // This does not mean the MTCTR instruction must use R12; it's easier 6491 // to model this as an extra parameter, so do that. 6492 if (isELFv2ABI && !CFlags.IsPatchPoint) 6493 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6494 } 6495 6496 // Build a sequence of copy-to-reg nodes chained together with token chain 6497 // and flag operands which copy the outgoing args into the appropriate regs. 6498 SDValue InFlag; 6499 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6500 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6501 RegsToPass[i].second, InFlag); 6502 InFlag = Chain.getValue(1); 6503 } 6504 6505 if (CFlags.IsTailCall && !IsSibCall) 6506 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6507 TailCallArguments); 6508 6509 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6510 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6511 } 6512 6513 // Returns true when the shadow of a general purpose argument register 6514 // in the parameter save area is aligned to at least 'RequiredAlign'. 6515 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6516 assert(RequiredAlign.value() <= 16 && 6517 "Required alignment greater than stack alignment."); 6518 switch (Reg) { 6519 default: 6520 report_fatal_error("called on invalid register."); 6521 case PPC::R5: 6522 case PPC::R9: 6523 case PPC::X3: 6524 case PPC::X5: 6525 case PPC::X7: 6526 case PPC::X9: 6527 // These registers are 16 byte aligned which is the most strict aligment 6528 // we can support. 6529 return true; 6530 case PPC::R3: 6531 case PPC::R7: 6532 case PPC::X4: 6533 case PPC::X6: 6534 case PPC::X8: 6535 case PPC::X10: 6536 // The shadow of these registers in the PSA is 8 byte aligned. 6537 return RequiredAlign <= 8; 6538 case PPC::R4: 6539 case PPC::R6: 6540 case PPC::R8: 6541 case PPC::R10: 6542 return RequiredAlign <= 4; 6543 } 6544 } 6545 6546 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6547 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6548 CCState &S) { 6549 AIXCCState &State = static_cast<AIXCCState &>(S); 6550 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6551 State.getMachineFunction().getSubtarget()); 6552 const bool IsPPC64 = Subtarget.isPPC64(); 6553 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6554 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6555 6556 if (ValVT == MVT::f128) 6557 report_fatal_error("f128 is unimplemented on AIX."); 6558 6559 if (ArgFlags.isNest()) 6560 report_fatal_error("Nest arguments are unimplemented."); 6561 6562 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6563 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6564 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6565 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6566 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6567 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6568 6569 static const MCPhysReg VR[] = {// Vector registers. 6570 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6571 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6572 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6573 6574 if (ArgFlags.isByVal()) { 6575 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6576 report_fatal_error("Pass-by-value arguments with alignment greater than " 6577 "register width are not supported."); 6578 6579 const unsigned ByValSize = ArgFlags.getByValSize(); 6580 6581 // An empty aggregate parameter takes up no storage and no registers, 6582 // but needs a MemLoc for a stack slot for the formal arguments side. 6583 if (ByValSize == 0) { 6584 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6585 State.getNextStackOffset(), RegVT, 6586 LocInfo)); 6587 return false; 6588 } 6589 6590 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6591 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6592 for (const unsigned E = Offset + StackSize; Offset < E; 6593 Offset += PtrAlign.value()) { 6594 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6595 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6596 else { 6597 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6598 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6599 LocInfo)); 6600 break; 6601 } 6602 } 6603 return false; 6604 } 6605 6606 // Arguments always reserve parameter save area. 6607 switch (ValVT.SimpleTy) { 6608 default: 6609 report_fatal_error("Unhandled value type for argument."); 6610 case MVT::i64: 6611 // i64 arguments should have been split to i32 for PPC32. 6612 assert(IsPPC64 && "PPC32 should have split i64 values."); 6613 LLVM_FALLTHROUGH; 6614 case MVT::i1: 6615 case MVT::i32: { 6616 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6617 // AIX integer arguments are always passed in register width. 6618 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6619 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6620 : CCValAssign::LocInfo::ZExt; 6621 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6622 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6623 else 6624 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6625 6626 return false; 6627 } 6628 case MVT::f32: 6629 case MVT::f64: { 6630 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6631 const unsigned StoreSize = LocVT.getStoreSize(); 6632 // Floats are always 4-byte aligned in the PSA on AIX. 6633 // This includes f64 in 64-bit mode for ABI compatibility. 6634 const unsigned Offset = 6635 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6636 unsigned FReg = State.AllocateReg(FPR); 6637 if (FReg) 6638 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6639 6640 // Reserve and initialize GPRs or initialize the PSA as required. 6641 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6642 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6643 assert(FReg && "An FPR should be available when a GPR is reserved."); 6644 if (State.isVarArg()) { 6645 // Successfully reserved GPRs are only initialized for vararg calls. 6646 // Custom handling is required for: 6647 // f64 in PPC32 needs to be split into 2 GPRs. 6648 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6649 State.addLoc( 6650 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6651 } 6652 } else { 6653 // If there are insufficient GPRs, the PSA needs to be initialized. 6654 // Initialization occurs even if an FPR was initialized for 6655 // compatibility with the AIX XL compiler. The full memory for the 6656 // argument will be initialized even if a prior word is saved in GPR. 6657 // A custom memLoc is used when the argument also passes in FPR so 6658 // that the callee handling can skip over it easily. 6659 State.addLoc( 6660 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6661 LocInfo) 6662 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6663 break; 6664 } 6665 } 6666 6667 return false; 6668 } 6669 case MVT::v4f32: 6670 case MVT::v4i32: 6671 case MVT::v8i16: 6672 case MVT::v16i8: 6673 case MVT::v2i64: 6674 case MVT::v2f64: 6675 case MVT::v1i128: { 6676 const unsigned VecSize = 16; 6677 const Align VecAlign(VecSize); 6678 6679 if (!State.isVarArg()) { 6680 // If there are vector registers remaining we don't consume any stack 6681 // space. 6682 if (unsigned VReg = State.AllocateReg(VR)) { 6683 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6684 return false; 6685 } 6686 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6687 // might be allocated in the portion of the PSA that is shadowed by the 6688 // GPRs. 6689 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6690 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6691 return false; 6692 } 6693 6694 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6695 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6696 6697 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6698 // Burn any underaligned registers and their shadowed stack space until 6699 // we reach the required alignment. 6700 while (NextRegIndex != GPRs.size() && 6701 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6702 // Shadow allocate register and its stack shadow. 6703 unsigned Reg = State.AllocateReg(GPRs); 6704 State.AllocateStack(PtrSize, PtrAlign); 6705 assert(Reg && "Allocating register unexpectedly failed."); 6706 (void)Reg; 6707 NextRegIndex = State.getFirstUnallocated(GPRs); 6708 } 6709 6710 // Vectors that are passed as fixed arguments are handled differently. 6711 // They are passed in VRs if any are available (unlike arguments passed 6712 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6713 // functions) 6714 if (State.isFixed(ValNo)) { 6715 if (unsigned VReg = State.AllocateReg(VR)) { 6716 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6717 // Shadow allocate GPRs and stack space even though we pass in a VR. 6718 for (unsigned I = 0; I != VecSize; I += PtrSize) 6719 State.AllocateReg(GPRs); 6720 State.AllocateStack(VecSize, VecAlign); 6721 return false; 6722 } 6723 // No vector registers remain so pass on the stack. 6724 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6725 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6726 return false; 6727 } 6728 6729 // If all GPRS are consumed then we pass the argument fully on the stack. 6730 if (NextRegIndex == GPRs.size()) { 6731 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6732 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6733 return false; 6734 } 6735 6736 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6737 // half of the argument, and then need to pass the remaining half on the 6738 // stack. 6739 if (GPRs[NextRegIndex] == PPC::R9) { 6740 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6741 State.addLoc( 6742 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6743 6744 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6745 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6746 assert(FirstReg && SecondReg && 6747 "Allocating R9 or R10 unexpectedly failed."); 6748 State.addLoc( 6749 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6750 State.addLoc( 6751 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6752 return false; 6753 } 6754 6755 // We have enough GPRs to fully pass the vector argument, and we have 6756 // already consumed any underaligned registers. Start with the custom 6757 // MemLoc and then the custom RegLocs. 6758 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6759 State.addLoc( 6760 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6761 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6762 const unsigned Reg = State.AllocateReg(GPRs); 6763 assert(Reg && "Failed to allocated register for vararg vector argument"); 6764 State.addLoc( 6765 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6766 } 6767 return false; 6768 } 6769 } 6770 return true; 6771 } 6772 6773 // So far, this function is only used by LowerFormalArguments_AIX() 6774 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6775 bool IsPPC64, 6776 bool HasP8Vector, 6777 bool HasVSX) { 6778 assert((IsPPC64 || SVT != MVT::i64) && 6779 "i64 should have been split for 32-bit codegen."); 6780 6781 switch (SVT) { 6782 default: 6783 report_fatal_error("Unexpected value type for formal argument"); 6784 case MVT::i1: 6785 case MVT::i32: 6786 case MVT::i64: 6787 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6788 case MVT::f32: 6789 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6790 case MVT::f64: 6791 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6792 case MVT::v4f32: 6793 case MVT::v4i32: 6794 case MVT::v8i16: 6795 case MVT::v16i8: 6796 case MVT::v2i64: 6797 case MVT::v2f64: 6798 case MVT::v1i128: 6799 return &PPC::VRRCRegClass; 6800 } 6801 } 6802 6803 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6804 SelectionDAG &DAG, SDValue ArgValue, 6805 MVT LocVT, const SDLoc &dl) { 6806 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6807 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6808 6809 if (Flags.isSExt()) 6810 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6811 DAG.getValueType(ValVT)); 6812 else if (Flags.isZExt()) 6813 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6814 DAG.getValueType(ValVT)); 6815 6816 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6817 } 6818 6819 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6820 const unsigned LASize = FL->getLinkageSize(); 6821 6822 if (PPC::GPRCRegClass.contains(Reg)) { 6823 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6824 "Reg must be a valid argument register!"); 6825 return LASize + 4 * (Reg - PPC::R3); 6826 } 6827 6828 if (PPC::G8RCRegClass.contains(Reg)) { 6829 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6830 "Reg must be a valid argument register!"); 6831 return LASize + 8 * (Reg - PPC::X3); 6832 } 6833 6834 llvm_unreachable("Only general purpose registers expected."); 6835 } 6836 6837 // AIX ABI Stack Frame Layout: 6838 // 6839 // Low Memory +--------------------------------------------+ 6840 // SP +---> | Back chain | ---+ 6841 // | +--------------------------------------------+ | 6842 // | | Saved Condition Register | | 6843 // | +--------------------------------------------+ | 6844 // | | Saved Linkage Register | | 6845 // | +--------------------------------------------+ | Linkage Area 6846 // | | Reserved for compilers | | 6847 // | +--------------------------------------------+ | 6848 // | | Reserved for binders | | 6849 // | +--------------------------------------------+ | 6850 // | | Saved TOC pointer | ---+ 6851 // | +--------------------------------------------+ 6852 // | | Parameter save area | 6853 // | +--------------------------------------------+ 6854 // | | Alloca space | 6855 // | +--------------------------------------------+ 6856 // | | Local variable space | 6857 // | +--------------------------------------------+ 6858 // | | Float/int conversion temporary | 6859 // | +--------------------------------------------+ 6860 // | | Save area for AltiVec registers | 6861 // | +--------------------------------------------+ 6862 // | | AltiVec alignment padding | 6863 // | +--------------------------------------------+ 6864 // | | Save area for VRSAVE register | 6865 // | +--------------------------------------------+ 6866 // | | Save area for General Purpose registers | 6867 // | +--------------------------------------------+ 6868 // | | Save area for Floating Point registers | 6869 // | +--------------------------------------------+ 6870 // +---- | Back chain | 6871 // High Memory +--------------------------------------------+ 6872 // 6873 // Specifications: 6874 // AIX 7.2 Assembler Language Reference 6875 // Subroutine linkage convention 6876 6877 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6878 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6879 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6880 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6881 6882 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6883 CallConv == CallingConv::Fast) && 6884 "Unexpected calling convention!"); 6885 6886 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6887 report_fatal_error("Tail call support is unimplemented on AIX."); 6888 6889 if (useSoftFloat()) 6890 report_fatal_error("Soft float support is unimplemented on AIX."); 6891 6892 const PPCSubtarget &Subtarget = 6893 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6894 6895 const bool IsPPC64 = Subtarget.isPPC64(); 6896 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6897 6898 // Assign locations to all of the incoming arguments. 6899 SmallVector<CCValAssign, 16> ArgLocs; 6900 MachineFunction &MF = DAG.getMachineFunction(); 6901 MachineFrameInfo &MFI = MF.getFrameInfo(); 6902 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6903 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6904 6905 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6906 // Reserve space for the linkage area on the stack. 6907 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6908 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6909 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6910 6911 SmallVector<SDValue, 8> MemOps; 6912 6913 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6914 CCValAssign &VA = ArgLocs[I++]; 6915 MVT LocVT = VA.getLocVT(); 6916 MVT ValVT = VA.getValVT(); 6917 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6918 // For compatibility with the AIX XL compiler, the float args in the 6919 // parameter save area are initialized even if the argument is available 6920 // in register. The caller is required to initialize both the register 6921 // and memory, however, the callee can choose to expect it in either. 6922 // The memloc is dismissed here because the argument is retrieved from 6923 // the register. 6924 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6925 continue; 6926 6927 auto HandleMemLoc = [&]() { 6928 const unsigned LocSize = LocVT.getStoreSize(); 6929 const unsigned ValSize = ValVT.getStoreSize(); 6930 assert((ValSize <= LocSize) && 6931 "Object size is larger than size of MemLoc"); 6932 int CurArgOffset = VA.getLocMemOffset(); 6933 // Objects are right-justified because AIX is big-endian. 6934 if (LocSize > ValSize) 6935 CurArgOffset += LocSize - ValSize; 6936 // Potential tail calls could cause overwriting of argument stack slots. 6937 const bool IsImmutable = 6938 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6939 (CallConv == CallingConv::Fast)); 6940 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6941 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6942 SDValue ArgValue = 6943 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6944 InVals.push_back(ArgValue); 6945 }; 6946 6947 // Vector arguments to VaArg functions are passed both on the stack, and 6948 // in any available GPRs. Load the value from the stack and add the GPRs 6949 // as live ins. 6950 if (VA.isMemLoc() && VA.needsCustom()) { 6951 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6952 assert(isVarArg && "Only use custom memloc for vararg."); 6953 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6954 // matching custom RegLocs. 6955 const unsigned OriginalValNo = VA.getValNo(); 6956 (void)OriginalValNo; 6957 6958 auto HandleCustomVecRegLoc = [&]() { 6959 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6960 "Missing custom RegLoc."); 6961 VA = ArgLocs[I++]; 6962 assert(VA.getValVT().isVector() && 6963 "Unexpected Val type for custom RegLoc."); 6964 assert(VA.getValNo() == OriginalValNo && 6965 "ValNo mismatch between custom MemLoc and RegLoc."); 6966 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6967 MF.addLiveIn(VA.getLocReg(), 6968 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6969 Subtarget.hasVSX())); 6970 }; 6971 6972 HandleMemLoc(); 6973 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6974 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6975 // R10. 6976 HandleCustomVecRegLoc(); 6977 HandleCustomVecRegLoc(); 6978 6979 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6980 // we passed the vector in R5, R6, R7 and R8. 6981 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6982 assert(!IsPPC64 && 6983 "Only 2 custom RegLocs expected for 64-bit codegen."); 6984 HandleCustomVecRegLoc(); 6985 HandleCustomVecRegLoc(); 6986 } 6987 6988 continue; 6989 } 6990 6991 if (VA.isRegLoc()) { 6992 if (VA.getValVT().isScalarInteger()) 6993 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6994 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6995 switch (VA.getValVT().SimpleTy) { 6996 default: 6997 report_fatal_error("Unhandled value type for argument."); 6998 case MVT::f32: 6999 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7000 break; 7001 case MVT::f64: 7002 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7003 break; 7004 } 7005 } else if (VA.getValVT().isVector()) { 7006 switch (VA.getValVT().SimpleTy) { 7007 default: 7008 report_fatal_error("Unhandled value type for argument."); 7009 case MVT::v16i8: 7010 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7011 break; 7012 case MVT::v8i16: 7013 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7014 break; 7015 case MVT::v4i32: 7016 case MVT::v2i64: 7017 case MVT::v1i128: 7018 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7019 break; 7020 case MVT::v4f32: 7021 case MVT::v2f64: 7022 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7023 break; 7024 } 7025 } 7026 } 7027 7028 if (Flags.isByVal() && VA.isMemLoc()) { 7029 const unsigned Size = 7030 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7031 PtrByteSize); 7032 const int FI = MF.getFrameInfo().CreateFixedObject( 7033 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7034 /* IsAliased */ true); 7035 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7036 InVals.push_back(FIN); 7037 7038 continue; 7039 } 7040 7041 if (Flags.isByVal()) { 7042 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7043 7044 const MCPhysReg ArgReg = VA.getLocReg(); 7045 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7046 7047 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7048 report_fatal_error("Over aligned byvals not supported yet."); 7049 7050 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7051 const int FI = MF.getFrameInfo().CreateFixedObject( 7052 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7053 /* IsAliased */ true); 7054 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7055 InVals.push_back(FIN); 7056 7057 // Add live ins for all the RegLocs for the same ByVal. 7058 const TargetRegisterClass *RegClass = 7059 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7060 7061 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7062 unsigned Offset) { 7063 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7064 // Since the callers side has left justified the aggregate in the 7065 // register, we can simply store the entire register into the stack 7066 // slot. 7067 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7068 // The store to the fixedstack object is needed becuase accessing a 7069 // field of the ByVal will use a gep and load. Ideally we will optimize 7070 // to extracting the value from the register directly, and elide the 7071 // stores when the arguments address is not taken, but that will need to 7072 // be future work. 7073 SDValue Store = DAG.getStore( 7074 CopyFrom.getValue(1), dl, CopyFrom, 7075 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7076 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7077 7078 MemOps.push_back(Store); 7079 }; 7080 7081 unsigned Offset = 0; 7082 HandleRegLoc(VA.getLocReg(), Offset); 7083 Offset += PtrByteSize; 7084 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7085 Offset += PtrByteSize) { 7086 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7087 "RegLocs should be for ByVal argument."); 7088 7089 const CCValAssign RL = ArgLocs[I++]; 7090 HandleRegLoc(RL.getLocReg(), Offset); 7091 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7092 } 7093 7094 if (Offset != StackSize) { 7095 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7096 "Expected MemLoc for remaining bytes."); 7097 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7098 // Consume the MemLoc.The InVal has already been emitted, so nothing 7099 // more needs to be done. 7100 ++I; 7101 } 7102 7103 continue; 7104 } 7105 7106 if (VA.isRegLoc() && !VA.needsCustom()) { 7107 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7108 Register VReg = 7109 MF.addLiveIn(VA.getLocReg(), 7110 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7111 Subtarget.hasVSX())); 7112 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7113 if (ValVT.isScalarInteger() && 7114 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7115 ArgValue = 7116 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7117 } 7118 InVals.push_back(ArgValue); 7119 continue; 7120 } 7121 if (VA.isMemLoc()) { 7122 HandleMemLoc(); 7123 continue; 7124 } 7125 } 7126 7127 // On AIX a minimum of 8 words is saved to the parameter save area. 7128 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7129 // Area that is at least reserved in the caller of this function. 7130 unsigned CallerReservedArea = 7131 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7132 7133 // Set the size that is at least reserved in caller of this function. Tail 7134 // call optimized function's reserved stack space needs to be aligned so 7135 // that taking the difference between two stack areas will result in an 7136 // aligned stack. 7137 CallerReservedArea = 7138 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7139 FuncInfo->setMinReservedArea(CallerReservedArea); 7140 7141 if (isVarArg) { 7142 FuncInfo->setVarArgsFrameIndex( 7143 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7144 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7145 7146 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7147 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7148 7149 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7150 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7151 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7152 7153 // The fixed integer arguments of a variadic function are stored to the 7154 // VarArgsFrameIndex on the stack so that they may be loaded by 7155 // dereferencing the result of va_next. 7156 for (unsigned GPRIndex = 7157 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7158 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7159 7160 const Register VReg = 7161 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7162 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7163 7164 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7165 SDValue Store = 7166 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7167 MemOps.push_back(Store); 7168 // Increment the address for the next argument to store. 7169 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7170 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7171 } 7172 } 7173 7174 if (!MemOps.empty()) 7175 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7176 7177 return Chain; 7178 } 7179 7180 SDValue PPCTargetLowering::LowerCall_AIX( 7181 SDValue Chain, SDValue Callee, CallFlags CFlags, 7182 const SmallVectorImpl<ISD::OutputArg> &Outs, 7183 const SmallVectorImpl<SDValue> &OutVals, 7184 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7185 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7186 const CallBase *CB) const { 7187 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7188 // AIX ABI stack frame layout. 7189 7190 assert((CFlags.CallConv == CallingConv::C || 7191 CFlags.CallConv == CallingConv::Cold || 7192 CFlags.CallConv == CallingConv::Fast) && 7193 "Unexpected calling convention!"); 7194 7195 if (CFlags.IsPatchPoint) 7196 report_fatal_error("This call type is unimplemented on AIX."); 7197 7198 const PPCSubtarget& Subtarget = 7199 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7200 7201 MachineFunction &MF = DAG.getMachineFunction(); 7202 SmallVector<CCValAssign, 16> ArgLocs; 7203 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7204 *DAG.getContext()); 7205 7206 // Reserve space for the linkage save area (LSA) on the stack. 7207 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7208 // [SP][CR][LR][2 x reserved][TOC]. 7209 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7210 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7211 const bool IsPPC64 = Subtarget.isPPC64(); 7212 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7213 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7214 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7215 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7216 7217 // The prolog code of the callee may store up to 8 GPR argument registers to 7218 // the stack, allowing va_start to index over them in memory if the callee 7219 // is variadic. 7220 // Because we cannot tell if this is needed on the caller side, we have to 7221 // conservatively assume that it is needed. As such, make sure we have at 7222 // least enough stack space for the caller to store the 8 GPRs. 7223 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7224 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7225 CCInfo.getNextStackOffset()); 7226 7227 // Adjust the stack pointer for the new arguments... 7228 // These operations are automatically eliminated by the prolog/epilog pass. 7229 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7230 SDValue CallSeqStart = Chain; 7231 7232 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7233 SmallVector<SDValue, 8> MemOpChains; 7234 7235 // Set up a copy of the stack pointer for loading and storing any 7236 // arguments that may not fit in the registers available for argument 7237 // passing. 7238 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7239 : DAG.getRegister(PPC::R1, MVT::i32); 7240 7241 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7242 const unsigned ValNo = ArgLocs[I].getValNo(); 7243 SDValue Arg = OutVals[ValNo]; 7244 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7245 7246 if (Flags.isByVal()) { 7247 const unsigned ByValSize = Flags.getByValSize(); 7248 7249 // Nothing to do for zero-sized ByVals on the caller side. 7250 if (!ByValSize) { 7251 ++I; 7252 continue; 7253 } 7254 7255 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7256 return DAG.getExtLoad( 7257 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7258 (LoadOffset != 0) 7259 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7260 : Arg, 7261 MachinePointerInfo(), VT); 7262 }; 7263 7264 unsigned LoadOffset = 0; 7265 7266 // Initialize registers, which are fully occupied by the by-val argument. 7267 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7268 SDValue Load = GetLoad(PtrVT, LoadOffset); 7269 MemOpChains.push_back(Load.getValue(1)); 7270 LoadOffset += PtrByteSize; 7271 const CCValAssign &ByValVA = ArgLocs[I++]; 7272 assert(ByValVA.getValNo() == ValNo && 7273 "Unexpected location for pass-by-value argument."); 7274 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7275 } 7276 7277 if (LoadOffset == ByValSize) 7278 continue; 7279 7280 // There must be one more loc to handle the remainder. 7281 assert(ArgLocs[I].getValNo() == ValNo && 7282 "Expected additional location for by-value argument."); 7283 7284 if (ArgLocs[I].isMemLoc()) { 7285 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7286 const CCValAssign &ByValVA = ArgLocs[I++]; 7287 ISD::ArgFlagsTy MemcpyFlags = Flags; 7288 // Only memcpy the bytes that don't pass in register. 7289 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7290 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7291 (LoadOffset != 0) 7292 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7293 : Arg, 7294 DAG.getObjectPtrOffset(dl, StackPtr, 7295 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7296 CallSeqStart, MemcpyFlags, DAG, dl); 7297 continue; 7298 } 7299 7300 // Initialize the final register residue. 7301 // Any residue that occupies the final by-val arg register must be 7302 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7303 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7304 // 2 and 1 byte loads. 7305 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7306 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7307 "Unexpected register residue for by-value argument."); 7308 SDValue ResidueVal; 7309 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7310 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7311 const MVT VT = 7312 N == 1 ? MVT::i8 7313 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7314 SDValue Load = GetLoad(VT, LoadOffset); 7315 MemOpChains.push_back(Load.getValue(1)); 7316 LoadOffset += N; 7317 Bytes += N; 7318 7319 // By-val arguments are passed left-justfied in register. 7320 // Every load here needs to be shifted, otherwise a full register load 7321 // should have been used. 7322 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7323 "Unexpected load emitted during handling of pass-by-value " 7324 "argument."); 7325 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7326 EVT ShiftAmountTy = 7327 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7328 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7329 SDValue ShiftedLoad = 7330 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7331 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7332 ShiftedLoad) 7333 : ShiftedLoad; 7334 } 7335 7336 const CCValAssign &ByValVA = ArgLocs[I++]; 7337 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7338 continue; 7339 } 7340 7341 CCValAssign &VA = ArgLocs[I++]; 7342 const MVT LocVT = VA.getLocVT(); 7343 const MVT ValVT = VA.getValVT(); 7344 7345 switch (VA.getLocInfo()) { 7346 default: 7347 report_fatal_error("Unexpected argument extension type."); 7348 case CCValAssign::Full: 7349 break; 7350 case CCValAssign::ZExt: 7351 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7352 break; 7353 case CCValAssign::SExt: 7354 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7355 break; 7356 } 7357 7358 if (VA.isRegLoc() && !VA.needsCustom()) { 7359 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7360 continue; 7361 } 7362 7363 // Vector arguments passed to VarArg functions need custom handling when 7364 // they are passed (at least partially) in GPRs. 7365 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7366 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7367 // Store value to its stack slot. 7368 SDValue PtrOff = 7369 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7370 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7371 SDValue Store = 7372 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7373 MemOpChains.push_back(Store); 7374 const unsigned OriginalValNo = VA.getValNo(); 7375 // Then load the GPRs from the stack 7376 unsigned LoadOffset = 0; 7377 auto HandleCustomVecRegLoc = [&]() { 7378 assert(I != E && "Unexpected end of CCvalAssigns."); 7379 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7380 "Expected custom RegLoc."); 7381 CCValAssign RegVA = ArgLocs[I++]; 7382 assert(RegVA.getValNo() == OriginalValNo && 7383 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7384 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7385 DAG.getConstant(LoadOffset, dl, PtrVT)); 7386 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7387 MemOpChains.push_back(Load.getValue(1)); 7388 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7389 LoadOffset += PtrByteSize; 7390 }; 7391 7392 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7393 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7394 // R10. 7395 HandleCustomVecRegLoc(); 7396 HandleCustomVecRegLoc(); 7397 7398 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7399 ArgLocs[I].getValNo() == OriginalValNo) { 7400 assert(!IsPPC64 && 7401 "Only 2 custom RegLocs expected for 64-bit codegen."); 7402 HandleCustomVecRegLoc(); 7403 HandleCustomVecRegLoc(); 7404 } 7405 7406 continue; 7407 } 7408 7409 if (VA.isMemLoc()) { 7410 SDValue PtrOff = 7411 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7412 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7413 MemOpChains.push_back( 7414 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7415 7416 continue; 7417 } 7418 7419 if (!ValVT.isFloatingPoint()) 7420 report_fatal_error( 7421 "Unexpected register handling for calling convention."); 7422 7423 // Custom handling is used for GPR initializations for vararg float 7424 // arguments. 7425 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7426 LocVT.isInteger() && 7427 "Custom register handling only expected for VarArg."); 7428 7429 SDValue ArgAsInt = 7430 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7431 7432 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7433 // f32 in 32-bit GPR 7434 // f64 in 64-bit GPR 7435 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7436 else if (Arg.getValueType().getFixedSizeInBits() < 7437 LocVT.getFixedSizeInBits()) 7438 // f32 in 64-bit GPR. 7439 RegsToPass.push_back(std::make_pair( 7440 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7441 else { 7442 // f64 in two 32-bit GPRs 7443 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7444 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7445 "Unexpected custom register for argument!"); 7446 CCValAssign &GPR1 = VA; 7447 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7448 DAG.getConstant(32, dl, MVT::i8)); 7449 RegsToPass.push_back(std::make_pair( 7450 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7451 7452 if (I != E) { 7453 // If only 1 GPR was available, there will only be one custom GPR and 7454 // the argument will also pass in memory. 7455 CCValAssign &PeekArg = ArgLocs[I]; 7456 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7457 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7458 CCValAssign &GPR2 = ArgLocs[I++]; 7459 RegsToPass.push_back(std::make_pair( 7460 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7461 } 7462 } 7463 } 7464 } 7465 7466 if (!MemOpChains.empty()) 7467 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7468 7469 // For indirect calls, we need to save the TOC base to the stack for 7470 // restoration after the call. 7471 if (CFlags.IsIndirect) { 7472 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7473 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7474 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7475 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7476 const unsigned TOCSaveOffset = 7477 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7478 7479 setUsesTOCBasePtr(DAG); 7480 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7481 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7482 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7483 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7484 Chain = DAG.getStore( 7485 Val.getValue(1), dl, Val, AddPtr, 7486 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7487 } 7488 7489 // Build a sequence of copy-to-reg nodes chained together with token chain 7490 // and flag operands which copy the outgoing args into the appropriate regs. 7491 SDValue InFlag; 7492 for (auto Reg : RegsToPass) { 7493 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7494 InFlag = Chain.getValue(1); 7495 } 7496 7497 const int SPDiff = 0; 7498 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7499 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7500 } 7501 7502 bool 7503 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7504 MachineFunction &MF, bool isVarArg, 7505 const SmallVectorImpl<ISD::OutputArg> &Outs, 7506 LLVMContext &Context) const { 7507 SmallVector<CCValAssign, 16> RVLocs; 7508 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7509 return CCInfo.CheckReturn( 7510 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7511 ? RetCC_PPC_Cold 7512 : RetCC_PPC); 7513 } 7514 7515 SDValue 7516 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7517 bool isVarArg, 7518 const SmallVectorImpl<ISD::OutputArg> &Outs, 7519 const SmallVectorImpl<SDValue> &OutVals, 7520 const SDLoc &dl, SelectionDAG &DAG) const { 7521 SmallVector<CCValAssign, 16> RVLocs; 7522 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7523 *DAG.getContext()); 7524 CCInfo.AnalyzeReturn(Outs, 7525 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7526 ? RetCC_PPC_Cold 7527 : RetCC_PPC); 7528 7529 SDValue Flag; 7530 SmallVector<SDValue, 4> RetOps(1, Chain); 7531 7532 // Copy the result values into the output registers. 7533 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7534 CCValAssign &VA = RVLocs[i]; 7535 assert(VA.isRegLoc() && "Can only return in registers!"); 7536 7537 SDValue Arg = OutVals[RealResIdx]; 7538 7539 switch (VA.getLocInfo()) { 7540 default: llvm_unreachable("Unknown loc info!"); 7541 case CCValAssign::Full: break; 7542 case CCValAssign::AExt: 7543 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7544 break; 7545 case CCValAssign::ZExt: 7546 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7547 break; 7548 case CCValAssign::SExt: 7549 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7550 break; 7551 } 7552 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7553 bool isLittleEndian = Subtarget.isLittleEndian(); 7554 // Legalize ret f64 -> ret 2 x i32. 7555 SDValue SVal = 7556 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7557 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7558 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7559 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7560 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7561 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7562 Flag = Chain.getValue(1); 7563 VA = RVLocs[++i]; // skip ahead to next loc 7564 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7565 } else 7566 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7567 Flag = Chain.getValue(1); 7568 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7569 } 7570 7571 RetOps[0] = Chain; // Update chain. 7572 7573 // Add the flag if we have it. 7574 if (Flag.getNode()) 7575 RetOps.push_back(Flag); 7576 7577 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7578 } 7579 7580 SDValue 7581 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7582 SelectionDAG &DAG) const { 7583 SDLoc dl(Op); 7584 7585 // Get the correct type for integers. 7586 EVT IntVT = Op.getValueType(); 7587 7588 // Get the inputs. 7589 SDValue Chain = Op.getOperand(0); 7590 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7591 // Build a DYNAREAOFFSET node. 7592 SDValue Ops[2] = {Chain, FPSIdx}; 7593 SDVTList VTs = DAG.getVTList(IntVT); 7594 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7595 } 7596 7597 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7598 SelectionDAG &DAG) const { 7599 // When we pop the dynamic allocation we need to restore the SP link. 7600 SDLoc dl(Op); 7601 7602 // Get the correct type for pointers. 7603 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7604 7605 // Construct the stack pointer operand. 7606 bool isPPC64 = Subtarget.isPPC64(); 7607 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7608 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7609 7610 // Get the operands for the STACKRESTORE. 7611 SDValue Chain = Op.getOperand(0); 7612 SDValue SaveSP = Op.getOperand(1); 7613 7614 // Load the old link SP. 7615 SDValue LoadLinkSP = 7616 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7617 7618 // Restore the stack pointer. 7619 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7620 7621 // Store the old link SP. 7622 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7623 } 7624 7625 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7626 MachineFunction &MF = DAG.getMachineFunction(); 7627 bool isPPC64 = Subtarget.isPPC64(); 7628 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7629 7630 // Get current frame pointer save index. The users of this index will be 7631 // primarily DYNALLOC instructions. 7632 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7633 int RASI = FI->getReturnAddrSaveIndex(); 7634 7635 // If the frame pointer save index hasn't been defined yet. 7636 if (!RASI) { 7637 // Find out what the fix offset of the frame pointer save area. 7638 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7639 // Allocate the frame index for frame pointer save area. 7640 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7641 // Save the result. 7642 FI->setReturnAddrSaveIndex(RASI); 7643 } 7644 return DAG.getFrameIndex(RASI, PtrVT); 7645 } 7646 7647 SDValue 7648 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7649 MachineFunction &MF = DAG.getMachineFunction(); 7650 bool isPPC64 = Subtarget.isPPC64(); 7651 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7652 7653 // Get current frame pointer save index. The users of this index will be 7654 // primarily DYNALLOC instructions. 7655 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7656 int FPSI = FI->getFramePointerSaveIndex(); 7657 7658 // If the frame pointer save index hasn't been defined yet. 7659 if (!FPSI) { 7660 // Find out what the fix offset of the frame pointer save area. 7661 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7662 // Allocate the frame index for frame pointer save area. 7663 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7664 // Save the result. 7665 FI->setFramePointerSaveIndex(FPSI); 7666 } 7667 return DAG.getFrameIndex(FPSI, PtrVT); 7668 } 7669 7670 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7671 SelectionDAG &DAG) const { 7672 MachineFunction &MF = DAG.getMachineFunction(); 7673 // Get the inputs. 7674 SDValue Chain = Op.getOperand(0); 7675 SDValue Size = Op.getOperand(1); 7676 SDLoc dl(Op); 7677 7678 // Get the correct type for pointers. 7679 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7680 // Negate the size. 7681 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7682 DAG.getConstant(0, dl, PtrVT), Size); 7683 // Construct a node for the frame pointer save index. 7684 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7685 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7686 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7687 if (hasInlineStackProbe(MF)) 7688 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7689 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7690 } 7691 7692 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7693 SelectionDAG &DAG) const { 7694 MachineFunction &MF = DAG.getMachineFunction(); 7695 7696 bool isPPC64 = Subtarget.isPPC64(); 7697 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7698 7699 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7700 return DAG.getFrameIndex(FI, PtrVT); 7701 } 7702 7703 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7704 SelectionDAG &DAG) const { 7705 SDLoc DL(Op); 7706 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7707 DAG.getVTList(MVT::i32, MVT::Other), 7708 Op.getOperand(0), Op.getOperand(1)); 7709 } 7710 7711 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7712 SelectionDAG &DAG) const { 7713 SDLoc DL(Op); 7714 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7715 Op.getOperand(0), Op.getOperand(1)); 7716 } 7717 7718 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7719 if (Op.getValueType().isVector()) 7720 return LowerVectorLoad(Op, DAG); 7721 7722 assert(Op.getValueType() == MVT::i1 && 7723 "Custom lowering only for i1 loads"); 7724 7725 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7726 7727 SDLoc dl(Op); 7728 LoadSDNode *LD = cast<LoadSDNode>(Op); 7729 7730 SDValue Chain = LD->getChain(); 7731 SDValue BasePtr = LD->getBasePtr(); 7732 MachineMemOperand *MMO = LD->getMemOperand(); 7733 7734 SDValue NewLD = 7735 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7736 BasePtr, MVT::i8, MMO); 7737 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7738 7739 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7740 return DAG.getMergeValues(Ops, dl); 7741 } 7742 7743 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7744 if (Op.getOperand(1).getValueType().isVector()) 7745 return LowerVectorStore(Op, DAG); 7746 7747 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7748 "Custom lowering only for i1 stores"); 7749 7750 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7751 7752 SDLoc dl(Op); 7753 StoreSDNode *ST = cast<StoreSDNode>(Op); 7754 7755 SDValue Chain = ST->getChain(); 7756 SDValue BasePtr = ST->getBasePtr(); 7757 SDValue Value = ST->getValue(); 7758 MachineMemOperand *MMO = ST->getMemOperand(); 7759 7760 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7761 Value); 7762 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7763 } 7764 7765 // FIXME: Remove this once the ANDI glue bug is fixed: 7766 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7767 assert(Op.getValueType() == MVT::i1 && 7768 "Custom lowering only for i1 results"); 7769 7770 SDLoc DL(Op); 7771 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7772 } 7773 7774 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7775 SelectionDAG &DAG) const { 7776 7777 // Implements a vector truncate that fits in a vector register as a shuffle. 7778 // We want to legalize vector truncates down to where the source fits in 7779 // a vector register (and target is therefore smaller than vector register 7780 // size). At that point legalization will try to custom lower the sub-legal 7781 // result and get here - where we can contain the truncate as a single target 7782 // operation. 7783 7784 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7785 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7786 // 7787 // We will implement it for big-endian ordering as this (where x denotes 7788 // undefined): 7789 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7790 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7791 // 7792 // The same operation in little-endian ordering will be: 7793 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7794 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7795 7796 EVT TrgVT = Op.getValueType(); 7797 assert(TrgVT.isVector() && "Vector type expected."); 7798 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7799 EVT EltVT = TrgVT.getVectorElementType(); 7800 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7801 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7802 !isPowerOf2_32(EltVT.getSizeInBits())) 7803 return SDValue(); 7804 7805 SDValue N1 = Op.getOperand(0); 7806 EVT SrcVT = N1.getValueType(); 7807 unsigned SrcSize = SrcVT.getSizeInBits(); 7808 if (SrcSize > 256 || 7809 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7810 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7811 return SDValue(); 7812 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7813 return SDValue(); 7814 7815 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7816 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7817 7818 SDLoc DL(Op); 7819 SDValue Op1, Op2; 7820 if (SrcSize == 256) { 7821 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7822 EVT SplitVT = 7823 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7824 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7825 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7826 DAG.getConstant(0, DL, VecIdxTy)); 7827 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7828 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7829 } 7830 else { 7831 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7832 Op2 = DAG.getUNDEF(WideVT); 7833 } 7834 7835 // First list the elements we want to keep. 7836 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7837 SmallVector<int, 16> ShuffV; 7838 if (Subtarget.isLittleEndian()) 7839 for (unsigned i = 0; i < TrgNumElts; ++i) 7840 ShuffV.push_back(i * SizeMult); 7841 else 7842 for (unsigned i = 1; i <= TrgNumElts; ++i) 7843 ShuffV.push_back(i * SizeMult - 1); 7844 7845 // Populate the remaining elements with undefs. 7846 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7847 // ShuffV.push_back(i + WideNumElts); 7848 ShuffV.push_back(WideNumElts + 1); 7849 7850 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7851 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7852 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7853 } 7854 7855 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7856 /// possible. 7857 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7858 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7859 EVT ResVT = Op.getValueType(); 7860 EVT CmpVT = Op.getOperand(0).getValueType(); 7861 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7862 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7863 SDLoc dl(Op); 7864 7865 // Without power9-vector, we don't have native instruction for f128 comparison. 7866 // Following transformation to libcall is needed for setcc: 7867 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7868 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7869 SDValue Z = DAG.getSetCC( 7870 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7871 LHS, RHS, CC); 7872 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7873 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7874 } 7875 7876 // Not FP, or using SPE? Not a fsel. 7877 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7878 Subtarget.hasSPE()) 7879 return Op; 7880 7881 SDNodeFlags Flags = Op.getNode()->getFlags(); 7882 7883 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7884 // presence of infinities. 7885 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7886 switch (CC) { 7887 default: 7888 break; 7889 case ISD::SETOGT: 7890 case ISD::SETGT: 7891 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7892 case ISD::SETOLT: 7893 case ISD::SETLT: 7894 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7895 } 7896 } 7897 7898 // We might be able to do better than this under some circumstances, but in 7899 // general, fsel-based lowering of select is a finite-math-only optimization. 7900 // For more information, see section F.3 of the 2.06 ISA specification. 7901 // With ISA 3.0 7902 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7903 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7904 return Op; 7905 7906 // If the RHS of the comparison is a 0.0, we don't need to do the 7907 // subtraction at all. 7908 SDValue Sel1; 7909 if (isFloatingPointZero(RHS)) 7910 switch (CC) { 7911 default: break; // SETUO etc aren't handled by fsel. 7912 case ISD::SETNE: 7913 std::swap(TV, FV); 7914 LLVM_FALLTHROUGH; 7915 case ISD::SETEQ: 7916 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7917 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7918 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7919 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7920 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7921 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7922 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7923 case ISD::SETULT: 7924 case ISD::SETLT: 7925 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7926 LLVM_FALLTHROUGH; 7927 case ISD::SETOGE: 7928 case ISD::SETGE: 7929 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7930 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7931 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7932 case ISD::SETUGT: 7933 case ISD::SETGT: 7934 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7935 LLVM_FALLTHROUGH; 7936 case ISD::SETOLE: 7937 case ISD::SETLE: 7938 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7939 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7940 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7941 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7942 } 7943 7944 SDValue Cmp; 7945 switch (CC) { 7946 default: break; // SETUO etc aren't handled by fsel. 7947 case ISD::SETNE: 7948 std::swap(TV, FV); 7949 LLVM_FALLTHROUGH; 7950 case ISD::SETEQ: 7951 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7952 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7953 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7954 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7955 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7956 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7957 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7958 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7959 case ISD::SETULT: 7960 case ISD::SETLT: 7961 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7962 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7963 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7964 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7965 case ISD::SETOGE: 7966 case ISD::SETGE: 7967 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7968 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7969 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7970 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7971 case ISD::SETUGT: 7972 case ISD::SETGT: 7973 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7974 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7975 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7976 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7977 case ISD::SETOLE: 7978 case ISD::SETLE: 7979 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7980 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7981 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7982 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7983 } 7984 return Op; 7985 } 7986 7987 static unsigned getPPCStrictOpcode(unsigned Opc) { 7988 switch (Opc) { 7989 default: 7990 llvm_unreachable("No strict version of this opcode!"); 7991 case PPCISD::FCTIDZ: 7992 return PPCISD::STRICT_FCTIDZ; 7993 case PPCISD::FCTIWZ: 7994 return PPCISD::STRICT_FCTIWZ; 7995 case PPCISD::FCTIDUZ: 7996 return PPCISD::STRICT_FCTIDUZ; 7997 case PPCISD::FCTIWUZ: 7998 return PPCISD::STRICT_FCTIWUZ; 7999 case PPCISD::FCFID: 8000 return PPCISD::STRICT_FCFID; 8001 case PPCISD::FCFIDU: 8002 return PPCISD::STRICT_FCFIDU; 8003 case PPCISD::FCFIDS: 8004 return PPCISD::STRICT_FCFIDS; 8005 case PPCISD::FCFIDUS: 8006 return PPCISD::STRICT_FCFIDUS; 8007 } 8008 } 8009 8010 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8011 const PPCSubtarget &Subtarget) { 8012 SDLoc dl(Op); 8013 bool IsStrict = Op->isStrictFPOpcode(); 8014 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8015 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8016 8017 // TODO: Any other flags to propagate? 8018 SDNodeFlags Flags; 8019 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8020 8021 // For strict nodes, source is the second operand. 8022 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8023 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8024 assert(Src.getValueType().isFloatingPoint()); 8025 if (Src.getValueType() == MVT::f32) { 8026 if (IsStrict) { 8027 Src = 8028 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8029 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8030 Chain = Src.getValue(1); 8031 } else 8032 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8033 } 8034 SDValue Conv; 8035 unsigned Opc = ISD::DELETED_NODE; 8036 switch (Op.getSimpleValueType().SimpleTy) { 8037 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8038 case MVT::i32: 8039 Opc = IsSigned ? PPCISD::FCTIWZ 8040 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8041 break; 8042 case MVT::i64: 8043 assert((IsSigned || Subtarget.hasFPCVT()) && 8044 "i64 FP_TO_UINT is supported only with FPCVT"); 8045 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8046 } 8047 if (IsStrict) { 8048 Opc = getPPCStrictOpcode(Opc); 8049 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8050 {Chain, Src}, Flags); 8051 } else { 8052 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8053 } 8054 return Conv; 8055 } 8056 8057 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8058 SelectionDAG &DAG, 8059 const SDLoc &dl) const { 8060 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8061 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8062 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8063 bool IsStrict = Op->isStrictFPOpcode(); 8064 8065 // Convert the FP value to an int value through memory. 8066 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8067 (IsSigned || Subtarget.hasFPCVT()); 8068 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8069 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8070 MachinePointerInfo MPI = 8071 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8072 8073 // Emit a store to the stack slot. 8074 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8075 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8076 if (i32Stack) { 8077 MachineFunction &MF = DAG.getMachineFunction(); 8078 Alignment = Align(4); 8079 MachineMemOperand *MMO = 8080 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8081 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8082 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8083 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8084 } else 8085 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8086 8087 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8088 // add in a bias on big endian. 8089 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8090 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8091 DAG.getConstant(4, dl, FIPtr.getValueType())); 8092 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8093 } 8094 8095 RLI.Chain = Chain; 8096 RLI.Ptr = FIPtr; 8097 RLI.MPI = MPI; 8098 RLI.Alignment = Alignment; 8099 } 8100 8101 /// Custom lowers floating point to integer conversions to use 8102 /// the direct move instructions available in ISA 2.07 to avoid the 8103 /// need for load/store combinations. 8104 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8105 SelectionDAG &DAG, 8106 const SDLoc &dl) const { 8107 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8108 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8109 if (Op->isStrictFPOpcode()) 8110 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8111 else 8112 return Mov; 8113 } 8114 8115 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8116 const SDLoc &dl) const { 8117 bool IsStrict = Op->isStrictFPOpcode(); 8118 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8119 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8120 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8121 EVT SrcVT = Src.getValueType(); 8122 EVT DstVT = Op.getValueType(); 8123 8124 // FP to INT conversions are legal for f128. 8125 if (SrcVT == MVT::f128) 8126 return Subtarget.hasP9Vector() ? Op : SDValue(); 8127 8128 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8129 // PPC (the libcall is not available). 8130 if (SrcVT == MVT::ppcf128) { 8131 if (DstVT == MVT::i32) { 8132 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8133 // set other fast-math flags to FP operations in both strict and 8134 // non-strict cases. (FP_TO_SINT, FSUB) 8135 SDNodeFlags Flags; 8136 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8137 8138 if (IsSigned) { 8139 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8140 DAG.getIntPtrConstant(0, dl)); 8141 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8142 DAG.getIntPtrConstant(1, dl)); 8143 8144 // Add the two halves of the long double in round-to-zero mode, and use 8145 // a smaller FP_TO_SINT. 8146 if (IsStrict) { 8147 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8148 DAG.getVTList(MVT::f64, MVT::Other), 8149 {Op.getOperand(0), Lo, Hi}, Flags); 8150 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8151 DAG.getVTList(MVT::i32, MVT::Other), 8152 {Res.getValue(1), Res}, Flags); 8153 } else { 8154 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8155 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8156 } 8157 } else { 8158 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8159 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8160 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8161 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8162 if (IsStrict) { 8163 // Sel = Src < 0x80000000 8164 // FltOfs = select Sel, 0.0, 0x80000000 8165 // IntOfs = select Sel, 0, 0x80000000 8166 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8167 SDValue Chain = Op.getOperand(0); 8168 EVT SetCCVT = 8169 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8170 EVT DstSetCCVT = 8171 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8172 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8173 Chain, true); 8174 Chain = Sel.getValue(1); 8175 8176 SDValue FltOfs = DAG.getSelect( 8177 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8178 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8179 8180 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8181 DAG.getVTList(SrcVT, MVT::Other), 8182 {Chain, Src, FltOfs}, Flags); 8183 Chain = Val.getValue(1); 8184 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8185 DAG.getVTList(DstVT, MVT::Other), 8186 {Chain, Val}, Flags); 8187 Chain = SInt.getValue(1); 8188 SDValue IntOfs = DAG.getSelect( 8189 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8190 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8191 return DAG.getMergeValues({Result, Chain}, dl); 8192 } else { 8193 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8194 // FIXME: generated code sucks. 8195 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8196 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8197 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8198 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8199 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8200 } 8201 } 8202 } 8203 8204 return SDValue(); 8205 } 8206 8207 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8208 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8209 8210 ReuseLoadInfo RLI; 8211 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8212 8213 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8214 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8215 } 8216 8217 // We're trying to insert a regular store, S, and then a load, L. If the 8218 // incoming value, O, is a load, we might just be able to have our load use the 8219 // address used by O. However, we don't know if anything else will store to 8220 // that address before we can load from it. To prevent this situation, we need 8221 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8222 // the same chain operand as O, we create a token factor from the chain results 8223 // of O and L, and we replace all uses of O's chain result with that token 8224 // factor (see spliceIntoChain below for this last part). 8225 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8226 ReuseLoadInfo &RLI, 8227 SelectionDAG &DAG, 8228 ISD::LoadExtType ET) const { 8229 // Conservatively skip reusing for constrained FP nodes. 8230 if (Op->isStrictFPOpcode()) 8231 return false; 8232 8233 SDLoc dl(Op); 8234 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8235 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8236 if (ET == ISD::NON_EXTLOAD && 8237 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8238 isOperationLegalOrCustom(Op.getOpcode(), 8239 Op.getOperand(0).getValueType())) { 8240 8241 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8242 return true; 8243 } 8244 8245 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8246 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8247 LD->isNonTemporal()) 8248 return false; 8249 if (LD->getMemoryVT() != MemVT) 8250 return false; 8251 8252 // If the result of the load is an illegal type, then we can't build a 8253 // valid chain for reuse since the legalised loads and token factor node that 8254 // ties the legalised loads together uses a different output chain then the 8255 // illegal load. 8256 if (!isTypeLegal(LD->getValueType(0))) 8257 return false; 8258 8259 RLI.Ptr = LD->getBasePtr(); 8260 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8261 assert(LD->getAddressingMode() == ISD::PRE_INC && 8262 "Non-pre-inc AM on PPC?"); 8263 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8264 LD->getOffset()); 8265 } 8266 8267 RLI.Chain = LD->getChain(); 8268 RLI.MPI = LD->getPointerInfo(); 8269 RLI.IsDereferenceable = LD->isDereferenceable(); 8270 RLI.IsInvariant = LD->isInvariant(); 8271 RLI.Alignment = LD->getAlign(); 8272 RLI.AAInfo = LD->getAAInfo(); 8273 RLI.Ranges = LD->getRanges(); 8274 8275 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8276 return true; 8277 } 8278 8279 // Given the head of the old chain, ResChain, insert a token factor containing 8280 // it and NewResChain, and make users of ResChain now be users of that token 8281 // factor. 8282 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8283 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8284 SDValue NewResChain, 8285 SelectionDAG &DAG) const { 8286 if (!ResChain) 8287 return; 8288 8289 SDLoc dl(NewResChain); 8290 8291 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8292 NewResChain, DAG.getUNDEF(MVT::Other)); 8293 assert(TF.getNode() != NewResChain.getNode() && 8294 "A new TF really is required here"); 8295 8296 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8297 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8298 } 8299 8300 /// Analyze profitability of direct move 8301 /// prefer float load to int load plus direct move 8302 /// when there is no integer use of int load 8303 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8304 SDNode *Origin = Op.getOperand(0).getNode(); 8305 if (Origin->getOpcode() != ISD::LOAD) 8306 return true; 8307 8308 // If there is no LXSIBZX/LXSIHZX, like Power8, 8309 // prefer direct move if the memory size is 1 or 2 bytes. 8310 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8311 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8312 return true; 8313 8314 for (SDNode::use_iterator UI = Origin->use_begin(), 8315 UE = Origin->use_end(); 8316 UI != UE; ++UI) { 8317 8318 // Only look at the users of the loaded value. 8319 if (UI.getUse().get().getResNo() != 0) 8320 continue; 8321 8322 if (UI->getOpcode() != ISD::SINT_TO_FP && 8323 UI->getOpcode() != ISD::UINT_TO_FP && 8324 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8325 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8326 return true; 8327 } 8328 8329 return false; 8330 } 8331 8332 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8333 const PPCSubtarget &Subtarget, 8334 SDValue Chain = SDValue()) { 8335 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8336 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8337 SDLoc dl(Op); 8338 8339 // TODO: Any other flags to propagate? 8340 SDNodeFlags Flags; 8341 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8342 8343 // If we have FCFIDS, then use it when converting to single-precision. 8344 // Otherwise, convert to double-precision and then round. 8345 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8346 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8347 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8348 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8349 if (Op->isStrictFPOpcode()) { 8350 if (!Chain) 8351 Chain = Op.getOperand(0); 8352 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8353 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8354 } else 8355 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8356 } 8357 8358 /// Custom lowers integer to floating point conversions to use 8359 /// the direct move instructions available in ISA 2.07 to avoid the 8360 /// need for load/store combinations. 8361 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8362 SelectionDAG &DAG, 8363 const SDLoc &dl) const { 8364 assert((Op.getValueType() == MVT::f32 || 8365 Op.getValueType() == MVT::f64) && 8366 "Invalid floating point type as target of conversion"); 8367 assert(Subtarget.hasFPCVT() && 8368 "Int to FP conversions with direct moves require FPCVT"); 8369 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8370 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8371 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8372 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8373 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8374 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8375 return convertIntToFP(Op, Mov, DAG, Subtarget); 8376 } 8377 8378 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8379 8380 EVT VecVT = Vec.getValueType(); 8381 assert(VecVT.isVector() && "Expected a vector type."); 8382 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8383 8384 EVT EltVT = VecVT.getVectorElementType(); 8385 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8386 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8387 8388 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8389 SmallVector<SDValue, 16> Ops(NumConcat); 8390 Ops[0] = Vec; 8391 SDValue UndefVec = DAG.getUNDEF(VecVT); 8392 for (unsigned i = 1; i < NumConcat; ++i) 8393 Ops[i] = UndefVec; 8394 8395 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8396 } 8397 8398 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8399 const SDLoc &dl) const { 8400 bool IsStrict = Op->isStrictFPOpcode(); 8401 unsigned Opc = Op.getOpcode(); 8402 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8403 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8404 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8405 "Unexpected conversion type"); 8406 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8407 "Supports conversions to v2f64/v4f32 only."); 8408 8409 // TODO: Any other flags to propagate? 8410 SDNodeFlags Flags; 8411 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8412 8413 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8414 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8415 8416 SDValue Wide = widenVec(DAG, Src, dl); 8417 EVT WideVT = Wide.getValueType(); 8418 unsigned WideNumElts = WideVT.getVectorNumElements(); 8419 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8420 8421 SmallVector<int, 16> ShuffV; 8422 for (unsigned i = 0; i < WideNumElts; ++i) 8423 ShuffV.push_back(i + WideNumElts); 8424 8425 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8426 int SaveElts = FourEltRes ? 4 : 2; 8427 if (Subtarget.isLittleEndian()) 8428 for (int i = 0; i < SaveElts; i++) 8429 ShuffV[i * Stride] = i; 8430 else 8431 for (int i = 1; i <= SaveElts; i++) 8432 ShuffV[i * Stride - 1] = i - 1; 8433 8434 SDValue ShuffleSrc2 = 8435 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8436 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8437 8438 SDValue Extend; 8439 if (SignedConv) { 8440 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8441 EVT ExtVT = Src.getValueType(); 8442 if (Subtarget.hasP9Altivec()) 8443 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8444 IntermediateVT.getVectorNumElements()); 8445 8446 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8447 DAG.getValueType(ExtVT)); 8448 } else 8449 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8450 8451 if (IsStrict) 8452 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8453 {Op.getOperand(0), Extend}, Flags); 8454 8455 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8456 } 8457 8458 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8459 SelectionDAG &DAG) const { 8460 SDLoc dl(Op); 8461 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8462 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8463 bool IsStrict = Op->isStrictFPOpcode(); 8464 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8465 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8466 8467 // TODO: Any other flags to propagate? 8468 SDNodeFlags Flags; 8469 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8470 8471 EVT InVT = Src.getValueType(); 8472 EVT OutVT = Op.getValueType(); 8473 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8474 isOperationCustom(Op.getOpcode(), InVT)) 8475 return LowerINT_TO_FPVector(Op, DAG, dl); 8476 8477 // Conversions to f128 are legal. 8478 if (Op.getValueType() == MVT::f128) 8479 return Subtarget.hasP9Vector() ? Op : SDValue(); 8480 8481 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8482 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8483 return SDValue(); 8484 8485 if (Src.getValueType() == MVT::i1) { 8486 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8487 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8488 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8489 if (IsStrict) 8490 return DAG.getMergeValues({Sel, Chain}, dl); 8491 else 8492 return Sel; 8493 } 8494 8495 // If we have direct moves, we can do all the conversion, skip the store/load 8496 // however, without FPCVT we can't do most conversions. 8497 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8498 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8499 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8500 8501 assert((IsSigned || Subtarget.hasFPCVT()) && 8502 "UINT_TO_FP is supported only with FPCVT"); 8503 8504 if (Src.getValueType() == MVT::i64) { 8505 SDValue SINT = Src; 8506 // When converting to single-precision, we actually need to convert 8507 // to double-precision first and then round to single-precision. 8508 // To avoid double-rounding effects during that operation, we have 8509 // to prepare the input operand. Bits that might be truncated when 8510 // converting to double-precision are replaced by a bit that won't 8511 // be lost at this stage, but is below the single-precision rounding 8512 // position. 8513 // 8514 // However, if -enable-unsafe-fp-math is in effect, accept double 8515 // rounding to avoid the extra overhead. 8516 if (Op.getValueType() == MVT::f32 && 8517 !Subtarget.hasFPCVT() && 8518 !DAG.getTarget().Options.UnsafeFPMath) { 8519 8520 // Twiddle input to make sure the low 11 bits are zero. (If this 8521 // is the case, we are guaranteed the value will fit into the 53 bit 8522 // mantissa of an IEEE double-precision value without rounding.) 8523 // If any of those low 11 bits were not zero originally, make sure 8524 // bit 12 (value 2048) is set instead, so that the final rounding 8525 // to single-precision gets the correct result. 8526 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8527 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8528 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8529 Round, DAG.getConstant(2047, dl, MVT::i64)); 8530 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8531 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8532 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8533 8534 // However, we cannot use that value unconditionally: if the magnitude 8535 // of the input value is small, the bit-twiddling we did above might 8536 // end up visibly changing the output. Fortunately, in that case, we 8537 // don't need to twiddle bits since the original input will convert 8538 // exactly to double-precision floating-point already. Therefore, 8539 // construct a conditional to use the original value if the top 11 8540 // bits are all sign-bit copies, and use the rounded value computed 8541 // above otherwise. 8542 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8543 SINT, DAG.getConstant(53, dl, MVT::i32)); 8544 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8545 Cond, DAG.getConstant(1, dl, MVT::i64)); 8546 Cond = DAG.getSetCC( 8547 dl, 8548 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8549 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8550 8551 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8552 } 8553 8554 ReuseLoadInfo RLI; 8555 SDValue Bits; 8556 8557 MachineFunction &MF = DAG.getMachineFunction(); 8558 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8559 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8560 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8561 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8562 } else if (Subtarget.hasLFIWAX() && 8563 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8564 MachineMemOperand *MMO = 8565 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8566 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8567 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8568 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8569 DAG.getVTList(MVT::f64, MVT::Other), 8570 Ops, MVT::i32, MMO); 8571 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8572 } else if (Subtarget.hasFPCVT() && 8573 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8574 MachineMemOperand *MMO = 8575 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8576 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8577 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8578 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8579 DAG.getVTList(MVT::f64, MVT::Other), 8580 Ops, MVT::i32, MMO); 8581 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8582 } else if (((Subtarget.hasLFIWAX() && 8583 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8584 (Subtarget.hasFPCVT() && 8585 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8586 SINT.getOperand(0).getValueType() == MVT::i32) { 8587 MachineFrameInfo &MFI = MF.getFrameInfo(); 8588 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8589 8590 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8591 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8592 8593 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8594 MachinePointerInfo::getFixedStack( 8595 DAG.getMachineFunction(), FrameIdx)); 8596 Chain = Store; 8597 8598 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8599 "Expected an i32 store"); 8600 8601 RLI.Ptr = FIdx; 8602 RLI.Chain = Chain; 8603 RLI.MPI = 8604 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8605 RLI.Alignment = Align(4); 8606 8607 MachineMemOperand *MMO = 8608 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8609 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8610 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8611 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8612 PPCISD::LFIWZX : PPCISD::LFIWAX, 8613 dl, DAG.getVTList(MVT::f64, MVT::Other), 8614 Ops, MVT::i32, MMO); 8615 Chain = Bits.getValue(1); 8616 } else 8617 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8618 8619 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8620 if (IsStrict) 8621 Chain = FP.getValue(1); 8622 8623 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8624 if (IsStrict) 8625 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8626 DAG.getVTList(MVT::f32, MVT::Other), 8627 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8628 else 8629 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8630 DAG.getIntPtrConstant(0, dl)); 8631 } 8632 return FP; 8633 } 8634 8635 assert(Src.getValueType() == MVT::i32 && 8636 "Unhandled INT_TO_FP type in custom expander!"); 8637 // Since we only generate this in 64-bit mode, we can take advantage of 8638 // 64-bit registers. In particular, sign extend the input value into the 8639 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8640 // then lfd it and fcfid it. 8641 MachineFunction &MF = DAG.getMachineFunction(); 8642 MachineFrameInfo &MFI = MF.getFrameInfo(); 8643 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8644 8645 SDValue Ld; 8646 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8647 ReuseLoadInfo RLI; 8648 bool ReusingLoad; 8649 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8650 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8651 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8652 8653 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8654 MachinePointerInfo::getFixedStack( 8655 DAG.getMachineFunction(), FrameIdx)); 8656 Chain = Store; 8657 8658 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8659 "Expected an i32 store"); 8660 8661 RLI.Ptr = FIdx; 8662 RLI.Chain = Chain; 8663 RLI.MPI = 8664 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8665 RLI.Alignment = Align(4); 8666 } 8667 8668 MachineMemOperand *MMO = 8669 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8670 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8671 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8672 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8673 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8674 MVT::i32, MMO); 8675 Chain = Ld.getValue(1); 8676 if (ReusingLoad) 8677 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8678 } else { 8679 assert(Subtarget.isPPC64() && 8680 "i32->FP without LFIWAX supported only on PPC64"); 8681 8682 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8683 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8684 8685 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8686 8687 // STD the extended value into the stack slot. 8688 SDValue Store = DAG.getStore( 8689 Chain, dl, Ext64, FIdx, 8690 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8691 Chain = Store; 8692 8693 // Load the value as a double. 8694 Ld = DAG.getLoad( 8695 MVT::f64, dl, Chain, FIdx, 8696 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8697 Chain = Ld.getValue(1); 8698 } 8699 8700 // FCFID it and return it. 8701 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8702 if (IsStrict) 8703 Chain = FP.getValue(1); 8704 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8705 if (IsStrict) 8706 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8707 DAG.getVTList(MVT::f32, MVT::Other), 8708 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8709 else 8710 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8711 DAG.getIntPtrConstant(0, dl)); 8712 } 8713 return FP; 8714 } 8715 8716 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8717 SelectionDAG &DAG) const { 8718 SDLoc dl(Op); 8719 /* 8720 The rounding mode is in bits 30:31 of FPSR, and has the following 8721 settings: 8722 00 Round to nearest 8723 01 Round to 0 8724 10 Round to +inf 8725 11 Round to -inf 8726 8727 FLT_ROUNDS, on the other hand, expects the following: 8728 -1 Undefined 8729 0 Round to 0 8730 1 Round to nearest 8731 2 Round to +inf 8732 3 Round to -inf 8733 8734 To perform the conversion, we do: 8735 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8736 */ 8737 8738 MachineFunction &MF = DAG.getMachineFunction(); 8739 EVT VT = Op.getValueType(); 8740 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8741 8742 // Save FP Control Word to register 8743 SDValue Chain = Op.getOperand(0); 8744 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8745 Chain = MFFS.getValue(1); 8746 8747 SDValue CWD; 8748 if (isTypeLegal(MVT::i64)) { 8749 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8750 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8751 } else { 8752 // Save FP register to stack slot 8753 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8754 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8755 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8756 8757 // Load FP Control Word from low 32 bits of stack slot. 8758 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8759 "Stack slot adjustment is valid only on big endian subtargets!"); 8760 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8761 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8762 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8763 Chain = CWD.getValue(1); 8764 } 8765 8766 // Transform as necessary 8767 SDValue CWD1 = 8768 DAG.getNode(ISD::AND, dl, MVT::i32, 8769 CWD, DAG.getConstant(3, dl, MVT::i32)); 8770 SDValue CWD2 = 8771 DAG.getNode(ISD::SRL, dl, MVT::i32, 8772 DAG.getNode(ISD::AND, dl, MVT::i32, 8773 DAG.getNode(ISD::XOR, dl, MVT::i32, 8774 CWD, DAG.getConstant(3, dl, MVT::i32)), 8775 DAG.getConstant(3, dl, MVT::i32)), 8776 DAG.getConstant(1, dl, MVT::i32)); 8777 8778 SDValue RetVal = 8779 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8780 8781 RetVal = 8782 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8783 dl, VT, RetVal); 8784 8785 return DAG.getMergeValues({RetVal, Chain}, dl); 8786 } 8787 8788 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8789 EVT VT = Op.getValueType(); 8790 unsigned BitWidth = VT.getSizeInBits(); 8791 SDLoc dl(Op); 8792 assert(Op.getNumOperands() == 3 && 8793 VT == Op.getOperand(1).getValueType() && 8794 "Unexpected SHL!"); 8795 8796 // Expand into a bunch of logical ops. Note that these ops 8797 // depend on the PPC behavior for oversized shift amounts. 8798 SDValue Lo = Op.getOperand(0); 8799 SDValue Hi = Op.getOperand(1); 8800 SDValue Amt = Op.getOperand(2); 8801 EVT AmtVT = Amt.getValueType(); 8802 8803 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8804 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8805 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8806 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8807 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8808 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8809 DAG.getConstant(-BitWidth, dl, AmtVT)); 8810 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8811 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8812 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8813 SDValue OutOps[] = { OutLo, OutHi }; 8814 return DAG.getMergeValues(OutOps, dl); 8815 } 8816 8817 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8818 EVT VT = Op.getValueType(); 8819 SDLoc dl(Op); 8820 unsigned BitWidth = VT.getSizeInBits(); 8821 assert(Op.getNumOperands() == 3 && 8822 VT == Op.getOperand(1).getValueType() && 8823 "Unexpected SRL!"); 8824 8825 // Expand into a bunch of logical ops. Note that these ops 8826 // depend on the PPC behavior for oversized shift amounts. 8827 SDValue Lo = Op.getOperand(0); 8828 SDValue Hi = Op.getOperand(1); 8829 SDValue Amt = Op.getOperand(2); 8830 EVT AmtVT = Amt.getValueType(); 8831 8832 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8833 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8834 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8835 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8836 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8837 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8838 DAG.getConstant(-BitWidth, dl, AmtVT)); 8839 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8840 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8841 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8842 SDValue OutOps[] = { OutLo, OutHi }; 8843 return DAG.getMergeValues(OutOps, dl); 8844 } 8845 8846 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8847 SDLoc dl(Op); 8848 EVT VT = Op.getValueType(); 8849 unsigned BitWidth = VT.getSizeInBits(); 8850 assert(Op.getNumOperands() == 3 && 8851 VT == Op.getOperand(1).getValueType() && 8852 "Unexpected SRA!"); 8853 8854 // Expand into a bunch of logical ops, followed by a select_cc. 8855 SDValue Lo = Op.getOperand(0); 8856 SDValue Hi = Op.getOperand(1); 8857 SDValue Amt = Op.getOperand(2); 8858 EVT AmtVT = Amt.getValueType(); 8859 8860 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8861 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8862 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8863 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8864 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8865 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8866 DAG.getConstant(-BitWidth, dl, AmtVT)); 8867 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8868 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8869 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8870 Tmp4, Tmp6, ISD::SETLE); 8871 SDValue OutOps[] = { OutLo, OutHi }; 8872 return DAG.getMergeValues(OutOps, dl); 8873 } 8874 8875 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8876 SelectionDAG &DAG) const { 8877 SDLoc dl(Op); 8878 EVT VT = Op.getValueType(); 8879 unsigned BitWidth = VT.getSizeInBits(); 8880 8881 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8882 SDValue X = Op.getOperand(0); 8883 SDValue Y = Op.getOperand(1); 8884 SDValue Z = Op.getOperand(2); 8885 EVT AmtVT = Z.getValueType(); 8886 8887 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8888 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8889 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8890 // on PowerPC shift by BW being well defined. 8891 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8892 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8893 SDValue SubZ = 8894 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8895 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8896 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8897 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8898 } 8899 8900 //===----------------------------------------------------------------------===// 8901 // Vector related lowering. 8902 // 8903 8904 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8905 /// element size of SplatSize. Cast the result to VT. 8906 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8907 SelectionDAG &DAG, const SDLoc &dl) { 8908 static const MVT VTys[] = { // canonical VT to use for each size. 8909 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8910 }; 8911 8912 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8913 8914 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8915 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8916 SplatSize = 1; 8917 Val = 0xFF; 8918 } 8919 8920 EVT CanonicalVT = VTys[SplatSize-1]; 8921 8922 // Build a canonical splat for this value. 8923 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8924 } 8925 8926 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8927 /// specified intrinsic ID. 8928 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8929 const SDLoc &dl, EVT DestVT = MVT::Other) { 8930 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8931 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8932 DAG.getConstant(IID, dl, MVT::i32), Op); 8933 } 8934 8935 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8936 /// specified intrinsic ID. 8937 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8938 SelectionDAG &DAG, const SDLoc &dl, 8939 EVT DestVT = MVT::Other) { 8940 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8941 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8942 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8943 } 8944 8945 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8946 /// specified intrinsic ID. 8947 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8948 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8949 EVT DestVT = MVT::Other) { 8950 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8951 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8952 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8953 } 8954 8955 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8956 /// amount. The result has the specified value type. 8957 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8958 SelectionDAG &DAG, const SDLoc &dl) { 8959 // Force LHS/RHS to be the right type. 8960 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8961 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8962 8963 int Ops[16]; 8964 for (unsigned i = 0; i != 16; ++i) 8965 Ops[i] = i + Amt; 8966 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8967 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8968 } 8969 8970 /// Do we have an efficient pattern in a .td file for this node? 8971 /// 8972 /// \param V - pointer to the BuildVectorSDNode being matched 8973 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8974 /// 8975 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8976 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8977 /// the opposite is true (expansion is beneficial) are: 8978 /// - The node builds a vector out of integers that are not 32 or 64-bits 8979 /// - The node builds a vector out of constants 8980 /// - The node is a "load-and-splat" 8981 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8982 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8983 bool HasDirectMove, 8984 bool HasP8Vector) { 8985 EVT VecVT = V->getValueType(0); 8986 bool RightType = VecVT == MVT::v2f64 || 8987 (HasP8Vector && VecVT == MVT::v4f32) || 8988 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8989 if (!RightType) 8990 return false; 8991 8992 bool IsSplat = true; 8993 bool IsLoad = false; 8994 SDValue Op0 = V->getOperand(0); 8995 8996 // This function is called in a block that confirms the node is not a constant 8997 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8998 // different constants. 8999 if (V->isConstant()) 9000 return false; 9001 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9002 if (V->getOperand(i).isUndef()) 9003 return false; 9004 // We want to expand nodes that represent load-and-splat even if the 9005 // loaded value is a floating point truncation or conversion to int. 9006 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9007 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9008 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9009 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9010 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9011 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9012 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9013 IsLoad = true; 9014 // If the operands are different or the input is not a load and has more 9015 // uses than just this BV node, then it isn't a splat. 9016 if (V->getOperand(i) != Op0 || 9017 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9018 IsSplat = false; 9019 } 9020 return !(IsSplat && IsLoad); 9021 } 9022 9023 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9024 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9025 9026 SDLoc dl(Op); 9027 SDValue Op0 = Op->getOperand(0); 9028 9029 if ((Op.getValueType() != MVT::f128) || 9030 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9031 (Op0.getOperand(0).getValueType() != MVT::i64) || 9032 (Op0.getOperand(1).getValueType() != MVT::i64)) 9033 return SDValue(); 9034 9035 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9036 Op0.getOperand(1)); 9037 } 9038 9039 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9040 const SDValue *InputLoad = &Op; 9041 if (InputLoad->getOpcode() == ISD::BITCAST) 9042 InputLoad = &InputLoad->getOperand(0); 9043 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9044 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9045 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9046 InputLoad = &InputLoad->getOperand(0); 9047 } 9048 if (InputLoad->getOpcode() != ISD::LOAD) 9049 return nullptr; 9050 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9051 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9052 } 9053 9054 // Convert the argument APFloat to a single precision APFloat if there is no 9055 // loss in information during the conversion to single precision APFloat and the 9056 // resulting number is not a denormal number. Return true if successful. 9057 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9058 APFloat APFloatToConvert = ArgAPFloat; 9059 bool LosesInfo = true; 9060 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9061 &LosesInfo); 9062 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9063 if (Success) 9064 ArgAPFloat = APFloatToConvert; 9065 return Success; 9066 } 9067 9068 // Bitcast the argument APInt to a double and convert it to a single precision 9069 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9070 // argument if there is no loss in information during the conversion from 9071 // double to single precision APFloat and the resulting number is not a denormal 9072 // number. Return true if successful. 9073 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9074 double DpValue = ArgAPInt.bitsToDouble(); 9075 APFloat APFloatDp(DpValue); 9076 bool Success = convertToNonDenormSingle(APFloatDp); 9077 if (Success) 9078 ArgAPInt = APFloatDp.bitcastToAPInt(); 9079 return Success; 9080 } 9081 9082 // Nondestructive check for convertTonNonDenormSingle. 9083 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9084 // Only convert if it loses info, since XXSPLTIDP should 9085 // handle the other case. 9086 APFloat APFloatToConvert = ArgAPFloat; 9087 bool LosesInfo = true; 9088 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9089 &LosesInfo); 9090 9091 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9092 } 9093 9094 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9095 unsigned &Opcode) { 9096 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9097 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9098 return false; 9099 9100 EVT Ty = Op->getValueType(0); 9101 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9102 // as we cannot handle extending loads for these types. 9103 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9104 ISD::isNON_EXTLoad(InputNode)) 9105 return true; 9106 9107 EVT MemVT = InputNode->getMemoryVT(); 9108 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9109 // memory VT is the same vector element VT type. 9110 // The loads feeding into the v8i16 and v16i8 types will be extending because 9111 // scalar i8/i16 are not legal types. 9112 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9113 (MemVT == Ty.getVectorElementType())) 9114 return true; 9115 9116 if (Ty == MVT::v2i64) { 9117 // Check the extend type, when the input type is i32, and the output vector 9118 // type is v2i64. 9119 if (MemVT == MVT::i32) { 9120 if (ISD::isZEXTLoad(InputNode)) 9121 Opcode = PPCISD::ZEXT_LD_SPLAT; 9122 if (ISD::isSEXTLoad(InputNode)) 9123 Opcode = PPCISD::SEXT_LD_SPLAT; 9124 } 9125 return true; 9126 } 9127 return false; 9128 } 9129 9130 // If this is a case we can't handle, return null and let the default 9131 // expansion code take care of it. If we CAN select this case, and if it 9132 // selects to a single instruction, return Op. Otherwise, if we can codegen 9133 // this case more efficiently than a constant pool load, lower it to the 9134 // sequence of ops that should be used. 9135 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9136 SelectionDAG &DAG) const { 9137 SDLoc dl(Op); 9138 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9139 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9140 9141 // Check if this is a splat of a constant value. 9142 APInt APSplatBits, APSplatUndef; 9143 unsigned SplatBitSize; 9144 bool HasAnyUndefs; 9145 bool BVNIsConstantSplat = 9146 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9147 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9148 9149 // If it is a splat of a double, check if we can shrink it to a 32 bit 9150 // non-denormal float which when converted back to double gives us the same 9151 // double. This is to exploit the XXSPLTIDP instruction. 9152 // If we lose precision, we use XXSPLTI32DX. 9153 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9154 Subtarget.hasPrefixInstrs()) { 9155 // Check the type first to short-circuit so we don't modify APSplatBits if 9156 // this block isn't executed. 9157 if ((Op->getValueType(0) == MVT::v2f64) && 9158 convertToNonDenormSingle(APSplatBits)) { 9159 SDValue SplatNode = DAG.getNode( 9160 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9161 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9162 return DAG.getBitcast(Op.getValueType(), SplatNode); 9163 } else { 9164 // We may lose precision, so we have to use XXSPLTI32DX. 9165 9166 uint32_t Hi = 9167 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9168 uint32_t Lo = 9169 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9170 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9171 9172 if (!Hi || !Lo) 9173 // If either load is 0, then we should generate XXLXOR to set to 0. 9174 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9175 9176 if (Hi) 9177 SplatNode = DAG.getNode( 9178 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9179 DAG.getTargetConstant(0, dl, MVT::i32), 9180 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9181 9182 if (Lo) 9183 SplatNode = 9184 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9185 DAG.getTargetConstant(1, dl, MVT::i32), 9186 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9187 9188 return DAG.getBitcast(Op.getValueType(), SplatNode); 9189 } 9190 } 9191 9192 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9193 unsigned NewOpcode = PPCISD::LD_SPLAT; 9194 9195 // Handle load-and-splat patterns as we have instructions that will do this 9196 // in one go. 9197 if (DAG.isSplatValue(Op, true) && 9198 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9199 const SDValue *InputLoad = &Op.getOperand(0); 9200 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9201 9202 // If the input load is an extending load, it will be an i32 -> i64 9203 // extending load and isValidSplatLoad() will update NewOpcode. 9204 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9205 unsigned ElementSize = 9206 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9207 9208 assert(((ElementSize == 2 * MemorySize) 9209 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9210 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9211 : (NewOpcode == PPCISD::LD_SPLAT)) && 9212 "Unmatched element size and opcode!\n"); 9213 9214 // Checking for a single use of this load, we have to check for vector 9215 // width (128 bits) / ElementSize uses (since each operand of the 9216 // BUILD_VECTOR is a separate use of the value. 9217 unsigned NumUsesOfInputLD = 128 / ElementSize; 9218 for (SDValue BVInOp : Op->ops()) 9219 if (BVInOp.isUndef()) 9220 NumUsesOfInputLD--; 9221 9222 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9223 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9224 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9225 // 15", but funciton IsValidSplatLoad() now will only return true when 9226 // the data at index 0 is not nullptr. So we will not get into trouble for 9227 // these cases. 9228 // 9229 // case 1 - lfiwzx/lfiwax 9230 // 1.1: load result is i32 and is sign/zero extend to i64; 9231 // 1.2: build a v2i64 vector type with above loaded value; 9232 // 1.3: the vector has only one value at index 0, others are all undef; 9233 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9234 if (NumUsesOfInputLD == 1 && 9235 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9236 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9237 Subtarget.hasLFIWAX())) 9238 return SDValue(); 9239 9240 // case 2 - lxvr[hb]x 9241 // 2.1: load result is at most i16; 9242 // 2.2: build a vector with above loaded value; 9243 // 2.3: the vector has only one value at index 0, others are all undef; 9244 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9245 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9246 Subtarget.isISA3_1() && ElementSize <= 16) 9247 return SDValue(); 9248 9249 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9250 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9251 Subtarget.hasVSX()) { 9252 SDValue Ops[] = { 9253 LD->getChain(), // Chain 9254 LD->getBasePtr(), // Ptr 9255 DAG.getValueType(Op.getValueType()) // VT 9256 }; 9257 SDValue LdSplt = DAG.getMemIntrinsicNode( 9258 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9259 LD->getMemoryVT(), LD->getMemOperand()); 9260 // Replace all uses of the output chain of the original load with the 9261 // output chain of the new load. 9262 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9263 LdSplt.getValue(1)); 9264 return LdSplt; 9265 } 9266 } 9267 9268 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9269 // 32-bits can be lowered to VSX instructions under certain conditions. 9270 // Without VSX, there is no pattern more efficient than expanding the node. 9271 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9272 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9273 Subtarget.hasP8Vector())) 9274 return Op; 9275 return SDValue(); 9276 } 9277 9278 uint64_t SplatBits = APSplatBits.getZExtValue(); 9279 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9280 unsigned SplatSize = SplatBitSize / 8; 9281 9282 // First, handle single instruction cases. 9283 9284 // All zeros? 9285 if (SplatBits == 0) { 9286 // Canonicalize all zero vectors to be v4i32. 9287 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9288 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9289 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9290 } 9291 return Op; 9292 } 9293 9294 // We have XXSPLTIW for constant splats four bytes wide. 9295 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9296 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9297 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9298 // turned into a 4-byte splat of 0xABABABAB. 9299 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9300 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9301 Op.getValueType(), DAG, dl); 9302 9303 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9304 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9305 dl); 9306 9307 // We have XXSPLTIB for constant splats one byte wide. 9308 if (Subtarget.hasP9Vector() && SplatSize == 1) 9309 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9310 dl); 9311 9312 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9313 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9314 (32-SplatBitSize)); 9315 if (SextVal >= -16 && SextVal <= 15) 9316 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9317 dl); 9318 9319 // Two instruction sequences. 9320 9321 // If this value is in the range [-32,30] and is even, use: 9322 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9323 // If this value is in the range [17,31] and is odd, use: 9324 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9325 // If this value is in the range [-31,-17] and is odd, use: 9326 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9327 // Note the last two are three-instruction sequences. 9328 if (SextVal >= -32 && SextVal <= 31) { 9329 // To avoid having these optimizations undone by constant folding, 9330 // we convert to a pseudo that will be expanded later into one of 9331 // the above forms. 9332 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9333 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9334 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9335 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9336 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9337 if (VT == Op.getValueType()) 9338 return RetVal; 9339 else 9340 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9341 } 9342 9343 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9344 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9345 // for fneg/fabs. 9346 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9347 // Make -1 and vspltisw -1: 9348 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9349 9350 // Make the VSLW intrinsic, computing 0x8000_0000. 9351 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9352 OnesV, DAG, dl); 9353 9354 // xor by OnesV to invert it. 9355 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9356 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9357 } 9358 9359 // Check to see if this is a wide variety of vsplti*, binop self cases. 9360 static const signed char SplatCsts[] = { 9361 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9362 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9363 }; 9364 9365 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9366 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9367 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9368 int i = SplatCsts[idx]; 9369 9370 // Figure out what shift amount will be used by altivec if shifted by i in 9371 // this splat size. 9372 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9373 9374 // vsplti + shl self. 9375 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9376 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9377 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9378 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9379 Intrinsic::ppc_altivec_vslw 9380 }; 9381 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9382 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9383 } 9384 9385 // vsplti + srl self. 9386 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9387 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9388 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9389 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9390 Intrinsic::ppc_altivec_vsrw 9391 }; 9392 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9393 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9394 } 9395 9396 // vsplti + rol self. 9397 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9398 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9399 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9400 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9401 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9402 Intrinsic::ppc_altivec_vrlw 9403 }; 9404 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9405 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9406 } 9407 9408 // t = vsplti c, result = vsldoi t, t, 1 9409 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9410 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9411 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9412 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9413 } 9414 // t = vsplti c, result = vsldoi t, t, 2 9415 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9416 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9417 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9418 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9419 } 9420 // t = vsplti c, result = vsldoi t, t, 3 9421 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9422 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9423 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9424 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9425 } 9426 } 9427 9428 return SDValue(); 9429 } 9430 9431 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9432 /// the specified operations to build the shuffle. 9433 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9434 SDValue RHS, SelectionDAG &DAG, 9435 const SDLoc &dl) { 9436 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9437 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9438 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9439 9440 enum { 9441 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9442 OP_VMRGHW, 9443 OP_VMRGLW, 9444 OP_VSPLTISW0, 9445 OP_VSPLTISW1, 9446 OP_VSPLTISW2, 9447 OP_VSPLTISW3, 9448 OP_VSLDOI4, 9449 OP_VSLDOI8, 9450 OP_VSLDOI12 9451 }; 9452 9453 if (OpNum == OP_COPY) { 9454 if (LHSID == (1*9+2)*9+3) return LHS; 9455 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9456 return RHS; 9457 } 9458 9459 SDValue OpLHS, OpRHS; 9460 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9461 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9462 9463 int ShufIdxs[16]; 9464 switch (OpNum) { 9465 default: llvm_unreachable("Unknown i32 permute!"); 9466 case OP_VMRGHW: 9467 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9468 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9469 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9470 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9471 break; 9472 case OP_VMRGLW: 9473 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9474 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9475 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9476 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9477 break; 9478 case OP_VSPLTISW0: 9479 for (unsigned i = 0; i != 16; ++i) 9480 ShufIdxs[i] = (i&3)+0; 9481 break; 9482 case OP_VSPLTISW1: 9483 for (unsigned i = 0; i != 16; ++i) 9484 ShufIdxs[i] = (i&3)+4; 9485 break; 9486 case OP_VSPLTISW2: 9487 for (unsigned i = 0; i != 16; ++i) 9488 ShufIdxs[i] = (i&3)+8; 9489 break; 9490 case OP_VSPLTISW3: 9491 for (unsigned i = 0; i != 16; ++i) 9492 ShufIdxs[i] = (i&3)+12; 9493 break; 9494 case OP_VSLDOI4: 9495 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9496 case OP_VSLDOI8: 9497 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9498 case OP_VSLDOI12: 9499 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9500 } 9501 EVT VT = OpLHS.getValueType(); 9502 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9503 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9504 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9505 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9506 } 9507 9508 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9509 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9510 /// SDValue. 9511 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9512 SelectionDAG &DAG) const { 9513 const unsigned BytesInVector = 16; 9514 bool IsLE = Subtarget.isLittleEndian(); 9515 SDLoc dl(N); 9516 SDValue V1 = N->getOperand(0); 9517 SDValue V2 = N->getOperand(1); 9518 unsigned ShiftElts = 0, InsertAtByte = 0; 9519 bool Swap = false; 9520 9521 // Shifts required to get the byte we want at element 7. 9522 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9523 0, 15, 14, 13, 12, 11, 10, 9}; 9524 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9525 1, 2, 3, 4, 5, 6, 7, 8}; 9526 9527 ArrayRef<int> Mask = N->getMask(); 9528 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9529 9530 // For each mask element, find out if we're just inserting something 9531 // from V2 into V1 or vice versa. 9532 // Possible permutations inserting an element from V2 into V1: 9533 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9534 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9535 // ... 9536 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9537 // Inserting from V1 into V2 will be similar, except mask range will be 9538 // [16,31]. 9539 9540 bool FoundCandidate = false; 9541 // If both vector operands for the shuffle are the same vector, the mask 9542 // will contain only elements from the first one and the second one will be 9543 // undef. 9544 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9545 // Go through the mask of half-words to find an element that's being moved 9546 // from one vector to the other. 9547 for (unsigned i = 0; i < BytesInVector; ++i) { 9548 unsigned CurrentElement = Mask[i]; 9549 // If 2nd operand is undefined, we should only look for element 7 in the 9550 // Mask. 9551 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9552 continue; 9553 9554 bool OtherElementsInOrder = true; 9555 // Examine the other elements in the Mask to see if they're in original 9556 // order. 9557 for (unsigned j = 0; j < BytesInVector; ++j) { 9558 if (j == i) 9559 continue; 9560 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9561 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9562 // in which we always assume we're always picking from the 1st operand. 9563 int MaskOffset = 9564 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9565 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9566 OtherElementsInOrder = false; 9567 break; 9568 } 9569 } 9570 // If other elements are in original order, we record the number of shifts 9571 // we need to get the element we want into element 7. Also record which byte 9572 // in the vector we should insert into. 9573 if (OtherElementsInOrder) { 9574 // If 2nd operand is undefined, we assume no shifts and no swapping. 9575 if (V2.isUndef()) { 9576 ShiftElts = 0; 9577 Swap = false; 9578 } else { 9579 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9580 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9581 : BigEndianShifts[CurrentElement & 0xF]; 9582 Swap = CurrentElement < BytesInVector; 9583 } 9584 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9585 FoundCandidate = true; 9586 break; 9587 } 9588 } 9589 9590 if (!FoundCandidate) 9591 return SDValue(); 9592 9593 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9594 // optionally with VECSHL if shift is required. 9595 if (Swap) 9596 std::swap(V1, V2); 9597 if (V2.isUndef()) 9598 V2 = V1; 9599 if (ShiftElts) { 9600 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9601 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9602 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9603 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9604 } 9605 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9606 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9607 } 9608 9609 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9610 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9611 /// SDValue. 9612 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9613 SelectionDAG &DAG) const { 9614 const unsigned NumHalfWords = 8; 9615 const unsigned BytesInVector = NumHalfWords * 2; 9616 // Check that the shuffle is on half-words. 9617 if (!isNByteElemShuffleMask(N, 2, 1)) 9618 return SDValue(); 9619 9620 bool IsLE = Subtarget.isLittleEndian(); 9621 SDLoc dl(N); 9622 SDValue V1 = N->getOperand(0); 9623 SDValue V2 = N->getOperand(1); 9624 unsigned ShiftElts = 0, InsertAtByte = 0; 9625 bool Swap = false; 9626 9627 // Shifts required to get the half-word we want at element 3. 9628 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9629 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9630 9631 uint32_t Mask = 0; 9632 uint32_t OriginalOrderLow = 0x1234567; 9633 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9634 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9635 // 32-bit space, only need 4-bit nibbles per element. 9636 for (unsigned i = 0; i < NumHalfWords; ++i) { 9637 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9638 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9639 } 9640 9641 // For each mask element, find out if we're just inserting something 9642 // from V2 into V1 or vice versa. Possible permutations inserting an element 9643 // from V2 into V1: 9644 // X, 1, 2, 3, 4, 5, 6, 7 9645 // 0, X, 2, 3, 4, 5, 6, 7 9646 // 0, 1, X, 3, 4, 5, 6, 7 9647 // 0, 1, 2, X, 4, 5, 6, 7 9648 // 0, 1, 2, 3, X, 5, 6, 7 9649 // 0, 1, 2, 3, 4, X, 6, 7 9650 // 0, 1, 2, 3, 4, 5, X, 7 9651 // 0, 1, 2, 3, 4, 5, 6, X 9652 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9653 9654 bool FoundCandidate = false; 9655 // Go through the mask of half-words to find an element that's being moved 9656 // from one vector to the other. 9657 for (unsigned i = 0; i < NumHalfWords; ++i) { 9658 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9659 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9660 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9661 uint32_t TargetOrder = 0x0; 9662 9663 // If both vector operands for the shuffle are the same vector, the mask 9664 // will contain only elements from the first one and the second one will be 9665 // undef. 9666 if (V2.isUndef()) { 9667 ShiftElts = 0; 9668 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9669 TargetOrder = OriginalOrderLow; 9670 Swap = false; 9671 // Skip if not the correct element or mask of other elements don't equal 9672 // to our expected order. 9673 if (MaskOneElt == VINSERTHSrcElem && 9674 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9675 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9676 FoundCandidate = true; 9677 break; 9678 } 9679 } else { // If both operands are defined. 9680 // Target order is [8,15] if the current mask is between [0,7]. 9681 TargetOrder = 9682 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9683 // Skip if mask of other elements don't equal our expected order. 9684 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9685 // We only need the last 3 bits for the number of shifts. 9686 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9687 : BigEndianShifts[MaskOneElt & 0x7]; 9688 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9689 Swap = MaskOneElt < NumHalfWords; 9690 FoundCandidate = true; 9691 break; 9692 } 9693 } 9694 } 9695 9696 if (!FoundCandidate) 9697 return SDValue(); 9698 9699 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9700 // optionally with VECSHL if shift is required. 9701 if (Swap) 9702 std::swap(V1, V2); 9703 if (V2.isUndef()) 9704 V2 = V1; 9705 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9706 if (ShiftElts) { 9707 // Double ShiftElts because we're left shifting on v16i8 type. 9708 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9709 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9710 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9711 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9712 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9713 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9714 } 9715 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9716 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9717 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9718 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9719 } 9720 9721 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9722 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9723 /// return the default SDValue. 9724 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9725 SelectionDAG &DAG) const { 9726 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9727 // to v16i8. Peek through the bitcasts to get the actual operands. 9728 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9729 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9730 9731 auto ShuffleMask = SVN->getMask(); 9732 SDValue VecShuffle(SVN, 0); 9733 SDLoc DL(SVN); 9734 9735 // Check that we have a four byte shuffle. 9736 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9737 return SDValue(); 9738 9739 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9740 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9741 std::swap(LHS, RHS); 9742 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9743 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9744 } 9745 9746 // Ensure that the RHS is a vector of constants. 9747 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9748 if (!BVN) 9749 return SDValue(); 9750 9751 // Check if RHS is a splat of 4-bytes (or smaller). 9752 APInt APSplatValue, APSplatUndef; 9753 unsigned SplatBitSize; 9754 bool HasAnyUndefs; 9755 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9756 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9757 SplatBitSize > 32) 9758 return SDValue(); 9759 9760 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9761 // The instruction splats a constant C into two words of the source vector 9762 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9763 // Thus we check that the shuffle mask is the equivalent of 9764 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9765 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9766 // within each word are consecutive, so we only need to check the first byte. 9767 SDValue Index; 9768 bool IsLE = Subtarget.isLittleEndian(); 9769 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9770 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9771 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9772 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9773 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9774 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9775 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9776 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9777 else 9778 return SDValue(); 9779 9780 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9781 // for XXSPLTI32DX. 9782 unsigned SplatVal = APSplatValue.getZExtValue(); 9783 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9784 SplatVal |= (SplatVal << SplatBitSize); 9785 9786 SDValue SplatNode = DAG.getNode( 9787 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9788 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9789 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9790 } 9791 9792 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9793 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9794 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9795 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9796 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9797 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9798 assert(Op.getValueType() == MVT::v1i128 && 9799 "Only set v1i128 as custom, other type shouldn't reach here!"); 9800 SDLoc dl(Op); 9801 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9802 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9803 unsigned SHLAmt = N1.getConstantOperandVal(0); 9804 if (SHLAmt % 8 == 0) { 9805 SmallVector<int, 16> Mask(16, 0); 9806 std::iota(Mask.begin(), Mask.end(), 0); 9807 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9808 if (SDValue Shuffle = 9809 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9810 DAG.getUNDEF(MVT::v16i8), Mask)) 9811 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9812 } 9813 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9814 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9815 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9816 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9817 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9818 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9819 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9820 } 9821 9822 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9823 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9824 /// return the code it can be lowered into. Worst case, it can always be 9825 /// lowered into a vperm. 9826 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9827 SelectionDAG &DAG) const { 9828 SDLoc dl(Op); 9829 SDValue V1 = Op.getOperand(0); 9830 SDValue V2 = Op.getOperand(1); 9831 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9832 9833 // Any nodes that were combined in the target-independent combiner prior 9834 // to vector legalization will not be sent to the target combine. Try to 9835 // combine it here. 9836 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9837 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9838 return NewShuffle; 9839 Op = NewShuffle; 9840 SVOp = cast<ShuffleVectorSDNode>(Op); 9841 V1 = Op.getOperand(0); 9842 V2 = Op.getOperand(1); 9843 } 9844 EVT VT = Op.getValueType(); 9845 bool isLittleEndian = Subtarget.isLittleEndian(); 9846 9847 unsigned ShiftElts, InsertAtByte; 9848 bool Swap = false; 9849 9850 // If this is a load-and-splat, we can do that with a single instruction 9851 // in some cases. However if the load has multiple uses, we don't want to 9852 // combine it because that will just produce multiple loads. 9853 bool IsPermutedLoad = false; 9854 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9855 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9856 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9857 InputLoad->hasOneUse()) { 9858 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9859 int SplatIdx = 9860 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9861 9862 // The splat index for permuted loads will be in the left half of the vector 9863 // which is strictly wider than the loaded value by 8 bytes. So we need to 9864 // adjust the splat index to point to the correct address in memory. 9865 if (IsPermutedLoad) { 9866 assert((isLittleEndian || IsFourByte) && 9867 "Unexpected size for permuted load on big endian target"); 9868 SplatIdx += IsFourByte ? 2 : 1; 9869 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9870 "Splat of a value outside of the loaded memory"); 9871 } 9872 9873 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9874 // For 4-byte load-and-splat, we need Power9. 9875 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9876 uint64_t Offset = 0; 9877 if (IsFourByte) 9878 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9879 else 9880 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9881 9882 // If the width of the load is the same as the width of the splat, 9883 // loading with an offset would load the wrong memory. 9884 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9885 Offset = 0; 9886 9887 SDValue BasePtr = LD->getBasePtr(); 9888 if (Offset != 0) 9889 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9890 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9891 SDValue Ops[] = { 9892 LD->getChain(), // Chain 9893 BasePtr, // BasePtr 9894 DAG.getValueType(Op.getValueType()) // VT 9895 }; 9896 SDVTList VTL = 9897 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9898 SDValue LdSplt = 9899 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9900 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9901 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9902 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9903 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9904 return LdSplt; 9905 } 9906 } 9907 if (Subtarget.hasP9Vector() && 9908 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9909 isLittleEndian)) { 9910 if (Swap) 9911 std::swap(V1, V2); 9912 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9913 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9914 if (ShiftElts) { 9915 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9916 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9917 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9918 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9919 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9920 } 9921 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9922 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9923 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9924 } 9925 9926 if (Subtarget.hasPrefixInstrs()) { 9927 SDValue SplatInsertNode; 9928 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9929 return SplatInsertNode; 9930 } 9931 9932 if (Subtarget.hasP9Altivec()) { 9933 SDValue NewISDNode; 9934 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9935 return NewISDNode; 9936 9937 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9938 return NewISDNode; 9939 } 9940 9941 if (Subtarget.hasVSX() && 9942 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9943 if (Swap) 9944 std::swap(V1, V2); 9945 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9946 SDValue Conv2 = 9947 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9948 9949 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9950 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9951 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9952 } 9953 9954 if (Subtarget.hasVSX() && 9955 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9956 if (Swap) 9957 std::swap(V1, V2); 9958 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9959 SDValue Conv2 = 9960 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9961 9962 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9963 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9964 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9965 } 9966 9967 if (Subtarget.hasP9Vector()) { 9968 if (PPC::isXXBRHShuffleMask(SVOp)) { 9969 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9970 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9971 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9972 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9973 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9974 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9975 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9976 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9977 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9978 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9979 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9980 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9981 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9982 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9983 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9984 } 9985 } 9986 9987 if (Subtarget.hasVSX()) { 9988 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9989 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9990 9991 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9992 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9993 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9994 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9995 } 9996 9997 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9998 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9999 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10000 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10001 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10002 } 10003 } 10004 10005 // Cases that are handled by instructions that take permute immediates 10006 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10007 // selected by the instruction selector. 10008 if (V2.isUndef()) { 10009 if (PPC::isSplatShuffleMask(SVOp, 1) || 10010 PPC::isSplatShuffleMask(SVOp, 2) || 10011 PPC::isSplatShuffleMask(SVOp, 4) || 10012 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10013 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10014 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10015 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10016 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10017 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10018 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10019 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10020 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10021 (Subtarget.hasP8Altivec() && ( 10022 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10023 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10024 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10025 return Op; 10026 } 10027 } 10028 10029 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10030 // and produce a fixed permutation. If any of these match, do not lower to 10031 // VPERM. 10032 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10033 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10034 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10035 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10036 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10037 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10038 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10039 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10040 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10041 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10042 (Subtarget.hasP8Altivec() && ( 10043 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10044 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10045 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10046 return Op; 10047 10048 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10049 // perfect shuffle table to emit an optimal matching sequence. 10050 ArrayRef<int> PermMask = SVOp->getMask(); 10051 10052 unsigned PFIndexes[4]; 10053 bool isFourElementShuffle = true; 10054 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10055 unsigned EltNo = 8; // Start out undef. 10056 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10057 if (PermMask[i*4+j] < 0) 10058 continue; // Undef, ignore it. 10059 10060 unsigned ByteSource = PermMask[i*4+j]; 10061 if ((ByteSource & 3) != j) { 10062 isFourElementShuffle = false; 10063 break; 10064 } 10065 10066 if (EltNo == 8) { 10067 EltNo = ByteSource/4; 10068 } else if (EltNo != ByteSource/4) { 10069 isFourElementShuffle = false; 10070 break; 10071 } 10072 } 10073 PFIndexes[i] = EltNo; 10074 } 10075 10076 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10077 // perfect shuffle vector to determine if it is cost effective to do this as 10078 // discrete instructions, or whether we should use a vperm. 10079 // For now, we skip this for little endian until such time as we have a 10080 // little-endian perfect shuffle table. 10081 if (isFourElementShuffle && !isLittleEndian) { 10082 // Compute the index in the perfect shuffle table. 10083 unsigned PFTableIndex = 10084 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10085 10086 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10087 unsigned Cost = (PFEntry >> 30); 10088 10089 // Determining when to avoid vperm is tricky. Many things affect the cost 10090 // of vperm, particularly how many times the perm mask needs to be computed. 10091 // For example, if the perm mask can be hoisted out of a loop or is already 10092 // used (perhaps because there are multiple permutes with the same shuffle 10093 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10094 // the loop requires an extra register. 10095 // 10096 // As a compromise, we only emit discrete instructions if the shuffle can be 10097 // generated in 3 or fewer operations. When we have loop information 10098 // available, if this block is within a loop, we should avoid using vperm 10099 // for 3-operation perms and use a constant pool load instead. 10100 if (Cost < 3) 10101 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10102 } 10103 10104 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10105 // vector that will get spilled to the constant pool. 10106 if (V2.isUndef()) V2 = V1; 10107 10108 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10109 // that it is in input element units, not in bytes. Convert now. 10110 10111 // For little endian, the order of the input vectors is reversed, and 10112 // the permutation mask is complemented with respect to 31. This is 10113 // necessary to produce proper semantics with the big-endian-biased vperm 10114 // instruction. 10115 EVT EltVT = V1.getValueType().getVectorElementType(); 10116 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10117 10118 SmallVector<SDValue, 16> ResultMask; 10119 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10120 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10121 10122 for (unsigned j = 0; j != BytesPerElement; ++j) 10123 if (isLittleEndian) 10124 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10125 dl, MVT::i32)); 10126 else 10127 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10128 MVT::i32)); 10129 } 10130 10131 ShufflesHandledWithVPERM++; 10132 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10133 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10134 LLVM_DEBUG(SVOp->dump()); 10135 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10136 LLVM_DEBUG(VPermMask.dump()); 10137 10138 if (isLittleEndian) 10139 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10140 V2, V1, VPermMask); 10141 else 10142 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10143 V1, V2, VPermMask); 10144 } 10145 10146 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10147 /// vector comparison. If it is, return true and fill in Opc/isDot with 10148 /// information about the intrinsic. 10149 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10150 bool &isDot, const PPCSubtarget &Subtarget) { 10151 unsigned IntrinsicID = 10152 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10153 CompareOpc = -1; 10154 isDot = false; 10155 switch (IntrinsicID) { 10156 default: 10157 return false; 10158 // Comparison predicates. 10159 case Intrinsic::ppc_altivec_vcmpbfp_p: 10160 CompareOpc = 966; 10161 isDot = true; 10162 break; 10163 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10164 CompareOpc = 198; 10165 isDot = true; 10166 break; 10167 case Intrinsic::ppc_altivec_vcmpequb_p: 10168 CompareOpc = 6; 10169 isDot = true; 10170 break; 10171 case Intrinsic::ppc_altivec_vcmpequh_p: 10172 CompareOpc = 70; 10173 isDot = true; 10174 break; 10175 case Intrinsic::ppc_altivec_vcmpequw_p: 10176 CompareOpc = 134; 10177 isDot = true; 10178 break; 10179 case Intrinsic::ppc_altivec_vcmpequd_p: 10180 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10181 CompareOpc = 199; 10182 isDot = true; 10183 } else 10184 return false; 10185 break; 10186 case Intrinsic::ppc_altivec_vcmpneb_p: 10187 case Intrinsic::ppc_altivec_vcmpneh_p: 10188 case Intrinsic::ppc_altivec_vcmpnew_p: 10189 case Intrinsic::ppc_altivec_vcmpnezb_p: 10190 case Intrinsic::ppc_altivec_vcmpnezh_p: 10191 case Intrinsic::ppc_altivec_vcmpnezw_p: 10192 if (Subtarget.hasP9Altivec()) { 10193 switch (IntrinsicID) { 10194 default: 10195 llvm_unreachable("Unknown comparison intrinsic."); 10196 case Intrinsic::ppc_altivec_vcmpneb_p: 10197 CompareOpc = 7; 10198 break; 10199 case Intrinsic::ppc_altivec_vcmpneh_p: 10200 CompareOpc = 71; 10201 break; 10202 case Intrinsic::ppc_altivec_vcmpnew_p: 10203 CompareOpc = 135; 10204 break; 10205 case Intrinsic::ppc_altivec_vcmpnezb_p: 10206 CompareOpc = 263; 10207 break; 10208 case Intrinsic::ppc_altivec_vcmpnezh_p: 10209 CompareOpc = 327; 10210 break; 10211 case Intrinsic::ppc_altivec_vcmpnezw_p: 10212 CompareOpc = 391; 10213 break; 10214 } 10215 isDot = true; 10216 } else 10217 return false; 10218 break; 10219 case Intrinsic::ppc_altivec_vcmpgefp_p: 10220 CompareOpc = 454; 10221 isDot = true; 10222 break; 10223 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10224 CompareOpc = 710; 10225 isDot = true; 10226 break; 10227 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10228 CompareOpc = 774; 10229 isDot = true; 10230 break; 10231 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10232 CompareOpc = 838; 10233 isDot = true; 10234 break; 10235 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10236 CompareOpc = 902; 10237 isDot = true; 10238 break; 10239 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10240 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10241 CompareOpc = 967; 10242 isDot = true; 10243 } else 10244 return false; 10245 break; 10246 case Intrinsic::ppc_altivec_vcmpgtub_p: 10247 CompareOpc = 518; 10248 isDot = true; 10249 break; 10250 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10251 CompareOpc = 582; 10252 isDot = true; 10253 break; 10254 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10255 CompareOpc = 646; 10256 isDot = true; 10257 break; 10258 case Intrinsic::ppc_altivec_vcmpgtud_p: 10259 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10260 CompareOpc = 711; 10261 isDot = true; 10262 } else 10263 return false; 10264 break; 10265 10266 case Intrinsic::ppc_altivec_vcmpequq: 10267 case Intrinsic::ppc_altivec_vcmpgtsq: 10268 case Intrinsic::ppc_altivec_vcmpgtuq: 10269 if (!Subtarget.isISA3_1()) 10270 return false; 10271 switch (IntrinsicID) { 10272 default: 10273 llvm_unreachable("Unknown comparison intrinsic."); 10274 case Intrinsic::ppc_altivec_vcmpequq: 10275 CompareOpc = 455; 10276 break; 10277 case Intrinsic::ppc_altivec_vcmpgtsq: 10278 CompareOpc = 903; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpgtuq: 10281 CompareOpc = 647; 10282 break; 10283 } 10284 break; 10285 10286 // VSX predicate comparisons use the same infrastructure 10287 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10288 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10289 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10290 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10291 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10292 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10293 if (Subtarget.hasVSX()) { 10294 switch (IntrinsicID) { 10295 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10296 CompareOpc = 99; 10297 break; 10298 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10299 CompareOpc = 115; 10300 break; 10301 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10302 CompareOpc = 107; 10303 break; 10304 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10305 CompareOpc = 67; 10306 break; 10307 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10308 CompareOpc = 83; 10309 break; 10310 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10311 CompareOpc = 75; 10312 break; 10313 } 10314 isDot = true; 10315 } else 10316 return false; 10317 break; 10318 10319 // Normal Comparisons. 10320 case Intrinsic::ppc_altivec_vcmpbfp: 10321 CompareOpc = 966; 10322 break; 10323 case Intrinsic::ppc_altivec_vcmpeqfp: 10324 CompareOpc = 198; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpequb: 10327 CompareOpc = 6; 10328 break; 10329 case Intrinsic::ppc_altivec_vcmpequh: 10330 CompareOpc = 70; 10331 break; 10332 case Intrinsic::ppc_altivec_vcmpequw: 10333 CompareOpc = 134; 10334 break; 10335 case Intrinsic::ppc_altivec_vcmpequd: 10336 if (Subtarget.hasP8Altivec()) 10337 CompareOpc = 199; 10338 else 10339 return false; 10340 break; 10341 case Intrinsic::ppc_altivec_vcmpneb: 10342 case Intrinsic::ppc_altivec_vcmpneh: 10343 case Intrinsic::ppc_altivec_vcmpnew: 10344 case Intrinsic::ppc_altivec_vcmpnezb: 10345 case Intrinsic::ppc_altivec_vcmpnezh: 10346 case Intrinsic::ppc_altivec_vcmpnezw: 10347 if (Subtarget.hasP9Altivec()) 10348 switch (IntrinsicID) { 10349 default: 10350 llvm_unreachable("Unknown comparison intrinsic."); 10351 case Intrinsic::ppc_altivec_vcmpneb: 10352 CompareOpc = 7; 10353 break; 10354 case Intrinsic::ppc_altivec_vcmpneh: 10355 CompareOpc = 71; 10356 break; 10357 case Intrinsic::ppc_altivec_vcmpnew: 10358 CompareOpc = 135; 10359 break; 10360 case Intrinsic::ppc_altivec_vcmpnezb: 10361 CompareOpc = 263; 10362 break; 10363 case Intrinsic::ppc_altivec_vcmpnezh: 10364 CompareOpc = 327; 10365 break; 10366 case Intrinsic::ppc_altivec_vcmpnezw: 10367 CompareOpc = 391; 10368 break; 10369 } 10370 else 10371 return false; 10372 break; 10373 case Intrinsic::ppc_altivec_vcmpgefp: 10374 CompareOpc = 454; 10375 break; 10376 case Intrinsic::ppc_altivec_vcmpgtfp: 10377 CompareOpc = 710; 10378 break; 10379 case Intrinsic::ppc_altivec_vcmpgtsb: 10380 CompareOpc = 774; 10381 break; 10382 case Intrinsic::ppc_altivec_vcmpgtsh: 10383 CompareOpc = 838; 10384 break; 10385 case Intrinsic::ppc_altivec_vcmpgtsw: 10386 CompareOpc = 902; 10387 break; 10388 case Intrinsic::ppc_altivec_vcmpgtsd: 10389 if (Subtarget.hasP8Altivec()) 10390 CompareOpc = 967; 10391 else 10392 return false; 10393 break; 10394 case Intrinsic::ppc_altivec_vcmpgtub: 10395 CompareOpc = 518; 10396 break; 10397 case Intrinsic::ppc_altivec_vcmpgtuh: 10398 CompareOpc = 582; 10399 break; 10400 case Intrinsic::ppc_altivec_vcmpgtuw: 10401 CompareOpc = 646; 10402 break; 10403 case Intrinsic::ppc_altivec_vcmpgtud: 10404 if (Subtarget.hasP8Altivec()) 10405 CompareOpc = 711; 10406 else 10407 return false; 10408 break; 10409 case Intrinsic::ppc_altivec_vcmpequq_p: 10410 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10411 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10412 if (!Subtarget.isISA3_1()) 10413 return false; 10414 switch (IntrinsicID) { 10415 default: 10416 llvm_unreachable("Unknown comparison intrinsic."); 10417 case Intrinsic::ppc_altivec_vcmpequq_p: 10418 CompareOpc = 455; 10419 break; 10420 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10421 CompareOpc = 903; 10422 break; 10423 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10424 CompareOpc = 647; 10425 break; 10426 } 10427 isDot = true; 10428 break; 10429 } 10430 return true; 10431 } 10432 10433 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10434 /// lower, do it, otherwise return null. 10435 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10436 SelectionDAG &DAG) const { 10437 unsigned IntrinsicID = 10438 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10439 10440 SDLoc dl(Op); 10441 10442 switch (IntrinsicID) { 10443 case Intrinsic::thread_pointer: 10444 // Reads the thread pointer register, used for __builtin_thread_pointer. 10445 if (Subtarget.isPPC64()) 10446 return DAG.getRegister(PPC::X13, MVT::i64); 10447 return DAG.getRegister(PPC::R2, MVT::i32); 10448 10449 case Intrinsic::ppc_mma_disassemble_acc: 10450 case Intrinsic::ppc_vsx_disassemble_pair: { 10451 int NumVecs = 2; 10452 SDValue WideVec = Op.getOperand(1); 10453 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10454 NumVecs = 4; 10455 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10456 } 10457 SmallVector<SDValue, 4> RetOps; 10458 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10459 SDValue Extract = DAG.getNode( 10460 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10461 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10462 : VecNo, 10463 dl, getPointerTy(DAG.getDataLayout()))); 10464 RetOps.push_back(Extract); 10465 } 10466 return DAG.getMergeValues(RetOps, dl); 10467 } 10468 10469 case Intrinsic::ppc_unpack_longdouble: { 10470 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10471 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10472 "Argument of long double unpack must be 0 or 1!"); 10473 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10474 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10475 Idx->getValueType(0))); 10476 } 10477 10478 case Intrinsic::ppc_compare_exp_lt: 10479 case Intrinsic::ppc_compare_exp_gt: 10480 case Intrinsic::ppc_compare_exp_eq: 10481 case Intrinsic::ppc_compare_exp_uo: { 10482 unsigned Pred; 10483 switch (IntrinsicID) { 10484 case Intrinsic::ppc_compare_exp_lt: 10485 Pred = PPC::PRED_LT; 10486 break; 10487 case Intrinsic::ppc_compare_exp_gt: 10488 Pred = PPC::PRED_GT; 10489 break; 10490 case Intrinsic::ppc_compare_exp_eq: 10491 Pred = PPC::PRED_EQ; 10492 break; 10493 case Intrinsic::ppc_compare_exp_uo: 10494 Pred = PPC::PRED_UN; 10495 break; 10496 } 10497 return SDValue( 10498 DAG.getMachineNode( 10499 PPC::SELECT_CC_I4, dl, MVT::i32, 10500 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10501 Op.getOperand(1), Op.getOperand(2)), 10502 0), 10503 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10504 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10505 0); 10506 } 10507 case Intrinsic::ppc_test_data_class_d: 10508 case Intrinsic::ppc_test_data_class_f: { 10509 unsigned CmprOpc = PPC::XSTSTDCDP; 10510 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10511 CmprOpc = PPC::XSTSTDCSP; 10512 return SDValue( 10513 DAG.getMachineNode( 10514 PPC::SELECT_CC_I4, dl, MVT::i32, 10515 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10516 Op.getOperand(1)), 10517 0), 10518 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10519 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10520 0); 10521 } 10522 case Intrinsic::ppc_convert_f128_to_ppcf128: 10523 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10524 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10525 ? RTLIB::CONVERT_PPCF128_F128 10526 : RTLIB::CONVERT_F128_PPCF128; 10527 MakeLibCallOptions CallOptions; 10528 std::pair<SDValue, SDValue> Result = 10529 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10530 dl, SDValue()); 10531 return Result.first; 10532 } 10533 } 10534 10535 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10536 // opcode number of the comparison. 10537 int CompareOpc; 10538 bool isDot; 10539 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10540 return SDValue(); // Don't custom lower most intrinsics. 10541 10542 // If this is a non-dot comparison, make the VCMP node and we are done. 10543 if (!isDot) { 10544 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10545 Op.getOperand(1), Op.getOperand(2), 10546 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10547 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10548 } 10549 10550 // Create the PPCISD altivec 'dot' comparison node. 10551 SDValue Ops[] = { 10552 Op.getOperand(2), // LHS 10553 Op.getOperand(3), // RHS 10554 DAG.getConstant(CompareOpc, dl, MVT::i32) 10555 }; 10556 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10557 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10558 10559 // Now that we have the comparison, emit a copy from the CR to a GPR. 10560 // This is flagged to the above dot comparison. 10561 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10562 DAG.getRegister(PPC::CR6, MVT::i32), 10563 CompNode.getValue(1)); 10564 10565 // Unpack the result based on how the target uses it. 10566 unsigned BitNo; // Bit # of CR6. 10567 bool InvertBit; // Invert result? 10568 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10569 default: // Can't happen, don't crash on invalid number though. 10570 case 0: // Return the value of the EQ bit of CR6. 10571 BitNo = 0; InvertBit = false; 10572 break; 10573 case 1: // Return the inverted value of the EQ bit of CR6. 10574 BitNo = 0; InvertBit = true; 10575 break; 10576 case 2: // Return the value of the LT bit of CR6. 10577 BitNo = 2; InvertBit = false; 10578 break; 10579 case 3: // Return the inverted value of the LT bit of CR6. 10580 BitNo = 2; InvertBit = true; 10581 break; 10582 } 10583 10584 // Shift the bit into the low position. 10585 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10586 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10587 // Isolate the bit. 10588 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10589 DAG.getConstant(1, dl, MVT::i32)); 10590 10591 // If we are supposed to, toggle the bit. 10592 if (InvertBit) 10593 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10594 DAG.getConstant(1, dl, MVT::i32)); 10595 return Flags; 10596 } 10597 10598 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10599 SelectionDAG &DAG) const { 10600 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10601 // the beginning of the argument list. 10602 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10603 SDLoc DL(Op); 10604 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10605 case Intrinsic::ppc_cfence: { 10606 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10607 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10608 SDValue Val = Op.getOperand(ArgStart + 1); 10609 EVT Ty = Val.getValueType(); 10610 if (Ty == MVT::i128) { 10611 // FIXME: Testing one of two paired registers is sufficient to guarantee 10612 // ordering? 10613 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10614 } 10615 return SDValue( 10616 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10617 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10618 Op.getOperand(0)), 10619 0); 10620 } 10621 default: 10622 break; 10623 } 10624 return SDValue(); 10625 } 10626 10627 // Lower scalar BSWAP64 to xxbrd. 10628 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10629 SDLoc dl(Op); 10630 if (!Subtarget.isPPC64()) 10631 return Op; 10632 // MTVSRDD 10633 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10634 Op.getOperand(0)); 10635 // XXBRD 10636 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10637 // MFVSRD 10638 int VectorIndex = 0; 10639 if (Subtarget.isLittleEndian()) 10640 VectorIndex = 1; 10641 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10642 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10643 return Op; 10644 } 10645 10646 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10647 // compared to a value that is atomically loaded (atomic loads zero-extend). 10648 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10649 SelectionDAG &DAG) const { 10650 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10651 "Expecting an atomic compare-and-swap here."); 10652 SDLoc dl(Op); 10653 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10654 EVT MemVT = AtomicNode->getMemoryVT(); 10655 if (MemVT.getSizeInBits() >= 32) 10656 return Op; 10657 10658 SDValue CmpOp = Op.getOperand(2); 10659 // If this is already correctly zero-extended, leave it alone. 10660 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10661 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10662 return Op; 10663 10664 // Clear the high bits of the compare operand. 10665 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10666 SDValue NewCmpOp = 10667 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10668 DAG.getConstant(MaskVal, dl, MVT::i32)); 10669 10670 // Replace the existing compare operand with the properly zero-extended one. 10671 SmallVector<SDValue, 4> Ops; 10672 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10673 Ops.push_back(AtomicNode->getOperand(i)); 10674 Ops[2] = NewCmpOp; 10675 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10676 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10677 auto NodeTy = 10678 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10679 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10680 } 10681 10682 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10683 SelectionDAG &DAG) const { 10684 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10685 EVT MemVT = N->getMemoryVT(); 10686 assert(MemVT.getSimpleVT() == MVT::i128 && 10687 "Expect quadword atomic operations"); 10688 SDLoc dl(N); 10689 unsigned Opc = N->getOpcode(); 10690 switch (Opc) { 10691 case ISD::ATOMIC_LOAD: { 10692 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10693 // lowered to ppc instructions by pattern matching instruction selector. 10694 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10695 SmallVector<SDValue, 4> Ops{ 10696 N->getOperand(0), 10697 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10698 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10699 Ops.push_back(N->getOperand(I)); 10700 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10701 Ops, MemVT, N->getMemOperand()); 10702 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10703 SDValue ValHi = 10704 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10705 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10706 DAG.getConstant(64, dl, MVT::i32)); 10707 SDValue Val = 10708 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10709 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10710 {Val, LoadedVal.getValue(2)}); 10711 } 10712 case ISD::ATOMIC_STORE: { 10713 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10714 // lowered to ppc instructions by pattern matching instruction selector. 10715 SDVTList Tys = DAG.getVTList(MVT::Other); 10716 SmallVector<SDValue, 4> Ops{ 10717 N->getOperand(0), 10718 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10719 SDValue Val = N->getOperand(2); 10720 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10721 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10722 DAG.getConstant(64, dl, MVT::i32)); 10723 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10724 Ops.push_back(ValLo); 10725 Ops.push_back(ValHi); 10726 Ops.push_back(N->getOperand(1)); 10727 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10728 N->getMemOperand()); 10729 } 10730 default: 10731 llvm_unreachable("Unexpected atomic opcode"); 10732 } 10733 } 10734 10735 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10736 SelectionDAG &DAG) const { 10737 SDLoc dl(Op); 10738 // Create a stack slot that is 16-byte aligned. 10739 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10740 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10741 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10742 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10743 10744 // Store the input value into Value#0 of the stack slot. 10745 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10746 MachinePointerInfo()); 10747 // Load it out. 10748 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10749 } 10750 10751 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10752 SelectionDAG &DAG) const { 10753 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10754 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10755 10756 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10757 10758 EVT VT = Op.getValueType(); 10759 SDLoc dl(Op); 10760 SDValue V1 = Op.getOperand(0); 10761 SDValue V2 = Op.getOperand(1); 10762 10763 if (VT == MVT::v2f64 && C) 10764 return Op; 10765 10766 if (Subtarget.isISA3_1()) { 10767 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10768 return SDValue(); 10769 // On P10, we have legal lowering for constant and variable indices for 10770 // all vectors. 10771 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10772 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10773 return Op; 10774 } 10775 10776 // Before P10, we have legal lowering for constant indices but not for 10777 // variable ones. 10778 if (!C) 10779 return SDValue(); 10780 10781 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10782 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10783 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10784 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10785 unsigned InsertAtElement = C->getZExtValue(); 10786 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10787 if (Subtarget.isLittleEndian()) { 10788 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10789 } 10790 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10791 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10792 } 10793 return Op; 10794 } 10795 10796 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10797 SelectionDAG &DAG) const { 10798 SDLoc dl(Op); 10799 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10800 SDValue LoadChain = LN->getChain(); 10801 SDValue BasePtr = LN->getBasePtr(); 10802 EVT VT = Op.getValueType(); 10803 10804 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10805 return Op; 10806 10807 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10808 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10809 // 2 or 4 vsx registers. 10810 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10811 "Type unsupported without MMA"); 10812 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10813 "Type unsupported without paired vector support"); 10814 Align Alignment = LN->getAlign(); 10815 SmallVector<SDValue, 4> Loads; 10816 SmallVector<SDValue, 4> LoadChains; 10817 unsigned NumVecs = VT.getSizeInBits() / 128; 10818 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10819 SDValue Load = 10820 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10821 LN->getPointerInfo().getWithOffset(Idx * 16), 10822 commonAlignment(Alignment, Idx * 16), 10823 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10824 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10825 DAG.getConstant(16, dl, BasePtr.getValueType())); 10826 Loads.push_back(Load); 10827 LoadChains.push_back(Load.getValue(1)); 10828 } 10829 if (Subtarget.isLittleEndian()) { 10830 std::reverse(Loads.begin(), Loads.end()); 10831 std::reverse(LoadChains.begin(), LoadChains.end()); 10832 } 10833 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10834 SDValue Value = 10835 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10836 dl, VT, Loads); 10837 SDValue RetOps[] = {Value, TF}; 10838 return DAG.getMergeValues(RetOps, dl); 10839 } 10840 10841 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10842 SelectionDAG &DAG) const { 10843 SDLoc dl(Op); 10844 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10845 SDValue StoreChain = SN->getChain(); 10846 SDValue BasePtr = SN->getBasePtr(); 10847 SDValue Value = SN->getValue(); 10848 EVT StoreVT = Value.getValueType(); 10849 10850 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10851 return Op; 10852 10853 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10854 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10855 // underlying registers individually. 10856 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10857 "Type unsupported without MMA"); 10858 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10859 "Type unsupported without paired vector support"); 10860 Align Alignment = SN->getAlign(); 10861 SmallVector<SDValue, 4> Stores; 10862 unsigned NumVecs = 2; 10863 if (StoreVT == MVT::v512i1) { 10864 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10865 NumVecs = 4; 10866 } 10867 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10868 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10869 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10870 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10871 SDValue Store = 10872 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10873 SN->getPointerInfo().getWithOffset(Idx * 16), 10874 commonAlignment(Alignment, Idx * 16), 10875 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10876 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10877 DAG.getConstant(16, dl, BasePtr.getValueType())); 10878 Stores.push_back(Store); 10879 } 10880 SDValue TF = DAG.getTokenFactor(dl, Stores); 10881 return TF; 10882 } 10883 10884 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10885 SDLoc dl(Op); 10886 if (Op.getValueType() == MVT::v4i32) { 10887 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10888 10889 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10890 // +16 as shift amt. 10891 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10892 SDValue RHSSwap = // = vrlw RHS, 16 10893 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10894 10895 // Shrinkify inputs to v8i16. 10896 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10897 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10898 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10899 10900 // Low parts multiplied together, generating 32-bit results (we ignore the 10901 // top parts). 10902 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10903 LHS, RHS, DAG, dl, MVT::v4i32); 10904 10905 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10906 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10907 // Shift the high parts up 16 bits. 10908 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10909 Neg16, DAG, dl); 10910 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10911 } else if (Op.getValueType() == MVT::v16i8) { 10912 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10913 bool isLittleEndian = Subtarget.isLittleEndian(); 10914 10915 // Multiply the even 8-bit parts, producing 16-bit sums. 10916 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10917 LHS, RHS, DAG, dl, MVT::v8i16); 10918 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10919 10920 // Multiply the odd 8-bit parts, producing 16-bit sums. 10921 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10922 LHS, RHS, DAG, dl, MVT::v8i16); 10923 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10924 10925 // Merge the results together. Because vmuleub and vmuloub are 10926 // instructions with a big-endian bias, we must reverse the 10927 // element numbering and reverse the meaning of "odd" and "even" 10928 // when generating little endian code. 10929 int Ops[16]; 10930 for (unsigned i = 0; i != 8; ++i) { 10931 if (isLittleEndian) { 10932 Ops[i*2 ] = 2*i; 10933 Ops[i*2+1] = 2*i+16; 10934 } else { 10935 Ops[i*2 ] = 2*i+1; 10936 Ops[i*2+1] = 2*i+1+16; 10937 } 10938 } 10939 if (isLittleEndian) 10940 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10941 else 10942 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10943 } else { 10944 llvm_unreachable("Unknown mul to lower!"); 10945 } 10946 } 10947 10948 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10949 bool IsStrict = Op->isStrictFPOpcode(); 10950 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10951 !Subtarget.hasP9Vector()) 10952 return SDValue(); 10953 10954 return Op; 10955 } 10956 10957 // Custom lowering for fpext vf32 to v2f64 10958 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10959 10960 assert(Op.getOpcode() == ISD::FP_EXTEND && 10961 "Should only be called for ISD::FP_EXTEND"); 10962 10963 // FIXME: handle extends from half precision float vectors on P9. 10964 // We only want to custom lower an extend from v2f32 to v2f64. 10965 if (Op.getValueType() != MVT::v2f64 || 10966 Op.getOperand(0).getValueType() != MVT::v2f32) 10967 return SDValue(); 10968 10969 SDLoc dl(Op); 10970 SDValue Op0 = Op.getOperand(0); 10971 10972 switch (Op0.getOpcode()) { 10973 default: 10974 return SDValue(); 10975 case ISD::EXTRACT_SUBVECTOR: { 10976 assert(Op0.getNumOperands() == 2 && 10977 isa<ConstantSDNode>(Op0->getOperand(1)) && 10978 "Node should have 2 operands with second one being a constant!"); 10979 10980 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10981 return SDValue(); 10982 10983 // Custom lower is only done for high or low doubleword. 10984 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10985 if (Idx % 2 != 0) 10986 return SDValue(); 10987 10988 // Since input is v4f32, at this point Idx is either 0 or 2. 10989 // Shift to get the doubleword position we want. 10990 int DWord = Idx >> 1; 10991 10992 // High and low word positions are different on little endian. 10993 if (Subtarget.isLittleEndian()) 10994 DWord ^= 0x1; 10995 10996 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10997 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10998 } 10999 case ISD::FADD: 11000 case ISD::FMUL: 11001 case ISD::FSUB: { 11002 SDValue NewLoad[2]; 11003 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11004 // Ensure both input are loads. 11005 SDValue LdOp = Op0.getOperand(i); 11006 if (LdOp.getOpcode() != ISD::LOAD) 11007 return SDValue(); 11008 // Generate new load node. 11009 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11010 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11011 NewLoad[i] = DAG.getMemIntrinsicNode( 11012 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11013 LD->getMemoryVT(), LD->getMemOperand()); 11014 } 11015 SDValue NewOp = 11016 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11017 NewLoad[1], Op0.getNode()->getFlags()); 11018 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11019 DAG.getConstant(0, dl, MVT::i32)); 11020 } 11021 case ISD::LOAD: { 11022 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11023 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11024 SDValue NewLd = DAG.getMemIntrinsicNode( 11025 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11026 LD->getMemoryVT(), LD->getMemOperand()); 11027 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11028 DAG.getConstant(0, dl, MVT::i32)); 11029 } 11030 } 11031 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11032 } 11033 11034 /// LowerOperation - Provide custom lowering hooks for some operations. 11035 /// 11036 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11037 switch (Op.getOpcode()) { 11038 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11039 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11040 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11041 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11042 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11043 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11044 case ISD::STRICT_FSETCC: 11045 case ISD::STRICT_FSETCCS: 11046 case ISD::SETCC: return LowerSETCC(Op, DAG); 11047 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11048 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11049 11050 case ISD::INLINEASM: 11051 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11052 // Variable argument lowering. 11053 case ISD::VASTART: return LowerVASTART(Op, DAG); 11054 case ISD::VAARG: return LowerVAARG(Op, DAG); 11055 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11056 11057 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11058 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11059 case ISD::GET_DYNAMIC_AREA_OFFSET: 11060 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11061 11062 // Exception handling lowering. 11063 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11064 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11065 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11066 11067 case ISD::LOAD: return LowerLOAD(Op, DAG); 11068 case ISD::STORE: return LowerSTORE(Op, DAG); 11069 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11070 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11071 case ISD::STRICT_FP_TO_UINT: 11072 case ISD::STRICT_FP_TO_SINT: 11073 case ISD::FP_TO_UINT: 11074 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11075 case ISD::STRICT_UINT_TO_FP: 11076 case ISD::STRICT_SINT_TO_FP: 11077 case ISD::UINT_TO_FP: 11078 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11079 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11080 11081 // Lower 64-bit shifts. 11082 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11083 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11084 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11085 11086 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11087 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11088 11089 // Vector-related lowering. 11090 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11091 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11092 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11093 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11094 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11095 case ISD::MUL: return LowerMUL(Op, DAG); 11096 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11097 case ISD::STRICT_FP_ROUND: 11098 case ISD::FP_ROUND: 11099 return LowerFP_ROUND(Op, DAG); 11100 case ISD::ROTL: return LowerROTL(Op, DAG); 11101 11102 // For counter-based loop handling. 11103 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11104 11105 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11106 11107 // Frame & Return address. 11108 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11109 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11110 11111 case ISD::INTRINSIC_VOID: 11112 return LowerINTRINSIC_VOID(Op, DAG); 11113 case ISD::BSWAP: 11114 return LowerBSWAP(Op, DAG); 11115 case ISD::ATOMIC_CMP_SWAP: 11116 return LowerATOMIC_CMP_SWAP(Op, DAG); 11117 case ISD::ATOMIC_STORE: 11118 return LowerATOMIC_LOAD_STORE(Op, DAG); 11119 } 11120 } 11121 11122 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11123 SmallVectorImpl<SDValue>&Results, 11124 SelectionDAG &DAG) const { 11125 SDLoc dl(N); 11126 switch (N->getOpcode()) { 11127 default: 11128 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11129 case ISD::ATOMIC_LOAD: { 11130 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11131 Results.push_back(Res); 11132 Results.push_back(Res.getValue(1)); 11133 break; 11134 } 11135 case ISD::READCYCLECOUNTER: { 11136 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11137 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11138 11139 Results.push_back( 11140 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11141 Results.push_back(RTB.getValue(2)); 11142 break; 11143 } 11144 case ISD::INTRINSIC_W_CHAIN: { 11145 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11146 Intrinsic::loop_decrement) 11147 break; 11148 11149 assert(N->getValueType(0) == MVT::i1 && 11150 "Unexpected result type for CTR decrement intrinsic"); 11151 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11152 N->getValueType(0)); 11153 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11154 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11155 N->getOperand(1)); 11156 11157 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11158 Results.push_back(NewInt.getValue(1)); 11159 break; 11160 } 11161 case ISD::INTRINSIC_WO_CHAIN: { 11162 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11163 case Intrinsic::ppc_pack_longdouble: 11164 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11165 N->getOperand(2), N->getOperand(1))); 11166 break; 11167 case Intrinsic::ppc_convert_f128_to_ppcf128: 11168 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11169 break; 11170 } 11171 break; 11172 } 11173 case ISD::VAARG: { 11174 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11175 return; 11176 11177 EVT VT = N->getValueType(0); 11178 11179 if (VT == MVT::i64) { 11180 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11181 11182 Results.push_back(NewNode); 11183 Results.push_back(NewNode.getValue(1)); 11184 } 11185 return; 11186 } 11187 case ISD::STRICT_FP_TO_SINT: 11188 case ISD::STRICT_FP_TO_UINT: 11189 case ISD::FP_TO_SINT: 11190 case ISD::FP_TO_UINT: { 11191 // LowerFP_TO_INT() can only handle f32 and f64. 11192 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11193 MVT::ppcf128) 11194 return; 11195 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11196 Results.push_back(LoweredValue); 11197 if (N->isStrictFPOpcode()) 11198 Results.push_back(LoweredValue.getValue(1)); 11199 return; 11200 } 11201 case ISD::TRUNCATE: { 11202 if (!N->getValueType(0).isVector()) 11203 return; 11204 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11205 if (Lowered) 11206 Results.push_back(Lowered); 11207 return; 11208 } 11209 case ISD::FSHL: 11210 case ISD::FSHR: 11211 // Don't handle funnel shifts here. 11212 return; 11213 case ISD::BITCAST: 11214 // Don't handle bitcast here. 11215 return; 11216 case ISD::FP_EXTEND: 11217 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11218 if (Lowered) 11219 Results.push_back(Lowered); 11220 return; 11221 } 11222 } 11223 11224 //===----------------------------------------------------------------------===// 11225 // Other Lowering Code 11226 //===----------------------------------------------------------------------===// 11227 11228 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11229 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11230 Function *Func = Intrinsic::getDeclaration(M, Id); 11231 return Builder.CreateCall(Func, {}); 11232 } 11233 11234 // The mappings for emitLeading/TrailingFence is taken from 11235 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11236 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11237 Instruction *Inst, 11238 AtomicOrdering Ord) const { 11239 if (Ord == AtomicOrdering::SequentiallyConsistent) 11240 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11241 if (isReleaseOrStronger(Ord)) 11242 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11243 return nullptr; 11244 } 11245 11246 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11247 Instruction *Inst, 11248 AtomicOrdering Ord) const { 11249 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11250 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11251 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11252 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11253 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11254 return Builder.CreateCall( 11255 Intrinsic::getDeclaration( 11256 Builder.GetInsertBlock()->getParent()->getParent(), 11257 Intrinsic::ppc_cfence, {Inst->getType()}), 11258 {Inst}); 11259 // FIXME: Can use isync for rmw operation. 11260 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11261 } 11262 return nullptr; 11263 } 11264 11265 MachineBasicBlock * 11266 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11267 unsigned AtomicSize, 11268 unsigned BinOpcode, 11269 unsigned CmpOpcode, 11270 unsigned CmpPred) const { 11271 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11272 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11273 11274 auto LoadMnemonic = PPC::LDARX; 11275 auto StoreMnemonic = PPC::STDCX; 11276 switch (AtomicSize) { 11277 default: 11278 llvm_unreachable("Unexpected size of atomic entity"); 11279 case 1: 11280 LoadMnemonic = PPC::LBARX; 11281 StoreMnemonic = PPC::STBCX; 11282 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11283 break; 11284 case 2: 11285 LoadMnemonic = PPC::LHARX; 11286 StoreMnemonic = PPC::STHCX; 11287 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11288 break; 11289 case 4: 11290 LoadMnemonic = PPC::LWARX; 11291 StoreMnemonic = PPC::STWCX; 11292 break; 11293 case 8: 11294 LoadMnemonic = PPC::LDARX; 11295 StoreMnemonic = PPC::STDCX; 11296 break; 11297 } 11298 11299 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11300 MachineFunction *F = BB->getParent(); 11301 MachineFunction::iterator It = ++BB->getIterator(); 11302 11303 Register dest = MI.getOperand(0).getReg(); 11304 Register ptrA = MI.getOperand(1).getReg(); 11305 Register ptrB = MI.getOperand(2).getReg(); 11306 Register incr = MI.getOperand(3).getReg(); 11307 DebugLoc dl = MI.getDebugLoc(); 11308 11309 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11310 MachineBasicBlock *loop2MBB = 11311 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11312 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11313 F->insert(It, loopMBB); 11314 if (CmpOpcode) 11315 F->insert(It, loop2MBB); 11316 F->insert(It, exitMBB); 11317 exitMBB->splice(exitMBB->begin(), BB, 11318 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11319 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11320 11321 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11322 Register TmpReg = (!BinOpcode) ? incr : 11323 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11324 : &PPC::GPRCRegClass); 11325 11326 // thisMBB: 11327 // ... 11328 // fallthrough --> loopMBB 11329 BB->addSuccessor(loopMBB); 11330 11331 // loopMBB: 11332 // l[wd]arx dest, ptr 11333 // add r0, dest, incr 11334 // st[wd]cx. r0, ptr 11335 // bne- loopMBB 11336 // fallthrough --> exitMBB 11337 11338 // For max/min... 11339 // loopMBB: 11340 // l[wd]arx dest, ptr 11341 // cmpl?[wd] incr, dest 11342 // bgt exitMBB 11343 // loop2MBB: 11344 // st[wd]cx. dest, ptr 11345 // bne- loopMBB 11346 // fallthrough --> exitMBB 11347 11348 BB = loopMBB; 11349 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11350 .addReg(ptrA).addReg(ptrB); 11351 if (BinOpcode) 11352 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11353 if (CmpOpcode) { 11354 // Signed comparisons of byte or halfword values must be sign-extended. 11355 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11356 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11357 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11358 ExtReg).addReg(dest); 11359 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11360 .addReg(incr).addReg(ExtReg); 11361 } else 11362 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11363 .addReg(incr).addReg(dest); 11364 11365 BuildMI(BB, dl, TII->get(PPC::BCC)) 11366 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11367 BB->addSuccessor(loop2MBB); 11368 BB->addSuccessor(exitMBB); 11369 BB = loop2MBB; 11370 } 11371 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11372 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11373 BuildMI(BB, dl, TII->get(PPC::BCC)) 11374 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11375 BB->addSuccessor(loopMBB); 11376 BB->addSuccessor(exitMBB); 11377 11378 // exitMBB: 11379 // ... 11380 BB = exitMBB; 11381 return BB; 11382 } 11383 11384 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11385 switch(MI.getOpcode()) { 11386 default: 11387 return false; 11388 case PPC::COPY: 11389 return TII->isSignExtended(MI); 11390 case PPC::LHA: 11391 case PPC::LHA8: 11392 case PPC::LHAU: 11393 case PPC::LHAU8: 11394 case PPC::LHAUX: 11395 case PPC::LHAUX8: 11396 case PPC::LHAX: 11397 case PPC::LHAX8: 11398 case PPC::LWA: 11399 case PPC::LWAUX: 11400 case PPC::LWAX: 11401 case PPC::LWAX_32: 11402 case PPC::LWA_32: 11403 case PPC::PLHA: 11404 case PPC::PLHA8: 11405 case PPC::PLHA8pc: 11406 case PPC::PLHApc: 11407 case PPC::PLWA: 11408 case PPC::PLWA8: 11409 case PPC::PLWA8pc: 11410 case PPC::PLWApc: 11411 case PPC::EXTSB: 11412 case PPC::EXTSB8: 11413 case PPC::EXTSB8_32_64: 11414 case PPC::EXTSB8_rec: 11415 case PPC::EXTSB_rec: 11416 case PPC::EXTSH: 11417 case PPC::EXTSH8: 11418 case PPC::EXTSH8_32_64: 11419 case PPC::EXTSH8_rec: 11420 case PPC::EXTSH_rec: 11421 case PPC::EXTSW: 11422 case PPC::EXTSWSLI: 11423 case PPC::EXTSWSLI_32_64: 11424 case PPC::EXTSWSLI_32_64_rec: 11425 case PPC::EXTSWSLI_rec: 11426 case PPC::EXTSW_32: 11427 case PPC::EXTSW_32_64: 11428 case PPC::EXTSW_32_64_rec: 11429 case PPC::EXTSW_rec: 11430 case PPC::SRAW: 11431 case PPC::SRAWI: 11432 case PPC::SRAWI_rec: 11433 case PPC::SRAW_rec: 11434 return true; 11435 } 11436 return false; 11437 } 11438 11439 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11440 MachineInstr &MI, MachineBasicBlock *BB, 11441 bool is8bit, // operation 11442 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11443 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11444 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11445 11446 // If this is a signed comparison and the value being compared is not known 11447 // to be sign extended, sign extend it here. 11448 DebugLoc dl = MI.getDebugLoc(); 11449 MachineFunction *F = BB->getParent(); 11450 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11451 Register incr = MI.getOperand(3).getReg(); 11452 bool IsSignExtended = Register::isVirtualRegister(incr) && 11453 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11454 11455 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11456 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11457 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11458 .addReg(MI.getOperand(3).getReg()); 11459 MI.getOperand(3).setReg(ValueReg); 11460 } 11461 // If we support part-word atomic mnemonics, just use them 11462 if (Subtarget.hasPartwordAtomics()) 11463 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11464 CmpPred); 11465 11466 // In 64 bit mode we have to use 64 bits for addresses, even though the 11467 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11468 // registers without caring whether they're 32 or 64, but here we're 11469 // doing actual arithmetic on the addresses. 11470 bool is64bit = Subtarget.isPPC64(); 11471 bool isLittleEndian = Subtarget.isLittleEndian(); 11472 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11473 11474 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11475 MachineFunction::iterator It = ++BB->getIterator(); 11476 11477 Register dest = MI.getOperand(0).getReg(); 11478 Register ptrA = MI.getOperand(1).getReg(); 11479 Register ptrB = MI.getOperand(2).getReg(); 11480 11481 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11482 MachineBasicBlock *loop2MBB = 11483 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11484 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11485 F->insert(It, loopMBB); 11486 if (CmpOpcode) 11487 F->insert(It, loop2MBB); 11488 F->insert(It, exitMBB); 11489 exitMBB->splice(exitMBB->begin(), BB, 11490 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11491 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11492 11493 const TargetRegisterClass *RC = 11494 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11495 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11496 11497 Register PtrReg = RegInfo.createVirtualRegister(RC); 11498 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11499 Register ShiftReg = 11500 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11501 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11502 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11503 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11504 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11505 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11506 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11507 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11508 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11509 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11510 Register Ptr1Reg; 11511 Register TmpReg = 11512 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11513 11514 // thisMBB: 11515 // ... 11516 // fallthrough --> loopMBB 11517 BB->addSuccessor(loopMBB); 11518 11519 // The 4-byte load must be aligned, while a char or short may be 11520 // anywhere in the word. Hence all this nasty bookkeeping code. 11521 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11522 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11523 // xori shift, shift1, 24 [16] 11524 // rlwinm ptr, ptr1, 0, 0, 29 11525 // slw incr2, incr, shift 11526 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11527 // slw mask, mask2, shift 11528 // loopMBB: 11529 // lwarx tmpDest, ptr 11530 // add tmp, tmpDest, incr2 11531 // andc tmp2, tmpDest, mask 11532 // and tmp3, tmp, mask 11533 // or tmp4, tmp3, tmp2 11534 // stwcx. tmp4, ptr 11535 // bne- loopMBB 11536 // fallthrough --> exitMBB 11537 // srw SrwDest, tmpDest, shift 11538 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11539 if (ptrA != ZeroReg) { 11540 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11541 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11542 .addReg(ptrA) 11543 .addReg(ptrB); 11544 } else { 11545 Ptr1Reg = ptrB; 11546 } 11547 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11548 // mode. 11549 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11550 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11551 .addImm(3) 11552 .addImm(27) 11553 .addImm(is8bit ? 28 : 27); 11554 if (!isLittleEndian) 11555 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11556 .addReg(Shift1Reg) 11557 .addImm(is8bit ? 24 : 16); 11558 if (is64bit) 11559 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11560 .addReg(Ptr1Reg) 11561 .addImm(0) 11562 .addImm(61); 11563 else 11564 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11565 .addReg(Ptr1Reg) 11566 .addImm(0) 11567 .addImm(0) 11568 .addImm(29); 11569 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11570 if (is8bit) 11571 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11572 else { 11573 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11574 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11575 .addReg(Mask3Reg) 11576 .addImm(65535); 11577 } 11578 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11579 .addReg(Mask2Reg) 11580 .addReg(ShiftReg); 11581 11582 BB = loopMBB; 11583 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11584 .addReg(ZeroReg) 11585 .addReg(PtrReg); 11586 if (BinOpcode) 11587 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11588 .addReg(Incr2Reg) 11589 .addReg(TmpDestReg); 11590 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11591 .addReg(TmpDestReg) 11592 .addReg(MaskReg); 11593 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11594 if (CmpOpcode) { 11595 // For unsigned comparisons, we can directly compare the shifted values. 11596 // For signed comparisons we shift and sign extend. 11597 Register SReg = RegInfo.createVirtualRegister(GPRC); 11598 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11599 .addReg(TmpDestReg) 11600 .addReg(MaskReg); 11601 unsigned ValueReg = SReg; 11602 unsigned CmpReg = Incr2Reg; 11603 if (CmpOpcode == PPC::CMPW) { 11604 ValueReg = RegInfo.createVirtualRegister(GPRC); 11605 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11606 .addReg(SReg) 11607 .addReg(ShiftReg); 11608 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11609 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11610 .addReg(ValueReg); 11611 ValueReg = ValueSReg; 11612 CmpReg = incr; 11613 } 11614 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11615 .addReg(CmpReg) 11616 .addReg(ValueReg); 11617 BuildMI(BB, dl, TII->get(PPC::BCC)) 11618 .addImm(CmpPred) 11619 .addReg(PPC::CR0) 11620 .addMBB(exitMBB); 11621 BB->addSuccessor(loop2MBB); 11622 BB->addSuccessor(exitMBB); 11623 BB = loop2MBB; 11624 } 11625 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11626 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11627 .addReg(Tmp4Reg) 11628 .addReg(ZeroReg) 11629 .addReg(PtrReg); 11630 BuildMI(BB, dl, TII->get(PPC::BCC)) 11631 .addImm(PPC::PRED_NE) 11632 .addReg(PPC::CR0) 11633 .addMBB(loopMBB); 11634 BB->addSuccessor(loopMBB); 11635 BB->addSuccessor(exitMBB); 11636 11637 // exitMBB: 11638 // ... 11639 BB = exitMBB; 11640 // Since the shift amount is not a constant, we need to clear 11641 // the upper bits with a separate RLWINM. 11642 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11643 .addReg(SrwDestReg) 11644 .addImm(0) 11645 .addImm(is8bit ? 24 : 16) 11646 .addImm(31); 11647 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11648 .addReg(TmpDestReg) 11649 .addReg(ShiftReg); 11650 return BB; 11651 } 11652 11653 llvm::MachineBasicBlock * 11654 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11655 MachineBasicBlock *MBB) const { 11656 DebugLoc DL = MI.getDebugLoc(); 11657 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11658 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11659 11660 MachineFunction *MF = MBB->getParent(); 11661 MachineRegisterInfo &MRI = MF->getRegInfo(); 11662 11663 const BasicBlock *BB = MBB->getBasicBlock(); 11664 MachineFunction::iterator I = ++MBB->getIterator(); 11665 11666 Register DstReg = MI.getOperand(0).getReg(); 11667 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11668 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11669 Register mainDstReg = MRI.createVirtualRegister(RC); 11670 Register restoreDstReg = MRI.createVirtualRegister(RC); 11671 11672 MVT PVT = getPointerTy(MF->getDataLayout()); 11673 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11674 "Invalid Pointer Size!"); 11675 // For v = setjmp(buf), we generate 11676 // 11677 // thisMBB: 11678 // SjLjSetup mainMBB 11679 // bl mainMBB 11680 // v_restore = 1 11681 // b sinkMBB 11682 // 11683 // mainMBB: 11684 // buf[LabelOffset] = LR 11685 // v_main = 0 11686 // 11687 // sinkMBB: 11688 // v = phi(main, restore) 11689 // 11690 11691 MachineBasicBlock *thisMBB = MBB; 11692 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11693 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11694 MF->insert(I, mainMBB); 11695 MF->insert(I, sinkMBB); 11696 11697 MachineInstrBuilder MIB; 11698 11699 // Transfer the remainder of BB and its successor edges to sinkMBB. 11700 sinkMBB->splice(sinkMBB->begin(), MBB, 11701 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11702 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11703 11704 // Note that the structure of the jmp_buf used here is not compatible 11705 // with that used by libc, and is not designed to be. Specifically, it 11706 // stores only those 'reserved' registers that LLVM does not otherwise 11707 // understand how to spill. Also, by convention, by the time this 11708 // intrinsic is called, Clang has already stored the frame address in the 11709 // first slot of the buffer and stack address in the third. Following the 11710 // X86 target code, we'll store the jump address in the second slot. We also 11711 // need to save the TOC pointer (R2) to handle jumps between shared 11712 // libraries, and that will be stored in the fourth slot. The thread 11713 // identifier (R13) is not affected. 11714 11715 // thisMBB: 11716 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11717 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11718 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11719 11720 // Prepare IP either in reg. 11721 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11722 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11723 Register BufReg = MI.getOperand(1).getReg(); 11724 11725 if (Subtarget.is64BitELFABI()) { 11726 setUsesTOCBasePtr(*MBB->getParent()); 11727 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11728 .addReg(PPC::X2) 11729 .addImm(TOCOffset) 11730 .addReg(BufReg) 11731 .cloneMemRefs(MI); 11732 } 11733 11734 // Naked functions never have a base pointer, and so we use r1. For all 11735 // other functions, this decision must be delayed until during PEI. 11736 unsigned BaseReg; 11737 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11738 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11739 else 11740 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11741 11742 MIB = BuildMI(*thisMBB, MI, DL, 11743 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11744 .addReg(BaseReg) 11745 .addImm(BPOffset) 11746 .addReg(BufReg) 11747 .cloneMemRefs(MI); 11748 11749 // Setup 11750 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11751 MIB.addRegMask(TRI->getNoPreservedMask()); 11752 11753 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11754 11755 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11756 .addMBB(mainMBB); 11757 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11758 11759 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11760 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11761 11762 // mainMBB: 11763 // mainDstReg = 0 11764 MIB = 11765 BuildMI(mainMBB, DL, 11766 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11767 11768 // Store IP 11769 if (Subtarget.isPPC64()) { 11770 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11771 .addReg(LabelReg) 11772 .addImm(LabelOffset) 11773 .addReg(BufReg); 11774 } else { 11775 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11776 .addReg(LabelReg) 11777 .addImm(LabelOffset) 11778 .addReg(BufReg); 11779 } 11780 MIB.cloneMemRefs(MI); 11781 11782 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11783 mainMBB->addSuccessor(sinkMBB); 11784 11785 // sinkMBB: 11786 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11787 TII->get(PPC::PHI), DstReg) 11788 .addReg(mainDstReg).addMBB(mainMBB) 11789 .addReg(restoreDstReg).addMBB(thisMBB); 11790 11791 MI.eraseFromParent(); 11792 return sinkMBB; 11793 } 11794 11795 MachineBasicBlock * 11796 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11797 MachineBasicBlock *MBB) const { 11798 DebugLoc DL = MI.getDebugLoc(); 11799 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11800 11801 MachineFunction *MF = MBB->getParent(); 11802 MachineRegisterInfo &MRI = MF->getRegInfo(); 11803 11804 MVT PVT = getPointerTy(MF->getDataLayout()); 11805 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11806 "Invalid Pointer Size!"); 11807 11808 const TargetRegisterClass *RC = 11809 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11810 Register Tmp = MRI.createVirtualRegister(RC); 11811 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11812 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11813 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11814 unsigned BP = 11815 (PVT == MVT::i64) 11816 ? PPC::X30 11817 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11818 : PPC::R30); 11819 11820 MachineInstrBuilder MIB; 11821 11822 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11823 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11824 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11825 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11826 11827 Register BufReg = MI.getOperand(0).getReg(); 11828 11829 // Reload FP (the jumped-to function may not have had a 11830 // frame pointer, and if so, then its r31 will be restored 11831 // as necessary). 11832 if (PVT == MVT::i64) { 11833 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11834 .addImm(0) 11835 .addReg(BufReg); 11836 } else { 11837 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11838 .addImm(0) 11839 .addReg(BufReg); 11840 } 11841 MIB.cloneMemRefs(MI); 11842 11843 // Reload IP 11844 if (PVT == MVT::i64) { 11845 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11846 .addImm(LabelOffset) 11847 .addReg(BufReg); 11848 } else { 11849 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11850 .addImm(LabelOffset) 11851 .addReg(BufReg); 11852 } 11853 MIB.cloneMemRefs(MI); 11854 11855 // Reload SP 11856 if (PVT == MVT::i64) { 11857 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11858 .addImm(SPOffset) 11859 .addReg(BufReg); 11860 } else { 11861 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11862 .addImm(SPOffset) 11863 .addReg(BufReg); 11864 } 11865 MIB.cloneMemRefs(MI); 11866 11867 // Reload BP 11868 if (PVT == MVT::i64) { 11869 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11870 .addImm(BPOffset) 11871 .addReg(BufReg); 11872 } else { 11873 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11874 .addImm(BPOffset) 11875 .addReg(BufReg); 11876 } 11877 MIB.cloneMemRefs(MI); 11878 11879 // Reload TOC 11880 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11881 setUsesTOCBasePtr(*MBB->getParent()); 11882 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11883 .addImm(TOCOffset) 11884 .addReg(BufReg) 11885 .cloneMemRefs(MI); 11886 } 11887 11888 // Jump 11889 BuildMI(*MBB, MI, DL, 11890 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11891 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11892 11893 MI.eraseFromParent(); 11894 return MBB; 11895 } 11896 11897 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11898 // If the function specifically requests inline stack probes, emit them. 11899 if (MF.getFunction().hasFnAttribute("probe-stack")) 11900 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11901 "inline-asm"; 11902 return false; 11903 } 11904 11905 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11906 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11907 unsigned StackAlign = TFI->getStackAlignment(); 11908 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11909 "Unexpected stack alignment"); 11910 // The default stack probe size is 4096 if the function has no 11911 // stack-probe-size attribute. 11912 unsigned StackProbeSize = 4096; 11913 const Function &Fn = MF.getFunction(); 11914 if (Fn.hasFnAttribute("stack-probe-size")) 11915 Fn.getFnAttribute("stack-probe-size") 11916 .getValueAsString() 11917 .getAsInteger(0, StackProbeSize); 11918 // Round down to the stack alignment. 11919 StackProbeSize &= ~(StackAlign - 1); 11920 return StackProbeSize ? StackProbeSize : StackAlign; 11921 } 11922 11923 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11924 // into three phases. In the first phase, it uses pseudo instruction 11925 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11926 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11927 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11928 // MaxCallFrameSize so that it can calculate correct data area pointer. 11929 MachineBasicBlock * 11930 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11931 MachineBasicBlock *MBB) const { 11932 const bool isPPC64 = Subtarget.isPPC64(); 11933 MachineFunction *MF = MBB->getParent(); 11934 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11935 DebugLoc DL = MI.getDebugLoc(); 11936 const unsigned ProbeSize = getStackProbeSize(*MF); 11937 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11938 MachineRegisterInfo &MRI = MF->getRegInfo(); 11939 // The CFG of probing stack looks as 11940 // +-----+ 11941 // | MBB | 11942 // +--+--+ 11943 // | 11944 // +----v----+ 11945 // +--->+ TestMBB +---+ 11946 // | +----+----+ | 11947 // | | | 11948 // | +-----v----+ | 11949 // +---+ BlockMBB | | 11950 // +----------+ | 11951 // | 11952 // +---------+ | 11953 // | TailMBB +<--+ 11954 // +---------+ 11955 // In MBB, calculate previous frame pointer and final stack pointer. 11956 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11957 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11958 // TailMBB is spliced via \p MI. 11959 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11960 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11961 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11962 11963 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11964 MF->insert(MBBIter, TestMBB); 11965 MF->insert(MBBIter, BlockMBB); 11966 MF->insert(MBBIter, TailMBB); 11967 11968 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11969 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11970 11971 Register DstReg = MI.getOperand(0).getReg(); 11972 Register NegSizeReg = MI.getOperand(1).getReg(); 11973 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11974 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11975 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11976 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11977 11978 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11979 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11980 // NegSize. 11981 unsigned ProbeOpc; 11982 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11983 ProbeOpc = 11984 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11985 else 11986 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11987 // and NegSizeReg will be allocated in the same phyreg to avoid 11988 // redundant copy when NegSizeReg has only one use which is current MI and 11989 // will be replaced by PREPARE_PROBED_ALLOCA then. 11990 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11991 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11992 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11993 .addDef(ActualNegSizeReg) 11994 .addReg(NegSizeReg) 11995 .add(MI.getOperand(2)) 11996 .add(MI.getOperand(3)); 11997 11998 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11999 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12000 FinalStackPtr) 12001 .addReg(SPReg) 12002 .addReg(ActualNegSizeReg); 12003 12004 // Materialize a scratch register for update. 12005 int64_t NegProbeSize = -(int64_t)ProbeSize; 12006 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12007 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12008 if (!isInt<16>(NegProbeSize)) { 12009 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12010 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12011 .addImm(NegProbeSize >> 16); 12012 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12013 ScratchReg) 12014 .addReg(TempReg) 12015 .addImm(NegProbeSize & 0xFFFF); 12016 } else 12017 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12018 .addImm(NegProbeSize); 12019 12020 { 12021 // Probing leading residual part. 12022 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12023 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12024 .addReg(ActualNegSizeReg) 12025 .addReg(ScratchReg); 12026 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12027 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12028 .addReg(Div) 12029 .addReg(ScratchReg); 12030 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12031 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12032 .addReg(Mul) 12033 .addReg(ActualNegSizeReg); 12034 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12035 .addReg(FramePointer) 12036 .addReg(SPReg) 12037 .addReg(NegMod); 12038 } 12039 12040 { 12041 // Remaining part should be multiple of ProbeSize. 12042 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12043 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12044 .addReg(SPReg) 12045 .addReg(FinalStackPtr); 12046 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12047 .addImm(PPC::PRED_EQ) 12048 .addReg(CmpResult) 12049 .addMBB(TailMBB); 12050 TestMBB->addSuccessor(BlockMBB); 12051 TestMBB->addSuccessor(TailMBB); 12052 } 12053 12054 { 12055 // Touch the block. 12056 // |P...|P...|P... 12057 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12058 .addReg(FramePointer) 12059 .addReg(SPReg) 12060 .addReg(ScratchReg); 12061 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12062 BlockMBB->addSuccessor(TestMBB); 12063 } 12064 12065 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12066 // DYNAREAOFFSET pseudo instruction to get the future result. 12067 Register MaxCallFrameSizeReg = 12068 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12069 BuildMI(TailMBB, DL, 12070 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12071 MaxCallFrameSizeReg) 12072 .add(MI.getOperand(2)) 12073 .add(MI.getOperand(3)); 12074 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12075 .addReg(SPReg) 12076 .addReg(MaxCallFrameSizeReg); 12077 12078 // Splice instructions after MI to TailMBB. 12079 TailMBB->splice(TailMBB->end(), MBB, 12080 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12081 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12082 MBB->addSuccessor(TestMBB); 12083 12084 // Delete the pseudo instruction. 12085 MI.eraseFromParent(); 12086 12087 ++NumDynamicAllocaProbed; 12088 return TailMBB; 12089 } 12090 12091 MachineBasicBlock * 12092 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12093 MachineBasicBlock *BB) const { 12094 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12095 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12096 if (Subtarget.is64BitELFABI() && 12097 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12098 !Subtarget.isUsingPCRelativeCalls()) { 12099 // Call lowering should have added an r2 operand to indicate a dependence 12100 // on the TOC base pointer value. It can't however, because there is no 12101 // way to mark the dependence as implicit there, and so the stackmap code 12102 // will confuse it with a regular operand. Instead, add the dependence 12103 // here. 12104 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12105 } 12106 12107 return emitPatchPoint(MI, BB); 12108 } 12109 12110 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12111 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12112 return emitEHSjLjSetJmp(MI, BB); 12113 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12114 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12115 return emitEHSjLjLongJmp(MI, BB); 12116 } 12117 12118 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12119 12120 // To "insert" these instructions we actually have to insert their 12121 // control-flow patterns. 12122 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12123 MachineFunction::iterator It = ++BB->getIterator(); 12124 12125 MachineFunction *F = BB->getParent(); 12126 MachineRegisterInfo &MRI = F->getRegInfo(); 12127 12128 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12129 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12130 MI.getOpcode() == PPC::SELECT_I8) { 12131 SmallVector<MachineOperand, 2> Cond; 12132 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12133 MI.getOpcode() == PPC::SELECT_CC_I8) 12134 Cond.push_back(MI.getOperand(4)); 12135 else 12136 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12137 Cond.push_back(MI.getOperand(1)); 12138 12139 DebugLoc dl = MI.getDebugLoc(); 12140 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12141 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12142 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12143 MI.getOpcode() == PPC::SELECT_CC_F8 || 12144 MI.getOpcode() == PPC::SELECT_CC_F16 || 12145 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12146 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12147 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12148 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12149 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12150 MI.getOpcode() == PPC::SELECT_CC_SPE || 12151 MI.getOpcode() == PPC::SELECT_F4 || 12152 MI.getOpcode() == PPC::SELECT_F8 || 12153 MI.getOpcode() == PPC::SELECT_F16 || 12154 MI.getOpcode() == PPC::SELECT_SPE || 12155 MI.getOpcode() == PPC::SELECT_SPE4 || 12156 MI.getOpcode() == PPC::SELECT_VRRC || 12157 MI.getOpcode() == PPC::SELECT_VSFRC || 12158 MI.getOpcode() == PPC::SELECT_VSSRC || 12159 MI.getOpcode() == PPC::SELECT_VSRC) { 12160 // The incoming instruction knows the destination vreg to set, the 12161 // condition code register to branch on, the true/false values to 12162 // select between, and a branch opcode to use. 12163 12164 // thisMBB: 12165 // ... 12166 // TrueVal = ... 12167 // cmpTY ccX, r1, r2 12168 // bCC copy1MBB 12169 // fallthrough --> copy0MBB 12170 MachineBasicBlock *thisMBB = BB; 12171 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12172 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12173 DebugLoc dl = MI.getDebugLoc(); 12174 F->insert(It, copy0MBB); 12175 F->insert(It, sinkMBB); 12176 12177 // Transfer the remainder of BB and its successor edges to sinkMBB. 12178 sinkMBB->splice(sinkMBB->begin(), BB, 12179 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12180 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12181 12182 // Next, add the true and fallthrough blocks as its successors. 12183 BB->addSuccessor(copy0MBB); 12184 BB->addSuccessor(sinkMBB); 12185 12186 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12187 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12188 MI.getOpcode() == PPC::SELECT_F16 || 12189 MI.getOpcode() == PPC::SELECT_SPE4 || 12190 MI.getOpcode() == PPC::SELECT_SPE || 12191 MI.getOpcode() == PPC::SELECT_VRRC || 12192 MI.getOpcode() == PPC::SELECT_VSFRC || 12193 MI.getOpcode() == PPC::SELECT_VSSRC || 12194 MI.getOpcode() == PPC::SELECT_VSRC) { 12195 BuildMI(BB, dl, TII->get(PPC::BC)) 12196 .addReg(MI.getOperand(1).getReg()) 12197 .addMBB(sinkMBB); 12198 } else { 12199 unsigned SelectPred = MI.getOperand(4).getImm(); 12200 BuildMI(BB, dl, TII->get(PPC::BCC)) 12201 .addImm(SelectPred) 12202 .addReg(MI.getOperand(1).getReg()) 12203 .addMBB(sinkMBB); 12204 } 12205 12206 // copy0MBB: 12207 // %FalseValue = ... 12208 // # fallthrough to sinkMBB 12209 BB = copy0MBB; 12210 12211 // Update machine-CFG edges 12212 BB->addSuccessor(sinkMBB); 12213 12214 // sinkMBB: 12215 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12216 // ... 12217 BB = sinkMBB; 12218 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12219 .addReg(MI.getOperand(3).getReg()) 12220 .addMBB(copy0MBB) 12221 .addReg(MI.getOperand(2).getReg()) 12222 .addMBB(thisMBB); 12223 } else if (MI.getOpcode() == PPC::ReadTB) { 12224 // To read the 64-bit time-base register on a 32-bit target, we read the 12225 // two halves. Should the counter have wrapped while it was being read, we 12226 // need to try again. 12227 // ... 12228 // readLoop: 12229 // mfspr Rx,TBU # load from TBU 12230 // mfspr Ry,TB # load from TB 12231 // mfspr Rz,TBU # load from TBU 12232 // cmpw crX,Rx,Rz # check if 'old'='new' 12233 // bne readLoop # branch if they're not equal 12234 // ... 12235 12236 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12237 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12238 DebugLoc dl = MI.getDebugLoc(); 12239 F->insert(It, readMBB); 12240 F->insert(It, sinkMBB); 12241 12242 // Transfer the remainder of BB and its successor edges to sinkMBB. 12243 sinkMBB->splice(sinkMBB->begin(), BB, 12244 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12245 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12246 12247 BB->addSuccessor(readMBB); 12248 BB = readMBB; 12249 12250 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12251 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12252 Register LoReg = MI.getOperand(0).getReg(); 12253 Register HiReg = MI.getOperand(1).getReg(); 12254 12255 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12256 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12257 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12258 12259 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12260 12261 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12262 .addReg(HiReg) 12263 .addReg(ReadAgainReg); 12264 BuildMI(BB, dl, TII->get(PPC::BCC)) 12265 .addImm(PPC::PRED_NE) 12266 .addReg(CmpReg) 12267 .addMBB(readMBB); 12268 12269 BB->addSuccessor(readMBB); 12270 BB->addSuccessor(sinkMBB); 12271 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12272 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12273 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12274 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12275 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12276 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12277 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12278 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12279 12280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12281 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12282 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12283 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12284 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12285 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12286 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12287 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12288 12289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12290 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12291 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12292 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12293 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12294 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12295 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12296 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12297 12298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12299 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12300 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12301 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12302 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12303 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12304 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12305 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12306 12307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12308 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12309 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12310 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12311 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12312 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12313 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12314 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12315 12316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12317 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12318 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12319 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12320 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12321 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12322 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12323 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12324 12325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12326 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12327 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12328 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12329 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12330 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12331 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12332 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12333 12334 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12335 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12336 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12337 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12338 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12339 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12340 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12341 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12342 12343 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12344 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12345 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12346 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12347 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12348 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12349 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12350 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12351 12352 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12353 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12354 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12355 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12356 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12357 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12358 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12359 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12360 12361 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12362 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12363 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12364 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12365 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12366 BB = EmitAtomicBinary(MI, BB, 4, 0); 12367 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12368 BB = EmitAtomicBinary(MI, BB, 8, 0); 12369 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12370 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12371 (Subtarget.hasPartwordAtomics() && 12372 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12373 (Subtarget.hasPartwordAtomics() && 12374 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12375 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12376 12377 auto LoadMnemonic = PPC::LDARX; 12378 auto StoreMnemonic = PPC::STDCX; 12379 switch (MI.getOpcode()) { 12380 default: 12381 llvm_unreachable("Compare and swap of unknown size"); 12382 case PPC::ATOMIC_CMP_SWAP_I8: 12383 LoadMnemonic = PPC::LBARX; 12384 StoreMnemonic = PPC::STBCX; 12385 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12386 break; 12387 case PPC::ATOMIC_CMP_SWAP_I16: 12388 LoadMnemonic = PPC::LHARX; 12389 StoreMnemonic = PPC::STHCX; 12390 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12391 break; 12392 case PPC::ATOMIC_CMP_SWAP_I32: 12393 LoadMnemonic = PPC::LWARX; 12394 StoreMnemonic = PPC::STWCX; 12395 break; 12396 case PPC::ATOMIC_CMP_SWAP_I64: 12397 LoadMnemonic = PPC::LDARX; 12398 StoreMnemonic = PPC::STDCX; 12399 break; 12400 } 12401 Register dest = MI.getOperand(0).getReg(); 12402 Register ptrA = MI.getOperand(1).getReg(); 12403 Register ptrB = MI.getOperand(2).getReg(); 12404 Register oldval = MI.getOperand(3).getReg(); 12405 Register newval = MI.getOperand(4).getReg(); 12406 DebugLoc dl = MI.getDebugLoc(); 12407 12408 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12409 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12410 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12411 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12412 F->insert(It, loop1MBB); 12413 F->insert(It, loop2MBB); 12414 F->insert(It, midMBB); 12415 F->insert(It, exitMBB); 12416 exitMBB->splice(exitMBB->begin(), BB, 12417 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12418 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12419 12420 // thisMBB: 12421 // ... 12422 // fallthrough --> loopMBB 12423 BB->addSuccessor(loop1MBB); 12424 12425 // loop1MBB: 12426 // l[bhwd]arx dest, ptr 12427 // cmp[wd] dest, oldval 12428 // bne- midMBB 12429 // loop2MBB: 12430 // st[bhwd]cx. newval, ptr 12431 // bne- loopMBB 12432 // b exitBB 12433 // midMBB: 12434 // st[bhwd]cx. dest, ptr 12435 // exitBB: 12436 BB = loop1MBB; 12437 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12438 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12439 .addReg(oldval) 12440 .addReg(dest); 12441 BuildMI(BB, dl, TII->get(PPC::BCC)) 12442 .addImm(PPC::PRED_NE) 12443 .addReg(PPC::CR0) 12444 .addMBB(midMBB); 12445 BB->addSuccessor(loop2MBB); 12446 BB->addSuccessor(midMBB); 12447 12448 BB = loop2MBB; 12449 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12450 .addReg(newval) 12451 .addReg(ptrA) 12452 .addReg(ptrB); 12453 BuildMI(BB, dl, TII->get(PPC::BCC)) 12454 .addImm(PPC::PRED_NE) 12455 .addReg(PPC::CR0) 12456 .addMBB(loop1MBB); 12457 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12458 BB->addSuccessor(loop1MBB); 12459 BB->addSuccessor(exitMBB); 12460 12461 BB = midMBB; 12462 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12463 .addReg(dest) 12464 .addReg(ptrA) 12465 .addReg(ptrB); 12466 BB->addSuccessor(exitMBB); 12467 12468 // exitMBB: 12469 // ... 12470 BB = exitMBB; 12471 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12472 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12473 // We must use 64-bit registers for addresses when targeting 64-bit, 12474 // since we're actually doing arithmetic on them. Other registers 12475 // can be 32-bit. 12476 bool is64bit = Subtarget.isPPC64(); 12477 bool isLittleEndian = Subtarget.isLittleEndian(); 12478 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12479 12480 Register dest = MI.getOperand(0).getReg(); 12481 Register ptrA = MI.getOperand(1).getReg(); 12482 Register ptrB = MI.getOperand(2).getReg(); 12483 Register oldval = MI.getOperand(3).getReg(); 12484 Register newval = MI.getOperand(4).getReg(); 12485 DebugLoc dl = MI.getDebugLoc(); 12486 12487 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12488 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12489 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12490 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12491 F->insert(It, loop1MBB); 12492 F->insert(It, loop2MBB); 12493 F->insert(It, midMBB); 12494 F->insert(It, exitMBB); 12495 exitMBB->splice(exitMBB->begin(), BB, 12496 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12497 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12498 12499 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12500 const TargetRegisterClass *RC = 12501 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12502 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12503 12504 Register PtrReg = RegInfo.createVirtualRegister(RC); 12505 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12506 Register ShiftReg = 12507 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12508 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12509 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12510 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12511 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12512 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12513 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12514 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12515 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12516 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12517 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12518 Register Ptr1Reg; 12519 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12520 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12521 // thisMBB: 12522 // ... 12523 // fallthrough --> loopMBB 12524 BB->addSuccessor(loop1MBB); 12525 12526 // The 4-byte load must be aligned, while a char or short may be 12527 // anywhere in the word. Hence all this nasty bookkeeping code. 12528 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12529 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12530 // xori shift, shift1, 24 [16] 12531 // rlwinm ptr, ptr1, 0, 0, 29 12532 // slw newval2, newval, shift 12533 // slw oldval2, oldval,shift 12534 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12535 // slw mask, mask2, shift 12536 // and newval3, newval2, mask 12537 // and oldval3, oldval2, mask 12538 // loop1MBB: 12539 // lwarx tmpDest, ptr 12540 // and tmp, tmpDest, mask 12541 // cmpw tmp, oldval3 12542 // bne- midMBB 12543 // loop2MBB: 12544 // andc tmp2, tmpDest, mask 12545 // or tmp4, tmp2, newval3 12546 // stwcx. tmp4, ptr 12547 // bne- loop1MBB 12548 // b exitBB 12549 // midMBB: 12550 // stwcx. tmpDest, ptr 12551 // exitBB: 12552 // srw dest, tmpDest, shift 12553 if (ptrA != ZeroReg) { 12554 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12555 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12556 .addReg(ptrA) 12557 .addReg(ptrB); 12558 } else { 12559 Ptr1Reg = ptrB; 12560 } 12561 12562 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12563 // mode. 12564 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12565 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12566 .addImm(3) 12567 .addImm(27) 12568 .addImm(is8bit ? 28 : 27); 12569 if (!isLittleEndian) 12570 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12571 .addReg(Shift1Reg) 12572 .addImm(is8bit ? 24 : 16); 12573 if (is64bit) 12574 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12575 .addReg(Ptr1Reg) 12576 .addImm(0) 12577 .addImm(61); 12578 else 12579 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12580 .addReg(Ptr1Reg) 12581 .addImm(0) 12582 .addImm(0) 12583 .addImm(29); 12584 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12585 .addReg(newval) 12586 .addReg(ShiftReg); 12587 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12588 .addReg(oldval) 12589 .addReg(ShiftReg); 12590 if (is8bit) 12591 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12592 else { 12593 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12594 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12595 .addReg(Mask3Reg) 12596 .addImm(65535); 12597 } 12598 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12599 .addReg(Mask2Reg) 12600 .addReg(ShiftReg); 12601 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12602 .addReg(NewVal2Reg) 12603 .addReg(MaskReg); 12604 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12605 .addReg(OldVal2Reg) 12606 .addReg(MaskReg); 12607 12608 BB = loop1MBB; 12609 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12610 .addReg(ZeroReg) 12611 .addReg(PtrReg); 12612 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12613 .addReg(TmpDestReg) 12614 .addReg(MaskReg); 12615 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12616 .addReg(TmpReg) 12617 .addReg(OldVal3Reg); 12618 BuildMI(BB, dl, TII->get(PPC::BCC)) 12619 .addImm(PPC::PRED_NE) 12620 .addReg(PPC::CR0) 12621 .addMBB(midMBB); 12622 BB->addSuccessor(loop2MBB); 12623 BB->addSuccessor(midMBB); 12624 12625 BB = loop2MBB; 12626 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12627 .addReg(TmpDestReg) 12628 .addReg(MaskReg); 12629 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12630 .addReg(Tmp2Reg) 12631 .addReg(NewVal3Reg); 12632 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12633 .addReg(Tmp4Reg) 12634 .addReg(ZeroReg) 12635 .addReg(PtrReg); 12636 BuildMI(BB, dl, TII->get(PPC::BCC)) 12637 .addImm(PPC::PRED_NE) 12638 .addReg(PPC::CR0) 12639 .addMBB(loop1MBB); 12640 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12641 BB->addSuccessor(loop1MBB); 12642 BB->addSuccessor(exitMBB); 12643 12644 BB = midMBB; 12645 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12646 .addReg(TmpDestReg) 12647 .addReg(ZeroReg) 12648 .addReg(PtrReg); 12649 BB->addSuccessor(exitMBB); 12650 12651 // exitMBB: 12652 // ... 12653 BB = exitMBB; 12654 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12655 .addReg(TmpReg) 12656 .addReg(ShiftReg); 12657 } else if (MI.getOpcode() == PPC::FADDrtz) { 12658 // This pseudo performs an FADD with rounding mode temporarily forced 12659 // to round-to-zero. We emit this via custom inserter since the FPSCR 12660 // is not modeled at the SelectionDAG level. 12661 Register Dest = MI.getOperand(0).getReg(); 12662 Register Src1 = MI.getOperand(1).getReg(); 12663 Register Src2 = MI.getOperand(2).getReg(); 12664 DebugLoc dl = MI.getDebugLoc(); 12665 12666 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12667 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12668 12669 // Save FPSCR value. 12670 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12671 12672 // Set rounding mode to round-to-zero. 12673 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12674 .addImm(31) 12675 .addReg(PPC::RM, RegState::ImplicitDefine); 12676 12677 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12678 .addImm(30) 12679 .addReg(PPC::RM, RegState::ImplicitDefine); 12680 12681 // Perform addition. 12682 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12683 .addReg(Src1) 12684 .addReg(Src2); 12685 if (MI.getFlag(MachineInstr::NoFPExcept)) 12686 MIB.setMIFlag(MachineInstr::NoFPExcept); 12687 12688 // Restore FPSCR value. 12689 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12690 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12691 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12692 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12693 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12694 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12695 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12696 ? PPC::ANDI8_rec 12697 : PPC::ANDI_rec; 12698 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12699 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12700 12701 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12702 Register Dest = RegInfo.createVirtualRegister( 12703 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12704 12705 DebugLoc Dl = MI.getDebugLoc(); 12706 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12707 .addReg(MI.getOperand(1).getReg()) 12708 .addImm(1); 12709 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12710 MI.getOperand(0).getReg()) 12711 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12712 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12713 DebugLoc Dl = MI.getDebugLoc(); 12714 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12715 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12716 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12717 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12718 MI.getOperand(0).getReg()) 12719 .addReg(CRReg); 12720 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12721 DebugLoc Dl = MI.getDebugLoc(); 12722 unsigned Imm = MI.getOperand(1).getImm(); 12723 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12724 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12725 MI.getOperand(0).getReg()) 12726 .addReg(PPC::CR0EQ); 12727 } else if (MI.getOpcode() == PPC::SETRNDi) { 12728 DebugLoc dl = MI.getDebugLoc(); 12729 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12730 12731 // Save FPSCR value. 12732 if (MRI.use_empty(OldFPSCRReg)) 12733 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12734 else 12735 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12736 12737 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12738 // the following settings: 12739 // 00 Round to nearest 12740 // 01 Round to 0 12741 // 10 Round to +inf 12742 // 11 Round to -inf 12743 12744 // When the operand is immediate, using the two least significant bits of 12745 // the immediate to set the bits 62:63 of FPSCR. 12746 unsigned Mode = MI.getOperand(1).getImm(); 12747 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12748 .addImm(31) 12749 .addReg(PPC::RM, RegState::ImplicitDefine); 12750 12751 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12752 .addImm(30) 12753 .addReg(PPC::RM, RegState::ImplicitDefine); 12754 } else if (MI.getOpcode() == PPC::SETRND) { 12755 DebugLoc dl = MI.getDebugLoc(); 12756 12757 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12758 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12759 // If the target doesn't have DirectMove, we should use stack to do the 12760 // conversion, because the target doesn't have the instructions like mtvsrd 12761 // or mfvsrd to do this conversion directly. 12762 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12763 if (Subtarget.hasDirectMove()) { 12764 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12765 .addReg(SrcReg); 12766 } else { 12767 // Use stack to do the register copy. 12768 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12769 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12770 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12771 if (RC == &PPC::F8RCRegClass) { 12772 // Copy register from F8RCRegClass to G8RCRegclass. 12773 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12774 "Unsupported RegClass."); 12775 12776 StoreOp = PPC::STFD; 12777 LoadOp = PPC::LD; 12778 } else { 12779 // Copy register from G8RCRegClass to F8RCRegclass. 12780 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12781 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12782 "Unsupported RegClass."); 12783 } 12784 12785 MachineFrameInfo &MFI = F->getFrameInfo(); 12786 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12787 12788 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12789 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12790 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12791 MFI.getObjectAlign(FrameIdx)); 12792 12793 // Store the SrcReg into the stack. 12794 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12795 .addReg(SrcReg) 12796 .addImm(0) 12797 .addFrameIndex(FrameIdx) 12798 .addMemOperand(MMOStore); 12799 12800 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12801 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12802 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12803 MFI.getObjectAlign(FrameIdx)); 12804 12805 // Load from the stack where SrcReg is stored, and save to DestReg, 12806 // so we have done the RegClass conversion from RegClass::SrcReg to 12807 // RegClass::DestReg. 12808 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12809 .addImm(0) 12810 .addFrameIndex(FrameIdx) 12811 .addMemOperand(MMOLoad); 12812 } 12813 }; 12814 12815 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12816 12817 // Save FPSCR value. 12818 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12819 12820 // When the operand is gprc register, use two least significant bits of the 12821 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12822 // 12823 // copy OldFPSCRTmpReg, OldFPSCRReg 12824 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12825 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12826 // copy NewFPSCRReg, NewFPSCRTmpReg 12827 // mtfsf 255, NewFPSCRReg 12828 MachineOperand SrcOp = MI.getOperand(1); 12829 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12830 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12831 12832 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12833 12834 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12835 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12836 12837 // The first operand of INSERT_SUBREG should be a register which has 12838 // subregisters, we only care about its RegClass, so we should use an 12839 // IMPLICIT_DEF register. 12840 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12841 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12842 .addReg(ImDefReg) 12843 .add(SrcOp) 12844 .addImm(1); 12845 12846 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12847 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12848 .addReg(OldFPSCRTmpReg) 12849 .addReg(ExtSrcReg) 12850 .addImm(0) 12851 .addImm(62); 12852 12853 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12854 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12855 12856 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12857 // bits of FPSCR. 12858 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12859 .addImm(255) 12860 .addReg(NewFPSCRReg) 12861 .addImm(0) 12862 .addImm(0); 12863 } else if (MI.getOpcode() == PPC::SETFLM) { 12864 DebugLoc Dl = MI.getDebugLoc(); 12865 12866 // Result of setflm is previous FPSCR content, so we need to save it first. 12867 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12868 if (MRI.use_empty(OldFPSCRReg)) 12869 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12870 else 12871 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12872 12873 // Put bits in 32:63 to FPSCR. 12874 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12875 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12876 .addImm(255) 12877 .addReg(NewFPSCRReg) 12878 .addImm(0) 12879 .addImm(0); 12880 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12881 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12882 return emitProbedAlloca(MI, BB); 12883 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12884 DebugLoc DL = MI.getDebugLoc(); 12885 Register Src = MI.getOperand(2).getReg(); 12886 Register Lo = MI.getOperand(0).getReg(); 12887 Register Hi = MI.getOperand(1).getReg(); 12888 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12889 .addDef(Lo) 12890 .addUse(Src, 0, PPC::sub_gp8_x1); 12891 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12892 .addDef(Hi) 12893 .addUse(Src, 0, PPC::sub_gp8_x0); 12894 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12895 MI.getOpcode() == PPC::STQX_PSEUDO) { 12896 DebugLoc DL = MI.getDebugLoc(); 12897 // Ptr is used as the ptr_rc_no_r0 part 12898 // of LQ/STQ's memory operand and adding result of RA and RB, 12899 // so it has to be g8rc_and_g8rc_nox0. 12900 Register Ptr = 12901 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12902 Register Val = MI.getOperand(0).getReg(); 12903 Register RA = MI.getOperand(1).getReg(); 12904 Register RB = MI.getOperand(2).getReg(); 12905 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12906 BuildMI(*BB, MI, DL, 12907 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12908 : TII->get(PPC::STQ)) 12909 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12910 .addImm(0) 12911 .addReg(Ptr); 12912 } else { 12913 llvm_unreachable("Unexpected instr type to insert"); 12914 } 12915 12916 MI.eraseFromParent(); // The pseudo instruction is gone now. 12917 return BB; 12918 } 12919 12920 //===----------------------------------------------------------------------===// 12921 // Target Optimization Hooks 12922 //===----------------------------------------------------------------------===// 12923 12924 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12925 // For the estimates, convergence is quadratic, so we essentially double the 12926 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12927 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12928 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12929 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12930 if (VT.getScalarType() == MVT::f64) 12931 RefinementSteps++; 12932 return RefinementSteps; 12933 } 12934 12935 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12936 const DenormalMode &Mode) const { 12937 // We only have VSX Vector Test for software Square Root. 12938 EVT VT = Op.getValueType(); 12939 if (!isTypeLegal(MVT::i1) || 12940 (VT != MVT::f64 && 12941 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12942 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12943 12944 SDLoc DL(Op); 12945 // The output register of FTSQRT is CR field. 12946 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12947 // ftsqrt BF,FRB 12948 // Let e_b be the unbiased exponent of the double-precision 12949 // floating-point operand in register FRB. 12950 // fe_flag is set to 1 if either of the following conditions occurs. 12951 // - The double-precision floating-point operand in register FRB is a zero, 12952 // a NaN, or an infinity, or a negative value. 12953 // - e_b is less than or equal to -970. 12954 // Otherwise fe_flag is set to 0. 12955 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12956 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12957 // exponent is less than -970) 12958 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12959 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12960 FTSQRT, SRIdxVal), 12961 0); 12962 } 12963 12964 SDValue 12965 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12966 SelectionDAG &DAG) const { 12967 // We only have VSX Vector Square Root. 12968 EVT VT = Op.getValueType(); 12969 if (VT != MVT::f64 && 12970 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12971 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12972 12973 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12974 } 12975 12976 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12977 int Enabled, int &RefinementSteps, 12978 bool &UseOneConstNR, 12979 bool Reciprocal) const { 12980 EVT VT = Operand.getValueType(); 12981 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12982 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12983 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12984 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12985 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12986 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12987 12988 // The Newton-Raphson computation with a single constant does not provide 12989 // enough accuracy on some CPUs. 12990 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12991 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12992 } 12993 return SDValue(); 12994 } 12995 12996 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12997 int Enabled, 12998 int &RefinementSteps) const { 12999 EVT VT = Operand.getValueType(); 13000 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13001 (VT == MVT::f64 && Subtarget.hasFRE()) || 13002 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13003 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13004 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13005 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13006 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13007 } 13008 return SDValue(); 13009 } 13010 13011 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13012 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13013 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13014 // enabled for division), this functionality is redundant with the default 13015 // combiner logic (once the division -> reciprocal/multiply transformation 13016 // has taken place). As a result, this matters more for older cores than for 13017 // newer ones. 13018 13019 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13020 // reciprocal if there are two or more FDIVs (for embedded cores with only 13021 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13022 switch (Subtarget.getCPUDirective()) { 13023 default: 13024 return 3; 13025 case PPC::DIR_440: 13026 case PPC::DIR_A2: 13027 case PPC::DIR_E500: 13028 case PPC::DIR_E500mc: 13029 case PPC::DIR_E5500: 13030 return 2; 13031 } 13032 } 13033 13034 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13035 // collapsed, and so we need to look through chains of them. 13036 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13037 int64_t& Offset, SelectionDAG &DAG) { 13038 if (DAG.isBaseWithConstantOffset(Loc)) { 13039 Base = Loc.getOperand(0); 13040 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13041 13042 // The base might itself be a base plus an offset, and if so, accumulate 13043 // that as well. 13044 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13045 } 13046 } 13047 13048 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13049 unsigned Bytes, int Dist, 13050 SelectionDAG &DAG) { 13051 if (VT.getSizeInBits() / 8 != Bytes) 13052 return false; 13053 13054 SDValue BaseLoc = Base->getBasePtr(); 13055 if (Loc.getOpcode() == ISD::FrameIndex) { 13056 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13057 return false; 13058 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13059 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13060 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13061 int FS = MFI.getObjectSize(FI); 13062 int BFS = MFI.getObjectSize(BFI); 13063 if (FS != BFS || FS != (int)Bytes) return false; 13064 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13065 } 13066 13067 SDValue Base1 = Loc, Base2 = BaseLoc; 13068 int64_t Offset1 = 0, Offset2 = 0; 13069 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13070 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13071 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13072 return true; 13073 13074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13075 const GlobalValue *GV1 = nullptr; 13076 const GlobalValue *GV2 = nullptr; 13077 Offset1 = 0; 13078 Offset2 = 0; 13079 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13080 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13081 if (isGA1 && isGA2 && GV1 == GV2) 13082 return Offset1 == (Offset2 + Dist*Bytes); 13083 return false; 13084 } 13085 13086 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13087 // not enforce equality of the chain operands. 13088 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13089 unsigned Bytes, int Dist, 13090 SelectionDAG &DAG) { 13091 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13092 EVT VT = LS->getMemoryVT(); 13093 SDValue Loc = LS->getBasePtr(); 13094 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13095 } 13096 13097 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13098 EVT VT; 13099 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13100 default: return false; 13101 case Intrinsic::ppc_altivec_lvx: 13102 case Intrinsic::ppc_altivec_lvxl: 13103 case Intrinsic::ppc_vsx_lxvw4x: 13104 case Intrinsic::ppc_vsx_lxvw4x_be: 13105 VT = MVT::v4i32; 13106 break; 13107 case Intrinsic::ppc_vsx_lxvd2x: 13108 case Intrinsic::ppc_vsx_lxvd2x_be: 13109 VT = MVT::v2f64; 13110 break; 13111 case Intrinsic::ppc_altivec_lvebx: 13112 VT = MVT::i8; 13113 break; 13114 case Intrinsic::ppc_altivec_lvehx: 13115 VT = MVT::i16; 13116 break; 13117 case Intrinsic::ppc_altivec_lvewx: 13118 VT = MVT::i32; 13119 break; 13120 } 13121 13122 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13123 } 13124 13125 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13126 EVT VT; 13127 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13128 default: return false; 13129 case Intrinsic::ppc_altivec_stvx: 13130 case Intrinsic::ppc_altivec_stvxl: 13131 case Intrinsic::ppc_vsx_stxvw4x: 13132 VT = MVT::v4i32; 13133 break; 13134 case Intrinsic::ppc_vsx_stxvd2x: 13135 VT = MVT::v2f64; 13136 break; 13137 case Intrinsic::ppc_vsx_stxvw4x_be: 13138 VT = MVT::v4i32; 13139 break; 13140 case Intrinsic::ppc_vsx_stxvd2x_be: 13141 VT = MVT::v2f64; 13142 break; 13143 case Intrinsic::ppc_altivec_stvebx: 13144 VT = MVT::i8; 13145 break; 13146 case Intrinsic::ppc_altivec_stvehx: 13147 VT = MVT::i16; 13148 break; 13149 case Intrinsic::ppc_altivec_stvewx: 13150 VT = MVT::i32; 13151 break; 13152 } 13153 13154 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13155 } 13156 13157 return false; 13158 } 13159 13160 // Return true is there is a nearyby consecutive load to the one provided 13161 // (regardless of alignment). We search up and down the chain, looking though 13162 // token factors and other loads (but nothing else). As a result, a true result 13163 // indicates that it is safe to create a new consecutive load adjacent to the 13164 // load provided. 13165 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13166 SDValue Chain = LD->getChain(); 13167 EVT VT = LD->getMemoryVT(); 13168 13169 SmallSet<SDNode *, 16> LoadRoots; 13170 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13171 SmallSet<SDNode *, 16> Visited; 13172 13173 // First, search up the chain, branching to follow all token-factor operands. 13174 // If we find a consecutive load, then we're done, otherwise, record all 13175 // nodes just above the top-level loads and token factors. 13176 while (!Queue.empty()) { 13177 SDNode *ChainNext = Queue.pop_back_val(); 13178 if (!Visited.insert(ChainNext).second) 13179 continue; 13180 13181 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13182 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13183 return true; 13184 13185 if (!Visited.count(ChainLD->getChain().getNode())) 13186 Queue.push_back(ChainLD->getChain().getNode()); 13187 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13188 for (const SDUse &O : ChainNext->ops()) 13189 if (!Visited.count(O.getNode())) 13190 Queue.push_back(O.getNode()); 13191 } else 13192 LoadRoots.insert(ChainNext); 13193 } 13194 13195 // Second, search down the chain, starting from the top-level nodes recorded 13196 // in the first phase. These top-level nodes are the nodes just above all 13197 // loads and token factors. Starting with their uses, recursively look though 13198 // all loads (just the chain uses) and token factors to find a consecutive 13199 // load. 13200 Visited.clear(); 13201 Queue.clear(); 13202 13203 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13204 IE = LoadRoots.end(); I != IE; ++I) { 13205 Queue.push_back(*I); 13206 13207 while (!Queue.empty()) { 13208 SDNode *LoadRoot = Queue.pop_back_val(); 13209 if (!Visited.insert(LoadRoot).second) 13210 continue; 13211 13212 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13213 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13214 return true; 13215 13216 for (SDNode *U : LoadRoot->uses()) 13217 if (((isa<MemSDNode>(U) && 13218 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13219 U->getOpcode() == ISD::TokenFactor) && 13220 !Visited.count(U)) 13221 Queue.push_back(U); 13222 } 13223 } 13224 13225 return false; 13226 } 13227 13228 /// This function is called when we have proved that a SETCC node can be replaced 13229 /// by subtraction (and other supporting instructions) so that the result of 13230 /// comparison is kept in a GPR instead of CR. This function is purely for 13231 /// codegen purposes and has some flags to guide the codegen process. 13232 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13233 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13234 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13235 13236 // Zero extend the operands to the largest legal integer. Originally, they 13237 // must be of a strictly smaller size. 13238 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13239 DAG.getConstant(Size, DL, MVT::i32)); 13240 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13241 DAG.getConstant(Size, DL, MVT::i32)); 13242 13243 // Swap if needed. Depends on the condition code. 13244 if (Swap) 13245 std::swap(Op0, Op1); 13246 13247 // Subtract extended integers. 13248 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13249 13250 // Move the sign bit to the least significant position and zero out the rest. 13251 // Now the least significant bit carries the result of original comparison. 13252 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13253 DAG.getConstant(Size - 1, DL, MVT::i32)); 13254 auto Final = Shifted; 13255 13256 // Complement the result if needed. Based on the condition code. 13257 if (Complement) 13258 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13259 DAG.getConstant(1, DL, MVT::i64)); 13260 13261 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13262 } 13263 13264 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13265 DAGCombinerInfo &DCI) const { 13266 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13267 13268 SelectionDAG &DAG = DCI.DAG; 13269 SDLoc DL(N); 13270 13271 // Size of integers being compared has a critical role in the following 13272 // analysis, so we prefer to do this when all types are legal. 13273 if (!DCI.isAfterLegalizeDAG()) 13274 return SDValue(); 13275 13276 // If all users of SETCC extend its value to a legal integer type 13277 // then we replace SETCC with a subtraction 13278 for (const SDNode *U : N->uses()) 13279 if (U->getOpcode() != ISD::ZERO_EXTEND) 13280 return SDValue(); 13281 13282 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13283 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13284 13285 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13286 13287 if (OpSize < Size) { 13288 switch (CC) { 13289 default: break; 13290 case ISD::SETULT: 13291 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13292 case ISD::SETULE: 13293 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13294 case ISD::SETUGT: 13295 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13296 case ISD::SETUGE: 13297 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13298 } 13299 } 13300 13301 return SDValue(); 13302 } 13303 13304 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13305 DAGCombinerInfo &DCI) const { 13306 SelectionDAG &DAG = DCI.DAG; 13307 SDLoc dl(N); 13308 13309 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13310 // If we're tracking CR bits, we need to be careful that we don't have: 13311 // trunc(binary-ops(zext(x), zext(y))) 13312 // or 13313 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13314 // such that we're unnecessarily moving things into GPRs when it would be 13315 // better to keep them in CR bits. 13316 13317 // Note that trunc here can be an actual i1 trunc, or can be the effective 13318 // truncation that comes from a setcc or select_cc. 13319 if (N->getOpcode() == ISD::TRUNCATE && 13320 N->getValueType(0) != MVT::i1) 13321 return SDValue(); 13322 13323 if (N->getOperand(0).getValueType() != MVT::i32 && 13324 N->getOperand(0).getValueType() != MVT::i64) 13325 return SDValue(); 13326 13327 if (N->getOpcode() == ISD::SETCC || 13328 N->getOpcode() == ISD::SELECT_CC) { 13329 // If we're looking at a comparison, then we need to make sure that the 13330 // high bits (all except for the first) don't matter the result. 13331 ISD::CondCode CC = 13332 cast<CondCodeSDNode>(N->getOperand( 13333 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13334 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13335 13336 if (ISD::isSignedIntSetCC(CC)) { 13337 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13338 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13339 return SDValue(); 13340 } else if (ISD::isUnsignedIntSetCC(CC)) { 13341 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13342 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13343 !DAG.MaskedValueIsZero(N->getOperand(1), 13344 APInt::getHighBitsSet(OpBits, OpBits-1))) 13345 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13346 : SDValue()); 13347 } else { 13348 // This is neither a signed nor an unsigned comparison, just make sure 13349 // that the high bits are equal. 13350 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13351 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13352 13353 // We don't really care about what is known about the first bit (if 13354 // anything), so pretend that it is known zero for both to ensure they can 13355 // be compared as constants. 13356 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13357 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13358 13359 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13360 Op1Known.getConstant() != Op2Known.getConstant()) 13361 return SDValue(); 13362 } 13363 } 13364 13365 // We now know that the higher-order bits are irrelevant, we just need to 13366 // make sure that all of the intermediate operations are bit operations, and 13367 // all inputs are extensions. 13368 if (N->getOperand(0).getOpcode() != ISD::AND && 13369 N->getOperand(0).getOpcode() != ISD::OR && 13370 N->getOperand(0).getOpcode() != ISD::XOR && 13371 N->getOperand(0).getOpcode() != ISD::SELECT && 13372 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13373 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13374 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13375 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13376 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13377 return SDValue(); 13378 13379 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13380 N->getOperand(1).getOpcode() != ISD::AND && 13381 N->getOperand(1).getOpcode() != ISD::OR && 13382 N->getOperand(1).getOpcode() != ISD::XOR && 13383 N->getOperand(1).getOpcode() != ISD::SELECT && 13384 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13385 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13386 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13387 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13388 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13389 return SDValue(); 13390 13391 SmallVector<SDValue, 4> Inputs; 13392 SmallVector<SDValue, 8> BinOps, PromOps; 13393 SmallPtrSet<SDNode *, 16> Visited; 13394 13395 for (unsigned i = 0; i < 2; ++i) { 13396 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13397 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13398 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13399 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13400 isa<ConstantSDNode>(N->getOperand(i))) 13401 Inputs.push_back(N->getOperand(i)); 13402 else 13403 BinOps.push_back(N->getOperand(i)); 13404 13405 if (N->getOpcode() == ISD::TRUNCATE) 13406 break; 13407 } 13408 13409 // Visit all inputs, collect all binary operations (and, or, xor and 13410 // select) that are all fed by extensions. 13411 while (!BinOps.empty()) { 13412 SDValue BinOp = BinOps.pop_back_val(); 13413 13414 if (!Visited.insert(BinOp.getNode()).second) 13415 continue; 13416 13417 PromOps.push_back(BinOp); 13418 13419 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13420 // The condition of the select is not promoted. 13421 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13422 continue; 13423 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13424 continue; 13425 13426 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13427 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13428 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13429 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13430 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13431 Inputs.push_back(BinOp.getOperand(i)); 13432 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13433 BinOp.getOperand(i).getOpcode() == ISD::OR || 13434 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13435 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13436 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13437 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13438 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13439 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13440 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13441 BinOps.push_back(BinOp.getOperand(i)); 13442 } else { 13443 // We have an input that is not an extension or another binary 13444 // operation; we'll abort this transformation. 13445 return SDValue(); 13446 } 13447 } 13448 } 13449 13450 // Make sure that this is a self-contained cluster of operations (which 13451 // is not quite the same thing as saying that everything has only one 13452 // use). 13453 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13454 if (isa<ConstantSDNode>(Inputs[i])) 13455 continue; 13456 13457 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13458 if (User != N && !Visited.count(User)) 13459 return SDValue(); 13460 13461 // Make sure that we're not going to promote the non-output-value 13462 // operand(s) or SELECT or SELECT_CC. 13463 // FIXME: Although we could sometimes handle this, and it does occur in 13464 // practice that one of the condition inputs to the select is also one of 13465 // the outputs, we currently can't deal with this. 13466 if (User->getOpcode() == ISD::SELECT) { 13467 if (User->getOperand(0) == Inputs[i]) 13468 return SDValue(); 13469 } else if (User->getOpcode() == ISD::SELECT_CC) { 13470 if (User->getOperand(0) == Inputs[i] || 13471 User->getOperand(1) == Inputs[i]) 13472 return SDValue(); 13473 } 13474 } 13475 } 13476 13477 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13478 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13479 if (User != N && !Visited.count(User)) 13480 return SDValue(); 13481 13482 // Make sure that we're not going to promote the non-output-value 13483 // operand(s) or SELECT or SELECT_CC. 13484 // FIXME: Although we could sometimes handle this, and it does occur in 13485 // practice that one of the condition inputs to the select is also one of 13486 // the outputs, we currently can't deal with this. 13487 if (User->getOpcode() == ISD::SELECT) { 13488 if (User->getOperand(0) == PromOps[i]) 13489 return SDValue(); 13490 } else if (User->getOpcode() == ISD::SELECT_CC) { 13491 if (User->getOperand(0) == PromOps[i] || 13492 User->getOperand(1) == PromOps[i]) 13493 return SDValue(); 13494 } 13495 } 13496 } 13497 13498 // Replace all inputs with the extension operand. 13499 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13500 // Constants may have users outside the cluster of to-be-promoted nodes, 13501 // and so we need to replace those as we do the promotions. 13502 if (isa<ConstantSDNode>(Inputs[i])) 13503 continue; 13504 else 13505 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13506 } 13507 13508 std::list<HandleSDNode> PromOpHandles; 13509 for (auto &PromOp : PromOps) 13510 PromOpHandles.emplace_back(PromOp); 13511 13512 // Replace all operations (these are all the same, but have a different 13513 // (i1) return type). DAG.getNode will validate that the types of 13514 // a binary operator match, so go through the list in reverse so that 13515 // we've likely promoted both operands first. Any intermediate truncations or 13516 // extensions disappear. 13517 while (!PromOpHandles.empty()) { 13518 SDValue PromOp = PromOpHandles.back().getValue(); 13519 PromOpHandles.pop_back(); 13520 13521 if (PromOp.getOpcode() == ISD::TRUNCATE || 13522 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13523 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13524 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13525 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13526 PromOp.getOperand(0).getValueType() != MVT::i1) { 13527 // The operand is not yet ready (see comment below). 13528 PromOpHandles.emplace_front(PromOp); 13529 continue; 13530 } 13531 13532 SDValue RepValue = PromOp.getOperand(0); 13533 if (isa<ConstantSDNode>(RepValue)) 13534 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13535 13536 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13537 continue; 13538 } 13539 13540 unsigned C; 13541 switch (PromOp.getOpcode()) { 13542 default: C = 0; break; 13543 case ISD::SELECT: C = 1; break; 13544 case ISD::SELECT_CC: C = 2; break; 13545 } 13546 13547 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13548 PromOp.getOperand(C).getValueType() != MVT::i1) || 13549 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13550 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13551 // The to-be-promoted operands of this node have not yet been 13552 // promoted (this should be rare because we're going through the 13553 // list backward, but if one of the operands has several users in 13554 // this cluster of to-be-promoted nodes, it is possible). 13555 PromOpHandles.emplace_front(PromOp); 13556 continue; 13557 } 13558 13559 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13560 PromOp.getNode()->op_end()); 13561 13562 // If there are any constant inputs, make sure they're replaced now. 13563 for (unsigned i = 0; i < 2; ++i) 13564 if (isa<ConstantSDNode>(Ops[C+i])) 13565 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13566 13567 DAG.ReplaceAllUsesOfValueWith(PromOp, 13568 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13569 } 13570 13571 // Now we're left with the initial truncation itself. 13572 if (N->getOpcode() == ISD::TRUNCATE) 13573 return N->getOperand(0); 13574 13575 // Otherwise, this is a comparison. The operands to be compared have just 13576 // changed type (to i1), but everything else is the same. 13577 return SDValue(N, 0); 13578 } 13579 13580 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13581 DAGCombinerInfo &DCI) const { 13582 SelectionDAG &DAG = DCI.DAG; 13583 SDLoc dl(N); 13584 13585 // If we're tracking CR bits, we need to be careful that we don't have: 13586 // zext(binary-ops(trunc(x), trunc(y))) 13587 // or 13588 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13589 // such that we're unnecessarily moving things into CR bits that can more 13590 // efficiently stay in GPRs. Note that if we're not certain that the high 13591 // bits are set as required by the final extension, we still may need to do 13592 // some masking to get the proper behavior. 13593 13594 // This same functionality is important on PPC64 when dealing with 13595 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13596 // the return values of functions. Because it is so similar, it is handled 13597 // here as well. 13598 13599 if (N->getValueType(0) != MVT::i32 && 13600 N->getValueType(0) != MVT::i64) 13601 return SDValue(); 13602 13603 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13604 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13605 return SDValue(); 13606 13607 if (N->getOperand(0).getOpcode() != ISD::AND && 13608 N->getOperand(0).getOpcode() != ISD::OR && 13609 N->getOperand(0).getOpcode() != ISD::XOR && 13610 N->getOperand(0).getOpcode() != ISD::SELECT && 13611 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13612 return SDValue(); 13613 13614 SmallVector<SDValue, 4> Inputs; 13615 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13616 SmallPtrSet<SDNode *, 16> Visited; 13617 13618 // Visit all inputs, collect all binary operations (and, or, xor and 13619 // select) that are all fed by truncations. 13620 while (!BinOps.empty()) { 13621 SDValue BinOp = BinOps.pop_back_val(); 13622 13623 if (!Visited.insert(BinOp.getNode()).second) 13624 continue; 13625 13626 PromOps.push_back(BinOp); 13627 13628 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13629 // The condition of the select is not promoted. 13630 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13631 continue; 13632 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13633 continue; 13634 13635 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13636 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13637 Inputs.push_back(BinOp.getOperand(i)); 13638 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13639 BinOp.getOperand(i).getOpcode() == ISD::OR || 13640 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13641 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13642 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13643 BinOps.push_back(BinOp.getOperand(i)); 13644 } else { 13645 // We have an input that is not a truncation or another binary 13646 // operation; we'll abort this transformation. 13647 return SDValue(); 13648 } 13649 } 13650 } 13651 13652 // The operands of a select that must be truncated when the select is 13653 // promoted because the operand is actually part of the to-be-promoted set. 13654 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13655 13656 // Make sure that this is a self-contained cluster of operations (which 13657 // is not quite the same thing as saying that everything has only one 13658 // use). 13659 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13660 if (isa<ConstantSDNode>(Inputs[i])) 13661 continue; 13662 13663 for (SDNode *User : Inputs[i].getNode()->uses()) { 13664 if (User != N && !Visited.count(User)) 13665 return SDValue(); 13666 13667 // If we're going to promote the non-output-value operand(s) or SELECT or 13668 // SELECT_CC, record them for truncation. 13669 if (User->getOpcode() == ISD::SELECT) { 13670 if (User->getOperand(0) == Inputs[i]) 13671 SelectTruncOp[0].insert(std::make_pair(User, 13672 User->getOperand(0).getValueType())); 13673 } else if (User->getOpcode() == ISD::SELECT_CC) { 13674 if (User->getOperand(0) == Inputs[i]) 13675 SelectTruncOp[0].insert(std::make_pair(User, 13676 User->getOperand(0).getValueType())); 13677 if (User->getOperand(1) == Inputs[i]) 13678 SelectTruncOp[1].insert(std::make_pair(User, 13679 User->getOperand(1).getValueType())); 13680 } 13681 } 13682 } 13683 13684 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13685 for (SDNode *User : PromOps[i].getNode()->uses()) { 13686 if (User != N && !Visited.count(User)) 13687 return SDValue(); 13688 13689 // If we're going to promote the non-output-value operand(s) or SELECT or 13690 // SELECT_CC, record them for truncation. 13691 if (User->getOpcode() == ISD::SELECT) { 13692 if (User->getOperand(0) == PromOps[i]) 13693 SelectTruncOp[0].insert(std::make_pair(User, 13694 User->getOperand(0).getValueType())); 13695 } else if (User->getOpcode() == ISD::SELECT_CC) { 13696 if (User->getOperand(0) == PromOps[i]) 13697 SelectTruncOp[0].insert(std::make_pair(User, 13698 User->getOperand(0).getValueType())); 13699 if (User->getOperand(1) == PromOps[i]) 13700 SelectTruncOp[1].insert(std::make_pair(User, 13701 User->getOperand(1).getValueType())); 13702 } 13703 } 13704 } 13705 13706 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13707 bool ReallyNeedsExt = false; 13708 if (N->getOpcode() != ISD::ANY_EXTEND) { 13709 // If all of the inputs are not already sign/zero extended, then 13710 // we'll still need to do that at the end. 13711 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13712 if (isa<ConstantSDNode>(Inputs[i])) 13713 continue; 13714 13715 unsigned OpBits = 13716 Inputs[i].getOperand(0).getValueSizeInBits(); 13717 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13718 13719 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13720 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13721 APInt::getHighBitsSet(OpBits, 13722 OpBits-PromBits))) || 13723 (N->getOpcode() == ISD::SIGN_EXTEND && 13724 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13725 (OpBits-(PromBits-1)))) { 13726 ReallyNeedsExt = true; 13727 break; 13728 } 13729 } 13730 } 13731 13732 // Replace all inputs, either with the truncation operand, or a 13733 // truncation or extension to the final output type. 13734 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13735 // Constant inputs need to be replaced with the to-be-promoted nodes that 13736 // use them because they might have users outside of the cluster of 13737 // promoted nodes. 13738 if (isa<ConstantSDNode>(Inputs[i])) 13739 continue; 13740 13741 SDValue InSrc = Inputs[i].getOperand(0); 13742 if (Inputs[i].getValueType() == N->getValueType(0)) 13743 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13744 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13745 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13746 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13747 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13748 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13749 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13750 else 13751 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13752 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13753 } 13754 13755 std::list<HandleSDNode> PromOpHandles; 13756 for (auto &PromOp : PromOps) 13757 PromOpHandles.emplace_back(PromOp); 13758 13759 // Replace all operations (these are all the same, but have a different 13760 // (promoted) return type). DAG.getNode will validate that the types of 13761 // a binary operator match, so go through the list in reverse so that 13762 // we've likely promoted both operands first. 13763 while (!PromOpHandles.empty()) { 13764 SDValue PromOp = PromOpHandles.back().getValue(); 13765 PromOpHandles.pop_back(); 13766 13767 unsigned C; 13768 switch (PromOp.getOpcode()) { 13769 default: C = 0; break; 13770 case ISD::SELECT: C = 1; break; 13771 case ISD::SELECT_CC: C = 2; break; 13772 } 13773 13774 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13775 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13776 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13777 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13778 // The to-be-promoted operands of this node have not yet been 13779 // promoted (this should be rare because we're going through the 13780 // list backward, but if one of the operands has several users in 13781 // this cluster of to-be-promoted nodes, it is possible). 13782 PromOpHandles.emplace_front(PromOp); 13783 continue; 13784 } 13785 13786 // For SELECT and SELECT_CC nodes, we do a similar check for any 13787 // to-be-promoted comparison inputs. 13788 if (PromOp.getOpcode() == ISD::SELECT || 13789 PromOp.getOpcode() == ISD::SELECT_CC) { 13790 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13791 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13792 (SelectTruncOp[1].count(PromOp.getNode()) && 13793 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13794 PromOpHandles.emplace_front(PromOp); 13795 continue; 13796 } 13797 } 13798 13799 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13800 PromOp.getNode()->op_end()); 13801 13802 // If this node has constant inputs, then they'll need to be promoted here. 13803 for (unsigned i = 0; i < 2; ++i) { 13804 if (!isa<ConstantSDNode>(Ops[C+i])) 13805 continue; 13806 if (Ops[C+i].getValueType() == N->getValueType(0)) 13807 continue; 13808 13809 if (N->getOpcode() == ISD::SIGN_EXTEND) 13810 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13811 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13812 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13813 else 13814 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13815 } 13816 13817 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13818 // truncate them again to the original value type. 13819 if (PromOp.getOpcode() == ISD::SELECT || 13820 PromOp.getOpcode() == ISD::SELECT_CC) { 13821 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13822 if (SI0 != SelectTruncOp[0].end()) 13823 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13824 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13825 if (SI1 != SelectTruncOp[1].end()) 13826 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13827 } 13828 13829 DAG.ReplaceAllUsesOfValueWith(PromOp, 13830 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13831 } 13832 13833 // Now we're left with the initial extension itself. 13834 if (!ReallyNeedsExt) 13835 return N->getOperand(0); 13836 13837 // To zero extend, just mask off everything except for the first bit (in the 13838 // i1 case). 13839 if (N->getOpcode() == ISD::ZERO_EXTEND) 13840 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13841 DAG.getConstant(APInt::getLowBitsSet( 13842 N->getValueSizeInBits(0), PromBits), 13843 dl, N->getValueType(0))); 13844 13845 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13846 "Invalid extension type"); 13847 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13848 SDValue ShiftCst = 13849 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13850 return DAG.getNode( 13851 ISD::SRA, dl, N->getValueType(0), 13852 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13853 ShiftCst); 13854 } 13855 13856 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13857 DAGCombinerInfo &DCI) const { 13858 assert(N->getOpcode() == ISD::SETCC && 13859 "Should be called with a SETCC node"); 13860 13861 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13862 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13863 SDValue LHS = N->getOperand(0); 13864 SDValue RHS = N->getOperand(1); 13865 13866 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13867 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13868 LHS.hasOneUse()) 13869 std::swap(LHS, RHS); 13870 13871 // x == 0-y --> x+y == 0 13872 // x != 0-y --> x+y != 0 13873 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13874 RHS.hasOneUse()) { 13875 SDLoc DL(N); 13876 SelectionDAG &DAG = DCI.DAG; 13877 EVT VT = N->getValueType(0); 13878 EVT OpVT = LHS.getValueType(); 13879 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13880 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13881 } 13882 } 13883 13884 return DAGCombineTruncBoolExt(N, DCI); 13885 } 13886 13887 // Is this an extending load from an f32 to an f64? 13888 static bool isFPExtLoad(SDValue Op) { 13889 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13890 return LD->getExtensionType() == ISD::EXTLOAD && 13891 Op.getValueType() == MVT::f64; 13892 return false; 13893 } 13894 13895 /// Reduces the number of fp-to-int conversion when building a vector. 13896 /// 13897 /// If this vector is built out of floating to integer conversions, 13898 /// transform it to a vector built out of floating point values followed by a 13899 /// single floating to integer conversion of the vector. 13900 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13901 /// becomes (fptosi (build_vector ($A, $B, ...))) 13902 SDValue PPCTargetLowering:: 13903 combineElementTruncationToVectorTruncation(SDNode *N, 13904 DAGCombinerInfo &DCI) const { 13905 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13906 "Should be called with a BUILD_VECTOR node"); 13907 13908 SelectionDAG &DAG = DCI.DAG; 13909 SDLoc dl(N); 13910 13911 SDValue FirstInput = N->getOperand(0); 13912 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13913 "The input operand must be an fp-to-int conversion."); 13914 13915 // This combine happens after legalization so the fp_to_[su]i nodes are 13916 // already converted to PPCSISD nodes. 13917 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13918 if (FirstConversion == PPCISD::FCTIDZ || 13919 FirstConversion == PPCISD::FCTIDUZ || 13920 FirstConversion == PPCISD::FCTIWZ || 13921 FirstConversion == PPCISD::FCTIWUZ) { 13922 bool IsSplat = true; 13923 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13924 FirstConversion == PPCISD::FCTIWUZ; 13925 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13926 SmallVector<SDValue, 4> Ops; 13927 EVT TargetVT = N->getValueType(0); 13928 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13929 SDValue NextOp = N->getOperand(i); 13930 if (NextOp.getOpcode() != PPCISD::MFVSR) 13931 return SDValue(); 13932 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13933 if (NextConversion != FirstConversion) 13934 return SDValue(); 13935 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13936 // This is not valid if the input was originally double precision. It is 13937 // also not profitable to do unless this is an extending load in which 13938 // case doing this combine will allow us to combine consecutive loads. 13939 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13940 return SDValue(); 13941 if (N->getOperand(i) != FirstInput) 13942 IsSplat = false; 13943 } 13944 13945 // If this is a splat, we leave it as-is since there will be only a single 13946 // fp-to-int conversion followed by a splat of the integer. This is better 13947 // for 32-bit and smaller ints and neutral for 64-bit ints. 13948 if (IsSplat) 13949 return SDValue(); 13950 13951 // Now that we know we have the right type of node, get its operands 13952 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13953 SDValue In = N->getOperand(i).getOperand(0); 13954 if (Is32Bit) { 13955 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13956 // here, we know that all inputs are extending loads so this is safe). 13957 if (In.isUndef()) 13958 Ops.push_back(DAG.getUNDEF(SrcVT)); 13959 else { 13960 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13961 MVT::f32, In.getOperand(0), 13962 DAG.getIntPtrConstant(1, dl)); 13963 Ops.push_back(Trunc); 13964 } 13965 } else 13966 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13967 } 13968 13969 unsigned Opcode; 13970 if (FirstConversion == PPCISD::FCTIDZ || 13971 FirstConversion == PPCISD::FCTIWZ) 13972 Opcode = ISD::FP_TO_SINT; 13973 else 13974 Opcode = ISD::FP_TO_UINT; 13975 13976 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13977 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13978 return DAG.getNode(Opcode, dl, TargetVT, BV); 13979 } 13980 return SDValue(); 13981 } 13982 13983 /// Reduce the number of loads when building a vector. 13984 /// 13985 /// Building a vector out of multiple loads can be converted to a load 13986 /// of the vector type if the loads are consecutive. If the loads are 13987 /// consecutive but in descending order, a shuffle is added at the end 13988 /// to reorder the vector. 13989 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13990 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13991 "Should be called with a BUILD_VECTOR node"); 13992 13993 SDLoc dl(N); 13994 13995 // Return early for non byte-sized type, as they can't be consecutive. 13996 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13997 return SDValue(); 13998 13999 bool InputsAreConsecutiveLoads = true; 14000 bool InputsAreReverseConsecutive = true; 14001 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14002 SDValue FirstInput = N->getOperand(0); 14003 bool IsRoundOfExtLoad = false; 14004 14005 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14006 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14007 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14008 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14009 } 14010 // Not a build vector of (possibly fp_rounded) loads. 14011 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14012 N->getNumOperands() == 1) 14013 return SDValue(); 14014 14015 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14016 // If any inputs are fp_round(extload), they all must be. 14017 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14018 return SDValue(); 14019 14020 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14021 N->getOperand(i); 14022 if (NextInput.getOpcode() != ISD::LOAD) 14023 return SDValue(); 14024 14025 SDValue PreviousInput = 14026 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14027 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14028 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14029 14030 // If any inputs are fp_round(extload), they all must be. 14031 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14032 return SDValue(); 14033 14034 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14035 InputsAreConsecutiveLoads = false; 14036 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14037 InputsAreReverseConsecutive = false; 14038 14039 // Exit early if the loads are neither consecutive nor reverse consecutive. 14040 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14041 return SDValue(); 14042 } 14043 14044 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14045 "The loads cannot be both consecutive and reverse consecutive."); 14046 14047 SDValue FirstLoadOp = 14048 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14049 SDValue LastLoadOp = 14050 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14051 N->getOperand(N->getNumOperands()-1); 14052 14053 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14054 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14055 if (InputsAreConsecutiveLoads) { 14056 assert(LD1 && "Input needs to be a LoadSDNode."); 14057 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14058 LD1->getBasePtr(), LD1->getPointerInfo(), 14059 LD1->getAlignment()); 14060 } 14061 if (InputsAreReverseConsecutive) { 14062 assert(LDL && "Input needs to be a LoadSDNode."); 14063 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14064 LDL->getBasePtr(), LDL->getPointerInfo(), 14065 LDL->getAlignment()); 14066 SmallVector<int, 16> Ops; 14067 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14068 Ops.push_back(i); 14069 14070 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14071 DAG.getUNDEF(N->getValueType(0)), Ops); 14072 } 14073 return SDValue(); 14074 } 14075 14076 // This function adds the required vector_shuffle needed to get 14077 // the elements of the vector extract in the correct position 14078 // as specified by the CorrectElems encoding. 14079 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14080 SDValue Input, uint64_t Elems, 14081 uint64_t CorrectElems) { 14082 SDLoc dl(N); 14083 14084 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14085 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14086 14087 // Knowing the element indices being extracted from the original 14088 // vector and the order in which they're being inserted, just put 14089 // them at element indices required for the instruction. 14090 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14091 if (DAG.getDataLayout().isLittleEndian()) 14092 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14093 else 14094 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14095 CorrectElems = CorrectElems >> 8; 14096 Elems = Elems >> 8; 14097 } 14098 14099 SDValue Shuffle = 14100 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14101 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14102 14103 EVT VT = N->getValueType(0); 14104 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14105 14106 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14107 Input.getValueType().getVectorElementType(), 14108 VT.getVectorNumElements()); 14109 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14110 DAG.getValueType(ExtVT)); 14111 } 14112 14113 // Look for build vector patterns where input operands come from sign 14114 // extended vector_extract elements of specific indices. If the correct indices 14115 // aren't used, add a vector shuffle to fix up the indices and create 14116 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14117 // during instruction selection. 14118 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14119 // This array encodes the indices that the vector sign extend instructions 14120 // extract from when extending from one type to another for both BE and LE. 14121 // The right nibble of each byte corresponds to the LE incides. 14122 // and the left nibble of each byte corresponds to the BE incides. 14123 // For example: 0x3074B8FC byte->word 14124 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14125 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14126 // For example: 0x000070F8 byte->double word 14127 // For LE: the allowed indices are: 0x0,0x8 14128 // For BE: the allowed indices are: 0x7,0xF 14129 uint64_t TargetElems[] = { 14130 0x3074B8FC, // b->w 14131 0x000070F8, // b->d 14132 0x10325476, // h->w 14133 0x00003074, // h->d 14134 0x00001032, // w->d 14135 }; 14136 14137 uint64_t Elems = 0; 14138 int Index; 14139 SDValue Input; 14140 14141 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14142 if (!Op) 14143 return false; 14144 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14145 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14146 return false; 14147 14148 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14149 // of the right width. 14150 SDValue Extract = Op.getOperand(0); 14151 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14152 Extract = Extract.getOperand(0); 14153 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14154 return false; 14155 14156 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14157 if (!ExtOp) 14158 return false; 14159 14160 Index = ExtOp->getZExtValue(); 14161 if (Input && Input != Extract.getOperand(0)) 14162 return false; 14163 14164 if (!Input) 14165 Input = Extract.getOperand(0); 14166 14167 Elems = Elems << 8; 14168 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14169 Elems |= Index; 14170 14171 return true; 14172 }; 14173 14174 // If the build vector operands aren't sign extended vector extracts, 14175 // of the same input vector, then return. 14176 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14177 if (!isSExtOfVecExtract(N->getOperand(i))) { 14178 return SDValue(); 14179 } 14180 } 14181 14182 // If the vector extract indicies are not correct, add the appropriate 14183 // vector_shuffle. 14184 int TgtElemArrayIdx; 14185 int InputSize = Input.getValueType().getScalarSizeInBits(); 14186 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14187 if (InputSize + OutputSize == 40) 14188 TgtElemArrayIdx = 0; 14189 else if (InputSize + OutputSize == 72) 14190 TgtElemArrayIdx = 1; 14191 else if (InputSize + OutputSize == 48) 14192 TgtElemArrayIdx = 2; 14193 else if (InputSize + OutputSize == 80) 14194 TgtElemArrayIdx = 3; 14195 else if (InputSize + OutputSize == 96) 14196 TgtElemArrayIdx = 4; 14197 else 14198 return SDValue(); 14199 14200 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14201 CorrectElems = DAG.getDataLayout().isLittleEndian() 14202 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14203 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14204 if (Elems != CorrectElems) { 14205 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14206 } 14207 14208 // Regular lowering will catch cases where a shuffle is not needed. 14209 return SDValue(); 14210 } 14211 14212 // Look for the pattern of a load from a narrow width to i128, feeding 14213 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14214 // (LXVRZX). This node represents a zero extending load that will be matched 14215 // to the Load VSX Vector Rightmost instructions. 14216 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14217 SDLoc DL(N); 14218 14219 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14220 if (N->getValueType(0) != MVT::v1i128) 14221 return SDValue(); 14222 14223 SDValue Operand = N->getOperand(0); 14224 // Proceed with the transformation if the operand to the BUILD_VECTOR 14225 // is a load instruction. 14226 if (Operand.getOpcode() != ISD::LOAD) 14227 return SDValue(); 14228 14229 auto *LD = cast<LoadSDNode>(Operand); 14230 EVT MemoryType = LD->getMemoryVT(); 14231 14232 // This transformation is only valid if the we are loading either a byte, 14233 // halfword, word, or doubleword. 14234 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14235 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14236 14237 // Ensure that the load from the narrow width is being zero extended to i128. 14238 if (!ValidLDType || 14239 (LD->getExtensionType() != ISD::ZEXTLOAD && 14240 LD->getExtensionType() != ISD::EXTLOAD)) 14241 return SDValue(); 14242 14243 SDValue LoadOps[] = { 14244 LD->getChain(), LD->getBasePtr(), 14245 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14246 14247 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14248 DAG.getVTList(MVT::v1i128, MVT::Other), 14249 LoadOps, MemoryType, LD->getMemOperand()); 14250 } 14251 14252 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14253 DAGCombinerInfo &DCI) const { 14254 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14255 "Should be called with a BUILD_VECTOR node"); 14256 14257 SelectionDAG &DAG = DCI.DAG; 14258 SDLoc dl(N); 14259 14260 if (!Subtarget.hasVSX()) 14261 return SDValue(); 14262 14263 // The target independent DAG combiner will leave a build_vector of 14264 // float-to-int conversions intact. We can generate MUCH better code for 14265 // a float-to-int conversion of a vector of floats. 14266 SDValue FirstInput = N->getOperand(0); 14267 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14268 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14269 if (Reduced) 14270 return Reduced; 14271 } 14272 14273 // If we're building a vector out of consecutive loads, just load that 14274 // vector type. 14275 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14276 if (Reduced) 14277 return Reduced; 14278 14279 // If we're building a vector out of extended elements from another vector 14280 // we have P9 vector integer extend instructions. The code assumes legal 14281 // input types (i.e. it can't handle things like v4i16) so do not run before 14282 // legalization. 14283 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14284 Reduced = combineBVOfVecSExt(N, DAG); 14285 if (Reduced) 14286 return Reduced; 14287 } 14288 14289 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14290 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14291 // is a load from <valid narrow width> to i128. 14292 if (Subtarget.isISA3_1()) { 14293 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14294 if (BVOfZLoad) 14295 return BVOfZLoad; 14296 } 14297 14298 if (N->getValueType(0) != MVT::v2f64) 14299 return SDValue(); 14300 14301 // Looking for: 14302 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14303 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14304 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14305 return SDValue(); 14306 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14307 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14308 return SDValue(); 14309 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14310 return SDValue(); 14311 14312 SDValue Ext1 = FirstInput.getOperand(0); 14313 SDValue Ext2 = N->getOperand(1).getOperand(0); 14314 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14315 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14316 return SDValue(); 14317 14318 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14319 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14320 if (!Ext1Op || !Ext2Op) 14321 return SDValue(); 14322 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14323 Ext1.getOperand(0) != Ext2.getOperand(0)) 14324 return SDValue(); 14325 14326 int FirstElem = Ext1Op->getZExtValue(); 14327 int SecondElem = Ext2Op->getZExtValue(); 14328 int SubvecIdx; 14329 if (FirstElem == 0 && SecondElem == 1) 14330 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14331 else if (FirstElem == 2 && SecondElem == 3) 14332 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14333 else 14334 return SDValue(); 14335 14336 SDValue SrcVec = Ext1.getOperand(0); 14337 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14338 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14339 return DAG.getNode(NodeType, dl, MVT::v2f64, 14340 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14341 } 14342 14343 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14344 DAGCombinerInfo &DCI) const { 14345 assert((N->getOpcode() == ISD::SINT_TO_FP || 14346 N->getOpcode() == ISD::UINT_TO_FP) && 14347 "Need an int -> FP conversion node here"); 14348 14349 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14350 return SDValue(); 14351 14352 SelectionDAG &DAG = DCI.DAG; 14353 SDLoc dl(N); 14354 SDValue Op(N, 0); 14355 14356 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14357 // from the hardware. 14358 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14359 return SDValue(); 14360 if (!Op.getOperand(0).getValueType().isSimple()) 14361 return SDValue(); 14362 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14363 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14364 return SDValue(); 14365 14366 SDValue FirstOperand(Op.getOperand(0)); 14367 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14368 (FirstOperand.getValueType() == MVT::i8 || 14369 FirstOperand.getValueType() == MVT::i16); 14370 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14371 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14372 bool DstDouble = Op.getValueType() == MVT::f64; 14373 unsigned ConvOp = Signed ? 14374 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14375 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14376 SDValue WidthConst = 14377 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14378 dl, false); 14379 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14380 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14381 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14382 DAG.getVTList(MVT::f64, MVT::Other), 14383 Ops, MVT::i8, LDN->getMemOperand()); 14384 14385 // For signed conversion, we need to sign-extend the value in the VSR 14386 if (Signed) { 14387 SDValue ExtOps[] = { Ld, WidthConst }; 14388 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14389 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14390 } else 14391 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14392 } 14393 14394 14395 // For i32 intermediate values, unfortunately, the conversion functions 14396 // leave the upper 32 bits of the value are undefined. Within the set of 14397 // scalar instructions, we have no method for zero- or sign-extending the 14398 // value. Thus, we cannot handle i32 intermediate values here. 14399 if (Op.getOperand(0).getValueType() == MVT::i32) 14400 return SDValue(); 14401 14402 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14403 "UINT_TO_FP is supported only with FPCVT"); 14404 14405 // If we have FCFIDS, then use it when converting to single-precision. 14406 // Otherwise, convert to double-precision and then round. 14407 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14408 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14409 : PPCISD::FCFIDS) 14410 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14411 : PPCISD::FCFID); 14412 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14413 ? MVT::f32 14414 : MVT::f64; 14415 14416 // If we're converting from a float, to an int, and back to a float again, 14417 // then we don't need the store/load pair at all. 14418 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14419 Subtarget.hasFPCVT()) || 14420 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14421 SDValue Src = Op.getOperand(0).getOperand(0); 14422 if (Src.getValueType() == MVT::f32) { 14423 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14424 DCI.AddToWorklist(Src.getNode()); 14425 } else if (Src.getValueType() != MVT::f64) { 14426 // Make sure that we don't pick up a ppc_fp128 source value. 14427 return SDValue(); 14428 } 14429 14430 unsigned FCTOp = 14431 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14432 PPCISD::FCTIDUZ; 14433 14434 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14435 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14436 14437 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14438 FP = DAG.getNode(ISD::FP_ROUND, dl, 14439 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14440 DCI.AddToWorklist(FP.getNode()); 14441 } 14442 14443 return FP; 14444 } 14445 14446 return SDValue(); 14447 } 14448 14449 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14450 // builtins) into loads with swaps. 14451 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14452 DAGCombinerInfo &DCI) const { 14453 SelectionDAG &DAG = DCI.DAG; 14454 SDLoc dl(N); 14455 SDValue Chain; 14456 SDValue Base; 14457 MachineMemOperand *MMO; 14458 14459 switch (N->getOpcode()) { 14460 default: 14461 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14462 case ISD::LOAD: { 14463 LoadSDNode *LD = cast<LoadSDNode>(N); 14464 Chain = LD->getChain(); 14465 Base = LD->getBasePtr(); 14466 MMO = LD->getMemOperand(); 14467 // If the MMO suggests this isn't a load of a full vector, leave 14468 // things alone. For a built-in, we have to make the change for 14469 // correctness, so if there is a size problem that will be a bug. 14470 if (MMO->getSize() < 16) 14471 return SDValue(); 14472 break; 14473 } 14474 case ISD::INTRINSIC_W_CHAIN: { 14475 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14476 Chain = Intrin->getChain(); 14477 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14478 // us what we want. Get operand 2 instead. 14479 Base = Intrin->getOperand(2); 14480 MMO = Intrin->getMemOperand(); 14481 break; 14482 } 14483 } 14484 14485 MVT VecTy = N->getValueType(0).getSimpleVT(); 14486 14487 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14488 // aligned and the type is a vector with elements up to 4 bytes 14489 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14490 VecTy.getScalarSizeInBits() <= 32) { 14491 return SDValue(); 14492 } 14493 14494 SDValue LoadOps[] = { Chain, Base }; 14495 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14496 DAG.getVTList(MVT::v2f64, MVT::Other), 14497 LoadOps, MVT::v2f64, MMO); 14498 14499 DCI.AddToWorklist(Load.getNode()); 14500 Chain = Load.getValue(1); 14501 SDValue Swap = DAG.getNode( 14502 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14503 DCI.AddToWorklist(Swap.getNode()); 14504 14505 // Add a bitcast if the resulting load type doesn't match v2f64. 14506 if (VecTy != MVT::v2f64) { 14507 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14508 DCI.AddToWorklist(N.getNode()); 14509 // Package {bitcast value, swap's chain} to match Load's shape. 14510 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14511 N, Swap.getValue(1)); 14512 } 14513 14514 return Swap; 14515 } 14516 14517 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14518 // builtins) into stores with swaps. 14519 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14520 DAGCombinerInfo &DCI) const { 14521 SelectionDAG &DAG = DCI.DAG; 14522 SDLoc dl(N); 14523 SDValue Chain; 14524 SDValue Base; 14525 unsigned SrcOpnd; 14526 MachineMemOperand *MMO; 14527 14528 switch (N->getOpcode()) { 14529 default: 14530 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14531 case ISD::STORE: { 14532 StoreSDNode *ST = cast<StoreSDNode>(N); 14533 Chain = ST->getChain(); 14534 Base = ST->getBasePtr(); 14535 MMO = ST->getMemOperand(); 14536 SrcOpnd = 1; 14537 // If the MMO suggests this isn't a store of a full vector, leave 14538 // things alone. For a built-in, we have to make the change for 14539 // correctness, so if there is a size problem that will be a bug. 14540 if (MMO->getSize() < 16) 14541 return SDValue(); 14542 break; 14543 } 14544 case ISD::INTRINSIC_VOID: { 14545 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14546 Chain = Intrin->getChain(); 14547 // Intrin->getBasePtr() oddly does not get what we want. 14548 Base = Intrin->getOperand(3); 14549 MMO = Intrin->getMemOperand(); 14550 SrcOpnd = 2; 14551 break; 14552 } 14553 } 14554 14555 SDValue Src = N->getOperand(SrcOpnd); 14556 MVT VecTy = Src.getValueType().getSimpleVT(); 14557 14558 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14559 // aligned and the type is a vector with elements up to 4 bytes 14560 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14561 VecTy.getScalarSizeInBits() <= 32) { 14562 return SDValue(); 14563 } 14564 14565 // All stores are done as v2f64 and possible bit cast. 14566 if (VecTy != MVT::v2f64) { 14567 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14568 DCI.AddToWorklist(Src.getNode()); 14569 } 14570 14571 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14572 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14573 DCI.AddToWorklist(Swap.getNode()); 14574 Chain = Swap.getValue(1); 14575 SDValue StoreOps[] = { Chain, Swap, Base }; 14576 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14577 DAG.getVTList(MVT::Other), 14578 StoreOps, VecTy, MMO); 14579 DCI.AddToWorklist(Store.getNode()); 14580 return Store; 14581 } 14582 14583 // Handle DAG combine for STORE (FP_TO_INT F). 14584 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14585 DAGCombinerInfo &DCI) const { 14586 14587 SelectionDAG &DAG = DCI.DAG; 14588 SDLoc dl(N); 14589 unsigned Opcode = N->getOperand(1).getOpcode(); 14590 14591 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14592 && "Not a FP_TO_INT Instruction!"); 14593 14594 SDValue Val = N->getOperand(1).getOperand(0); 14595 EVT Op1VT = N->getOperand(1).getValueType(); 14596 EVT ResVT = Val.getValueType(); 14597 14598 if (!isTypeLegal(ResVT)) 14599 return SDValue(); 14600 14601 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14602 bool ValidTypeForStoreFltAsInt = 14603 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14604 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14605 14606 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14607 return SDValue(); 14608 14609 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14610 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14611 return SDValue(); 14612 14613 // Extend f32 values to f64 14614 if (ResVT.getScalarSizeInBits() == 32) { 14615 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14616 DCI.AddToWorklist(Val.getNode()); 14617 } 14618 14619 // Set signed or unsigned conversion opcode. 14620 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14621 PPCISD::FP_TO_SINT_IN_VSR : 14622 PPCISD::FP_TO_UINT_IN_VSR; 14623 14624 Val = DAG.getNode(ConvOpcode, 14625 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14626 DCI.AddToWorklist(Val.getNode()); 14627 14628 // Set number of bytes being converted. 14629 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14630 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14631 DAG.getIntPtrConstant(ByteSize, dl, false), 14632 DAG.getValueType(Op1VT) }; 14633 14634 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14635 DAG.getVTList(MVT::Other), Ops, 14636 cast<StoreSDNode>(N)->getMemoryVT(), 14637 cast<StoreSDNode>(N)->getMemOperand()); 14638 14639 DCI.AddToWorklist(Val.getNode()); 14640 return Val; 14641 } 14642 14643 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14644 // Check that the source of the element keeps flipping 14645 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14646 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14647 for (int i = 1, e = Mask.size(); i < e; i++) { 14648 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14649 return false; 14650 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14651 return false; 14652 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14653 } 14654 return true; 14655 } 14656 14657 static bool isSplatBV(SDValue Op) { 14658 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14659 return false; 14660 SDValue FirstOp; 14661 14662 // Find first non-undef input. 14663 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14664 FirstOp = Op.getOperand(i); 14665 if (!FirstOp.isUndef()) 14666 break; 14667 } 14668 14669 // All inputs are undef or the same as the first non-undef input. 14670 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14671 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14672 return false; 14673 return true; 14674 } 14675 14676 static SDValue isScalarToVec(SDValue Op) { 14677 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14678 return Op; 14679 if (Op.getOpcode() != ISD::BITCAST) 14680 return SDValue(); 14681 Op = Op.getOperand(0); 14682 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14683 return Op; 14684 return SDValue(); 14685 } 14686 14687 // Fix up the shuffle mask to account for the fact that the result of 14688 // scalar_to_vector is not in lane zero. This just takes all values in 14689 // the ranges specified by the min/max indices and adds the number of 14690 // elements required to ensure each element comes from the respective 14691 // position in the valid lane. 14692 // On little endian, that's just the corresponding element in the other 14693 // half of the vector. On big endian, it is in the same half but right 14694 // justified rather than left justified in that half. 14695 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14696 int LHSMaxIdx, int RHSMinIdx, 14697 int RHSMaxIdx, int HalfVec, 14698 unsigned ValidLaneWidth, 14699 const PPCSubtarget &Subtarget) { 14700 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14701 int Idx = ShuffV[i]; 14702 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14703 ShuffV[i] += 14704 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14705 } 14706 } 14707 14708 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14709 // the original is: 14710 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14711 // In such a case, just change the shuffle mask to extract the element 14712 // from the permuted index. 14713 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14714 const PPCSubtarget &Subtarget) { 14715 SDLoc dl(OrigSToV); 14716 EVT VT = OrigSToV.getValueType(); 14717 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14718 "Expecting a SCALAR_TO_VECTOR here"); 14719 SDValue Input = OrigSToV.getOperand(0); 14720 14721 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14722 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14723 SDValue OrigVector = Input.getOperand(0); 14724 14725 // Can't handle non-const element indices or different vector types 14726 // for the input to the extract and the output of the scalar_to_vector. 14727 if (Idx && VT == OrigVector.getValueType()) { 14728 unsigned NumElts = VT.getVectorNumElements(); 14729 assert( 14730 NumElts > 1 && 14731 "Cannot produce a permuted scalar_to_vector for one element vector"); 14732 SmallVector<int, 16> NewMask(NumElts, -1); 14733 unsigned ResultInElt = NumElts / 2; 14734 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14735 NewMask[ResultInElt] = Idx->getZExtValue(); 14736 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14737 } 14738 } 14739 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14740 OrigSToV.getOperand(0)); 14741 } 14742 14743 // On little endian subtargets, combine shuffles such as: 14744 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14745 // into: 14746 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14747 // because the latter can be matched to a single instruction merge. 14748 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14749 // to put the value into element zero. Adjust the shuffle mask so that the 14750 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14751 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14752 // nodes with elements smaller than doubleword because all the ways 14753 // of getting scalar data into a vector register put the value in the 14754 // rightmost element of the left half of the vector. 14755 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14756 SelectionDAG &DAG) const { 14757 SDValue LHS = SVN->getOperand(0); 14758 SDValue RHS = SVN->getOperand(1); 14759 auto Mask = SVN->getMask(); 14760 int NumElts = LHS.getValueType().getVectorNumElements(); 14761 SDValue Res(SVN, 0); 14762 SDLoc dl(SVN); 14763 bool IsLittleEndian = Subtarget.isLittleEndian(); 14764 14765 // On big endian targets this is only useful for subtargets with direct moves. 14766 // On little endian targets it would be useful for all subtargets with VSX. 14767 // However adding special handling for LE subtargets without direct moves 14768 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14769 // which includes direct moves. 14770 if (!Subtarget.hasDirectMove()) 14771 return Res; 14772 14773 // If this is not a shuffle of a shuffle and the first element comes from 14774 // the second vector, canonicalize to the commuted form. This will make it 14775 // more likely to match one of the single instruction patterns. 14776 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14777 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14778 std::swap(LHS, RHS); 14779 Res = DAG.getCommutedVectorShuffle(*SVN); 14780 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14781 } 14782 14783 // Adjust the shuffle mask if either input vector comes from a 14784 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14785 // form (to prevent the need for a swap). 14786 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14787 SDValue SToVLHS = isScalarToVec(LHS); 14788 SDValue SToVRHS = isScalarToVec(RHS); 14789 if (SToVLHS || SToVRHS) { 14790 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14791 : SToVRHS.getValueType().getVectorNumElements(); 14792 int NumEltsOut = ShuffV.size(); 14793 // The width of the "valid lane" (i.e. the lane that contains the value that 14794 // is vectorized) needs to be expressed in terms of the number of elements 14795 // of the shuffle. It is thereby the ratio of the values before and after 14796 // any bitcast. 14797 unsigned ValidLaneWidth = 14798 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14799 LHS.getValueType().getScalarSizeInBits() 14800 : SToVRHS.getValueType().getScalarSizeInBits() / 14801 RHS.getValueType().getScalarSizeInBits(); 14802 14803 // Initially assume that neither input is permuted. These will be adjusted 14804 // accordingly if either input is. 14805 int LHSMaxIdx = -1; 14806 int RHSMinIdx = -1; 14807 int RHSMaxIdx = -1; 14808 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14809 14810 // Get the permuted scalar to vector nodes for the source(s) that come from 14811 // ISD::SCALAR_TO_VECTOR. 14812 // On big endian systems, this only makes sense for element sizes smaller 14813 // than 64 bits since for 64-bit elements, all instructions already put 14814 // the value into element zero. Since scalar size of LHS and RHS may differ 14815 // after isScalarToVec, this should be checked using their own sizes. 14816 if (SToVLHS) { 14817 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14818 return Res; 14819 // Set up the values for the shuffle vector fixup. 14820 LHSMaxIdx = NumEltsOut / NumEltsIn; 14821 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14822 if (SToVLHS.getValueType() != LHS.getValueType()) 14823 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14824 LHS = SToVLHS; 14825 } 14826 if (SToVRHS) { 14827 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14828 return Res; 14829 RHSMinIdx = NumEltsOut; 14830 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14831 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14832 if (SToVRHS.getValueType() != RHS.getValueType()) 14833 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14834 RHS = SToVRHS; 14835 } 14836 14837 // Fix up the shuffle mask to reflect where the desired element actually is. 14838 // The minimum and maximum indices that correspond to element zero for both 14839 // the LHS and RHS are computed and will control which shuffle mask entries 14840 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14841 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14842 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14843 HalfVec, ValidLaneWidth, Subtarget); 14844 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14845 14846 // We may have simplified away the shuffle. We won't be able to do anything 14847 // further with it here. 14848 if (!isa<ShuffleVectorSDNode>(Res)) 14849 return Res; 14850 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14851 } 14852 14853 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14854 // The common case after we commuted the shuffle is that the RHS is a splat 14855 // and we have elements coming in from the splat at indices that are not 14856 // conducive to using a merge. 14857 // Example: 14858 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14859 if (!isSplatBV(TheSplat)) 14860 return Res; 14861 14862 // We are looking for a mask such that all even elements are from 14863 // one vector and all odd elements from the other. 14864 if (!isAlternatingShuffMask(Mask, NumElts)) 14865 return Res; 14866 14867 // Adjust the mask so we are pulling in the same index from the splat 14868 // as the index from the interesting vector in consecutive elements. 14869 if (IsLittleEndian) { 14870 // Example (even elements from first vector): 14871 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14872 if (Mask[0] < NumElts) 14873 for (int i = 1, e = Mask.size(); i < e; i += 2) 14874 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14875 // Example (odd elements from first vector): 14876 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14877 else 14878 for (int i = 0, e = Mask.size(); i < e; i += 2) 14879 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14880 } else { 14881 // Example (even elements from first vector): 14882 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14883 if (Mask[0] < NumElts) 14884 for (int i = 0, e = Mask.size(); i < e; i += 2) 14885 ShuffV[i] = ShuffV[i + 1] - NumElts; 14886 // Example (odd elements from first vector): 14887 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14888 else 14889 for (int i = 1, e = Mask.size(); i < e; i += 2) 14890 ShuffV[i] = ShuffV[i - 1] - NumElts; 14891 } 14892 14893 // If the RHS has undefs, we need to remove them since we may have created 14894 // a shuffle that adds those instead of the splat value. 14895 SDValue SplatVal = 14896 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14897 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14898 14899 if (IsLittleEndian) 14900 RHS = TheSplat; 14901 else 14902 LHS = TheSplat; 14903 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14904 } 14905 14906 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14907 LSBaseSDNode *LSBase, 14908 DAGCombinerInfo &DCI) const { 14909 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14910 "Not a reverse memop pattern!"); 14911 14912 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14913 auto Mask = SVN->getMask(); 14914 int i = 0; 14915 auto I = Mask.rbegin(); 14916 auto E = Mask.rend(); 14917 14918 for (; I != E; ++I) { 14919 if (*I != i) 14920 return false; 14921 i++; 14922 } 14923 return true; 14924 }; 14925 14926 SelectionDAG &DAG = DCI.DAG; 14927 EVT VT = SVN->getValueType(0); 14928 14929 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14930 return SDValue(); 14931 14932 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14933 // See comment in PPCVSXSwapRemoval.cpp. 14934 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14935 if (!Subtarget.hasP9Vector()) 14936 return SDValue(); 14937 14938 if(!IsElementReverse(SVN)) 14939 return SDValue(); 14940 14941 if (LSBase->getOpcode() == ISD::LOAD) { 14942 // If the load return value 0 has more than one user except the 14943 // shufflevector instruction, it is not profitable to replace the 14944 // shufflevector with a reverse load. 14945 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14946 UI != UE; ++UI) 14947 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14948 return SDValue(); 14949 14950 SDLoc dl(LSBase); 14951 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14952 return DAG.getMemIntrinsicNode( 14953 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14954 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14955 } 14956 14957 if (LSBase->getOpcode() == ISD::STORE) { 14958 // If there are other uses of the shuffle, the swap cannot be avoided. 14959 // Forcing the use of an X-Form (since swapped stores only have 14960 // X-Forms) without removing the swap is unprofitable. 14961 if (!SVN->hasOneUse()) 14962 return SDValue(); 14963 14964 SDLoc dl(LSBase); 14965 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14966 LSBase->getBasePtr()}; 14967 return DAG.getMemIntrinsicNode( 14968 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14969 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14970 } 14971 14972 llvm_unreachable("Expected a load or store node here"); 14973 } 14974 14975 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14976 DAGCombinerInfo &DCI) const { 14977 SelectionDAG &DAG = DCI.DAG; 14978 SDLoc dl(N); 14979 switch (N->getOpcode()) { 14980 default: break; 14981 case ISD::ADD: 14982 return combineADD(N, DCI); 14983 case ISD::SHL: 14984 return combineSHL(N, DCI); 14985 case ISD::SRA: 14986 return combineSRA(N, DCI); 14987 case ISD::SRL: 14988 return combineSRL(N, DCI); 14989 case ISD::MUL: 14990 return combineMUL(N, DCI); 14991 case ISD::FMA: 14992 case PPCISD::FNMSUB: 14993 return combineFMALike(N, DCI); 14994 case PPCISD::SHL: 14995 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14996 return N->getOperand(0); 14997 break; 14998 case PPCISD::SRL: 14999 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15000 return N->getOperand(0); 15001 break; 15002 case PPCISD::SRA: 15003 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15004 if (C->isZero() || // 0 >>s V -> 0. 15005 C->isAllOnes()) // -1 >>s V -> -1. 15006 return N->getOperand(0); 15007 } 15008 break; 15009 case ISD::SIGN_EXTEND: 15010 case ISD::ZERO_EXTEND: 15011 case ISD::ANY_EXTEND: 15012 return DAGCombineExtBoolTrunc(N, DCI); 15013 case ISD::TRUNCATE: 15014 return combineTRUNCATE(N, DCI); 15015 case ISD::SETCC: 15016 if (SDValue CSCC = combineSetCC(N, DCI)) 15017 return CSCC; 15018 LLVM_FALLTHROUGH; 15019 case ISD::SELECT_CC: 15020 return DAGCombineTruncBoolExt(N, DCI); 15021 case ISD::SINT_TO_FP: 15022 case ISD::UINT_TO_FP: 15023 return combineFPToIntToFP(N, DCI); 15024 case ISD::VECTOR_SHUFFLE: 15025 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15026 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15027 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15028 } 15029 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15030 case ISD::STORE: { 15031 15032 EVT Op1VT = N->getOperand(1).getValueType(); 15033 unsigned Opcode = N->getOperand(1).getOpcode(); 15034 15035 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15036 SDValue Val= combineStoreFPToInt(N, DCI); 15037 if (Val) 15038 return Val; 15039 } 15040 15041 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15042 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15043 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15044 if (Val) 15045 return Val; 15046 } 15047 15048 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15049 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15050 N->getOperand(1).getNode()->hasOneUse() && 15051 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15052 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15053 15054 // STBRX can only handle simple types and it makes no sense to store less 15055 // two bytes in byte-reversed order. 15056 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15057 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15058 break; 15059 15060 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15061 // Do an any-extend to 32-bits if this is a half-word input. 15062 if (BSwapOp.getValueType() == MVT::i16) 15063 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15064 15065 // If the type of BSWAP operand is wider than stored memory width 15066 // it need to be shifted to the right side before STBRX. 15067 if (Op1VT.bitsGT(mVT)) { 15068 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15069 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15070 DAG.getConstant(Shift, dl, MVT::i32)); 15071 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15072 if (Op1VT == MVT::i64) 15073 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15074 } 15075 15076 SDValue Ops[] = { 15077 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15078 }; 15079 return 15080 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15081 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15082 cast<StoreSDNode>(N)->getMemOperand()); 15083 } 15084 15085 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15086 // So it can increase the chance of CSE constant construction. 15087 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15088 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15089 // Need to sign-extended to 64-bits to handle negative values. 15090 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15091 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15092 MemVT.getSizeInBits()); 15093 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15094 15095 // DAG.getTruncStore() can't be used here because it doesn't accept 15096 // the general (base + offset) addressing mode. 15097 // So we use UpdateNodeOperands and setTruncatingStore instead. 15098 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15099 N->getOperand(3)); 15100 cast<StoreSDNode>(N)->setTruncatingStore(true); 15101 return SDValue(N, 0); 15102 } 15103 15104 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15105 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15106 if (Op1VT.isSimple()) { 15107 MVT StoreVT = Op1VT.getSimpleVT(); 15108 if (Subtarget.needsSwapsForVSXMemOps() && 15109 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15110 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15111 return expandVSXStoreForLE(N, DCI); 15112 } 15113 break; 15114 } 15115 case ISD::LOAD: { 15116 LoadSDNode *LD = cast<LoadSDNode>(N); 15117 EVT VT = LD->getValueType(0); 15118 15119 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15120 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15121 if (VT.isSimple()) { 15122 MVT LoadVT = VT.getSimpleVT(); 15123 if (Subtarget.needsSwapsForVSXMemOps() && 15124 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15125 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15126 return expandVSXLoadForLE(N, DCI); 15127 } 15128 15129 // We sometimes end up with a 64-bit integer load, from which we extract 15130 // two single-precision floating-point numbers. This happens with 15131 // std::complex<float>, and other similar structures, because of the way we 15132 // canonicalize structure copies. However, if we lack direct moves, 15133 // then the final bitcasts from the extracted integer values to the 15134 // floating-point numbers turn into store/load pairs. Even with direct moves, 15135 // just loading the two floating-point numbers is likely better. 15136 auto ReplaceTwoFloatLoad = [&]() { 15137 if (VT != MVT::i64) 15138 return false; 15139 15140 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15141 LD->isVolatile()) 15142 return false; 15143 15144 // We're looking for a sequence like this: 15145 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15146 // t16: i64 = srl t13, Constant:i32<32> 15147 // t17: i32 = truncate t16 15148 // t18: f32 = bitcast t17 15149 // t19: i32 = truncate t13 15150 // t20: f32 = bitcast t19 15151 15152 if (!LD->hasNUsesOfValue(2, 0)) 15153 return false; 15154 15155 auto UI = LD->use_begin(); 15156 while (UI.getUse().getResNo() != 0) ++UI; 15157 SDNode *Trunc = *UI++; 15158 while (UI.getUse().getResNo() != 0) ++UI; 15159 SDNode *RightShift = *UI; 15160 if (Trunc->getOpcode() != ISD::TRUNCATE) 15161 std::swap(Trunc, RightShift); 15162 15163 if (Trunc->getOpcode() != ISD::TRUNCATE || 15164 Trunc->getValueType(0) != MVT::i32 || 15165 !Trunc->hasOneUse()) 15166 return false; 15167 if (RightShift->getOpcode() != ISD::SRL || 15168 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15169 RightShift->getConstantOperandVal(1) != 32 || 15170 !RightShift->hasOneUse()) 15171 return false; 15172 15173 SDNode *Trunc2 = *RightShift->use_begin(); 15174 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15175 Trunc2->getValueType(0) != MVT::i32 || 15176 !Trunc2->hasOneUse()) 15177 return false; 15178 15179 SDNode *Bitcast = *Trunc->use_begin(); 15180 SDNode *Bitcast2 = *Trunc2->use_begin(); 15181 15182 if (Bitcast->getOpcode() != ISD::BITCAST || 15183 Bitcast->getValueType(0) != MVT::f32) 15184 return false; 15185 if (Bitcast2->getOpcode() != ISD::BITCAST || 15186 Bitcast2->getValueType(0) != MVT::f32) 15187 return false; 15188 15189 if (Subtarget.isLittleEndian()) 15190 std::swap(Bitcast, Bitcast2); 15191 15192 // Bitcast has the second float (in memory-layout order) and Bitcast2 15193 // has the first one. 15194 15195 SDValue BasePtr = LD->getBasePtr(); 15196 if (LD->isIndexed()) { 15197 assert(LD->getAddressingMode() == ISD::PRE_INC && 15198 "Non-pre-inc AM on PPC?"); 15199 BasePtr = 15200 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15201 LD->getOffset()); 15202 } 15203 15204 auto MMOFlags = 15205 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15206 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15207 LD->getPointerInfo(), LD->getAlignment(), 15208 MMOFlags, LD->getAAInfo()); 15209 SDValue AddPtr = 15210 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15211 BasePtr, DAG.getIntPtrConstant(4, dl)); 15212 SDValue FloatLoad2 = DAG.getLoad( 15213 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15214 LD->getPointerInfo().getWithOffset(4), 15215 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15216 15217 if (LD->isIndexed()) { 15218 // Note that DAGCombine should re-form any pre-increment load(s) from 15219 // what is produced here if that makes sense. 15220 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15221 } 15222 15223 DCI.CombineTo(Bitcast2, FloatLoad); 15224 DCI.CombineTo(Bitcast, FloatLoad2); 15225 15226 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15227 SDValue(FloatLoad2.getNode(), 1)); 15228 return true; 15229 }; 15230 15231 if (ReplaceTwoFloatLoad()) 15232 return SDValue(N, 0); 15233 15234 EVT MemVT = LD->getMemoryVT(); 15235 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15236 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15237 if (LD->isUnindexed() && VT.isVector() && 15238 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15239 // P8 and later hardware should just use LOAD. 15240 !Subtarget.hasP8Vector() && 15241 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15242 VT == MVT::v4f32))) && 15243 LD->getAlign() < ABIAlignment) { 15244 // This is a type-legal unaligned Altivec load. 15245 SDValue Chain = LD->getChain(); 15246 SDValue Ptr = LD->getBasePtr(); 15247 bool isLittleEndian = Subtarget.isLittleEndian(); 15248 15249 // This implements the loading of unaligned vectors as described in 15250 // the venerable Apple Velocity Engine overview. Specifically: 15251 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15252 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15253 // 15254 // The general idea is to expand a sequence of one or more unaligned 15255 // loads into an alignment-based permutation-control instruction (lvsl 15256 // or lvsr), a series of regular vector loads (which always truncate 15257 // their input address to an aligned address), and a series of 15258 // permutations. The results of these permutations are the requested 15259 // loaded values. The trick is that the last "extra" load is not taken 15260 // from the address you might suspect (sizeof(vector) bytes after the 15261 // last requested load), but rather sizeof(vector) - 1 bytes after the 15262 // last requested vector. The point of this is to avoid a page fault if 15263 // the base address happened to be aligned. This works because if the 15264 // base address is aligned, then adding less than a full vector length 15265 // will cause the last vector in the sequence to be (re)loaded. 15266 // Otherwise, the next vector will be fetched as you might suspect was 15267 // necessary. 15268 15269 // We might be able to reuse the permutation generation from 15270 // a different base address offset from this one by an aligned amount. 15271 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15272 // optimization later. 15273 Intrinsic::ID Intr, IntrLD, IntrPerm; 15274 MVT PermCntlTy, PermTy, LDTy; 15275 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15276 : Intrinsic::ppc_altivec_lvsl; 15277 IntrLD = Intrinsic::ppc_altivec_lvx; 15278 IntrPerm = Intrinsic::ppc_altivec_vperm; 15279 PermCntlTy = MVT::v16i8; 15280 PermTy = MVT::v4i32; 15281 LDTy = MVT::v4i32; 15282 15283 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15284 15285 // Create the new MMO for the new base load. It is like the original MMO, 15286 // but represents an area in memory almost twice the vector size centered 15287 // on the original address. If the address is unaligned, we might start 15288 // reading up to (sizeof(vector)-1) bytes below the address of the 15289 // original unaligned load. 15290 MachineFunction &MF = DAG.getMachineFunction(); 15291 MachineMemOperand *BaseMMO = 15292 MF.getMachineMemOperand(LD->getMemOperand(), 15293 -(long)MemVT.getStoreSize()+1, 15294 2*MemVT.getStoreSize()-1); 15295 15296 // Create the new base load. 15297 SDValue LDXIntID = 15298 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15299 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15300 SDValue BaseLoad = 15301 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15302 DAG.getVTList(PermTy, MVT::Other), 15303 BaseLoadOps, LDTy, BaseMMO); 15304 15305 // Note that the value of IncOffset (which is provided to the next 15306 // load's pointer info offset value, and thus used to calculate the 15307 // alignment), and the value of IncValue (which is actually used to 15308 // increment the pointer value) are different! This is because we 15309 // require the next load to appear to be aligned, even though it 15310 // is actually offset from the base pointer by a lesser amount. 15311 int IncOffset = VT.getSizeInBits() / 8; 15312 int IncValue = IncOffset; 15313 15314 // Walk (both up and down) the chain looking for another load at the real 15315 // (aligned) offset (the alignment of the other load does not matter in 15316 // this case). If found, then do not use the offset reduction trick, as 15317 // that will prevent the loads from being later combined (as they would 15318 // otherwise be duplicates). 15319 if (!findConsecutiveLoad(LD, DAG)) 15320 --IncValue; 15321 15322 SDValue Increment = 15323 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15324 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15325 15326 MachineMemOperand *ExtraMMO = 15327 MF.getMachineMemOperand(LD->getMemOperand(), 15328 1, 2*MemVT.getStoreSize()-1); 15329 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15330 SDValue ExtraLoad = 15331 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15332 DAG.getVTList(PermTy, MVT::Other), 15333 ExtraLoadOps, LDTy, ExtraMMO); 15334 15335 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15336 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15337 15338 // Because vperm has a big-endian bias, we must reverse the order 15339 // of the input vectors and complement the permute control vector 15340 // when generating little endian code. We have already handled the 15341 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15342 // and ExtraLoad here. 15343 SDValue Perm; 15344 if (isLittleEndian) 15345 Perm = BuildIntrinsicOp(IntrPerm, 15346 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15347 else 15348 Perm = BuildIntrinsicOp(IntrPerm, 15349 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15350 15351 if (VT != PermTy) 15352 Perm = Subtarget.hasAltivec() 15353 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15354 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15355 DAG.getTargetConstant(1, dl, MVT::i64)); 15356 // second argument is 1 because this rounding 15357 // is always exact. 15358 15359 // The output of the permutation is our loaded result, the TokenFactor is 15360 // our new chain. 15361 DCI.CombineTo(N, Perm, TF); 15362 return SDValue(N, 0); 15363 } 15364 } 15365 break; 15366 case ISD::INTRINSIC_WO_CHAIN: { 15367 bool isLittleEndian = Subtarget.isLittleEndian(); 15368 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15369 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15370 : Intrinsic::ppc_altivec_lvsl); 15371 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15372 SDValue Add = N->getOperand(1); 15373 15374 int Bits = 4 /* 16 byte alignment */; 15375 15376 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15377 APInt::getAllOnes(Bits /* alignment */) 15378 .zext(Add.getScalarValueSizeInBits()))) { 15379 SDNode *BasePtr = Add->getOperand(0).getNode(); 15380 for (SDNode *U : BasePtr->uses()) { 15381 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15382 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15383 // We've found another LVSL/LVSR, and this address is an aligned 15384 // multiple of that one. The results will be the same, so use the 15385 // one we've just found instead. 15386 15387 return SDValue(U, 0); 15388 } 15389 } 15390 } 15391 15392 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15393 SDNode *BasePtr = Add->getOperand(0).getNode(); 15394 for (SDNode *U : BasePtr->uses()) { 15395 if (U->getOpcode() == ISD::ADD && 15396 isa<ConstantSDNode>(U->getOperand(1)) && 15397 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15398 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15399 (1ULL << Bits) == 15400 0) { 15401 SDNode *OtherAdd = U; 15402 for (SDNode *V : OtherAdd->uses()) { 15403 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15404 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15405 IID) { 15406 return SDValue(V, 0); 15407 } 15408 } 15409 } 15410 } 15411 } 15412 } 15413 15414 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15415 // Expose the vabsduw/h/b opportunity for down stream 15416 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15417 (IID == Intrinsic::ppc_altivec_vmaxsw || 15418 IID == Intrinsic::ppc_altivec_vmaxsh || 15419 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15420 SDValue V1 = N->getOperand(1); 15421 SDValue V2 = N->getOperand(2); 15422 if ((V1.getSimpleValueType() == MVT::v4i32 || 15423 V1.getSimpleValueType() == MVT::v8i16 || 15424 V1.getSimpleValueType() == MVT::v16i8) && 15425 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15426 // (0-a, a) 15427 if (V1.getOpcode() == ISD::SUB && 15428 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15429 V1.getOperand(1) == V2) { 15430 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15431 } 15432 // (a, 0-a) 15433 if (V2.getOpcode() == ISD::SUB && 15434 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15435 V2.getOperand(1) == V1) { 15436 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15437 } 15438 // (x-y, y-x) 15439 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15440 V1.getOperand(0) == V2.getOperand(1) && 15441 V1.getOperand(1) == V2.getOperand(0)) { 15442 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15443 } 15444 } 15445 } 15446 } 15447 15448 break; 15449 case ISD::INTRINSIC_W_CHAIN: 15450 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15451 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15452 if (Subtarget.needsSwapsForVSXMemOps()) { 15453 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15454 default: 15455 break; 15456 case Intrinsic::ppc_vsx_lxvw4x: 15457 case Intrinsic::ppc_vsx_lxvd2x: 15458 return expandVSXLoadForLE(N, DCI); 15459 } 15460 } 15461 break; 15462 case ISD::INTRINSIC_VOID: 15463 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15464 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15465 if (Subtarget.needsSwapsForVSXMemOps()) { 15466 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15467 default: 15468 break; 15469 case Intrinsic::ppc_vsx_stxvw4x: 15470 case Intrinsic::ppc_vsx_stxvd2x: 15471 return expandVSXStoreForLE(N, DCI); 15472 } 15473 } 15474 break; 15475 case ISD::BSWAP: { 15476 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15477 // For subtargets without LDBRX, we can still do better than the default 15478 // expansion even for 64-bit BSWAP (LOAD). 15479 bool Is64BitBswapOn64BitTgt = 15480 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15481 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15482 N->getOperand(0).hasOneUse(); 15483 if (IsSingleUseNormalLd && 15484 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15485 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15486 SDValue Load = N->getOperand(0); 15487 LoadSDNode *LD = cast<LoadSDNode>(Load); 15488 // Create the byte-swapping load. 15489 SDValue Ops[] = { 15490 LD->getChain(), // Chain 15491 LD->getBasePtr(), // Ptr 15492 DAG.getValueType(N->getValueType(0)) // VT 15493 }; 15494 SDValue BSLoad = 15495 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15496 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15497 MVT::i64 : MVT::i32, MVT::Other), 15498 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15499 15500 // If this is an i16 load, insert the truncate. 15501 SDValue ResVal = BSLoad; 15502 if (N->getValueType(0) == MVT::i16) 15503 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15504 15505 // First, combine the bswap away. This makes the value produced by the 15506 // load dead. 15507 DCI.CombineTo(N, ResVal); 15508 15509 // Next, combine the load away, we give it a bogus result value but a real 15510 // chain result. The result value is dead because the bswap is dead. 15511 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15512 15513 // Return N so it doesn't get rechecked! 15514 return SDValue(N, 0); 15515 } 15516 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15517 // before legalization so that the BUILD_PAIR is handled correctly. 15518 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15519 !IsSingleUseNormalLd) 15520 return SDValue(); 15521 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15522 15523 // Can't split volatile or atomic loads. 15524 if (!LD->isSimple()) 15525 return SDValue(); 15526 SDValue BasePtr = LD->getBasePtr(); 15527 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15528 LD->getPointerInfo(), LD->getAlignment()); 15529 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15530 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15531 DAG.getIntPtrConstant(4, dl)); 15532 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15533 LD->getMemOperand(), 4, 4); 15534 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15535 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15536 SDValue Res; 15537 if (Subtarget.isLittleEndian()) 15538 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15539 else 15540 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15541 SDValue TF = 15542 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15543 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15544 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15545 return Res; 15546 } 15547 case PPCISD::VCMP: 15548 // If a VCMP_rec node already exists with exactly the same operands as this 15549 // node, use its result instead of this node (VCMP_rec computes both a CR6 15550 // and a normal output). 15551 // 15552 if (!N->getOperand(0).hasOneUse() && 15553 !N->getOperand(1).hasOneUse() && 15554 !N->getOperand(2).hasOneUse()) { 15555 15556 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15557 SDNode *VCMPrecNode = nullptr; 15558 15559 SDNode *LHSN = N->getOperand(0).getNode(); 15560 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15561 UI != E; ++UI) 15562 if (UI->getOpcode() == PPCISD::VCMP_rec && 15563 UI->getOperand(1) == N->getOperand(1) && 15564 UI->getOperand(2) == N->getOperand(2) && 15565 UI->getOperand(0) == N->getOperand(0)) { 15566 VCMPrecNode = *UI; 15567 break; 15568 } 15569 15570 // If there is no VCMP_rec node, or if the flag value has a single use, 15571 // don't transform this. 15572 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15573 break; 15574 15575 // Look at the (necessarily single) use of the flag value. If it has a 15576 // chain, this transformation is more complex. Note that multiple things 15577 // could use the value result, which we should ignore. 15578 SDNode *FlagUser = nullptr; 15579 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15580 FlagUser == nullptr; ++UI) { 15581 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15582 SDNode *User = *UI; 15583 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15584 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15585 FlagUser = User; 15586 break; 15587 } 15588 } 15589 } 15590 15591 // If the user is a MFOCRF instruction, we know this is safe. 15592 // Otherwise we give up for right now. 15593 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15594 return SDValue(VCMPrecNode, 0); 15595 } 15596 break; 15597 case ISD::BRCOND: { 15598 SDValue Cond = N->getOperand(1); 15599 SDValue Target = N->getOperand(2); 15600 15601 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15602 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15603 Intrinsic::loop_decrement) { 15604 15605 // We now need to make the intrinsic dead (it cannot be instruction 15606 // selected). 15607 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15608 assert(Cond.getNode()->hasOneUse() && 15609 "Counter decrement has more than one use"); 15610 15611 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15612 N->getOperand(0), Target); 15613 } 15614 } 15615 break; 15616 case ISD::BR_CC: { 15617 // If this is a branch on an altivec predicate comparison, lower this so 15618 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15619 // lowering is done pre-legalize, because the legalizer lowers the predicate 15620 // compare down to code that is difficult to reassemble. 15621 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15622 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15623 15624 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15625 // value. If so, pass-through the AND to get to the intrinsic. 15626 if (LHS.getOpcode() == ISD::AND && 15627 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15628 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15629 Intrinsic::loop_decrement && 15630 isa<ConstantSDNode>(LHS.getOperand(1)) && 15631 !isNullConstant(LHS.getOperand(1))) 15632 LHS = LHS.getOperand(0); 15633 15634 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15635 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15636 Intrinsic::loop_decrement && 15637 isa<ConstantSDNode>(RHS)) { 15638 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15639 "Counter decrement comparison is not EQ or NE"); 15640 15641 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15642 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15643 (CC == ISD::SETNE && !Val); 15644 15645 // We now need to make the intrinsic dead (it cannot be instruction 15646 // selected). 15647 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15648 assert(LHS.getNode()->hasOneUse() && 15649 "Counter decrement has more than one use"); 15650 15651 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15652 N->getOperand(0), N->getOperand(4)); 15653 } 15654 15655 int CompareOpc; 15656 bool isDot; 15657 15658 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15659 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15660 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15661 assert(isDot && "Can't compare against a vector result!"); 15662 15663 // If this is a comparison against something other than 0/1, then we know 15664 // that the condition is never/always true. 15665 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15666 if (Val != 0 && Val != 1) { 15667 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15668 return N->getOperand(0); 15669 // Always !=, turn it into an unconditional branch. 15670 return DAG.getNode(ISD::BR, dl, MVT::Other, 15671 N->getOperand(0), N->getOperand(4)); 15672 } 15673 15674 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15675 15676 // Create the PPCISD altivec 'dot' comparison node. 15677 SDValue Ops[] = { 15678 LHS.getOperand(2), // LHS of compare 15679 LHS.getOperand(3), // RHS of compare 15680 DAG.getConstant(CompareOpc, dl, MVT::i32) 15681 }; 15682 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15683 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15684 15685 // Unpack the result based on how the target uses it. 15686 PPC::Predicate CompOpc; 15687 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15688 default: // Can't happen, don't crash on invalid number though. 15689 case 0: // Branch on the value of the EQ bit of CR6. 15690 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15691 break; 15692 case 1: // Branch on the inverted value of the EQ bit of CR6. 15693 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15694 break; 15695 case 2: // Branch on the value of the LT bit of CR6. 15696 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15697 break; 15698 case 3: // Branch on the inverted value of the LT bit of CR6. 15699 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15700 break; 15701 } 15702 15703 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15704 DAG.getConstant(CompOpc, dl, MVT::i32), 15705 DAG.getRegister(PPC::CR6, MVT::i32), 15706 N->getOperand(4), CompNode.getValue(1)); 15707 } 15708 break; 15709 } 15710 case ISD::BUILD_VECTOR: 15711 return DAGCombineBuildVector(N, DCI); 15712 case ISD::ABS: 15713 return combineABS(N, DCI); 15714 case ISD::VSELECT: 15715 return combineVSelect(N, DCI); 15716 } 15717 15718 return SDValue(); 15719 } 15720 15721 SDValue 15722 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15723 SelectionDAG &DAG, 15724 SmallVectorImpl<SDNode *> &Created) const { 15725 // fold (sdiv X, pow2) 15726 EVT VT = N->getValueType(0); 15727 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15728 return SDValue(); 15729 if ((VT != MVT::i32 && VT != MVT::i64) || 15730 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15731 return SDValue(); 15732 15733 SDLoc DL(N); 15734 SDValue N0 = N->getOperand(0); 15735 15736 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15737 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15738 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15739 15740 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15741 Created.push_back(Op.getNode()); 15742 15743 if (IsNegPow2) { 15744 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15745 Created.push_back(Op.getNode()); 15746 } 15747 15748 return Op; 15749 } 15750 15751 //===----------------------------------------------------------------------===// 15752 // Inline Assembly Support 15753 //===----------------------------------------------------------------------===// 15754 15755 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15756 KnownBits &Known, 15757 const APInt &DemandedElts, 15758 const SelectionDAG &DAG, 15759 unsigned Depth) const { 15760 Known.resetAll(); 15761 switch (Op.getOpcode()) { 15762 default: break; 15763 case PPCISD::LBRX: { 15764 // lhbrx is known to have the top bits cleared out. 15765 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15766 Known.Zero = 0xFFFF0000; 15767 break; 15768 } 15769 case ISD::INTRINSIC_WO_CHAIN: { 15770 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15771 default: break; 15772 case Intrinsic::ppc_altivec_vcmpbfp_p: 15773 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15774 case Intrinsic::ppc_altivec_vcmpequb_p: 15775 case Intrinsic::ppc_altivec_vcmpequh_p: 15776 case Intrinsic::ppc_altivec_vcmpequw_p: 15777 case Intrinsic::ppc_altivec_vcmpequd_p: 15778 case Intrinsic::ppc_altivec_vcmpequq_p: 15779 case Intrinsic::ppc_altivec_vcmpgefp_p: 15780 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15781 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15782 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15783 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15784 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15785 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15786 case Intrinsic::ppc_altivec_vcmpgtub_p: 15787 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15788 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15789 case Intrinsic::ppc_altivec_vcmpgtud_p: 15790 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15791 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15792 break; 15793 } 15794 break; 15795 } 15796 case ISD::INTRINSIC_W_CHAIN: { 15797 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15798 default: 15799 break; 15800 case Intrinsic::ppc_load2r: 15801 // Top bits are cleared for load2r (which is the same as lhbrx). 15802 Known.Zero = 0xFFFF0000; 15803 break; 15804 } 15805 break; 15806 } 15807 } 15808 } 15809 15810 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15811 switch (Subtarget.getCPUDirective()) { 15812 default: break; 15813 case PPC::DIR_970: 15814 case PPC::DIR_PWR4: 15815 case PPC::DIR_PWR5: 15816 case PPC::DIR_PWR5X: 15817 case PPC::DIR_PWR6: 15818 case PPC::DIR_PWR6X: 15819 case PPC::DIR_PWR7: 15820 case PPC::DIR_PWR8: 15821 case PPC::DIR_PWR9: 15822 case PPC::DIR_PWR10: 15823 case PPC::DIR_PWR_FUTURE: { 15824 if (!ML) 15825 break; 15826 15827 if (!DisableInnermostLoopAlign32) { 15828 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15829 // so that we can decrease cache misses and branch-prediction misses. 15830 // Actual alignment of the loop will depend on the hotness check and other 15831 // logic in alignBlocks. 15832 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15833 return Align(32); 15834 } 15835 15836 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15837 15838 // For small loops (between 5 and 8 instructions), align to a 32-byte 15839 // boundary so that the entire loop fits in one instruction-cache line. 15840 uint64_t LoopSize = 0; 15841 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15842 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15843 LoopSize += TII->getInstSizeInBytes(*J); 15844 if (LoopSize > 32) 15845 break; 15846 } 15847 15848 if (LoopSize > 16 && LoopSize <= 32) 15849 return Align(32); 15850 15851 break; 15852 } 15853 } 15854 15855 return TargetLowering::getPrefLoopAlignment(ML); 15856 } 15857 15858 /// getConstraintType - Given a constraint, return the type of 15859 /// constraint it is for this target. 15860 PPCTargetLowering::ConstraintType 15861 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15862 if (Constraint.size() == 1) { 15863 switch (Constraint[0]) { 15864 default: break; 15865 case 'b': 15866 case 'r': 15867 case 'f': 15868 case 'd': 15869 case 'v': 15870 case 'y': 15871 return C_RegisterClass; 15872 case 'Z': 15873 // FIXME: While Z does indicate a memory constraint, it specifically 15874 // indicates an r+r address (used in conjunction with the 'y' modifier 15875 // in the replacement string). Currently, we're forcing the base 15876 // register to be r0 in the asm printer (which is interpreted as zero) 15877 // and forming the complete address in the second register. This is 15878 // suboptimal. 15879 return C_Memory; 15880 } 15881 } else if (Constraint == "wc") { // individual CR bits. 15882 return C_RegisterClass; 15883 } else if (Constraint == "wa" || Constraint == "wd" || 15884 Constraint == "wf" || Constraint == "ws" || 15885 Constraint == "wi" || Constraint == "ww") { 15886 return C_RegisterClass; // VSX registers. 15887 } 15888 return TargetLowering::getConstraintType(Constraint); 15889 } 15890 15891 /// Examine constraint type and operand type and determine a weight value. 15892 /// This object must already have been set up with the operand type 15893 /// and the current alternative constraint selected. 15894 TargetLowering::ConstraintWeight 15895 PPCTargetLowering::getSingleConstraintMatchWeight( 15896 AsmOperandInfo &info, const char *constraint) const { 15897 ConstraintWeight weight = CW_Invalid; 15898 Value *CallOperandVal = info.CallOperandVal; 15899 // If we don't have a value, we can't do a match, 15900 // but allow it at the lowest weight. 15901 if (!CallOperandVal) 15902 return CW_Default; 15903 Type *type = CallOperandVal->getType(); 15904 15905 // Look at the constraint type. 15906 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15907 return CW_Register; // an individual CR bit. 15908 else if ((StringRef(constraint) == "wa" || 15909 StringRef(constraint) == "wd" || 15910 StringRef(constraint) == "wf") && 15911 type->isVectorTy()) 15912 return CW_Register; 15913 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15914 return CW_Register; // just hold 64-bit integers data. 15915 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15916 return CW_Register; 15917 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15918 return CW_Register; 15919 15920 switch (*constraint) { 15921 default: 15922 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15923 break; 15924 case 'b': 15925 if (type->isIntegerTy()) 15926 weight = CW_Register; 15927 break; 15928 case 'f': 15929 if (type->isFloatTy()) 15930 weight = CW_Register; 15931 break; 15932 case 'd': 15933 if (type->isDoubleTy()) 15934 weight = CW_Register; 15935 break; 15936 case 'v': 15937 if (type->isVectorTy()) 15938 weight = CW_Register; 15939 break; 15940 case 'y': 15941 weight = CW_Register; 15942 break; 15943 case 'Z': 15944 weight = CW_Memory; 15945 break; 15946 } 15947 return weight; 15948 } 15949 15950 std::pair<unsigned, const TargetRegisterClass *> 15951 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15952 StringRef Constraint, 15953 MVT VT) const { 15954 if (Constraint.size() == 1) { 15955 // GCC RS6000 Constraint Letters 15956 switch (Constraint[0]) { 15957 case 'b': // R1-R31 15958 if (VT == MVT::i64 && Subtarget.isPPC64()) 15959 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15960 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15961 case 'r': // R0-R31 15962 if (VT == MVT::i64 && Subtarget.isPPC64()) 15963 return std::make_pair(0U, &PPC::G8RCRegClass); 15964 return std::make_pair(0U, &PPC::GPRCRegClass); 15965 // 'd' and 'f' constraints are both defined to be "the floating point 15966 // registers", where one is for 32-bit and the other for 64-bit. We don't 15967 // really care overly much here so just give them all the same reg classes. 15968 case 'd': 15969 case 'f': 15970 if (Subtarget.hasSPE()) { 15971 if (VT == MVT::f32 || VT == MVT::i32) 15972 return std::make_pair(0U, &PPC::GPRCRegClass); 15973 if (VT == MVT::f64 || VT == MVT::i64) 15974 return std::make_pair(0U, &PPC::SPERCRegClass); 15975 } else { 15976 if (VT == MVT::f32 || VT == MVT::i32) 15977 return std::make_pair(0U, &PPC::F4RCRegClass); 15978 if (VT == MVT::f64 || VT == MVT::i64) 15979 return std::make_pair(0U, &PPC::F8RCRegClass); 15980 } 15981 break; 15982 case 'v': 15983 if (Subtarget.hasAltivec() && VT.isVector()) 15984 return std::make_pair(0U, &PPC::VRRCRegClass); 15985 else if (Subtarget.hasVSX()) 15986 // Scalars in Altivec registers only make sense with VSX. 15987 return std::make_pair(0U, &PPC::VFRCRegClass); 15988 break; 15989 case 'y': // crrc 15990 return std::make_pair(0U, &PPC::CRRCRegClass); 15991 } 15992 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15993 // An individual CR bit. 15994 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15995 } else if ((Constraint == "wa" || Constraint == "wd" || 15996 Constraint == "wf" || Constraint == "wi") && 15997 Subtarget.hasVSX()) { 15998 // A VSX register for either a scalar (FP) or vector. There is no 15999 // support for single precision scalars on subtargets prior to Power8. 16000 if (VT.isVector()) 16001 return std::make_pair(0U, &PPC::VSRCRegClass); 16002 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16003 return std::make_pair(0U, &PPC::VSSRCRegClass); 16004 return std::make_pair(0U, &PPC::VSFRCRegClass); 16005 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16006 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16007 return std::make_pair(0U, &PPC::VSSRCRegClass); 16008 else 16009 return std::make_pair(0U, &PPC::VSFRCRegClass); 16010 } else if (Constraint == "lr") { 16011 if (VT == MVT::i64) 16012 return std::make_pair(0U, &PPC::LR8RCRegClass); 16013 else 16014 return std::make_pair(0U, &PPC::LRRCRegClass); 16015 } 16016 16017 // Handle special cases of physical registers that are not properly handled 16018 // by the base class. 16019 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16020 // If we name a VSX register, we can't defer to the base class because it 16021 // will not recognize the correct register (their names will be VSL{0-31} 16022 // and V{0-31} so they won't match). So we match them here. 16023 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16024 int VSNum = atoi(Constraint.data() + 3); 16025 assert(VSNum >= 0 && VSNum <= 63 && 16026 "Attempted to access a vsr out of range"); 16027 if (VSNum < 32) 16028 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16029 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16030 } 16031 16032 // For float registers, we can't defer to the base class as it will match 16033 // the SPILLTOVSRRC class. 16034 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16035 int RegNum = atoi(Constraint.data() + 2); 16036 if (RegNum > 31 || RegNum < 0) 16037 report_fatal_error("Invalid floating point register number"); 16038 if (VT == MVT::f32 || VT == MVT::i32) 16039 return Subtarget.hasSPE() 16040 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16041 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16042 if (VT == MVT::f64 || VT == MVT::i64) 16043 return Subtarget.hasSPE() 16044 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16045 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16046 } 16047 } 16048 16049 std::pair<unsigned, const TargetRegisterClass *> R = 16050 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16051 16052 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16053 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16054 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16055 // register. 16056 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16057 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16058 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16059 PPC::GPRCRegClass.contains(R.first)) 16060 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16061 PPC::sub_32, &PPC::G8RCRegClass), 16062 &PPC::G8RCRegClass); 16063 16064 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16065 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16066 R.first = PPC::CR0; 16067 R.second = &PPC::CRRCRegClass; 16068 } 16069 // FIXME: This warning should ideally be emitted in the front end. 16070 const auto &TM = getTargetMachine(); 16071 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16072 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16073 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16074 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16075 errs() << "warning: vector registers 20 to 32 are reserved in the " 16076 "default AIX AltiVec ABI and cannot be used\n"; 16077 } 16078 16079 return R; 16080 } 16081 16082 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16083 /// vector. If it is invalid, don't add anything to Ops. 16084 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16085 std::string &Constraint, 16086 std::vector<SDValue>&Ops, 16087 SelectionDAG &DAG) const { 16088 SDValue Result; 16089 16090 // Only support length 1 constraints. 16091 if (Constraint.length() > 1) return; 16092 16093 char Letter = Constraint[0]; 16094 switch (Letter) { 16095 default: break; 16096 case 'I': 16097 case 'J': 16098 case 'K': 16099 case 'L': 16100 case 'M': 16101 case 'N': 16102 case 'O': 16103 case 'P': { 16104 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16105 if (!CST) return; // Must be an immediate to match. 16106 SDLoc dl(Op); 16107 int64_t Value = CST->getSExtValue(); 16108 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16109 // numbers are printed as such. 16110 switch (Letter) { 16111 default: llvm_unreachable("Unknown constraint letter!"); 16112 case 'I': // "I" is a signed 16-bit constant. 16113 if (isInt<16>(Value)) 16114 Result = DAG.getTargetConstant(Value, dl, TCVT); 16115 break; 16116 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16117 if (isShiftedUInt<16, 16>(Value)) 16118 Result = DAG.getTargetConstant(Value, dl, TCVT); 16119 break; 16120 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16121 if (isShiftedInt<16, 16>(Value)) 16122 Result = DAG.getTargetConstant(Value, dl, TCVT); 16123 break; 16124 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16125 if (isUInt<16>(Value)) 16126 Result = DAG.getTargetConstant(Value, dl, TCVT); 16127 break; 16128 case 'M': // "M" is a constant that is greater than 31. 16129 if (Value > 31) 16130 Result = DAG.getTargetConstant(Value, dl, TCVT); 16131 break; 16132 case 'N': // "N" is a positive constant that is an exact power of two. 16133 if (Value > 0 && isPowerOf2_64(Value)) 16134 Result = DAG.getTargetConstant(Value, dl, TCVT); 16135 break; 16136 case 'O': // "O" is the constant zero. 16137 if (Value == 0) 16138 Result = DAG.getTargetConstant(Value, dl, TCVT); 16139 break; 16140 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16141 if (isInt<16>(-Value)) 16142 Result = DAG.getTargetConstant(Value, dl, TCVT); 16143 break; 16144 } 16145 break; 16146 } 16147 } 16148 16149 if (Result.getNode()) { 16150 Ops.push_back(Result); 16151 return; 16152 } 16153 16154 // Handle standard constraint letters. 16155 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16156 } 16157 16158 // isLegalAddressingMode - Return true if the addressing mode represented 16159 // by AM is legal for this target, for a load/store of the specified type. 16160 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16161 const AddrMode &AM, Type *Ty, 16162 unsigned AS, 16163 Instruction *I) const { 16164 // Vector type r+i form is supported since power9 as DQ form. We don't check 16165 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16166 // imm form is preferred and the offset can be adjusted to use imm form later 16167 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16168 // max offset to check legal addressing mode, we should be a little aggressive 16169 // to contain other offsets for that LSRUse. 16170 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16171 return false; 16172 16173 // PPC allows a sign-extended 16-bit immediate field. 16174 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16175 return false; 16176 16177 // No global is ever allowed as a base. 16178 if (AM.BaseGV) 16179 return false; 16180 16181 // PPC only support r+r, 16182 switch (AM.Scale) { 16183 case 0: // "r+i" or just "i", depending on HasBaseReg. 16184 break; 16185 case 1: 16186 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16187 return false; 16188 // Otherwise we have r+r or r+i. 16189 break; 16190 case 2: 16191 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16192 return false; 16193 // Allow 2*r as r+r. 16194 break; 16195 default: 16196 // No other scales are supported. 16197 return false; 16198 } 16199 16200 return true; 16201 } 16202 16203 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16204 SelectionDAG &DAG) const { 16205 MachineFunction &MF = DAG.getMachineFunction(); 16206 MachineFrameInfo &MFI = MF.getFrameInfo(); 16207 MFI.setReturnAddressIsTaken(true); 16208 16209 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16210 return SDValue(); 16211 16212 SDLoc dl(Op); 16213 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16214 16215 // Make sure the function does not optimize away the store of the RA to 16216 // the stack. 16217 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16218 FuncInfo->setLRStoreRequired(); 16219 bool isPPC64 = Subtarget.isPPC64(); 16220 auto PtrVT = getPointerTy(MF.getDataLayout()); 16221 16222 if (Depth > 0) { 16223 // The link register (return address) is saved in the caller's frame 16224 // not the callee's stack frame. So we must get the caller's frame 16225 // address and load the return address at the LR offset from there. 16226 SDValue FrameAddr = 16227 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16228 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16229 SDValue Offset = 16230 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16231 isPPC64 ? MVT::i64 : MVT::i32); 16232 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16233 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16234 MachinePointerInfo()); 16235 } 16236 16237 // Just load the return address off the stack. 16238 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16239 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16240 MachinePointerInfo()); 16241 } 16242 16243 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16244 SelectionDAG &DAG) const { 16245 SDLoc dl(Op); 16246 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16247 16248 MachineFunction &MF = DAG.getMachineFunction(); 16249 MachineFrameInfo &MFI = MF.getFrameInfo(); 16250 MFI.setFrameAddressIsTaken(true); 16251 16252 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16253 bool isPPC64 = PtrVT == MVT::i64; 16254 16255 // Naked functions never have a frame pointer, and so we use r1. For all 16256 // other functions, this decision must be delayed until during PEI. 16257 unsigned FrameReg; 16258 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16259 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16260 else 16261 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16262 16263 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16264 PtrVT); 16265 while (Depth--) 16266 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16267 FrameAddr, MachinePointerInfo()); 16268 return FrameAddr; 16269 } 16270 16271 // FIXME? Maybe this could be a TableGen attribute on some registers and 16272 // this table could be generated automatically from RegInfo. 16273 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16274 const MachineFunction &MF) const { 16275 bool isPPC64 = Subtarget.isPPC64(); 16276 16277 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16278 if (!is64Bit && VT != LLT::scalar(32)) 16279 report_fatal_error("Invalid register global variable type"); 16280 16281 Register Reg = StringSwitch<Register>(RegName) 16282 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16283 .Case("r2", isPPC64 ? Register() : PPC::R2) 16284 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16285 .Default(Register()); 16286 16287 if (Reg) 16288 return Reg; 16289 report_fatal_error("Invalid register name global variable"); 16290 } 16291 16292 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16293 // 32-bit SVR4 ABI access everything as got-indirect. 16294 if (Subtarget.is32BitELFABI()) 16295 return true; 16296 16297 // AIX accesses everything indirectly through the TOC, which is similar to 16298 // the GOT. 16299 if (Subtarget.isAIXABI()) 16300 return true; 16301 16302 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16303 // If it is small or large code model, module locals are accessed 16304 // indirectly by loading their address from .toc/.got. 16305 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16306 return true; 16307 16308 // JumpTable and BlockAddress are accessed as got-indirect. 16309 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16310 return true; 16311 16312 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16313 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16314 16315 return false; 16316 } 16317 16318 bool 16319 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16320 // The PowerPC target isn't yet aware of offsets. 16321 return false; 16322 } 16323 16324 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16325 const CallInst &I, 16326 MachineFunction &MF, 16327 unsigned Intrinsic) const { 16328 switch (Intrinsic) { 16329 case Intrinsic::ppc_atomicrmw_xchg_i128: 16330 case Intrinsic::ppc_atomicrmw_add_i128: 16331 case Intrinsic::ppc_atomicrmw_sub_i128: 16332 case Intrinsic::ppc_atomicrmw_nand_i128: 16333 case Intrinsic::ppc_atomicrmw_and_i128: 16334 case Intrinsic::ppc_atomicrmw_or_i128: 16335 case Intrinsic::ppc_atomicrmw_xor_i128: 16336 case Intrinsic::ppc_cmpxchg_i128: 16337 Info.opc = ISD::INTRINSIC_W_CHAIN; 16338 Info.memVT = MVT::i128; 16339 Info.ptrVal = I.getArgOperand(0); 16340 Info.offset = 0; 16341 Info.align = Align(16); 16342 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16343 MachineMemOperand::MOVolatile; 16344 return true; 16345 case Intrinsic::ppc_atomic_load_i128: 16346 Info.opc = ISD::INTRINSIC_W_CHAIN; 16347 Info.memVT = MVT::i128; 16348 Info.ptrVal = I.getArgOperand(0); 16349 Info.offset = 0; 16350 Info.align = Align(16); 16351 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16352 return true; 16353 case Intrinsic::ppc_atomic_store_i128: 16354 Info.opc = ISD::INTRINSIC_VOID; 16355 Info.memVT = MVT::i128; 16356 Info.ptrVal = I.getArgOperand(2); 16357 Info.offset = 0; 16358 Info.align = Align(16); 16359 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16360 return true; 16361 case Intrinsic::ppc_altivec_lvx: 16362 case Intrinsic::ppc_altivec_lvxl: 16363 case Intrinsic::ppc_altivec_lvebx: 16364 case Intrinsic::ppc_altivec_lvehx: 16365 case Intrinsic::ppc_altivec_lvewx: 16366 case Intrinsic::ppc_vsx_lxvd2x: 16367 case Intrinsic::ppc_vsx_lxvw4x: 16368 case Intrinsic::ppc_vsx_lxvd2x_be: 16369 case Intrinsic::ppc_vsx_lxvw4x_be: 16370 case Intrinsic::ppc_vsx_lxvl: 16371 case Intrinsic::ppc_vsx_lxvll: { 16372 EVT VT; 16373 switch (Intrinsic) { 16374 case Intrinsic::ppc_altivec_lvebx: 16375 VT = MVT::i8; 16376 break; 16377 case Intrinsic::ppc_altivec_lvehx: 16378 VT = MVT::i16; 16379 break; 16380 case Intrinsic::ppc_altivec_lvewx: 16381 VT = MVT::i32; 16382 break; 16383 case Intrinsic::ppc_vsx_lxvd2x: 16384 case Intrinsic::ppc_vsx_lxvd2x_be: 16385 VT = MVT::v2f64; 16386 break; 16387 default: 16388 VT = MVT::v4i32; 16389 break; 16390 } 16391 16392 Info.opc = ISD::INTRINSIC_W_CHAIN; 16393 Info.memVT = VT; 16394 Info.ptrVal = I.getArgOperand(0); 16395 Info.offset = -VT.getStoreSize()+1; 16396 Info.size = 2*VT.getStoreSize()-1; 16397 Info.align = Align(1); 16398 Info.flags = MachineMemOperand::MOLoad; 16399 return true; 16400 } 16401 case Intrinsic::ppc_altivec_stvx: 16402 case Intrinsic::ppc_altivec_stvxl: 16403 case Intrinsic::ppc_altivec_stvebx: 16404 case Intrinsic::ppc_altivec_stvehx: 16405 case Intrinsic::ppc_altivec_stvewx: 16406 case Intrinsic::ppc_vsx_stxvd2x: 16407 case Intrinsic::ppc_vsx_stxvw4x: 16408 case Intrinsic::ppc_vsx_stxvd2x_be: 16409 case Intrinsic::ppc_vsx_stxvw4x_be: 16410 case Intrinsic::ppc_vsx_stxvl: 16411 case Intrinsic::ppc_vsx_stxvll: { 16412 EVT VT; 16413 switch (Intrinsic) { 16414 case Intrinsic::ppc_altivec_stvebx: 16415 VT = MVT::i8; 16416 break; 16417 case Intrinsic::ppc_altivec_stvehx: 16418 VT = MVT::i16; 16419 break; 16420 case Intrinsic::ppc_altivec_stvewx: 16421 VT = MVT::i32; 16422 break; 16423 case Intrinsic::ppc_vsx_stxvd2x: 16424 case Intrinsic::ppc_vsx_stxvd2x_be: 16425 VT = MVT::v2f64; 16426 break; 16427 default: 16428 VT = MVT::v4i32; 16429 break; 16430 } 16431 16432 Info.opc = ISD::INTRINSIC_VOID; 16433 Info.memVT = VT; 16434 Info.ptrVal = I.getArgOperand(1); 16435 Info.offset = -VT.getStoreSize()+1; 16436 Info.size = 2*VT.getStoreSize()-1; 16437 Info.align = Align(1); 16438 Info.flags = MachineMemOperand::MOStore; 16439 return true; 16440 } 16441 default: 16442 break; 16443 } 16444 16445 return false; 16446 } 16447 16448 /// It returns EVT::Other if the type should be determined using generic 16449 /// target-independent logic. 16450 EVT PPCTargetLowering::getOptimalMemOpType( 16451 const MemOp &Op, const AttributeList &FuncAttributes) const { 16452 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16453 // We should use Altivec/VSX loads and stores when available. For unaligned 16454 // addresses, unaligned VSX loads are only fast starting with the P8. 16455 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16456 (Op.isAligned(Align(16)) || 16457 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16458 return MVT::v4i32; 16459 } 16460 16461 if (Subtarget.isPPC64()) { 16462 return MVT::i64; 16463 } 16464 16465 return MVT::i32; 16466 } 16467 16468 /// Returns true if it is beneficial to convert a load of a constant 16469 /// to just the constant itself. 16470 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16471 Type *Ty) const { 16472 assert(Ty->isIntegerTy()); 16473 16474 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16475 return !(BitSize == 0 || BitSize > 64); 16476 } 16477 16478 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16479 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16480 return false; 16481 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16482 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16483 return NumBits1 == 64 && NumBits2 == 32; 16484 } 16485 16486 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16487 if (!VT1.isInteger() || !VT2.isInteger()) 16488 return false; 16489 unsigned NumBits1 = VT1.getSizeInBits(); 16490 unsigned NumBits2 = VT2.getSizeInBits(); 16491 return NumBits1 == 64 && NumBits2 == 32; 16492 } 16493 16494 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16495 // Generally speaking, zexts are not free, but they are free when they can be 16496 // folded with other operations. 16497 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16498 EVT MemVT = LD->getMemoryVT(); 16499 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16500 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16501 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16502 LD->getExtensionType() == ISD::ZEXTLOAD)) 16503 return true; 16504 } 16505 16506 // FIXME: Add other cases... 16507 // - 32-bit shifts with a zext to i64 16508 // - zext after ctlz, bswap, etc. 16509 // - zext after and by a constant mask 16510 16511 return TargetLowering::isZExtFree(Val, VT2); 16512 } 16513 16514 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16515 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16516 "invalid fpext types"); 16517 // Extending to float128 is not free. 16518 if (DestVT == MVT::f128) 16519 return false; 16520 return true; 16521 } 16522 16523 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16524 return isInt<16>(Imm) || isUInt<16>(Imm); 16525 } 16526 16527 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16528 return isInt<16>(Imm) || isUInt<16>(Imm); 16529 } 16530 16531 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16532 MachineMemOperand::Flags, 16533 bool *Fast) const { 16534 if (DisablePPCUnaligned) 16535 return false; 16536 16537 // PowerPC supports unaligned memory access for simple non-vector types. 16538 // Although accessing unaligned addresses is not as efficient as accessing 16539 // aligned addresses, it is generally more efficient than manual expansion, 16540 // and generally only traps for software emulation when crossing page 16541 // boundaries. 16542 16543 if (!VT.isSimple()) 16544 return false; 16545 16546 if (VT.isFloatingPoint() && !VT.isVector() && 16547 !Subtarget.allowsUnalignedFPAccess()) 16548 return false; 16549 16550 if (VT.getSimpleVT().isVector()) { 16551 if (Subtarget.hasVSX()) { 16552 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16553 VT != MVT::v4f32 && VT != MVT::v4i32) 16554 return false; 16555 } else { 16556 return false; 16557 } 16558 } 16559 16560 if (VT == MVT::ppcf128) 16561 return false; 16562 16563 if (Fast) 16564 *Fast = true; 16565 16566 return true; 16567 } 16568 16569 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16570 SDValue C) const { 16571 // Check integral scalar types. 16572 if (!VT.isScalarInteger()) 16573 return false; 16574 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16575 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16576 return false; 16577 // This transformation will generate >= 2 operations. But the following 16578 // cases will generate <= 2 instructions during ISEL. So exclude them. 16579 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16580 // HW instruction, ie. MULLI 16581 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16582 // instruction is needed than case 1, ie. MULLI and RLDICR 16583 int64_t Imm = ConstNode->getSExtValue(); 16584 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16585 Imm >>= Shift; 16586 if (isInt<16>(Imm)) 16587 return false; 16588 uint64_t UImm = static_cast<uint64_t>(Imm); 16589 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16590 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16591 return true; 16592 } 16593 return false; 16594 } 16595 16596 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16597 EVT VT) const { 16598 return isFMAFasterThanFMulAndFAdd( 16599 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16600 } 16601 16602 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16603 Type *Ty) const { 16604 switch (Ty->getScalarType()->getTypeID()) { 16605 case Type::FloatTyID: 16606 case Type::DoubleTyID: 16607 return true; 16608 case Type::FP128TyID: 16609 return Subtarget.hasP9Vector(); 16610 default: 16611 return false; 16612 } 16613 } 16614 16615 // FIXME: add more patterns which are not profitable to hoist. 16616 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16617 if (!I->hasOneUse()) 16618 return true; 16619 16620 Instruction *User = I->user_back(); 16621 assert(User && "A single use instruction with no uses."); 16622 16623 switch (I->getOpcode()) { 16624 case Instruction::FMul: { 16625 // Don't break FMA, PowerPC prefers FMA. 16626 if (User->getOpcode() != Instruction::FSub && 16627 User->getOpcode() != Instruction::FAdd) 16628 return true; 16629 16630 const TargetOptions &Options = getTargetMachine().Options; 16631 const Function *F = I->getFunction(); 16632 const DataLayout &DL = F->getParent()->getDataLayout(); 16633 Type *Ty = User->getOperand(0)->getType(); 16634 16635 return !( 16636 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16637 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16638 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16639 } 16640 case Instruction::Load: { 16641 // Don't break "store (load float*)" pattern, this pattern will be combined 16642 // to "store (load int32)" in later InstCombine pass. See function 16643 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16644 // cycles than loading a 32 bit integer. 16645 LoadInst *LI = cast<LoadInst>(I); 16646 // For the loads that combineLoadToOperationType does nothing, like 16647 // ordered load, it should be profitable to hoist them. 16648 // For swifterror load, it can only be used for pointer to pointer type, so 16649 // later type check should get rid of this case. 16650 if (!LI->isUnordered()) 16651 return true; 16652 16653 if (User->getOpcode() != Instruction::Store) 16654 return true; 16655 16656 if (I->getType()->getTypeID() != Type::FloatTyID) 16657 return true; 16658 16659 return false; 16660 } 16661 default: 16662 return true; 16663 } 16664 return true; 16665 } 16666 16667 const MCPhysReg * 16668 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16669 // LR is a callee-save register, but we must treat it as clobbered by any call 16670 // site. Hence we include LR in the scratch registers, which are in turn added 16671 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16672 // to CTR, which is used by any indirect call. 16673 static const MCPhysReg ScratchRegs[] = { 16674 PPC::X12, PPC::LR8, PPC::CTR8, 0 16675 }; 16676 16677 return ScratchRegs; 16678 } 16679 16680 Register PPCTargetLowering::getExceptionPointerRegister( 16681 const Constant *PersonalityFn) const { 16682 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16683 } 16684 16685 Register PPCTargetLowering::getExceptionSelectorRegister( 16686 const Constant *PersonalityFn) const { 16687 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16688 } 16689 16690 bool 16691 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16692 EVT VT , unsigned DefinedValues) const { 16693 if (VT == MVT::v2i64) 16694 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16695 16696 if (Subtarget.hasVSX()) 16697 return true; 16698 16699 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16700 } 16701 16702 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16703 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16704 return TargetLowering::getSchedulingPreference(N); 16705 16706 return Sched::ILP; 16707 } 16708 16709 // Create a fast isel object. 16710 FastISel * 16711 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16712 const TargetLibraryInfo *LibInfo) const { 16713 return PPC::createFastISel(FuncInfo, LibInfo); 16714 } 16715 16716 // 'Inverted' means the FMA opcode after negating one multiplicand. 16717 // For example, (fma -a b c) = (fnmsub a b c) 16718 static unsigned invertFMAOpcode(unsigned Opc) { 16719 switch (Opc) { 16720 default: 16721 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16722 case ISD::FMA: 16723 return PPCISD::FNMSUB; 16724 case PPCISD::FNMSUB: 16725 return ISD::FMA; 16726 } 16727 } 16728 16729 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16730 bool LegalOps, bool OptForSize, 16731 NegatibleCost &Cost, 16732 unsigned Depth) const { 16733 if (Depth > SelectionDAG::MaxRecursionDepth) 16734 return SDValue(); 16735 16736 unsigned Opc = Op.getOpcode(); 16737 EVT VT = Op.getValueType(); 16738 SDNodeFlags Flags = Op.getNode()->getFlags(); 16739 16740 switch (Opc) { 16741 case PPCISD::FNMSUB: 16742 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16743 break; 16744 16745 const TargetOptions &Options = getTargetMachine().Options; 16746 SDValue N0 = Op.getOperand(0); 16747 SDValue N1 = Op.getOperand(1); 16748 SDValue N2 = Op.getOperand(2); 16749 SDLoc Loc(Op); 16750 16751 NegatibleCost N2Cost = NegatibleCost::Expensive; 16752 SDValue NegN2 = 16753 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16754 16755 if (!NegN2) 16756 return SDValue(); 16757 16758 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16759 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16760 // These transformations may change sign of zeroes. For example, 16761 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16762 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16763 // Try and choose the cheaper one to negate. 16764 NegatibleCost N0Cost = NegatibleCost::Expensive; 16765 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16766 N0Cost, Depth + 1); 16767 16768 NegatibleCost N1Cost = NegatibleCost::Expensive; 16769 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16770 N1Cost, Depth + 1); 16771 16772 if (NegN0 && N0Cost <= N1Cost) { 16773 Cost = std::min(N0Cost, N2Cost); 16774 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16775 } else if (NegN1) { 16776 Cost = std::min(N1Cost, N2Cost); 16777 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16778 } 16779 } 16780 16781 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16782 if (isOperationLegal(ISD::FMA, VT)) { 16783 Cost = N2Cost; 16784 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16785 } 16786 16787 break; 16788 } 16789 16790 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16791 Cost, Depth); 16792 } 16793 16794 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16795 bool PPCTargetLowering::useLoadStackGuardNode() const { 16796 if (!Subtarget.isTargetLinux()) 16797 return TargetLowering::useLoadStackGuardNode(); 16798 return true; 16799 } 16800 16801 // Override to disable global variable loading on Linux and insert AIX canary 16802 // word declaration. 16803 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16804 if (Subtarget.isAIXABI()) { 16805 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16806 Type::getInt8PtrTy(M.getContext())); 16807 return; 16808 } 16809 if (!Subtarget.isTargetLinux()) 16810 return TargetLowering::insertSSPDeclarations(M); 16811 } 16812 16813 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16814 if (Subtarget.isAIXABI()) 16815 return M.getGlobalVariable(AIXSSPCanaryWordName); 16816 return TargetLowering::getSDagStackGuard(M); 16817 } 16818 16819 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16820 bool ForCodeSize) const { 16821 if (!VT.isSimple() || !Subtarget.hasVSX()) 16822 return false; 16823 16824 switch(VT.getSimpleVT().SimpleTy) { 16825 default: 16826 // For FP types that are currently not supported by PPC backend, return 16827 // false. Examples: f16, f80. 16828 return false; 16829 case MVT::f32: 16830 case MVT::f64: 16831 if (Subtarget.hasPrefixInstrs()) { 16832 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16833 return true; 16834 } 16835 LLVM_FALLTHROUGH; 16836 case MVT::ppcf128: 16837 return Imm.isPosZero(); 16838 } 16839 } 16840 16841 // For vector shift operation op, fold 16842 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16843 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16844 SelectionDAG &DAG) { 16845 SDValue N0 = N->getOperand(0); 16846 SDValue N1 = N->getOperand(1); 16847 EVT VT = N0.getValueType(); 16848 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16849 unsigned Opcode = N->getOpcode(); 16850 unsigned TargetOpcode; 16851 16852 switch (Opcode) { 16853 default: 16854 llvm_unreachable("Unexpected shift operation"); 16855 case ISD::SHL: 16856 TargetOpcode = PPCISD::SHL; 16857 break; 16858 case ISD::SRL: 16859 TargetOpcode = PPCISD::SRL; 16860 break; 16861 case ISD::SRA: 16862 TargetOpcode = PPCISD::SRA; 16863 break; 16864 } 16865 16866 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16867 N1->getOpcode() == ISD::AND) 16868 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16869 if (Mask->getZExtValue() == OpSizeInBits - 1) 16870 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16871 16872 return SDValue(); 16873 } 16874 16875 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16876 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16877 return Value; 16878 16879 SDValue N0 = N->getOperand(0); 16880 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16881 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16882 N0.getOpcode() != ISD::SIGN_EXTEND || 16883 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16884 N->getValueType(0) != MVT::i64) 16885 return SDValue(); 16886 16887 // We can't save an operation here if the value is already extended, and 16888 // the existing shift is easier to combine. 16889 SDValue ExtsSrc = N0.getOperand(0); 16890 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16891 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16892 return SDValue(); 16893 16894 SDLoc DL(N0); 16895 SDValue ShiftBy = SDValue(CN1, 0); 16896 // We want the shift amount to be i32 on the extswli, but the shift could 16897 // have an i64. 16898 if (ShiftBy.getValueType() == MVT::i64) 16899 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16900 16901 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16902 ShiftBy); 16903 } 16904 16905 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16906 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16907 return Value; 16908 16909 return SDValue(); 16910 } 16911 16912 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16913 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16914 return Value; 16915 16916 return SDValue(); 16917 } 16918 16919 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16920 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16921 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16922 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16923 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16924 const PPCSubtarget &Subtarget) { 16925 if (!Subtarget.isPPC64()) 16926 return SDValue(); 16927 16928 SDValue LHS = N->getOperand(0); 16929 SDValue RHS = N->getOperand(1); 16930 16931 auto isZextOfCompareWithConstant = [](SDValue Op) { 16932 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16933 Op.getValueType() != MVT::i64) 16934 return false; 16935 16936 SDValue Cmp = Op.getOperand(0); 16937 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16938 Cmp.getOperand(0).getValueType() != MVT::i64) 16939 return false; 16940 16941 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16942 int64_t NegConstant = 0 - Constant->getSExtValue(); 16943 // Due to the limitations of the addi instruction, 16944 // -C is required to be [-32768, 32767]. 16945 return isInt<16>(NegConstant); 16946 } 16947 16948 return false; 16949 }; 16950 16951 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16952 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16953 16954 // If there is a pattern, canonicalize a zext operand to the RHS. 16955 if (LHSHasPattern && !RHSHasPattern) 16956 std::swap(LHS, RHS); 16957 else if (!LHSHasPattern && !RHSHasPattern) 16958 return SDValue(); 16959 16960 SDLoc DL(N); 16961 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16962 SDValue Cmp = RHS.getOperand(0); 16963 SDValue Z = Cmp.getOperand(0); 16964 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16965 int64_t NegConstant = 0 - Constant->getSExtValue(); 16966 16967 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16968 default: break; 16969 case ISD::SETNE: { 16970 // when C == 0 16971 // --> addze X, (addic Z, -1).carry 16972 // / 16973 // add X, (zext(setne Z, C))-- 16974 // \ when -32768 <= -C <= 32767 && C != 0 16975 // --> addze X, (addic (addi Z, -C), -1).carry 16976 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16977 DAG.getConstant(NegConstant, DL, MVT::i64)); 16978 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16979 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16980 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16981 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16982 SDValue(Addc.getNode(), 1)); 16983 } 16984 case ISD::SETEQ: { 16985 // when C == 0 16986 // --> addze X, (subfic Z, 0).carry 16987 // / 16988 // add X, (zext(sete Z, C))-- 16989 // \ when -32768 <= -C <= 32767 && C != 0 16990 // --> addze X, (subfic (addi Z, -C), 0).carry 16991 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16992 DAG.getConstant(NegConstant, DL, MVT::i64)); 16993 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16994 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16995 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16996 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16997 SDValue(Subc.getNode(), 1)); 16998 } 16999 } 17000 17001 return SDValue(); 17002 } 17003 17004 // Transform 17005 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17006 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17007 // In this case both C1 and C2 must be known constants. 17008 // C1+C2 must fit into a 34 bit signed integer. 17009 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17010 const PPCSubtarget &Subtarget) { 17011 if (!Subtarget.isUsingPCRelativeCalls()) 17012 return SDValue(); 17013 17014 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17015 // If we find that node try to cast the Global Address and the Constant. 17016 SDValue LHS = N->getOperand(0); 17017 SDValue RHS = N->getOperand(1); 17018 17019 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17020 std::swap(LHS, RHS); 17021 17022 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17023 return SDValue(); 17024 17025 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17026 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17027 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17028 17029 // Check that both casts succeeded. 17030 if (!GSDN || !ConstNode) 17031 return SDValue(); 17032 17033 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17034 SDLoc DL(GSDN); 17035 17036 // The signed int offset needs to fit in 34 bits. 17037 if (!isInt<34>(NewOffset)) 17038 return SDValue(); 17039 17040 // The new global address is a copy of the old global address except 17041 // that it has the updated Offset. 17042 SDValue GA = 17043 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17044 NewOffset, GSDN->getTargetFlags()); 17045 SDValue MatPCRel = 17046 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17047 return MatPCRel; 17048 } 17049 17050 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17051 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17052 return Value; 17053 17054 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17055 return Value; 17056 17057 return SDValue(); 17058 } 17059 17060 // Detect TRUNCATE operations on bitcasts of float128 values. 17061 // What we are looking for here is the situtation where we extract a subset 17062 // of bits from a 128 bit float. 17063 // This can be of two forms: 17064 // 1) BITCAST of f128 feeding TRUNCATE 17065 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17066 // The reason this is required is because we do not have a legal i128 type 17067 // and so we want to prevent having to store the f128 and then reload part 17068 // of it. 17069 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17070 DAGCombinerInfo &DCI) const { 17071 // If we are using CRBits then try that first. 17072 if (Subtarget.useCRBits()) { 17073 // Check if CRBits did anything and return that if it did. 17074 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17075 return CRTruncValue; 17076 } 17077 17078 SDLoc dl(N); 17079 SDValue Op0 = N->getOperand(0); 17080 17081 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17082 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17083 EVT VT = N->getValueType(0); 17084 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17085 return SDValue(); 17086 SDValue Sub = Op0.getOperand(0); 17087 if (Sub.getOpcode() == ISD::SUB) { 17088 SDValue SubOp0 = Sub.getOperand(0); 17089 SDValue SubOp1 = Sub.getOperand(1); 17090 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17091 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17092 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17093 SubOp1.getOperand(0), 17094 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17095 } 17096 } 17097 } 17098 17099 // Looking for a truncate of i128 to i64. 17100 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17101 return SDValue(); 17102 17103 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17104 17105 // SRL feeding TRUNCATE. 17106 if (Op0.getOpcode() == ISD::SRL) { 17107 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17108 // The right shift has to be by 64 bits. 17109 if (!ConstNode || ConstNode->getZExtValue() != 64) 17110 return SDValue(); 17111 17112 // Switch the element number to extract. 17113 EltToExtract = EltToExtract ? 0 : 1; 17114 // Update Op0 past the SRL. 17115 Op0 = Op0.getOperand(0); 17116 } 17117 17118 // BITCAST feeding a TRUNCATE possibly via SRL. 17119 if (Op0.getOpcode() == ISD::BITCAST && 17120 Op0.getValueType() == MVT::i128 && 17121 Op0.getOperand(0).getValueType() == MVT::f128) { 17122 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17123 return DCI.DAG.getNode( 17124 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17125 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17126 } 17127 return SDValue(); 17128 } 17129 17130 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17131 SelectionDAG &DAG = DCI.DAG; 17132 17133 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17134 if (!ConstOpOrElement) 17135 return SDValue(); 17136 17137 // An imul is usually smaller than the alternative sequence for legal type. 17138 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17139 isOperationLegal(ISD::MUL, N->getValueType(0))) 17140 return SDValue(); 17141 17142 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17143 switch (this->Subtarget.getCPUDirective()) { 17144 default: 17145 // TODO: enhance the condition for subtarget before pwr8 17146 return false; 17147 case PPC::DIR_PWR8: 17148 // type mul add shl 17149 // scalar 4 1 1 17150 // vector 7 2 2 17151 return true; 17152 case PPC::DIR_PWR9: 17153 case PPC::DIR_PWR10: 17154 case PPC::DIR_PWR_FUTURE: 17155 // type mul add shl 17156 // scalar 5 2 2 17157 // vector 7 2 2 17158 17159 // The cycle RATIO of related operations are showed as a table above. 17160 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17161 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17162 // are 4, it is always profitable; but for 3 instrs patterns 17163 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17164 // So we should only do it for vector type. 17165 return IsAddOne && IsNeg ? VT.isVector() : true; 17166 } 17167 }; 17168 17169 EVT VT = N->getValueType(0); 17170 SDLoc DL(N); 17171 17172 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17173 bool IsNeg = MulAmt.isNegative(); 17174 APInt MulAmtAbs = MulAmt.abs(); 17175 17176 if ((MulAmtAbs - 1).isPowerOf2()) { 17177 // (mul x, 2^N + 1) => (add (shl x, N), x) 17178 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17179 17180 if (!IsProfitable(IsNeg, true, VT)) 17181 return SDValue(); 17182 17183 SDValue Op0 = N->getOperand(0); 17184 SDValue Op1 = 17185 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17186 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17187 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17188 17189 if (!IsNeg) 17190 return Res; 17191 17192 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17193 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17194 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17195 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17196 17197 if (!IsProfitable(IsNeg, false, VT)) 17198 return SDValue(); 17199 17200 SDValue Op0 = N->getOperand(0); 17201 SDValue Op1 = 17202 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17203 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17204 17205 if (!IsNeg) 17206 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17207 else 17208 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17209 17210 } else { 17211 return SDValue(); 17212 } 17213 } 17214 17215 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17216 // in combiner since we need to check SD flags and other subtarget features. 17217 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17218 DAGCombinerInfo &DCI) const { 17219 SDValue N0 = N->getOperand(0); 17220 SDValue N1 = N->getOperand(1); 17221 SDValue N2 = N->getOperand(2); 17222 SDNodeFlags Flags = N->getFlags(); 17223 EVT VT = N->getValueType(0); 17224 SelectionDAG &DAG = DCI.DAG; 17225 const TargetOptions &Options = getTargetMachine().Options; 17226 unsigned Opc = N->getOpcode(); 17227 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17228 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17229 SDLoc Loc(N); 17230 17231 if (!isOperationLegal(ISD::FMA, VT)) 17232 return SDValue(); 17233 17234 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17235 // since (fnmsub a b c)=-0 while c-ab=+0. 17236 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17237 return SDValue(); 17238 17239 // (fma (fneg a) b c) => (fnmsub a b c) 17240 // (fnmsub (fneg a) b c) => (fma a b c) 17241 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17242 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17243 17244 // (fma a (fneg b) c) => (fnmsub a b c) 17245 // (fnmsub a (fneg b) c) => (fma a b c) 17246 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17247 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17248 17249 return SDValue(); 17250 } 17251 17252 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17253 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17254 if (!Subtarget.is64BitELFABI()) 17255 return false; 17256 17257 // If not a tail call then no need to proceed. 17258 if (!CI->isTailCall()) 17259 return false; 17260 17261 // If sibling calls have been disabled and tail-calls aren't guaranteed 17262 // there is no reason to duplicate. 17263 auto &TM = getTargetMachine(); 17264 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17265 return false; 17266 17267 // Can't tail call a function called indirectly, or if it has variadic args. 17268 const Function *Callee = CI->getCalledFunction(); 17269 if (!Callee || Callee->isVarArg()) 17270 return false; 17271 17272 // Make sure the callee and caller calling conventions are eligible for tco. 17273 const Function *Caller = CI->getParent()->getParent(); 17274 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17275 CI->getCallingConv())) 17276 return false; 17277 17278 // If the function is local then we have a good chance at tail-calling it 17279 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17280 } 17281 17282 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17283 if (!Subtarget.hasVSX()) 17284 return false; 17285 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17286 return true; 17287 return VT == MVT::f32 || VT == MVT::f64 || 17288 VT == MVT::v4f32 || VT == MVT::v2f64; 17289 } 17290 17291 bool PPCTargetLowering:: 17292 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17293 const Value *Mask = AndI.getOperand(1); 17294 // If the mask is suitable for andi. or andis. we should sink the and. 17295 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17296 // Can't handle constants wider than 64-bits. 17297 if (CI->getBitWidth() > 64) 17298 return false; 17299 int64_t ConstVal = CI->getZExtValue(); 17300 return isUInt<16>(ConstVal) || 17301 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17302 } 17303 17304 // For non-constant masks, we can always use the record-form and. 17305 return true; 17306 } 17307 17308 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17309 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17310 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17311 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17312 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17313 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17314 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17315 assert(Subtarget.hasP9Altivec() && 17316 "Only combine this when P9 altivec supported!"); 17317 EVT VT = N->getValueType(0); 17318 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17319 return SDValue(); 17320 17321 SelectionDAG &DAG = DCI.DAG; 17322 SDLoc dl(N); 17323 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17324 // Even for signed integers, if it's known to be positive (as signed 17325 // integer) due to zero-extended inputs. 17326 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17327 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17328 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17329 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17330 (SubOpcd1 == ISD::ZERO_EXTEND || 17331 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17332 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17333 N->getOperand(0)->getOperand(0), 17334 N->getOperand(0)->getOperand(1), 17335 DAG.getTargetConstant(0, dl, MVT::i32)); 17336 } 17337 17338 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17339 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17340 N->getOperand(0).hasOneUse()) { 17341 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17342 N->getOperand(0)->getOperand(0), 17343 N->getOperand(0)->getOperand(1), 17344 DAG.getTargetConstant(1, dl, MVT::i32)); 17345 } 17346 } 17347 17348 return SDValue(); 17349 } 17350 17351 // For type v4i32/v8ii16/v16i8, transform 17352 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17353 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17354 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17355 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17356 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17357 DAGCombinerInfo &DCI) const { 17358 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17359 assert(Subtarget.hasP9Altivec() && 17360 "Only combine this when P9 altivec supported!"); 17361 17362 SelectionDAG &DAG = DCI.DAG; 17363 SDLoc dl(N); 17364 SDValue Cond = N->getOperand(0); 17365 SDValue TrueOpnd = N->getOperand(1); 17366 SDValue FalseOpnd = N->getOperand(2); 17367 EVT VT = N->getOperand(1).getValueType(); 17368 17369 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17370 FalseOpnd.getOpcode() != ISD::SUB) 17371 return SDValue(); 17372 17373 // ABSD only available for type v4i32/v8i16/v16i8 17374 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17375 return SDValue(); 17376 17377 // At least to save one more dependent computation 17378 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17379 return SDValue(); 17380 17381 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17382 17383 // Can only handle unsigned comparison here 17384 switch (CC) { 17385 default: 17386 return SDValue(); 17387 case ISD::SETUGT: 17388 case ISD::SETUGE: 17389 break; 17390 case ISD::SETULT: 17391 case ISD::SETULE: 17392 std::swap(TrueOpnd, FalseOpnd); 17393 break; 17394 } 17395 17396 SDValue CmpOpnd1 = Cond.getOperand(0); 17397 SDValue CmpOpnd2 = Cond.getOperand(1); 17398 17399 // SETCC CmpOpnd1 CmpOpnd2 cond 17400 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17401 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17402 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17403 TrueOpnd.getOperand(1) == CmpOpnd2 && 17404 FalseOpnd.getOperand(0) == CmpOpnd2 && 17405 FalseOpnd.getOperand(1) == CmpOpnd1) { 17406 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17407 CmpOpnd1, CmpOpnd2, 17408 DAG.getTargetConstant(0, dl, MVT::i32)); 17409 } 17410 17411 return SDValue(); 17412 } 17413 17414 /// getAddrModeForFlags - Based on the set of address flags, select the most 17415 /// optimal instruction format to match by. 17416 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17417 // This is not a node we should be handling here. 17418 if (Flags == PPC::MOF_None) 17419 return PPC::AM_None; 17420 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17421 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17422 if ((Flags & FlagSet) == FlagSet) 17423 return PPC::AM_DForm; 17424 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17425 if ((Flags & FlagSet) == FlagSet) 17426 return PPC::AM_DSForm; 17427 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17428 if ((Flags & FlagSet) == FlagSet) 17429 return PPC::AM_DQForm; 17430 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17431 if ((Flags & FlagSet) == FlagSet) 17432 return PPC::AM_PrefixDForm; 17433 // If no other forms are selected, return an X-Form as it is the most 17434 // general addressing mode. 17435 return PPC::AM_XForm; 17436 } 17437 17438 /// Set alignment flags based on whether or not the Frame Index is aligned. 17439 /// Utilized when computing flags for address computation when selecting 17440 /// load and store instructions. 17441 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17442 SelectionDAG &DAG) { 17443 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17444 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17445 if (!FI) 17446 return; 17447 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17448 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17449 // If this is (add $FI, $S16Imm), the alignment flags are already set 17450 // based on the immediate. We just need to clear the alignment flags 17451 // if the FI alignment is weaker. 17452 if ((FrameIndexAlign % 4) != 0) 17453 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17454 if ((FrameIndexAlign % 16) != 0) 17455 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17456 // If the address is a plain FrameIndex, set alignment flags based on 17457 // FI alignment. 17458 if (!IsAdd) { 17459 if ((FrameIndexAlign % 4) == 0) 17460 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17461 if ((FrameIndexAlign % 16) == 0) 17462 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17463 } 17464 } 17465 17466 /// Given a node, compute flags that are used for address computation when 17467 /// selecting load and store instructions. The flags computed are stored in 17468 /// FlagSet. This function takes into account whether the node is a constant, 17469 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17470 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17471 SelectionDAG &DAG) { 17472 // Set the alignment flags for the node depending on if the node is 17473 // 4-byte or 16-byte aligned. 17474 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17475 if ((Imm & 0x3) == 0) 17476 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17477 if ((Imm & 0xf) == 0) 17478 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17479 }; 17480 17481 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17482 // All 32-bit constants can be computed as LIS + Disp. 17483 const APInt &ConstImm = CN->getAPIntValue(); 17484 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17485 FlagSet |= PPC::MOF_AddrIsSImm32; 17486 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17487 setAlignFlagsForFI(N, FlagSet, DAG); 17488 } 17489 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17490 FlagSet |= PPC::MOF_RPlusSImm34; 17491 else // Let constant materialization handle large constants. 17492 FlagSet |= PPC::MOF_NotAddNorCst; 17493 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17494 // This address can be represented as an addition of: 17495 // - Register + Imm16 (possibly a multiple of 4/16) 17496 // - Register + Imm34 17497 // - Register + PPCISD::Lo 17498 // - Register + Register 17499 // In any case, we won't have to match this as Base + Zero. 17500 SDValue RHS = N.getOperand(1); 17501 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17502 const APInt &ConstImm = CN->getAPIntValue(); 17503 if (ConstImm.isSignedIntN(16)) { 17504 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17505 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17506 setAlignFlagsForFI(N, FlagSet, DAG); 17507 } 17508 if (ConstImm.isSignedIntN(34)) 17509 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17510 else 17511 FlagSet |= PPC::MOF_RPlusR; // Register. 17512 } else if (RHS.getOpcode() == PPCISD::Lo && 17513 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17514 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17515 else 17516 FlagSet |= PPC::MOF_RPlusR; 17517 } else { // The address computation is not a constant or an addition. 17518 setAlignFlagsForFI(N, FlagSet, DAG); 17519 FlagSet |= PPC::MOF_NotAddNorCst; 17520 } 17521 } 17522 17523 static bool isPCRelNode(SDValue N) { 17524 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17525 isValidPCRelNode<ConstantPoolSDNode>(N) || 17526 isValidPCRelNode<GlobalAddressSDNode>(N) || 17527 isValidPCRelNode<JumpTableSDNode>(N) || 17528 isValidPCRelNode<BlockAddressSDNode>(N)); 17529 } 17530 17531 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17532 /// the address flags of the load/store instruction that is to be matched. 17533 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17534 SelectionDAG &DAG) const { 17535 unsigned FlagSet = PPC::MOF_None; 17536 17537 // Compute subtarget flags. 17538 if (!Subtarget.hasP9Vector()) 17539 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17540 else { 17541 FlagSet |= PPC::MOF_SubtargetP9; 17542 if (Subtarget.hasPrefixInstrs()) 17543 FlagSet |= PPC::MOF_SubtargetP10; 17544 } 17545 if (Subtarget.hasSPE()) 17546 FlagSet |= PPC::MOF_SubtargetSPE; 17547 17548 // Check if we have a PCRel node and return early. 17549 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17550 return FlagSet; 17551 17552 // If the node is the paired load/store intrinsics, compute flags for 17553 // address computation and return early. 17554 unsigned ParentOp = Parent->getOpcode(); 17555 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17556 (ParentOp == ISD::INTRINSIC_VOID))) { 17557 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17558 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17559 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17560 ? Parent->getOperand(2) 17561 : Parent->getOperand(3); 17562 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17563 FlagSet |= PPC::MOF_Vector; 17564 return FlagSet; 17565 } 17566 } 17567 17568 // Mark this as something we don't want to handle here if it is atomic 17569 // or pre-increment instruction. 17570 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17571 if (LSB->isIndexed()) 17572 return PPC::MOF_None; 17573 17574 // Compute in-memory type flags. This is based on if there are scalars, 17575 // floats or vectors. 17576 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17577 assert(MN && "Parent should be a MemSDNode!"); 17578 EVT MemVT = MN->getMemoryVT(); 17579 unsigned Size = MemVT.getSizeInBits(); 17580 if (MemVT.isScalarInteger()) { 17581 assert(Size <= 128 && 17582 "Not expecting scalar integers larger than 16 bytes!"); 17583 if (Size < 32) 17584 FlagSet |= PPC::MOF_SubWordInt; 17585 else if (Size == 32) 17586 FlagSet |= PPC::MOF_WordInt; 17587 else 17588 FlagSet |= PPC::MOF_DoubleWordInt; 17589 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17590 if (Size == 128) 17591 FlagSet |= PPC::MOF_Vector; 17592 else if (Size == 256) { 17593 assert(Subtarget.pairedVectorMemops() && 17594 "256-bit vectors are only available when paired vector memops is " 17595 "enabled!"); 17596 FlagSet |= PPC::MOF_Vector; 17597 } else 17598 llvm_unreachable("Not expecting illegal vectors!"); 17599 } else { // Floating point type: can be scalar, f128 or vector types. 17600 if (Size == 32 || Size == 64) 17601 FlagSet |= PPC::MOF_ScalarFloat; 17602 else if (MemVT == MVT::f128 || MemVT.isVector()) 17603 FlagSet |= PPC::MOF_Vector; 17604 else 17605 llvm_unreachable("Not expecting illegal scalar floats!"); 17606 } 17607 17608 // Compute flags for address computation. 17609 computeFlagsForAddressComputation(N, FlagSet, DAG); 17610 17611 // Compute type extension flags. 17612 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17613 switch (LN->getExtensionType()) { 17614 case ISD::SEXTLOAD: 17615 FlagSet |= PPC::MOF_SExt; 17616 break; 17617 case ISD::EXTLOAD: 17618 case ISD::ZEXTLOAD: 17619 FlagSet |= PPC::MOF_ZExt; 17620 break; 17621 case ISD::NON_EXTLOAD: 17622 FlagSet |= PPC::MOF_NoExt; 17623 break; 17624 } 17625 } else 17626 FlagSet |= PPC::MOF_NoExt; 17627 17628 // For integers, no extension is the same as zero extension. 17629 // We set the extension mode to zero extension so we don't have 17630 // to add separate entries in AddrModesMap for loads and stores. 17631 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17632 FlagSet |= PPC::MOF_ZExt; 17633 FlagSet &= ~PPC::MOF_NoExt; 17634 } 17635 17636 // If we don't have prefixed instructions, 34-bit constants should be 17637 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17638 bool IsNonP1034BitConst = 17639 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17640 FlagSet) == PPC::MOF_RPlusSImm34; 17641 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17642 IsNonP1034BitConst) 17643 FlagSet |= PPC::MOF_NotAddNorCst; 17644 17645 return FlagSet; 17646 } 17647 17648 /// SelectForceXFormMode - Given the specified address, force it to be 17649 /// represented as an indexed [r+r] operation (an XForm instruction). 17650 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17651 SDValue &Base, 17652 SelectionDAG &DAG) const { 17653 17654 PPC::AddrMode Mode = PPC::AM_XForm; 17655 int16_t ForceXFormImm = 0; 17656 if (provablyDisjointOr(DAG, N) && 17657 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17658 Disp = N.getOperand(0); 17659 Base = N.getOperand(1); 17660 return Mode; 17661 } 17662 17663 // If the address is the result of an add, we will utilize the fact that the 17664 // address calculation includes an implicit add. However, we can reduce 17665 // register pressure if we do not materialize a constant just for use as the 17666 // index register. We only get rid of the add if it is not an add of a 17667 // value and a 16-bit signed constant and both have a single use. 17668 if (N.getOpcode() == ISD::ADD && 17669 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17670 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17671 Disp = N.getOperand(0); 17672 Base = N.getOperand(1); 17673 return Mode; 17674 } 17675 17676 // Otherwise, use R0 as the base register. 17677 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17678 N.getValueType()); 17679 Base = N; 17680 17681 return Mode; 17682 } 17683 17684 bool PPCTargetLowering::splitValueIntoRegisterParts( 17685 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17686 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17687 EVT ValVT = Val.getValueType(); 17688 // If we are splitting a scalar integer into f64 parts (i.e. so they 17689 // can be placed into VFRC registers), we need to zero extend and 17690 // bitcast the values. This will ensure the value is placed into a 17691 // VSR using direct moves or stack operations as needed. 17692 if (PartVT == MVT::f64 && 17693 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17694 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17695 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17696 Parts[0] = Val; 17697 return true; 17698 } 17699 return false; 17700 } 17701 17702 // If we happen to match to an aligned D-Form, check if the Frame Index is 17703 // adequately aligned. If it is not, reset the mode to match to X-Form. 17704 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17705 PPC::AddrMode &Mode) { 17706 if (!isa<FrameIndexSDNode>(N)) 17707 return; 17708 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17709 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17710 Mode = PPC::AM_XForm; 17711 } 17712 17713 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17714 /// compute the address flags of the node, get the optimal address mode based 17715 /// on the flags, and set the Base and Disp based on the address mode. 17716 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17717 SDValue N, SDValue &Disp, 17718 SDValue &Base, 17719 SelectionDAG &DAG, 17720 MaybeAlign Align) const { 17721 SDLoc DL(Parent); 17722 17723 // Compute the address flags. 17724 unsigned Flags = computeMOFlags(Parent, N, DAG); 17725 17726 // Get the optimal address mode based on the Flags. 17727 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17728 17729 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17730 // Select an X-Form load if it is not. 17731 setXFormForUnalignedFI(N, Flags, Mode); 17732 17733 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17734 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17735 assert(Subtarget.isUsingPCRelativeCalls() && 17736 "Must be using PC-Relative calls when a valid PC-Relative node is " 17737 "present!"); 17738 Mode = PPC::AM_PCRel; 17739 } 17740 17741 // Set Base and Disp accordingly depending on the address mode. 17742 switch (Mode) { 17743 case PPC::AM_DForm: 17744 case PPC::AM_DSForm: 17745 case PPC::AM_DQForm: { 17746 // This is a register plus a 16-bit immediate. The base will be the 17747 // register and the displacement will be the immediate unless it 17748 // isn't sufficiently aligned. 17749 if (Flags & PPC::MOF_RPlusSImm16) { 17750 SDValue Op0 = N.getOperand(0); 17751 SDValue Op1 = N.getOperand(1); 17752 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17753 if (!Align || isAligned(*Align, Imm)) { 17754 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17755 Base = Op0; 17756 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17757 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17758 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17759 } 17760 break; 17761 } 17762 } 17763 // This is a register plus the @lo relocation. The base is the register 17764 // and the displacement is the global address. 17765 else if (Flags & PPC::MOF_RPlusLo) { 17766 Disp = N.getOperand(1).getOperand(0); // The global address. 17767 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17768 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17769 Disp.getOpcode() == ISD::TargetConstantPool || 17770 Disp.getOpcode() == ISD::TargetJumpTable); 17771 Base = N.getOperand(0); 17772 break; 17773 } 17774 // This is a constant address at most 32 bits. The base will be 17775 // zero or load-immediate-shifted and the displacement will be 17776 // the low 16 bits of the address. 17777 else if (Flags & PPC::MOF_AddrIsSImm32) { 17778 auto *CN = cast<ConstantSDNode>(N); 17779 EVT CNType = CN->getValueType(0); 17780 uint64_t CNImm = CN->getZExtValue(); 17781 // If this address fits entirely in a 16-bit sext immediate field, codegen 17782 // this as "d, 0". 17783 int16_t Imm; 17784 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17785 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17786 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17787 CNType); 17788 break; 17789 } 17790 // Handle 32-bit sext immediate with LIS + Addr mode. 17791 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17792 (!Align || isAligned(*Align, CNImm))) { 17793 int32_t Addr = (int32_t)CNImm; 17794 // Otherwise, break this down into LIS + Disp. 17795 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17796 Base = 17797 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17798 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17799 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17800 break; 17801 } 17802 } 17803 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17804 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17805 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17806 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17807 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17808 } else 17809 Base = N; 17810 break; 17811 } 17812 case PPC::AM_PrefixDForm: { 17813 int64_t Imm34 = 0; 17814 unsigned Opcode = N.getOpcode(); 17815 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17816 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17817 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17818 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17819 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17820 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17821 else 17822 Base = N.getOperand(0); 17823 } else if (isIntS34Immediate(N, Imm34)) { 17824 // The address is a 34-bit signed immediate. 17825 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17826 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 17827 } 17828 break; 17829 } 17830 case PPC::AM_PCRel: { 17831 // When selecting PC-Relative instructions, "Base" is not utilized as 17832 // we select the address as [PC+imm]. 17833 Disp = N; 17834 break; 17835 } 17836 case PPC::AM_None: 17837 break; 17838 default: { // By default, X-Form is always available to be selected. 17839 // When a frame index is not aligned, we also match by XForm. 17840 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17841 Base = FI ? N : N.getOperand(1); 17842 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17843 N.getValueType()) 17844 : N.getOperand(0); 17845 break; 17846 } 17847 } 17848 return Mode; 17849 } 17850 17851 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17852 bool Return, 17853 bool IsVarArg) const { 17854 switch (CC) { 17855 case CallingConv::Cold: 17856 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17857 default: 17858 return CC_PPC64_ELF_FIS; 17859 } 17860 } 17861 17862 TargetLowering::AtomicExpansionKind 17863 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 17864 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 17865 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17866 return AtomicExpansionKind::MaskedIntrinsic; 17867 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 17868 } 17869 17870 TargetLowering::AtomicExpansionKind 17871 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 17872 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 17873 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17874 return AtomicExpansionKind::MaskedIntrinsic; 17875 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 17876 } 17877 17878 static Intrinsic::ID 17879 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 17880 switch (BinOp) { 17881 default: 17882 llvm_unreachable("Unexpected AtomicRMW BinOp"); 17883 case AtomicRMWInst::Xchg: 17884 return Intrinsic::ppc_atomicrmw_xchg_i128; 17885 case AtomicRMWInst::Add: 17886 return Intrinsic::ppc_atomicrmw_add_i128; 17887 case AtomicRMWInst::Sub: 17888 return Intrinsic::ppc_atomicrmw_sub_i128; 17889 case AtomicRMWInst::And: 17890 return Intrinsic::ppc_atomicrmw_and_i128; 17891 case AtomicRMWInst::Or: 17892 return Intrinsic::ppc_atomicrmw_or_i128; 17893 case AtomicRMWInst::Xor: 17894 return Intrinsic::ppc_atomicrmw_xor_i128; 17895 case AtomicRMWInst::Nand: 17896 return Intrinsic::ppc_atomicrmw_nand_i128; 17897 } 17898 } 17899 17900 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 17901 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 17902 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 17903 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17904 "Only support quadword now"); 17905 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17906 Type *ValTy = AlignedAddr->getType()->getPointerElementType(); 17907 assert(ValTy->getPrimitiveSizeInBits() == 128); 17908 Function *RMW = Intrinsic::getDeclaration( 17909 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 17910 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17911 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 17912 Value *IncrHi = 17913 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 17914 Value *Addr = 17915 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17916 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 17917 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17918 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17919 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17920 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17921 return Builder.CreateOr( 17922 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17923 } 17924 17925 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 17926 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 17927 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 17928 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17929 "Only support quadword now"); 17930 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17931 Type *ValTy = AlignedAddr->getType()->getPointerElementType(); 17932 assert(ValTy->getPrimitiveSizeInBits() == 128); 17933 Function *IntCmpXchg = 17934 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 17935 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17936 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 17937 Value *CmpHi = 17938 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 17939 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 17940 Value *NewHi = 17941 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 17942 Value *Addr = 17943 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17944 emitLeadingFence(Builder, CI, Ord); 17945 Value *LoHi = 17946 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 17947 emitTrailingFence(Builder, CI, Ord); 17948 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17949 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17950 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17951 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17952 return Builder.CreateOr( 17953 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17954 } 17955