1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCPerfectShuffle.h" 20 #include "PPCTargetMachine.h" 21 #include "PPCTargetObjectFile.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "ppc-lowering" 50 51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 53 54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 59 60 static cl::opt<bool> DisableSCO("disable-ppc-sco", 61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 62 63 STATISTIC(NumTailCalls, "Number of tail calls"); 64 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 65 66 // FIXME: Remove this once the bug has been fixed! 67 extern cl::opt<bool> ANDIGlueBug; 68 69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 70 const PPCSubtarget &STI) 71 : TargetLowering(TM), Subtarget(STI) { 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 bool isPPC64 = Subtarget.isPPC64(); 79 setMinStackArgumentAlignment(isPPC64 ? 8:4); 80 81 // Set up the register classes. 82 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 83 if (!useSoftFloat()) { 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 } 87 88 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 89 for (MVT VT : MVT::integer_valuetypes()) { 90 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 92 } 93 94 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 95 96 // PowerPC has pre-inc load and store's. 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 102 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 103 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 104 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 105 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 106 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 107 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 108 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 109 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 110 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 111 112 if (Subtarget.useCRBits()) { 113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 114 115 if (isPPC64 || Subtarget.hasFPCVT()) { 116 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 117 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 118 isPPC64 ? MVT::i64 : MVT::i32); 119 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 120 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 121 isPPC64 ? MVT::i64 : MVT::i32); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 124 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 125 } 126 127 // PowerPC does not support direct load / store of condition registers 128 setOperationAction(ISD::LOAD, MVT::i1, Custom); 129 setOperationAction(ISD::STORE, MVT::i1, Custom); 130 131 // FIXME: Remove this once the ANDI glue bug is fixed: 132 if (ANDIGlueBug) 133 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 134 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setTruncStoreAction(VT, MVT::i1, Expand); 139 } 140 141 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 142 } 143 144 // This is used in the ppcf128->int sequence. Note it has different semantics 145 // from FP_ROUND: that rounds to nearest, this rounds to zero. 146 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 147 148 // We do not currently implement these libm ops for PowerPC. 149 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 150 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 151 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 152 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 153 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 154 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 155 156 // PowerPC has no SREM/UREM instructions 157 setOperationAction(ISD::SREM, MVT::i32, Expand); 158 setOperationAction(ISD::UREM, MVT::i32, Expand); 159 setOperationAction(ISD::SREM, MVT::i64, Expand); 160 setOperationAction(ISD::UREM, MVT::i64, Expand); 161 162 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 163 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 164 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 165 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 166 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 167 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 168 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 169 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 170 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 171 172 // We don't support sin/cos/sqrt/fmod/pow 173 setOperationAction(ISD::FSIN , MVT::f64, Expand); 174 setOperationAction(ISD::FCOS , MVT::f64, Expand); 175 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 176 setOperationAction(ISD::FREM , MVT::f64, Expand); 177 setOperationAction(ISD::FPOW , MVT::f64, Expand); 178 setOperationAction(ISD::FMA , MVT::f64, Legal); 179 setOperationAction(ISD::FSIN , MVT::f32, Expand); 180 setOperationAction(ISD::FCOS , MVT::f32, Expand); 181 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 182 setOperationAction(ISD::FREM , MVT::f32, Expand); 183 setOperationAction(ISD::FPOW , MVT::f32, Expand); 184 setOperationAction(ISD::FMA , MVT::f32, Legal); 185 186 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 187 188 // If we're enabling GP optimizations, use hardware square root 189 if (!Subtarget.hasFSQRT() && 190 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 191 Subtarget.hasFRE())) 192 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 193 194 if (!Subtarget.hasFSQRT() && 195 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 196 Subtarget.hasFRES())) 197 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 198 199 if (Subtarget.hasFCPSGN()) { 200 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 201 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 202 } else { 203 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 204 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 205 } 206 207 if (Subtarget.hasFPRND()) { 208 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 209 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 211 setOperationAction(ISD::FROUND, MVT::f64, Legal); 212 213 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 214 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 215 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 216 setOperationAction(ISD::FROUND, MVT::f32, Legal); 217 } 218 219 // PowerPC does not have BSWAP 220 // CTPOP or CTTZ were introduced in P8/P9 respectivelly 221 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 222 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 223 if (Subtarget.isISA3_0()) { 224 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 225 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 226 } else { 227 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 228 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 229 } 230 231 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 232 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 233 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 234 } else { 235 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 236 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 237 } 238 239 // PowerPC does not have ROTR 240 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 241 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 242 243 if (!Subtarget.useCRBits()) { 244 // PowerPC does not have Select 245 setOperationAction(ISD::SELECT, MVT::i32, Expand); 246 setOperationAction(ISD::SELECT, MVT::i64, Expand); 247 setOperationAction(ISD::SELECT, MVT::f32, Expand); 248 setOperationAction(ISD::SELECT, MVT::f64, Expand); 249 } 250 251 // PowerPC wants to turn select_cc of FP into fsel when possible. 252 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 253 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 254 255 // PowerPC wants to optimize integer setcc a bit 256 if (!Subtarget.useCRBits()) 257 setOperationAction(ISD::SETCC, MVT::i32, Custom); 258 259 // PowerPC does not have BRCOND which requires SetCC 260 if (!Subtarget.useCRBits()) 261 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 262 263 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 264 265 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 266 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 267 268 // PowerPC does not have [U|S]INT_TO_FP 269 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 271 272 if (Subtarget.hasDirectMove() && isPPC64) { 273 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 274 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 275 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 276 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 277 } else { 278 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 279 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 280 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 281 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 282 } 283 284 // We cannot sextinreg(i1). Expand to shifts. 285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 286 287 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 288 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 289 // support continuation, user-level threading, and etc.. As a result, no 290 // other SjLj exception interfaces are implemented and please don't build 291 // your own exception handling based on them. 292 // LLVM/Clang supports zero-cost DWARF exception handling. 293 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 294 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 295 296 // We want to legalize GlobalAddress and ConstantPool nodes into the 297 // appropriate instructions to materialize the address. 298 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 299 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 300 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 301 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 302 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 303 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 304 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 305 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 306 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 307 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 308 309 // TRAP is legal. 310 setOperationAction(ISD::TRAP, MVT::Other, Legal); 311 312 // TRAMPOLINE is custom lowered. 313 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 314 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 315 316 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 317 setOperationAction(ISD::VASTART , MVT::Other, Custom); 318 319 if (Subtarget.isSVR4ABI()) { 320 if (isPPC64) { 321 // VAARG always uses double-word chunks, so promote anything smaller. 322 setOperationAction(ISD::VAARG, MVT::i1, Promote); 323 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 324 setOperationAction(ISD::VAARG, MVT::i8, Promote); 325 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 326 setOperationAction(ISD::VAARG, MVT::i16, Promote); 327 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 328 setOperationAction(ISD::VAARG, MVT::i32, Promote); 329 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 330 setOperationAction(ISD::VAARG, MVT::Other, Expand); 331 } else { 332 // VAARG is custom lowered with the 32-bit SVR4 ABI. 333 setOperationAction(ISD::VAARG, MVT::Other, Custom); 334 setOperationAction(ISD::VAARG, MVT::i64, Custom); 335 } 336 } else 337 setOperationAction(ISD::VAARG, MVT::Other, Expand); 338 339 if (Subtarget.isSVR4ABI() && !isPPC64) 340 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 341 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 342 else 343 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 344 345 // Use the default implementation. 346 setOperationAction(ISD::VAEND , MVT::Other, Expand); 347 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 348 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 349 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 350 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 351 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 352 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 353 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 354 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 355 356 // We want to custom lower some of our intrinsics. 357 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 358 359 // To handle counter-based loop conditions. 360 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 361 362 // Comparisons that require checking two conditions. 363 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 364 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 365 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 366 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 367 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 368 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 369 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 370 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 371 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 372 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 373 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 374 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 375 376 if (Subtarget.has64BitSupport()) { 377 // They also have instructions for converting between i64 and fp. 378 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 379 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 380 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 381 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 382 // This is just the low 32 bits of a (signed) fp->i64 conversion. 383 // We cannot do this with Promote because i64 is not a legal type. 384 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 385 386 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 387 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 388 } else { 389 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 390 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 391 } 392 393 // With the instructions enabled under FPCVT, we can do everything. 394 if (Subtarget.hasFPCVT()) { 395 if (Subtarget.has64BitSupport()) { 396 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 397 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 398 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 399 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 400 } 401 402 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 403 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 404 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 405 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 406 } 407 408 if (Subtarget.use64BitRegs()) { 409 // 64-bit PowerPC implementations can support i64 types directly 410 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 411 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 412 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 413 // 64-bit PowerPC wants to expand i128 shifts itself. 414 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 415 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 416 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 417 } else { 418 // 32-bit PowerPC wants to expand i64 shifts itself. 419 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 420 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 421 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasAltivec()) { 425 // First set operation action for all vector types to expand. Then we 426 // will selectively turn on ones that can be effectively codegen'd. 427 for (MVT VT : MVT::vector_valuetypes()) { 428 // add/sub are legal for all supported vector VT's. 429 setOperationAction(ISD::ADD, VT, Legal); 430 setOperationAction(ISD::SUB, VT, Legal); 431 432 // Vector instructions introduced in P8 433 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 434 setOperationAction(ISD::CTPOP, VT, Legal); 435 setOperationAction(ISD::CTLZ, VT, Legal); 436 } 437 else { 438 setOperationAction(ISD::CTPOP, VT, Expand); 439 setOperationAction(ISD::CTLZ, VT, Expand); 440 } 441 442 // Vector instructions introduced in P9 443 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 444 setOperationAction(ISD::CTTZ, VT, Legal); 445 else 446 setOperationAction(ISD::CTTZ, VT, Expand); 447 448 // We promote all shuffles to v16i8. 449 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 450 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 451 452 // We promote all non-typed operations to v4i32. 453 setOperationAction(ISD::AND , VT, Promote); 454 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 455 setOperationAction(ISD::OR , VT, Promote); 456 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 457 setOperationAction(ISD::XOR , VT, Promote); 458 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 459 setOperationAction(ISD::LOAD , VT, Promote); 460 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 461 setOperationAction(ISD::SELECT, VT, Promote); 462 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 463 setOperationAction(ISD::SELECT_CC, VT, Promote); 464 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 465 setOperationAction(ISD::STORE, VT, Promote); 466 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 467 468 // No other operations are legal. 469 setOperationAction(ISD::MUL , VT, Expand); 470 setOperationAction(ISD::SDIV, VT, Expand); 471 setOperationAction(ISD::SREM, VT, Expand); 472 setOperationAction(ISD::UDIV, VT, Expand); 473 setOperationAction(ISD::UREM, VT, Expand); 474 setOperationAction(ISD::FDIV, VT, Expand); 475 setOperationAction(ISD::FREM, VT, Expand); 476 setOperationAction(ISD::FNEG, VT, Expand); 477 setOperationAction(ISD::FSQRT, VT, Expand); 478 setOperationAction(ISD::FLOG, VT, Expand); 479 setOperationAction(ISD::FLOG10, VT, Expand); 480 setOperationAction(ISD::FLOG2, VT, Expand); 481 setOperationAction(ISD::FEXP, VT, Expand); 482 setOperationAction(ISD::FEXP2, VT, Expand); 483 setOperationAction(ISD::FSIN, VT, Expand); 484 setOperationAction(ISD::FCOS, VT, Expand); 485 setOperationAction(ISD::FABS, VT, Expand); 486 setOperationAction(ISD::FPOWI, VT, Expand); 487 setOperationAction(ISD::FFLOOR, VT, Expand); 488 setOperationAction(ISD::FCEIL, VT, Expand); 489 setOperationAction(ISD::FTRUNC, VT, Expand); 490 setOperationAction(ISD::FRINT, VT, Expand); 491 setOperationAction(ISD::FNEARBYINT, VT, Expand); 492 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 493 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 494 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 495 setOperationAction(ISD::MULHU, VT, Expand); 496 setOperationAction(ISD::MULHS, VT, Expand); 497 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 498 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 499 setOperationAction(ISD::UDIVREM, VT, Expand); 500 setOperationAction(ISD::SDIVREM, VT, Expand); 501 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 502 setOperationAction(ISD::FPOW, VT, Expand); 503 setOperationAction(ISD::BSWAP, VT, Expand); 504 setOperationAction(ISD::VSELECT, VT, Expand); 505 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 506 setOperationAction(ISD::ROTL, VT, Expand); 507 setOperationAction(ISD::ROTR, VT, Expand); 508 509 for (MVT InnerVT : MVT::vector_valuetypes()) { 510 setTruncStoreAction(VT, InnerVT, Expand); 511 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 512 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 513 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 514 } 515 } 516 517 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 518 // with merges, splats, etc. 519 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 520 521 setOperationAction(ISD::AND , MVT::v4i32, Legal); 522 setOperationAction(ISD::OR , MVT::v4i32, Legal); 523 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 524 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 525 setOperationAction(ISD::SELECT, MVT::v4i32, 526 Subtarget.useCRBits() ? Legal : Expand); 527 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 528 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 529 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 530 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 531 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 532 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 533 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 534 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 535 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 536 537 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 538 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 539 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 540 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 541 542 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 544 545 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 546 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 547 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 548 } 549 550 if (Subtarget.hasP8Altivec()) 551 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 552 else 553 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 554 555 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 556 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 557 558 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 559 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 560 561 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 562 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 563 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 564 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 565 566 // Altivec does not contain unordered floating-point compare instructions 567 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 568 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 569 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 570 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 571 572 if (Subtarget.hasVSX()) { 573 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 575 if (Subtarget.hasP8Vector()) { 576 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 577 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 578 } 579 if (Subtarget.hasDirectMove() && isPPC64) { 580 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 581 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 582 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 583 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 584 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 585 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 586 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 587 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 588 } 589 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 590 591 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 592 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 593 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 594 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 595 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 596 597 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 598 599 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 600 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 601 602 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 603 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 604 605 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 606 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 607 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 608 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 609 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 610 611 // Share the Altivec comparison restrictions. 612 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 613 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 614 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 615 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 616 617 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 618 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 619 620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 621 622 if (Subtarget.hasP8Vector()) 623 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 624 625 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 626 627 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 628 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 629 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 630 631 if (Subtarget.hasP8Altivec()) { 632 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 633 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 634 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 635 636 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 637 } 638 else { 639 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 640 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 641 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 642 643 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 644 645 // VSX v2i64 only supports non-arithmetic operations. 646 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 647 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 648 } 649 650 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 651 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 652 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 653 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 654 655 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 656 657 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 658 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 659 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 660 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 661 662 // Vector operation legalization checks the result type of 663 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 664 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 665 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 666 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 667 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 668 669 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 670 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 671 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 672 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 673 674 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 675 } 676 677 if (Subtarget.hasP8Altivec()) { 678 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 679 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 680 } 681 682 if (Subtarget.hasP9Vector()) { 683 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 684 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 685 } 686 687 if (Subtarget.isISA3_0() && Subtarget.hasDirectMove()) 688 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 689 } 690 691 if (Subtarget.hasQPX()) { 692 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 693 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 694 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 695 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 696 697 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 698 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 699 700 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 701 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 702 703 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 704 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 705 706 if (!Subtarget.useCRBits()) 707 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 708 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 709 710 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 711 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 712 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 713 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 714 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 715 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 716 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 717 718 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 719 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 720 721 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 722 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 723 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 724 725 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 726 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 727 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 728 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 729 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 730 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 731 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 732 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 733 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 734 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 735 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 736 737 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 738 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 739 740 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 741 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 742 743 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 744 745 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 746 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 747 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 748 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 749 750 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 751 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 752 753 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 754 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 755 756 if (!Subtarget.useCRBits()) 757 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 758 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 759 760 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 761 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 762 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 763 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 764 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 765 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 766 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 767 768 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 769 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 770 771 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 772 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 773 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 774 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 775 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 776 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 777 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 778 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 779 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 780 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 781 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 782 783 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 784 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 785 786 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 787 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 788 789 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 790 791 setOperationAction(ISD::AND , MVT::v4i1, Legal); 792 setOperationAction(ISD::OR , MVT::v4i1, Legal); 793 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 794 795 if (!Subtarget.useCRBits()) 796 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 797 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 798 799 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 800 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 801 802 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 803 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 804 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 805 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 806 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 807 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 808 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 809 810 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 811 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 812 813 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 814 815 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 816 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 817 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 818 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 819 820 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 821 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 822 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 823 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 824 825 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 826 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 827 828 // These need to set FE_INEXACT, and so cannot be vectorized here. 829 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 830 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 831 832 if (TM.Options.UnsafeFPMath) { 833 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 834 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 835 836 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 837 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 838 } else { 839 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 840 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 841 842 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 843 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 844 } 845 } 846 847 if (Subtarget.has64BitSupport()) 848 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 849 850 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 851 852 if (!isPPC64) { 853 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 854 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 855 } 856 857 setBooleanContents(ZeroOrOneBooleanContent); 858 859 if (Subtarget.hasAltivec()) { 860 // Altivec instructions set fields to all zeros or all ones. 861 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 862 } 863 864 if (!isPPC64) { 865 // These libcalls are not available in 32-bit. 866 setLibcallName(RTLIB::SHL_I128, nullptr); 867 setLibcallName(RTLIB::SRL_I128, nullptr); 868 setLibcallName(RTLIB::SRA_I128, nullptr); 869 } 870 871 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 872 873 // We have target-specific dag combine patterns for the following nodes: 874 setTargetDAGCombine(ISD::SINT_TO_FP); 875 setTargetDAGCombine(ISD::BUILD_VECTOR); 876 if (Subtarget.hasFPCVT()) 877 setTargetDAGCombine(ISD::UINT_TO_FP); 878 setTargetDAGCombine(ISD::LOAD); 879 setTargetDAGCombine(ISD::STORE); 880 setTargetDAGCombine(ISD::BR_CC); 881 if (Subtarget.useCRBits()) 882 setTargetDAGCombine(ISD::BRCOND); 883 setTargetDAGCombine(ISD::BSWAP); 884 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 885 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 886 setTargetDAGCombine(ISD::INTRINSIC_VOID); 887 888 setTargetDAGCombine(ISD::SIGN_EXTEND); 889 setTargetDAGCombine(ISD::ZERO_EXTEND); 890 setTargetDAGCombine(ISD::ANY_EXTEND); 891 892 if (Subtarget.useCRBits()) { 893 setTargetDAGCombine(ISD::TRUNCATE); 894 setTargetDAGCombine(ISD::SETCC); 895 setTargetDAGCombine(ISD::SELECT_CC); 896 } 897 898 // Use reciprocal estimates. 899 if (TM.Options.UnsafeFPMath) { 900 setTargetDAGCombine(ISD::FDIV); 901 setTargetDAGCombine(ISD::FSQRT); 902 } 903 904 // For the estimates, convergence is quadratic, so we essentially double the 905 // number of digits correct after every iteration. For both FRE and FRSQRTE, 906 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 907 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 908 unsigned RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3, 909 RefinementSteps64 = RefinementSteps + 1; 910 911 ReciprocalEstimates.set("sqrtf", true, RefinementSteps); 912 ReciprocalEstimates.set("vec-sqrtf", true, RefinementSteps); 913 ReciprocalEstimates.set("divf", true, RefinementSteps); 914 ReciprocalEstimates.set("vec-divf", true, RefinementSteps); 915 916 ReciprocalEstimates.set("sqrtd", true, RefinementSteps64); 917 ReciprocalEstimates.set("vec-sqrtd", true, RefinementSteps64); 918 ReciprocalEstimates.set("divd", true, RefinementSteps64); 919 ReciprocalEstimates.set("vec-divd", true, RefinementSteps64); 920 921 // Darwin long double math library functions have $LDBL128 appended. 922 if (Subtarget.isDarwin()) { 923 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 924 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 925 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 926 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 927 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 928 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 929 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 930 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 931 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 932 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 933 } 934 935 // With 32 condition bits, we don't need to sink (and duplicate) compares 936 // aggressively in CodeGenPrep. 937 if (Subtarget.useCRBits()) { 938 setHasMultipleConditionRegisters(); 939 setJumpIsExpensive(); 940 } 941 942 setMinFunctionAlignment(2); 943 if (Subtarget.isDarwin()) 944 setPrefFunctionAlignment(4); 945 946 switch (Subtarget.getDarwinDirective()) { 947 default: break; 948 case PPC::DIR_970: 949 case PPC::DIR_A2: 950 case PPC::DIR_E500mc: 951 case PPC::DIR_E5500: 952 case PPC::DIR_PWR4: 953 case PPC::DIR_PWR5: 954 case PPC::DIR_PWR5X: 955 case PPC::DIR_PWR6: 956 case PPC::DIR_PWR6X: 957 case PPC::DIR_PWR7: 958 case PPC::DIR_PWR8: 959 case PPC::DIR_PWR9: 960 setPrefFunctionAlignment(4); 961 setPrefLoopAlignment(4); 962 break; 963 } 964 965 if (Subtarget.enableMachineScheduler()) 966 setSchedulingPreference(Sched::Source); 967 else 968 setSchedulingPreference(Sched::Hybrid); 969 970 computeRegisterProperties(STI.getRegisterInfo()); 971 972 // The Freescale cores do better with aggressive inlining of memcpy and 973 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 974 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 975 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 976 MaxStoresPerMemset = 32; 977 MaxStoresPerMemsetOptSize = 16; 978 MaxStoresPerMemcpy = 32; 979 MaxStoresPerMemcpyOptSize = 8; 980 MaxStoresPerMemmove = 32; 981 MaxStoresPerMemmoveOptSize = 8; 982 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 983 // The A2 also benefits from (very) aggressive inlining of memcpy and 984 // friends. The overhead of a the function call, even when warm, can be 985 // over one hundred cycles. 986 MaxStoresPerMemset = 128; 987 MaxStoresPerMemcpy = 128; 988 MaxStoresPerMemmove = 128; 989 } 990 } 991 992 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 993 /// the desired ByVal argument alignment. 994 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 995 unsigned MaxMaxAlign) { 996 if (MaxAlign == MaxMaxAlign) 997 return; 998 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 999 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1000 MaxAlign = 32; 1001 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1002 MaxAlign = 16; 1003 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1004 unsigned EltAlign = 0; 1005 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1006 if (EltAlign > MaxAlign) 1007 MaxAlign = EltAlign; 1008 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1009 for (auto *EltTy : STy->elements()) { 1010 unsigned EltAlign = 0; 1011 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1012 if (EltAlign > MaxAlign) 1013 MaxAlign = EltAlign; 1014 if (MaxAlign == MaxMaxAlign) 1015 break; 1016 } 1017 } 1018 } 1019 1020 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1021 /// function arguments in the caller parameter area. 1022 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1023 const DataLayout &DL) const { 1024 // Darwin passes everything on 4 byte boundary. 1025 if (Subtarget.isDarwin()) 1026 return 4; 1027 1028 // 16byte and wider vectors are passed on 16byte boundary. 1029 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1030 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1031 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1032 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1033 return Align; 1034 } 1035 1036 bool PPCTargetLowering::useSoftFloat() const { 1037 return Subtarget.useSoftFloat(); 1038 } 1039 1040 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1041 switch ((PPCISD::NodeType)Opcode) { 1042 case PPCISD::FIRST_NUMBER: break; 1043 case PPCISD::FSEL: return "PPCISD::FSEL"; 1044 case PPCISD::FCFID: return "PPCISD::FCFID"; 1045 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1046 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1047 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1048 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1049 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1050 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1051 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1052 case PPCISD::FRE: return "PPCISD::FRE"; 1053 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1054 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1055 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1056 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1057 case PPCISD::VPERM: return "PPCISD::VPERM"; 1058 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1059 case PPCISD::XXINSERT: return "PPCISD::XXINSERT"; 1060 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1061 case PPCISD::CMPB: return "PPCISD::CMPB"; 1062 case PPCISD::Hi: return "PPCISD::Hi"; 1063 case PPCISD::Lo: return "PPCISD::Lo"; 1064 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1065 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1066 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1067 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1068 case PPCISD::SRL: return "PPCISD::SRL"; 1069 case PPCISD::SRA: return "PPCISD::SRA"; 1070 case PPCISD::SHL: return "PPCISD::SHL"; 1071 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1072 case PPCISD::CALL: return "PPCISD::CALL"; 1073 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1074 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1075 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1076 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1077 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1078 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1079 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1080 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1081 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1082 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1083 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1084 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1085 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1086 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1087 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1088 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1089 case PPCISD::VCMP: return "PPCISD::VCMP"; 1090 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1091 case PPCISD::LBRX: return "PPCISD::LBRX"; 1092 case PPCISD::STBRX: return "PPCISD::STBRX"; 1093 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1094 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1095 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1096 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1097 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1098 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1099 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1100 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1101 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1102 case PPCISD::BDZ: return "PPCISD::BDZ"; 1103 case PPCISD::MFFS: return "PPCISD::MFFS"; 1104 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1105 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1106 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1107 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1108 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1109 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1110 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1111 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1112 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1113 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1114 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1115 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1116 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1117 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1118 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1119 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1120 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1121 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1122 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1123 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1124 case PPCISD::SC: return "PPCISD::SC"; 1125 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1126 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1127 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1128 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1129 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1130 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1131 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1132 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1133 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1134 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1135 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1136 } 1137 return nullptr; 1138 } 1139 1140 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1141 EVT VT) const { 1142 if (!VT.isVector()) 1143 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1144 1145 if (Subtarget.hasQPX()) 1146 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1147 1148 return VT.changeVectorElementTypeToInteger(); 1149 } 1150 1151 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1152 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1153 return true; 1154 } 1155 1156 //===----------------------------------------------------------------------===// 1157 // Node matching predicates, for use by the tblgen matching code. 1158 //===----------------------------------------------------------------------===// 1159 1160 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1161 static bool isFloatingPointZero(SDValue Op) { 1162 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1163 return CFP->getValueAPF().isZero(); 1164 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1165 // Maybe this has already been legalized into the constant pool? 1166 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1167 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1168 return CFP->getValueAPF().isZero(); 1169 } 1170 return false; 1171 } 1172 1173 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1174 /// true if Op is undef or if it matches the specified value. 1175 static bool isConstantOrUndef(int Op, int Val) { 1176 return Op < 0 || Op == Val; 1177 } 1178 1179 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1180 /// VPKUHUM instruction. 1181 /// The ShuffleKind distinguishes between big-endian operations with 1182 /// two different inputs (0), either-endian operations with two identical 1183 /// inputs (1), and little-endian operations with two different inputs (2). 1184 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1185 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1186 SelectionDAG &DAG) { 1187 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1188 if (ShuffleKind == 0) { 1189 if (IsLE) 1190 return false; 1191 for (unsigned i = 0; i != 16; ++i) 1192 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1193 return false; 1194 } else if (ShuffleKind == 2) { 1195 if (!IsLE) 1196 return false; 1197 for (unsigned i = 0; i != 16; ++i) 1198 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1199 return false; 1200 } else if (ShuffleKind == 1) { 1201 unsigned j = IsLE ? 0 : 1; 1202 for (unsigned i = 0; i != 8; ++i) 1203 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1204 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1205 return false; 1206 } 1207 return true; 1208 } 1209 1210 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1211 /// VPKUWUM instruction. 1212 /// The ShuffleKind distinguishes between big-endian operations with 1213 /// two different inputs (0), either-endian operations with two identical 1214 /// inputs (1), and little-endian operations with two different inputs (2). 1215 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1216 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1217 SelectionDAG &DAG) { 1218 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1219 if (ShuffleKind == 0) { 1220 if (IsLE) 1221 return false; 1222 for (unsigned i = 0; i != 16; i += 2) 1223 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1224 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1225 return false; 1226 } else if (ShuffleKind == 2) { 1227 if (!IsLE) 1228 return false; 1229 for (unsigned i = 0; i != 16; i += 2) 1230 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1231 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1232 return false; 1233 } else if (ShuffleKind == 1) { 1234 unsigned j = IsLE ? 0 : 2; 1235 for (unsigned i = 0; i != 8; i += 2) 1236 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1237 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1238 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1239 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1240 return false; 1241 } 1242 return true; 1243 } 1244 1245 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1246 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1247 /// current subtarget. 1248 /// 1249 /// The ShuffleKind distinguishes between big-endian operations with 1250 /// two different inputs (0), either-endian operations with two identical 1251 /// inputs (1), and little-endian operations with two different inputs (2). 1252 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1253 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1254 SelectionDAG &DAG) { 1255 const PPCSubtarget& Subtarget = 1256 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1257 if (!Subtarget.hasP8Vector()) 1258 return false; 1259 1260 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1261 if (ShuffleKind == 0) { 1262 if (IsLE) 1263 return false; 1264 for (unsigned i = 0; i != 16; i += 4) 1265 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1266 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1267 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1268 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1269 return false; 1270 } else if (ShuffleKind == 2) { 1271 if (!IsLE) 1272 return false; 1273 for (unsigned i = 0; i != 16; i += 4) 1274 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1275 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1276 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1277 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1278 return false; 1279 } else if (ShuffleKind == 1) { 1280 unsigned j = IsLE ? 0 : 4; 1281 for (unsigned i = 0; i != 8; i += 4) 1282 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1283 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1284 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1285 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1286 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1287 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1288 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1289 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1290 return false; 1291 } 1292 return true; 1293 } 1294 1295 /// isVMerge - Common function, used to match vmrg* shuffles. 1296 /// 1297 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1298 unsigned LHSStart, unsigned RHSStart) { 1299 if (N->getValueType(0) != MVT::v16i8) 1300 return false; 1301 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1302 "Unsupported merge size!"); 1303 1304 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1305 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1306 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1307 LHSStart+j+i*UnitSize) || 1308 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1309 RHSStart+j+i*UnitSize)) 1310 return false; 1311 } 1312 return true; 1313 } 1314 1315 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1316 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1317 /// The ShuffleKind distinguishes between big-endian merges with two 1318 /// different inputs (0), either-endian merges with two identical inputs (1), 1319 /// and little-endian merges with two different inputs (2). For the latter, 1320 /// the input operands are swapped (see PPCInstrAltivec.td). 1321 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1322 unsigned ShuffleKind, SelectionDAG &DAG) { 1323 if (DAG.getDataLayout().isLittleEndian()) { 1324 if (ShuffleKind == 1) // unary 1325 return isVMerge(N, UnitSize, 0, 0); 1326 else if (ShuffleKind == 2) // swapped 1327 return isVMerge(N, UnitSize, 0, 16); 1328 else 1329 return false; 1330 } else { 1331 if (ShuffleKind == 1) // unary 1332 return isVMerge(N, UnitSize, 8, 8); 1333 else if (ShuffleKind == 0) // normal 1334 return isVMerge(N, UnitSize, 8, 24); 1335 else 1336 return false; 1337 } 1338 } 1339 1340 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1341 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1342 /// The ShuffleKind distinguishes between big-endian merges with two 1343 /// different inputs (0), either-endian merges with two identical inputs (1), 1344 /// and little-endian merges with two different inputs (2). For the latter, 1345 /// the input operands are swapped (see PPCInstrAltivec.td). 1346 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1347 unsigned ShuffleKind, SelectionDAG &DAG) { 1348 if (DAG.getDataLayout().isLittleEndian()) { 1349 if (ShuffleKind == 1) // unary 1350 return isVMerge(N, UnitSize, 8, 8); 1351 else if (ShuffleKind == 2) // swapped 1352 return isVMerge(N, UnitSize, 8, 24); 1353 else 1354 return false; 1355 } else { 1356 if (ShuffleKind == 1) // unary 1357 return isVMerge(N, UnitSize, 0, 0); 1358 else if (ShuffleKind == 0) // normal 1359 return isVMerge(N, UnitSize, 0, 16); 1360 else 1361 return false; 1362 } 1363 } 1364 1365 /** 1366 * \brief Common function used to match vmrgew and vmrgow shuffles 1367 * 1368 * The indexOffset determines whether to look for even or odd words in 1369 * the shuffle mask. This is based on the of the endianness of the target 1370 * machine. 1371 * - Little Endian: 1372 * - Use offset of 0 to check for odd elements 1373 * - Use offset of 4 to check for even elements 1374 * - Big Endian: 1375 * - Use offset of 0 to check for even elements 1376 * - Use offset of 4 to check for odd elements 1377 * A detailed description of the vector element ordering for little endian and 1378 * big endian can be found at 1379 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1380 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1381 * compiler differences mean to you 1382 * 1383 * The mask to the shuffle vector instruction specifies the indices of the 1384 * elements from the two input vectors to place in the result. The elements are 1385 * numbered in array-access order, starting with the first vector. These vectors 1386 * are always of type v16i8, thus each vector will contain 16 elements of size 1387 * 8. More info on the shuffle vector can be found in the 1388 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1389 * Language Reference. 1390 * 1391 * The RHSStartValue indicates whether the same input vectors are used (unary) 1392 * or two different input vectors are used, based on the following: 1393 * - If the instruction uses the same vector for both inputs, the range of the 1394 * indices will be 0 to 15. In this case, the RHSStart value passed should 1395 * be 0. 1396 * - If the instruction has two different vectors then the range of the 1397 * indices will be 0 to 31. In this case, the RHSStart value passed should 1398 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1399 * to 31 specify elements in the second vector). 1400 * 1401 * \param[in] N The shuffle vector SD Node to analyze 1402 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1403 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1404 * vector to the shuffle_vector instruction 1405 * \return true iff this shuffle vector represents an even or odd word merge 1406 */ 1407 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1408 unsigned RHSStartValue) { 1409 if (N->getValueType(0) != MVT::v16i8) 1410 return false; 1411 1412 for (unsigned i = 0; i < 2; ++i) 1413 for (unsigned j = 0; j < 4; ++j) 1414 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1415 i*RHSStartValue+j+IndexOffset) || 1416 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1417 i*RHSStartValue+j+IndexOffset+8)) 1418 return false; 1419 return true; 1420 } 1421 1422 /** 1423 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1424 * vmrgow instructions. 1425 * 1426 * \param[in] N The shuffle vector SD Node to analyze 1427 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1428 * \param[in] ShuffleKind Identify the type of merge: 1429 * - 0 = big-endian merge with two different inputs; 1430 * - 1 = either-endian merge with two identical inputs; 1431 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1432 * little-endian merges). 1433 * \param[in] DAG The current SelectionDAG 1434 * \return true iff this shuffle mask 1435 */ 1436 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1437 unsigned ShuffleKind, SelectionDAG &DAG) { 1438 if (DAG.getDataLayout().isLittleEndian()) { 1439 unsigned indexOffset = CheckEven ? 4 : 0; 1440 if (ShuffleKind == 1) // Unary 1441 return isVMerge(N, indexOffset, 0); 1442 else if (ShuffleKind == 2) // swapped 1443 return isVMerge(N, indexOffset, 16); 1444 else 1445 return false; 1446 } 1447 else { 1448 unsigned indexOffset = CheckEven ? 0 : 4; 1449 if (ShuffleKind == 1) // Unary 1450 return isVMerge(N, indexOffset, 0); 1451 else if (ShuffleKind == 0) // Normal 1452 return isVMerge(N, indexOffset, 16); 1453 else 1454 return false; 1455 } 1456 return false; 1457 } 1458 1459 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1460 /// amount, otherwise return -1. 1461 /// The ShuffleKind distinguishes between big-endian operations with two 1462 /// different inputs (0), either-endian operations with two identical inputs 1463 /// (1), and little-endian operations with two different inputs (2). For the 1464 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1465 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1466 SelectionDAG &DAG) { 1467 if (N->getValueType(0) != MVT::v16i8) 1468 return -1; 1469 1470 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1471 1472 // Find the first non-undef value in the shuffle mask. 1473 unsigned i; 1474 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1475 /*search*/; 1476 1477 if (i == 16) return -1; // all undef. 1478 1479 // Otherwise, check to see if the rest of the elements are consecutively 1480 // numbered from this value. 1481 unsigned ShiftAmt = SVOp->getMaskElt(i); 1482 if (ShiftAmt < i) return -1; 1483 1484 ShiftAmt -= i; 1485 bool isLE = DAG.getDataLayout().isLittleEndian(); 1486 1487 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1488 // Check the rest of the elements to see if they are consecutive. 1489 for (++i; i != 16; ++i) 1490 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1491 return -1; 1492 } else if (ShuffleKind == 1) { 1493 // Check the rest of the elements to see if they are consecutive. 1494 for (++i; i != 16; ++i) 1495 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1496 return -1; 1497 } else 1498 return -1; 1499 1500 if (isLE) 1501 ShiftAmt = 16 - ShiftAmt; 1502 1503 return ShiftAmt; 1504 } 1505 1506 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1507 /// specifies a splat of a single element that is suitable for input to 1508 /// VSPLTB/VSPLTH/VSPLTW. 1509 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1510 assert(N->getValueType(0) == MVT::v16i8 && 1511 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1512 1513 // The consecutive indices need to specify an element, not part of two 1514 // different elements. So abandon ship early if this isn't the case. 1515 if (N->getMaskElt(0) % EltSize != 0) 1516 return false; 1517 1518 // This is a splat operation if each element of the permute is the same, and 1519 // if the value doesn't reference the second vector. 1520 unsigned ElementBase = N->getMaskElt(0); 1521 1522 // FIXME: Handle UNDEF elements too! 1523 if (ElementBase >= 16) 1524 return false; 1525 1526 // Check that the indices are consecutive, in the case of a multi-byte element 1527 // splatted with a v16i8 mask. 1528 for (unsigned i = 1; i != EltSize; ++i) 1529 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1530 return false; 1531 1532 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1533 if (N->getMaskElt(i) < 0) continue; 1534 for (unsigned j = 0; j != EltSize; ++j) 1535 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1536 return false; 1537 } 1538 return true; 1539 } 1540 1541 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1542 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1543 1544 // Check that the mask is shuffling words 1545 for (unsigned i = 0; i < 4; ++i) { 1546 unsigned B0 = N->getMaskElt(i*4); 1547 unsigned B1 = N->getMaskElt(i*4+1); 1548 unsigned B2 = N->getMaskElt(i*4+2); 1549 unsigned B3 = N->getMaskElt(i*4+3); 1550 if (B0 % 4) 1551 return false; 1552 if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1) 1553 return false; 1554 } 1555 1556 // Now we look at mask elements 0,4,8,12 1557 unsigned M0 = N->getMaskElt(0) / 4; 1558 unsigned M1 = N->getMaskElt(4) / 4; 1559 unsigned M2 = N->getMaskElt(8) / 4; 1560 unsigned M3 = N->getMaskElt(12) / 4; 1561 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1562 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1563 1564 // Below, let H and L be arbitrary elements of the shuffle mask 1565 // where H is in the range [4,7] and L is in the range [0,3]. 1566 // H, 1, 2, 3 or L, 5, 6, 7 1567 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1568 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1569 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1570 InsertAtByte = IsLE ? 12 : 0; 1571 Swap = M0 < 4; 1572 return true; 1573 } 1574 // 0, H, 2, 3 or 4, L, 6, 7 1575 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1576 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1577 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1578 InsertAtByte = IsLE ? 8 : 4; 1579 Swap = M1 < 4; 1580 return true; 1581 } 1582 // 0, 1, H, 3 or 4, 5, L, 7 1583 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1584 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1585 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1586 InsertAtByte = IsLE ? 4 : 8; 1587 Swap = M2 < 4; 1588 return true; 1589 } 1590 // 0, 1, 2, H or 4, 5, 6, L 1591 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1592 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1593 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1594 InsertAtByte = IsLE ? 0 : 12; 1595 Swap = M3 < 4; 1596 return true; 1597 } 1598 1599 // If both vector operands for the shuffle are the same vector, the mask will 1600 // contain only elements from the first one and the second one will be undef. 1601 if (N->getOperand(1).isUndef()) { 1602 ShiftElts = 0; 1603 Swap = true; 1604 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1605 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1606 InsertAtByte = IsLE ? 12 : 0; 1607 return true; 1608 } 1609 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1610 InsertAtByte = IsLE ? 8 : 4; 1611 return true; 1612 } 1613 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1614 InsertAtByte = IsLE ? 4 : 8; 1615 return true; 1616 } 1617 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1618 InsertAtByte = IsLE ? 0 : 12; 1619 return true; 1620 } 1621 } 1622 1623 return false; 1624 } 1625 1626 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1627 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1628 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1629 SelectionDAG &DAG) { 1630 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1631 assert(isSplatShuffleMask(SVOp, EltSize)); 1632 if (DAG.getDataLayout().isLittleEndian()) 1633 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1634 else 1635 return SVOp->getMaskElt(0) / EltSize; 1636 } 1637 1638 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1639 /// by using a vspltis[bhw] instruction of the specified element size, return 1640 /// the constant being splatted. The ByteSize field indicates the number of 1641 /// bytes of each element [124] -> [bhw]. 1642 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1643 SDValue OpVal(nullptr, 0); 1644 1645 // If ByteSize of the splat is bigger than the element size of the 1646 // build_vector, then we have a case where we are checking for a splat where 1647 // multiple elements of the buildvector are folded together into a single 1648 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1649 unsigned EltSize = 16/N->getNumOperands(); 1650 if (EltSize < ByteSize) { 1651 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1652 SDValue UniquedVals[4]; 1653 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1654 1655 // See if all of the elements in the buildvector agree across. 1656 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1657 if (N->getOperand(i).isUndef()) continue; 1658 // If the element isn't a constant, bail fully out. 1659 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1660 1661 1662 if (!UniquedVals[i&(Multiple-1)].getNode()) 1663 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1664 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1665 return SDValue(); // no match. 1666 } 1667 1668 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1669 // either constant or undef values that are identical for each chunk. See 1670 // if these chunks can form into a larger vspltis*. 1671 1672 // Check to see if all of the leading entries are either 0 or -1. If 1673 // neither, then this won't fit into the immediate field. 1674 bool LeadingZero = true; 1675 bool LeadingOnes = true; 1676 for (unsigned i = 0; i != Multiple-1; ++i) { 1677 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1678 1679 LeadingZero &= isNullConstant(UniquedVals[i]); 1680 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1681 } 1682 // Finally, check the least significant entry. 1683 if (LeadingZero) { 1684 if (!UniquedVals[Multiple-1].getNode()) 1685 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1686 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1687 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1688 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1689 } 1690 if (LeadingOnes) { 1691 if (!UniquedVals[Multiple-1].getNode()) 1692 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1693 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1694 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1695 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1696 } 1697 1698 return SDValue(); 1699 } 1700 1701 // Check to see if this buildvec has a single non-undef value in its elements. 1702 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1703 if (N->getOperand(i).isUndef()) continue; 1704 if (!OpVal.getNode()) 1705 OpVal = N->getOperand(i); 1706 else if (OpVal != N->getOperand(i)) 1707 return SDValue(); 1708 } 1709 1710 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1711 1712 unsigned ValSizeInBytes = EltSize; 1713 uint64_t Value = 0; 1714 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1715 Value = CN->getZExtValue(); 1716 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1717 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1718 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1719 } 1720 1721 // If the splat value is larger than the element value, then we can never do 1722 // this splat. The only case that we could fit the replicated bits into our 1723 // immediate field for would be zero, and we prefer to use vxor for it. 1724 if (ValSizeInBytes < ByteSize) return SDValue(); 1725 1726 // If the element value is larger than the splat value, check if it consists 1727 // of a repeated bit pattern of size ByteSize. 1728 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1729 return SDValue(); 1730 1731 // Properly sign extend the value. 1732 int MaskVal = SignExtend32(Value, ByteSize * 8); 1733 1734 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1735 if (MaskVal == 0) return SDValue(); 1736 1737 // Finally, if this value fits in a 5 bit sext field, return it 1738 if (SignExtend32<5>(MaskVal) == MaskVal) 1739 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1740 return SDValue(); 1741 } 1742 1743 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1744 /// amount, otherwise return -1. 1745 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1746 EVT VT = N->getValueType(0); 1747 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1748 return -1; 1749 1750 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1751 1752 // Find the first non-undef value in the shuffle mask. 1753 unsigned i; 1754 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1755 /*search*/; 1756 1757 if (i == 4) return -1; // all undef. 1758 1759 // Otherwise, check to see if the rest of the elements are consecutively 1760 // numbered from this value. 1761 unsigned ShiftAmt = SVOp->getMaskElt(i); 1762 if (ShiftAmt < i) return -1; 1763 ShiftAmt -= i; 1764 1765 // Check the rest of the elements to see if they are consecutive. 1766 for (++i; i != 4; ++i) 1767 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1768 return -1; 1769 1770 return ShiftAmt; 1771 } 1772 1773 //===----------------------------------------------------------------------===// 1774 // Addressing Mode Selection 1775 //===----------------------------------------------------------------------===// 1776 1777 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1778 /// or 64-bit immediate, and if the value can be accurately represented as a 1779 /// sign extension from a 16-bit value. If so, this returns true and the 1780 /// immediate. 1781 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1782 if (!isa<ConstantSDNode>(N)) 1783 return false; 1784 1785 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1786 if (N->getValueType(0) == MVT::i32) 1787 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1788 else 1789 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1790 } 1791 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1792 return isIntS16Immediate(Op.getNode(), Imm); 1793 } 1794 1795 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1796 /// can be represented as an indexed [r+r] operation. Returns false if it 1797 /// can be more efficiently represented with [r+imm]. 1798 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1799 SDValue &Index, 1800 SelectionDAG &DAG) const { 1801 short imm = 0; 1802 if (N.getOpcode() == ISD::ADD) { 1803 if (isIntS16Immediate(N.getOperand(1), imm)) 1804 return false; // r+i 1805 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1806 return false; // r+i 1807 1808 Base = N.getOperand(0); 1809 Index = N.getOperand(1); 1810 return true; 1811 } else if (N.getOpcode() == ISD::OR) { 1812 if (isIntS16Immediate(N.getOperand(1), imm)) 1813 return false; // r+i can fold it if we can. 1814 1815 // If this is an or of disjoint bitfields, we can codegen this as an add 1816 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1817 // disjoint. 1818 APInt LHSKnownZero, LHSKnownOne; 1819 APInt RHSKnownZero, RHSKnownOne; 1820 DAG.computeKnownBits(N.getOperand(0), 1821 LHSKnownZero, LHSKnownOne); 1822 1823 if (LHSKnownZero.getBoolValue()) { 1824 DAG.computeKnownBits(N.getOperand(1), 1825 RHSKnownZero, RHSKnownOne); 1826 // If all of the bits are known zero on the LHS or RHS, the add won't 1827 // carry. 1828 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1829 Base = N.getOperand(0); 1830 Index = N.getOperand(1); 1831 return true; 1832 } 1833 } 1834 } 1835 1836 return false; 1837 } 1838 1839 // If we happen to be doing an i64 load or store into a stack slot that has 1840 // less than a 4-byte alignment, then the frame-index elimination may need to 1841 // use an indexed load or store instruction (because the offset may not be a 1842 // multiple of 4). The extra register needed to hold the offset comes from the 1843 // register scavenger, and it is possible that the scavenger will need to use 1844 // an emergency spill slot. As a result, we need to make sure that a spill slot 1845 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1846 // stack slot. 1847 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1848 // FIXME: This does not handle the LWA case. 1849 if (VT != MVT::i64) 1850 return; 1851 1852 // NOTE: We'll exclude negative FIs here, which come from argument 1853 // lowering, because there are no known test cases triggering this problem 1854 // using packed structures (or similar). We can remove this exclusion if 1855 // we find such a test case. The reason why this is so test-case driven is 1856 // because this entire 'fixup' is only to prevent crashes (from the 1857 // register scavenger) on not-really-valid inputs. For example, if we have: 1858 // %a = alloca i1 1859 // %b = bitcast i1* %a to i64* 1860 // store i64* a, i64 b 1861 // then the store should really be marked as 'align 1', but is not. If it 1862 // were marked as 'align 1' then the indexed form would have been 1863 // instruction-selected initially, and the problem this 'fixup' is preventing 1864 // won't happen regardless. 1865 if (FrameIdx < 0) 1866 return; 1867 1868 MachineFunction &MF = DAG.getMachineFunction(); 1869 MachineFrameInfo &MFI = MF.getFrameInfo(); 1870 1871 unsigned Align = MFI.getObjectAlignment(FrameIdx); 1872 if (Align >= 4) 1873 return; 1874 1875 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1876 FuncInfo->setHasNonRISpills(); 1877 } 1878 1879 /// Returns true if the address N can be represented by a base register plus 1880 /// a signed 16-bit displacement [r+imm], and if it is not better 1881 /// represented as reg+reg. If Aligned is true, only accept displacements 1882 /// suitable for STD and friends, i.e. multiples of 4. 1883 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1884 SDValue &Base, 1885 SelectionDAG &DAG, 1886 bool Aligned) const { 1887 // FIXME dl should come from parent load or store, not from address 1888 SDLoc dl(N); 1889 // If this can be more profitably realized as r+r, fail. 1890 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1891 return false; 1892 1893 if (N.getOpcode() == ISD::ADD) { 1894 short imm = 0; 1895 if (isIntS16Immediate(N.getOperand(1), imm) && 1896 (!Aligned || (imm & 3) == 0)) { 1897 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1898 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1899 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1900 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1901 } else { 1902 Base = N.getOperand(0); 1903 } 1904 return true; // [r+i] 1905 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1906 // Match LOAD (ADD (X, Lo(G))). 1907 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1908 && "Cannot handle constant offsets yet!"); 1909 Disp = N.getOperand(1).getOperand(0); // The global address. 1910 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1911 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1912 Disp.getOpcode() == ISD::TargetConstantPool || 1913 Disp.getOpcode() == ISD::TargetJumpTable); 1914 Base = N.getOperand(0); 1915 return true; // [&g+r] 1916 } 1917 } else if (N.getOpcode() == ISD::OR) { 1918 short imm = 0; 1919 if (isIntS16Immediate(N.getOperand(1), imm) && 1920 (!Aligned || (imm & 3) == 0)) { 1921 // If this is an or of disjoint bitfields, we can codegen this as an add 1922 // (for better address arithmetic) if the LHS and RHS of the OR are 1923 // provably disjoint. 1924 APInt LHSKnownZero, LHSKnownOne; 1925 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1926 1927 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1928 // If all of the bits are known zero on the LHS or RHS, the add won't 1929 // carry. 1930 if (FrameIndexSDNode *FI = 1931 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1932 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1933 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1934 } else { 1935 Base = N.getOperand(0); 1936 } 1937 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1938 return true; 1939 } 1940 } 1941 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1942 // Loading from a constant address. 1943 1944 // If this address fits entirely in a 16-bit sext immediate field, codegen 1945 // this as "d, 0" 1946 short Imm; 1947 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1948 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1949 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1950 CN->getValueType(0)); 1951 return true; 1952 } 1953 1954 // Handle 32-bit sext immediates with LIS + addr mode. 1955 if ((CN->getValueType(0) == MVT::i32 || 1956 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1957 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1958 int Addr = (int)CN->getZExtValue(); 1959 1960 // Otherwise, break this down into an LIS + disp. 1961 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1962 1963 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1964 MVT::i32); 1965 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1966 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1967 return true; 1968 } 1969 } 1970 1971 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1972 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1973 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1974 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1975 } else 1976 Base = N; 1977 return true; // [r+0] 1978 } 1979 1980 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1981 /// represented as an indexed [r+r] operation. 1982 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1983 SDValue &Index, 1984 SelectionDAG &DAG) const { 1985 // Check to see if we can easily represent this as an [r+r] address. This 1986 // will fail if it thinks that the address is more profitably represented as 1987 // reg+imm, e.g. where imm = 0. 1988 if (SelectAddressRegReg(N, Base, Index, DAG)) 1989 return true; 1990 1991 // If the operand is an addition, always emit this as [r+r], since this is 1992 // better (for code size, and execution, as the memop does the add for free) 1993 // than emitting an explicit add. 1994 if (N.getOpcode() == ISD::ADD) { 1995 Base = N.getOperand(0); 1996 Index = N.getOperand(1); 1997 return true; 1998 } 1999 2000 // Otherwise, do it the hard way, using R0 as the base register. 2001 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2002 N.getValueType()); 2003 Index = N; 2004 return true; 2005 } 2006 2007 /// getPreIndexedAddressParts - returns true by value, base pointer and 2008 /// offset pointer and addressing mode by reference if the node's address 2009 /// can be legally represented as pre-indexed load / store address. 2010 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2011 SDValue &Offset, 2012 ISD::MemIndexedMode &AM, 2013 SelectionDAG &DAG) const { 2014 if (DisablePPCPreinc) return false; 2015 2016 bool isLoad = true; 2017 SDValue Ptr; 2018 EVT VT; 2019 unsigned Alignment; 2020 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2021 Ptr = LD->getBasePtr(); 2022 VT = LD->getMemoryVT(); 2023 Alignment = LD->getAlignment(); 2024 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2025 Ptr = ST->getBasePtr(); 2026 VT = ST->getMemoryVT(); 2027 Alignment = ST->getAlignment(); 2028 isLoad = false; 2029 } else 2030 return false; 2031 2032 // PowerPC doesn't have preinc load/store instructions for vectors (except 2033 // for QPX, which does have preinc r+r forms). 2034 if (VT.isVector()) { 2035 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2036 return false; 2037 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2038 AM = ISD::PRE_INC; 2039 return true; 2040 } 2041 } 2042 2043 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2044 2045 // Common code will reject creating a pre-inc form if the base pointer 2046 // is a frame index, or if N is a store and the base pointer is either 2047 // the same as or a predecessor of the value being stored. Check for 2048 // those situations here, and try with swapped Base/Offset instead. 2049 bool Swap = false; 2050 2051 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2052 Swap = true; 2053 else if (!isLoad) { 2054 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2055 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2056 Swap = true; 2057 } 2058 2059 if (Swap) 2060 std::swap(Base, Offset); 2061 2062 AM = ISD::PRE_INC; 2063 return true; 2064 } 2065 2066 // LDU/STU can only handle immediates that are a multiple of 4. 2067 if (VT != MVT::i64) { 2068 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 2069 return false; 2070 } else { 2071 // LDU/STU need an address with at least 4-byte alignment. 2072 if (Alignment < 4) 2073 return false; 2074 2075 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 2076 return false; 2077 } 2078 2079 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2080 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2081 // sext i32 to i64 when addr mode is r+i. 2082 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2083 LD->getExtensionType() == ISD::SEXTLOAD && 2084 isa<ConstantSDNode>(Offset)) 2085 return false; 2086 } 2087 2088 AM = ISD::PRE_INC; 2089 return true; 2090 } 2091 2092 //===----------------------------------------------------------------------===// 2093 // LowerOperation implementation 2094 //===----------------------------------------------------------------------===// 2095 2096 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2097 /// and LoOpFlags to the target MO flags. 2098 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2099 unsigned &HiOpFlags, unsigned &LoOpFlags, 2100 const GlobalValue *GV = nullptr) { 2101 HiOpFlags = PPCII::MO_HA; 2102 LoOpFlags = PPCII::MO_LO; 2103 2104 // Don't use the pic base if not in PIC relocation model. 2105 if (IsPIC) { 2106 HiOpFlags |= PPCII::MO_PIC_FLAG; 2107 LoOpFlags |= PPCII::MO_PIC_FLAG; 2108 } 2109 2110 // If this is a reference to a global value that requires a non-lazy-ptr, make 2111 // sure that instruction lowering adds it. 2112 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2113 HiOpFlags |= PPCII::MO_NLP_FLAG; 2114 LoOpFlags |= PPCII::MO_NLP_FLAG; 2115 2116 if (GV->hasHiddenVisibility()) { 2117 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2118 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2119 } 2120 } 2121 } 2122 2123 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2124 SelectionDAG &DAG) { 2125 SDLoc DL(HiPart); 2126 EVT PtrVT = HiPart.getValueType(); 2127 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2128 2129 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2130 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2131 2132 // With PIC, the first instruction is actually "GR+hi(&G)". 2133 if (isPIC) 2134 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2135 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2136 2137 // Generate non-pic code that has direct accesses to the constant pool. 2138 // The address of the global is just (hi(&g)+lo(&g)). 2139 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2140 } 2141 2142 static void setUsesTOCBasePtr(MachineFunction &MF) { 2143 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2144 FuncInfo->setUsesTOCBasePtr(); 2145 } 2146 2147 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2148 setUsesTOCBasePtr(DAG.getMachineFunction()); 2149 } 2150 2151 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2152 SDValue GA) { 2153 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2154 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2155 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2156 2157 SDValue Ops[] = { GA, Reg }; 2158 return DAG.getMemIntrinsicNode( 2159 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2160 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2161 false, 0); 2162 } 2163 2164 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2165 SelectionDAG &DAG) const { 2166 EVT PtrVT = Op.getValueType(); 2167 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2168 const Constant *C = CP->getConstVal(); 2169 2170 // 64-bit SVR4 ABI code is always position-independent. 2171 // The actual address of the GlobalValue is stored in the TOC. 2172 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2173 setUsesTOCBasePtr(DAG); 2174 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2175 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2176 } 2177 2178 unsigned MOHiFlag, MOLoFlag; 2179 bool IsPIC = isPositionIndependent(); 2180 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2181 2182 if (IsPIC && Subtarget.isSVR4ABI()) { 2183 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2184 PPCII::MO_PIC_FLAG); 2185 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2186 } 2187 2188 SDValue CPIHi = 2189 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2190 SDValue CPILo = 2191 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2192 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2193 } 2194 2195 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2196 EVT PtrVT = Op.getValueType(); 2197 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2198 2199 // 64-bit SVR4 ABI code is always position-independent. 2200 // The actual address of the GlobalValue is stored in the TOC. 2201 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2202 setUsesTOCBasePtr(DAG); 2203 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2204 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2205 } 2206 2207 unsigned MOHiFlag, MOLoFlag; 2208 bool IsPIC = isPositionIndependent(); 2209 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2210 2211 if (IsPIC && Subtarget.isSVR4ABI()) { 2212 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2213 PPCII::MO_PIC_FLAG); 2214 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2215 } 2216 2217 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2218 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2219 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2220 } 2221 2222 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2223 SelectionDAG &DAG) const { 2224 EVT PtrVT = Op.getValueType(); 2225 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2226 const BlockAddress *BA = BASDN->getBlockAddress(); 2227 2228 // 64-bit SVR4 ABI code is always position-independent. 2229 // The actual BlockAddress is stored in the TOC. 2230 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2231 setUsesTOCBasePtr(DAG); 2232 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2233 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2234 } 2235 2236 unsigned MOHiFlag, MOLoFlag; 2237 bool IsPIC = isPositionIndependent(); 2238 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2239 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2240 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2241 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2242 } 2243 2244 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2245 SelectionDAG &DAG) const { 2246 2247 // FIXME: TLS addresses currently use medium model code sequences, 2248 // which is the most useful form. Eventually support for small and 2249 // large models could be added if users need it, at the cost of 2250 // additional complexity. 2251 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2252 if (DAG.getTarget().Options.EmulatedTLS) 2253 return LowerToTLSEmulatedModel(GA, DAG); 2254 2255 SDLoc dl(GA); 2256 const GlobalValue *GV = GA->getGlobal(); 2257 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2258 bool is64bit = Subtarget.isPPC64(); 2259 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2260 PICLevel::Level picLevel = M->getPICLevel(); 2261 2262 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2263 2264 if (Model == TLSModel::LocalExec) { 2265 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2266 PPCII::MO_TPREL_HA); 2267 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2268 PPCII::MO_TPREL_LO); 2269 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2270 is64bit ? MVT::i64 : MVT::i32); 2271 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2272 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2273 } 2274 2275 if (Model == TLSModel::InitialExec) { 2276 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2277 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2278 PPCII::MO_TLS); 2279 SDValue GOTPtr; 2280 if (is64bit) { 2281 setUsesTOCBasePtr(DAG); 2282 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2283 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2284 PtrVT, GOTReg, TGA); 2285 } else 2286 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2287 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2288 PtrVT, TGA, GOTPtr); 2289 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2290 } 2291 2292 if (Model == TLSModel::GeneralDynamic) { 2293 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2294 SDValue GOTPtr; 2295 if (is64bit) { 2296 setUsesTOCBasePtr(DAG); 2297 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2298 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2299 GOTReg, TGA); 2300 } else { 2301 if (picLevel == PICLevel::SmallPIC) 2302 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2303 else 2304 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2305 } 2306 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2307 GOTPtr, TGA, TGA); 2308 } 2309 2310 if (Model == TLSModel::LocalDynamic) { 2311 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2312 SDValue GOTPtr; 2313 if (is64bit) { 2314 setUsesTOCBasePtr(DAG); 2315 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2316 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2317 GOTReg, TGA); 2318 } else { 2319 if (picLevel == PICLevel::SmallPIC) 2320 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2321 else 2322 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2323 } 2324 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2325 PtrVT, GOTPtr, TGA, TGA); 2326 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2327 PtrVT, TLSAddr, TGA); 2328 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2329 } 2330 2331 llvm_unreachable("Unknown TLS model!"); 2332 } 2333 2334 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2335 SelectionDAG &DAG) const { 2336 EVT PtrVT = Op.getValueType(); 2337 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2338 SDLoc DL(GSDN); 2339 const GlobalValue *GV = GSDN->getGlobal(); 2340 2341 // 64-bit SVR4 ABI code is always position-independent. 2342 // The actual address of the GlobalValue is stored in the TOC. 2343 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2344 setUsesTOCBasePtr(DAG); 2345 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2346 return getTOCEntry(DAG, DL, true, GA); 2347 } 2348 2349 unsigned MOHiFlag, MOLoFlag; 2350 bool IsPIC = isPositionIndependent(); 2351 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2352 2353 if (IsPIC && Subtarget.isSVR4ABI()) { 2354 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2355 GSDN->getOffset(), 2356 PPCII::MO_PIC_FLAG); 2357 return getTOCEntry(DAG, DL, false, GA); 2358 } 2359 2360 SDValue GAHi = 2361 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2362 SDValue GALo = 2363 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2364 2365 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2366 2367 // If the global reference is actually to a non-lazy-pointer, we have to do an 2368 // extra load to get the address of the global. 2369 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2370 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2371 return Ptr; 2372 } 2373 2374 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2375 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2376 SDLoc dl(Op); 2377 2378 if (Op.getValueType() == MVT::v2i64) { 2379 // When the operands themselves are v2i64 values, we need to do something 2380 // special because VSX has no underlying comparison operations for these. 2381 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2382 // Equality can be handled by casting to the legal type for Altivec 2383 // comparisons, everything else needs to be expanded. 2384 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2385 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2386 DAG.getSetCC(dl, MVT::v4i32, 2387 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2388 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2389 CC)); 2390 } 2391 2392 return SDValue(); 2393 } 2394 2395 // We handle most of these in the usual way. 2396 return Op; 2397 } 2398 2399 // If we're comparing for equality to zero, expose the fact that this is 2400 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2401 // fold the new nodes. 2402 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2403 return V; 2404 2405 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2406 // Leave comparisons against 0 and -1 alone for now, since they're usually 2407 // optimized. FIXME: revisit this when we can custom lower all setcc 2408 // optimizations. 2409 if (C->isAllOnesValue() || C->isNullValue()) 2410 return SDValue(); 2411 } 2412 2413 // If we have an integer seteq/setne, turn it into a compare against zero 2414 // by xor'ing the rhs with the lhs, which is faster than setting a 2415 // condition register, reading it back out, and masking the correct bit. The 2416 // normal approach here uses sub to do this instead of xor. Using xor exposes 2417 // the result to other bit-twiddling opportunities. 2418 EVT LHSVT = Op.getOperand(0).getValueType(); 2419 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2420 EVT VT = Op.getValueType(); 2421 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2422 Op.getOperand(1)); 2423 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2424 } 2425 return SDValue(); 2426 } 2427 2428 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2429 SDNode *Node = Op.getNode(); 2430 EVT VT = Node->getValueType(0); 2431 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2432 SDValue InChain = Node->getOperand(0); 2433 SDValue VAListPtr = Node->getOperand(1); 2434 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2435 SDLoc dl(Node); 2436 2437 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2438 2439 // gpr_index 2440 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2441 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2442 InChain = GprIndex.getValue(1); 2443 2444 if (VT == MVT::i64) { 2445 // Check if GprIndex is even 2446 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2447 DAG.getConstant(1, dl, MVT::i32)); 2448 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2449 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2450 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2451 DAG.getConstant(1, dl, MVT::i32)); 2452 // Align GprIndex to be even if it isn't 2453 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2454 GprIndex); 2455 } 2456 2457 // fpr index is 1 byte after gpr 2458 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2459 DAG.getConstant(1, dl, MVT::i32)); 2460 2461 // fpr 2462 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2463 FprPtr, MachinePointerInfo(SV), MVT::i8); 2464 InChain = FprIndex.getValue(1); 2465 2466 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2467 DAG.getConstant(8, dl, MVT::i32)); 2468 2469 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2470 DAG.getConstant(4, dl, MVT::i32)); 2471 2472 // areas 2473 SDValue OverflowArea = 2474 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2475 InChain = OverflowArea.getValue(1); 2476 2477 SDValue RegSaveArea = 2478 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2479 InChain = RegSaveArea.getValue(1); 2480 2481 // select overflow_area if index > 8 2482 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2483 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2484 2485 // adjustment constant gpr_index * 4/8 2486 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2487 VT.isInteger() ? GprIndex : FprIndex, 2488 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2489 MVT::i32)); 2490 2491 // OurReg = RegSaveArea + RegConstant 2492 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2493 RegConstant); 2494 2495 // Floating types are 32 bytes into RegSaveArea 2496 if (VT.isFloatingPoint()) 2497 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2498 DAG.getConstant(32, dl, MVT::i32)); 2499 2500 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2501 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2502 VT.isInteger() ? GprIndex : FprIndex, 2503 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2504 MVT::i32)); 2505 2506 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2507 VT.isInteger() ? VAListPtr : FprPtr, 2508 MachinePointerInfo(SV), MVT::i8); 2509 2510 // determine if we should load from reg_save_area or overflow_area 2511 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2512 2513 // increase overflow_area by 4/8 if gpr/fpr > 8 2514 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2515 DAG.getConstant(VT.isInteger() ? 4 : 8, 2516 dl, MVT::i32)); 2517 2518 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2519 OverflowAreaPlusN); 2520 2521 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 2522 MachinePointerInfo(), MVT::i32); 2523 2524 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 2525 } 2526 2527 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2528 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2529 2530 // We have to copy the entire va_list struct: 2531 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2532 return DAG.getMemcpy(Op.getOperand(0), Op, 2533 Op.getOperand(1), Op.getOperand(2), 2534 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2535 false, MachinePointerInfo(), MachinePointerInfo()); 2536 } 2537 2538 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2539 SelectionDAG &DAG) const { 2540 return Op.getOperand(0); 2541 } 2542 2543 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2544 SelectionDAG &DAG) const { 2545 SDValue Chain = Op.getOperand(0); 2546 SDValue Trmp = Op.getOperand(1); // trampoline 2547 SDValue FPtr = Op.getOperand(2); // nested function 2548 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2549 SDLoc dl(Op); 2550 2551 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2552 bool isPPC64 = (PtrVT == MVT::i64); 2553 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2554 2555 TargetLowering::ArgListTy Args; 2556 TargetLowering::ArgListEntry Entry; 2557 2558 Entry.Ty = IntPtrTy; 2559 Entry.Node = Trmp; Args.push_back(Entry); 2560 2561 // TrampSize == (isPPC64 ? 48 : 40); 2562 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2563 isPPC64 ? MVT::i64 : MVT::i32); 2564 Args.push_back(Entry); 2565 2566 Entry.Node = FPtr; Args.push_back(Entry); 2567 Entry.Node = Nest; Args.push_back(Entry); 2568 2569 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2570 TargetLowering::CallLoweringInfo CLI(DAG); 2571 CLI.setDebugLoc(dl).setChain(Chain) 2572 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2573 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2574 std::move(Args)); 2575 2576 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2577 return CallResult.second; 2578 } 2579 2580 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2581 MachineFunction &MF = DAG.getMachineFunction(); 2582 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2583 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2584 2585 SDLoc dl(Op); 2586 2587 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2588 // vastart just stores the address of the VarArgsFrameIndex slot into the 2589 // memory location argument. 2590 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2591 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2592 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2593 MachinePointerInfo(SV)); 2594 } 2595 2596 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2597 // We suppose the given va_list is already allocated. 2598 // 2599 // typedef struct { 2600 // char gpr; /* index into the array of 8 GPRs 2601 // * stored in the register save area 2602 // * gpr=0 corresponds to r3, 2603 // * gpr=1 to r4, etc. 2604 // */ 2605 // char fpr; /* index into the array of 8 FPRs 2606 // * stored in the register save area 2607 // * fpr=0 corresponds to f1, 2608 // * fpr=1 to f2, etc. 2609 // */ 2610 // char *overflow_arg_area; 2611 // /* location on stack that holds 2612 // * the next overflow argument 2613 // */ 2614 // char *reg_save_area; 2615 // /* where r3:r10 and f1:f8 (if saved) 2616 // * are stored 2617 // */ 2618 // } va_list[1]; 2619 2620 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2621 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2622 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2623 PtrVT); 2624 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2625 PtrVT); 2626 2627 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2628 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2629 2630 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2631 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2632 2633 uint64_t FPROffset = 1; 2634 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2635 2636 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2637 2638 // Store first byte : number of int regs 2639 SDValue firstStore = 2640 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 2641 MachinePointerInfo(SV), MVT::i8); 2642 uint64_t nextOffset = FPROffset; 2643 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2644 ConstFPROffset); 2645 2646 // Store second byte : number of float regs 2647 SDValue secondStore = 2648 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2649 MachinePointerInfo(SV, nextOffset), MVT::i8); 2650 nextOffset += StackOffset; 2651 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2652 2653 // Store second word : arguments given on stack 2654 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2655 MachinePointerInfo(SV, nextOffset)); 2656 nextOffset += FrameOffset; 2657 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2658 2659 // Store third word : arguments given in registers 2660 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2661 MachinePointerInfo(SV, nextOffset)); 2662 } 2663 2664 #include "PPCGenCallingConv.inc" 2665 2666 // Function whose sole purpose is to kill compiler warnings 2667 // stemming from unused functions included from PPCGenCallingConv.inc. 2668 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2669 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2670 } 2671 2672 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2673 CCValAssign::LocInfo &LocInfo, 2674 ISD::ArgFlagsTy &ArgFlags, 2675 CCState &State) { 2676 return true; 2677 } 2678 2679 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2680 MVT &LocVT, 2681 CCValAssign::LocInfo &LocInfo, 2682 ISD::ArgFlagsTy &ArgFlags, 2683 CCState &State) { 2684 static const MCPhysReg ArgRegs[] = { 2685 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2686 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2687 }; 2688 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2689 2690 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2691 2692 // Skip one register if the first unallocated register has an even register 2693 // number and there are still argument registers available which have not been 2694 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2695 // need to skip a register if RegNum is odd. 2696 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2697 State.AllocateReg(ArgRegs[RegNum]); 2698 } 2699 2700 // Always return false here, as this function only makes sure that the first 2701 // unallocated register has an odd register number and does not actually 2702 // allocate a register for the current argument. 2703 return false; 2704 } 2705 2706 bool 2707 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 2708 MVT &LocVT, 2709 CCValAssign::LocInfo &LocInfo, 2710 ISD::ArgFlagsTy &ArgFlags, 2711 CCState &State) { 2712 static const MCPhysReg ArgRegs[] = { 2713 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2714 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2715 }; 2716 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2717 2718 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2719 int RegsLeft = NumArgRegs - RegNum; 2720 2721 // Skip if there is not enough registers left for long double type (4 gpr regs 2722 // in soft float mode) and put long double argument on the stack. 2723 if (RegNum != NumArgRegs && RegsLeft < 4) { 2724 for (int i = 0; i < RegsLeft; i++) { 2725 State.AllocateReg(ArgRegs[RegNum + i]); 2726 } 2727 } 2728 2729 return false; 2730 } 2731 2732 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2733 MVT &LocVT, 2734 CCValAssign::LocInfo &LocInfo, 2735 ISD::ArgFlagsTy &ArgFlags, 2736 CCState &State) { 2737 static const MCPhysReg ArgRegs[] = { 2738 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2739 PPC::F8 2740 }; 2741 2742 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2743 2744 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2745 2746 // If there is only one Floating-point register left we need to put both f64 2747 // values of a split ppc_fp128 value on the stack. 2748 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2749 State.AllocateReg(ArgRegs[RegNum]); 2750 } 2751 2752 // Always return false here, as this function only makes sure that the two f64 2753 // values a ppc_fp128 value is split into are both passed in registers or both 2754 // passed on the stack and does not actually allocate a register for the 2755 // current argument. 2756 return false; 2757 } 2758 2759 /// FPR - The set of FP registers that should be allocated for arguments, 2760 /// on Darwin. 2761 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2762 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2763 PPC::F11, PPC::F12, PPC::F13}; 2764 2765 /// QFPR - The set of QPX registers that should be allocated for arguments. 2766 static const MCPhysReg QFPR[] = { 2767 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2768 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2769 2770 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2771 /// the stack. 2772 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2773 unsigned PtrByteSize) { 2774 unsigned ArgSize = ArgVT.getStoreSize(); 2775 if (Flags.isByVal()) 2776 ArgSize = Flags.getByValSize(); 2777 2778 // Round up to multiples of the pointer size, except for array members, 2779 // which are always packed. 2780 if (!Flags.isInConsecutiveRegs()) 2781 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2782 2783 return ArgSize; 2784 } 2785 2786 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2787 /// on the stack. 2788 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2789 ISD::ArgFlagsTy Flags, 2790 unsigned PtrByteSize) { 2791 unsigned Align = PtrByteSize; 2792 2793 // Altivec parameters are padded to a 16 byte boundary. 2794 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2795 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2796 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2797 ArgVT == MVT::v1i128) 2798 Align = 16; 2799 // QPX vector types stored in double-precision are padded to a 32 byte 2800 // boundary. 2801 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2802 Align = 32; 2803 2804 // ByVal parameters are aligned as requested. 2805 if (Flags.isByVal()) { 2806 unsigned BVAlign = Flags.getByValAlign(); 2807 if (BVAlign > PtrByteSize) { 2808 if (BVAlign % PtrByteSize != 0) 2809 llvm_unreachable( 2810 "ByVal alignment is not a multiple of the pointer size"); 2811 2812 Align = BVAlign; 2813 } 2814 } 2815 2816 // Array members are always packed to their original alignment. 2817 if (Flags.isInConsecutiveRegs()) { 2818 // If the array member was split into multiple registers, the first 2819 // needs to be aligned to the size of the full type. (Except for 2820 // ppcf128, which is only aligned as its f64 components.) 2821 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2822 Align = OrigVT.getStoreSize(); 2823 else 2824 Align = ArgVT.getStoreSize(); 2825 } 2826 2827 return Align; 2828 } 2829 2830 /// CalculateStackSlotUsed - Return whether this argument will use its 2831 /// stack slot (instead of being passed in registers). ArgOffset, 2832 /// AvailableFPRs, and AvailableVRs must hold the current argument 2833 /// position, and will be updated to account for this argument. 2834 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2835 ISD::ArgFlagsTy Flags, 2836 unsigned PtrByteSize, 2837 unsigned LinkageSize, 2838 unsigned ParamAreaSize, 2839 unsigned &ArgOffset, 2840 unsigned &AvailableFPRs, 2841 unsigned &AvailableVRs, bool HasQPX) { 2842 bool UseMemory = false; 2843 2844 // Respect alignment of argument on the stack. 2845 unsigned Align = 2846 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2847 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2848 // If there's no space left in the argument save area, we must 2849 // use memory (this check also catches zero-sized arguments). 2850 if (ArgOffset >= LinkageSize + ParamAreaSize) 2851 UseMemory = true; 2852 2853 // Allocate argument on the stack. 2854 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2855 if (Flags.isInConsecutiveRegsLast()) 2856 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2857 // If we overran the argument save area, we must use memory 2858 // (this check catches arguments passed partially in memory) 2859 if (ArgOffset > LinkageSize + ParamAreaSize) 2860 UseMemory = true; 2861 2862 // However, if the argument is actually passed in an FPR or a VR, 2863 // we don't use memory after all. 2864 if (!Flags.isByVal()) { 2865 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2866 // QPX registers overlap with the scalar FP registers. 2867 (HasQPX && (ArgVT == MVT::v4f32 || 2868 ArgVT == MVT::v4f64 || 2869 ArgVT == MVT::v4i1))) 2870 if (AvailableFPRs > 0) { 2871 --AvailableFPRs; 2872 return false; 2873 } 2874 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2875 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2876 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2877 ArgVT == MVT::v1i128) 2878 if (AvailableVRs > 0) { 2879 --AvailableVRs; 2880 return false; 2881 } 2882 } 2883 2884 return UseMemory; 2885 } 2886 2887 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2888 /// ensure minimum alignment required for target. 2889 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2890 unsigned NumBytes) { 2891 unsigned TargetAlign = Lowering->getStackAlignment(); 2892 unsigned AlignMask = TargetAlign - 1; 2893 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2894 return NumBytes; 2895 } 2896 2897 SDValue PPCTargetLowering::LowerFormalArguments( 2898 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2899 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2900 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2901 if (Subtarget.isSVR4ABI()) { 2902 if (Subtarget.isPPC64()) 2903 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2904 dl, DAG, InVals); 2905 else 2906 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2907 dl, DAG, InVals); 2908 } else { 2909 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2910 dl, DAG, InVals); 2911 } 2912 } 2913 2914 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2915 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2916 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2917 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2918 2919 // 32-bit SVR4 ABI Stack Frame Layout: 2920 // +-----------------------------------+ 2921 // +--> | Back chain | 2922 // | +-----------------------------------+ 2923 // | | Floating-point register save area | 2924 // | +-----------------------------------+ 2925 // | | General register save area | 2926 // | +-----------------------------------+ 2927 // | | CR save word | 2928 // | +-----------------------------------+ 2929 // | | VRSAVE save word | 2930 // | +-----------------------------------+ 2931 // | | Alignment padding | 2932 // | +-----------------------------------+ 2933 // | | Vector register save area | 2934 // | +-----------------------------------+ 2935 // | | Local variable space | 2936 // | +-----------------------------------+ 2937 // | | Parameter list area | 2938 // | +-----------------------------------+ 2939 // | | LR save word | 2940 // | +-----------------------------------+ 2941 // SP--> +--- | Back chain | 2942 // +-----------------------------------+ 2943 // 2944 // Specifications: 2945 // System V Application Binary Interface PowerPC Processor Supplement 2946 // AltiVec Technology Programming Interface Manual 2947 2948 MachineFunction &MF = DAG.getMachineFunction(); 2949 MachineFrameInfo &MFI = MF.getFrameInfo(); 2950 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2951 2952 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2953 // Potential tail calls could cause overwriting of argument stack slots. 2954 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2955 (CallConv == CallingConv::Fast)); 2956 unsigned PtrByteSize = 4; 2957 2958 // Assign locations to all of the incoming arguments. 2959 SmallVector<CCValAssign, 16> ArgLocs; 2960 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2961 *DAG.getContext()); 2962 2963 // Reserve space for the linkage area on the stack. 2964 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2965 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2966 if (useSoftFloat()) 2967 CCInfo.PreAnalyzeFormalArguments(Ins); 2968 2969 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2970 CCInfo.clearWasPPCF128(); 2971 2972 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2973 CCValAssign &VA = ArgLocs[i]; 2974 2975 // Arguments stored in registers. 2976 if (VA.isRegLoc()) { 2977 const TargetRegisterClass *RC; 2978 EVT ValVT = VA.getValVT(); 2979 2980 switch (ValVT.getSimpleVT().SimpleTy) { 2981 default: 2982 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2983 case MVT::i1: 2984 case MVT::i32: 2985 RC = &PPC::GPRCRegClass; 2986 break; 2987 case MVT::f32: 2988 if (Subtarget.hasP8Vector()) 2989 RC = &PPC::VSSRCRegClass; 2990 else 2991 RC = &PPC::F4RCRegClass; 2992 break; 2993 case MVT::f64: 2994 if (Subtarget.hasVSX()) 2995 RC = &PPC::VSFRCRegClass; 2996 else 2997 RC = &PPC::F8RCRegClass; 2998 break; 2999 case MVT::v16i8: 3000 case MVT::v8i16: 3001 case MVT::v4i32: 3002 RC = &PPC::VRRCRegClass; 3003 break; 3004 case MVT::v4f32: 3005 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3006 break; 3007 case MVT::v2f64: 3008 case MVT::v2i64: 3009 RC = &PPC::VRRCRegClass; 3010 break; 3011 case MVT::v4f64: 3012 RC = &PPC::QFRCRegClass; 3013 break; 3014 case MVT::v4i1: 3015 RC = &PPC::QBRCRegClass; 3016 break; 3017 } 3018 3019 // Transform the arguments stored in physical registers into virtual ones. 3020 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3021 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3022 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3023 3024 if (ValVT == MVT::i1) 3025 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3026 3027 InVals.push_back(ArgValue); 3028 } else { 3029 // Argument stored in memory. 3030 assert(VA.isMemLoc()); 3031 3032 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3033 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3034 isImmutable); 3035 3036 // Create load nodes to retrieve arguments from the stack. 3037 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3038 InVals.push_back( 3039 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3040 } 3041 } 3042 3043 // Assign locations to all of the incoming aggregate by value arguments. 3044 // Aggregates passed by value are stored in the local variable space of the 3045 // caller's stack frame, right above the parameter list area. 3046 SmallVector<CCValAssign, 16> ByValArgLocs; 3047 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3048 ByValArgLocs, *DAG.getContext()); 3049 3050 // Reserve stack space for the allocations in CCInfo. 3051 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3052 3053 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3054 3055 // Area that is at least reserved in the caller of this function. 3056 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3057 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3058 3059 // Set the size that is at least reserved in caller of this function. Tail 3060 // call optimized function's reserved stack space needs to be aligned so that 3061 // taking the difference between two stack areas will result in an aligned 3062 // stack. 3063 MinReservedArea = 3064 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3065 FuncInfo->setMinReservedArea(MinReservedArea); 3066 3067 SmallVector<SDValue, 8> MemOps; 3068 3069 // If the function takes variable number of arguments, make a frame index for 3070 // the start of the first vararg value... for expansion of llvm.va_start. 3071 if (isVarArg) { 3072 static const MCPhysReg GPArgRegs[] = { 3073 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3074 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3075 }; 3076 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3077 3078 static const MCPhysReg FPArgRegs[] = { 3079 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3080 PPC::F8 3081 }; 3082 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3083 3084 if (useSoftFloat()) 3085 NumFPArgRegs = 0; 3086 3087 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3088 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3089 3090 // Make room for NumGPArgRegs and NumFPArgRegs. 3091 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3092 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3093 3094 FuncInfo->setVarArgsStackOffset( 3095 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3096 CCInfo.getNextStackOffset(), true)); 3097 3098 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3099 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3100 3101 // The fixed integer arguments of a variadic function are stored to the 3102 // VarArgsFrameIndex on the stack so that they may be loaded by 3103 // dereferencing the result of va_next. 3104 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3105 // Get an existing live-in vreg, or add a new one. 3106 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3107 if (!VReg) 3108 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3109 3110 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3111 SDValue Store = 3112 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3113 MemOps.push_back(Store); 3114 // Increment the address by four for the next argument to store 3115 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3116 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3117 } 3118 3119 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3120 // is set. 3121 // The double arguments are stored to the VarArgsFrameIndex 3122 // on the stack. 3123 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3124 // Get an existing live-in vreg, or add a new one. 3125 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3126 if (!VReg) 3127 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3128 3129 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3130 SDValue Store = 3131 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3132 MemOps.push_back(Store); 3133 // Increment the address by eight for the next argument to store 3134 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3135 PtrVT); 3136 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3137 } 3138 } 3139 3140 if (!MemOps.empty()) 3141 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3142 3143 return Chain; 3144 } 3145 3146 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3147 // value to MVT::i64 and then truncate to the correct register size. 3148 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3149 EVT ObjectVT, SelectionDAG &DAG, 3150 SDValue ArgVal, 3151 const SDLoc &dl) const { 3152 if (Flags.isSExt()) 3153 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3154 DAG.getValueType(ObjectVT)); 3155 else if (Flags.isZExt()) 3156 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3157 DAG.getValueType(ObjectVT)); 3158 3159 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3160 } 3161 3162 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3163 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3164 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3165 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3166 // TODO: add description of PPC stack frame format, or at least some docs. 3167 // 3168 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3169 bool isLittleEndian = Subtarget.isLittleEndian(); 3170 MachineFunction &MF = DAG.getMachineFunction(); 3171 MachineFrameInfo &MFI = MF.getFrameInfo(); 3172 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3173 3174 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3175 "fastcc not supported on varargs functions"); 3176 3177 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3178 // Potential tail calls could cause overwriting of argument stack slots. 3179 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3180 (CallConv == CallingConv::Fast)); 3181 unsigned PtrByteSize = 8; 3182 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3183 3184 static const MCPhysReg GPR[] = { 3185 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3186 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3187 }; 3188 static const MCPhysReg VR[] = { 3189 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3190 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3191 }; 3192 3193 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3194 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3195 const unsigned Num_VR_Regs = array_lengthof(VR); 3196 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3197 3198 // Do a first pass over the arguments to determine whether the ABI 3199 // guarantees that our caller has allocated the parameter save area 3200 // on its stack frame. In the ELFv1 ABI, this is always the case; 3201 // in the ELFv2 ABI, it is true if this is a vararg function or if 3202 // any parameter is located in a stack slot. 3203 3204 bool HasParameterArea = !isELFv2ABI || isVarArg; 3205 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3206 unsigned NumBytes = LinkageSize; 3207 unsigned AvailableFPRs = Num_FPR_Regs; 3208 unsigned AvailableVRs = Num_VR_Regs; 3209 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3210 if (Ins[i].Flags.isNest()) 3211 continue; 3212 3213 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3214 PtrByteSize, LinkageSize, ParamAreaSize, 3215 NumBytes, AvailableFPRs, AvailableVRs, 3216 Subtarget.hasQPX())) 3217 HasParameterArea = true; 3218 } 3219 3220 // Add DAG nodes to load the arguments or copy them out of registers. On 3221 // entry to a function on PPC, the arguments start after the linkage area, 3222 // although the first ones are often in registers. 3223 3224 unsigned ArgOffset = LinkageSize; 3225 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3226 unsigned &QFPR_idx = FPR_idx; 3227 SmallVector<SDValue, 8> MemOps; 3228 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3229 unsigned CurArgIdx = 0; 3230 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3231 SDValue ArgVal; 3232 bool needsLoad = false; 3233 EVT ObjectVT = Ins[ArgNo].VT; 3234 EVT OrigVT = Ins[ArgNo].ArgVT; 3235 unsigned ObjSize = ObjectVT.getStoreSize(); 3236 unsigned ArgSize = ObjSize; 3237 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3238 if (Ins[ArgNo].isOrigArg()) { 3239 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3240 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3241 } 3242 // We re-align the argument offset for each argument, except when using the 3243 // fast calling convention, when we need to make sure we do that only when 3244 // we'll actually use a stack slot. 3245 unsigned CurArgOffset, Align; 3246 auto ComputeArgOffset = [&]() { 3247 /* Respect alignment of argument on the stack. */ 3248 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3249 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3250 CurArgOffset = ArgOffset; 3251 }; 3252 3253 if (CallConv != CallingConv::Fast) { 3254 ComputeArgOffset(); 3255 3256 /* Compute GPR index associated with argument offset. */ 3257 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3258 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3259 } 3260 3261 // FIXME the codegen can be much improved in some cases. 3262 // We do not have to keep everything in memory. 3263 if (Flags.isByVal()) { 3264 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3265 3266 if (CallConv == CallingConv::Fast) 3267 ComputeArgOffset(); 3268 3269 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3270 ObjSize = Flags.getByValSize(); 3271 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3272 // Empty aggregate parameters do not take up registers. Examples: 3273 // struct { } a; 3274 // union { } b; 3275 // int c[0]; 3276 // etc. However, we have to provide a place-holder in InVals, so 3277 // pretend we have an 8-byte item at the current address for that 3278 // purpose. 3279 if (!ObjSize) { 3280 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3281 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3282 InVals.push_back(FIN); 3283 continue; 3284 } 3285 3286 // Create a stack object covering all stack doublewords occupied 3287 // by the argument. If the argument is (fully or partially) on 3288 // the stack, or if the argument is fully in registers but the 3289 // caller has allocated the parameter save anyway, we can refer 3290 // directly to the caller's stack frame. Otherwise, create a 3291 // local copy in our own frame. 3292 int FI; 3293 if (HasParameterArea || 3294 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3295 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3296 else 3297 FI = MFI.CreateStackObject(ArgSize, Align, false); 3298 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3299 3300 // Handle aggregates smaller than 8 bytes. 3301 if (ObjSize < PtrByteSize) { 3302 // The value of the object is its address, which differs from the 3303 // address of the enclosing doubleword on big-endian systems. 3304 SDValue Arg = FIN; 3305 if (!isLittleEndian) { 3306 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3307 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3308 } 3309 InVals.push_back(Arg); 3310 3311 if (GPR_idx != Num_GPR_Regs) { 3312 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3313 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3314 SDValue Store; 3315 3316 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3317 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3318 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3319 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3320 MachinePointerInfo(&*FuncArg), ObjType); 3321 } else { 3322 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3323 // store the whole register as-is to the parameter save area 3324 // slot. 3325 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3326 MachinePointerInfo(&*FuncArg)); 3327 } 3328 3329 MemOps.push_back(Store); 3330 } 3331 // Whether we copied from a register or not, advance the offset 3332 // into the parameter save area by a full doubleword. 3333 ArgOffset += PtrByteSize; 3334 continue; 3335 } 3336 3337 // The value of the object is its address, which is the address of 3338 // its first stack doubleword. 3339 InVals.push_back(FIN); 3340 3341 // Store whatever pieces of the object are in registers to memory. 3342 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3343 if (GPR_idx == Num_GPR_Regs) 3344 break; 3345 3346 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3347 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3348 SDValue Addr = FIN; 3349 if (j) { 3350 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3351 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3352 } 3353 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3354 MachinePointerInfo(&*FuncArg, j)); 3355 MemOps.push_back(Store); 3356 ++GPR_idx; 3357 } 3358 ArgOffset += ArgSize; 3359 continue; 3360 } 3361 3362 switch (ObjectVT.getSimpleVT().SimpleTy) { 3363 default: llvm_unreachable("Unhandled argument type!"); 3364 case MVT::i1: 3365 case MVT::i32: 3366 case MVT::i64: 3367 if (Flags.isNest()) { 3368 // The 'nest' parameter, if any, is passed in R11. 3369 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3370 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3371 3372 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3373 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3374 3375 break; 3376 } 3377 3378 // These can be scalar arguments or elements of an integer array type 3379 // passed directly. Clang may use those instead of "byval" aggregate 3380 // types to avoid forcing arguments to memory unnecessarily. 3381 if (GPR_idx != Num_GPR_Regs) { 3382 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3383 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3384 3385 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3386 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3387 // value to MVT::i64 and then truncate to the correct register size. 3388 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3389 } else { 3390 if (CallConv == CallingConv::Fast) 3391 ComputeArgOffset(); 3392 3393 needsLoad = true; 3394 ArgSize = PtrByteSize; 3395 } 3396 if (CallConv != CallingConv::Fast || needsLoad) 3397 ArgOffset += 8; 3398 break; 3399 3400 case MVT::f32: 3401 case MVT::f64: 3402 // These can be scalar arguments or elements of a float array type 3403 // passed directly. The latter are used to implement ELFv2 homogenous 3404 // float aggregates. 3405 if (FPR_idx != Num_FPR_Regs) { 3406 unsigned VReg; 3407 3408 if (ObjectVT == MVT::f32) 3409 VReg = MF.addLiveIn(FPR[FPR_idx], 3410 Subtarget.hasP8Vector() 3411 ? &PPC::VSSRCRegClass 3412 : &PPC::F4RCRegClass); 3413 else 3414 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3415 ? &PPC::VSFRCRegClass 3416 : &PPC::F8RCRegClass); 3417 3418 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3419 ++FPR_idx; 3420 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3421 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3422 // once we support fp <-> gpr moves. 3423 3424 // This can only ever happen in the presence of f32 array types, 3425 // since otherwise we never run out of FPRs before running out 3426 // of GPRs. 3427 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3428 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3429 3430 if (ObjectVT == MVT::f32) { 3431 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3432 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3433 DAG.getConstant(32, dl, MVT::i32)); 3434 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3435 } 3436 3437 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3438 } else { 3439 if (CallConv == CallingConv::Fast) 3440 ComputeArgOffset(); 3441 3442 needsLoad = true; 3443 } 3444 3445 // When passing an array of floats, the array occupies consecutive 3446 // space in the argument area; only round up to the next doubleword 3447 // at the end of the array. Otherwise, each float takes 8 bytes. 3448 if (CallConv != CallingConv::Fast || needsLoad) { 3449 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3450 ArgOffset += ArgSize; 3451 if (Flags.isInConsecutiveRegsLast()) 3452 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3453 } 3454 break; 3455 case MVT::v4f32: 3456 case MVT::v4i32: 3457 case MVT::v8i16: 3458 case MVT::v16i8: 3459 case MVT::v2f64: 3460 case MVT::v2i64: 3461 case MVT::v1i128: 3462 if (!Subtarget.hasQPX()) { 3463 // These can be scalar arguments or elements of a vector array type 3464 // passed directly. The latter are used to implement ELFv2 homogenous 3465 // vector aggregates. 3466 if (VR_idx != Num_VR_Regs) { 3467 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3468 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3469 ++VR_idx; 3470 } else { 3471 if (CallConv == CallingConv::Fast) 3472 ComputeArgOffset(); 3473 3474 needsLoad = true; 3475 } 3476 if (CallConv != CallingConv::Fast || needsLoad) 3477 ArgOffset += 16; 3478 break; 3479 } // not QPX 3480 3481 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3482 "Invalid QPX parameter type"); 3483 /* fall through */ 3484 3485 case MVT::v4f64: 3486 case MVT::v4i1: 3487 // QPX vectors are treated like their scalar floating-point subregisters 3488 // (except that they're larger). 3489 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3490 if (QFPR_idx != Num_QFPR_Regs) { 3491 const TargetRegisterClass *RC; 3492 switch (ObjectVT.getSimpleVT().SimpleTy) { 3493 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3494 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3495 default: RC = &PPC::QBRCRegClass; break; 3496 } 3497 3498 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3499 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3500 ++QFPR_idx; 3501 } else { 3502 if (CallConv == CallingConv::Fast) 3503 ComputeArgOffset(); 3504 needsLoad = true; 3505 } 3506 if (CallConv != CallingConv::Fast || needsLoad) 3507 ArgOffset += Sz; 3508 break; 3509 } 3510 3511 // We need to load the argument to a virtual register if we determined 3512 // above that we ran out of physical registers of the appropriate type. 3513 if (needsLoad) { 3514 if (ObjSize < ArgSize && !isLittleEndian) 3515 CurArgOffset += ArgSize - ObjSize; 3516 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3517 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3518 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3519 } 3520 3521 InVals.push_back(ArgVal); 3522 } 3523 3524 // Area that is at least reserved in the caller of this function. 3525 unsigned MinReservedArea; 3526 if (HasParameterArea) 3527 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3528 else 3529 MinReservedArea = LinkageSize; 3530 3531 // Set the size that is at least reserved in caller of this function. Tail 3532 // call optimized functions' reserved stack space needs to be aligned so that 3533 // taking the difference between two stack areas will result in an aligned 3534 // stack. 3535 MinReservedArea = 3536 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3537 FuncInfo->setMinReservedArea(MinReservedArea); 3538 3539 // If the function takes variable number of arguments, make a frame index for 3540 // the start of the first vararg value... for expansion of llvm.va_start. 3541 if (isVarArg) { 3542 int Depth = ArgOffset; 3543 3544 FuncInfo->setVarArgsFrameIndex( 3545 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3546 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3547 3548 // If this function is vararg, store any remaining integer argument regs 3549 // to their spots on the stack so that they may be loaded by dereferencing 3550 // the result of va_next. 3551 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3552 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3553 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3554 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3555 SDValue Store = 3556 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3557 MemOps.push_back(Store); 3558 // Increment the address by four for the next argument to store 3559 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3560 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3561 } 3562 } 3563 3564 if (!MemOps.empty()) 3565 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3566 3567 return Chain; 3568 } 3569 3570 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3571 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3572 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3573 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3574 // TODO: add description of PPC stack frame format, or at least some docs. 3575 // 3576 MachineFunction &MF = DAG.getMachineFunction(); 3577 MachineFrameInfo &MFI = MF.getFrameInfo(); 3578 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3579 3580 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3581 bool isPPC64 = PtrVT == MVT::i64; 3582 // Potential tail calls could cause overwriting of argument stack slots. 3583 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3584 (CallConv == CallingConv::Fast)); 3585 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3586 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3587 unsigned ArgOffset = LinkageSize; 3588 // Area that is at least reserved in caller of this function. 3589 unsigned MinReservedArea = ArgOffset; 3590 3591 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3592 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3593 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3594 }; 3595 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3596 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3597 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3598 }; 3599 static const MCPhysReg VR[] = { 3600 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3601 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3602 }; 3603 3604 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3605 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3606 const unsigned Num_VR_Regs = array_lengthof( VR); 3607 3608 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3609 3610 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3611 3612 // In 32-bit non-varargs functions, the stack space for vectors is after the 3613 // stack space for non-vectors. We do not use this space unless we have 3614 // too many vectors to fit in registers, something that only occurs in 3615 // constructed examples:), but we have to walk the arglist to figure 3616 // that out...for the pathological case, compute VecArgOffset as the 3617 // start of the vector parameter area. Computing VecArgOffset is the 3618 // entire point of the following loop. 3619 unsigned VecArgOffset = ArgOffset; 3620 if (!isVarArg && !isPPC64) { 3621 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3622 ++ArgNo) { 3623 EVT ObjectVT = Ins[ArgNo].VT; 3624 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3625 3626 if (Flags.isByVal()) { 3627 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3628 unsigned ObjSize = Flags.getByValSize(); 3629 unsigned ArgSize = 3630 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3631 VecArgOffset += ArgSize; 3632 continue; 3633 } 3634 3635 switch(ObjectVT.getSimpleVT().SimpleTy) { 3636 default: llvm_unreachable("Unhandled argument type!"); 3637 case MVT::i1: 3638 case MVT::i32: 3639 case MVT::f32: 3640 VecArgOffset += 4; 3641 break; 3642 case MVT::i64: // PPC64 3643 case MVT::f64: 3644 // FIXME: We are guaranteed to be !isPPC64 at this point. 3645 // Does MVT::i64 apply? 3646 VecArgOffset += 8; 3647 break; 3648 case MVT::v4f32: 3649 case MVT::v4i32: 3650 case MVT::v8i16: 3651 case MVT::v16i8: 3652 // Nothing to do, we're only looking at Nonvector args here. 3653 break; 3654 } 3655 } 3656 } 3657 // We've found where the vector parameter area in memory is. Skip the 3658 // first 12 parameters; these don't use that memory. 3659 VecArgOffset = ((VecArgOffset+15)/16)*16; 3660 VecArgOffset += 12*16; 3661 3662 // Add DAG nodes to load the arguments or copy them out of registers. On 3663 // entry to a function on PPC, the arguments start after the linkage area, 3664 // although the first ones are often in registers. 3665 3666 SmallVector<SDValue, 8> MemOps; 3667 unsigned nAltivecParamsAtEnd = 0; 3668 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3669 unsigned CurArgIdx = 0; 3670 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3671 SDValue ArgVal; 3672 bool needsLoad = false; 3673 EVT ObjectVT = Ins[ArgNo].VT; 3674 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3675 unsigned ArgSize = ObjSize; 3676 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3677 if (Ins[ArgNo].isOrigArg()) { 3678 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3679 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3680 } 3681 unsigned CurArgOffset = ArgOffset; 3682 3683 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3684 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3685 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3686 if (isVarArg || isPPC64) { 3687 MinReservedArea = ((MinReservedArea+15)/16)*16; 3688 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3689 Flags, 3690 PtrByteSize); 3691 } else nAltivecParamsAtEnd++; 3692 } else 3693 // Calculate min reserved area. 3694 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3695 Flags, 3696 PtrByteSize); 3697 3698 // FIXME the codegen can be much improved in some cases. 3699 // We do not have to keep everything in memory. 3700 if (Flags.isByVal()) { 3701 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3702 3703 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3704 ObjSize = Flags.getByValSize(); 3705 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3706 // Objects of size 1 and 2 are right justified, everything else is 3707 // left justified. This means the memory address is adjusted forwards. 3708 if (ObjSize==1 || ObjSize==2) { 3709 CurArgOffset = CurArgOffset + (4 - ObjSize); 3710 } 3711 // The value of the object is its address. 3712 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 3713 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3714 InVals.push_back(FIN); 3715 if (ObjSize==1 || ObjSize==2) { 3716 if (GPR_idx != Num_GPR_Regs) { 3717 unsigned VReg; 3718 if (isPPC64) 3719 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3720 else 3721 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3722 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3723 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3724 SDValue Store = 3725 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3726 MachinePointerInfo(&*FuncArg), ObjType); 3727 MemOps.push_back(Store); 3728 ++GPR_idx; 3729 } 3730 3731 ArgOffset += PtrByteSize; 3732 3733 continue; 3734 } 3735 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3736 // Store whatever pieces of the object are in registers 3737 // to memory. ArgOffset will be the address of the beginning 3738 // of the object. 3739 if (GPR_idx != Num_GPR_Regs) { 3740 unsigned VReg; 3741 if (isPPC64) 3742 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3743 else 3744 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3745 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3746 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3747 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3748 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3749 MachinePointerInfo(&*FuncArg, j)); 3750 MemOps.push_back(Store); 3751 ++GPR_idx; 3752 ArgOffset += PtrByteSize; 3753 } else { 3754 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3755 break; 3756 } 3757 } 3758 continue; 3759 } 3760 3761 switch (ObjectVT.getSimpleVT().SimpleTy) { 3762 default: llvm_unreachable("Unhandled argument type!"); 3763 case MVT::i1: 3764 case MVT::i32: 3765 if (!isPPC64) { 3766 if (GPR_idx != Num_GPR_Regs) { 3767 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3768 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3769 3770 if (ObjectVT == MVT::i1) 3771 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3772 3773 ++GPR_idx; 3774 } else { 3775 needsLoad = true; 3776 ArgSize = PtrByteSize; 3777 } 3778 // All int arguments reserve stack space in the Darwin ABI. 3779 ArgOffset += PtrByteSize; 3780 break; 3781 } 3782 LLVM_FALLTHROUGH; 3783 case MVT::i64: // PPC64 3784 if (GPR_idx != Num_GPR_Regs) { 3785 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3786 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3787 3788 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3789 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3790 // value to MVT::i64 and then truncate to the correct register size. 3791 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3792 3793 ++GPR_idx; 3794 } else { 3795 needsLoad = true; 3796 ArgSize = PtrByteSize; 3797 } 3798 // All int arguments reserve stack space in the Darwin ABI. 3799 ArgOffset += 8; 3800 break; 3801 3802 case MVT::f32: 3803 case MVT::f64: 3804 // Every 4 bytes of argument space consumes one of the GPRs available for 3805 // argument passing. 3806 if (GPR_idx != Num_GPR_Regs) { 3807 ++GPR_idx; 3808 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3809 ++GPR_idx; 3810 } 3811 if (FPR_idx != Num_FPR_Regs) { 3812 unsigned VReg; 3813 3814 if (ObjectVT == MVT::f32) 3815 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3816 else 3817 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3818 3819 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3820 ++FPR_idx; 3821 } else { 3822 needsLoad = true; 3823 } 3824 3825 // All FP arguments reserve stack space in the Darwin ABI. 3826 ArgOffset += isPPC64 ? 8 : ObjSize; 3827 break; 3828 case MVT::v4f32: 3829 case MVT::v4i32: 3830 case MVT::v8i16: 3831 case MVT::v16i8: 3832 // Note that vector arguments in registers don't reserve stack space, 3833 // except in varargs functions. 3834 if (VR_idx != Num_VR_Regs) { 3835 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3836 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3837 if (isVarArg) { 3838 while ((ArgOffset % 16) != 0) { 3839 ArgOffset += PtrByteSize; 3840 if (GPR_idx != Num_GPR_Regs) 3841 GPR_idx++; 3842 } 3843 ArgOffset += 16; 3844 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3845 } 3846 ++VR_idx; 3847 } else { 3848 if (!isVarArg && !isPPC64) { 3849 // Vectors go after all the nonvectors. 3850 CurArgOffset = VecArgOffset; 3851 VecArgOffset += 16; 3852 } else { 3853 // Vectors are aligned. 3854 ArgOffset = ((ArgOffset+15)/16)*16; 3855 CurArgOffset = ArgOffset; 3856 ArgOffset += 16; 3857 } 3858 needsLoad = true; 3859 } 3860 break; 3861 } 3862 3863 // We need to load the argument to a virtual register if we determined above 3864 // that we ran out of physical registers of the appropriate type. 3865 if (needsLoad) { 3866 int FI = MFI.CreateFixedObject(ObjSize, 3867 CurArgOffset + (ArgSize - ObjSize), 3868 isImmutable); 3869 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3870 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3871 } 3872 3873 InVals.push_back(ArgVal); 3874 } 3875 3876 // Allow for Altivec parameters at the end, if needed. 3877 if (nAltivecParamsAtEnd) { 3878 MinReservedArea = ((MinReservedArea+15)/16)*16; 3879 MinReservedArea += 16*nAltivecParamsAtEnd; 3880 } 3881 3882 // Area that is at least reserved in the caller of this function. 3883 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3884 3885 // Set the size that is at least reserved in caller of this function. Tail 3886 // call optimized functions' reserved stack space needs to be aligned so that 3887 // taking the difference between two stack areas will result in an aligned 3888 // stack. 3889 MinReservedArea = 3890 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3891 FuncInfo->setMinReservedArea(MinReservedArea); 3892 3893 // If the function takes variable number of arguments, make a frame index for 3894 // the start of the first vararg value... for expansion of llvm.va_start. 3895 if (isVarArg) { 3896 int Depth = ArgOffset; 3897 3898 FuncInfo->setVarArgsFrameIndex( 3899 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3900 Depth, true)); 3901 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3902 3903 // If this function is vararg, store any remaining integer argument regs 3904 // to their spots on the stack so that they may be loaded by dereferencing 3905 // the result of va_next. 3906 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3907 unsigned VReg; 3908 3909 if (isPPC64) 3910 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3911 else 3912 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3913 3914 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3915 SDValue Store = 3916 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3917 MemOps.push_back(Store); 3918 // Increment the address by four for the next argument to store 3919 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3920 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3921 } 3922 } 3923 3924 if (!MemOps.empty()) 3925 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3926 3927 return Chain; 3928 } 3929 3930 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3931 /// adjusted to accommodate the arguments for the tailcall. 3932 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3933 unsigned ParamSize) { 3934 3935 if (!isTailCall) return 0; 3936 3937 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3938 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3939 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3940 // Remember only if the new adjustement is bigger. 3941 if (SPDiff < FI->getTailCallSPDelta()) 3942 FI->setTailCallSPDelta(SPDiff); 3943 3944 return SPDiff; 3945 } 3946 3947 static bool isFunctionGlobalAddress(SDValue Callee); 3948 3949 static bool 3950 resideInSameModule(SDValue Callee, Reloc::Model RelMod) { 3951 // If !G, Callee can be an external symbol. 3952 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 3953 if (!G) return false; 3954 3955 const GlobalValue *GV = G->getGlobal(); 3956 3957 if (GV->isDeclaration()) return false; 3958 3959 switch(GV->getLinkage()) { 3960 default: llvm_unreachable("unknow linkage type"); 3961 case GlobalValue::AvailableExternallyLinkage: 3962 case GlobalValue::ExternalWeakLinkage: 3963 return false; 3964 3965 // Callee with weak linkage is allowed if it has hidden or protected 3966 // visibility 3967 case GlobalValue::LinkOnceAnyLinkage: 3968 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions 3969 case GlobalValue::WeakAnyLinkage: 3970 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation 3971 if (GV->hasDefaultVisibility()) 3972 return false; 3973 3974 case GlobalValue::ExternalLinkage: 3975 case GlobalValue::InternalLinkage: 3976 case GlobalValue::PrivateLinkage: 3977 break; 3978 } 3979 3980 // With '-fPIC', calling default visiblity function need insert 'nop' after 3981 // function call, no matter that function resides in same module or not, so 3982 // we treat it as in different module. 3983 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility()) 3984 return false; 3985 3986 return true; 3987 } 3988 3989 static bool 3990 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 3991 const SmallVectorImpl<ISD::OutputArg> &Outs) { 3992 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 3993 3994 const unsigned PtrByteSize = 8; 3995 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3996 3997 static const MCPhysReg GPR[] = { 3998 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3999 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4000 }; 4001 static const MCPhysReg VR[] = { 4002 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4003 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4004 }; 4005 4006 const unsigned NumGPRs = array_lengthof(GPR); 4007 const unsigned NumFPRs = 13; 4008 const unsigned NumVRs = array_lengthof(VR); 4009 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4010 4011 unsigned NumBytes = LinkageSize; 4012 unsigned AvailableFPRs = NumFPRs; 4013 unsigned AvailableVRs = NumVRs; 4014 4015 for (const ISD::OutputArg& Param : Outs) { 4016 if (Param.Flags.isNest()) continue; 4017 4018 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4019 PtrByteSize, LinkageSize, ParamAreaSize, 4020 NumBytes, AvailableFPRs, AvailableVRs, 4021 Subtarget.hasQPX())) 4022 return true; 4023 } 4024 return false; 4025 } 4026 4027 static bool 4028 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 4029 if (CS->arg_size() != CallerFn->getArgumentList().size()) 4030 return false; 4031 4032 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 4033 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 4034 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4035 4036 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4037 const Value* CalleeArg = *CalleeArgIter; 4038 const Value* CallerArg = &(*CallerArgIter); 4039 if (CalleeArg == CallerArg) 4040 continue; 4041 4042 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4043 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4044 // } 4045 // 1st argument of callee is undef and has the same type as caller. 4046 if (CalleeArg->getType() == CallerArg->getType() && 4047 isa<UndefValue>(CalleeArg)) 4048 continue; 4049 4050 return false; 4051 } 4052 4053 return true; 4054 } 4055 4056 bool 4057 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4058 SDValue Callee, 4059 CallingConv::ID CalleeCC, 4060 ImmutableCallSite *CS, 4061 bool isVarArg, 4062 const SmallVectorImpl<ISD::OutputArg> &Outs, 4063 const SmallVectorImpl<ISD::InputArg> &Ins, 4064 SelectionDAG& DAG) const { 4065 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4066 4067 if (DisableSCO && !TailCallOpt) return false; 4068 4069 // Variadic argument functions are not supported. 4070 if (isVarArg) return false; 4071 4072 MachineFunction &MF = DAG.getMachineFunction(); 4073 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4074 4075 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 4076 // the same calling convention 4077 if (CallerCC != CalleeCC) return false; 4078 4079 // SCO support C calling convention 4080 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 4081 return false; 4082 4083 // Caller contains any byval parameter is not supported. 4084 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4085 return false; 4086 4087 // Callee contains any byval parameter is not supported, too. 4088 // Note: This is a quick work around, because in some cases, e.g. 4089 // caller's stack size > callee's stack size, we are still able to apply 4090 // sibling call optimization. See: https://reviews.llvm.org/D23441#513574 4091 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4092 return false; 4093 4094 // No TCO/SCO on indirect call because Caller have to restore its TOC 4095 if (!isFunctionGlobalAddress(Callee) && 4096 !isa<ExternalSymbolSDNode>(Callee)) 4097 return false; 4098 4099 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI 4100 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 4101 // module. 4102 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4103 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel())) 4104 return false; 4105 4106 // TCO allows altering callee ABI, so we don't have to check further. 4107 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4108 return true; 4109 4110 if (DisableSCO) return false; 4111 4112 // If callee use the same argument list that caller is using, then we can 4113 // apply SCO on this case. If it is not, then we need to check if callee needs 4114 // stack for passing arguments. 4115 if (!hasSameArgumentList(MF.getFunction(), CS) && 4116 needStackSlotPassParameters(Subtarget, Outs)) { 4117 return false; 4118 } 4119 4120 return true; 4121 } 4122 4123 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4124 /// for tail call optimization. Targets which want to do tail call 4125 /// optimization should implement this function. 4126 bool 4127 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4128 CallingConv::ID CalleeCC, 4129 bool isVarArg, 4130 const SmallVectorImpl<ISD::InputArg> &Ins, 4131 SelectionDAG& DAG) const { 4132 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4133 return false; 4134 4135 // Variable argument functions are not supported. 4136 if (isVarArg) 4137 return false; 4138 4139 MachineFunction &MF = DAG.getMachineFunction(); 4140 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4141 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4142 // Functions containing by val parameters are not supported. 4143 for (unsigned i = 0; i != Ins.size(); i++) { 4144 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4145 if (Flags.isByVal()) return false; 4146 } 4147 4148 // Non-PIC/GOT tail calls are supported. 4149 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4150 return true; 4151 4152 // At the moment we can only do local tail calls (in same module, hidden 4153 // or protected) if we are generating PIC. 4154 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4155 return G->getGlobal()->hasHiddenVisibility() 4156 || G->getGlobal()->hasProtectedVisibility(); 4157 } 4158 4159 return false; 4160 } 4161 4162 /// isCallCompatibleAddress - Return the immediate to use if the specified 4163 /// 32-bit value is representable in the immediate field of a BxA instruction. 4164 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4165 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4166 if (!C) return nullptr; 4167 4168 int Addr = C->getZExtValue(); 4169 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4170 SignExtend32<26>(Addr) != Addr) 4171 return nullptr; // Top 6 bits have to be sext of immediate. 4172 4173 return DAG 4174 .getConstant( 4175 (int)C->getZExtValue() >> 2, SDLoc(Op), 4176 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4177 .getNode(); 4178 } 4179 4180 namespace { 4181 4182 struct TailCallArgumentInfo { 4183 SDValue Arg; 4184 SDValue FrameIdxOp; 4185 int FrameIdx; 4186 4187 TailCallArgumentInfo() : FrameIdx(0) {} 4188 }; 4189 } 4190 4191 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4192 static void StoreTailCallArgumentsToStackSlot( 4193 SelectionDAG &DAG, SDValue Chain, 4194 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4195 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4196 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4197 SDValue Arg = TailCallArgs[i].Arg; 4198 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4199 int FI = TailCallArgs[i].FrameIdx; 4200 // Store relative to framepointer. 4201 MemOpChains.push_back(DAG.getStore( 4202 Chain, dl, Arg, FIN, 4203 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4204 } 4205 } 4206 4207 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4208 /// the appropriate stack slot for the tail call optimized function call. 4209 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4210 SDValue OldRetAddr, SDValue OldFP, 4211 int SPDiff, const SDLoc &dl) { 4212 if (SPDiff) { 4213 // Calculate the new stack slot for the return address. 4214 MachineFunction &MF = DAG.getMachineFunction(); 4215 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4216 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4217 bool isPPC64 = Subtarget.isPPC64(); 4218 int SlotSize = isPPC64 ? 8 : 4; 4219 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4220 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4221 NewRetAddrLoc, true); 4222 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4223 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4224 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4225 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4226 4227 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4228 // slot as the FP is never overwritten. 4229 if (Subtarget.isDarwinABI()) { 4230 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4231 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4232 true); 4233 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4234 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4235 MachinePointerInfo::getFixedStack( 4236 DAG.getMachineFunction(), NewFPIdx)); 4237 } 4238 } 4239 return Chain; 4240 } 4241 4242 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4243 /// the position of the argument. 4244 static void 4245 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4246 SDValue Arg, int SPDiff, unsigned ArgOffset, 4247 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4248 int Offset = ArgOffset + SPDiff; 4249 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4250 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4251 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4252 SDValue FIN = DAG.getFrameIndex(FI, VT); 4253 TailCallArgumentInfo Info; 4254 Info.Arg = Arg; 4255 Info.FrameIdxOp = FIN; 4256 Info.FrameIdx = FI; 4257 TailCallArguments.push_back(Info); 4258 } 4259 4260 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4261 /// stack slot. Returns the chain as result and the loaded frame pointers in 4262 /// LROpOut/FPOpout. Used when tail calling. 4263 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4264 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4265 SDValue &FPOpOut, const SDLoc &dl) const { 4266 if (SPDiff) { 4267 // Load the LR and FP stack slot for later adjusting. 4268 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4269 LROpOut = getReturnAddrFrameIndex(DAG); 4270 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4271 Chain = SDValue(LROpOut.getNode(), 1); 4272 4273 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4274 // slot as the FP is never overwritten. 4275 if (Subtarget.isDarwinABI()) { 4276 FPOpOut = getFramePointerFrameIndex(DAG); 4277 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4278 Chain = SDValue(FPOpOut.getNode(), 1); 4279 } 4280 } 4281 return Chain; 4282 } 4283 4284 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4285 /// by "Src" to address "Dst" of size "Size". Alignment information is 4286 /// specified by the specific parameter attribute. The copy will be passed as 4287 /// a byval function parameter. 4288 /// Sometimes what we are copying is the end of a larger object, the part that 4289 /// does not fit in registers. 4290 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4291 SDValue Chain, ISD::ArgFlagsTy Flags, 4292 SelectionDAG &DAG, const SDLoc &dl) { 4293 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4294 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4295 false, false, false, MachinePointerInfo(), 4296 MachinePointerInfo()); 4297 } 4298 4299 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4300 /// tail calls. 4301 static void LowerMemOpCallTo( 4302 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4303 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4304 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4305 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4306 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4307 if (!isTailCall) { 4308 if (isVector) { 4309 SDValue StackPtr; 4310 if (isPPC64) 4311 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4312 else 4313 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4314 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4315 DAG.getConstant(ArgOffset, dl, PtrVT)); 4316 } 4317 MemOpChains.push_back( 4318 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4319 // Calculate and remember argument location. 4320 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4321 TailCallArguments); 4322 } 4323 4324 static void 4325 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4326 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4327 SDValue FPOp, 4328 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4329 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4330 // might overwrite each other in case of tail call optimization. 4331 SmallVector<SDValue, 8> MemOpChains2; 4332 // Do not flag preceding copytoreg stuff together with the following stuff. 4333 InFlag = SDValue(); 4334 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4335 MemOpChains2, dl); 4336 if (!MemOpChains2.empty()) 4337 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4338 4339 // Store the return address to the appropriate stack slot. 4340 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4341 4342 // Emit callseq_end just before tailcall node. 4343 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4344 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4345 InFlag = Chain.getValue(1); 4346 } 4347 4348 // Is this global address that of a function that can be called by name? (as 4349 // opposed to something that must hold a descriptor for an indirect call). 4350 static bool isFunctionGlobalAddress(SDValue Callee) { 4351 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4352 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4353 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4354 return false; 4355 4356 return G->getGlobal()->getValueType()->isFunctionTy(); 4357 } 4358 4359 return false; 4360 } 4361 4362 static unsigned 4363 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4364 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4365 bool isPatchPoint, bool hasNest, 4366 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4367 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4368 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4369 4370 bool isPPC64 = Subtarget.isPPC64(); 4371 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4372 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4373 4374 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4375 NodeTys.push_back(MVT::Other); // Returns a chain 4376 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4377 4378 unsigned CallOpc = PPCISD::CALL; 4379 4380 bool needIndirectCall = true; 4381 if (!isSVR4ABI || !isPPC64) 4382 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4383 // If this is an absolute destination address, use the munged value. 4384 Callee = SDValue(Dest, 0); 4385 needIndirectCall = false; 4386 } 4387 4388 // PC-relative references to external symbols should go through $stub, unless 4389 // we're building with the leopard linker or later, which automatically 4390 // synthesizes these stubs. 4391 const TargetMachine &TM = DAG.getTarget(); 4392 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent(); 4393 const GlobalValue *GV = nullptr; 4394 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4395 GV = G->getGlobal(); 4396 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4397 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4398 4399 if (isFunctionGlobalAddress(Callee)) { 4400 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4401 // A call to a TLS address is actually an indirect call to a 4402 // thread-specific pointer. 4403 unsigned OpFlags = 0; 4404 if (UsePlt) 4405 OpFlags = PPCII::MO_PLT; 4406 4407 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4408 // every direct call is) turn it into a TargetGlobalAddress / 4409 // TargetExternalSymbol node so that legalize doesn't hack it. 4410 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4411 Callee.getValueType(), 0, OpFlags); 4412 needIndirectCall = false; 4413 } 4414 4415 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4416 unsigned char OpFlags = 0; 4417 4418 if (UsePlt) 4419 OpFlags = PPCII::MO_PLT; 4420 4421 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4422 OpFlags); 4423 needIndirectCall = false; 4424 } 4425 4426 if (isPatchPoint) { 4427 // We'll form an invalid direct call when lowering a patchpoint; the full 4428 // sequence for an indirect call is complicated, and many of the 4429 // instructions introduced might have side effects (and, thus, can't be 4430 // removed later). The call itself will be removed as soon as the 4431 // argument/return lowering is complete, so the fact that it has the wrong 4432 // kind of operands should not really matter. 4433 needIndirectCall = false; 4434 } 4435 4436 if (needIndirectCall) { 4437 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4438 // to do the call, we can't use PPCISD::CALL. 4439 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4440 4441 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4442 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4443 // entry point, but to the function descriptor (the function entry point 4444 // address is part of the function descriptor though). 4445 // The function descriptor is a three doubleword structure with the 4446 // following fields: function entry point, TOC base address and 4447 // environment pointer. 4448 // Thus for a call through a function pointer, the following actions need 4449 // to be performed: 4450 // 1. Save the TOC of the caller in the TOC save area of its stack 4451 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4452 // 2. Load the address of the function entry point from the function 4453 // descriptor. 4454 // 3. Load the TOC of the callee from the function descriptor into r2. 4455 // 4. Load the environment pointer from the function descriptor into 4456 // r11. 4457 // 5. Branch to the function entry point address. 4458 // 6. On return of the callee, the TOC of the caller needs to be 4459 // restored (this is done in FinishCall()). 4460 // 4461 // The loads are scheduled at the beginning of the call sequence, and the 4462 // register copies are flagged together to ensure that no other 4463 // operations can be scheduled in between. E.g. without flagging the 4464 // copies together, a TOC access in the caller could be scheduled between 4465 // the assignment of the callee TOC and the branch to the callee, which 4466 // results in the TOC access going through the TOC of the callee instead 4467 // of going through the TOC of the caller, which leads to incorrect code. 4468 4469 // Load the address of the function entry point from the function 4470 // descriptor. 4471 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4472 if (LDChain.getValueType() == MVT::Glue) 4473 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4474 4475 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4476 ? (MachineMemOperand::MODereferenceable | 4477 MachineMemOperand::MOInvariant) 4478 : MachineMemOperand::MONone; 4479 4480 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4481 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4482 /* Alignment = */ 8, MMOFlags); 4483 4484 // Load environment pointer into r11. 4485 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4486 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4487 SDValue LoadEnvPtr = 4488 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4489 /* Alignment = */ 8, MMOFlags); 4490 4491 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4492 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4493 SDValue TOCPtr = 4494 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4495 /* Alignment = */ 8, MMOFlags); 4496 4497 setUsesTOCBasePtr(DAG); 4498 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4499 InFlag); 4500 Chain = TOCVal.getValue(0); 4501 InFlag = TOCVal.getValue(1); 4502 4503 // If the function call has an explicit 'nest' parameter, it takes the 4504 // place of the environment pointer. 4505 if (!hasNest) { 4506 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4507 InFlag); 4508 4509 Chain = EnvVal.getValue(0); 4510 InFlag = EnvVal.getValue(1); 4511 } 4512 4513 MTCTROps[0] = Chain; 4514 MTCTROps[1] = LoadFuncPtr; 4515 MTCTROps[2] = InFlag; 4516 } 4517 4518 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4519 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4520 InFlag = Chain.getValue(1); 4521 4522 NodeTys.clear(); 4523 NodeTys.push_back(MVT::Other); 4524 NodeTys.push_back(MVT::Glue); 4525 Ops.push_back(Chain); 4526 CallOpc = PPCISD::BCTRL; 4527 Callee.setNode(nullptr); 4528 // Add use of X11 (holding environment pointer) 4529 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4530 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4531 // Add CTR register as callee so a bctr can be emitted later. 4532 if (isTailCall) 4533 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4534 } 4535 4536 // If this is a direct call, pass the chain and the callee. 4537 if (Callee.getNode()) { 4538 Ops.push_back(Chain); 4539 Ops.push_back(Callee); 4540 } 4541 // If this is a tail call add stack pointer delta. 4542 if (isTailCall) 4543 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4544 4545 // Add argument registers to the end of the list so that they are known live 4546 // into the call. 4547 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4548 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4549 RegsToPass[i].second.getValueType())); 4550 4551 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4552 // into the call. 4553 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4554 setUsesTOCBasePtr(DAG); 4555 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4556 } 4557 4558 return CallOpc; 4559 } 4560 4561 static 4562 bool isLocalCall(const SDValue &Callee) 4563 { 4564 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4565 return G->getGlobal()->isStrongDefinitionForLinker(); 4566 return false; 4567 } 4568 4569 SDValue PPCTargetLowering::LowerCallResult( 4570 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4571 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4572 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4573 4574 SmallVector<CCValAssign, 16> RVLocs; 4575 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4576 *DAG.getContext()); 4577 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4578 4579 // Copy all of the result registers out of their specified physreg. 4580 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4581 CCValAssign &VA = RVLocs[i]; 4582 assert(VA.isRegLoc() && "Can only return in registers!"); 4583 4584 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4585 VA.getLocReg(), VA.getLocVT(), InFlag); 4586 Chain = Val.getValue(1); 4587 InFlag = Val.getValue(2); 4588 4589 switch (VA.getLocInfo()) { 4590 default: llvm_unreachable("Unknown loc info!"); 4591 case CCValAssign::Full: break; 4592 case CCValAssign::AExt: 4593 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4594 break; 4595 case CCValAssign::ZExt: 4596 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4597 DAG.getValueType(VA.getValVT())); 4598 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4599 break; 4600 case CCValAssign::SExt: 4601 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4602 DAG.getValueType(VA.getValVT())); 4603 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4604 break; 4605 } 4606 4607 InVals.push_back(Val); 4608 } 4609 4610 return Chain; 4611 } 4612 4613 SDValue PPCTargetLowering::FinishCall( 4614 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4615 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 4616 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4617 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4618 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4619 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4620 4621 std::vector<EVT> NodeTys; 4622 SmallVector<SDValue, 8> Ops; 4623 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4624 SPDiff, isTailCall, isPatchPoint, hasNest, 4625 RegsToPass, Ops, NodeTys, CS, Subtarget); 4626 4627 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4628 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4629 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4630 4631 // When performing tail call optimization the callee pops its arguments off 4632 // the stack. Account for this here so these bytes can be pushed back on in 4633 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4634 int BytesCalleePops = 4635 (CallConv == CallingConv::Fast && 4636 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4637 4638 // Add a register mask operand representing the call-preserved registers. 4639 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4640 const uint32_t *Mask = 4641 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4642 assert(Mask && "Missing call preserved mask for calling convention"); 4643 Ops.push_back(DAG.getRegisterMask(Mask)); 4644 4645 if (InFlag.getNode()) 4646 Ops.push_back(InFlag); 4647 4648 // Emit tail call. 4649 if (isTailCall) { 4650 assert(((Callee.getOpcode() == ISD::Register && 4651 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4652 Callee.getOpcode() == ISD::TargetExternalSymbol || 4653 Callee.getOpcode() == ISD::TargetGlobalAddress || 4654 isa<ConstantSDNode>(Callee)) && 4655 "Expecting an global address, external symbol, absolute value or register"); 4656 4657 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 4658 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4659 } 4660 4661 // Add a NOP immediately after the branch instruction when using the 64-bit 4662 // SVR4 ABI. At link time, if caller and callee are in a different module and 4663 // thus have a different TOC, the call will be replaced with a call to a stub 4664 // function which saves the current TOC, loads the TOC of the callee and 4665 // branches to the callee. The NOP will be replaced with a load instruction 4666 // which restores the TOC of the caller from the TOC save slot of the current 4667 // stack frame. If caller and callee belong to the same module (and have the 4668 // same TOC), the NOP will remain unchanged. 4669 4670 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4671 !isPatchPoint) { 4672 if (CallOpc == PPCISD::BCTRL) { 4673 // This is a call through a function pointer. 4674 // Restore the caller TOC from the save area into R2. 4675 // See PrepareCall() for more information about calls through function 4676 // pointers in the 64-bit SVR4 ABI. 4677 // We are using a target-specific load with r2 hard coded, because the 4678 // result of a target-independent load would never go directly into r2, 4679 // since r2 is a reserved register (which prevents the register allocator 4680 // from allocating it), resulting in an additional register being 4681 // allocated and an unnecessary move instruction being generated. 4682 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4683 4684 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4685 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4686 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4687 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4688 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4689 4690 // The address needs to go after the chain input but before the flag (or 4691 // any other variadic arguments). 4692 Ops.insert(std::next(Ops.begin()), AddTOC); 4693 } else if ((CallOpc == PPCISD::CALL) && 4694 (!isLocalCall(Callee) || 4695 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4696 // Otherwise insert NOP for non-local calls. 4697 CallOpc = PPCISD::CALL_NOP; 4698 } 4699 4700 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4701 InFlag = Chain.getValue(1); 4702 4703 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4704 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4705 InFlag, dl); 4706 if (!Ins.empty()) 4707 InFlag = Chain.getValue(1); 4708 4709 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4710 Ins, dl, DAG, InVals); 4711 } 4712 4713 SDValue 4714 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4715 SmallVectorImpl<SDValue> &InVals) const { 4716 SelectionDAG &DAG = CLI.DAG; 4717 SDLoc &dl = CLI.DL; 4718 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4719 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4720 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4721 SDValue Chain = CLI.Chain; 4722 SDValue Callee = CLI.Callee; 4723 bool &isTailCall = CLI.IsTailCall; 4724 CallingConv::ID CallConv = CLI.CallConv; 4725 bool isVarArg = CLI.IsVarArg; 4726 bool isPatchPoint = CLI.IsPatchPoint; 4727 ImmutableCallSite *CS = CLI.CS; 4728 4729 if (isTailCall) { 4730 if (Subtarget.useLongCalls() && !(CS && CS->isMustTailCall())) 4731 isTailCall = false; 4732 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4733 isTailCall = 4734 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4735 isVarArg, Outs, Ins, DAG); 4736 else 4737 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4738 Ins, DAG); 4739 if (isTailCall) { 4740 ++NumTailCalls; 4741 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4742 ++NumSiblingCalls; 4743 4744 assert(isa<GlobalAddressSDNode>(Callee) && 4745 "Callee should be an llvm::Function object."); 4746 DEBUG( 4747 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4748 const unsigned Width = 80 - strlen("TCO caller: ") 4749 - strlen(", callee linkage: 0, 0"); 4750 dbgs() << "TCO caller: " 4751 << left_justify(DAG.getMachineFunction().getName(), Width) 4752 << ", callee linkage: " 4753 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4754 ); 4755 } 4756 } 4757 4758 if (!isTailCall && CS && CS->isMustTailCall()) 4759 report_fatal_error("failed to perform tail call elimination on a call " 4760 "site marked musttail"); 4761 4762 // When long calls (i.e. indirect calls) are always used, calls are always 4763 // made via function pointer. If we have a function name, first translate it 4764 // into a pointer. 4765 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 4766 !isTailCall) 4767 Callee = LowerGlobalAddress(Callee, DAG); 4768 4769 if (Subtarget.isSVR4ABI()) { 4770 if (Subtarget.isPPC64()) 4771 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4772 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4773 dl, DAG, InVals, CS); 4774 else 4775 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4776 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4777 dl, DAG, InVals, CS); 4778 } 4779 4780 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4781 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4782 dl, DAG, InVals, CS); 4783 } 4784 4785 SDValue PPCTargetLowering::LowerCall_32SVR4( 4786 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4787 bool isTailCall, bool isPatchPoint, 4788 const SmallVectorImpl<ISD::OutputArg> &Outs, 4789 const SmallVectorImpl<SDValue> &OutVals, 4790 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4791 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4792 ImmutableCallSite *CS) const { 4793 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4794 // of the 32-bit SVR4 ABI stack frame layout. 4795 4796 assert((CallConv == CallingConv::C || 4797 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4798 4799 unsigned PtrByteSize = 4; 4800 4801 MachineFunction &MF = DAG.getMachineFunction(); 4802 4803 // Mark this function as potentially containing a function that contains a 4804 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4805 // and restoring the callers stack pointer in this functions epilog. This is 4806 // done because by tail calling the called function might overwrite the value 4807 // in this function's (MF) stack pointer stack slot 0(SP). 4808 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4809 CallConv == CallingConv::Fast) 4810 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4811 4812 // Count how many bytes are to be pushed on the stack, including the linkage 4813 // area, parameter list area and the part of the local variable space which 4814 // contains copies of aggregates which are passed by value. 4815 4816 // Assign locations to all of the outgoing arguments. 4817 SmallVector<CCValAssign, 16> ArgLocs; 4818 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 4819 4820 // Reserve space for the linkage area on the stack. 4821 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4822 PtrByteSize); 4823 if (useSoftFloat()) 4824 CCInfo.PreAnalyzeCallOperands(Outs); 4825 4826 if (isVarArg) { 4827 // Handle fixed and variable vector arguments differently. 4828 // Fixed vector arguments go into registers as long as registers are 4829 // available. Variable vector arguments always go into memory. 4830 unsigned NumArgs = Outs.size(); 4831 4832 for (unsigned i = 0; i != NumArgs; ++i) { 4833 MVT ArgVT = Outs[i].VT; 4834 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4835 bool Result; 4836 4837 if (Outs[i].IsFixed) { 4838 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4839 CCInfo); 4840 } else { 4841 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4842 ArgFlags, CCInfo); 4843 } 4844 4845 if (Result) { 4846 #ifndef NDEBUG 4847 errs() << "Call operand #" << i << " has unhandled type " 4848 << EVT(ArgVT).getEVTString() << "\n"; 4849 #endif 4850 llvm_unreachable(nullptr); 4851 } 4852 } 4853 } else { 4854 // All arguments are treated the same. 4855 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4856 } 4857 CCInfo.clearWasPPCF128(); 4858 4859 // Assign locations to all of the outgoing aggregate by value arguments. 4860 SmallVector<CCValAssign, 16> ByValArgLocs; 4861 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 4862 4863 // Reserve stack space for the allocations in CCInfo. 4864 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4865 4866 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4867 4868 // Size of the linkage area, parameter list area and the part of the local 4869 // space variable where copies of aggregates which are passed by value are 4870 // stored. 4871 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4872 4873 // Calculate by how many bytes the stack has to be adjusted in case of tail 4874 // call optimization. 4875 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4876 4877 // Adjust the stack pointer for the new arguments... 4878 // These operations are automatically eliminated by the prolog/epilog pass 4879 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4880 dl); 4881 SDValue CallSeqStart = Chain; 4882 4883 // Load the return address and frame pointer so it can be moved somewhere else 4884 // later. 4885 SDValue LROp, FPOp; 4886 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 4887 4888 // Set up a copy of the stack pointer for use loading and storing any 4889 // arguments that may not fit in the registers available for argument 4890 // passing. 4891 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4892 4893 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4894 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4895 SmallVector<SDValue, 8> MemOpChains; 4896 4897 bool seenFloatArg = false; 4898 // Walk the register/memloc assignments, inserting copies/loads. 4899 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4900 i != e; 4901 ++i) { 4902 CCValAssign &VA = ArgLocs[i]; 4903 SDValue Arg = OutVals[i]; 4904 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4905 4906 if (Flags.isByVal()) { 4907 // Argument is an aggregate which is passed by value, thus we need to 4908 // create a copy of it in the local variable space of the current stack 4909 // frame (which is the stack frame of the caller) and pass the address of 4910 // this copy to the callee. 4911 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4912 CCValAssign &ByValVA = ByValArgLocs[j++]; 4913 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4914 4915 // Memory reserved in the local variable space of the callers stack frame. 4916 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4917 4918 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4919 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4920 StackPtr, PtrOff); 4921 4922 // Create a copy of the argument in the local area of the current 4923 // stack frame. 4924 SDValue MemcpyCall = 4925 CreateCopyOfByValArgument(Arg, PtrOff, 4926 CallSeqStart.getNode()->getOperand(0), 4927 Flags, DAG, dl); 4928 4929 // This must go outside the CALLSEQ_START..END. 4930 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4931 CallSeqStart.getNode()->getOperand(1), 4932 SDLoc(MemcpyCall)); 4933 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4934 NewCallSeqStart.getNode()); 4935 Chain = CallSeqStart = NewCallSeqStart; 4936 4937 // Pass the address of the aggregate copy on the stack either in a 4938 // physical register or in the parameter list area of the current stack 4939 // frame to the callee. 4940 Arg = PtrOff; 4941 } 4942 4943 if (VA.isRegLoc()) { 4944 if (Arg.getValueType() == MVT::i1) 4945 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4946 4947 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4948 // Put argument in a physical register. 4949 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4950 } else { 4951 // Put argument in the parameter list area of the current stack frame. 4952 assert(VA.isMemLoc()); 4953 unsigned LocMemOffset = VA.getLocMemOffset(); 4954 4955 if (!isTailCall) { 4956 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4957 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4958 StackPtr, PtrOff); 4959 4960 MemOpChains.push_back( 4961 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4962 } else { 4963 // Calculate and remember argument location. 4964 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4965 TailCallArguments); 4966 } 4967 } 4968 } 4969 4970 if (!MemOpChains.empty()) 4971 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4972 4973 // Build a sequence of copy-to-reg nodes chained together with token chain 4974 // and flag operands which copy the outgoing args into the appropriate regs. 4975 SDValue InFlag; 4976 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4977 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4978 RegsToPass[i].second, InFlag); 4979 InFlag = Chain.getValue(1); 4980 } 4981 4982 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4983 // registers. 4984 if (isVarArg) { 4985 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4986 SDValue Ops[] = { Chain, InFlag }; 4987 4988 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4989 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4990 4991 InFlag = Chain.getValue(1); 4992 } 4993 4994 if (isTailCall) 4995 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 4996 TailCallArguments); 4997 4998 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 4999 /* unused except on PPC64 ELFv1 */ false, DAG, 5000 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5001 NumBytes, Ins, InVals, CS); 5002 } 5003 5004 // Copy an argument into memory, being careful to do this outside the 5005 // call sequence for the call to which the argument belongs. 5006 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5007 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5008 SelectionDAG &DAG, const SDLoc &dl) const { 5009 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5010 CallSeqStart.getNode()->getOperand(0), 5011 Flags, DAG, dl); 5012 // The MEMCPY must go outside the CALLSEQ_START..END. 5013 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 5014 CallSeqStart.getNode()->getOperand(1), 5015 SDLoc(MemcpyCall)); 5016 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5017 NewCallSeqStart.getNode()); 5018 return NewCallSeqStart; 5019 } 5020 5021 SDValue PPCTargetLowering::LowerCall_64SVR4( 5022 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5023 bool isTailCall, bool isPatchPoint, 5024 const SmallVectorImpl<ISD::OutputArg> &Outs, 5025 const SmallVectorImpl<SDValue> &OutVals, 5026 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5027 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5028 ImmutableCallSite *CS) const { 5029 5030 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5031 bool isLittleEndian = Subtarget.isLittleEndian(); 5032 unsigned NumOps = Outs.size(); 5033 bool hasNest = false; 5034 bool IsSibCall = false; 5035 5036 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5037 unsigned PtrByteSize = 8; 5038 5039 MachineFunction &MF = DAG.getMachineFunction(); 5040 5041 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5042 IsSibCall = true; 5043 5044 // Mark this function as potentially containing a function that contains a 5045 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5046 // and restoring the callers stack pointer in this functions epilog. This is 5047 // done because by tail calling the called function might overwrite the value 5048 // in this function's (MF) stack pointer stack slot 0(SP). 5049 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5050 CallConv == CallingConv::Fast) 5051 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5052 5053 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5054 "fastcc not supported on varargs functions"); 5055 5056 // Count how many bytes are to be pushed on the stack, including the linkage 5057 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5058 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5059 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5060 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5061 unsigned NumBytes = LinkageSize; 5062 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5063 unsigned &QFPR_idx = FPR_idx; 5064 5065 static const MCPhysReg GPR[] = { 5066 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5067 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5068 }; 5069 static const MCPhysReg VR[] = { 5070 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5071 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5072 }; 5073 5074 const unsigned NumGPRs = array_lengthof(GPR); 5075 const unsigned NumFPRs = 13; 5076 const unsigned NumVRs = array_lengthof(VR); 5077 const unsigned NumQFPRs = NumFPRs; 5078 5079 // When using the fast calling convention, we don't provide backing for 5080 // arguments that will be in registers. 5081 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5082 5083 // Add up all the space actually used. 5084 for (unsigned i = 0; i != NumOps; ++i) { 5085 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5086 EVT ArgVT = Outs[i].VT; 5087 EVT OrigVT = Outs[i].ArgVT; 5088 5089 if (Flags.isNest()) 5090 continue; 5091 5092 if (CallConv == CallingConv::Fast) { 5093 if (Flags.isByVal()) 5094 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5095 else 5096 switch (ArgVT.getSimpleVT().SimpleTy) { 5097 default: llvm_unreachable("Unexpected ValueType for argument!"); 5098 case MVT::i1: 5099 case MVT::i32: 5100 case MVT::i64: 5101 if (++NumGPRsUsed <= NumGPRs) 5102 continue; 5103 break; 5104 case MVT::v4i32: 5105 case MVT::v8i16: 5106 case MVT::v16i8: 5107 case MVT::v2f64: 5108 case MVT::v2i64: 5109 case MVT::v1i128: 5110 if (++NumVRsUsed <= NumVRs) 5111 continue; 5112 break; 5113 case MVT::v4f32: 5114 // When using QPX, this is handled like a FP register, otherwise, it 5115 // is an Altivec register. 5116 if (Subtarget.hasQPX()) { 5117 if (++NumFPRsUsed <= NumFPRs) 5118 continue; 5119 } else { 5120 if (++NumVRsUsed <= NumVRs) 5121 continue; 5122 } 5123 break; 5124 case MVT::f32: 5125 case MVT::f64: 5126 case MVT::v4f64: // QPX 5127 case MVT::v4i1: // QPX 5128 if (++NumFPRsUsed <= NumFPRs) 5129 continue; 5130 break; 5131 } 5132 } 5133 5134 /* Respect alignment of argument on the stack. */ 5135 unsigned Align = 5136 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5137 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5138 5139 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5140 if (Flags.isInConsecutiveRegsLast()) 5141 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5142 } 5143 5144 unsigned NumBytesActuallyUsed = NumBytes; 5145 5146 // The prolog code of the callee may store up to 8 GPR argument registers to 5147 // the stack, allowing va_start to index over them in memory if its varargs. 5148 // Because we cannot tell if this is needed on the caller side, we have to 5149 // conservatively assume that it is needed. As such, make sure we have at 5150 // least enough stack space for the caller to store the 8 GPRs. 5151 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 5152 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5153 5154 // Tail call needs the stack to be aligned. 5155 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5156 CallConv == CallingConv::Fast) 5157 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5158 5159 int SPDiff = 0; 5160 5161 // Calculate by how many bytes the stack has to be adjusted in case of tail 5162 // call optimization. 5163 if (!IsSibCall) 5164 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5165 5166 // To protect arguments on the stack from being clobbered in a tail call, 5167 // force all the loads to happen before doing any other lowering. 5168 if (isTailCall) 5169 Chain = DAG.getStackArgumentTokenFactor(Chain); 5170 5171 // Adjust the stack pointer for the new arguments... 5172 // These operations are automatically eliminated by the prolog/epilog pass 5173 if (!IsSibCall) 5174 Chain = DAG.getCALLSEQ_START(Chain, 5175 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5176 SDValue CallSeqStart = Chain; 5177 5178 // Load the return address and frame pointer so it can be move somewhere else 5179 // later. 5180 SDValue LROp, FPOp; 5181 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5182 5183 // Set up a copy of the stack pointer for use loading and storing any 5184 // arguments that may not fit in the registers available for argument 5185 // passing. 5186 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5187 5188 // Figure out which arguments are going to go in registers, and which in 5189 // memory. Also, if this is a vararg function, floating point operations 5190 // must be stored to our stack, and loaded into integer regs as well, if 5191 // any integer regs are available for argument passing. 5192 unsigned ArgOffset = LinkageSize; 5193 5194 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5195 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5196 5197 SmallVector<SDValue, 8> MemOpChains; 5198 for (unsigned i = 0; i != NumOps; ++i) { 5199 SDValue Arg = OutVals[i]; 5200 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5201 EVT ArgVT = Outs[i].VT; 5202 EVT OrigVT = Outs[i].ArgVT; 5203 5204 // PtrOff will be used to store the current argument to the stack if a 5205 // register cannot be found for it. 5206 SDValue PtrOff; 5207 5208 // We re-align the argument offset for each argument, except when using the 5209 // fast calling convention, when we need to make sure we do that only when 5210 // we'll actually use a stack slot. 5211 auto ComputePtrOff = [&]() { 5212 /* Respect alignment of argument on the stack. */ 5213 unsigned Align = 5214 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5215 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5216 5217 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5218 5219 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5220 }; 5221 5222 if (CallConv != CallingConv::Fast) { 5223 ComputePtrOff(); 5224 5225 /* Compute GPR index associated with argument offset. */ 5226 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5227 GPR_idx = std::min(GPR_idx, NumGPRs); 5228 } 5229 5230 // Promote integers to 64-bit values. 5231 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5232 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5233 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5234 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5235 } 5236 5237 // FIXME memcpy is used way more than necessary. Correctness first. 5238 // Note: "by value" is code for passing a structure by value, not 5239 // basic types. 5240 if (Flags.isByVal()) { 5241 // Note: Size includes alignment padding, so 5242 // struct x { short a; char b; } 5243 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5244 // These are the proper values we need for right-justifying the 5245 // aggregate in a parameter register. 5246 unsigned Size = Flags.getByValSize(); 5247 5248 // An empty aggregate parameter takes up no storage and no 5249 // registers. 5250 if (Size == 0) 5251 continue; 5252 5253 if (CallConv == CallingConv::Fast) 5254 ComputePtrOff(); 5255 5256 // All aggregates smaller than 8 bytes must be passed right-justified. 5257 if (Size==1 || Size==2 || Size==4) { 5258 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5259 if (GPR_idx != NumGPRs) { 5260 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5261 MachinePointerInfo(), VT); 5262 MemOpChains.push_back(Load.getValue(1)); 5263 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5264 5265 ArgOffset += PtrByteSize; 5266 continue; 5267 } 5268 } 5269 5270 if (GPR_idx == NumGPRs && Size < 8) { 5271 SDValue AddPtr = PtrOff; 5272 if (!isLittleEndian) { 5273 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5274 PtrOff.getValueType()); 5275 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5276 } 5277 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5278 CallSeqStart, 5279 Flags, DAG, dl); 5280 ArgOffset += PtrByteSize; 5281 continue; 5282 } 5283 // Copy entire object into memory. There are cases where gcc-generated 5284 // code assumes it is there, even if it could be put entirely into 5285 // registers. (This is not what the doc says.) 5286 5287 // FIXME: The above statement is likely due to a misunderstanding of the 5288 // documents. All arguments must be copied into the parameter area BY 5289 // THE CALLEE in the event that the callee takes the address of any 5290 // formal argument. That has not yet been implemented. However, it is 5291 // reasonable to use the stack area as a staging area for the register 5292 // load. 5293 5294 // Skip this for small aggregates, as we will use the same slot for a 5295 // right-justified copy, below. 5296 if (Size >= 8) 5297 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5298 CallSeqStart, 5299 Flags, DAG, dl); 5300 5301 // When a register is available, pass a small aggregate right-justified. 5302 if (Size < 8 && GPR_idx != NumGPRs) { 5303 // The easiest way to get this right-justified in a register 5304 // is to copy the structure into the rightmost portion of a 5305 // local variable slot, then load the whole slot into the 5306 // register. 5307 // FIXME: The memcpy seems to produce pretty awful code for 5308 // small aggregates, particularly for packed ones. 5309 // FIXME: It would be preferable to use the slot in the 5310 // parameter save area instead of a new local variable. 5311 SDValue AddPtr = PtrOff; 5312 if (!isLittleEndian) { 5313 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5314 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5315 } 5316 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5317 CallSeqStart, 5318 Flags, DAG, dl); 5319 5320 // Load the slot into the register. 5321 SDValue Load = 5322 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5323 MemOpChains.push_back(Load.getValue(1)); 5324 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5325 5326 // Done with this argument. 5327 ArgOffset += PtrByteSize; 5328 continue; 5329 } 5330 5331 // For aggregates larger than PtrByteSize, copy the pieces of the 5332 // object that fit into registers from the parameter save area. 5333 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5334 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5335 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5336 if (GPR_idx != NumGPRs) { 5337 SDValue Load = 5338 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5339 MemOpChains.push_back(Load.getValue(1)); 5340 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5341 ArgOffset += PtrByteSize; 5342 } else { 5343 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5344 break; 5345 } 5346 } 5347 continue; 5348 } 5349 5350 switch (Arg.getSimpleValueType().SimpleTy) { 5351 default: llvm_unreachable("Unexpected ValueType for argument!"); 5352 case MVT::i1: 5353 case MVT::i32: 5354 case MVT::i64: 5355 if (Flags.isNest()) { 5356 // The 'nest' parameter, if any, is passed in R11. 5357 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5358 hasNest = true; 5359 break; 5360 } 5361 5362 // These can be scalar arguments or elements of an integer array type 5363 // passed directly. Clang may use those instead of "byval" aggregate 5364 // types to avoid forcing arguments to memory unnecessarily. 5365 if (GPR_idx != NumGPRs) { 5366 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5367 } else { 5368 if (CallConv == CallingConv::Fast) 5369 ComputePtrOff(); 5370 5371 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5372 true, isTailCall, false, MemOpChains, 5373 TailCallArguments, dl); 5374 if (CallConv == CallingConv::Fast) 5375 ArgOffset += PtrByteSize; 5376 } 5377 if (CallConv != CallingConv::Fast) 5378 ArgOffset += PtrByteSize; 5379 break; 5380 case MVT::f32: 5381 case MVT::f64: { 5382 // These can be scalar arguments or elements of a float array type 5383 // passed directly. The latter are used to implement ELFv2 homogenous 5384 // float aggregates. 5385 5386 // Named arguments go into FPRs first, and once they overflow, the 5387 // remaining arguments go into GPRs and then the parameter save area. 5388 // Unnamed arguments for vararg functions always go to GPRs and 5389 // then the parameter save area. For now, put all arguments to vararg 5390 // routines always in both locations (FPR *and* GPR or stack slot). 5391 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5392 bool NeededLoad = false; 5393 5394 // First load the argument into the next available FPR. 5395 if (FPR_idx != NumFPRs) 5396 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5397 5398 // Next, load the argument into GPR or stack slot if needed. 5399 if (!NeedGPROrStack) 5400 ; 5401 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5402 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5403 // once we support fp <-> gpr moves. 5404 5405 // In the non-vararg case, this can only ever happen in the 5406 // presence of f32 array types, since otherwise we never run 5407 // out of FPRs before running out of GPRs. 5408 SDValue ArgVal; 5409 5410 // Double values are always passed in a single GPR. 5411 if (Arg.getValueType() != MVT::f32) { 5412 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5413 5414 // Non-array float values are extended and passed in a GPR. 5415 } else if (!Flags.isInConsecutiveRegs()) { 5416 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5417 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5418 5419 // If we have an array of floats, we collect every odd element 5420 // together with its predecessor into one GPR. 5421 } else if (ArgOffset % PtrByteSize != 0) { 5422 SDValue Lo, Hi; 5423 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5424 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5425 if (!isLittleEndian) 5426 std::swap(Lo, Hi); 5427 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5428 5429 // The final element, if even, goes into the first half of a GPR. 5430 } else if (Flags.isInConsecutiveRegsLast()) { 5431 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5432 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5433 if (!isLittleEndian) 5434 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5435 DAG.getConstant(32, dl, MVT::i32)); 5436 5437 // Non-final even elements are skipped; they will be handled 5438 // together the with subsequent argument on the next go-around. 5439 } else 5440 ArgVal = SDValue(); 5441 5442 if (ArgVal.getNode()) 5443 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5444 } else { 5445 if (CallConv == CallingConv::Fast) 5446 ComputePtrOff(); 5447 5448 // Single-precision floating-point values are mapped to the 5449 // second (rightmost) word of the stack doubleword. 5450 if (Arg.getValueType() == MVT::f32 && 5451 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5452 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5453 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5454 } 5455 5456 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5457 true, isTailCall, false, MemOpChains, 5458 TailCallArguments, dl); 5459 5460 NeededLoad = true; 5461 } 5462 // When passing an array of floats, the array occupies consecutive 5463 // space in the argument area; only round up to the next doubleword 5464 // at the end of the array. Otherwise, each float takes 8 bytes. 5465 if (CallConv != CallingConv::Fast || NeededLoad) { 5466 ArgOffset += (Arg.getValueType() == MVT::f32 && 5467 Flags.isInConsecutiveRegs()) ? 4 : 8; 5468 if (Flags.isInConsecutiveRegsLast()) 5469 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5470 } 5471 break; 5472 } 5473 case MVT::v4f32: 5474 case MVT::v4i32: 5475 case MVT::v8i16: 5476 case MVT::v16i8: 5477 case MVT::v2f64: 5478 case MVT::v2i64: 5479 case MVT::v1i128: 5480 if (!Subtarget.hasQPX()) { 5481 // These can be scalar arguments or elements of a vector array type 5482 // passed directly. The latter are used to implement ELFv2 homogenous 5483 // vector aggregates. 5484 5485 // For a varargs call, named arguments go into VRs or on the stack as 5486 // usual; unnamed arguments always go to the stack or the corresponding 5487 // GPRs when within range. For now, we always put the value in both 5488 // locations (or even all three). 5489 if (isVarArg) { 5490 // We could elide this store in the case where the object fits 5491 // entirely in R registers. Maybe later. 5492 SDValue Store = 5493 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5494 MemOpChains.push_back(Store); 5495 if (VR_idx != NumVRs) { 5496 SDValue Load = 5497 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5498 MemOpChains.push_back(Load.getValue(1)); 5499 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5500 } 5501 ArgOffset += 16; 5502 for (unsigned i=0; i<16; i+=PtrByteSize) { 5503 if (GPR_idx == NumGPRs) 5504 break; 5505 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5506 DAG.getConstant(i, dl, PtrVT)); 5507 SDValue Load = 5508 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5509 MemOpChains.push_back(Load.getValue(1)); 5510 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5511 } 5512 break; 5513 } 5514 5515 // Non-varargs Altivec params go into VRs or on the stack. 5516 if (VR_idx != NumVRs) { 5517 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5518 } else { 5519 if (CallConv == CallingConv::Fast) 5520 ComputePtrOff(); 5521 5522 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5523 true, isTailCall, true, MemOpChains, 5524 TailCallArguments, dl); 5525 if (CallConv == CallingConv::Fast) 5526 ArgOffset += 16; 5527 } 5528 5529 if (CallConv != CallingConv::Fast) 5530 ArgOffset += 16; 5531 break; 5532 } // not QPX 5533 5534 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5535 "Invalid QPX parameter type"); 5536 5537 /* fall through */ 5538 case MVT::v4f64: 5539 case MVT::v4i1: { 5540 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5541 if (isVarArg) { 5542 // We could elide this store in the case where the object fits 5543 // entirely in R registers. Maybe later. 5544 SDValue Store = 5545 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5546 MemOpChains.push_back(Store); 5547 if (QFPR_idx != NumQFPRs) { 5548 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 5549 PtrOff, MachinePointerInfo()); 5550 MemOpChains.push_back(Load.getValue(1)); 5551 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5552 } 5553 ArgOffset += (IsF32 ? 16 : 32); 5554 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5555 if (GPR_idx == NumGPRs) 5556 break; 5557 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5558 DAG.getConstant(i, dl, PtrVT)); 5559 SDValue Load = 5560 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5561 MemOpChains.push_back(Load.getValue(1)); 5562 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5563 } 5564 break; 5565 } 5566 5567 // Non-varargs QPX params go into registers or on the stack. 5568 if (QFPR_idx != NumQFPRs) { 5569 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5570 } else { 5571 if (CallConv == CallingConv::Fast) 5572 ComputePtrOff(); 5573 5574 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5575 true, isTailCall, true, MemOpChains, 5576 TailCallArguments, dl); 5577 if (CallConv == CallingConv::Fast) 5578 ArgOffset += (IsF32 ? 16 : 32); 5579 } 5580 5581 if (CallConv != CallingConv::Fast) 5582 ArgOffset += (IsF32 ? 16 : 32); 5583 break; 5584 } 5585 } 5586 } 5587 5588 assert(NumBytesActuallyUsed == ArgOffset); 5589 (void)NumBytesActuallyUsed; 5590 5591 if (!MemOpChains.empty()) 5592 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5593 5594 // Check if this is an indirect call (MTCTR/BCTRL). 5595 // See PrepareCall() for more information about calls through function 5596 // pointers in the 64-bit SVR4 ABI. 5597 if (!isTailCall && !isPatchPoint && 5598 !isFunctionGlobalAddress(Callee) && 5599 !isa<ExternalSymbolSDNode>(Callee)) { 5600 // Load r2 into a virtual register and store it to the TOC save area. 5601 setUsesTOCBasePtr(DAG); 5602 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5603 // TOC save area offset. 5604 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5605 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5606 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5607 Chain = DAG.getStore( 5608 Val.getValue(1), dl, Val, AddPtr, 5609 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 5610 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5611 // This does not mean the MTCTR instruction must use R12; it's easier 5612 // to model this as an extra parameter, so do that. 5613 if (isELFv2ABI && !isPatchPoint) 5614 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5615 } 5616 5617 // Build a sequence of copy-to-reg nodes chained together with token chain 5618 // and flag operands which copy the outgoing args into the appropriate regs. 5619 SDValue InFlag; 5620 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5621 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5622 RegsToPass[i].second, InFlag); 5623 InFlag = Chain.getValue(1); 5624 } 5625 5626 if (isTailCall && !IsSibCall) 5627 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5628 TailCallArguments); 5629 5630 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 5631 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5632 SPDiff, NumBytes, Ins, InVals, CS); 5633 } 5634 5635 SDValue PPCTargetLowering::LowerCall_Darwin( 5636 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5637 bool isTailCall, bool isPatchPoint, 5638 const SmallVectorImpl<ISD::OutputArg> &Outs, 5639 const SmallVectorImpl<SDValue> &OutVals, 5640 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5641 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5642 ImmutableCallSite *CS) const { 5643 5644 unsigned NumOps = Outs.size(); 5645 5646 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5647 bool isPPC64 = PtrVT == MVT::i64; 5648 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5649 5650 MachineFunction &MF = DAG.getMachineFunction(); 5651 5652 // Mark this function as potentially containing a function that contains a 5653 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5654 // and restoring the callers stack pointer in this functions epilog. This is 5655 // done because by tail calling the called function might overwrite the value 5656 // in this function's (MF) stack pointer stack slot 0(SP). 5657 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5658 CallConv == CallingConv::Fast) 5659 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5660 5661 // Count how many bytes are to be pushed on the stack, including the linkage 5662 // area, and parameter passing area. We start with 24/48 bytes, which is 5663 // prereserved space for [SP][CR][LR][3 x unused]. 5664 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5665 unsigned NumBytes = LinkageSize; 5666 5667 // Add up all the space actually used. 5668 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5669 // they all go in registers, but we must reserve stack space for them for 5670 // possible use by the caller. In varargs or 64-bit calls, parameters are 5671 // assigned stack space in order, with padding so Altivec parameters are 5672 // 16-byte aligned. 5673 unsigned nAltivecParamsAtEnd = 0; 5674 for (unsigned i = 0; i != NumOps; ++i) { 5675 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5676 EVT ArgVT = Outs[i].VT; 5677 // Varargs Altivec parameters are padded to a 16 byte boundary. 5678 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5679 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5680 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5681 if (!isVarArg && !isPPC64) { 5682 // Non-varargs Altivec parameters go after all the non-Altivec 5683 // parameters; handle those later so we know how much padding we need. 5684 nAltivecParamsAtEnd++; 5685 continue; 5686 } 5687 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5688 NumBytes = ((NumBytes+15)/16)*16; 5689 } 5690 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5691 } 5692 5693 // Allow for Altivec parameters at the end, if needed. 5694 if (nAltivecParamsAtEnd) { 5695 NumBytes = ((NumBytes+15)/16)*16; 5696 NumBytes += 16*nAltivecParamsAtEnd; 5697 } 5698 5699 // The prolog code of the callee may store up to 8 GPR argument registers to 5700 // the stack, allowing va_start to index over them in memory if its varargs. 5701 // Because we cannot tell if this is needed on the caller side, we have to 5702 // conservatively assume that it is needed. As such, make sure we have at 5703 // least enough stack space for the caller to store the 8 GPRs. 5704 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5705 5706 // Tail call needs the stack to be aligned. 5707 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5708 CallConv == CallingConv::Fast) 5709 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5710 5711 // Calculate by how many bytes the stack has to be adjusted in case of tail 5712 // call optimization. 5713 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5714 5715 // To protect arguments on the stack from being clobbered in a tail call, 5716 // force all the loads to happen before doing any other lowering. 5717 if (isTailCall) 5718 Chain = DAG.getStackArgumentTokenFactor(Chain); 5719 5720 // Adjust the stack pointer for the new arguments... 5721 // These operations are automatically eliminated by the prolog/epilog pass 5722 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5723 dl); 5724 SDValue CallSeqStart = Chain; 5725 5726 // Load the return address and frame pointer so it can be move somewhere else 5727 // later. 5728 SDValue LROp, FPOp; 5729 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5730 5731 // Set up a copy of the stack pointer for use loading and storing any 5732 // arguments that may not fit in the registers available for argument 5733 // passing. 5734 SDValue StackPtr; 5735 if (isPPC64) 5736 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5737 else 5738 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5739 5740 // Figure out which arguments are going to go in registers, and which in 5741 // memory. Also, if this is a vararg function, floating point operations 5742 // must be stored to our stack, and loaded into integer regs as well, if 5743 // any integer regs are available for argument passing. 5744 unsigned ArgOffset = LinkageSize; 5745 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5746 5747 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5748 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5749 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5750 }; 5751 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5752 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5753 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5754 }; 5755 static const MCPhysReg VR[] = { 5756 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5757 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5758 }; 5759 const unsigned NumGPRs = array_lengthof(GPR_32); 5760 const unsigned NumFPRs = 13; 5761 const unsigned NumVRs = array_lengthof(VR); 5762 5763 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5764 5765 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5766 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5767 5768 SmallVector<SDValue, 8> MemOpChains; 5769 for (unsigned i = 0; i != NumOps; ++i) { 5770 SDValue Arg = OutVals[i]; 5771 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5772 5773 // PtrOff will be used to store the current argument to the stack if a 5774 // register cannot be found for it. 5775 SDValue PtrOff; 5776 5777 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5778 5779 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5780 5781 // On PPC64, promote integers to 64-bit values. 5782 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5783 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5784 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5785 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5786 } 5787 5788 // FIXME memcpy is used way more than necessary. Correctness first. 5789 // Note: "by value" is code for passing a structure by value, not 5790 // basic types. 5791 if (Flags.isByVal()) { 5792 unsigned Size = Flags.getByValSize(); 5793 // Very small objects are passed right-justified. Everything else is 5794 // passed left-justified. 5795 if (Size==1 || Size==2) { 5796 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5797 if (GPR_idx != NumGPRs) { 5798 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5799 MachinePointerInfo(), VT); 5800 MemOpChains.push_back(Load.getValue(1)); 5801 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5802 5803 ArgOffset += PtrByteSize; 5804 } else { 5805 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5806 PtrOff.getValueType()); 5807 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5808 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5809 CallSeqStart, 5810 Flags, DAG, dl); 5811 ArgOffset += PtrByteSize; 5812 } 5813 continue; 5814 } 5815 // Copy entire object into memory. There are cases where gcc-generated 5816 // code assumes it is there, even if it could be put entirely into 5817 // registers. (This is not what the doc says.) 5818 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5819 CallSeqStart, 5820 Flags, DAG, dl); 5821 5822 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5823 // copy the pieces of the object that fit into registers from the 5824 // parameter save area. 5825 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5826 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5827 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5828 if (GPR_idx != NumGPRs) { 5829 SDValue Load = 5830 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5831 MemOpChains.push_back(Load.getValue(1)); 5832 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5833 ArgOffset += PtrByteSize; 5834 } else { 5835 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5836 break; 5837 } 5838 } 5839 continue; 5840 } 5841 5842 switch (Arg.getSimpleValueType().SimpleTy) { 5843 default: llvm_unreachable("Unexpected ValueType for argument!"); 5844 case MVT::i1: 5845 case MVT::i32: 5846 case MVT::i64: 5847 if (GPR_idx != NumGPRs) { 5848 if (Arg.getValueType() == MVT::i1) 5849 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5850 5851 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5852 } else { 5853 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5854 isPPC64, isTailCall, false, MemOpChains, 5855 TailCallArguments, dl); 5856 } 5857 ArgOffset += PtrByteSize; 5858 break; 5859 case MVT::f32: 5860 case MVT::f64: 5861 if (FPR_idx != NumFPRs) { 5862 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5863 5864 if (isVarArg) { 5865 SDValue Store = 5866 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5867 MemOpChains.push_back(Store); 5868 5869 // Float varargs are always shadowed in available integer registers 5870 if (GPR_idx != NumGPRs) { 5871 SDValue Load = 5872 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5873 MemOpChains.push_back(Load.getValue(1)); 5874 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5875 } 5876 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5877 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5878 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5879 SDValue Load = 5880 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5881 MemOpChains.push_back(Load.getValue(1)); 5882 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5883 } 5884 } else { 5885 // If we have any FPRs remaining, we may also have GPRs remaining. 5886 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5887 // GPRs. 5888 if (GPR_idx != NumGPRs) 5889 ++GPR_idx; 5890 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5891 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5892 ++GPR_idx; 5893 } 5894 } else 5895 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5896 isPPC64, isTailCall, false, MemOpChains, 5897 TailCallArguments, dl); 5898 if (isPPC64) 5899 ArgOffset += 8; 5900 else 5901 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5902 break; 5903 case MVT::v4f32: 5904 case MVT::v4i32: 5905 case MVT::v8i16: 5906 case MVT::v16i8: 5907 if (isVarArg) { 5908 // These go aligned on the stack, or in the corresponding R registers 5909 // when within range. The Darwin PPC ABI doc claims they also go in 5910 // V registers; in fact gcc does this only for arguments that are 5911 // prototyped, not for those that match the ... We do it for all 5912 // arguments, seems to work. 5913 while (ArgOffset % 16 !=0) { 5914 ArgOffset += PtrByteSize; 5915 if (GPR_idx != NumGPRs) 5916 GPR_idx++; 5917 } 5918 // We could elide this store in the case where the object fits 5919 // entirely in R registers. Maybe later. 5920 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5921 DAG.getConstant(ArgOffset, dl, PtrVT)); 5922 SDValue Store = 5923 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5924 MemOpChains.push_back(Store); 5925 if (VR_idx != NumVRs) { 5926 SDValue Load = 5927 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5928 MemOpChains.push_back(Load.getValue(1)); 5929 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5930 } 5931 ArgOffset += 16; 5932 for (unsigned i=0; i<16; i+=PtrByteSize) { 5933 if (GPR_idx == NumGPRs) 5934 break; 5935 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5936 DAG.getConstant(i, dl, PtrVT)); 5937 SDValue Load = 5938 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5939 MemOpChains.push_back(Load.getValue(1)); 5940 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5941 } 5942 break; 5943 } 5944 5945 // Non-varargs Altivec params generally go in registers, but have 5946 // stack space allocated at the end. 5947 if (VR_idx != NumVRs) { 5948 // Doesn't have GPR space allocated. 5949 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5950 } else if (nAltivecParamsAtEnd==0) { 5951 // We are emitting Altivec params in order. 5952 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5953 isPPC64, isTailCall, true, MemOpChains, 5954 TailCallArguments, dl); 5955 ArgOffset += 16; 5956 } 5957 break; 5958 } 5959 } 5960 // If all Altivec parameters fit in registers, as they usually do, 5961 // they get stack space following the non-Altivec parameters. We 5962 // don't track this here because nobody below needs it. 5963 // If there are more Altivec parameters than fit in registers emit 5964 // the stores here. 5965 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5966 unsigned j = 0; 5967 // Offset is aligned; skip 1st 12 params which go in V registers. 5968 ArgOffset = ((ArgOffset+15)/16)*16; 5969 ArgOffset += 12*16; 5970 for (unsigned i = 0; i != NumOps; ++i) { 5971 SDValue Arg = OutVals[i]; 5972 EVT ArgType = Outs[i].VT; 5973 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5974 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5975 if (++j > NumVRs) { 5976 SDValue PtrOff; 5977 // We are emitting Altivec params in order. 5978 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5979 isPPC64, isTailCall, true, MemOpChains, 5980 TailCallArguments, dl); 5981 ArgOffset += 16; 5982 } 5983 } 5984 } 5985 } 5986 5987 if (!MemOpChains.empty()) 5988 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5989 5990 // On Darwin, R12 must contain the address of an indirect callee. This does 5991 // not mean the MTCTR instruction must use R12; it's easier to model this as 5992 // an extra parameter, so do that. 5993 if (!isTailCall && 5994 !isFunctionGlobalAddress(Callee) && 5995 !isa<ExternalSymbolSDNode>(Callee) && 5996 !isBLACompatibleAddress(Callee, DAG)) 5997 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5998 PPC::R12), Callee)); 5999 6000 // Build a sequence of copy-to-reg nodes chained together with token chain 6001 // and flag operands which copy the outgoing args into the appropriate regs. 6002 SDValue InFlag; 6003 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6004 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6005 RegsToPass[i].second, InFlag); 6006 InFlag = Chain.getValue(1); 6007 } 6008 6009 if (isTailCall) 6010 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6011 TailCallArguments); 6012 6013 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6014 /* unused except on PPC64 ELFv1 */ false, DAG, 6015 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6016 NumBytes, Ins, InVals, CS); 6017 } 6018 6019 bool 6020 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6021 MachineFunction &MF, bool isVarArg, 6022 const SmallVectorImpl<ISD::OutputArg> &Outs, 6023 LLVMContext &Context) const { 6024 SmallVector<CCValAssign, 16> RVLocs; 6025 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6026 return CCInfo.CheckReturn(Outs, RetCC_PPC); 6027 } 6028 6029 SDValue 6030 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6031 bool isVarArg, 6032 const SmallVectorImpl<ISD::OutputArg> &Outs, 6033 const SmallVectorImpl<SDValue> &OutVals, 6034 const SDLoc &dl, SelectionDAG &DAG) const { 6035 6036 SmallVector<CCValAssign, 16> RVLocs; 6037 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6038 *DAG.getContext()); 6039 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 6040 6041 SDValue Flag; 6042 SmallVector<SDValue, 4> RetOps(1, Chain); 6043 6044 // Copy the result values into the output registers. 6045 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6046 CCValAssign &VA = RVLocs[i]; 6047 assert(VA.isRegLoc() && "Can only return in registers!"); 6048 6049 SDValue Arg = OutVals[i]; 6050 6051 switch (VA.getLocInfo()) { 6052 default: llvm_unreachable("Unknown loc info!"); 6053 case CCValAssign::Full: break; 6054 case CCValAssign::AExt: 6055 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6056 break; 6057 case CCValAssign::ZExt: 6058 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6059 break; 6060 case CCValAssign::SExt: 6061 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6062 break; 6063 } 6064 6065 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6066 Flag = Chain.getValue(1); 6067 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6068 } 6069 6070 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6071 const MCPhysReg *I = 6072 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6073 if (I) { 6074 for (; *I; ++I) { 6075 6076 if (PPC::G8RCRegClass.contains(*I)) 6077 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6078 else if (PPC::F8RCRegClass.contains(*I)) 6079 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6080 else if (PPC::CRRCRegClass.contains(*I)) 6081 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6082 else if (PPC::VRRCRegClass.contains(*I)) 6083 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6084 else 6085 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6086 } 6087 } 6088 6089 RetOps[0] = Chain; // Update chain. 6090 6091 // Add the flag if we have it. 6092 if (Flag.getNode()) 6093 RetOps.push_back(Flag); 6094 6095 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6096 } 6097 6098 SDValue 6099 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6100 SelectionDAG &DAG) const { 6101 SDLoc dl(Op); 6102 6103 // Get the corect type for integers. 6104 EVT IntVT = Op.getValueType(); 6105 6106 // Get the inputs. 6107 SDValue Chain = Op.getOperand(0); 6108 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6109 // Build a DYNAREAOFFSET node. 6110 SDValue Ops[2] = {Chain, FPSIdx}; 6111 SDVTList VTs = DAG.getVTList(IntVT); 6112 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6113 } 6114 6115 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6116 SelectionDAG &DAG) const { 6117 // When we pop the dynamic allocation we need to restore the SP link. 6118 SDLoc dl(Op); 6119 6120 // Get the corect type for pointers. 6121 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6122 6123 // Construct the stack pointer operand. 6124 bool isPPC64 = Subtarget.isPPC64(); 6125 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6126 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6127 6128 // Get the operands for the STACKRESTORE. 6129 SDValue Chain = Op.getOperand(0); 6130 SDValue SaveSP = Op.getOperand(1); 6131 6132 // Load the old link SP. 6133 SDValue LoadLinkSP = 6134 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6135 6136 // Restore the stack pointer. 6137 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6138 6139 // Store the old link SP. 6140 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6141 } 6142 6143 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6144 MachineFunction &MF = DAG.getMachineFunction(); 6145 bool isPPC64 = Subtarget.isPPC64(); 6146 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6147 6148 // Get current frame pointer save index. The users of this index will be 6149 // primarily DYNALLOC instructions. 6150 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6151 int RASI = FI->getReturnAddrSaveIndex(); 6152 6153 // If the frame pointer save index hasn't been defined yet. 6154 if (!RASI) { 6155 // Find out what the fix offset of the frame pointer save area. 6156 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6157 // Allocate the frame index for frame pointer save area. 6158 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6159 // Save the result. 6160 FI->setReturnAddrSaveIndex(RASI); 6161 } 6162 return DAG.getFrameIndex(RASI, PtrVT); 6163 } 6164 6165 SDValue 6166 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6167 MachineFunction &MF = DAG.getMachineFunction(); 6168 bool isPPC64 = Subtarget.isPPC64(); 6169 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6170 6171 // Get current frame pointer save index. The users of this index will be 6172 // primarily DYNALLOC instructions. 6173 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6174 int FPSI = FI->getFramePointerSaveIndex(); 6175 6176 // If the frame pointer save index hasn't been defined yet. 6177 if (!FPSI) { 6178 // Find out what the fix offset of the frame pointer save area. 6179 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6180 // Allocate the frame index for frame pointer save area. 6181 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6182 // Save the result. 6183 FI->setFramePointerSaveIndex(FPSI); 6184 } 6185 return DAG.getFrameIndex(FPSI, PtrVT); 6186 } 6187 6188 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6189 SelectionDAG &DAG) const { 6190 // Get the inputs. 6191 SDValue Chain = Op.getOperand(0); 6192 SDValue Size = Op.getOperand(1); 6193 SDLoc dl(Op); 6194 6195 // Get the corect type for pointers. 6196 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6197 // Negate the size. 6198 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6199 DAG.getConstant(0, dl, PtrVT), Size); 6200 // Construct a node for the frame pointer save index. 6201 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6202 // Build a DYNALLOC node. 6203 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6204 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6205 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6206 } 6207 6208 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6209 SelectionDAG &DAG) const { 6210 MachineFunction &MF = DAG.getMachineFunction(); 6211 6212 bool isPPC64 = Subtarget.isPPC64(); 6213 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6214 6215 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6216 return DAG.getFrameIndex(FI, PtrVT); 6217 } 6218 6219 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6220 SelectionDAG &DAG) const { 6221 SDLoc DL(Op); 6222 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6223 DAG.getVTList(MVT::i32, MVT::Other), 6224 Op.getOperand(0), Op.getOperand(1)); 6225 } 6226 6227 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6228 SelectionDAG &DAG) const { 6229 SDLoc DL(Op); 6230 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6231 Op.getOperand(0), Op.getOperand(1)); 6232 } 6233 6234 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6235 if (Op.getValueType().isVector()) 6236 return LowerVectorLoad(Op, DAG); 6237 6238 assert(Op.getValueType() == MVT::i1 && 6239 "Custom lowering only for i1 loads"); 6240 6241 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6242 6243 SDLoc dl(Op); 6244 LoadSDNode *LD = cast<LoadSDNode>(Op); 6245 6246 SDValue Chain = LD->getChain(); 6247 SDValue BasePtr = LD->getBasePtr(); 6248 MachineMemOperand *MMO = LD->getMemOperand(); 6249 6250 SDValue NewLD = 6251 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6252 BasePtr, MVT::i8, MMO); 6253 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6254 6255 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6256 return DAG.getMergeValues(Ops, dl); 6257 } 6258 6259 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6260 if (Op.getOperand(1).getValueType().isVector()) 6261 return LowerVectorStore(Op, DAG); 6262 6263 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6264 "Custom lowering only for i1 stores"); 6265 6266 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6267 6268 SDLoc dl(Op); 6269 StoreSDNode *ST = cast<StoreSDNode>(Op); 6270 6271 SDValue Chain = ST->getChain(); 6272 SDValue BasePtr = ST->getBasePtr(); 6273 SDValue Value = ST->getValue(); 6274 MachineMemOperand *MMO = ST->getMemOperand(); 6275 6276 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6277 Value); 6278 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6279 } 6280 6281 // FIXME: Remove this once the ANDI glue bug is fixed: 6282 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6283 assert(Op.getValueType() == MVT::i1 && 6284 "Custom lowering only for i1 results"); 6285 6286 SDLoc DL(Op); 6287 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6288 Op.getOperand(0)); 6289 } 6290 6291 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6292 /// possible. 6293 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6294 // Not FP? Not a fsel. 6295 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6296 !Op.getOperand(2).getValueType().isFloatingPoint()) 6297 return Op; 6298 6299 // We might be able to do better than this under some circumstances, but in 6300 // general, fsel-based lowering of select is a finite-math-only optimization. 6301 // For more information, see section F.3 of the 2.06 ISA specification. 6302 if (!DAG.getTarget().Options.NoInfsFPMath || 6303 !DAG.getTarget().Options.NoNaNsFPMath) 6304 return Op; 6305 // TODO: Propagate flags from the select rather than global settings. 6306 SDNodeFlags Flags; 6307 Flags.setNoInfs(true); 6308 Flags.setNoNaNs(true); 6309 6310 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6311 6312 EVT ResVT = Op.getValueType(); 6313 EVT CmpVT = Op.getOperand(0).getValueType(); 6314 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6315 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6316 SDLoc dl(Op); 6317 6318 // If the RHS of the comparison is a 0.0, we don't need to do the 6319 // subtraction at all. 6320 SDValue Sel1; 6321 if (isFloatingPointZero(RHS)) 6322 switch (CC) { 6323 default: break; // SETUO etc aren't handled by fsel. 6324 case ISD::SETNE: 6325 std::swap(TV, FV); 6326 case ISD::SETEQ: 6327 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6328 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6329 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6330 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6331 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6332 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6333 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6334 case ISD::SETULT: 6335 case ISD::SETLT: 6336 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6337 case ISD::SETOGE: 6338 case ISD::SETGE: 6339 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6340 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6341 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6342 case ISD::SETUGT: 6343 case ISD::SETGT: 6344 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6345 case ISD::SETOLE: 6346 case ISD::SETLE: 6347 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6348 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6349 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6350 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6351 } 6352 6353 SDValue Cmp; 6354 switch (CC) { 6355 default: break; // SETUO etc aren't handled by fsel. 6356 case ISD::SETNE: 6357 std::swap(TV, FV); 6358 case ISD::SETEQ: 6359 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6360 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6361 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6362 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6363 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6364 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6365 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6366 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6367 case ISD::SETULT: 6368 case ISD::SETLT: 6369 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6370 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6371 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6372 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6373 case ISD::SETOGE: 6374 case ISD::SETGE: 6375 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6376 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6377 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6378 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6379 case ISD::SETUGT: 6380 case ISD::SETGT: 6381 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6382 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6383 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6384 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6385 case ISD::SETOLE: 6386 case ISD::SETLE: 6387 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6388 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6389 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6390 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6391 } 6392 return Op; 6393 } 6394 6395 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6396 SelectionDAG &DAG, 6397 const SDLoc &dl) const { 6398 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6399 SDValue Src = Op.getOperand(0); 6400 if (Src.getValueType() == MVT::f32) 6401 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6402 6403 SDValue Tmp; 6404 switch (Op.getSimpleValueType().SimpleTy) { 6405 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6406 case MVT::i32: 6407 Tmp = DAG.getNode( 6408 Op.getOpcode() == ISD::FP_TO_SINT 6409 ? PPCISD::FCTIWZ 6410 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6411 dl, MVT::f64, Src); 6412 break; 6413 case MVT::i64: 6414 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6415 "i64 FP_TO_UINT is supported only with FPCVT"); 6416 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6417 PPCISD::FCTIDUZ, 6418 dl, MVT::f64, Src); 6419 break; 6420 } 6421 6422 // Convert the FP value to an int value through memory. 6423 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6424 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6425 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6426 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6427 MachinePointerInfo MPI = 6428 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6429 6430 // Emit a store to the stack slot. 6431 SDValue Chain; 6432 if (i32Stack) { 6433 MachineFunction &MF = DAG.getMachineFunction(); 6434 MachineMemOperand *MMO = 6435 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6436 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6437 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6438 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6439 } else 6440 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 6441 6442 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6443 // add in a bias on big endian. 6444 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6445 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6446 DAG.getConstant(4, dl, FIPtr.getValueType())); 6447 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6448 } 6449 6450 RLI.Chain = Chain; 6451 RLI.Ptr = FIPtr; 6452 RLI.MPI = MPI; 6453 } 6454 6455 /// \brief Custom lowers floating point to integer conversions to use 6456 /// the direct move instructions available in ISA 2.07 to avoid the 6457 /// need for load/store combinations. 6458 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6459 SelectionDAG &DAG, 6460 const SDLoc &dl) const { 6461 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6462 SDValue Src = Op.getOperand(0); 6463 6464 if (Src.getValueType() == MVT::f32) 6465 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6466 6467 SDValue Tmp; 6468 switch (Op.getSimpleValueType().SimpleTy) { 6469 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6470 case MVT::i32: 6471 Tmp = DAG.getNode( 6472 Op.getOpcode() == ISD::FP_TO_SINT 6473 ? PPCISD::FCTIWZ 6474 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6475 dl, MVT::f64, Src); 6476 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6477 break; 6478 case MVT::i64: 6479 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6480 "i64 FP_TO_UINT is supported only with FPCVT"); 6481 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6482 PPCISD::FCTIDUZ, 6483 dl, MVT::f64, Src); 6484 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6485 break; 6486 } 6487 return Tmp; 6488 } 6489 6490 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6491 const SDLoc &dl) const { 6492 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6493 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6494 6495 ReuseLoadInfo RLI; 6496 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6497 6498 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6499 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6500 } 6501 6502 // We're trying to insert a regular store, S, and then a load, L. If the 6503 // incoming value, O, is a load, we might just be able to have our load use the 6504 // address used by O. However, we don't know if anything else will store to 6505 // that address before we can load from it. To prevent this situation, we need 6506 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6507 // the same chain operand as O, we create a token factor from the chain results 6508 // of O and L, and we replace all uses of O's chain result with that token 6509 // factor (see spliceIntoChain below for this last part). 6510 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6511 ReuseLoadInfo &RLI, 6512 SelectionDAG &DAG, 6513 ISD::LoadExtType ET) const { 6514 SDLoc dl(Op); 6515 if (ET == ISD::NON_EXTLOAD && 6516 (Op.getOpcode() == ISD::FP_TO_UINT || 6517 Op.getOpcode() == ISD::FP_TO_SINT) && 6518 isOperationLegalOrCustom(Op.getOpcode(), 6519 Op.getOperand(0).getValueType())) { 6520 6521 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6522 return true; 6523 } 6524 6525 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6526 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6527 LD->isNonTemporal()) 6528 return false; 6529 if (LD->getMemoryVT() != MemVT) 6530 return false; 6531 6532 RLI.Ptr = LD->getBasePtr(); 6533 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6534 assert(LD->getAddressingMode() == ISD::PRE_INC && 6535 "Non-pre-inc AM on PPC?"); 6536 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6537 LD->getOffset()); 6538 } 6539 6540 RLI.Chain = LD->getChain(); 6541 RLI.MPI = LD->getPointerInfo(); 6542 RLI.IsDereferenceable = LD->isDereferenceable(); 6543 RLI.IsInvariant = LD->isInvariant(); 6544 RLI.Alignment = LD->getAlignment(); 6545 RLI.AAInfo = LD->getAAInfo(); 6546 RLI.Ranges = LD->getRanges(); 6547 6548 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6549 return true; 6550 } 6551 6552 // Given the head of the old chain, ResChain, insert a token factor containing 6553 // it and NewResChain, and make users of ResChain now be users of that token 6554 // factor. 6555 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6556 SDValue NewResChain, 6557 SelectionDAG &DAG) const { 6558 if (!ResChain) 6559 return; 6560 6561 SDLoc dl(NewResChain); 6562 6563 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6564 NewResChain, DAG.getUNDEF(MVT::Other)); 6565 assert(TF.getNode() != NewResChain.getNode() && 6566 "A new TF really is required here"); 6567 6568 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6569 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6570 } 6571 6572 /// \brief Analyze profitability of direct move 6573 /// prefer float load to int load plus direct move 6574 /// when there is no integer use of int load 6575 static bool directMoveIsProfitable(const SDValue &Op) { 6576 SDNode *Origin = Op.getOperand(0).getNode(); 6577 if (Origin->getOpcode() != ISD::LOAD) 6578 return true; 6579 6580 for (SDNode::use_iterator UI = Origin->use_begin(), 6581 UE = Origin->use_end(); 6582 UI != UE; ++UI) { 6583 6584 // Only look at the users of the loaded value. 6585 if (UI.getUse().get().getResNo() != 0) 6586 continue; 6587 6588 if (UI->getOpcode() != ISD::SINT_TO_FP && 6589 UI->getOpcode() != ISD::UINT_TO_FP) 6590 return true; 6591 } 6592 6593 return false; 6594 } 6595 6596 /// \brief Custom lowers integer to floating point conversions to use 6597 /// the direct move instructions available in ISA 2.07 to avoid the 6598 /// need for load/store combinations. 6599 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6600 SelectionDAG &DAG, 6601 const SDLoc &dl) const { 6602 assert((Op.getValueType() == MVT::f32 || 6603 Op.getValueType() == MVT::f64) && 6604 "Invalid floating point type as target of conversion"); 6605 assert(Subtarget.hasFPCVT() && 6606 "Int to FP conversions with direct moves require FPCVT"); 6607 SDValue FP; 6608 SDValue Src = Op.getOperand(0); 6609 bool SinglePrec = Op.getValueType() == MVT::f32; 6610 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6611 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6612 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6613 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6614 6615 if (WordInt) { 6616 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6617 dl, MVT::f64, Src); 6618 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6619 } 6620 else { 6621 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6622 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6623 } 6624 6625 return FP; 6626 } 6627 6628 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6629 SelectionDAG &DAG) const { 6630 SDLoc dl(Op); 6631 6632 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6633 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6634 return SDValue(); 6635 6636 SDValue Value = Op.getOperand(0); 6637 // The values are now known to be -1 (false) or 1 (true). To convert this 6638 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6639 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6640 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6641 6642 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6643 6644 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6645 6646 if (Op.getValueType() != MVT::v4f64) 6647 Value = DAG.getNode(ISD::FP_ROUND, dl, 6648 Op.getValueType(), Value, 6649 DAG.getIntPtrConstant(1, dl)); 6650 return Value; 6651 } 6652 6653 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6654 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6655 return SDValue(); 6656 6657 if (Op.getOperand(0).getValueType() == MVT::i1) 6658 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6659 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6660 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6661 6662 // If we have direct moves, we can do all the conversion, skip the store/load 6663 // however, without FPCVT we can't do most conversions. 6664 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6665 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6666 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6667 6668 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6669 "UINT_TO_FP is supported only with FPCVT"); 6670 6671 // If we have FCFIDS, then use it when converting to single-precision. 6672 // Otherwise, convert to double-precision and then round. 6673 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6674 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6675 : PPCISD::FCFIDS) 6676 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6677 : PPCISD::FCFID); 6678 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6679 ? MVT::f32 6680 : MVT::f64; 6681 6682 if (Op.getOperand(0).getValueType() == MVT::i64) { 6683 SDValue SINT = Op.getOperand(0); 6684 // When converting to single-precision, we actually need to convert 6685 // to double-precision first and then round to single-precision. 6686 // To avoid double-rounding effects during that operation, we have 6687 // to prepare the input operand. Bits that might be truncated when 6688 // converting to double-precision are replaced by a bit that won't 6689 // be lost at this stage, but is below the single-precision rounding 6690 // position. 6691 // 6692 // However, if -enable-unsafe-fp-math is in effect, accept double 6693 // rounding to avoid the extra overhead. 6694 if (Op.getValueType() == MVT::f32 && 6695 !Subtarget.hasFPCVT() && 6696 !DAG.getTarget().Options.UnsafeFPMath) { 6697 6698 // Twiddle input to make sure the low 11 bits are zero. (If this 6699 // is the case, we are guaranteed the value will fit into the 53 bit 6700 // mantissa of an IEEE double-precision value without rounding.) 6701 // If any of those low 11 bits were not zero originally, make sure 6702 // bit 12 (value 2048) is set instead, so that the final rounding 6703 // to single-precision gets the correct result. 6704 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6705 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6706 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6707 Round, DAG.getConstant(2047, dl, MVT::i64)); 6708 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6709 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6710 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6711 6712 // However, we cannot use that value unconditionally: if the magnitude 6713 // of the input value is small, the bit-twiddling we did above might 6714 // end up visibly changing the output. Fortunately, in that case, we 6715 // don't need to twiddle bits since the original input will convert 6716 // exactly to double-precision floating-point already. Therefore, 6717 // construct a conditional to use the original value if the top 11 6718 // bits are all sign-bit copies, and use the rounded value computed 6719 // above otherwise. 6720 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6721 SINT, DAG.getConstant(53, dl, MVT::i32)); 6722 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6723 Cond, DAG.getConstant(1, dl, MVT::i64)); 6724 Cond = DAG.getSetCC(dl, MVT::i32, 6725 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6726 6727 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6728 } 6729 6730 ReuseLoadInfo RLI; 6731 SDValue Bits; 6732 6733 MachineFunction &MF = DAG.getMachineFunction(); 6734 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6735 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6736 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6737 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6738 } else if (Subtarget.hasLFIWAX() && 6739 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6740 MachineMemOperand *MMO = 6741 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6742 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6743 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6744 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6745 DAG.getVTList(MVT::f64, MVT::Other), 6746 Ops, MVT::i32, MMO); 6747 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6748 } else if (Subtarget.hasFPCVT() && 6749 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6750 MachineMemOperand *MMO = 6751 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6752 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6753 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6754 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6755 DAG.getVTList(MVT::f64, MVT::Other), 6756 Ops, MVT::i32, MMO); 6757 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6758 } else if (((Subtarget.hasLFIWAX() && 6759 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6760 (Subtarget.hasFPCVT() && 6761 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6762 SINT.getOperand(0).getValueType() == MVT::i32) { 6763 MachineFrameInfo &MFI = MF.getFrameInfo(); 6764 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6765 6766 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6767 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6768 6769 SDValue Store = 6770 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6771 MachinePointerInfo::getFixedStack( 6772 DAG.getMachineFunction(), FrameIdx)); 6773 6774 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6775 "Expected an i32 store"); 6776 6777 RLI.Ptr = FIdx; 6778 RLI.Chain = Store; 6779 RLI.MPI = 6780 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6781 RLI.Alignment = 4; 6782 6783 MachineMemOperand *MMO = 6784 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6785 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6786 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6787 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6788 PPCISD::LFIWZX : PPCISD::LFIWAX, 6789 dl, DAG.getVTList(MVT::f64, MVT::Other), 6790 Ops, MVT::i32, MMO); 6791 } else 6792 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6793 6794 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6795 6796 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6797 FP = DAG.getNode(ISD::FP_ROUND, dl, 6798 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6799 return FP; 6800 } 6801 6802 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6803 "Unhandled INT_TO_FP type in custom expander!"); 6804 // Since we only generate this in 64-bit mode, we can take advantage of 6805 // 64-bit registers. In particular, sign extend the input value into the 6806 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6807 // then lfd it and fcfid it. 6808 MachineFunction &MF = DAG.getMachineFunction(); 6809 MachineFrameInfo &MFI = MF.getFrameInfo(); 6810 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6811 6812 SDValue Ld; 6813 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6814 ReuseLoadInfo RLI; 6815 bool ReusingLoad; 6816 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6817 DAG))) { 6818 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6819 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6820 6821 SDValue Store = 6822 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6823 MachinePointerInfo::getFixedStack( 6824 DAG.getMachineFunction(), FrameIdx)); 6825 6826 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6827 "Expected an i32 store"); 6828 6829 RLI.Ptr = FIdx; 6830 RLI.Chain = Store; 6831 RLI.MPI = 6832 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6833 RLI.Alignment = 4; 6834 } 6835 6836 MachineMemOperand *MMO = 6837 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6838 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6839 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6840 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6841 PPCISD::LFIWZX : PPCISD::LFIWAX, 6842 dl, DAG.getVTList(MVT::f64, MVT::Other), 6843 Ops, MVT::i32, MMO); 6844 if (ReusingLoad) 6845 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6846 } else { 6847 assert(Subtarget.isPPC64() && 6848 "i32->FP without LFIWAX supported only on PPC64"); 6849 6850 int FrameIdx = MFI.CreateStackObject(8, 8, false); 6851 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6852 6853 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6854 Op.getOperand(0)); 6855 6856 // STD the extended value into the stack slot. 6857 SDValue Store = DAG.getStore( 6858 DAG.getEntryNode(), dl, Ext64, FIdx, 6859 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6860 6861 // Load the value as a double. 6862 Ld = DAG.getLoad( 6863 MVT::f64, dl, Store, FIdx, 6864 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6865 } 6866 6867 // FCFID it and return it. 6868 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6869 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6870 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6871 DAG.getIntPtrConstant(0, dl)); 6872 return FP; 6873 } 6874 6875 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6876 SelectionDAG &DAG) const { 6877 SDLoc dl(Op); 6878 /* 6879 The rounding mode is in bits 30:31 of FPSR, and has the following 6880 settings: 6881 00 Round to nearest 6882 01 Round to 0 6883 10 Round to +inf 6884 11 Round to -inf 6885 6886 FLT_ROUNDS, on the other hand, expects the following: 6887 -1 Undefined 6888 0 Round to 0 6889 1 Round to nearest 6890 2 Round to +inf 6891 3 Round to -inf 6892 6893 To perform the conversion, we do: 6894 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6895 */ 6896 6897 MachineFunction &MF = DAG.getMachineFunction(); 6898 EVT VT = Op.getValueType(); 6899 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6900 6901 // Save FP Control Word to register 6902 EVT NodeTys[] = { 6903 MVT::f64, // return register 6904 MVT::Glue // unused in this context 6905 }; 6906 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6907 6908 // Save FP register to stack slot 6909 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 6910 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6911 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 6912 MachinePointerInfo()); 6913 6914 // Load FP Control Word from low 32 bits of stack slot. 6915 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6916 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6917 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 6918 6919 // Transform as necessary 6920 SDValue CWD1 = 6921 DAG.getNode(ISD::AND, dl, MVT::i32, 6922 CWD, DAG.getConstant(3, dl, MVT::i32)); 6923 SDValue CWD2 = 6924 DAG.getNode(ISD::SRL, dl, MVT::i32, 6925 DAG.getNode(ISD::AND, dl, MVT::i32, 6926 DAG.getNode(ISD::XOR, dl, MVT::i32, 6927 CWD, DAG.getConstant(3, dl, MVT::i32)), 6928 DAG.getConstant(3, dl, MVT::i32)), 6929 DAG.getConstant(1, dl, MVT::i32)); 6930 6931 SDValue RetVal = 6932 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6933 6934 return DAG.getNode((VT.getSizeInBits() < 16 ? 6935 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6936 } 6937 6938 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6939 EVT VT = Op.getValueType(); 6940 unsigned BitWidth = VT.getSizeInBits(); 6941 SDLoc dl(Op); 6942 assert(Op.getNumOperands() == 3 && 6943 VT == Op.getOperand(1).getValueType() && 6944 "Unexpected SHL!"); 6945 6946 // Expand into a bunch of logical ops. Note that these ops 6947 // depend on the PPC behavior for oversized shift amounts. 6948 SDValue Lo = Op.getOperand(0); 6949 SDValue Hi = Op.getOperand(1); 6950 SDValue Amt = Op.getOperand(2); 6951 EVT AmtVT = Amt.getValueType(); 6952 6953 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6954 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6955 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6956 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6957 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6958 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6959 DAG.getConstant(-BitWidth, dl, AmtVT)); 6960 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6961 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6962 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6963 SDValue OutOps[] = { OutLo, OutHi }; 6964 return DAG.getMergeValues(OutOps, dl); 6965 } 6966 6967 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6968 EVT VT = Op.getValueType(); 6969 SDLoc dl(Op); 6970 unsigned BitWidth = VT.getSizeInBits(); 6971 assert(Op.getNumOperands() == 3 && 6972 VT == Op.getOperand(1).getValueType() && 6973 "Unexpected SRL!"); 6974 6975 // Expand into a bunch of logical ops. Note that these ops 6976 // depend on the PPC behavior for oversized shift amounts. 6977 SDValue Lo = Op.getOperand(0); 6978 SDValue Hi = Op.getOperand(1); 6979 SDValue Amt = Op.getOperand(2); 6980 EVT AmtVT = Amt.getValueType(); 6981 6982 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6983 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6984 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6985 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6986 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6987 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6988 DAG.getConstant(-BitWidth, dl, AmtVT)); 6989 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6990 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6991 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6992 SDValue OutOps[] = { OutLo, OutHi }; 6993 return DAG.getMergeValues(OutOps, dl); 6994 } 6995 6996 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6997 SDLoc dl(Op); 6998 EVT VT = Op.getValueType(); 6999 unsigned BitWidth = VT.getSizeInBits(); 7000 assert(Op.getNumOperands() == 3 && 7001 VT == Op.getOperand(1).getValueType() && 7002 "Unexpected SRA!"); 7003 7004 // Expand into a bunch of logical ops, followed by a select_cc. 7005 SDValue Lo = Op.getOperand(0); 7006 SDValue Hi = Op.getOperand(1); 7007 SDValue Amt = Op.getOperand(2); 7008 EVT AmtVT = Amt.getValueType(); 7009 7010 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7011 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7012 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7013 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7014 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7015 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7016 DAG.getConstant(-BitWidth, dl, AmtVT)); 7017 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7018 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7019 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7020 Tmp4, Tmp6, ISD::SETLE); 7021 SDValue OutOps[] = { OutLo, OutHi }; 7022 return DAG.getMergeValues(OutOps, dl); 7023 } 7024 7025 //===----------------------------------------------------------------------===// 7026 // Vector related lowering. 7027 // 7028 7029 /// BuildSplatI - Build a canonical splati of Val with an element size of 7030 /// SplatSize. Cast the result to VT. 7031 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7032 SelectionDAG &DAG, const SDLoc &dl) { 7033 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7034 7035 static const MVT VTys[] = { // canonical VT to use for each size. 7036 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7037 }; 7038 7039 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7040 7041 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7042 if (Val == -1) 7043 SplatSize = 1; 7044 7045 EVT CanonicalVT = VTys[SplatSize-1]; 7046 7047 // Build a canonical splat for this value. 7048 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7049 } 7050 7051 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7052 /// specified intrinsic ID. 7053 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7054 const SDLoc &dl, EVT DestVT = MVT::Other) { 7055 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7056 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7057 DAG.getConstant(IID, dl, MVT::i32), Op); 7058 } 7059 7060 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7061 /// specified intrinsic ID. 7062 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7063 SelectionDAG &DAG, const SDLoc &dl, 7064 EVT DestVT = MVT::Other) { 7065 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7066 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7067 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7068 } 7069 7070 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7071 /// specified intrinsic ID. 7072 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7073 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7074 EVT DestVT = MVT::Other) { 7075 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7076 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7077 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7078 } 7079 7080 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7081 /// amount. The result has the specified value type. 7082 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7083 SelectionDAG &DAG, const SDLoc &dl) { 7084 // Force LHS/RHS to be the right type. 7085 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7086 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7087 7088 int Ops[16]; 7089 for (unsigned i = 0; i != 16; ++i) 7090 Ops[i] = i + Amt; 7091 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7092 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7093 } 7094 7095 static bool isNonConstSplatBV(BuildVectorSDNode *BVN, EVT Type) { 7096 if (BVN->isConstant() || BVN->getValueType(0) != Type) 7097 return false; 7098 auto OpZero = BVN->getOperand(0); 7099 for (int i = 1, e = BVN->getNumOperands(); i < e; i++) 7100 if (BVN->getOperand(i) != OpZero) 7101 return false; 7102 return true; 7103 } 7104 7105 // If this is a case we can't handle, return null and let the default 7106 // expansion code take care of it. If we CAN select this case, and if it 7107 // selects to a single instruction, return Op. Otherwise, if we can codegen 7108 // this case more efficiently than a constant pool load, lower it to the 7109 // sequence of ops that should be used. 7110 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7111 SelectionDAG &DAG) const { 7112 SDLoc dl(Op); 7113 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7114 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7115 7116 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7117 // We first build an i32 vector, load it into a QPX register, 7118 // then convert it to a floating-point vector and compare it 7119 // to a zero vector to get the boolean result. 7120 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7121 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7122 MachinePointerInfo PtrInfo = 7123 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7124 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7125 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7126 7127 assert(BVN->getNumOperands() == 4 && 7128 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7129 7130 bool IsConst = true; 7131 for (unsigned i = 0; i < 4; ++i) { 7132 if (BVN->getOperand(i).isUndef()) continue; 7133 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7134 IsConst = false; 7135 break; 7136 } 7137 } 7138 7139 if (IsConst) { 7140 Constant *One = 7141 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7142 Constant *NegOne = 7143 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7144 7145 Constant *CV[4]; 7146 for (unsigned i = 0; i < 4; ++i) { 7147 if (BVN->getOperand(i).isUndef()) 7148 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7149 else if (isNullConstant(BVN->getOperand(i))) 7150 CV[i] = NegOne; 7151 else 7152 CV[i] = One; 7153 } 7154 7155 Constant *CP = ConstantVector::get(CV); 7156 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7157 16 /* alignment */); 7158 7159 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7160 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7161 return DAG.getMemIntrinsicNode( 7162 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7163 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7164 } 7165 7166 SmallVector<SDValue, 4> Stores; 7167 for (unsigned i = 0; i < 4; ++i) { 7168 if (BVN->getOperand(i).isUndef()) continue; 7169 7170 unsigned Offset = 4*i; 7171 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7172 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7173 7174 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7175 if (StoreSize > 4) { 7176 Stores.push_back( 7177 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7178 PtrInfo.getWithOffset(Offset), MVT::i32)); 7179 } else { 7180 SDValue StoreValue = BVN->getOperand(i); 7181 if (StoreSize < 4) 7182 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7183 7184 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7185 PtrInfo.getWithOffset(Offset))); 7186 } 7187 } 7188 7189 SDValue StoreChain; 7190 if (!Stores.empty()) 7191 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7192 else 7193 StoreChain = DAG.getEntryNode(); 7194 7195 // Now load from v4i32 into the QPX register; this will extend it to 7196 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7197 // is typed as v4f64 because the QPX register integer states are not 7198 // explicitly represented. 7199 7200 SDValue Ops[] = {StoreChain, 7201 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7202 FIdx}; 7203 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7204 7205 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7206 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7207 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7208 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7209 LoadedVect); 7210 7211 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7212 7213 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7214 } 7215 7216 // All other QPX vectors are handled by generic code. 7217 if (Subtarget.hasQPX()) 7218 return SDValue(); 7219 7220 // Check if this is a splat of a constant value. 7221 APInt APSplatBits, APSplatUndef; 7222 unsigned SplatBitSize; 7223 bool HasAnyUndefs; 7224 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7225 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7226 SplatBitSize > 32) { 7227 // We can splat a non-const value on CPU's that implement ISA 3.0 7228 // in two ways: LXVWSX (load and splat) and MTVSRWS(move and splat). 7229 auto OpZero = BVN->getOperand(0); 7230 bool CanLoadAndSplat = OpZero.getOpcode() == ISD::LOAD && 7231 BVN->isOnlyUserOf(OpZero.getNode()); 7232 if (Subtarget.isISA3_0() && !CanLoadAndSplat && 7233 (isNonConstSplatBV(BVN, MVT::v4i32) || 7234 isNonConstSplatBV(BVN, MVT::v2i64))) 7235 return Op; 7236 return SDValue(); 7237 } 7238 7239 unsigned SplatBits = APSplatBits.getZExtValue(); 7240 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7241 unsigned SplatSize = SplatBitSize / 8; 7242 7243 // First, handle single instruction cases. 7244 7245 // All zeros? 7246 if (SplatBits == 0) { 7247 // Canonicalize all zero vectors to be v4i32. 7248 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7249 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7250 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7251 } 7252 return Op; 7253 } 7254 7255 // We have XXSPLTIB for constant splats one byte wide 7256 if (Subtarget.isISA3_0() && Op.getValueType() == MVT::v16i8) 7257 return Op; 7258 7259 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7260 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7261 (32-SplatBitSize)); 7262 if (SextVal >= -16 && SextVal <= 15) 7263 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7264 7265 // Two instruction sequences. 7266 7267 // If this value is in the range [-32,30] and is even, use: 7268 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7269 // If this value is in the range [17,31] and is odd, use: 7270 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7271 // If this value is in the range [-31,-17] and is odd, use: 7272 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7273 // Note the last two are three-instruction sequences. 7274 if (SextVal >= -32 && SextVal <= 31) { 7275 // To avoid having these optimizations undone by constant folding, 7276 // we convert to a pseudo that will be expanded later into one of 7277 // the above forms. 7278 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7279 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7280 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7281 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7282 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7283 if (VT == Op.getValueType()) 7284 return RetVal; 7285 else 7286 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7287 } 7288 7289 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7290 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7291 // for fneg/fabs. 7292 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7293 // Make -1 and vspltisw -1: 7294 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7295 7296 // Make the VSLW intrinsic, computing 0x8000_0000. 7297 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7298 OnesV, DAG, dl); 7299 7300 // xor by OnesV to invert it. 7301 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7302 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7303 } 7304 7305 // Check to see if this is a wide variety of vsplti*, binop self cases. 7306 static const signed char SplatCsts[] = { 7307 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7308 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7309 }; 7310 7311 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7312 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7313 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7314 int i = SplatCsts[idx]; 7315 7316 // Figure out what shift amount will be used by altivec if shifted by i in 7317 // this splat size. 7318 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7319 7320 // vsplti + shl self. 7321 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7322 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7323 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7324 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7325 Intrinsic::ppc_altivec_vslw 7326 }; 7327 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7328 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7329 } 7330 7331 // vsplti + srl self. 7332 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7333 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7334 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7335 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7336 Intrinsic::ppc_altivec_vsrw 7337 }; 7338 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7339 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7340 } 7341 7342 // vsplti + sra self. 7343 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7344 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7345 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7346 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7347 Intrinsic::ppc_altivec_vsraw 7348 }; 7349 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7350 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7351 } 7352 7353 // vsplti + rol self. 7354 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7355 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7356 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7357 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7358 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7359 Intrinsic::ppc_altivec_vrlw 7360 }; 7361 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7362 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7363 } 7364 7365 // t = vsplti c, result = vsldoi t, t, 1 7366 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7367 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7368 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7369 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7370 } 7371 // t = vsplti c, result = vsldoi t, t, 2 7372 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7373 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7374 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7375 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7376 } 7377 // t = vsplti c, result = vsldoi t, t, 3 7378 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7379 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7380 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7381 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7382 } 7383 } 7384 7385 return SDValue(); 7386 } 7387 7388 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7389 /// the specified operations to build the shuffle. 7390 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7391 SDValue RHS, SelectionDAG &DAG, 7392 const SDLoc &dl) { 7393 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7394 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7395 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7396 7397 enum { 7398 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7399 OP_VMRGHW, 7400 OP_VMRGLW, 7401 OP_VSPLTISW0, 7402 OP_VSPLTISW1, 7403 OP_VSPLTISW2, 7404 OP_VSPLTISW3, 7405 OP_VSLDOI4, 7406 OP_VSLDOI8, 7407 OP_VSLDOI12 7408 }; 7409 7410 if (OpNum == OP_COPY) { 7411 if (LHSID == (1*9+2)*9+3) return LHS; 7412 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7413 return RHS; 7414 } 7415 7416 SDValue OpLHS, OpRHS; 7417 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7418 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7419 7420 int ShufIdxs[16]; 7421 switch (OpNum) { 7422 default: llvm_unreachable("Unknown i32 permute!"); 7423 case OP_VMRGHW: 7424 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7425 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7426 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7427 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7428 break; 7429 case OP_VMRGLW: 7430 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7431 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7432 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7433 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7434 break; 7435 case OP_VSPLTISW0: 7436 for (unsigned i = 0; i != 16; ++i) 7437 ShufIdxs[i] = (i&3)+0; 7438 break; 7439 case OP_VSPLTISW1: 7440 for (unsigned i = 0; i != 16; ++i) 7441 ShufIdxs[i] = (i&3)+4; 7442 break; 7443 case OP_VSPLTISW2: 7444 for (unsigned i = 0; i != 16; ++i) 7445 ShufIdxs[i] = (i&3)+8; 7446 break; 7447 case OP_VSPLTISW3: 7448 for (unsigned i = 0; i != 16; ++i) 7449 ShufIdxs[i] = (i&3)+12; 7450 break; 7451 case OP_VSLDOI4: 7452 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7453 case OP_VSLDOI8: 7454 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7455 case OP_VSLDOI12: 7456 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7457 } 7458 EVT VT = OpLHS.getValueType(); 7459 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7460 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7461 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7462 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7463 } 7464 7465 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7466 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7467 /// return the code it can be lowered into. Worst case, it can always be 7468 /// lowered into a vperm. 7469 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7470 SelectionDAG &DAG) const { 7471 SDLoc dl(Op); 7472 SDValue V1 = Op.getOperand(0); 7473 SDValue V2 = Op.getOperand(1); 7474 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7475 EVT VT = Op.getValueType(); 7476 bool isLittleEndian = Subtarget.isLittleEndian(); 7477 7478 unsigned ShiftElts, InsertAtByte; 7479 bool Swap; 7480 if (Subtarget.hasP9Vector() && 7481 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 7482 isLittleEndian)) { 7483 if (Swap) 7484 std::swap(V1, V2); 7485 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7486 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 7487 if (ShiftElts) { 7488 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 7489 DAG.getConstant(ShiftElts, dl, MVT::i32)); 7490 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl, 7491 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7492 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7493 } 7494 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2, 7495 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7496 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7497 } 7498 7499 if (Subtarget.hasVSX()) { 7500 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7501 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7502 7503 // If the source for the shuffle is a scalar_to_vector that came from a 7504 // 32-bit load, it will have used LXVWSX so we don't need to splat again. 7505 if (Subtarget.isISA3_0() && 7506 ((isLittleEndian && SplatIdx == 3) || 7507 (!isLittleEndian && SplatIdx == 0))) { 7508 SDValue Src = V1.getOperand(0); 7509 if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR && 7510 Src.getOperand(0).getOpcode() == ISD::LOAD && 7511 Src.getOperand(0).hasOneUse()) 7512 return V1; 7513 } 7514 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7515 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7516 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7517 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7518 } 7519 7520 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 7521 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 7522 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 7523 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 7524 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 7525 } 7526 7527 } 7528 7529 if (Subtarget.hasQPX()) { 7530 if (VT.getVectorNumElements() != 4) 7531 return SDValue(); 7532 7533 if (V2.isUndef()) V2 = V1; 7534 7535 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7536 if (AlignIdx != -1) { 7537 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7538 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7539 } else if (SVOp->isSplat()) { 7540 int SplatIdx = SVOp->getSplatIndex(); 7541 if (SplatIdx >= 4) { 7542 std::swap(V1, V2); 7543 SplatIdx -= 4; 7544 } 7545 7546 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7547 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7548 } 7549 7550 // Lower this into a qvgpci/qvfperm pair. 7551 7552 // Compute the qvgpci literal 7553 unsigned idx = 0; 7554 for (unsigned i = 0; i < 4; ++i) { 7555 int m = SVOp->getMaskElt(i); 7556 unsigned mm = m >= 0 ? (unsigned) m : i; 7557 idx |= mm << (3-i)*3; 7558 } 7559 7560 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7561 DAG.getConstant(idx, dl, MVT::i32)); 7562 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7563 } 7564 7565 // Cases that are handled by instructions that take permute immediates 7566 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7567 // selected by the instruction selector. 7568 if (V2.isUndef()) { 7569 if (PPC::isSplatShuffleMask(SVOp, 1) || 7570 PPC::isSplatShuffleMask(SVOp, 2) || 7571 PPC::isSplatShuffleMask(SVOp, 4) || 7572 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7573 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7574 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7575 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7576 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7577 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7578 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7579 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7580 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7581 (Subtarget.hasP8Altivec() && ( 7582 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7583 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7584 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7585 return Op; 7586 } 7587 } 7588 7589 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7590 // and produce a fixed permutation. If any of these match, do not lower to 7591 // VPERM. 7592 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7593 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7594 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7595 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7596 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7597 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7598 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7599 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7600 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7601 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7602 (Subtarget.hasP8Altivec() && ( 7603 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7604 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7605 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7606 return Op; 7607 7608 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7609 // perfect shuffle table to emit an optimal matching sequence. 7610 ArrayRef<int> PermMask = SVOp->getMask(); 7611 7612 unsigned PFIndexes[4]; 7613 bool isFourElementShuffle = true; 7614 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7615 unsigned EltNo = 8; // Start out undef. 7616 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7617 if (PermMask[i*4+j] < 0) 7618 continue; // Undef, ignore it. 7619 7620 unsigned ByteSource = PermMask[i*4+j]; 7621 if ((ByteSource & 3) != j) { 7622 isFourElementShuffle = false; 7623 break; 7624 } 7625 7626 if (EltNo == 8) { 7627 EltNo = ByteSource/4; 7628 } else if (EltNo != ByteSource/4) { 7629 isFourElementShuffle = false; 7630 break; 7631 } 7632 } 7633 PFIndexes[i] = EltNo; 7634 } 7635 7636 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7637 // perfect shuffle vector to determine if it is cost effective to do this as 7638 // discrete instructions, or whether we should use a vperm. 7639 // For now, we skip this for little endian until such time as we have a 7640 // little-endian perfect shuffle table. 7641 if (isFourElementShuffle && !isLittleEndian) { 7642 // Compute the index in the perfect shuffle table. 7643 unsigned PFTableIndex = 7644 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7645 7646 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7647 unsigned Cost = (PFEntry >> 30); 7648 7649 // Determining when to avoid vperm is tricky. Many things affect the cost 7650 // of vperm, particularly how many times the perm mask needs to be computed. 7651 // For example, if the perm mask can be hoisted out of a loop or is already 7652 // used (perhaps because there are multiple permutes with the same shuffle 7653 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7654 // the loop requires an extra register. 7655 // 7656 // As a compromise, we only emit discrete instructions if the shuffle can be 7657 // generated in 3 or fewer operations. When we have loop information 7658 // available, if this block is within a loop, we should avoid using vperm 7659 // for 3-operation perms and use a constant pool load instead. 7660 if (Cost < 3) 7661 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7662 } 7663 7664 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7665 // vector that will get spilled to the constant pool. 7666 if (V2.isUndef()) V2 = V1; 7667 7668 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7669 // that it is in input element units, not in bytes. Convert now. 7670 7671 // For little endian, the order of the input vectors is reversed, and 7672 // the permutation mask is complemented with respect to 31. This is 7673 // necessary to produce proper semantics with the big-endian-biased vperm 7674 // instruction. 7675 EVT EltVT = V1.getValueType().getVectorElementType(); 7676 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7677 7678 SmallVector<SDValue, 16> ResultMask; 7679 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7680 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7681 7682 for (unsigned j = 0; j != BytesPerElement; ++j) 7683 if (isLittleEndian) 7684 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7685 dl, MVT::i32)); 7686 else 7687 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7688 MVT::i32)); 7689 } 7690 7691 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7692 if (isLittleEndian) 7693 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7694 V2, V1, VPermMask); 7695 else 7696 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7697 V1, V2, VPermMask); 7698 } 7699 7700 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7701 /// vector comparison. If it is, return true and fill in Opc/isDot with 7702 /// information about the intrinsic. 7703 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7704 bool &isDot, const PPCSubtarget &Subtarget) { 7705 unsigned IntrinsicID = 7706 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7707 CompareOpc = -1; 7708 isDot = false; 7709 switch (IntrinsicID) { 7710 default: return false; 7711 // Comparison predicates. 7712 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7713 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7714 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7715 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7716 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7717 case Intrinsic::ppc_altivec_vcmpequd_p: 7718 if (Subtarget.hasP8Altivec()) { 7719 CompareOpc = 199; 7720 isDot = 1; 7721 } else 7722 return false; 7723 7724 break; 7725 case Intrinsic::ppc_altivec_vcmpneb_p: 7726 case Intrinsic::ppc_altivec_vcmpneh_p: 7727 case Intrinsic::ppc_altivec_vcmpnew_p: 7728 case Intrinsic::ppc_altivec_vcmpnezb_p: 7729 case Intrinsic::ppc_altivec_vcmpnezh_p: 7730 case Intrinsic::ppc_altivec_vcmpnezw_p: 7731 if (Subtarget.hasP9Altivec()) { 7732 switch(IntrinsicID) { 7733 default: llvm_unreachable("Unknown comparison intrinsic."); 7734 case Intrinsic::ppc_altivec_vcmpneb_p: CompareOpc = 7; break; 7735 case Intrinsic::ppc_altivec_vcmpneh_p: CompareOpc = 71; break; 7736 case Intrinsic::ppc_altivec_vcmpnew_p: CompareOpc = 135; break; 7737 case Intrinsic::ppc_altivec_vcmpnezb_p: CompareOpc = 263; break; 7738 case Intrinsic::ppc_altivec_vcmpnezh_p: CompareOpc = 327; break; 7739 case Intrinsic::ppc_altivec_vcmpnezw_p: CompareOpc = 391; break; 7740 } 7741 isDot = 1; 7742 } else 7743 return false; 7744 7745 break; 7746 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7747 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7748 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7749 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7750 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7751 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7752 if (Subtarget.hasP8Altivec()) { 7753 CompareOpc = 967; 7754 isDot = 1; 7755 } else 7756 return false; 7757 7758 break; 7759 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7760 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7761 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7762 case Intrinsic::ppc_altivec_vcmpgtud_p: 7763 if (Subtarget.hasP8Altivec()) { 7764 CompareOpc = 711; 7765 isDot = 1; 7766 } else 7767 return false; 7768 7769 break; 7770 // VSX predicate comparisons use the same infrastructure 7771 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7772 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7773 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7774 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7775 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7776 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7777 if (Subtarget.hasVSX()) { 7778 switch (IntrinsicID) { 7779 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7780 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7781 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7782 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7783 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7784 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7785 } 7786 isDot = 1; 7787 } 7788 else 7789 return false; 7790 7791 break; 7792 7793 // Normal Comparisons. 7794 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7795 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7796 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7797 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7798 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7799 case Intrinsic::ppc_altivec_vcmpequd: 7800 if (Subtarget.hasP8Altivec()) { 7801 CompareOpc = 199; 7802 isDot = 0; 7803 } else 7804 return false; 7805 7806 break; 7807 case Intrinsic::ppc_altivec_vcmpneb: 7808 case Intrinsic::ppc_altivec_vcmpneh: 7809 case Intrinsic::ppc_altivec_vcmpnew: 7810 case Intrinsic::ppc_altivec_vcmpnezb: 7811 case Intrinsic::ppc_altivec_vcmpnezh: 7812 case Intrinsic::ppc_altivec_vcmpnezw: 7813 if (Subtarget.hasP9Altivec()) { 7814 switch (IntrinsicID) { 7815 default: llvm_unreachable("Unknown comparison intrinsic."); 7816 case Intrinsic::ppc_altivec_vcmpneb: CompareOpc = 7; break; 7817 case Intrinsic::ppc_altivec_vcmpneh: CompareOpc = 71; break; 7818 case Intrinsic::ppc_altivec_vcmpnew: CompareOpc = 135; break; 7819 case Intrinsic::ppc_altivec_vcmpnezb: CompareOpc = 263; break; 7820 case Intrinsic::ppc_altivec_vcmpnezh: CompareOpc = 327; break; 7821 case Intrinsic::ppc_altivec_vcmpnezw: CompareOpc = 391; break; 7822 } 7823 isDot = 0; 7824 } else 7825 return false; 7826 break; 7827 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7828 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7829 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7830 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7831 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7832 case Intrinsic::ppc_altivec_vcmpgtsd: 7833 if (Subtarget.hasP8Altivec()) { 7834 CompareOpc = 967; 7835 isDot = 0; 7836 } else 7837 return false; 7838 7839 break; 7840 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7841 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7842 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7843 case Intrinsic::ppc_altivec_vcmpgtud: 7844 if (Subtarget.hasP8Altivec()) { 7845 CompareOpc = 711; 7846 isDot = 0; 7847 } else 7848 return false; 7849 7850 break; 7851 } 7852 return true; 7853 } 7854 7855 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7856 /// lower, do it, otherwise return null. 7857 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7858 SelectionDAG &DAG) const { 7859 unsigned IntrinsicID = 7860 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7861 7862 if (IntrinsicID == Intrinsic::thread_pointer) { 7863 // Reads the thread pointer register, used for __builtin_thread_pointer. 7864 bool is64bit = Subtarget.isPPC64(); 7865 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 7866 is64bit ? MVT::i64 : MVT::i32); 7867 } 7868 7869 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7870 // opcode number of the comparison. 7871 SDLoc dl(Op); 7872 int CompareOpc; 7873 bool isDot; 7874 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7875 return SDValue(); // Don't custom lower most intrinsics. 7876 7877 // If this is a non-dot comparison, make the VCMP node and we are done. 7878 if (!isDot) { 7879 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7880 Op.getOperand(1), Op.getOperand(2), 7881 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7882 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7883 } 7884 7885 // Create the PPCISD altivec 'dot' comparison node. 7886 SDValue Ops[] = { 7887 Op.getOperand(2), // LHS 7888 Op.getOperand(3), // RHS 7889 DAG.getConstant(CompareOpc, dl, MVT::i32) 7890 }; 7891 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7892 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7893 7894 // Now that we have the comparison, emit a copy from the CR to a GPR. 7895 // This is flagged to the above dot comparison. 7896 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7897 DAG.getRegister(PPC::CR6, MVT::i32), 7898 CompNode.getValue(1)); 7899 7900 // Unpack the result based on how the target uses it. 7901 unsigned BitNo; // Bit # of CR6. 7902 bool InvertBit; // Invert result? 7903 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7904 default: // Can't happen, don't crash on invalid number though. 7905 case 0: // Return the value of the EQ bit of CR6. 7906 BitNo = 0; InvertBit = false; 7907 break; 7908 case 1: // Return the inverted value of the EQ bit of CR6. 7909 BitNo = 0; InvertBit = true; 7910 break; 7911 case 2: // Return the value of the LT bit of CR6. 7912 BitNo = 2; InvertBit = false; 7913 break; 7914 case 3: // Return the inverted value of the LT bit of CR6. 7915 BitNo = 2; InvertBit = true; 7916 break; 7917 } 7918 7919 // Shift the bit into the low position. 7920 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7921 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7922 // Isolate the bit. 7923 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7924 DAG.getConstant(1, dl, MVT::i32)); 7925 7926 // If we are supposed to, toggle the bit. 7927 if (InvertBit) 7928 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7929 DAG.getConstant(1, dl, MVT::i32)); 7930 return Flags; 7931 } 7932 7933 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7934 SelectionDAG &DAG) const { 7935 SDLoc dl(Op); 7936 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7937 // instructions), but for smaller types, we need to first extend up to v2i32 7938 // before doing going farther. 7939 if (Op.getValueType() == MVT::v2i64) { 7940 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7941 if (ExtVT != MVT::v2i32) { 7942 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7943 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7944 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7945 ExtVT.getVectorElementType(), 4))); 7946 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7947 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7948 DAG.getValueType(MVT::v2i32)); 7949 } 7950 7951 return Op; 7952 } 7953 7954 return SDValue(); 7955 } 7956 7957 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7958 SelectionDAG &DAG) const { 7959 SDLoc dl(Op); 7960 // Create a stack slot that is 16-byte aligned. 7961 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7962 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7963 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7964 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7965 7966 // Store the input value into Value#0 of the stack slot. 7967 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7968 MachinePointerInfo()); 7969 // Load it out. 7970 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 7971 } 7972 7973 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 7974 SelectionDAG &DAG) const { 7975 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 7976 "Should only be called for ISD::INSERT_VECTOR_ELT"); 7977 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 7978 // We have legal lowering for constant indices but not for variable ones. 7979 if (C) 7980 return Op; 7981 return SDValue(); 7982 } 7983 7984 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7985 SelectionDAG &DAG) const { 7986 SDLoc dl(Op); 7987 SDNode *N = Op.getNode(); 7988 7989 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7990 "Unknown extract_vector_elt type"); 7991 7992 SDValue Value = N->getOperand(0); 7993 7994 // The first part of this is like the store lowering except that we don't 7995 // need to track the chain. 7996 7997 // The values are now known to be -1 (false) or 1 (true). To convert this 7998 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7999 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8000 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8001 8002 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8003 // understand how to form the extending load. 8004 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8005 8006 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8007 8008 // Now convert to an integer and store. 8009 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8010 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8011 Value); 8012 8013 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8014 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8015 MachinePointerInfo PtrInfo = 8016 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8017 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8018 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8019 8020 SDValue StoreChain = DAG.getEntryNode(); 8021 SDValue Ops[] = {StoreChain, 8022 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8023 Value, FIdx}; 8024 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8025 8026 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8027 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8028 8029 // Extract the value requested. 8030 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 8031 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8032 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8033 8034 SDValue IntVal = 8035 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 8036 8037 if (!Subtarget.useCRBits()) 8038 return IntVal; 8039 8040 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 8041 } 8042 8043 /// Lowering for QPX v4i1 loads 8044 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 8045 SelectionDAG &DAG) const { 8046 SDLoc dl(Op); 8047 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 8048 SDValue LoadChain = LN->getChain(); 8049 SDValue BasePtr = LN->getBasePtr(); 8050 8051 if (Op.getValueType() == MVT::v4f64 || 8052 Op.getValueType() == MVT::v4f32) { 8053 EVT MemVT = LN->getMemoryVT(); 8054 unsigned Alignment = LN->getAlignment(); 8055 8056 // If this load is properly aligned, then it is legal. 8057 if (Alignment >= MemVT.getStoreSize()) 8058 return Op; 8059 8060 EVT ScalarVT = Op.getValueType().getScalarType(), 8061 ScalarMemVT = MemVT.getScalarType(); 8062 unsigned Stride = ScalarMemVT.getStoreSize(); 8063 8064 SDValue Vals[4], LoadChains[4]; 8065 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8066 SDValue Load; 8067 if (ScalarVT != ScalarMemVT) 8068 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 8069 BasePtr, 8070 LN->getPointerInfo().getWithOffset(Idx * Stride), 8071 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8072 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8073 else 8074 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 8075 LN->getPointerInfo().getWithOffset(Idx * Stride), 8076 MinAlign(Alignment, Idx * Stride), 8077 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8078 8079 if (Idx == 0 && LN->isIndexed()) { 8080 assert(LN->getAddressingMode() == ISD::PRE_INC && 8081 "Unknown addressing mode on vector load"); 8082 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 8083 LN->getAddressingMode()); 8084 } 8085 8086 Vals[Idx] = Load; 8087 LoadChains[Idx] = Load.getValue(1); 8088 8089 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8090 DAG.getConstant(Stride, dl, 8091 BasePtr.getValueType())); 8092 } 8093 8094 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8095 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 8096 8097 if (LN->isIndexed()) { 8098 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 8099 return DAG.getMergeValues(RetOps, dl); 8100 } 8101 8102 SDValue RetOps[] = { Value, TF }; 8103 return DAG.getMergeValues(RetOps, dl); 8104 } 8105 8106 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 8107 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 8108 8109 // To lower v4i1 from a byte array, we load the byte elements of the 8110 // vector and then reuse the BUILD_VECTOR logic. 8111 8112 SDValue VectElmts[4], VectElmtChains[4]; 8113 for (unsigned i = 0; i < 4; ++i) { 8114 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8115 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8116 8117 VectElmts[i] = DAG.getExtLoad( 8118 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 8119 LN->getPointerInfo().getWithOffset(i), MVT::i8, 8120 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8121 VectElmtChains[i] = VectElmts[i].getValue(1); 8122 } 8123 8124 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 8125 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 8126 8127 SDValue RVals[] = { Value, LoadChain }; 8128 return DAG.getMergeValues(RVals, dl); 8129 } 8130 8131 /// Lowering for QPX v4i1 stores 8132 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 8133 SelectionDAG &DAG) const { 8134 SDLoc dl(Op); 8135 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 8136 SDValue StoreChain = SN->getChain(); 8137 SDValue BasePtr = SN->getBasePtr(); 8138 SDValue Value = SN->getValue(); 8139 8140 if (Value.getValueType() == MVT::v4f64 || 8141 Value.getValueType() == MVT::v4f32) { 8142 EVT MemVT = SN->getMemoryVT(); 8143 unsigned Alignment = SN->getAlignment(); 8144 8145 // If this store is properly aligned, then it is legal. 8146 if (Alignment >= MemVT.getStoreSize()) 8147 return Op; 8148 8149 EVT ScalarVT = Value.getValueType().getScalarType(), 8150 ScalarMemVT = MemVT.getScalarType(); 8151 unsigned Stride = ScalarMemVT.getStoreSize(); 8152 8153 SDValue Stores[4]; 8154 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8155 SDValue Ex = DAG.getNode( 8156 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 8157 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 8158 SDValue Store; 8159 if (ScalarVT != ScalarMemVT) 8160 Store = 8161 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 8162 SN->getPointerInfo().getWithOffset(Idx * Stride), 8163 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8164 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8165 else 8166 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 8167 SN->getPointerInfo().getWithOffset(Idx * Stride), 8168 MinAlign(Alignment, Idx * Stride), 8169 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8170 8171 if (Idx == 0 && SN->isIndexed()) { 8172 assert(SN->getAddressingMode() == ISD::PRE_INC && 8173 "Unknown addressing mode on vector store"); 8174 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 8175 SN->getAddressingMode()); 8176 } 8177 8178 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8179 DAG.getConstant(Stride, dl, 8180 BasePtr.getValueType())); 8181 Stores[Idx] = Store; 8182 } 8183 8184 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8185 8186 if (SN->isIndexed()) { 8187 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8188 return DAG.getMergeValues(RetOps, dl); 8189 } 8190 8191 return TF; 8192 } 8193 8194 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8195 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8196 8197 // The values are now known to be -1 (false) or 1 (true). To convert this 8198 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8199 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8200 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8201 8202 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8203 // understand how to form the extending load. 8204 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8205 8206 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8207 8208 // Now convert to an integer and store. 8209 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8210 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8211 Value); 8212 8213 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8214 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8215 MachinePointerInfo PtrInfo = 8216 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8217 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8218 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8219 8220 SDValue Ops[] = {StoreChain, 8221 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8222 Value, FIdx}; 8223 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8224 8225 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8226 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8227 8228 // Move data into the byte array. 8229 SDValue Loads[4], LoadChains[4]; 8230 for (unsigned i = 0; i < 4; ++i) { 8231 unsigned Offset = 4*i; 8232 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8233 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8234 8235 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8236 PtrInfo.getWithOffset(Offset)); 8237 LoadChains[i] = Loads[i].getValue(1); 8238 } 8239 8240 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8241 8242 SDValue Stores[4]; 8243 for (unsigned i = 0; i < 4; ++i) { 8244 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8245 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8246 8247 Stores[i] = DAG.getTruncStore( 8248 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8249 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 8250 SN->getAAInfo()); 8251 } 8252 8253 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8254 8255 return StoreChain; 8256 } 8257 8258 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8259 SDLoc dl(Op); 8260 if (Op.getValueType() == MVT::v4i32) { 8261 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8262 8263 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8264 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8265 8266 SDValue RHSSwap = // = vrlw RHS, 16 8267 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8268 8269 // Shrinkify inputs to v8i16. 8270 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8271 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8272 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8273 8274 // Low parts multiplied together, generating 32-bit results (we ignore the 8275 // top parts). 8276 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8277 LHS, RHS, DAG, dl, MVT::v4i32); 8278 8279 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8280 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8281 // Shift the high parts up 16 bits. 8282 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8283 Neg16, DAG, dl); 8284 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8285 } else if (Op.getValueType() == MVT::v8i16) { 8286 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8287 8288 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8289 8290 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8291 LHS, RHS, Zero, DAG, dl); 8292 } else if (Op.getValueType() == MVT::v16i8) { 8293 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8294 bool isLittleEndian = Subtarget.isLittleEndian(); 8295 8296 // Multiply the even 8-bit parts, producing 16-bit sums. 8297 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8298 LHS, RHS, DAG, dl, MVT::v8i16); 8299 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8300 8301 // Multiply the odd 8-bit parts, producing 16-bit sums. 8302 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8303 LHS, RHS, DAG, dl, MVT::v8i16); 8304 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8305 8306 // Merge the results together. Because vmuleub and vmuloub are 8307 // instructions with a big-endian bias, we must reverse the 8308 // element numbering and reverse the meaning of "odd" and "even" 8309 // when generating little endian code. 8310 int Ops[16]; 8311 for (unsigned i = 0; i != 8; ++i) { 8312 if (isLittleEndian) { 8313 Ops[i*2 ] = 2*i; 8314 Ops[i*2+1] = 2*i+16; 8315 } else { 8316 Ops[i*2 ] = 2*i+1; 8317 Ops[i*2+1] = 2*i+1+16; 8318 } 8319 } 8320 if (isLittleEndian) 8321 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8322 else 8323 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8324 } else { 8325 llvm_unreachable("Unknown mul to lower!"); 8326 } 8327 } 8328 8329 /// LowerOperation - Provide custom lowering hooks for some operations. 8330 /// 8331 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8332 switch (Op.getOpcode()) { 8333 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8334 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8335 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8336 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8337 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8338 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8339 case ISD::SETCC: return LowerSETCC(Op, DAG); 8340 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8341 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8342 case ISD::VASTART: 8343 return LowerVASTART(Op, DAG); 8344 8345 case ISD::VAARG: 8346 return LowerVAARG(Op, DAG); 8347 8348 case ISD::VACOPY: 8349 return LowerVACOPY(Op, DAG); 8350 8351 case ISD::STACKRESTORE: 8352 return LowerSTACKRESTORE(Op, DAG); 8353 8354 case ISD::DYNAMIC_STACKALLOC: 8355 return LowerDYNAMIC_STACKALLOC(Op, DAG); 8356 8357 case ISD::GET_DYNAMIC_AREA_OFFSET: 8358 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 8359 8360 case ISD::EH_DWARF_CFA: 8361 return LowerEH_DWARF_CFA(Op, DAG); 8362 8363 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8364 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8365 8366 case ISD::LOAD: return LowerLOAD(Op, DAG); 8367 case ISD::STORE: return LowerSTORE(Op, DAG); 8368 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8369 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8370 case ISD::FP_TO_UINT: 8371 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8372 SDLoc(Op)); 8373 case ISD::UINT_TO_FP: 8374 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8375 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8376 8377 // Lower 64-bit shifts. 8378 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8379 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8380 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8381 8382 // Vector-related lowering. 8383 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8384 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8385 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8386 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8387 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8388 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8389 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 8390 case ISD::MUL: return LowerMUL(Op, DAG); 8391 8392 // For counter-based loop handling. 8393 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8394 8395 // Frame & Return address. 8396 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8397 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8398 } 8399 } 8400 8401 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8402 SmallVectorImpl<SDValue>&Results, 8403 SelectionDAG &DAG) const { 8404 SDLoc dl(N); 8405 switch (N->getOpcode()) { 8406 default: 8407 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8408 case ISD::READCYCLECOUNTER: { 8409 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8410 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8411 8412 Results.push_back(RTB); 8413 Results.push_back(RTB.getValue(1)); 8414 Results.push_back(RTB.getValue(2)); 8415 break; 8416 } 8417 case ISD::INTRINSIC_W_CHAIN: { 8418 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8419 Intrinsic::ppc_is_decremented_ctr_nonzero) 8420 break; 8421 8422 assert(N->getValueType(0) == MVT::i1 && 8423 "Unexpected result type for CTR decrement intrinsic"); 8424 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8425 N->getValueType(0)); 8426 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8427 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8428 N->getOperand(1)); 8429 8430 Results.push_back(NewInt); 8431 Results.push_back(NewInt.getValue(1)); 8432 break; 8433 } 8434 case ISD::VAARG: { 8435 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8436 return; 8437 8438 EVT VT = N->getValueType(0); 8439 8440 if (VT == MVT::i64) { 8441 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 8442 8443 Results.push_back(NewNode); 8444 Results.push_back(NewNode.getValue(1)); 8445 } 8446 return; 8447 } 8448 case ISD::FP_ROUND_INREG: { 8449 assert(N->getValueType(0) == MVT::ppcf128); 8450 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8451 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8452 MVT::f64, N->getOperand(0), 8453 DAG.getIntPtrConstant(0, dl)); 8454 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8455 MVT::f64, N->getOperand(0), 8456 DAG.getIntPtrConstant(1, dl)); 8457 8458 // Add the two halves of the long double in round-to-zero mode. 8459 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8460 8461 // We know the low half is about to be thrown away, so just use something 8462 // convenient. 8463 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8464 FPreg, FPreg)); 8465 return; 8466 } 8467 case ISD::FP_TO_SINT: 8468 case ISD::FP_TO_UINT: 8469 // LowerFP_TO_INT() can only handle f32 and f64. 8470 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8471 return; 8472 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8473 return; 8474 } 8475 } 8476 8477 //===----------------------------------------------------------------------===// 8478 // Other Lowering Code 8479 //===----------------------------------------------------------------------===// 8480 8481 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8482 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8483 Function *Func = Intrinsic::getDeclaration(M, Id); 8484 return Builder.CreateCall(Func, {}); 8485 } 8486 8487 // The mappings for emitLeading/TrailingFence is taken from 8488 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8489 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8490 AtomicOrdering Ord, bool IsStore, 8491 bool IsLoad) const { 8492 if (Ord == AtomicOrdering::SequentiallyConsistent) 8493 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8494 if (isReleaseOrStronger(Ord)) 8495 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8496 return nullptr; 8497 } 8498 8499 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8500 AtomicOrdering Ord, bool IsStore, 8501 bool IsLoad) const { 8502 if (IsLoad && isAcquireOrStronger(Ord)) 8503 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8504 // FIXME: this is too conservative, a dependent branch + isync is enough. 8505 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8506 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8507 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8508 return nullptr; 8509 } 8510 8511 MachineBasicBlock * 8512 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 8513 unsigned AtomicSize, 8514 unsigned BinOpcode, 8515 unsigned CmpOpcode, 8516 unsigned CmpPred) const { 8517 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8518 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8519 8520 auto LoadMnemonic = PPC::LDARX; 8521 auto StoreMnemonic = PPC::STDCX; 8522 switch (AtomicSize) { 8523 default: 8524 llvm_unreachable("Unexpected size of atomic entity"); 8525 case 1: 8526 LoadMnemonic = PPC::LBARX; 8527 StoreMnemonic = PPC::STBCX; 8528 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8529 break; 8530 case 2: 8531 LoadMnemonic = PPC::LHARX; 8532 StoreMnemonic = PPC::STHCX; 8533 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8534 break; 8535 case 4: 8536 LoadMnemonic = PPC::LWARX; 8537 StoreMnemonic = PPC::STWCX; 8538 break; 8539 case 8: 8540 LoadMnemonic = PPC::LDARX; 8541 StoreMnemonic = PPC::STDCX; 8542 break; 8543 } 8544 8545 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8546 MachineFunction *F = BB->getParent(); 8547 MachineFunction::iterator It = ++BB->getIterator(); 8548 8549 unsigned dest = MI.getOperand(0).getReg(); 8550 unsigned ptrA = MI.getOperand(1).getReg(); 8551 unsigned ptrB = MI.getOperand(2).getReg(); 8552 unsigned incr = MI.getOperand(3).getReg(); 8553 DebugLoc dl = MI.getDebugLoc(); 8554 8555 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8556 MachineBasicBlock *loop2MBB = 8557 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8558 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8559 F->insert(It, loopMBB); 8560 if (CmpOpcode) 8561 F->insert(It, loop2MBB); 8562 F->insert(It, exitMBB); 8563 exitMBB->splice(exitMBB->begin(), BB, 8564 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8565 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8566 8567 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8568 unsigned TmpReg = (!BinOpcode) ? incr : 8569 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8570 : &PPC::GPRCRegClass); 8571 8572 // thisMBB: 8573 // ... 8574 // fallthrough --> loopMBB 8575 BB->addSuccessor(loopMBB); 8576 8577 // loopMBB: 8578 // l[wd]arx dest, ptr 8579 // add r0, dest, incr 8580 // st[wd]cx. r0, ptr 8581 // bne- loopMBB 8582 // fallthrough --> exitMBB 8583 8584 // For max/min... 8585 // loopMBB: 8586 // l[wd]arx dest, ptr 8587 // cmpl?[wd] incr, dest 8588 // bgt exitMBB 8589 // loop2MBB: 8590 // st[wd]cx. dest, ptr 8591 // bne- loopMBB 8592 // fallthrough --> exitMBB 8593 8594 BB = loopMBB; 8595 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8596 .addReg(ptrA).addReg(ptrB); 8597 if (BinOpcode) 8598 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8599 if (CmpOpcode) { 8600 // Signed comparisons of byte or halfword values must be sign-extended. 8601 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 8602 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8603 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 8604 ExtReg).addReg(dest); 8605 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8606 .addReg(incr).addReg(ExtReg); 8607 } else 8608 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8609 .addReg(incr).addReg(dest); 8610 8611 BuildMI(BB, dl, TII->get(PPC::BCC)) 8612 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 8613 BB->addSuccessor(loop2MBB); 8614 BB->addSuccessor(exitMBB); 8615 BB = loop2MBB; 8616 } 8617 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8618 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8619 BuildMI(BB, dl, TII->get(PPC::BCC)) 8620 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8621 BB->addSuccessor(loopMBB); 8622 BB->addSuccessor(exitMBB); 8623 8624 // exitMBB: 8625 // ... 8626 BB = exitMBB; 8627 return BB; 8628 } 8629 8630 MachineBasicBlock * 8631 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 8632 MachineBasicBlock *BB, 8633 bool is8bit, // operation 8634 unsigned BinOpcode, 8635 unsigned CmpOpcode, 8636 unsigned CmpPred) const { 8637 // If we support part-word atomic mnemonics, just use them 8638 if (Subtarget.hasPartwordAtomics()) 8639 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 8640 CmpOpcode, CmpPred); 8641 8642 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8643 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8644 // In 64 bit mode we have to use 64 bits for addresses, even though the 8645 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8646 // registers without caring whether they're 32 or 64, but here we're 8647 // doing actual arithmetic on the addresses. 8648 bool is64bit = Subtarget.isPPC64(); 8649 bool isLittleEndian = Subtarget.isLittleEndian(); 8650 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8651 8652 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8653 MachineFunction *F = BB->getParent(); 8654 MachineFunction::iterator It = ++BB->getIterator(); 8655 8656 unsigned dest = MI.getOperand(0).getReg(); 8657 unsigned ptrA = MI.getOperand(1).getReg(); 8658 unsigned ptrB = MI.getOperand(2).getReg(); 8659 unsigned incr = MI.getOperand(3).getReg(); 8660 DebugLoc dl = MI.getDebugLoc(); 8661 8662 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8663 MachineBasicBlock *loop2MBB = 8664 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8665 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8666 F->insert(It, loopMBB); 8667 if (CmpOpcode) 8668 F->insert(It, loop2MBB); 8669 F->insert(It, exitMBB); 8670 exitMBB->splice(exitMBB->begin(), BB, 8671 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8672 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8673 8674 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8675 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8676 : &PPC::GPRCRegClass; 8677 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8678 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8679 unsigned ShiftReg = 8680 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 8681 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8682 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8683 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8684 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8685 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8686 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8687 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8688 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8689 unsigned Ptr1Reg; 8690 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8691 8692 // thisMBB: 8693 // ... 8694 // fallthrough --> loopMBB 8695 BB->addSuccessor(loopMBB); 8696 8697 // The 4-byte load must be aligned, while a char or short may be 8698 // anywhere in the word. Hence all this nasty bookkeeping code. 8699 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8700 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8701 // xori shift, shift1, 24 [16] 8702 // rlwinm ptr, ptr1, 0, 0, 29 8703 // slw incr2, incr, shift 8704 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8705 // slw mask, mask2, shift 8706 // loopMBB: 8707 // lwarx tmpDest, ptr 8708 // add tmp, tmpDest, incr2 8709 // andc tmp2, tmpDest, mask 8710 // and tmp3, tmp, mask 8711 // or tmp4, tmp3, tmp2 8712 // stwcx. tmp4, ptr 8713 // bne- loopMBB 8714 // fallthrough --> exitMBB 8715 // srw dest, tmpDest, shift 8716 if (ptrA != ZeroReg) { 8717 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8718 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8719 .addReg(ptrA).addReg(ptrB); 8720 } else { 8721 Ptr1Reg = ptrB; 8722 } 8723 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8724 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8725 if (!isLittleEndian) 8726 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8727 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8728 if (is64bit) 8729 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8730 .addReg(Ptr1Reg).addImm(0).addImm(61); 8731 else 8732 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8733 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8734 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8735 .addReg(incr).addReg(ShiftReg); 8736 if (is8bit) 8737 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8738 else { 8739 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8740 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8741 } 8742 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8743 .addReg(Mask2Reg).addReg(ShiftReg); 8744 8745 BB = loopMBB; 8746 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8747 .addReg(ZeroReg).addReg(PtrReg); 8748 if (BinOpcode) 8749 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8750 .addReg(Incr2Reg).addReg(TmpDestReg); 8751 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8752 .addReg(TmpDestReg).addReg(MaskReg); 8753 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8754 .addReg(TmpReg).addReg(MaskReg); 8755 if (CmpOpcode) { 8756 // For unsigned comparisons, we can directly compare the shifted values. 8757 // For signed comparisons we shift and sign extend. 8758 unsigned SReg = RegInfo.createVirtualRegister(RC); 8759 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 8760 .addReg(TmpDestReg).addReg(MaskReg); 8761 unsigned ValueReg = SReg; 8762 unsigned CmpReg = Incr2Reg; 8763 if (CmpOpcode == PPC::CMPW) { 8764 ValueReg = RegInfo.createVirtualRegister(RC); 8765 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 8766 .addReg(SReg).addReg(ShiftReg); 8767 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 8768 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 8769 .addReg(ValueReg); 8770 ValueReg = ValueSReg; 8771 CmpReg = incr; 8772 } 8773 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8774 .addReg(CmpReg).addReg(ValueReg); 8775 BuildMI(BB, dl, TII->get(PPC::BCC)) 8776 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 8777 BB->addSuccessor(loop2MBB); 8778 BB->addSuccessor(exitMBB); 8779 BB = loop2MBB; 8780 } 8781 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8782 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8783 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8784 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8785 BuildMI(BB, dl, TII->get(PPC::BCC)) 8786 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8787 BB->addSuccessor(loopMBB); 8788 BB->addSuccessor(exitMBB); 8789 8790 // exitMBB: 8791 // ... 8792 BB = exitMBB; 8793 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8794 .addReg(ShiftReg); 8795 return BB; 8796 } 8797 8798 llvm::MachineBasicBlock * 8799 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 8800 MachineBasicBlock *MBB) const { 8801 DebugLoc DL = MI.getDebugLoc(); 8802 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8803 8804 MachineFunction *MF = MBB->getParent(); 8805 MachineRegisterInfo &MRI = MF->getRegInfo(); 8806 8807 const BasicBlock *BB = MBB->getBasicBlock(); 8808 MachineFunction::iterator I = ++MBB->getIterator(); 8809 8810 // Memory Reference 8811 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 8812 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 8813 8814 unsigned DstReg = MI.getOperand(0).getReg(); 8815 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8816 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8817 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8818 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8819 8820 MVT PVT = getPointerTy(MF->getDataLayout()); 8821 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8822 "Invalid Pointer Size!"); 8823 // For v = setjmp(buf), we generate 8824 // 8825 // thisMBB: 8826 // SjLjSetup mainMBB 8827 // bl mainMBB 8828 // v_restore = 1 8829 // b sinkMBB 8830 // 8831 // mainMBB: 8832 // buf[LabelOffset] = LR 8833 // v_main = 0 8834 // 8835 // sinkMBB: 8836 // v = phi(main, restore) 8837 // 8838 8839 MachineBasicBlock *thisMBB = MBB; 8840 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8841 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8842 MF->insert(I, mainMBB); 8843 MF->insert(I, sinkMBB); 8844 8845 MachineInstrBuilder MIB; 8846 8847 // Transfer the remainder of BB and its successor edges to sinkMBB. 8848 sinkMBB->splice(sinkMBB->begin(), MBB, 8849 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8850 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8851 8852 // Note that the structure of the jmp_buf used here is not compatible 8853 // with that used by libc, and is not designed to be. Specifically, it 8854 // stores only those 'reserved' registers that LLVM does not otherwise 8855 // understand how to spill. Also, by convention, by the time this 8856 // intrinsic is called, Clang has already stored the frame address in the 8857 // first slot of the buffer and stack address in the third. Following the 8858 // X86 target code, we'll store the jump address in the second slot. We also 8859 // need to save the TOC pointer (R2) to handle jumps between shared 8860 // libraries, and that will be stored in the fourth slot. The thread 8861 // identifier (R13) is not affected. 8862 8863 // thisMBB: 8864 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8865 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8866 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8867 8868 // Prepare IP either in reg. 8869 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8870 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8871 unsigned BufReg = MI.getOperand(1).getReg(); 8872 8873 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8874 setUsesTOCBasePtr(*MBB->getParent()); 8875 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8876 .addReg(PPC::X2) 8877 .addImm(TOCOffset) 8878 .addReg(BufReg); 8879 MIB.setMemRefs(MMOBegin, MMOEnd); 8880 } 8881 8882 // Naked functions never have a base pointer, and so we use r1. For all 8883 // other functions, this decision must be delayed until during PEI. 8884 unsigned BaseReg; 8885 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8886 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8887 else 8888 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8889 8890 MIB = BuildMI(*thisMBB, MI, DL, 8891 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8892 .addReg(BaseReg) 8893 .addImm(BPOffset) 8894 .addReg(BufReg); 8895 MIB.setMemRefs(MMOBegin, MMOEnd); 8896 8897 // Setup 8898 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8899 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8900 MIB.addRegMask(TRI->getNoPreservedMask()); 8901 8902 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8903 8904 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8905 .addMBB(mainMBB); 8906 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8907 8908 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8909 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8910 8911 // mainMBB: 8912 // mainDstReg = 0 8913 MIB = 8914 BuildMI(mainMBB, DL, 8915 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8916 8917 // Store IP 8918 if (Subtarget.isPPC64()) { 8919 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8920 .addReg(LabelReg) 8921 .addImm(LabelOffset) 8922 .addReg(BufReg); 8923 } else { 8924 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8925 .addReg(LabelReg) 8926 .addImm(LabelOffset) 8927 .addReg(BufReg); 8928 } 8929 8930 MIB.setMemRefs(MMOBegin, MMOEnd); 8931 8932 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8933 mainMBB->addSuccessor(sinkMBB); 8934 8935 // sinkMBB: 8936 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8937 TII->get(PPC::PHI), DstReg) 8938 .addReg(mainDstReg).addMBB(mainMBB) 8939 .addReg(restoreDstReg).addMBB(thisMBB); 8940 8941 MI.eraseFromParent(); 8942 return sinkMBB; 8943 } 8944 8945 MachineBasicBlock * 8946 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 8947 MachineBasicBlock *MBB) const { 8948 DebugLoc DL = MI.getDebugLoc(); 8949 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8950 8951 MachineFunction *MF = MBB->getParent(); 8952 MachineRegisterInfo &MRI = MF->getRegInfo(); 8953 8954 // Memory Reference 8955 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 8956 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 8957 8958 MVT PVT = getPointerTy(MF->getDataLayout()); 8959 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8960 "Invalid Pointer Size!"); 8961 8962 const TargetRegisterClass *RC = 8963 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8964 unsigned Tmp = MRI.createVirtualRegister(RC); 8965 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8966 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8967 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8968 unsigned BP = 8969 (PVT == MVT::i64) 8970 ? PPC::X30 8971 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 8972 : PPC::R30); 8973 8974 MachineInstrBuilder MIB; 8975 8976 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8977 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8978 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8979 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8980 8981 unsigned BufReg = MI.getOperand(0).getReg(); 8982 8983 // Reload FP (the jumped-to function may not have had a 8984 // frame pointer, and if so, then its r31 will be restored 8985 // as necessary). 8986 if (PVT == MVT::i64) { 8987 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8988 .addImm(0) 8989 .addReg(BufReg); 8990 } else { 8991 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8992 .addImm(0) 8993 .addReg(BufReg); 8994 } 8995 MIB.setMemRefs(MMOBegin, MMOEnd); 8996 8997 // Reload IP 8998 if (PVT == MVT::i64) { 8999 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 9000 .addImm(LabelOffset) 9001 .addReg(BufReg); 9002 } else { 9003 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 9004 .addImm(LabelOffset) 9005 .addReg(BufReg); 9006 } 9007 MIB.setMemRefs(MMOBegin, MMOEnd); 9008 9009 // Reload SP 9010 if (PVT == MVT::i64) { 9011 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 9012 .addImm(SPOffset) 9013 .addReg(BufReg); 9014 } else { 9015 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 9016 .addImm(SPOffset) 9017 .addReg(BufReg); 9018 } 9019 MIB.setMemRefs(MMOBegin, MMOEnd); 9020 9021 // Reload BP 9022 if (PVT == MVT::i64) { 9023 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 9024 .addImm(BPOffset) 9025 .addReg(BufReg); 9026 } else { 9027 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 9028 .addImm(BPOffset) 9029 .addReg(BufReg); 9030 } 9031 MIB.setMemRefs(MMOBegin, MMOEnd); 9032 9033 // Reload TOC 9034 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 9035 setUsesTOCBasePtr(*MBB->getParent()); 9036 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 9037 .addImm(TOCOffset) 9038 .addReg(BufReg); 9039 9040 MIB.setMemRefs(MMOBegin, MMOEnd); 9041 } 9042 9043 // Jump 9044 BuildMI(*MBB, MI, DL, 9045 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 9046 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 9047 9048 MI.eraseFromParent(); 9049 return MBB; 9050 } 9051 9052 MachineBasicBlock * 9053 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9054 MachineBasicBlock *BB) const { 9055 if (MI.getOpcode() == TargetOpcode::STACKMAP || 9056 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9057 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 9058 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9059 // Call lowering should have added an r2 operand to indicate a dependence 9060 // on the TOC base pointer value. It can't however, because there is no 9061 // way to mark the dependence as implicit there, and so the stackmap code 9062 // will confuse it with a regular operand. Instead, add the dependence 9063 // here. 9064 setUsesTOCBasePtr(*BB->getParent()); 9065 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 9066 } 9067 9068 return emitPatchPoint(MI, BB); 9069 } 9070 9071 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 9072 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 9073 return emitEHSjLjSetJmp(MI, BB); 9074 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 9075 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 9076 return emitEHSjLjLongJmp(MI, BB); 9077 } 9078 9079 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9080 9081 // To "insert" these instructions we actually have to insert their 9082 // control-flow patterns. 9083 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9084 MachineFunction::iterator It = ++BB->getIterator(); 9085 9086 MachineFunction *F = BB->getParent(); 9087 9088 if (Subtarget.hasISEL() && 9089 (MI.getOpcode() == PPC::SELECT_CC_I4 || 9090 MI.getOpcode() == PPC::SELECT_CC_I8 || 9091 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) { 9092 SmallVector<MachineOperand, 2> Cond; 9093 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9094 MI.getOpcode() == PPC::SELECT_CC_I8) 9095 Cond.push_back(MI.getOperand(4)); 9096 else 9097 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 9098 Cond.push_back(MI.getOperand(1)); 9099 9100 DebugLoc dl = MI.getDebugLoc(); 9101 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 9102 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 9103 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9104 MI.getOpcode() == PPC::SELECT_CC_I8 || 9105 MI.getOpcode() == PPC::SELECT_CC_F4 || 9106 MI.getOpcode() == PPC::SELECT_CC_F8 || 9107 MI.getOpcode() == PPC::SELECT_CC_QFRC || 9108 MI.getOpcode() == PPC::SELECT_CC_QSRC || 9109 MI.getOpcode() == PPC::SELECT_CC_QBRC || 9110 MI.getOpcode() == PPC::SELECT_CC_VRRC || 9111 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 9112 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 9113 MI.getOpcode() == PPC::SELECT_CC_VSRC || 9114 MI.getOpcode() == PPC::SELECT_I4 || 9115 MI.getOpcode() == PPC::SELECT_I8 || 9116 MI.getOpcode() == PPC::SELECT_F4 || 9117 MI.getOpcode() == PPC::SELECT_F8 || 9118 MI.getOpcode() == PPC::SELECT_QFRC || 9119 MI.getOpcode() == PPC::SELECT_QSRC || 9120 MI.getOpcode() == PPC::SELECT_QBRC || 9121 MI.getOpcode() == PPC::SELECT_VRRC || 9122 MI.getOpcode() == PPC::SELECT_VSFRC || 9123 MI.getOpcode() == PPC::SELECT_VSSRC || 9124 MI.getOpcode() == PPC::SELECT_VSRC) { 9125 // The incoming instruction knows the destination vreg to set, the 9126 // condition code register to branch on, the true/false values to 9127 // select between, and a branch opcode to use. 9128 9129 // thisMBB: 9130 // ... 9131 // TrueVal = ... 9132 // cmpTY ccX, r1, r2 9133 // bCC copy1MBB 9134 // fallthrough --> copy0MBB 9135 MachineBasicBlock *thisMBB = BB; 9136 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 9137 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9138 DebugLoc dl = MI.getDebugLoc(); 9139 F->insert(It, copy0MBB); 9140 F->insert(It, sinkMBB); 9141 9142 // Transfer the remainder of BB and its successor edges to sinkMBB. 9143 sinkMBB->splice(sinkMBB->begin(), BB, 9144 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9145 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9146 9147 // Next, add the true and fallthrough blocks as its successors. 9148 BB->addSuccessor(copy0MBB); 9149 BB->addSuccessor(sinkMBB); 9150 9151 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 9152 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 9153 MI.getOpcode() == PPC::SELECT_QFRC || 9154 MI.getOpcode() == PPC::SELECT_QSRC || 9155 MI.getOpcode() == PPC::SELECT_QBRC || 9156 MI.getOpcode() == PPC::SELECT_VRRC || 9157 MI.getOpcode() == PPC::SELECT_VSFRC || 9158 MI.getOpcode() == PPC::SELECT_VSSRC || 9159 MI.getOpcode() == PPC::SELECT_VSRC) { 9160 BuildMI(BB, dl, TII->get(PPC::BC)) 9161 .addReg(MI.getOperand(1).getReg()) 9162 .addMBB(sinkMBB); 9163 } else { 9164 unsigned SelectPred = MI.getOperand(4).getImm(); 9165 BuildMI(BB, dl, TII->get(PPC::BCC)) 9166 .addImm(SelectPred) 9167 .addReg(MI.getOperand(1).getReg()) 9168 .addMBB(sinkMBB); 9169 } 9170 9171 // copy0MBB: 9172 // %FalseValue = ... 9173 // # fallthrough to sinkMBB 9174 BB = copy0MBB; 9175 9176 // Update machine-CFG edges 9177 BB->addSuccessor(sinkMBB); 9178 9179 // sinkMBB: 9180 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 9181 // ... 9182 BB = sinkMBB; 9183 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 9184 .addReg(MI.getOperand(3).getReg()) 9185 .addMBB(copy0MBB) 9186 .addReg(MI.getOperand(2).getReg()) 9187 .addMBB(thisMBB); 9188 } else if (MI.getOpcode() == PPC::ReadTB) { 9189 // To read the 64-bit time-base register on a 32-bit target, we read the 9190 // two halves. Should the counter have wrapped while it was being read, we 9191 // need to try again. 9192 // ... 9193 // readLoop: 9194 // mfspr Rx,TBU # load from TBU 9195 // mfspr Ry,TB # load from TB 9196 // mfspr Rz,TBU # load from TBU 9197 // cmpw crX,Rx,Rz # check if 'old'='new' 9198 // bne readLoop # branch if they're not equal 9199 // ... 9200 9201 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 9202 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9203 DebugLoc dl = MI.getDebugLoc(); 9204 F->insert(It, readMBB); 9205 F->insert(It, sinkMBB); 9206 9207 // Transfer the remainder of BB and its successor edges to sinkMBB. 9208 sinkMBB->splice(sinkMBB->begin(), BB, 9209 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9210 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9211 9212 BB->addSuccessor(readMBB); 9213 BB = readMBB; 9214 9215 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9216 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9217 unsigned LoReg = MI.getOperand(0).getReg(); 9218 unsigned HiReg = MI.getOperand(1).getReg(); 9219 9220 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 9221 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 9222 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 9223 9224 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9225 9226 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 9227 .addReg(HiReg).addReg(ReadAgainReg); 9228 BuildMI(BB, dl, TII->get(PPC::BCC)) 9229 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 9230 9231 BB->addSuccessor(readMBB); 9232 BB->addSuccessor(sinkMBB); 9233 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 9234 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 9235 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 9236 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 9237 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 9238 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 9239 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 9240 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 9241 9242 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 9243 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 9244 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 9245 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 9246 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 9247 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 9248 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 9249 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 9250 9251 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 9252 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 9253 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 9254 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 9255 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 9256 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 9257 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 9258 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 9259 9260 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 9261 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 9262 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 9263 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9264 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9265 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9266 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9267 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9268 9269 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9270 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9272 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9273 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9274 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9275 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9276 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9277 9278 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9279 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9281 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9282 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9283 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9284 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9285 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9286 9287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 9288 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 9289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 9290 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 9291 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 9292 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 9293 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 9294 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 9295 9296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 9297 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 9298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 9299 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 9300 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 9301 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 9302 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 9303 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 9304 9305 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 9306 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 9307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 9308 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 9309 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 9310 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 9311 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 9312 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 9313 9314 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 9315 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 9316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 9317 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 9318 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 9319 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 9320 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 9321 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 9322 9323 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 9324 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9325 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 9326 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9327 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 9328 BB = EmitAtomicBinary(MI, BB, 4, 0); 9329 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 9330 BB = EmitAtomicBinary(MI, BB, 8, 0); 9331 9332 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9333 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9334 (Subtarget.hasPartwordAtomics() && 9335 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9336 (Subtarget.hasPartwordAtomics() && 9337 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9338 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9339 9340 auto LoadMnemonic = PPC::LDARX; 9341 auto StoreMnemonic = PPC::STDCX; 9342 switch (MI.getOpcode()) { 9343 default: 9344 llvm_unreachable("Compare and swap of unknown size"); 9345 case PPC::ATOMIC_CMP_SWAP_I8: 9346 LoadMnemonic = PPC::LBARX; 9347 StoreMnemonic = PPC::STBCX; 9348 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9349 break; 9350 case PPC::ATOMIC_CMP_SWAP_I16: 9351 LoadMnemonic = PPC::LHARX; 9352 StoreMnemonic = PPC::STHCX; 9353 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9354 break; 9355 case PPC::ATOMIC_CMP_SWAP_I32: 9356 LoadMnemonic = PPC::LWARX; 9357 StoreMnemonic = PPC::STWCX; 9358 break; 9359 case PPC::ATOMIC_CMP_SWAP_I64: 9360 LoadMnemonic = PPC::LDARX; 9361 StoreMnemonic = PPC::STDCX; 9362 break; 9363 } 9364 unsigned dest = MI.getOperand(0).getReg(); 9365 unsigned ptrA = MI.getOperand(1).getReg(); 9366 unsigned ptrB = MI.getOperand(2).getReg(); 9367 unsigned oldval = MI.getOperand(3).getReg(); 9368 unsigned newval = MI.getOperand(4).getReg(); 9369 DebugLoc dl = MI.getDebugLoc(); 9370 9371 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9372 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9373 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9374 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9375 F->insert(It, loop1MBB); 9376 F->insert(It, loop2MBB); 9377 F->insert(It, midMBB); 9378 F->insert(It, exitMBB); 9379 exitMBB->splice(exitMBB->begin(), BB, 9380 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9381 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9382 9383 // thisMBB: 9384 // ... 9385 // fallthrough --> loopMBB 9386 BB->addSuccessor(loop1MBB); 9387 9388 // loop1MBB: 9389 // l[bhwd]arx dest, ptr 9390 // cmp[wd] dest, oldval 9391 // bne- midMBB 9392 // loop2MBB: 9393 // st[bhwd]cx. newval, ptr 9394 // bne- loopMBB 9395 // b exitBB 9396 // midMBB: 9397 // st[bhwd]cx. dest, ptr 9398 // exitBB: 9399 BB = loop1MBB; 9400 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9401 .addReg(ptrA).addReg(ptrB); 9402 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9403 .addReg(oldval).addReg(dest); 9404 BuildMI(BB, dl, TII->get(PPC::BCC)) 9405 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9406 BB->addSuccessor(loop2MBB); 9407 BB->addSuccessor(midMBB); 9408 9409 BB = loop2MBB; 9410 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9411 .addReg(newval).addReg(ptrA).addReg(ptrB); 9412 BuildMI(BB, dl, TII->get(PPC::BCC)) 9413 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9414 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9415 BB->addSuccessor(loop1MBB); 9416 BB->addSuccessor(exitMBB); 9417 9418 BB = midMBB; 9419 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9420 .addReg(dest).addReg(ptrA).addReg(ptrB); 9421 BB->addSuccessor(exitMBB); 9422 9423 // exitMBB: 9424 // ... 9425 BB = exitMBB; 9426 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9427 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9428 // We must use 64-bit registers for addresses when targeting 64-bit, 9429 // since we're actually doing arithmetic on them. Other registers 9430 // can be 32-bit. 9431 bool is64bit = Subtarget.isPPC64(); 9432 bool isLittleEndian = Subtarget.isLittleEndian(); 9433 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9434 9435 unsigned dest = MI.getOperand(0).getReg(); 9436 unsigned ptrA = MI.getOperand(1).getReg(); 9437 unsigned ptrB = MI.getOperand(2).getReg(); 9438 unsigned oldval = MI.getOperand(3).getReg(); 9439 unsigned newval = MI.getOperand(4).getReg(); 9440 DebugLoc dl = MI.getDebugLoc(); 9441 9442 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9443 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9444 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9445 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9446 F->insert(It, loop1MBB); 9447 F->insert(It, loop2MBB); 9448 F->insert(It, midMBB); 9449 F->insert(It, exitMBB); 9450 exitMBB->splice(exitMBB->begin(), BB, 9451 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9452 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9453 9454 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9455 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9456 : &PPC::GPRCRegClass; 9457 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9458 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9459 unsigned ShiftReg = 9460 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9461 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9462 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9463 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9464 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9465 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9466 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9467 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9468 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9469 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9470 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9471 unsigned Ptr1Reg; 9472 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9473 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9474 // thisMBB: 9475 // ... 9476 // fallthrough --> loopMBB 9477 BB->addSuccessor(loop1MBB); 9478 9479 // The 4-byte load must be aligned, while a char or short may be 9480 // anywhere in the word. Hence all this nasty bookkeeping code. 9481 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9482 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9483 // xori shift, shift1, 24 [16] 9484 // rlwinm ptr, ptr1, 0, 0, 29 9485 // slw newval2, newval, shift 9486 // slw oldval2, oldval,shift 9487 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9488 // slw mask, mask2, shift 9489 // and newval3, newval2, mask 9490 // and oldval3, oldval2, mask 9491 // loop1MBB: 9492 // lwarx tmpDest, ptr 9493 // and tmp, tmpDest, mask 9494 // cmpw tmp, oldval3 9495 // bne- midMBB 9496 // loop2MBB: 9497 // andc tmp2, tmpDest, mask 9498 // or tmp4, tmp2, newval3 9499 // stwcx. tmp4, ptr 9500 // bne- loop1MBB 9501 // b exitBB 9502 // midMBB: 9503 // stwcx. tmpDest, ptr 9504 // exitBB: 9505 // srw dest, tmpDest, shift 9506 if (ptrA != ZeroReg) { 9507 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9508 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9509 .addReg(ptrA).addReg(ptrB); 9510 } else { 9511 Ptr1Reg = ptrB; 9512 } 9513 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9514 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9515 if (!isLittleEndian) 9516 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9517 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9518 if (is64bit) 9519 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9520 .addReg(Ptr1Reg).addImm(0).addImm(61); 9521 else 9522 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9523 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9524 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9525 .addReg(newval).addReg(ShiftReg); 9526 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9527 .addReg(oldval).addReg(ShiftReg); 9528 if (is8bit) 9529 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9530 else { 9531 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9532 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9533 .addReg(Mask3Reg).addImm(65535); 9534 } 9535 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9536 .addReg(Mask2Reg).addReg(ShiftReg); 9537 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9538 .addReg(NewVal2Reg).addReg(MaskReg); 9539 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9540 .addReg(OldVal2Reg).addReg(MaskReg); 9541 9542 BB = loop1MBB; 9543 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9544 .addReg(ZeroReg).addReg(PtrReg); 9545 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9546 .addReg(TmpDestReg).addReg(MaskReg); 9547 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9548 .addReg(TmpReg).addReg(OldVal3Reg); 9549 BuildMI(BB, dl, TII->get(PPC::BCC)) 9550 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9551 BB->addSuccessor(loop2MBB); 9552 BB->addSuccessor(midMBB); 9553 9554 BB = loop2MBB; 9555 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9556 .addReg(TmpDestReg).addReg(MaskReg); 9557 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9558 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9559 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9560 .addReg(ZeroReg).addReg(PtrReg); 9561 BuildMI(BB, dl, TII->get(PPC::BCC)) 9562 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9563 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9564 BB->addSuccessor(loop1MBB); 9565 BB->addSuccessor(exitMBB); 9566 9567 BB = midMBB; 9568 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9569 .addReg(ZeroReg).addReg(PtrReg); 9570 BB->addSuccessor(exitMBB); 9571 9572 // exitMBB: 9573 // ... 9574 BB = exitMBB; 9575 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9576 .addReg(ShiftReg); 9577 } else if (MI.getOpcode() == PPC::FADDrtz) { 9578 // This pseudo performs an FADD with rounding mode temporarily forced 9579 // to round-to-zero. We emit this via custom inserter since the FPSCR 9580 // is not modeled at the SelectionDAG level. 9581 unsigned Dest = MI.getOperand(0).getReg(); 9582 unsigned Src1 = MI.getOperand(1).getReg(); 9583 unsigned Src2 = MI.getOperand(2).getReg(); 9584 DebugLoc dl = MI.getDebugLoc(); 9585 9586 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9587 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9588 9589 // Save FPSCR value. 9590 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9591 9592 // Set rounding mode to round-to-zero. 9593 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9594 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9595 9596 // Perform addition. 9597 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9598 9599 // Restore FPSCR value. 9600 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9601 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9602 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 9603 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9604 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9605 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9606 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 9607 ? PPC::ANDIo8 9608 : PPC::ANDIo; 9609 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9610 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9611 9612 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9613 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9614 &PPC::GPRCRegClass : 9615 &PPC::G8RCRegClass); 9616 9617 DebugLoc dl = MI.getDebugLoc(); 9618 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9619 .addReg(MI.getOperand(1).getReg()) 9620 .addImm(1); 9621 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9622 MI.getOperand(0).getReg()) 9623 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9624 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 9625 DebugLoc Dl = MI.getDebugLoc(); 9626 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9627 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9628 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9629 return BB; 9630 } else { 9631 llvm_unreachable("Unexpected instr type to insert"); 9632 } 9633 9634 MI.eraseFromParent(); // The pseudo instruction is gone now. 9635 return BB; 9636 } 9637 9638 //===----------------------------------------------------------------------===// 9639 // Target Optimization Hooks 9640 //===----------------------------------------------------------------------===// 9641 9642 static std::string getRecipOp(const char *Base, EVT VT) { 9643 std::string RecipOp(Base); 9644 if (VT.getScalarType() == MVT::f64) 9645 RecipOp += "d"; 9646 else 9647 RecipOp += "f"; 9648 9649 if (VT.isVector()) 9650 RecipOp = "vec-" + RecipOp; 9651 9652 return RecipOp; 9653 } 9654 9655 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9656 DAGCombinerInfo &DCI, 9657 unsigned &RefinementSteps, 9658 bool &UseOneConstNR) const { 9659 EVT VT = Operand.getValueType(); 9660 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9661 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9662 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9663 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9664 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9665 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9666 TargetRecip Recips = getTargetRecipForFunc(DCI.DAG.getMachineFunction()); 9667 std::string RecipOp = getRecipOp("sqrt", VT); 9668 if (!Recips.isEnabled(RecipOp)) 9669 return SDValue(); 9670 9671 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9672 UseOneConstNR = true; 9673 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9674 } 9675 return SDValue(); 9676 } 9677 9678 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9679 DAGCombinerInfo &DCI, 9680 unsigned &RefinementSteps) const { 9681 EVT VT = Operand.getValueType(); 9682 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9683 (VT == MVT::f64 && Subtarget.hasFRE()) || 9684 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9685 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9686 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9687 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9688 TargetRecip Recips = getTargetRecipForFunc(DCI.DAG.getMachineFunction()); 9689 std::string RecipOp = getRecipOp("div", VT); 9690 if (!Recips.isEnabled(RecipOp)) 9691 return SDValue(); 9692 9693 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9694 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9695 } 9696 return SDValue(); 9697 } 9698 9699 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9700 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9701 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9702 // enabled for division), this functionality is redundant with the default 9703 // combiner logic (once the division -> reciprocal/multiply transformation 9704 // has taken place). As a result, this matters more for older cores than for 9705 // newer ones. 9706 9707 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9708 // reciprocal if there are two or more FDIVs (for embedded cores with only 9709 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9710 switch (Subtarget.getDarwinDirective()) { 9711 default: 9712 return 3; 9713 case PPC::DIR_440: 9714 case PPC::DIR_A2: 9715 case PPC::DIR_E500mc: 9716 case PPC::DIR_E5500: 9717 return 2; 9718 } 9719 } 9720 9721 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9722 // collapsed, and so we need to look through chains of them. 9723 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9724 int64_t& Offset, SelectionDAG &DAG) { 9725 if (DAG.isBaseWithConstantOffset(Loc)) { 9726 Base = Loc.getOperand(0); 9727 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9728 9729 // The base might itself be a base plus an offset, and if so, accumulate 9730 // that as well. 9731 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9732 } 9733 } 9734 9735 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9736 unsigned Bytes, int Dist, 9737 SelectionDAG &DAG) { 9738 if (VT.getSizeInBits() / 8 != Bytes) 9739 return false; 9740 9741 SDValue BaseLoc = Base->getBasePtr(); 9742 if (Loc.getOpcode() == ISD::FrameIndex) { 9743 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9744 return false; 9745 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9746 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9747 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9748 int FS = MFI.getObjectSize(FI); 9749 int BFS = MFI.getObjectSize(BFI); 9750 if (FS != BFS || FS != (int)Bytes) return false; 9751 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 9752 } 9753 9754 SDValue Base1 = Loc, Base2 = BaseLoc; 9755 int64_t Offset1 = 0, Offset2 = 0; 9756 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9757 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9758 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9759 return true; 9760 9761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9762 const GlobalValue *GV1 = nullptr; 9763 const GlobalValue *GV2 = nullptr; 9764 Offset1 = 0; 9765 Offset2 = 0; 9766 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9767 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9768 if (isGA1 && isGA2 && GV1 == GV2) 9769 return Offset1 == (Offset2 + Dist*Bytes); 9770 return false; 9771 } 9772 9773 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9774 // not enforce equality of the chain operands. 9775 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9776 unsigned Bytes, int Dist, 9777 SelectionDAG &DAG) { 9778 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9779 EVT VT = LS->getMemoryVT(); 9780 SDValue Loc = LS->getBasePtr(); 9781 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9782 } 9783 9784 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9785 EVT VT; 9786 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9787 default: return false; 9788 case Intrinsic::ppc_qpx_qvlfd: 9789 case Intrinsic::ppc_qpx_qvlfda: 9790 VT = MVT::v4f64; 9791 break; 9792 case Intrinsic::ppc_qpx_qvlfs: 9793 case Intrinsic::ppc_qpx_qvlfsa: 9794 VT = MVT::v4f32; 9795 break; 9796 case Intrinsic::ppc_qpx_qvlfcd: 9797 case Intrinsic::ppc_qpx_qvlfcda: 9798 VT = MVT::v2f64; 9799 break; 9800 case Intrinsic::ppc_qpx_qvlfcs: 9801 case Intrinsic::ppc_qpx_qvlfcsa: 9802 VT = MVT::v2f32; 9803 break; 9804 case Intrinsic::ppc_qpx_qvlfiwa: 9805 case Intrinsic::ppc_qpx_qvlfiwz: 9806 case Intrinsic::ppc_altivec_lvx: 9807 case Intrinsic::ppc_altivec_lvxl: 9808 case Intrinsic::ppc_vsx_lxvw4x: 9809 VT = MVT::v4i32; 9810 break; 9811 case Intrinsic::ppc_vsx_lxvd2x: 9812 VT = MVT::v2f64; 9813 break; 9814 case Intrinsic::ppc_altivec_lvebx: 9815 VT = MVT::i8; 9816 break; 9817 case Intrinsic::ppc_altivec_lvehx: 9818 VT = MVT::i16; 9819 break; 9820 case Intrinsic::ppc_altivec_lvewx: 9821 VT = MVT::i32; 9822 break; 9823 } 9824 9825 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9826 } 9827 9828 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9829 EVT VT; 9830 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9831 default: return false; 9832 case Intrinsic::ppc_qpx_qvstfd: 9833 case Intrinsic::ppc_qpx_qvstfda: 9834 VT = MVT::v4f64; 9835 break; 9836 case Intrinsic::ppc_qpx_qvstfs: 9837 case Intrinsic::ppc_qpx_qvstfsa: 9838 VT = MVT::v4f32; 9839 break; 9840 case Intrinsic::ppc_qpx_qvstfcd: 9841 case Intrinsic::ppc_qpx_qvstfcda: 9842 VT = MVT::v2f64; 9843 break; 9844 case Intrinsic::ppc_qpx_qvstfcs: 9845 case Intrinsic::ppc_qpx_qvstfcsa: 9846 VT = MVT::v2f32; 9847 break; 9848 case Intrinsic::ppc_qpx_qvstfiw: 9849 case Intrinsic::ppc_qpx_qvstfiwa: 9850 case Intrinsic::ppc_altivec_stvx: 9851 case Intrinsic::ppc_altivec_stvxl: 9852 case Intrinsic::ppc_vsx_stxvw4x: 9853 VT = MVT::v4i32; 9854 break; 9855 case Intrinsic::ppc_vsx_stxvd2x: 9856 VT = MVT::v2f64; 9857 break; 9858 case Intrinsic::ppc_altivec_stvebx: 9859 VT = MVT::i8; 9860 break; 9861 case Intrinsic::ppc_altivec_stvehx: 9862 VT = MVT::i16; 9863 break; 9864 case Intrinsic::ppc_altivec_stvewx: 9865 VT = MVT::i32; 9866 break; 9867 } 9868 9869 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9870 } 9871 9872 return false; 9873 } 9874 9875 // Return true is there is a nearyby consecutive load to the one provided 9876 // (regardless of alignment). We search up and down the chain, looking though 9877 // token factors and other loads (but nothing else). As a result, a true result 9878 // indicates that it is safe to create a new consecutive load adjacent to the 9879 // load provided. 9880 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9881 SDValue Chain = LD->getChain(); 9882 EVT VT = LD->getMemoryVT(); 9883 9884 SmallSet<SDNode *, 16> LoadRoots; 9885 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9886 SmallSet<SDNode *, 16> Visited; 9887 9888 // First, search up the chain, branching to follow all token-factor operands. 9889 // If we find a consecutive load, then we're done, otherwise, record all 9890 // nodes just above the top-level loads and token factors. 9891 while (!Queue.empty()) { 9892 SDNode *ChainNext = Queue.pop_back_val(); 9893 if (!Visited.insert(ChainNext).second) 9894 continue; 9895 9896 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9897 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9898 return true; 9899 9900 if (!Visited.count(ChainLD->getChain().getNode())) 9901 Queue.push_back(ChainLD->getChain().getNode()); 9902 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9903 for (const SDUse &O : ChainNext->ops()) 9904 if (!Visited.count(O.getNode())) 9905 Queue.push_back(O.getNode()); 9906 } else 9907 LoadRoots.insert(ChainNext); 9908 } 9909 9910 // Second, search down the chain, starting from the top-level nodes recorded 9911 // in the first phase. These top-level nodes are the nodes just above all 9912 // loads and token factors. Starting with their uses, recursively look though 9913 // all loads (just the chain uses) and token factors to find a consecutive 9914 // load. 9915 Visited.clear(); 9916 Queue.clear(); 9917 9918 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9919 IE = LoadRoots.end(); I != IE; ++I) { 9920 Queue.push_back(*I); 9921 9922 while (!Queue.empty()) { 9923 SDNode *LoadRoot = Queue.pop_back_val(); 9924 if (!Visited.insert(LoadRoot).second) 9925 continue; 9926 9927 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9928 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9929 return true; 9930 9931 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9932 UE = LoadRoot->use_end(); UI != UE; ++UI) 9933 if (((isa<MemSDNode>(*UI) && 9934 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9935 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9936 Queue.push_back(*UI); 9937 } 9938 } 9939 9940 return false; 9941 } 9942 9943 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9944 DAGCombinerInfo &DCI) const { 9945 SelectionDAG &DAG = DCI.DAG; 9946 SDLoc dl(N); 9947 9948 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9949 // If we're tracking CR bits, we need to be careful that we don't have: 9950 // trunc(binary-ops(zext(x), zext(y))) 9951 // or 9952 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9953 // such that we're unnecessarily moving things into GPRs when it would be 9954 // better to keep them in CR bits. 9955 9956 // Note that trunc here can be an actual i1 trunc, or can be the effective 9957 // truncation that comes from a setcc or select_cc. 9958 if (N->getOpcode() == ISD::TRUNCATE && 9959 N->getValueType(0) != MVT::i1) 9960 return SDValue(); 9961 9962 if (N->getOperand(0).getValueType() != MVT::i32 && 9963 N->getOperand(0).getValueType() != MVT::i64) 9964 return SDValue(); 9965 9966 if (N->getOpcode() == ISD::SETCC || 9967 N->getOpcode() == ISD::SELECT_CC) { 9968 // If we're looking at a comparison, then we need to make sure that the 9969 // high bits (all except for the first) don't matter the result. 9970 ISD::CondCode CC = 9971 cast<CondCodeSDNode>(N->getOperand( 9972 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9973 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9974 9975 if (ISD::isSignedIntSetCC(CC)) { 9976 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9977 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9978 return SDValue(); 9979 } else if (ISD::isUnsignedIntSetCC(CC)) { 9980 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9981 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9982 !DAG.MaskedValueIsZero(N->getOperand(1), 9983 APInt::getHighBitsSet(OpBits, OpBits-1))) 9984 return SDValue(); 9985 } else { 9986 // This is neither a signed nor an unsigned comparison, just make sure 9987 // that the high bits are equal. 9988 APInt Op1Zero, Op1One; 9989 APInt Op2Zero, Op2One; 9990 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9991 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9992 9993 // We don't really care about what is known about the first bit (if 9994 // anything), so clear it in all masks prior to comparing them. 9995 Op1Zero.clearBit(0); Op1One.clearBit(0); 9996 Op2Zero.clearBit(0); Op2One.clearBit(0); 9997 9998 if (Op1Zero != Op2Zero || Op1One != Op2One) 9999 return SDValue(); 10000 } 10001 } 10002 10003 // We now know that the higher-order bits are irrelevant, we just need to 10004 // make sure that all of the intermediate operations are bit operations, and 10005 // all inputs are extensions. 10006 if (N->getOperand(0).getOpcode() != ISD::AND && 10007 N->getOperand(0).getOpcode() != ISD::OR && 10008 N->getOperand(0).getOpcode() != ISD::XOR && 10009 N->getOperand(0).getOpcode() != ISD::SELECT && 10010 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 10011 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 10012 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 10013 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 10014 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 10015 return SDValue(); 10016 10017 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 10018 N->getOperand(1).getOpcode() != ISD::AND && 10019 N->getOperand(1).getOpcode() != ISD::OR && 10020 N->getOperand(1).getOpcode() != ISD::XOR && 10021 N->getOperand(1).getOpcode() != ISD::SELECT && 10022 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 10023 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 10024 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 10025 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 10026 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 10027 return SDValue(); 10028 10029 SmallVector<SDValue, 4> Inputs; 10030 SmallVector<SDValue, 8> BinOps, PromOps; 10031 SmallPtrSet<SDNode *, 16> Visited; 10032 10033 for (unsigned i = 0; i < 2; ++i) { 10034 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10035 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10036 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10037 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10038 isa<ConstantSDNode>(N->getOperand(i))) 10039 Inputs.push_back(N->getOperand(i)); 10040 else 10041 BinOps.push_back(N->getOperand(i)); 10042 10043 if (N->getOpcode() == ISD::TRUNCATE) 10044 break; 10045 } 10046 10047 // Visit all inputs, collect all binary operations (and, or, xor and 10048 // select) that are all fed by extensions. 10049 while (!BinOps.empty()) { 10050 SDValue BinOp = BinOps.back(); 10051 BinOps.pop_back(); 10052 10053 if (!Visited.insert(BinOp.getNode()).second) 10054 continue; 10055 10056 PromOps.push_back(BinOp); 10057 10058 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10059 // The condition of the select is not promoted. 10060 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10061 continue; 10062 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10063 continue; 10064 10065 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10066 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10067 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10068 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10069 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10070 Inputs.push_back(BinOp.getOperand(i)); 10071 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10072 BinOp.getOperand(i).getOpcode() == ISD::OR || 10073 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10074 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10075 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 10076 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10077 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10078 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10079 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 10080 BinOps.push_back(BinOp.getOperand(i)); 10081 } else { 10082 // We have an input that is not an extension or another binary 10083 // operation; we'll abort this transformation. 10084 return SDValue(); 10085 } 10086 } 10087 } 10088 10089 // Make sure that this is a self-contained cluster of operations (which 10090 // is not quite the same thing as saying that everything has only one 10091 // use). 10092 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10093 if (isa<ConstantSDNode>(Inputs[i])) 10094 continue; 10095 10096 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10097 UE = Inputs[i].getNode()->use_end(); 10098 UI != UE; ++UI) { 10099 SDNode *User = *UI; 10100 if (User != N && !Visited.count(User)) 10101 return SDValue(); 10102 10103 // Make sure that we're not going to promote the non-output-value 10104 // operand(s) or SELECT or SELECT_CC. 10105 // FIXME: Although we could sometimes handle this, and it does occur in 10106 // practice that one of the condition inputs to the select is also one of 10107 // the outputs, we currently can't deal with this. 10108 if (User->getOpcode() == ISD::SELECT) { 10109 if (User->getOperand(0) == Inputs[i]) 10110 return SDValue(); 10111 } else if (User->getOpcode() == ISD::SELECT_CC) { 10112 if (User->getOperand(0) == Inputs[i] || 10113 User->getOperand(1) == Inputs[i]) 10114 return SDValue(); 10115 } 10116 } 10117 } 10118 10119 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10120 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10121 UE = PromOps[i].getNode()->use_end(); 10122 UI != UE; ++UI) { 10123 SDNode *User = *UI; 10124 if (User != N && !Visited.count(User)) 10125 return SDValue(); 10126 10127 // Make sure that we're not going to promote the non-output-value 10128 // operand(s) or SELECT or SELECT_CC. 10129 // FIXME: Although we could sometimes handle this, and it does occur in 10130 // practice that one of the condition inputs to the select is also one of 10131 // the outputs, we currently can't deal with this. 10132 if (User->getOpcode() == ISD::SELECT) { 10133 if (User->getOperand(0) == PromOps[i]) 10134 return SDValue(); 10135 } else if (User->getOpcode() == ISD::SELECT_CC) { 10136 if (User->getOperand(0) == PromOps[i] || 10137 User->getOperand(1) == PromOps[i]) 10138 return SDValue(); 10139 } 10140 } 10141 } 10142 10143 // Replace all inputs with the extension operand. 10144 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10145 // Constants may have users outside the cluster of to-be-promoted nodes, 10146 // and so we need to replace those as we do the promotions. 10147 if (isa<ConstantSDNode>(Inputs[i])) 10148 continue; 10149 else 10150 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 10151 } 10152 10153 std::list<HandleSDNode> PromOpHandles; 10154 for (auto &PromOp : PromOps) 10155 PromOpHandles.emplace_back(PromOp); 10156 10157 // Replace all operations (these are all the same, but have a different 10158 // (i1) return type). DAG.getNode will validate that the types of 10159 // a binary operator match, so go through the list in reverse so that 10160 // we've likely promoted both operands first. Any intermediate truncations or 10161 // extensions disappear. 10162 while (!PromOpHandles.empty()) { 10163 SDValue PromOp = PromOpHandles.back().getValue(); 10164 PromOpHandles.pop_back(); 10165 10166 if (PromOp.getOpcode() == ISD::TRUNCATE || 10167 PromOp.getOpcode() == ISD::SIGN_EXTEND || 10168 PromOp.getOpcode() == ISD::ZERO_EXTEND || 10169 PromOp.getOpcode() == ISD::ANY_EXTEND) { 10170 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 10171 PromOp.getOperand(0).getValueType() != MVT::i1) { 10172 // The operand is not yet ready (see comment below). 10173 PromOpHandles.emplace_front(PromOp); 10174 continue; 10175 } 10176 10177 SDValue RepValue = PromOp.getOperand(0); 10178 if (isa<ConstantSDNode>(RepValue)) 10179 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 10180 10181 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 10182 continue; 10183 } 10184 10185 unsigned C; 10186 switch (PromOp.getOpcode()) { 10187 default: C = 0; break; 10188 case ISD::SELECT: C = 1; break; 10189 case ISD::SELECT_CC: C = 2; break; 10190 } 10191 10192 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10193 PromOp.getOperand(C).getValueType() != MVT::i1) || 10194 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10195 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 10196 // The to-be-promoted operands of this node have not yet been 10197 // promoted (this should be rare because we're going through the 10198 // list backward, but if one of the operands has several users in 10199 // this cluster of to-be-promoted nodes, it is possible). 10200 PromOpHandles.emplace_front(PromOp); 10201 continue; 10202 } 10203 10204 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10205 PromOp.getNode()->op_end()); 10206 10207 // If there are any constant inputs, make sure they're replaced now. 10208 for (unsigned i = 0; i < 2; ++i) 10209 if (isa<ConstantSDNode>(Ops[C+i])) 10210 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 10211 10212 DAG.ReplaceAllUsesOfValueWith(PromOp, 10213 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 10214 } 10215 10216 // Now we're left with the initial truncation itself. 10217 if (N->getOpcode() == ISD::TRUNCATE) 10218 return N->getOperand(0); 10219 10220 // Otherwise, this is a comparison. The operands to be compared have just 10221 // changed type (to i1), but everything else is the same. 10222 return SDValue(N, 0); 10223 } 10224 10225 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 10226 DAGCombinerInfo &DCI) const { 10227 SelectionDAG &DAG = DCI.DAG; 10228 SDLoc dl(N); 10229 10230 // If we're tracking CR bits, we need to be careful that we don't have: 10231 // zext(binary-ops(trunc(x), trunc(y))) 10232 // or 10233 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 10234 // such that we're unnecessarily moving things into CR bits that can more 10235 // efficiently stay in GPRs. Note that if we're not certain that the high 10236 // bits are set as required by the final extension, we still may need to do 10237 // some masking to get the proper behavior. 10238 10239 // This same functionality is important on PPC64 when dealing with 10240 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 10241 // the return values of functions. Because it is so similar, it is handled 10242 // here as well. 10243 10244 if (N->getValueType(0) != MVT::i32 && 10245 N->getValueType(0) != MVT::i64) 10246 return SDValue(); 10247 10248 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 10249 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 10250 return SDValue(); 10251 10252 if (N->getOperand(0).getOpcode() != ISD::AND && 10253 N->getOperand(0).getOpcode() != ISD::OR && 10254 N->getOperand(0).getOpcode() != ISD::XOR && 10255 N->getOperand(0).getOpcode() != ISD::SELECT && 10256 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 10257 return SDValue(); 10258 10259 SmallVector<SDValue, 4> Inputs; 10260 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 10261 SmallPtrSet<SDNode *, 16> Visited; 10262 10263 // Visit all inputs, collect all binary operations (and, or, xor and 10264 // select) that are all fed by truncations. 10265 while (!BinOps.empty()) { 10266 SDValue BinOp = BinOps.back(); 10267 BinOps.pop_back(); 10268 10269 if (!Visited.insert(BinOp.getNode()).second) 10270 continue; 10271 10272 PromOps.push_back(BinOp); 10273 10274 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10275 // The condition of the select is not promoted. 10276 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10277 continue; 10278 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10279 continue; 10280 10281 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10282 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10283 Inputs.push_back(BinOp.getOperand(i)); 10284 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10285 BinOp.getOperand(i).getOpcode() == ISD::OR || 10286 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10287 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10288 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 10289 BinOps.push_back(BinOp.getOperand(i)); 10290 } else { 10291 // We have an input that is not a truncation or another binary 10292 // operation; we'll abort this transformation. 10293 return SDValue(); 10294 } 10295 } 10296 } 10297 10298 // The operands of a select that must be truncated when the select is 10299 // promoted because the operand is actually part of the to-be-promoted set. 10300 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 10301 10302 // Make sure that this is a self-contained cluster of operations (which 10303 // is not quite the same thing as saying that everything has only one 10304 // use). 10305 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10306 if (isa<ConstantSDNode>(Inputs[i])) 10307 continue; 10308 10309 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10310 UE = Inputs[i].getNode()->use_end(); 10311 UI != UE; ++UI) { 10312 SDNode *User = *UI; 10313 if (User != N && !Visited.count(User)) 10314 return SDValue(); 10315 10316 // If we're going to promote the non-output-value operand(s) or SELECT or 10317 // SELECT_CC, record them for truncation. 10318 if (User->getOpcode() == ISD::SELECT) { 10319 if (User->getOperand(0) == Inputs[i]) 10320 SelectTruncOp[0].insert(std::make_pair(User, 10321 User->getOperand(0).getValueType())); 10322 } else if (User->getOpcode() == ISD::SELECT_CC) { 10323 if (User->getOperand(0) == Inputs[i]) 10324 SelectTruncOp[0].insert(std::make_pair(User, 10325 User->getOperand(0).getValueType())); 10326 if (User->getOperand(1) == Inputs[i]) 10327 SelectTruncOp[1].insert(std::make_pair(User, 10328 User->getOperand(1).getValueType())); 10329 } 10330 } 10331 } 10332 10333 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10334 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10335 UE = PromOps[i].getNode()->use_end(); 10336 UI != UE; ++UI) { 10337 SDNode *User = *UI; 10338 if (User != N && !Visited.count(User)) 10339 return SDValue(); 10340 10341 // If we're going to promote the non-output-value operand(s) or SELECT or 10342 // SELECT_CC, record them for truncation. 10343 if (User->getOpcode() == ISD::SELECT) { 10344 if (User->getOperand(0) == PromOps[i]) 10345 SelectTruncOp[0].insert(std::make_pair(User, 10346 User->getOperand(0).getValueType())); 10347 } else if (User->getOpcode() == ISD::SELECT_CC) { 10348 if (User->getOperand(0) == PromOps[i]) 10349 SelectTruncOp[0].insert(std::make_pair(User, 10350 User->getOperand(0).getValueType())); 10351 if (User->getOperand(1) == PromOps[i]) 10352 SelectTruncOp[1].insert(std::make_pair(User, 10353 User->getOperand(1).getValueType())); 10354 } 10355 } 10356 } 10357 10358 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10359 bool ReallyNeedsExt = false; 10360 if (N->getOpcode() != ISD::ANY_EXTEND) { 10361 // If all of the inputs are not already sign/zero extended, then 10362 // we'll still need to do that at the end. 10363 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10364 if (isa<ConstantSDNode>(Inputs[i])) 10365 continue; 10366 10367 unsigned OpBits = 10368 Inputs[i].getOperand(0).getValueSizeInBits(); 10369 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10370 10371 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10372 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10373 APInt::getHighBitsSet(OpBits, 10374 OpBits-PromBits))) || 10375 (N->getOpcode() == ISD::SIGN_EXTEND && 10376 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10377 (OpBits-(PromBits-1)))) { 10378 ReallyNeedsExt = true; 10379 break; 10380 } 10381 } 10382 } 10383 10384 // Replace all inputs, either with the truncation operand, or a 10385 // truncation or extension to the final output type. 10386 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10387 // Constant inputs need to be replaced with the to-be-promoted nodes that 10388 // use them because they might have users outside of the cluster of 10389 // promoted nodes. 10390 if (isa<ConstantSDNode>(Inputs[i])) 10391 continue; 10392 10393 SDValue InSrc = Inputs[i].getOperand(0); 10394 if (Inputs[i].getValueType() == N->getValueType(0)) 10395 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10396 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10397 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10398 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10399 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10400 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10401 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10402 else 10403 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10404 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10405 } 10406 10407 std::list<HandleSDNode> PromOpHandles; 10408 for (auto &PromOp : PromOps) 10409 PromOpHandles.emplace_back(PromOp); 10410 10411 // Replace all operations (these are all the same, but have a different 10412 // (promoted) return type). DAG.getNode will validate that the types of 10413 // a binary operator match, so go through the list in reverse so that 10414 // we've likely promoted both operands first. 10415 while (!PromOpHandles.empty()) { 10416 SDValue PromOp = PromOpHandles.back().getValue(); 10417 PromOpHandles.pop_back(); 10418 10419 unsigned C; 10420 switch (PromOp.getOpcode()) { 10421 default: C = 0; break; 10422 case ISD::SELECT: C = 1; break; 10423 case ISD::SELECT_CC: C = 2; break; 10424 } 10425 10426 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10427 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10428 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10429 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10430 // The to-be-promoted operands of this node have not yet been 10431 // promoted (this should be rare because we're going through the 10432 // list backward, but if one of the operands has several users in 10433 // this cluster of to-be-promoted nodes, it is possible). 10434 PromOpHandles.emplace_front(PromOp); 10435 continue; 10436 } 10437 10438 // For SELECT and SELECT_CC nodes, we do a similar check for any 10439 // to-be-promoted comparison inputs. 10440 if (PromOp.getOpcode() == ISD::SELECT || 10441 PromOp.getOpcode() == ISD::SELECT_CC) { 10442 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10443 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10444 (SelectTruncOp[1].count(PromOp.getNode()) && 10445 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10446 PromOpHandles.emplace_front(PromOp); 10447 continue; 10448 } 10449 } 10450 10451 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10452 PromOp.getNode()->op_end()); 10453 10454 // If this node has constant inputs, then they'll need to be promoted here. 10455 for (unsigned i = 0; i < 2; ++i) { 10456 if (!isa<ConstantSDNode>(Ops[C+i])) 10457 continue; 10458 if (Ops[C+i].getValueType() == N->getValueType(0)) 10459 continue; 10460 10461 if (N->getOpcode() == ISD::SIGN_EXTEND) 10462 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10463 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10464 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10465 else 10466 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10467 } 10468 10469 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10470 // truncate them again to the original value type. 10471 if (PromOp.getOpcode() == ISD::SELECT || 10472 PromOp.getOpcode() == ISD::SELECT_CC) { 10473 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10474 if (SI0 != SelectTruncOp[0].end()) 10475 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10476 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10477 if (SI1 != SelectTruncOp[1].end()) 10478 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10479 } 10480 10481 DAG.ReplaceAllUsesOfValueWith(PromOp, 10482 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10483 } 10484 10485 // Now we're left with the initial extension itself. 10486 if (!ReallyNeedsExt) 10487 return N->getOperand(0); 10488 10489 // To zero extend, just mask off everything except for the first bit (in the 10490 // i1 case). 10491 if (N->getOpcode() == ISD::ZERO_EXTEND) 10492 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10493 DAG.getConstant(APInt::getLowBitsSet( 10494 N->getValueSizeInBits(0), PromBits), 10495 dl, N->getValueType(0))); 10496 10497 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10498 "Invalid extension type"); 10499 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10500 SDValue ShiftCst = 10501 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10502 return DAG.getNode( 10503 ISD::SRA, dl, N->getValueType(0), 10504 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10505 ShiftCst); 10506 } 10507 10508 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 10509 DAGCombinerInfo &DCI) const { 10510 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10511 "Should be called with a BUILD_VECTOR node"); 10512 10513 SelectionDAG &DAG = DCI.DAG; 10514 SDLoc dl(N); 10515 if (N->getValueType(0) != MVT::v2f64 || !Subtarget.hasVSX()) 10516 return SDValue(); 10517 10518 // Looking for: 10519 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 10520 if (N->getOperand(0).getOpcode() != ISD::SINT_TO_FP && 10521 N->getOperand(0).getOpcode() != ISD::UINT_TO_FP) 10522 return SDValue(); 10523 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 10524 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 10525 return SDValue(); 10526 if (N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode()) 10527 return SDValue(); 10528 10529 SDValue Ext1 = N->getOperand(0).getOperand(0); 10530 SDValue Ext2 = N->getOperand(1).getOperand(0); 10531 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10532 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10533 return SDValue(); 10534 10535 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 10536 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 10537 if (!Ext1Op || !Ext2Op) 10538 return SDValue(); 10539 if (Ext1.getValueType() != MVT::i32 || 10540 Ext2.getValueType() != MVT::i32) 10541 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 10542 return SDValue(); 10543 10544 int FirstElem = Ext1Op->getZExtValue(); 10545 int SecondElem = Ext2Op->getZExtValue(); 10546 int SubvecIdx; 10547 if (FirstElem == 0 && SecondElem == 1) 10548 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 10549 else if (FirstElem == 2 && SecondElem == 3) 10550 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 10551 else 10552 return SDValue(); 10553 10554 SDValue SrcVec = Ext1.getOperand(0); 10555 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 10556 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 10557 return DAG.getNode(NodeType, dl, MVT::v2f64, 10558 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 10559 } 10560 10561 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 10562 DAGCombinerInfo &DCI) const { 10563 assert((N->getOpcode() == ISD::SINT_TO_FP || 10564 N->getOpcode() == ISD::UINT_TO_FP) && 10565 "Need an int -> FP conversion node here"); 10566 10567 if (useSoftFloat() || !Subtarget.has64BitSupport()) 10568 return SDValue(); 10569 10570 SelectionDAG &DAG = DCI.DAG; 10571 SDLoc dl(N); 10572 SDValue Op(N, 0); 10573 10574 SDValue FirstOperand(Op.getOperand(0)); 10575 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 10576 (FirstOperand.getValueType() == MVT::i8 || 10577 FirstOperand.getValueType() == MVT::i16); 10578 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 10579 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 10580 bool DstDouble = Op.getValueType() == MVT::f64; 10581 unsigned ConvOp = Signed ? 10582 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 10583 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 10584 SDValue WidthConst = 10585 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 10586 dl, false); 10587 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 10588 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 10589 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 10590 DAG.getVTList(MVT::f64, MVT::Other), 10591 Ops, MVT::i8, LDN->getMemOperand()); 10592 10593 // For signed conversion, we need to sign-extend the value in the VSR 10594 if (Signed) { 10595 SDValue ExtOps[] = { Ld, WidthConst }; 10596 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 10597 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 10598 } else 10599 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 10600 } 10601 10602 // Don't handle ppc_fp128 here or i1 conversions. 10603 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10604 return SDValue(); 10605 if (Op.getOperand(0).getValueType() == MVT::i1) 10606 return SDValue(); 10607 10608 // For i32 intermediate values, unfortunately, the conversion functions 10609 // leave the upper 32 bits of the value are undefined. Within the set of 10610 // scalar instructions, we have no method for zero- or sign-extending the 10611 // value. Thus, we cannot handle i32 intermediate values here. 10612 if (Op.getOperand(0).getValueType() == MVT::i32) 10613 return SDValue(); 10614 10615 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10616 "UINT_TO_FP is supported only with FPCVT"); 10617 10618 // If we have FCFIDS, then use it when converting to single-precision. 10619 // Otherwise, convert to double-precision and then round. 10620 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10621 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10622 : PPCISD::FCFIDS) 10623 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10624 : PPCISD::FCFID); 10625 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10626 ? MVT::f32 10627 : MVT::f64; 10628 10629 // If we're converting from a float, to an int, and back to a float again, 10630 // then we don't need the store/load pair at all. 10631 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10632 Subtarget.hasFPCVT()) || 10633 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10634 SDValue Src = Op.getOperand(0).getOperand(0); 10635 if (Src.getValueType() == MVT::f32) { 10636 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10637 DCI.AddToWorklist(Src.getNode()); 10638 } else if (Src.getValueType() != MVT::f64) { 10639 // Make sure that we don't pick up a ppc_fp128 source value. 10640 return SDValue(); 10641 } 10642 10643 unsigned FCTOp = 10644 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10645 PPCISD::FCTIDUZ; 10646 10647 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10648 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10649 10650 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10651 FP = DAG.getNode(ISD::FP_ROUND, dl, 10652 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10653 DCI.AddToWorklist(FP.getNode()); 10654 } 10655 10656 return FP; 10657 } 10658 10659 return SDValue(); 10660 } 10661 10662 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10663 // builtins) into loads with swaps. 10664 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10665 DAGCombinerInfo &DCI) const { 10666 SelectionDAG &DAG = DCI.DAG; 10667 SDLoc dl(N); 10668 SDValue Chain; 10669 SDValue Base; 10670 MachineMemOperand *MMO; 10671 10672 switch (N->getOpcode()) { 10673 default: 10674 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10675 case ISD::LOAD: { 10676 LoadSDNode *LD = cast<LoadSDNode>(N); 10677 Chain = LD->getChain(); 10678 Base = LD->getBasePtr(); 10679 MMO = LD->getMemOperand(); 10680 // If the MMO suggests this isn't a load of a full vector, leave 10681 // things alone. For a built-in, we have to make the change for 10682 // correctness, so if there is a size problem that will be a bug. 10683 if (MMO->getSize() < 16) 10684 return SDValue(); 10685 break; 10686 } 10687 case ISD::INTRINSIC_W_CHAIN: { 10688 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10689 Chain = Intrin->getChain(); 10690 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10691 // us what we want. Get operand 2 instead. 10692 Base = Intrin->getOperand(2); 10693 MMO = Intrin->getMemOperand(); 10694 break; 10695 } 10696 } 10697 10698 MVT VecTy = N->getValueType(0).getSimpleVT(); 10699 SDValue LoadOps[] = { Chain, Base }; 10700 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10701 DAG.getVTList(MVT::v2f64, MVT::Other), 10702 LoadOps, MVT::v2f64, MMO); 10703 10704 DCI.AddToWorklist(Load.getNode()); 10705 Chain = Load.getValue(1); 10706 SDValue Swap = DAG.getNode( 10707 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 10708 DCI.AddToWorklist(Swap.getNode()); 10709 10710 // Add a bitcast if the resulting load type doesn't match v2f64. 10711 if (VecTy != MVT::v2f64) { 10712 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 10713 DCI.AddToWorklist(N.getNode()); 10714 // Package {bitcast value, swap's chain} to match Load's shape. 10715 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 10716 N, Swap.getValue(1)); 10717 } 10718 10719 return Swap; 10720 } 10721 10722 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10723 // builtins) into stores with swaps. 10724 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10725 DAGCombinerInfo &DCI) const { 10726 SelectionDAG &DAG = DCI.DAG; 10727 SDLoc dl(N); 10728 SDValue Chain; 10729 SDValue Base; 10730 unsigned SrcOpnd; 10731 MachineMemOperand *MMO; 10732 10733 switch (N->getOpcode()) { 10734 default: 10735 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10736 case ISD::STORE: { 10737 StoreSDNode *ST = cast<StoreSDNode>(N); 10738 Chain = ST->getChain(); 10739 Base = ST->getBasePtr(); 10740 MMO = ST->getMemOperand(); 10741 SrcOpnd = 1; 10742 // If the MMO suggests this isn't a store of a full vector, leave 10743 // things alone. For a built-in, we have to make the change for 10744 // correctness, so if there is a size problem that will be a bug. 10745 if (MMO->getSize() < 16) 10746 return SDValue(); 10747 break; 10748 } 10749 case ISD::INTRINSIC_VOID: { 10750 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10751 Chain = Intrin->getChain(); 10752 // Intrin->getBasePtr() oddly does not get what we want. 10753 Base = Intrin->getOperand(3); 10754 MMO = Intrin->getMemOperand(); 10755 SrcOpnd = 2; 10756 break; 10757 } 10758 } 10759 10760 SDValue Src = N->getOperand(SrcOpnd); 10761 MVT VecTy = Src.getValueType().getSimpleVT(); 10762 10763 // All stores are done as v2f64 and possible bit cast. 10764 if (VecTy != MVT::v2f64) { 10765 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 10766 DCI.AddToWorklist(Src.getNode()); 10767 } 10768 10769 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10770 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 10771 DCI.AddToWorklist(Swap.getNode()); 10772 Chain = Swap.getValue(1); 10773 SDValue StoreOps[] = { Chain, Swap, Base }; 10774 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10775 DAG.getVTList(MVT::Other), 10776 StoreOps, VecTy, MMO); 10777 DCI.AddToWorklist(Store.getNode()); 10778 return Store; 10779 } 10780 10781 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10782 DAGCombinerInfo &DCI) const { 10783 SelectionDAG &DAG = DCI.DAG; 10784 SDLoc dl(N); 10785 switch (N->getOpcode()) { 10786 default: break; 10787 case PPCISD::SHL: 10788 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10789 return N->getOperand(0); 10790 break; 10791 case PPCISD::SRL: 10792 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10793 return N->getOperand(0); 10794 break; 10795 case PPCISD::SRA: 10796 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10797 if (C->isNullValue() || // 0 >>s V -> 0. 10798 C->isAllOnesValue()) // -1 >>s V -> -1. 10799 return N->getOperand(0); 10800 } 10801 break; 10802 case ISD::SIGN_EXTEND: 10803 case ISD::ZERO_EXTEND: 10804 case ISD::ANY_EXTEND: 10805 return DAGCombineExtBoolTrunc(N, DCI); 10806 case ISD::TRUNCATE: 10807 case ISD::SETCC: 10808 case ISD::SELECT_CC: 10809 return DAGCombineTruncBoolExt(N, DCI); 10810 case ISD::SINT_TO_FP: 10811 case ISD::UINT_TO_FP: 10812 return combineFPToIntToFP(N, DCI); 10813 case ISD::STORE: { 10814 EVT Op1VT = N->getOperand(1).getValueType(); 10815 bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) || 10816 (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16)); 10817 10818 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10819 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10820 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10821 ValidTypeForStoreFltAsInt && 10822 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10823 SDValue Val = N->getOperand(1).getOperand(0); 10824 if (Val.getValueType() == MVT::f32) { 10825 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10826 DCI.AddToWorklist(Val.getNode()); 10827 } 10828 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10829 DCI.AddToWorklist(Val.getNode()); 10830 10831 if (Op1VT == MVT::i32) { 10832 SDValue Ops[] = { 10833 N->getOperand(0), Val, N->getOperand(2), 10834 DAG.getValueType(N->getOperand(1).getValueType()) 10835 }; 10836 10837 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10838 DAG.getVTList(MVT::Other), Ops, 10839 cast<StoreSDNode>(N)->getMemoryVT(), 10840 cast<StoreSDNode>(N)->getMemOperand()); 10841 } else { 10842 unsigned WidthInBytes = 10843 N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2; 10844 SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false); 10845 10846 SDValue Ops[] = { 10847 N->getOperand(0), Val, N->getOperand(2), WidthConst, 10848 DAG.getValueType(N->getOperand(1).getValueType()) 10849 }; 10850 Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl, 10851 DAG.getVTList(MVT::Other), Ops, 10852 cast<StoreSDNode>(N)->getMemoryVT(), 10853 cast<StoreSDNode>(N)->getMemOperand()); 10854 } 10855 10856 DCI.AddToWorklist(Val.getNode()); 10857 return Val; 10858 } 10859 10860 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10861 if (cast<StoreSDNode>(N)->isUnindexed() && 10862 N->getOperand(1).getOpcode() == ISD::BSWAP && 10863 N->getOperand(1).getNode()->hasOneUse() && 10864 (N->getOperand(1).getValueType() == MVT::i32 || 10865 N->getOperand(1).getValueType() == MVT::i16 || 10866 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10867 N->getOperand(1).getValueType() == MVT::i64))) { 10868 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10869 // Do an any-extend to 32-bits if this is a half-word input. 10870 if (BSwapOp.getValueType() == MVT::i16) 10871 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10872 10873 SDValue Ops[] = { 10874 N->getOperand(0), BSwapOp, N->getOperand(2), 10875 DAG.getValueType(N->getOperand(1).getValueType()) 10876 }; 10877 return 10878 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10879 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10880 cast<StoreSDNode>(N)->getMemOperand()); 10881 } 10882 10883 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10884 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 10885 EVT VT = N->getOperand(1).getValueType(); 10886 if (VT.isSimple()) { 10887 MVT StoreVT = VT.getSimpleVT(); 10888 if (Subtarget.needsSwapsForVSXMemOps() && 10889 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10890 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10891 return expandVSXStoreForLE(N, DCI); 10892 } 10893 break; 10894 } 10895 case ISD::LOAD: { 10896 LoadSDNode *LD = cast<LoadSDNode>(N); 10897 EVT VT = LD->getValueType(0); 10898 10899 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10900 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 10901 if (VT.isSimple()) { 10902 MVT LoadVT = VT.getSimpleVT(); 10903 if (Subtarget.needsSwapsForVSXMemOps() && 10904 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10905 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10906 return expandVSXLoadForLE(N, DCI); 10907 } 10908 10909 // We sometimes end up with a 64-bit integer load, from which we extract 10910 // two single-precision floating-point numbers. This happens with 10911 // std::complex<float>, and other similar structures, because of the way we 10912 // canonicalize structure copies. However, if we lack direct moves, 10913 // then the final bitcasts from the extracted integer values to the 10914 // floating-point numbers turn into store/load pairs. Even with direct moves, 10915 // just loading the two floating-point numbers is likely better. 10916 auto ReplaceTwoFloatLoad = [&]() { 10917 if (VT != MVT::i64) 10918 return false; 10919 10920 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 10921 LD->isVolatile()) 10922 return false; 10923 10924 // We're looking for a sequence like this: 10925 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 10926 // t16: i64 = srl t13, Constant:i32<32> 10927 // t17: i32 = truncate t16 10928 // t18: f32 = bitcast t17 10929 // t19: i32 = truncate t13 10930 // t20: f32 = bitcast t19 10931 10932 if (!LD->hasNUsesOfValue(2, 0)) 10933 return false; 10934 10935 auto UI = LD->use_begin(); 10936 while (UI.getUse().getResNo() != 0) ++UI; 10937 SDNode *Trunc = *UI++; 10938 while (UI.getUse().getResNo() != 0) ++UI; 10939 SDNode *RightShift = *UI; 10940 if (Trunc->getOpcode() != ISD::TRUNCATE) 10941 std::swap(Trunc, RightShift); 10942 10943 if (Trunc->getOpcode() != ISD::TRUNCATE || 10944 Trunc->getValueType(0) != MVT::i32 || 10945 !Trunc->hasOneUse()) 10946 return false; 10947 if (RightShift->getOpcode() != ISD::SRL || 10948 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 10949 RightShift->getConstantOperandVal(1) != 32 || 10950 !RightShift->hasOneUse()) 10951 return false; 10952 10953 SDNode *Trunc2 = *RightShift->use_begin(); 10954 if (Trunc2->getOpcode() != ISD::TRUNCATE || 10955 Trunc2->getValueType(0) != MVT::i32 || 10956 !Trunc2->hasOneUse()) 10957 return false; 10958 10959 SDNode *Bitcast = *Trunc->use_begin(); 10960 SDNode *Bitcast2 = *Trunc2->use_begin(); 10961 10962 if (Bitcast->getOpcode() != ISD::BITCAST || 10963 Bitcast->getValueType(0) != MVT::f32) 10964 return false; 10965 if (Bitcast2->getOpcode() != ISD::BITCAST || 10966 Bitcast2->getValueType(0) != MVT::f32) 10967 return false; 10968 10969 if (Subtarget.isLittleEndian()) 10970 std::swap(Bitcast, Bitcast2); 10971 10972 // Bitcast has the second float (in memory-layout order) and Bitcast2 10973 // has the first one. 10974 10975 SDValue BasePtr = LD->getBasePtr(); 10976 if (LD->isIndexed()) { 10977 assert(LD->getAddressingMode() == ISD::PRE_INC && 10978 "Non-pre-inc AM on PPC?"); 10979 BasePtr = 10980 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10981 LD->getOffset()); 10982 } 10983 10984 auto MMOFlags = 10985 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 10986 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 10987 LD->getPointerInfo(), LD->getAlignment(), 10988 MMOFlags, LD->getAAInfo()); 10989 SDValue AddPtr = 10990 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 10991 BasePtr, DAG.getIntPtrConstant(4, dl)); 10992 SDValue FloatLoad2 = DAG.getLoad( 10993 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 10994 LD->getPointerInfo().getWithOffset(4), 10995 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 10996 10997 if (LD->isIndexed()) { 10998 // Note that DAGCombine should re-form any pre-increment load(s) from 10999 // what is produced here if that makes sense. 11000 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 11001 } 11002 11003 DCI.CombineTo(Bitcast2, FloatLoad); 11004 DCI.CombineTo(Bitcast, FloatLoad2); 11005 11006 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 11007 SDValue(FloatLoad2.getNode(), 1)); 11008 return true; 11009 }; 11010 11011 if (ReplaceTwoFloatLoad()) 11012 return SDValue(N, 0); 11013 11014 EVT MemVT = LD->getMemoryVT(); 11015 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 11016 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 11017 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 11018 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 11019 if (LD->isUnindexed() && VT.isVector() && 11020 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 11021 // P8 and later hardware should just use LOAD. 11022 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 11023 VT == MVT::v4i32 || VT == MVT::v4f32)) || 11024 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 11025 LD->getAlignment() >= ScalarABIAlignment)) && 11026 LD->getAlignment() < ABIAlignment) { 11027 // This is a type-legal unaligned Altivec or QPX load. 11028 SDValue Chain = LD->getChain(); 11029 SDValue Ptr = LD->getBasePtr(); 11030 bool isLittleEndian = Subtarget.isLittleEndian(); 11031 11032 // This implements the loading of unaligned vectors as described in 11033 // the venerable Apple Velocity Engine overview. Specifically: 11034 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 11035 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 11036 // 11037 // The general idea is to expand a sequence of one or more unaligned 11038 // loads into an alignment-based permutation-control instruction (lvsl 11039 // or lvsr), a series of regular vector loads (which always truncate 11040 // their input address to an aligned address), and a series of 11041 // permutations. The results of these permutations are the requested 11042 // loaded values. The trick is that the last "extra" load is not taken 11043 // from the address you might suspect (sizeof(vector) bytes after the 11044 // last requested load), but rather sizeof(vector) - 1 bytes after the 11045 // last requested vector. The point of this is to avoid a page fault if 11046 // the base address happened to be aligned. This works because if the 11047 // base address is aligned, then adding less than a full vector length 11048 // will cause the last vector in the sequence to be (re)loaded. 11049 // Otherwise, the next vector will be fetched as you might suspect was 11050 // necessary. 11051 11052 // We might be able to reuse the permutation generation from 11053 // a different base address offset from this one by an aligned amount. 11054 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 11055 // optimization later. 11056 Intrinsic::ID Intr, IntrLD, IntrPerm; 11057 MVT PermCntlTy, PermTy, LDTy; 11058 if (Subtarget.hasAltivec()) { 11059 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 11060 Intrinsic::ppc_altivec_lvsl; 11061 IntrLD = Intrinsic::ppc_altivec_lvx; 11062 IntrPerm = Intrinsic::ppc_altivec_vperm; 11063 PermCntlTy = MVT::v16i8; 11064 PermTy = MVT::v4i32; 11065 LDTy = MVT::v4i32; 11066 } else { 11067 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 11068 Intrinsic::ppc_qpx_qvlpcls; 11069 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 11070 Intrinsic::ppc_qpx_qvlfs; 11071 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 11072 PermCntlTy = MVT::v4f64; 11073 PermTy = MVT::v4f64; 11074 LDTy = MemVT.getSimpleVT(); 11075 } 11076 11077 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 11078 11079 // Create the new MMO for the new base load. It is like the original MMO, 11080 // but represents an area in memory almost twice the vector size centered 11081 // on the original address. If the address is unaligned, we might start 11082 // reading up to (sizeof(vector)-1) bytes below the address of the 11083 // original unaligned load. 11084 MachineFunction &MF = DAG.getMachineFunction(); 11085 MachineMemOperand *BaseMMO = 11086 MF.getMachineMemOperand(LD->getMemOperand(), 11087 -(long)MemVT.getStoreSize()+1, 11088 2*MemVT.getStoreSize()-1); 11089 11090 // Create the new base load. 11091 SDValue LDXIntID = 11092 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 11093 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 11094 SDValue BaseLoad = 11095 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11096 DAG.getVTList(PermTy, MVT::Other), 11097 BaseLoadOps, LDTy, BaseMMO); 11098 11099 // Note that the value of IncOffset (which is provided to the next 11100 // load's pointer info offset value, and thus used to calculate the 11101 // alignment), and the value of IncValue (which is actually used to 11102 // increment the pointer value) are different! This is because we 11103 // require the next load to appear to be aligned, even though it 11104 // is actually offset from the base pointer by a lesser amount. 11105 int IncOffset = VT.getSizeInBits() / 8; 11106 int IncValue = IncOffset; 11107 11108 // Walk (both up and down) the chain looking for another load at the real 11109 // (aligned) offset (the alignment of the other load does not matter in 11110 // this case). If found, then do not use the offset reduction trick, as 11111 // that will prevent the loads from being later combined (as they would 11112 // otherwise be duplicates). 11113 if (!findConsecutiveLoad(LD, DAG)) 11114 --IncValue; 11115 11116 SDValue Increment = 11117 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 11118 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 11119 11120 MachineMemOperand *ExtraMMO = 11121 MF.getMachineMemOperand(LD->getMemOperand(), 11122 1, 2*MemVT.getStoreSize()-1); 11123 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 11124 SDValue ExtraLoad = 11125 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11126 DAG.getVTList(PermTy, MVT::Other), 11127 ExtraLoadOps, LDTy, ExtraMMO); 11128 11129 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 11130 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 11131 11132 // Because vperm has a big-endian bias, we must reverse the order 11133 // of the input vectors and complement the permute control vector 11134 // when generating little endian code. We have already handled the 11135 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 11136 // and ExtraLoad here. 11137 SDValue Perm; 11138 if (isLittleEndian) 11139 Perm = BuildIntrinsicOp(IntrPerm, 11140 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 11141 else 11142 Perm = BuildIntrinsicOp(IntrPerm, 11143 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 11144 11145 if (VT != PermTy) 11146 Perm = Subtarget.hasAltivec() ? 11147 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 11148 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 11149 DAG.getTargetConstant(1, dl, MVT::i64)); 11150 // second argument is 1 because this rounding 11151 // is always exact. 11152 11153 // The output of the permutation is our loaded result, the TokenFactor is 11154 // our new chain. 11155 DCI.CombineTo(N, Perm, TF); 11156 return SDValue(N, 0); 11157 } 11158 } 11159 break; 11160 case ISD::INTRINSIC_WO_CHAIN: { 11161 bool isLittleEndian = Subtarget.isLittleEndian(); 11162 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 11163 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 11164 : Intrinsic::ppc_altivec_lvsl); 11165 if ((IID == Intr || 11166 IID == Intrinsic::ppc_qpx_qvlpcld || 11167 IID == Intrinsic::ppc_qpx_qvlpcls) && 11168 N->getOperand(1)->getOpcode() == ISD::ADD) { 11169 SDValue Add = N->getOperand(1); 11170 11171 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 11172 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 11173 11174 if (DAG.MaskedValueIsZero(Add->getOperand(1), 11175 APInt::getAllOnesValue(Bits /* alignment */) 11176 .zext(Add.getScalarValueSizeInBits()))) { 11177 SDNode *BasePtr = Add->getOperand(0).getNode(); 11178 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11179 UE = BasePtr->use_end(); 11180 UI != UE; ++UI) { 11181 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11182 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 11183 // We've found another LVSL/LVSR, and this address is an aligned 11184 // multiple of that one. The results will be the same, so use the 11185 // one we've just found instead. 11186 11187 return SDValue(*UI, 0); 11188 } 11189 } 11190 } 11191 11192 if (isa<ConstantSDNode>(Add->getOperand(1))) { 11193 SDNode *BasePtr = Add->getOperand(0).getNode(); 11194 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11195 UE = BasePtr->use_end(); UI != UE; ++UI) { 11196 if (UI->getOpcode() == ISD::ADD && 11197 isa<ConstantSDNode>(UI->getOperand(1)) && 11198 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 11199 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 11200 (1ULL << Bits) == 0) { 11201 SDNode *OtherAdd = *UI; 11202 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 11203 VE = OtherAdd->use_end(); VI != VE; ++VI) { 11204 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11205 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 11206 return SDValue(*VI, 0); 11207 } 11208 } 11209 } 11210 } 11211 } 11212 } 11213 } 11214 11215 break; 11216 case ISD::INTRINSIC_W_CHAIN: { 11217 // For little endian, VSX loads require generating lxvd2x/xxswapd. 11218 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 11219 if (Subtarget.needsSwapsForVSXMemOps()) { 11220 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11221 default: 11222 break; 11223 case Intrinsic::ppc_vsx_lxvw4x: 11224 case Intrinsic::ppc_vsx_lxvd2x: 11225 return expandVSXLoadForLE(N, DCI); 11226 } 11227 } 11228 break; 11229 } 11230 case ISD::INTRINSIC_VOID: { 11231 // For little endian, VSX stores require generating xxswapd/stxvd2x. 11232 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 11233 if (Subtarget.needsSwapsForVSXMemOps()) { 11234 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11235 default: 11236 break; 11237 case Intrinsic::ppc_vsx_stxvw4x: 11238 case Intrinsic::ppc_vsx_stxvd2x: 11239 return expandVSXStoreForLE(N, DCI); 11240 } 11241 } 11242 break; 11243 } 11244 case ISD::BSWAP: 11245 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 11246 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 11247 N->getOperand(0).hasOneUse() && 11248 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 11249 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 11250 N->getValueType(0) == MVT::i64))) { 11251 SDValue Load = N->getOperand(0); 11252 LoadSDNode *LD = cast<LoadSDNode>(Load); 11253 // Create the byte-swapping load. 11254 SDValue Ops[] = { 11255 LD->getChain(), // Chain 11256 LD->getBasePtr(), // Ptr 11257 DAG.getValueType(N->getValueType(0)) // VT 11258 }; 11259 SDValue BSLoad = 11260 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 11261 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 11262 MVT::i64 : MVT::i32, MVT::Other), 11263 Ops, LD->getMemoryVT(), LD->getMemOperand()); 11264 11265 // If this is an i16 load, insert the truncate. 11266 SDValue ResVal = BSLoad; 11267 if (N->getValueType(0) == MVT::i16) 11268 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 11269 11270 // First, combine the bswap away. This makes the value produced by the 11271 // load dead. 11272 DCI.CombineTo(N, ResVal); 11273 11274 // Next, combine the load away, we give it a bogus result value but a real 11275 // chain result. The result value is dead because the bswap is dead. 11276 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 11277 11278 // Return N so it doesn't get rechecked! 11279 return SDValue(N, 0); 11280 } 11281 11282 break; 11283 case PPCISD::VCMP: { 11284 // If a VCMPo node already exists with exactly the same operands as this 11285 // node, use its result instead of this node (VCMPo computes both a CR6 and 11286 // a normal output). 11287 // 11288 if (!N->getOperand(0).hasOneUse() && 11289 !N->getOperand(1).hasOneUse() && 11290 !N->getOperand(2).hasOneUse()) { 11291 11292 // Scan all of the users of the LHS, looking for VCMPo's that match. 11293 SDNode *VCMPoNode = nullptr; 11294 11295 SDNode *LHSN = N->getOperand(0).getNode(); 11296 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 11297 UI != E; ++UI) 11298 if (UI->getOpcode() == PPCISD::VCMPo && 11299 UI->getOperand(1) == N->getOperand(1) && 11300 UI->getOperand(2) == N->getOperand(2) && 11301 UI->getOperand(0) == N->getOperand(0)) { 11302 VCMPoNode = *UI; 11303 break; 11304 } 11305 11306 // If there is no VCMPo node, or if the flag value has a single use, don't 11307 // transform this. 11308 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 11309 break; 11310 11311 // Look at the (necessarily single) use of the flag value. If it has a 11312 // chain, this transformation is more complex. Note that multiple things 11313 // could use the value result, which we should ignore. 11314 SDNode *FlagUser = nullptr; 11315 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 11316 FlagUser == nullptr; ++UI) { 11317 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 11318 SDNode *User = *UI; 11319 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 11320 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 11321 FlagUser = User; 11322 break; 11323 } 11324 } 11325 } 11326 11327 // If the user is a MFOCRF instruction, we know this is safe. 11328 // Otherwise we give up for right now. 11329 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 11330 return SDValue(VCMPoNode, 0); 11331 } 11332 break; 11333 } 11334 case ISD::BRCOND: { 11335 SDValue Cond = N->getOperand(1); 11336 SDValue Target = N->getOperand(2); 11337 11338 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11339 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 11340 Intrinsic::ppc_is_decremented_ctr_nonzero) { 11341 11342 // We now need to make the intrinsic dead (it cannot be instruction 11343 // selected). 11344 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 11345 assert(Cond.getNode()->hasOneUse() && 11346 "Counter decrement has more than one use"); 11347 11348 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 11349 N->getOperand(0), Target); 11350 } 11351 } 11352 break; 11353 case ISD::BR_CC: { 11354 // If this is a branch on an altivec predicate comparison, lower this so 11355 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 11356 // lowering is done pre-legalize, because the legalizer lowers the predicate 11357 // compare down to code that is difficult to reassemble. 11358 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 11359 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 11360 11361 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 11362 // value. If so, pass-through the AND to get to the intrinsic. 11363 if (LHS.getOpcode() == ISD::AND && 11364 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 11365 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 11366 Intrinsic::ppc_is_decremented_ctr_nonzero && 11367 isa<ConstantSDNode>(LHS.getOperand(1)) && 11368 !isNullConstant(LHS.getOperand(1))) 11369 LHS = LHS.getOperand(0); 11370 11371 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11372 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 11373 Intrinsic::ppc_is_decremented_ctr_nonzero && 11374 isa<ConstantSDNode>(RHS)) { 11375 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 11376 "Counter decrement comparison is not EQ or NE"); 11377 11378 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11379 bool isBDNZ = (CC == ISD::SETEQ && Val) || 11380 (CC == ISD::SETNE && !Val); 11381 11382 // We now need to make the intrinsic dead (it cannot be instruction 11383 // selected). 11384 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 11385 assert(LHS.getNode()->hasOneUse() && 11386 "Counter decrement has more than one use"); 11387 11388 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 11389 N->getOperand(0), N->getOperand(4)); 11390 } 11391 11392 int CompareOpc; 11393 bool isDot; 11394 11395 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11396 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 11397 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 11398 assert(isDot && "Can't compare against a vector result!"); 11399 11400 // If this is a comparison against something other than 0/1, then we know 11401 // that the condition is never/always true. 11402 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11403 if (Val != 0 && Val != 1) { 11404 if (CC == ISD::SETEQ) // Cond never true, remove branch. 11405 return N->getOperand(0); 11406 // Always !=, turn it into an unconditional branch. 11407 return DAG.getNode(ISD::BR, dl, MVT::Other, 11408 N->getOperand(0), N->getOperand(4)); 11409 } 11410 11411 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11412 11413 // Create the PPCISD altivec 'dot' comparison node. 11414 SDValue Ops[] = { 11415 LHS.getOperand(2), // LHS of compare 11416 LHS.getOperand(3), // RHS of compare 11417 DAG.getConstant(CompareOpc, dl, MVT::i32) 11418 }; 11419 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11420 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11421 11422 // Unpack the result based on how the target uses it. 11423 PPC::Predicate CompOpc; 11424 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11425 default: // Can't happen, don't crash on invalid number though. 11426 case 0: // Branch on the value of the EQ bit of CR6. 11427 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11428 break; 11429 case 1: // Branch on the inverted value of the EQ bit of CR6. 11430 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11431 break; 11432 case 2: // Branch on the value of the LT bit of CR6. 11433 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11434 break; 11435 case 3: // Branch on the inverted value of the LT bit of CR6. 11436 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11437 break; 11438 } 11439 11440 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11441 DAG.getConstant(CompOpc, dl, MVT::i32), 11442 DAG.getRegister(PPC::CR6, MVT::i32), 11443 N->getOperand(4), CompNode.getValue(1)); 11444 } 11445 break; 11446 } 11447 case ISD::BUILD_VECTOR: 11448 return DAGCombineBuildVector(N, DCI); 11449 } 11450 11451 return SDValue(); 11452 } 11453 11454 SDValue 11455 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11456 SelectionDAG &DAG, 11457 std::vector<SDNode *> *Created) const { 11458 // fold (sdiv X, pow2) 11459 EVT VT = N->getValueType(0); 11460 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11461 return SDValue(); 11462 if ((VT != MVT::i32 && VT != MVT::i64) || 11463 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11464 return SDValue(); 11465 11466 SDLoc DL(N); 11467 SDValue N0 = N->getOperand(0); 11468 11469 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11470 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11471 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11472 11473 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 11474 if (Created) 11475 Created->push_back(Op.getNode()); 11476 11477 if (IsNegPow2) { 11478 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 11479 if (Created) 11480 Created->push_back(Op.getNode()); 11481 } 11482 11483 return Op; 11484 } 11485 11486 //===----------------------------------------------------------------------===// 11487 // Inline Assembly Support 11488 //===----------------------------------------------------------------------===// 11489 11490 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11491 APInt &KnownZero, 11492 APInt &KnownOne, 11493 const SelectionDAG &DAG, 11494 unsigned Depth) const { 11495 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 11496 switch (Op.getOpcode()) { 11497 default: break; 11498 case PPCISD::LBRX: { 11499 // lhbrx is known to have the top bits cleared out. 11500 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 11501 KnownZero = 0xFFFF0000; 11502 break; 11503 } 11504 case ISD::INTRINSIC_WO_CHAIN: { 11505 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 11506 default: break; 11507 case Intrinsic::ppc_altivec_vcmpbfp_p: 11508 case Intrinsic::ppc_altivec_vcmpeqfp_p: 11509 case Intrinsic::ppc_altivec_vcmpequb_p: 11510 case Intrinsic::ppc_altivec_vcmpequh_p: 11511 case Intrinsic::ppc_altivec_vcmpequw_p: 11512 case Intrinsic::ppc_altivec_vcmpequd_p: 11513 case Intrinsic::ppc_altivec_vcmpgefp_p: 11514 case Intrinsic::ppc_altivec_vcmpgtfp_p: 11515 case Intrinsic::ppc_altivec_vcmpgtsb_p: 11516 case Intrinsic::ppc_altivec_vcmpgtsh_p: 11517 case Intrinsic::ppc_altivec_vcmpgtsw_p: 11518 case Intrinsic::ppc_altivec_vcmpgtsd_p: 11519 case Intrinsic::ppc_altivec_vcmpgtub_p: 11520 case Intrinsic::ppc_altivec_vcmpgtuh_p: 11521 case Intrinsic::ppc_altivec_vcmpgtuw_p: 11522 case Intrinsic::ppc_altivec_vcmpgtud_p: 11523 KnownZero = ~1U; // All bits but the low one are known to be zero. 11524 break; 11525 } 11526 } 11527 } 11528 } 11529 11530 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11531 switch (Subtarget.getDarwinDirective()) { 11532 default: break; 11533 case PPC::DIR_970: 11534 case PPC::DIR_PWR4: 11535 case PPC::DIR_PWR5: 11536 case PPC::DIR_PWR5X: 11537 case PPC::DIR_PWR6: 11538 case PPC::DIR_PWR6X: 11539 case PPC::DIR_PWR7: 11540 case PPC::DIR_PWR8: 11541 case PPC::DIR_PWR9: { 11542 if (!ML) 11543 break; 11544 11545 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11546 11547 // For small loops (between 5 and 8 instructions), align to a 32-byte 11548 // boundary so that the entire loop fits in one instruction-cache line. 11549 uint64_t LoopSize = 0; 11550 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 11551 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 11552 LoopSize += TII->getInstSizeInBytes(*J); 11553 if (LoopSize > 32) 11554 break; 11555 } 11556 11557 if (LoopSize > 16 && LoopSize <= 32) 11558 return 5; 11559 11560 break; 11561 } 11562 } 11563 11564 return TargetLowering::getPrefLoopAlignment(ML); 11565 } 11566 11567 /// getConstraintType - Given a constraint, return the type of 11568 /// constraint it is for this target. 11569 PPCTargetLowering::ConstraintType 11570 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 11571 if (Constraint.size() == 1) { 11572 switch (Constraint[0]) { 11573 default: break; 11574 case 'b': 11575 case 'r': 11576 case 'f': 11577 case 'd': 11578 case 'v': 11579 case 'y': 11580 return C_RegisterClass; 11581 case 'Z': 11582 // FIXME: While Z does indicate a memory constraint, it specifically 11583 // indicates an r+r address (used in conjunction with the 'y' modifier 11584 // in the replacement string). Currently, we're forcing the base 11585 // register to be r0 in the asm printer (which is interpreted as zero) 11586 // and forming the complete address in the second register. This is 11587 // suboptimal. 11588 return C_Memory; 11589 } 11590 } else if (Constraint == "wc") { // individual CR bits. 11591 return C_RegisterClass; 11592 } else if (Constraint == "wa" || Constraint == "wd" || 11593 Constraint == "wf" || Constraint == "ws") { 11594 return C_RegisterClass; // VSX registers. 11595 } 11596 return TargetLowering::getConstraintType(Constraint); 11597 } 11598 11599 /// Examine constraint type and operand type and determine a weight value. 11600 /// This object must already have been set up with the operand type 11601 /// and the current alternative constraint selected. 11602 TargetLowering::ConstraintWeight 11603 PPCTargetLowering::getSingleConstraintMatchWeight( 11604 AsmOperandInfo &info, const char *constraint) const { 11605 ConstraintWeight weight = CW_Invalid; 11606 Value *CallOperandVal = info.CallOperandVal; 11607 // If we don't have a value, we can't do a match, 11608 // but allow it at the lowest weight. 11609 if (!CallOperandVal) 11610 return CW_Default; 11611 Type *type = CallOperandVal->getType(); 11612 11613 // Look at the constraint type. 11614 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 11615 return CW_Register; // an individual CR bit. 11616 else if ((StringRef(constraint) == "wa" || 11617 StringRef(constraint) == "wd" || 11618 StringRef(constraint) == "wf") && 11619 type->isVectorTy()) 11620 return CW_Register; 11621 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 11622 return CW_Register; 11623 11624 switch (*constraint) { 11625 default: 11626 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11627 break; 11628 case 'b': 11629 if (type->isIntegerTy()) 11630 weight = CW_Register; 11631 break; 11632 case 'f': 11633 if (type->isFloatTy()) 11634 weight = CW_Register; 11635 break; 11636 case 'd': 11637 if (type->isDoubleTy()) 11638 weight = CW_Register; 11639 break; 11640 case 'v': 11641 if (type->isVectorTy()) 11642 weight = CW_Register; 11643 break; 11644 case 'y': 11645 weight = CW_Register; 11646 break; 11647 case 'Z': 11648 weight = CW_Memory; 11649 break; 11650 } 11651 return weight; 11652 } 11653 11654 std::pair<unsigned, const TargetRegisterClass *> 11655 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11656 StringRef Constraint, 11657 MVT VT) const { 11658 if (Constraint.size() == 1) { 11659 // GCC RS6000 Constraint Letters 11660 switch (Constraint[0]) { 11661 case 'b': // R1-R31 11662 if (VT == MVT::i64 && Subtarget.isPPC64()) 11663 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 11664 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 11665 case 'r': // R0-R31 11666 if (VT == MVT::i64 && Subtarget.isPPC64()) 11667 return std::make_pair(0U, &PPC::G8RCRegClass); 11668 return std::make_pair(0U, &PPC::GPRCRegClass); 11669 // 'd' and 'f' constraints are both defined to be "the floating point 11670 // registers", where one is for 32-bit and the other for 64-bit. We don't 11671 // really care overly much here so just give them all the same reg classes. 11672 case 'd': 11673 case 'f': 11674 if (VT == MVT::f32 || VT == MVT::i32) 11675 return std::make_pair(0U, &PPC::F4RCRegClass); 11676 if (VT == MVT::f64 || VT == MVT::i64) 11677 return std::make_pair(0U, &PPC::F8RCRegClass); 11678 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11679 return std::make_pair(0U, &PPC::QFRCRegClass); 11680 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11681 return std::make_pair(0U, &PPC::QSRCRegClass); 11682 break; 11683 case 'v': 11684 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11685 return std::make_pair(0U, &PPC::QFRCRegClass); 11686 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11687 return std::make_pair(0U, &PPC::QSRCRegClass); 11688 if (Subtarget.hasAltivec()) 11689 return std::make_pair(0U, &PPC::VRRCRegClass); 11690 case 'y': // crrc 11691 return std::make_pair(0U, &PPC::CRRCRegClass); 11692 } 11693 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 11694 // An individual CR bit. 11695 return std::make_pair(0U, &PPC::CRBITRCRegClass); 11696 } else if ((Constraint == "wa" || Constraint == "wd" || 11697 Constraint == "wf") && Subtarget.hasVSX()) { 11698 return std::make_pair(0U, &PPC::VSRCRegClass); 11699 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 11700 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 11701 return std::make_pair(0U, &PPC::VSSRCRegClass); 11702 else 11703 return std::make_pair(0U, &PPC::VSFRCRegClass); 11704 } 11705 11706 std::pair<unsigned, const TargetRegisterClass *> R = 11707 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11708 11709 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 11710 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 11711 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 11712 // register. 11713 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 11714 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 11715 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 11716 PPC::GPRCRegClass.contains(R.first)) 11717 return std::make_pair(TRI->getMatchingSuperReg(R.first, 11718 PPC::sub_32, &PPC::G8RCRegClass), 11719 &PPC::G8RCRegClass); 11720 11721 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 11722 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 11723 R.first = PPC::CR0; 11724 R.second = &PPC::CRRCRegClass; 11725 } 11726 11727 return R; 11728 } 11729 11730 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11731 /// vector. If it is invalid, don't add anything to Ops. 11732 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11733 std::string &Constraint, 11734 std::vector<SDValue>&Ops, 11735 SelectionDAG &DAG) const { 11736 SDValue Result; 11737 11738 // Only support length 1 constraints. 11739 if (Constraint.length() > 1) return; 11740 11741 char Letter = Constraint[0]; 11742 switch (Letter) { 11743 default: break; 11744 case 'I': 11745 case 'J': 11746 case 'K': 11747 case 'L': 11748 case 'M': 11749 case 'N': 11750 case 'O': 11751 case 'P': { 11752 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11753 if (!CST) return; // Must be an immediate to match. 11754 SDLoc dl(Op); 11755 int64_t Value = CST->getSExtValue(); 11756 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11757 // numbers are printed as such. 11758 switch (Letter) { 11759 default: llvm_unreachable("Unknown constraint letter!"); 11760 case 'I': // "I" is a signed 16-bit constant. 11761 if (isInt<16>(Value)) 11762 Result = DAG.getTargetConstant(Value, dl, TCVT); 11763 break; 11764 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11765 if (isShiftedUInt<16, 16>(Value)) 11766 Result = DAG.getTargetConstant(Value, dl, TCVT); 11767 break; 11768 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11769 if (isShiftedInt<16, 16>(Value)) 11770 Result = DAG.getTargetConstant(Value, dl, TCVT); 11771 break; 11772 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11773 if (isUInt<16>(Value)) 11774 Result = DAG.getTargetConstant(Value, dl, TCVT); 11775 break; 11776 case 'M': // "M" is a constant that is greater than 31. 11777 if (Value > 31) 11778 Result = DAG.getTargetConstant(Value, dl, TCVT); 11779 break; 11780 case 'N': // "N" is a positive constant that is an exact power of two. 11781 if (Value > 0 && isPowerOf2_64(Value)) 11782 Result = DAG.getTargetConstant(Value, dl, TCVT); 11783 break; 11784 case 'O': // "O" is the constant zero. 11785 if (Value == 0) 11786 Result = DAG.getTargetConstant(Value, dl, TCVT); 11787 break; 11788 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11789 if (isInt<16>(-Value)) 11790 Result = DAG.getTargetConstant(Value, dl, TCVT); 11791 break; 11792 } 11793 break; 11794 } 11795 } 11796 11797 if (Result.getNode()) { 11798 Ops.push_back(Result); 11799 return; 11800 } 11801 11802 // Handle standard constraint letters. 11803 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11804 } 11805 11806 // isLegalAddressingMode - Return true if the addressing mode represented 11807 // by AM is legal for this target, for a load/store of the specified type. 11808 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11809 const AddrMode &AM, Type *Ty, 11810 unsigned AS) const { 11811 // PPC does not allow r+i addressing modes for vectors! 11812 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11813 return false; 11814 11815 // PPC allows a sign-extended 16-bit immediate field. 11816 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11817 return false; 11818 11819 // No global is ever allowed as a base. 11820 if (AM.BaseGV) 11821 return false; 11822 11823 // PPC only support r+r, 11824 switch (AM.Scale) { 11825 case 0: // "r+i" or just "i", depending on HasBaseReg. 11826 break; 11827 case 1: 11828 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11829 return false; 11830 // Otherwise we have r+r or r+i. 11831 break; 11832 case 2: 11833 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11834 return false; 11835 // Allow 2*r as r+r. 11836 break; 11837 default: 11838 // No other scales are supported. 11839 return false; 11840 } 11841 11842 return true; 11843 } 11844 11845 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11846 SelectionDAG &DAG) const { 11847 MachineFunction &MF = DAG.getMachineFunction(); 11848 MachineFrameInfo &MFI = MF.getFrameInfo(); 11849 MFI.setReturnAddressIsTaken(true); 11850 11851 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11852 return SDValue(); 11853 11854 SDLoc dl(Op); 11855 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11856 11857 // Make sure the function does not optimize away the store of the RA to 11858 // the stack. 11859 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11860 FuncInfo->setLRStoreRequired(); 11861 bool isPPC64 = Subtarget.isPPC64(); 11862 auto PtrVT = getPointerTy(MF.getDataLayout()); 11863 11864 if (Depth > 0) { 11865 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11866 SDValue Offset = 11867 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11868 isPPC64 ? MVT::i64 : MVT::i32); 11869 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11870 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11871 MachinePointerInfo()); 11872 } 11873 11874 // Just load the return address off the stack. 11875 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11876 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11877 MachinePointerInfo()); 11878 } 11879 11880 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11881 SelectionDAG &DAG) const { 11882 SDLoc dl(Op); 11883 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11884 11885 MachineFunction &MF = DAG.getMachineFunction(); 11886 MachineFrameInfo &MFI = MF.getFrameInfo(); 11887 MFI.setFrameAddressIsTaken(true); 11888 11889 EVT PtrVT = getPointerTy(MF.getDataLayout()); 11890 bool isPPC64 = PtrVT == MVT::i64; 11891 11892 // Naked functions never have a frame pointer, and so we use r1. For all 11893 // other functions, this decision must be delayed until during PEI. 11894 unsigned FrameReg; 11895 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11896 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11897 else 11898 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11899 11900 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11901 PtrVT); 11902 while (Depth--) 11903 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11904 FrameAddr, MachinePointerInfo()); 11905 return FrameAddr; 11906 } 11907 11908 // FIXME? Maybe this could be a TableGen attribute on some registers and 11909 // this table could be generated automatically from RegInfo. 11910 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11911 SelectionDAG &DAG) const { 11912 bool isPPC64 = Subtarget.isPPC64(); 11913 bool isDarwinABI = Subtarget.isDarwinABI(); 11914 11915 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11916 (!isPPC64 && VT != MVT::i32)) 11917 report_fatal_error("Invalid register global variable type"); 11918 11919 bool is64Bit = isPPC64 && VT == MVT::i64; 11920 unsigned Reg = StringSwitch<unsigned>(RegName) 11921 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11922 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11923 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11924 (is64Bit ? PPC::X13 : PPC::R13)) 11925 .Default(0); 11926 11927 if (Reg) 11928 return Reg; 11929 report_fatal_error("Invalid register name global variable"); 11930 } 11931 11932 bool 11933 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11934 // The PowerPC target isn't yet aware of offsets. 11935 return false; 11936 } 11937 11938 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11939 const CallInst &I, 11940 unsigned Intrinsic) const { 11941 11942 switch (Intrinsic) { 11943 case Intrinsic::ppc_qpx_qvlfd: 11944 case Intrinsic::ppc_qpx_qvlfs: 11945 case Intrinsic::ppc_qpx_qvlfcd: 11946 case Intrinsic::ppc_qpx_qvlfcs: 11947 case Intrinsic::ppc_qpx_qvlfiwa: 11948 case Intrinsic::ppc_qpx_qvlfiwz: 11949 case Intrinsic::ppc_altivec_lvx: 11950 case Intrinsic::ppc_altivec_lvxl: 11951 case Intrinsic::ppc_altivec_lvebx: 11952 case Intrinsic::ppc_altivec_lvehx: 11953 case Intrinsic::ppc_altivec_lvewx: 11954 case Intrinsic::ppc_vsx_lxvd2x: 11955 case Intrinsic::ppc_vsx_lxvw4x: { 11956 EVT VT; 11957 switch (Intrinsic) { 11958 case Intrinsic::ppc_altivec_lvebx: 11959 VT = MVT::i8; 11960 break; 11961 case Intrinsic::ppc_altivec_lvehx: 11962 VT = MVT::i16; 11963 break; 11964 case Intrinsic::ppc_altivec_lvewx: 11965 VT = MVT::i32; 11966 break; 11967 case Intrinsic::ppc_vsx_lxvd2x: 11968 VT = MVT::v2f64; 11969 break; 11970 case Intrinsic::ppc_qpx_qvlfd: 11971 VT = MVT::v4f64; 11972 break; 11973 case Intrinsic::ppc_qpx_qvlfs: 11974 VT = MVT::v4f32; 11975 break; 11976 case Intrinsic::ppc_qpx_qvlfcd: 11977 VT = MVT::v2f64; 11978 break; 11979 case Intrinsic::ppc_qpx_qvlfcs: 11980 VT = MVT::v2f32; 11981 break; 11982 default: 11983 VT = MVT::v4i32; 11984 break; 11985 } 11986 11987 Info.opc = ISD::INTRINSIC_W_CHAIN; 11988 Info.memVT = VT; 11989 Info.ptrVal = I.getArgOperand(0); 11990 Info.offset = -VT.getStoreSize()+1; 11991 Info.size = 2*VT.getStoreSize()-1; 11992 Info.align = 1; 11993 Info.vol = false; 11994 Info.readMem = true; 11995 Info.writeMem = false; 11996 return true; 11997 } 11998 case Intrinsic::ppc_qpx_qvlfda: 11999 case Intrinsic::ppc_qpx_qvlfsa: 12000 case Intrinsic::ppc_qpx_qvlfcda: 12001 case Intrinsic::ppc_qpx_qvlfcsa: 12002 case Intrinsic::ppc_qpx_qvlfiwaa: 12003 case Intrinsic::ppc_qpx_qvlfiwza: { 12004 EVT VT; 12005 switch (Intrinsic) { 12006 case Intrinsic::ppc_qpx_qvlfda: 12007 VT = MVT::v4f64; 12008 break; 12009 case Intrinsic::ppc_qpx_qvlfsa: 12010 VT = MVT::v4f32; 12011 break; 12012 case Intrinsic::ppc_qpx_qvlfcda: 12013 VT = MVT::v2f64; 12014 break; 12015 case Intrinsic::ppc_qpx_qvlfcsa: 12016 VT = MVT::v2f32; 12017 break; 12018 default: 12019 VT = MVT::v4i32; 12020 break; 12021 } 12022 12023 Info.opc = ISD::INTRINSIC_W_CHAIN; 12024 Info.memVT = VT; 12025 Info.ptrVal = I.getArgOperand(0); 12026 Info.offset = 0; 12027 Info.size = VT.getStoreSize(); 12028 Info.align = 1; 12029 Info.vol = false; 12030 Info.readMem = true; 12031 Info.writeMem = false; 12032 return true; 12033 } 12034 case Intrinsic::ppc_qpx_qvstfd: 12035 case Intrinsic::ppc_qpx_qvstfs: 12036 case Intrinsic::ppc_qpx_qvstfcd: 12037 case Intrinsic::ppc_qpx_qvstfcs: 12038 case Intrinsic::ppc_qpx_qvstfiw: 12039 case Intrinsic::ppc_altivec_stvx: 12040 case Intrinsic::ppc_altivec_stvxl: 12041 case Intrinsic::ppc_altivec_stvebx: 12042 case Intrinsic::ppc_altivec_stvehx: 12043 case Intrinsic::ppc_altivec_stvewx: 12044 case Intrinsic::ppc_vsx_stxvd2x: 12045 case Intrinsic::ppc_vsx_stxvw4x: { 12046 EVT VT; 12047 switch (Intrinsic) { 12048 case Intrinsic::ppc_altivec_stvebx: 12049 VT = MVT::i8; 12050 break; 12051 case Intrinsic::ppc_altivec_stvehx: 12052 VT = MVT::i16; 12053 break; 12054 case Intrinsic::ppc_altivec_stvewx: 12055 VT = MVT::i32; 12056 break; 12057 case Intrinsic::ppc_vsx_stxvd2x: 12058 VT = MVT::v2f64; 12059 break; 12060 case Intrinsic::ppc_qpx_qvstfd: 12061 VT = MVT::v4f64; 12062 break; 12063 case Intrinsic::ppc_qpx_qvstfs: 12064 VT = MVT::v4f32; 12065 break; 12066 case Intrinsic::ppc_qpx_qvstfcd: 12067 VT = MVT::v2f64; 12068 break; 12069 case Intrinsic::ppc_qpx_qvstfcs: 12070 VT = MVT::v2f32; 12071 break; 12072 default: 12073 VT = MVT::v4i32; 12074 break; 12075 } 12076 12077 Info.opc = ISD::INTRINSIC_VOID; 12078 Info.memVT = VT; 12079 Info.ptrVal = I.getArgOperand(1); 12080 Info.offset = -VT.getStoreSize()+1; 12081 Info.size = 2*VT.getStoreSize()-1; 12082 Info.align = 1; 12083 Info.vol = false; 12084 Info.readMem = false; 12085 Info.writeMem = true; 12086 return true; 12087 } 12088 case Intrinsic::ppc_qpx_qvstfda: 12089 case Intrinsic::ppc_qpx_qvstfsa: 12090 case Intrinsic::ppc_qpx_qvstfcda: 12091 case Intrinsic::ppc_qpx_qvstfcsa: 12092 case Intrinsic::ppc_qpx_qvstfiwa: { 12093 EVT VT; 12094 switch (Intrinsic) { 12095 case Intrinsic::ppc_qpx_qvstfda: 12096 VT = MVT::v4f64; 12097 break; 12098 case Intrinsic::ppc_qpx_qvstfsa: 12099 VT = MVT::v4f32; 12100 break; 12101 case Intrinsic::ppc_qpx_qvstfcda: 12102 VT = MVT::v2f64; 12103 break; 12104 case Intrinsic::ppc_qpx_qvstfcsa: 12105 VT = MVT::v2f32; 12106 break; 12107 default: 12108 VT = MVT::v4i32; 12109 break; 12110 } 12111 12112 Info.opc = ISD::INTRINSIC_VOID; 12113 Info.memVT = VT; 12114 Info.ptrVal = I.getArgOperand(1); 12115 Info.offset = 0; 12116 Info.size = VT.getStoreSize(); 12117 Info.align = 1; 12118 Info.vol = false; 12119 Info.readMem = false; 12120 Info.writeMem = true; 12121 return true; 12122 } 12123 default: 12124 break; 12125 } 12126 12127 return false; 12128 } 12129 12130 /// getOptimalMemOpType - Returns the target specific optimal type for load 12131 /// and store operations as a result of memset, memcpy, and memmove 12132 /// lowering. If DstAlign is zero that means it's safe to destination 12133 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 12134 /// means there isn't a need to check it against alignment requirement, 12135 /// probably because the source does not need to be loaded. If 'IsMemset' is 12136 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 12137 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 12138 /// source is constant so it does not need to be loaded. 12139 /// It returns EVT::Other if the type should be determined using generic 12140 /// target-independent logic. 12141 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 12142 unsigned DstAlign, unsigned SrcAlign, 12143 bool IsMemset, bool ZeroMemset, 12144 bool MemcpyStrSrc, 12145 MachineFunction &MF) const { 12146 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 12147 const Function *F = MF.getFunction(); 12148 // When expanding a memset, require at least two QPX instructions to cover 12149 // the cost of loading the value to be stored from the constant pool. 12150 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 12151 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 12152 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 12153 return MVT::v4f64; 12154 } 12155 12156 // We should use Altivec/VSX loads and stores when available. For unaligned 12157 // addresses, unaligned VSX loads are only fast starting with the P8. 12158 if (Subtarget.hasAltivec() && Size >= 16 && 12159 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 12160 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 12161 return MVT::v4i32; 12162 } 12163 12164 if (Subtarget.isPPC64()) { 12165 return MVT::i64; 12166 } 12167 12168 return MVT::i32; 12169 } 12170 12171 /// \brief Returns true if it is beneficial to convert a load of a constant 12172 /// to just the constant itself. 12173 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 12174 Type *Ty) const { 12175 assert(Ty->isIntegerTy()); 12176 12177 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 12178 return !(BitSize == 0 || BitSize > 64); 12179 } 12180 12181 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 12182 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 12183 return false; 12184 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 12185 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 12186 return NumBits1 == 64 && NumBits2 == 32; 12187 } 12188 12189 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 12190 if (!VT1.isInteger() || !VT2.isInteger()) 12191 return false; 12192 unsigned NumBits1 = VT1.getSizeInBits(); 12193 unsigned NumBits2 = VT2.getSizeInBits(); 12194 return NumBits1 == 64 && NumBits2 == 32; 12195 } 12196 12197 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 12198 // Generally speaking, zexts are not free, but they are free when they can be 12199 // folded with other operations. 12200 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 12201 EVT MemVT = LD->getMemoryVT(); 12202 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 12203 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 12204 (LD->getExtensionType() == ISD::NON_EXTLOAD || 12205 LD->getExtensionType() == ISD::ZEXTLOAD)) 12206 return true; 12207 } 12208 12209 // FIXME: Add other cases... 12210 // - 32-bit shifts with a zext to i64 12211 // - zext after ctlz, bswap, etc. 12212 // - zext after and by a constant mask 12213 12214 return TargetLowering::isZExtFree(Val, VT2); 12215 } 12216 12217 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 12218 assert(VT.isFloatingPoint()); 12219 return true; 12220 } 12221 12222 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 12223 return isInt<16>(Imm) || isUInt<16>(Imm); 12224 } 12225 12226 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 12227 return isInt<16>(Imm) || isUInt<16>(Imm); 12228 } 12229 12230 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 12231 unsigned, 12232 unsigned, 12233 bool *Fast) const { 12234 if (DisablePPCUnaligned) 12235 return false; 12236 12237 // PowerPC supports unaligned memory access for simple non-vector types. 12238 // Although accessing unaligned addresses is not as efficient as accessing 12239 // aligned addresses, it is generally more efficient than manual expansion, 12240 // and generally only traps for software emulation when crossing page 12241 // boundaries. 12242 12243 if (!VT.isSimple()) 12244 return false; 12245 12246 if (VT.getSimpleVT().isVector()) { 12247 if (Subtarget.hasVSX()) { 12248 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 12249 VT != MVT::v4f32 && VT != MVT::v4i32) 12250 return false; 12251 } else { 12252 return false; 12253 } 12254 } 12255 12256 if (VT == MVT::ppcf128) 12257 return false; 12258 12259 if (Fast) 12260 *Fast = true; 12261 12262 return true; 12263 } 12264 12265 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 12266 VT = VT.getScalarType(); 12267 12268 if (!VT.isSimple()) 12269 return false; 12270 12271 switch (VT.getSimpleVT().SimpleTy) { 12272 case MVT::f32: 12273 case MVT::f64: 12274 return true; 12275 default: 12276 break; 12277 } 12278 12279 return false; 12280 } 12281 12282 const MCPhysReg * 12283 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 12284 // LR is a callee-save register, but we must treat it as clobbered by any call 12285 // site. Hence we include LR in the scratch registers, which are in turn added 12286 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 12287 // to CTR, which is used by any indirect call. 12288 static const MCPhysReg ScratchRegs[] = { 12289 PPC::X12, PPC::LR8, PPC::CTR8, 0 12290 }; 12291 12292 return ScratchRegs; 12293 } 12294 12295 unsigned PPCTargetLowering::getExceptionPointerRegister( 12296 const Constant *PersonalityFn) const { 12297 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 12298 } 12299 12300 unsigned PPCTargetLowering::getExceptionSelectorRegister( 12301 const Constant *PersonalityFn) const { 12302 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 12303 } 12304 12305 bool 12306 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 12307 EVT VT , unsigned DefinedValues) const { 12308 if (VT == MVT::v2i64) 12309 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 12310 12311 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 12312 return true; 12313 12314 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 12315 } 12316 12317 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 12318 if (DisableILPPref || Subtarget.enableMachineScheduler()) 12319 return TargetLowering::getSchedulingPreference(N); 12320 12321 return Sched::ILP; 12322 } 12323 12324 // Create a fast isel object. 12325 FastISel * 12326 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 12327 const TargetLibraryInfo *LibInfo) const { 12328 return PPC::createFastISel(FuncInfo, LibInfo); 12329 } 12330 12331 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 12332 if (Subtarget.isDarwinABI()) return; 12333 if (!Subtarget.isPPC64()) return; 12334 12335 // Update IsSplitCSR in PPCFunctionInfo 12336 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 12337 PFI->setIsSplitCSR(true); 12338 } 12339 12340 void PPCTargetLowering::insertCopiesSplitCSR( 12341 MachineBasicBlock *Entry, 12342 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 12343 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12344 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 12345 if (!IStart) 12346 return; 12347 12348 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12349 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 12350 MachineBasicBlock::iterator MBBI = Entry->begin(); 12351 for (const MCPhysReg *I = IStart; *I; ++I) { 12352 const TargetRegisterClass *RC = nullptr; 12353 if (PPC::G8RCRegClass.contains(*I)) 12354 RC = &PPC::G8RCRegClass; 12355 else if (PPC::F8RCRegClass.contains(*I)) 12356 RC = &PPC::F8RCRegClass; 12357 else if (PPC::CRRCRegClass.contains(*I)) 12358 RC = &PPC::CRRCRegClass; 12359 else if (PPC::VRRCRegClass.contains(*I)) 12360 RC = &PPC::VRRCRegClass; 12361 else 12362 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 12363 12364 unsigned NewVR = MRI->createVirtualRegister(RC); 12365 // Create copy from CSR to a virtual register. 12366 // FIXME: this currently does not emit CFI pseudo-instructions, it works 12367 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 12368 // nounwind. If we want to generalize this later, we may need to emit 12369 // CFI pseudo-instructions. 12370 assert(Entry->getParent()->getFunction()->hasFnAttribute( 12371 Attribute::NoUnwind) && 12372 "Function should be nounwind in insertCopiesSplitCSR!"); 12373 Entry->addLiveIn(*I); 12374 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 12375 .addReg(*I); 12376 12377 // Insert the copy-back instructions right before the terminator 12378 for (auto *Exit : Exits) 12379 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 12380 TII->get(TargetOpcode::COPY), *I) 12381 .addReg(NewVR); 12382 } 12383 } 12384 12385 // Override to enable LOAD_STACK_GUARD lowering on Linux. 12386 bool PPCTargetLowering::useLoadStackGuardNode() const { 12387 if (!Subtarget.isTargetLinux()) 12388 return TargetLowering::useLoadStackGuardNode(); 12389 return true; 12390 } 12391 12392 // Override to disable global variable loading on Linux. 12393 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 12394 if (!Subtarget.isTargetLinux()) 12395 return TargetLowering::insertSSPDeclarations(M); 12396 } 12397