1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 static cl::opt<bool> 130 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 131 cl::desc("disable vector permute decomposition"), 132 cl::init(true), cl::Hidden); 133 134 STATISTIC(NumTailCalls, "Number of tail calls"); 135 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 138 139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 140 141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 142 143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 144 145 // FIXME: Remove this once the bug has been fixed! 146 extern cl::opt<bool> ANDIGlueBug; 147 148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 149 const PPCSubtarget &STI) 150 : TargetLowering(TM), Subtarget(STI) { 151 // Initialize map that relates the PPC addressing modes to the computed flags 152 // of a load/store instruction. The map is used to determine the optimal 153 // addressing mode when selecting load and stores. 154 initializeAddrModeMap(); 155 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 156 // arguments are at least 4/8 bytes aligned. 157 bool isPPC64 = Subtarget.isPPC64(); 158 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 159 160 // Set up the register classes. 161 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 162 if (!useSoftFloat()) { 163 if (hasSPE()) { 164 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 165 // EFPU2 APU only supports f32 166 if (!Subtarget.hasEFPU2()) 167 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 168 } else { 169 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 170 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 171 } 172 } 173 174 // Match BITREVERSE to customized fast code sequence in the td file. 175 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 176 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 177 178 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 179 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 180 181 // Custom lower inline assembly to check for special registers. 182 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 183 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 184 185 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 186 for (MVT VT : MVT::integer_valuetypes()) { 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 189 } 190 191 if (Subtarget.isISA3_0()) { 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 193 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 194 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 195 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 196 } else { 197 // No extending loads from f16 or HW conversions back and forth. 198 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 199 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 200 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 201 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 202 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 203 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 204 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 205 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 206 } 207 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 // PowerPC has pre-inc load and store's. 211 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 216 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 217 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 221 if (!Subtarget.hasSPE()) { 222 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 223 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 224 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 226 } 227 228 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 229 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 230 for (MVT VT : ScalarIntVTs) { 231 setOperationAction(ISD::ADDC, VT, Legal); 232 setOperationAction(ISD::ADDE, VT, Legal); 233 setOperationAction(ISD::SUBC, VT, Legal); 234 setOperationAction(ISD::SUBE, VT, Legal); 235 } 236 237 if (Subtarget.useCRBits()) { 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 240 if (isPPC64 || Subtarget.hasFPCVT()) { 241 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 245 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 246 isPPC64 ? MVT::i64 : MVT::i32); 247 248 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 249 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 252 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 253 isPPC64 ? MVT::i64 : MVT::i32); 254 255 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 259 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 260 isPPC64 ? MVT::i64 : MVT::i32); 261 262 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 263 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 264 isPPC64 ? MVT::i64 : MVT::i32); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 266 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 267 isPPC64 ? MVT::i64 : MVT::i32); 268 } else { 269 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 271 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 273 } 274 275 // PowerPC does not support direct load/store of condition registers. 276 setOperationAction(ISD::LOAD, MVT::i1, Custom); 277 setOperationAction(ISD::STORE, MVT::i1, Custom); 278 279 // FIXME: Remove this once the ANDI glue bug is fixed: 280 if (ANDIGlueBug) 281 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 282 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setTruncStoreAction(VT, MVT::i1, Expand); 287 } 288 289 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 290 } 291 292 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 293 // PPC (the libcall is not available). 294 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 295 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 296 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 298 299 // We do not currently implement these libm ops for PowerPC. 300 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 301 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 302 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 306 307 // PowerPC has no SREM/UREM instructions unless we are on P9 308 // On P9 we may use a hardware instruction to compute the remainder. 309 // When the result of both the remainder and the division is required it is 310 // more efficient to compute the remainder from the result of the division 311 // rather than use the remainder instruction. The instructions are legalized 312 // directly because the DivRemPairsPass performs the transformation at the IR 313 // level. 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::SREM, MVT::i32, Legal); 316 setOperationAction(ISD::UREM, MVT::i32, Legal); 317 setOperationAction(ISD::SREM, MVT::i64, Legal); 318 setOperationAction(ISD::UREM, MVT::i64, Legal); 319 } else { 320 setOperationAction(ISD::SREM, MVT::i32, Expand); 321 setOperationAction(ISD::UREM, MVT::i32, Expand); 322 setOperationAction(ISD::SREM, MVT::i64, Expand); 323 setOperationAction(ISD::UREM, MVT::i64, Expand); 324 } 325 326 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 327 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 328 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 329 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 332 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 335 336 // Handle constrained floating-point operations of scalar. 337 // TODO: Handle SPE specific operation. 338 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 343 344 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 345 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 346 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 348 349 if (!Subtarget.hasSPE()) { 350 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasVSX()) { 355 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFSQRT()) { 360 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 362 } 363 364 if (Subtarget.hasFPRND()) { 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 369 370 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 371 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 372 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 374 } 375 376 // We don't support sin/cos/sqrt/fmod/pow 377 setOperationAction(ISD::FSIN , MVT::f64, Expand); 378 setOperationAction(ISD::FCOS , MVT::f64, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 380 setOperationAction(ISD::FREM , MVT::f64, Expand); 381 setOperationAction(ISD::FPOW , MVT::f64, Expand); 382 setOperationAction(ISD::FSIN , MVT::f32, Expand); 383 setOperationAction(ISD::FCOS , MVT::f32, Expand); 384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 385 setOperationAction(ISD::FREM , MVT::f32, Expand); 386 setOperationAction(ISD::FPOW , MVT::f32, Expand); 387 388 // MASS transformation for LLVM intrinsics with replicating fast-math flag 389 // to be consistent to PPCGenScalarMASSEntries pass 390 if (TM.getOptLevel() == CodeGenOpt::Aggressive && 391 TM.Options.PPCGenScalarMASSEntries) { 392 setOperationAction(ISD::FSIN , MVT::f64, Custom); 393 setOperationAction(ISD::FCOS , MVT::f64, Custom); 394 setOperationAction(ISD::FPOW , MVT::f64, Custom); 395 setOperationAction(ISD::FLOG, MVT::f64, Custom); 396 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 397 setOperationAction(ISD::FEXP, MVT::f64, Custom); 398 setOperationAction(ISD::FSIN , MVT::f32, Custom); 399 setOperationAction(ISD::FCOS , MVT::f32, Custom); 400 setOperationAction(ISD::FPOW , MVT::f32, Custom); 401 setOperationAction(ISD::FLOG, MVT::f32, Custom); 402 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 403 setOperationAction(ISD::FEXP, MVT::f32, Custom); 404 } 405 406 if (Subtarget.hasSPE()) { 407 setOperationAction(ISD::FMA , MVT::f64, Expand); 408 setOperationAction(ISD::FMA , MVT::f32, Expand); 409 } else { 410 setOperationAction(ISD::FMA , MVT::f64, Legal); 411 setOperationAction(ISD::FMA , MVT::f32, Legal); 412 } 413 414 if (Subtarget.hasSPE()) 415 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 416 417 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 418 419 // If we're enabling GP optimizations, use hardware square root 420 if (!Subtarget.hasFSQRT() && 421 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 422 Subtarget.hasFRE())) 423 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 424 425 if (!Subtarget.hasFSQRT() && 426 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 427 Subtarget.hasFRES())) 428 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 429 430 if (Subtarget.hasFCPSGN()) { 431 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 432 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 433 } else { 434 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 435 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 436 } 437 438 if (Subtarget.hasFPRND()) { 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 441 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 442 setOperationAction(ISD::FROUND, MVT::f64, Legal); 443 444 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 445 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 446 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 447 setOperationAction(ISD::FROUND, MVT::f32, Legal); 448 } 449 450 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 451 // to speed up scalar BSWAP64. 452 // CTPOP or CTTZ were introduced in P8/P9 respectively 453 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 454 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 455 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 456 else 457 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 458 if (Subtarget.isISA3_0()) { 459 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 460 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 461 } else { 462 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 463 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 464 } 465 466 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 467 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 468 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 469 } else { 470 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 471 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 472 } 473 474 // PowerPC does not have ROTR 475 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 476 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 477 478 if (!Subtarget.useCRBits()) { 479 // PowerPC does not have Select 480 setOperationAction(ISD::SELECT, MVT::i32, Expand); 481 setOperationAction(ISD::SELECT, MVT::i64, Expand); 482 setOperationAction(ISD::SELECT, MVT::f32, Expand); 483 setOperationAction(ISD::SELECT, MVT::f64, Expand); 484 } 485 486 // PowerPC wants to turn select_cc of FP into fsel when possible. 487 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 488 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 489 490 // PowerPC wants to optimize integer setcc a bit 491 if (!Subtarget.useCRBits()) 492 setOperationAction(ISD::SETCC, MVT::i32, Custom); 493 494 if (Subtarget.hasFPU()) { 495 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 496 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 497 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 498 499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 500 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 501 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 502 } 503 504 // PowerPC does not have BRCOND which requires SetCC 505 if (!Subtarget.useCRBits()) 506 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 507 508 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 509 510 if (Subtarget.hasSPE()) { 511 // SPE has built-in conversions 512 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 513 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 514 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 518 519 // SPE supports signaling compare of f32/f64. 520 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 521 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 522 } else { 523 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 524 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 527 // PowerPC does not have [U|S]INT_TO_FP 528 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 529 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 532 } 533 534 if (Subtarget.hasDirectMove() && isPPC64) { 535 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 536 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 537 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 538 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 539 if (TM.Options.UnsafeFPMath) { 540 setOperationAction(ISD::LRINT, MVT::f64, Legal); 541 setOperationAction(ISD::LRINT, MVT::f32, Legal); 542 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 543 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 544 setOperationAction(ISD::LROUND, MVT::f64, Legal); 545 setOperationAction(ISD::LROUND, MVT::f32, Legal); 546 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 547 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 548 } 549 } else { 550 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 551 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 552 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 553 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 554 } 555 556 // We cannot sextinreg(i1). Expand to shifts. 557 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 558 559 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 560 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 561 // support continuation, user-level threading, and etc.. As a result, no 562 // other SjLj exception interfaces are implemented and please don't build 563 // your own exception handling based on them. 564 // LLVM/Clang supports zero-cost DWARF exception handling. 565 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 566 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 567 568 // We want to legalize GlobalAddress and ConstantPool nodes into the 569 // appropriate instructions to materialize the address. 570 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 571 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 572 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 573 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 574 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 575 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 576 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 577 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 578 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 579 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 580 581 // TRAP is legal. 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // TRAMPOLINE is custom lowered. 585 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 586 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 587 588 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 589 setOperationAction(ISD::VASTART , MVT::Other, Custom); 590 591 if (Subtarget.is64BitELFABI()) { 592 // VAARG always uses double-word chunks, so promote anything smaller. 593 setOperationAction(ISD::VAARG, MVT::i1, Promote); 594 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 595 setOperationAction(ISD::VAARG, MVT::i8, Promote); 596 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 597 setOperationAction(ISD::VAARG, MVT::i16, Promote); 598 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 599 setOperationAction(ISD::VAARG, MVT::i32, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::Other, Expand); 602 } else if (Subtarget.is32BitELFABI()) { 603 // VAARG is custom lowered with the 32-bit SVR4 ABI. 604 setOperationAction(ISD::VAARG, MVT::Other, Custom); 605 setOperationAction(ISD::VAARG, MVT::i64, Custom); 606 } else 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 609 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 610 if (Subtarget.is32BitELFABI()) 611 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 612 else 613 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 614 615 // Use the default implementation. 616 setOperationAction(ISD::VAEND , MVT::Other, Expand); 617 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 618 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 619 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 620 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 621 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 622 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 623 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 624 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 625 626 // We want to custom lower some of our intrinsics. 627 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 628 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 629 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 630 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 631 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 632 633 // To handle counter-based loop conditions. 634 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 635 636 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 637 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 638 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 639 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 640 641 // Comparisons that require checking two conditions. 642 if (Subtarget.hasSPE()) { 643 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 644 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 645 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 646 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 647 } 648 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 649 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 650 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 651 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 652 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 653 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 654 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 658 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 659 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 660 661 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 662 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 663 664 if (Subtarget.has64BitSupport()) { 665 // They also have instructions for converting between i64 and fp. 666 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 668 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 669 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 670 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 671 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 672 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 674 // This is just the low 32 bits of a (signed) fp->i64 conversion. 675 // We cannot do this with Promote because i64 is not a legal type. 676 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 678 679 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 680 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 } 683 } else { 684 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 685 if (Subtarget.hasSPE()) { 686 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 687 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 688 } else { 689 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 690 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 691 } 692 } 693 694 // With the instructions enabled under FPCVT, we can do everything. 695 if (Subtarget.hasFPCVT()) { 696 if (Subtarget.has64BitSupport()) { 697 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 698 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 699 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 700 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 701 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 702 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 703 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 704 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 705 } 706 707 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 708 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 709 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 710 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 711 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 712 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 713 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 714 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 715 } 716 717 if (Subtarget.use64BitRegs()) { 718 // 64-bit PowerPC implementations can support i64 types directly 719 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 720 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 721 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 722 // 64-bit PowerPC wants to expand i128 shifts itself. 723 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 724 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 725 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 726 } else { 727 // 32-bit PowerPC wants to expand i64 shifts itself. 728 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 729 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 730 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 731 } 732 733 // PowerPC has better expansions for funnel shifts than the generic 734 // TargetLowering::expandFunnelShift. 735 if (Subtarget.has64BitSupport()) { 736 setOperationAction(ISD::FSHL, MVT::i64, Custom); 737 setOperationAction(ISD::FSHR, MVT::i64, Custom); 738 } 739 setOperationAction(ISD::FSHL, MVT::i32, Custom); 740 setOperationAction(ISD::FSHR, MVT::i32, Custom); 741 742 if (Subtarget.hasVSX()) { 743 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 744 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 745 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 746 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 747 } 748 749 if (Subtarget.hasAltivec()) { 750 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 751 setOperationAction(ISD::SADDSAT, VT, Legal); 752 setOperationAction(ISD::SSUBSAT, VT, Legal); 753 setOperationAction(ISD::UADDSAT, VT, Legal); 754 setOperationAction(ISD::USUBSAT, VT, Legal); 755 } 756 // First set operation action for all vector types to expand. Then we 757 // will selectively turn on ones that can be effectively codegen'd. 758 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 759 // add/sub are legal for all supported vector VT's. 760 setOperationAction(ISD::ADD, VT, Legal); 761 setOperationAction(ISD::SUB, VT, Legal); 762 763 // For v2i64, these are only valid with P8Vector. This is corrected after 764 // the loop. 765 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 766 setOperationAction(ISD::SMAX, VT, Legal); 767 setOperationAction(ISD::SMIN, VT, Legal); 768 setOperationAction(ISD::UMAX, VT, Legal); 769 setOperationAction(ISD::UMIN, VT, Legal); 770 } 771 else { 772 setOperationAction(ISD::SMAX, VT, Expand); 773 setOperationAction(ISD::SMIN, VT, Expand); 774 setOperationAction(ISD::UMAX, VT, Expand); 775 setOperationAction(ISD::UMIN, VT, Expand); 776 } 777 778 if (Subtarget.hasVSX()) { 779 setOperationAction(ISD::FMAXNUM, VT, Legal); 780 setOperationAction(ISD::FMINNUM, VT, Legal); 781 } 782 783 // Vector instructions introduced in P8 784 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 785 setOperationAction(ISD::CTPOP, VT, Legal); 786 setOperationAction(ISD::CTLZ, VT, Legal); 787 } 788 else { 789 setOperationAction(ISD::CTPOP, VT, Expand); 790 setOperationAction(ISD::CTLZ, VT, Expand); 791 } 792 793 // Vector instructions introduced in P9 794 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 795 setOperationAction(ISD::CTTZ, VT, Legal); 796 else 797 setOperationAction(ISD::CTTZ, VT, Expand); 798 799 // We promote all shuffles to v16i8. 800 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 801 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 802 803 // We promote all non-typed operations to v4i32. 804 setOperationAction(ISD::AND , VT, Promote); 805 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 806 setOperationAction(ISD::OR , VT, Promote); 807 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 808 setOperationAction(ISD::XOR , VT, Promote); 809 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 810 setOperationAction(ISD::LOAD , VT, Promote); 811 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 812 setOperationAction(ISD::SELECT, VT, Promote); 813 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 814 setOperationAction(ISD::VSELECT, VT, Legal); 815 setOperationAction(ISD::SELECT_CC, VT, Promote); 816 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 817 setOperationAction(ISD::STORE, VT, Promote); 818 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 819 820 // No other operations are legal. 821 setOperationAction(ISD::MUL , VT, Expand); 822 setOperationAction(ISD::SDIV, VT, Expand); 823 setOperationAction(ISD::SREM, VT, Expand); 824 setOperationAction(ISD::UDIV, VT, Expand); 825 setOperationAction(ISD::UREM, VT, Expand); 826 setOperationAction(ISD::FDIV, VT, Expand); 827 setOperationAction(ISD::FREM, VT, Expand); 828 setOperationAction(ISD::FNEG, VT, Expand); 829 setOperationAction(ISD::FSQRT, VT, Expand); 830 setOperationAction(ISD::FLOG, VT, Expand); 831 setOperationAction(ISD::FLOG10, VT, Expand); 832 setOperationAction(ISD::FLOG2, VT, Expand); 833 setOperationAction(ISD::FEXP, VT, Expand); 834 setOperationAction(ISD::FEXP2, VT, Expand); 835 setOperationAction(ISD::FSIN, VT, Expand); 836 setOperationAction(ISD::FCOS, VT, Expand); 837 setOperationAction(ISD::FABS, VT, Expand); 838 setOperationAction(ISD::FFLOOR, VT, Expand); 839 setOperationAction(ISD::FCEIL, VT, Expand); 840 setOperationAction(ISD::FTRUNC, VT, Expand); 841 setOperationAction(ISD::FRINT, VT, Expand); 842 setOperationAction(ISD::FNEARBYINT, VT, Expand); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 844 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 845 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 846 setOperationAction(ISD::MULHU, VT, Expand); 847 setOperationAction(ISD::MULHS, VT, Expand); 848 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 849 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 850 setOperationAction(ISD::UDIVREM, VT, Expand); 851 setOperationAction(ISD::SDIVREM, VT, Expand); 852 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 853 setOperationAction(ISD::FPOW, VT, Expand); 854 setOperationAction(ISD::BSWAP, VT, Expand); 855 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 856 setOperationAction(ISD::ROTL, VT, Expand); 857 setOperationAction(ISD::ROTR, VT, Expand); 858 859 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 860 setTruncStoreAction(VT, InnerVT, Expand); 861 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 862 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 863 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 864 } 865 } 866 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 867 if (!Subtarget.hasP8Vector()) { 868 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 869 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 870 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 871 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 872 } 873 874 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 875 // with merges, splats, etc. 876 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 877 878 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 879 // are cheap, so handle them before they get expanded to scalar. 880 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 881 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 882 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 883 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 884 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 885 886 setOperationAction(ISD::AND , MVT::v4i32, Legal); 887 setOperationAction(ISD::OR , MVT::v4i32, Legal); 888 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 889 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 890 setOperationAction(ISD::SELECT, MVT::v4i32, 891 Subtarget.useCRBits() ? Legal : Expand); 892 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 893 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 894 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 895 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 896 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 897 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 898 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 900 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 901 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 902 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 903 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 904 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 905 906 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 907 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 908 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 909 if (Subtarget.hasAltivec()) 910 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 911 setOperationAction(ISD::ROTL, VT, Legal); 912 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 913 if (Subtarget.hasP8Altivec()) 914 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 915 916 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 917 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 918 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 919 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 920 921 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 922 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 923 924 if (Subtarget.hasVSX()) { 925 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 926 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 927 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 928 } 929 930 if (Subtarget.hasP8Altivec()) 931 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 932 else 933 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 934 935 if (Subtarget.isISA3_1()) { 936 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 937 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 938 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 939 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 940 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 941 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 942 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 943 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 944 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 945 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 946 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 947 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 948 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 949 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 950 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 951 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 952 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 953 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 954 } 955 956 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 957 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 958 959 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 960 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 961 962 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 963 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 965 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 966 967 // Altivec does not contain unordered floating-point compare instructions 968 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 969 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 970 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 971 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 972 973 if (Subtarget.hasVSX()) { 974 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 976 if (Subtarget.hasP8Vector()) { 977 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 978 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 979 } 980 if (Subtarget.hasDirectMove() && isPPC64) { 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 982 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 983 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 984 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 987 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 989 } 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 991 992 // The nearbyint variants are not allowed to raise the inexact exception 993 // so we can only code-gen them with unsafe math. 994 if (TM.Options.UnsafeFPMath) { 995 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 996 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 997 } 998 999 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1002 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1003 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1004 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1005 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1006 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1007 1008 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1009 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1010 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1011 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1012 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1013 1014 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1015 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1016 1017 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1019 1020 // Share the Altivec comparison restrictions. 1021 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1022 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1023 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1024 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1025 1026 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1027 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1028 1029 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 1030 1031 if (Subtarget.hasP8Vector()) 1032 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1033 1034 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1035 1036 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1037 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1038 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1039 1040 if (Subtarget.hasP8Altivec()) { 1041 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1042 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1043 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1044 1045 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1046 // SRL, but not for SRA because of the instructions available: 1047 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1048 // doing 1049 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1050 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1051 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1052 1053 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1054 } 1055 else { 1056 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1057 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1058 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1059 1060 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1061 1062 // VSX v2i64 only supports non-arithmetic operations. 1063 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1064 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1065 } 1066 1067 if (Subtarget.isISA3_1()) 1068 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1069 else 1070 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1071 1072 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1073 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1074 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1075 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1076 1077 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 1078 1079 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1080 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1081 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1082 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1083 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1084 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1085 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1086 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1087 1088 // Custom handling for partial vectors of integers converted to 1089 // floating point. We already have optimal handling for v2i32 through 1090 // the DAG combine, so those aren't necessary. 1091 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1092 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1093 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1094 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1095 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1096 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1097 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1098 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1099 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1100 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1101 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1102 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1104 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1105 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1106 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1107 1108 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1109 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1110 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1111 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1112 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1113 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1114 1115 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1116 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1117 1118 // Handle constrained floating-point operations of vector. 1119 // The predictor is `hasVSX` because altivec instruction has 1120 // no exception but VSX vector instruction has. 1121 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1122 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1123 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1124 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1125 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1126 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1127 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1128 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1132 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1133 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1134 1135 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1136 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1137 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1138 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1139 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1140 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1141 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1142 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1146 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1147 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1148 1149 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1150 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1151 1152 for (MVT FPT : MVT::fp_valuetypes()) 1153 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1154 1155 // Expand the SELECT to SELECT_CC 1156 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1157 1158 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1159 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1160 1161 // No implementation for these ops for PowerPC. 1162 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1163 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1164 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1165 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1166 setOperationAction(ISD::FREM, MVT::f128, Expand); 1167 } 1168 1169 if (Subtarget.hasP8Altivec()) { 1170 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1171 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1172 } 1173 1174 if (Subtarget.hasP9Vector()) { 1175 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1176 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1177 1178 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1179 // SRL, but not for SRA because of the instructions available: 1180 // VS{RL} and VS{RL}O. 1181 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1182 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1183 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1184 1185 setOperationAction(ISD::FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1188 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1189 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1190 1191 setOperationAction(ISD::FMA, MVT::f128, Legal); 1192 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1193 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1194 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1195 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1196 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1197 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1198 1199 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1200 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1201 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1202 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1203 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1204 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1205 1206 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1207 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1208 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1209 1210 // Handle constrained floating-point operations of fp128 1211 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1212 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1213 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1214 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1215 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1216 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1217 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1218 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1219 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1220 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1221 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1222 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1223 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1224 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1225 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1226 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1227 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1228 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1229 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1230 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1231 } else if (Subtarget.hasVSX()) { 1232 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1233 setOperationAction(ISD::STORE, MVT::f128, Promote); 1234 1235 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1236 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1237 1238 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1239 // fp_to_uint and int_to_fp. 1240 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1241 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1242 1243 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1244 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1245 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1246 setOperationAction(ISD::FABS, MVT::f128, Expand); 1247 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1248 setOperationAction(ISD::FMA, MVT::f128, Expand); 1249 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1250 1251 // Expand the fp_extend if the target type is fp128. 1252 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1253 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1254 1255 // Expand the fp_round if the source type is fp128. 1256 for (MVT VT : {MVT::f32, MVT::f64}) { 1257 setOperationAction(ISD::FP_ROUND, VT, Custom); 1258 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1259 } 1260 1261 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1262 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1263 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1264 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1265 1266 // Lower following f128 select_cc pattern: 1267 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1268 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1269 1270 // We need to handle f128 SELECT_CC with integer result type. 1271 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1272 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1273 } 1274 1275 if (Subtarget.hasP9Altivec()) { 1276 if (Subtarget.isISA3_1()) { 1277 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1278 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1279 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1280 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1281 } else { 1282 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1283 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1284 } 1285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1287 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1288 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1289 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1290 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1291 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1292 } 1293 1294 if (Subtarget.hasP10Vector()) { 1295 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1296 } 1297 } 1298 1299 if (Subtarget.pairedVectorMemops()) { 1300 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1301 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1302 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1303 } 1304 if (Subtarget.hasMMA()) { 1305 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1306 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1307 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1308 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1309 } 1310 1311 if (Subtarget.has64BitSupport()) 1312 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1313 1314 if (Subtarget.isISA3_1()) 1315 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1316 1317 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1318 1319 if (!isPPC64) { 1320 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1321 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1322 } 1323 1324 if (shouldInlineQuadwordAtomics()) { 1325 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1326 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1327 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1328 } 1329 1330 setBooleanContents(ZeroOrOneBooleanContent); 1331 1332 if (Subtarget.hasAltivec()) { 1333 // Altivec instructions set fields to all zeros or all ones. 1334 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1335 } 1336 1337 setLibcallName(RTLIB::MULO_I128, nullptr); 1338 if (!isPPC64) { 1339 // These libcalls are not available in 32-bit. 1340 setLibcallName(RTLIB::SHL_I128, nullptr); 1341 setLibcallName(RTLIB::SRL_I128, nullptr); 1342 setLibcallName(RTLIB::SRA_I128, nullptr); 1343 setLibcallName(RTLIB::MUL_I128, nullptr); 1344 setLibcallName(RTLIB::MULO_I64, nullptr); 1345 } 1346 1347 if (!isPPC64) 1348 setMaxAtomicSizeInBitsSupported(32); 1349 else if (shouldInlineQuadwordAtomics()) 1350 setMaxAtomicSizeInBitsSupported(128); 1351 else 1352 setMaxAtomicSizeInBitsSupported(64); 1353 1354 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1355 1356 // We have target-specific dag combine patterns for the following nodes: 1357 setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL, 1358 ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); 1359 if (Subtarget.hasFPCVT()) 1360 setTargetDAGCombine(ISD::UINT_TO_FP); 1361 setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); 1362 if (Subtarget.useCRBits()) 1363 setTargetDAGCombine(ISD::BRCOND); 1364 setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, 1365 ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); 1366 1367 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); 1368 1369 setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); 1370 1371 if (Subtarget.useCRBits()) { 1372 setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); 1373 } 1374 1375 if (Subtarget.hasP9Altivec()) { 1376 setTargetDAGCombine({ISD::ABS, ISD::VSELECT}); 1377 } 1378 1379 setLibcallName(RTLIB::LOG_F128, "logf128"); 1380 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1381 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1382 setLibcallName(RTLIB::EXP_F128, "expf128"); 1383 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1384 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1385 setLibcallName(RTLIB::COS_F128, "cosf128"); 1386 setLibcallName(RTLIB::POW_F128, "powf128"); 1387 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1388 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1389 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1390 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1391 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1392 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1393 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1394 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1395 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1396 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1397 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1398 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1399 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1400 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1401 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1402 1403 // With 32 condition bits, we don't need to sink (and duplicate) compares 1404 // aggressively in CodeGenPrep. 1405 if (Subtarget.useCRBits()) { 1406 setHasMultipleConditionRegisters(); 1407 setJumpIsExpensive(); 1408 } 1409 1410 setMinFunctionAlignment(Align(4)); 1411 1412 switch (Subtarget.getCPUDirective()) { 1413 default: break; 1414 case PPC::DIR_970: 1415 case PPC::DIR_A2: 1416 case PPC::DIR_E500: 1417 case PPC::DIR_E500mc: 1418 case PPC::DIR_E5500: 1419 case PPC::DIR_PWR4: 1420 case PPC::DIR_PWR5: 1421 case PPC::DIR_PWR5X: 1422 case PPC::DIR_PWR6: 1423 case PPC::DIR_PWR6X: 1424 case PPC::DIR_PWR7: 1425 case PPC::DIR_PWR8: 1426 case PPC::DIR_PWR9: 1427 case PPC::DIR_PWR10: 1428 case PPC::DIR_PWR_FUTURE: 1429 setPrefLoopAlignment(Align(16)); 1430 setPrefFunctionAlignment(Align(16)); 1431 break; 1432 } 1433 1434 if (Subtarget.enableMachineScheduler()) 1435 setSchedulingPreference(Sched::Source); 1436 else 1437 setSchedulingPreference(Sched::Hybrid); 1438 1439 computeRegisterProperties(STI.getRegisterInfo()); 1440 1441 // The Freescale cores do better with aggressive inlining of memcpy and 1442 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1443 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1444 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1445 MaxStoresPerMemset = 32; 1446 MaxStoresPerMemsetOptSize = 16; 1447 MaxStoresPerMemcpy = 32; 1448 MaxStoresPerMemcpyOptSize = 8; 1449 MaxStoresPerMemmove = 32; 1450 MaxStoresPerMemmoveOptSize = 8; 1451 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1452 // The A2 also benefits from (very) aggressive inlining of memcpy and 1453 // friends. The overhead of a the function call, even when warm, can be 1454 // over one hundred cycles. 1455 MaxStoresPerMemset = 128; 1456 MaxStoresPerMemcpy = 128; 1457 MaxStoresPerMemmove = 128; 1458 MaxLoadsPerMemcmp = 128; 1459 } else { 1460 MaxLoadsPerMemcmp = 8; 1461 MaxLoadsPerMemcmpOptSize = 4; 1462 } 1463 1464 IsStrictFPEnabled = true; 1465 1466 // Let the subtarget (CPU) decide if a predictable select is more expensive 1467 // than the corresponding branch. This information is used in CGP to decide 1468 // when to convert selects into branches. 1469 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1470 } 1471 1472 // *********************************** NOTE ************************************ 1473 // For selecting load and store instructions, the addressing modes are defined 1474 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1475 // patterns to match the load the store instructions. 1476 // 1477 // The TD definitions for the addressing modes correspond to their respective 1478 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1479 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1480 // address mode flags of a particular node. Afterwards, the computed address 1481 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1482 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1483 // accordingly, based on the preferred addressing mode. 1484 // 1485 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1486 // MemOpFlags contains all the possible flags that can be used to compute the 1487 // optimal addressing mode for load and store instructions. 1488 // AddrMode contains all the possible load and store addressing modes available 1489 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1490 // 1491 // When adding new load and store instructions, it is possible that new address 1492 // flags may need to be added into MemOpFlags, and a new addressing mode will 1493 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1494 // of the minimal and main distinguishing address flags for the new load/store 1495 // instructions) will need to be added into initializeAddrModeMap() below. 1496 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1497 // need to be updated to account for selecting the optimal addressing mode. 1498 // ***************************************************************************** 1499 /// Initialize the map that relates the different addressing modes of the load 1500 /// and store instructions to a set of flags. This ensures the load/store 1501 /// instruction is correctly matched during instruction selection. 1502 void PPCTargetLowering::initializeAddrModeMap() { 1503 AddrModesMap[PPC::AM_DForm] = { 1504 // LWZ, STW 1505 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1506 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1507 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1508 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1509 // LBZ, LHZ, STB, STH 1510 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1511 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1512 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1513 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1514 // LHA 1515 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1516 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1517 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1518 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1519 // LFS, LFD, STFS, STFD 1520 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1521 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1522 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1523 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1524 }; 1525 AddrModesMap[PPC::AM_DSForm] = { 1526 // LWA 1527 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1528 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1529 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1530 // LD, STD 1531 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1532 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1533 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1534 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1535 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1536 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1537 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1538 }; 1539 AddrModesMap[PPC::AM_DQForm] = { 1540 // LXV, STXV 1541 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1542 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1543 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1544 }; 1545 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1546 PPC::MOF_SubtargetP10}; 1547 // TODO: Add mapping for quadword load/store. 1548 } 1549 1550 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1551 /// the desired ByVal argument alignment. 1552 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1553 if (MaxAlign == MaxMaxAlign) 1554 return; 1555 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1556 if (MaxMaxAlign >= 32 && 1557 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1558 MaxAlign = Align(32); 1559 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1560 MaxAlign < 16) 1561 MaxAlign = Align(16); 1562 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1563 Align EltAlign; 1564 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1565 if (EltAlign > MaxAlign) 1566 MaxAlign = EltAlign; 1567 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1568 for (auto *EltTy : STy->elements()) { 1569 Align EltAlign; 1570 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1571 if (EltAlign > MaxAlign) 1572 MaxAlign = EltAlign; 1573 if (MaxAlign == MaxMaxAlign) 1574 break; 1575 } 1576 } 1577 } 1578 1579 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1580 /// function arguments in the caller parameter area. 1581 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1582 const DataLayout &DL) const { 1583 // 16byte and wider vectors are passed on 16byte boundary. 1584 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1585 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1586 if (Subtarget.hasAltivec()) 1587 getMaxByValAlign(Ty, Alignment, Align(16)); 1588 return Alignment.value(); 1589 } 1590 1591 bool PPCTargetLowering::useSoftFloat() const { 1592 return Subtarget.useSoftFloat(); 1593 } 1594 1595 bool PPCTargetLowering::hasSPE() const { 1596 return Subtarget.hasSPE(); 1597 } 1598 1599 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1600 return VT.isScalarInteger(); 1601 } 1602 1603 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1604 switch ((PPCISD::NodeType)Opcode) { 1605 case PPCISD::FIRST_NUMBER: break; 1606 case PPCISD::FSEL: return "PPCISD::FSEL"; 1607 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1608 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1609 case PPCISD::FCFID: return "PPCISD::FCFID"; 1610 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1611 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1612 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1613 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1614 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1615 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1616 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1617 case PPCISD::FP_TO_UINT_IN_VSR: 1618 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1619 case PPCISD::FP_TO_SINT_IN_VSR: 1620 return "PPCISD::FP_TO_SINT_IN_VSR"; 1621 case PPCISD::FRE: return "PPCISD::FRE"; 1622 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1623 case PPCISD::FTSQRT: 1624 return "PPCISD::FTSQRT"; 1625 case PPCISD::FSQRT: 1626 return "PPCISD::FSQRT"; 1627 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1628 case PPCISD::VPERM: return "PPCISD::VPERM"; 1629 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1630 case PPCISD::XXSPLTI_SP_TO_DP: 1631 return "PPCISD::XXSPLTI_SP_TO_DP"; 1632 case PPCISD::XXSPLTI32DX: 1633 return "PPCISD::XXSPLTI32DX"; 1634 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1635 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1636 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1637 case PPCISD::CMPB: return "PPCISD::CMPB"; 1638 case PPCISD::Hi: return "PPCISD::Hi"; 1639 case PPCISD::Lo: return "PPCISD::Lo"; 1640 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1641 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1642 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1643 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1644 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1645 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1646 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1647 case PPCISD::SRL: return "PPCISD::SRL"; 1648 case PPCISD::SRA: return "PPCISD::SRA"; 1649 case PPCISD::SHL: return "PPCISD::SHL"; 1650 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1651 case PPCISD::CALL: return "PPCISD::CALL"; 1652 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1653 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1654 case PPCISD::CALL_RM: 1655 return "PPCISD::CALL_RM"; 1656 case PPCISD::CALL_NOP_RM: 1657 return "PPCISD::CALL_NOP_RM"; 1658 case PPCISD::CALL_NOTOC_RM: 1659 return "PPCISD::CALL_NOTOC_RM"; 1660 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1661 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1662 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1663 case PPCISD::BCTRL_RM: 1664 return "PPCISD::BCTRL_RM"; 1665 case PPCISD::BCTRL_LOAD_TOC_RM: 1666 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1667 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1668 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1669 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1670 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1671 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1672 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1673 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1674 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1675 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1676 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1677 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1678 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1679 case PPCISD::ANDI_rec_1_EQ_BIT: 1680 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1681 case PPCISD::ANDI_rec_1_GT_BIT: 1682 return "PPCISD::ANDI_rec_1_GT_BIT"; 1683 case PPCISD::VCMP: return "PPCISD::VCMP"; 1684 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1685 case PPCISD::LBRX: return "PPCISD::LBRX"; 1686 case PPCISD::STBRX: return "PPCISD::STBRX"; 1687 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1688 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1689 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1690 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1691 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1692 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1693 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1694 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1695 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1696 case PPCISD::ST_VSR_SCAL_INT: 1697 return "PPCISD::ST_VSR_SCAL_INT"; 1698 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1699 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1700 case PPCISD::BDZ: return "PPCISD::BDZ"; 1701 case PPCISD::MFFS: return "PPCISD::MFFS"; 1702 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1703 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1704 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1705 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1706 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1707 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1708 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1709 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1710 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1711 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1712 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1713 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1714 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1715 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1716 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1717 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1718 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1719 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1720 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1721 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1722 case PPCISD::PADDI_DTPREL: 1723 return "PPCISD::PADDI_DTPREL"; 1724 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1725 case PPCISD::SC: return "PPCISD::SC"; 1726 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1727 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1728 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1729 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1730 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1731 case PPCISD::VABSD: return "PPCISD::VABSD"; 1732 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1733 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1734 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1735 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1736 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1737 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1738 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1739 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1740 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1741 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1742 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1743 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1744 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1745 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1746 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1747 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1748 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1749 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1750 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1751 case PPCISD::STRICT_FADDRTZ: 1752 return "PPCISD::STRICT_FADDRTZ"; 1753 case PPCISD::STRICT_FCTIDZ: 1754 return "PPCISD::STRICT_FCTIDZ"; 1755 case PPCISD::STRICT_FCTIWZ: 1756 return "PPCISD::STRICT_FCTIWZ"; 1757 case PPCISD::STRICT_FCTIDUZ: 1758 return "PPCISD::STRICT_FCTIDUZ"; 1759 case PPCISD::STRICT_FCTIWUZ: 1760 return "PPCISD::STRICT_FCTIWUZ"; 1761 case PPCISD::STRICT_FCFID: 1762 return "PPCISD::STRICT_FCFID"; 1763 case PPCISD::STRICT_FCFIDU: 1764 return "PPCISD::STRICT_FCFIDU"; 1765 case PPCISD::STRICT_FCFIDS: 1766 return "PPCISD::STRICT_FCFIDS"; 1767 case PPCISD::STRICT_FCFIDUS: 1768 return "PPCISD::STRICT_FCFIDUS"; 1769 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1770 } 1771 return nullptr; 1772 } 1773 1774 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1775 EVT VT) const { 1776 if (!VT.isVector()) 1777 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1778 1779 return VT.changeVectorElementTypeToInteger(); 1780 } 1781 1782 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1783 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1784 return true; 1785 } 1786 1787 //===----------------------------------------------------------------------===// 1788 // Node matching predicates, for use by the tblgen matching code. 1789 //===----------------------------------------------------------------------===// 1790 1791 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1792 static bool isFloatingPointZero(SDValue Op) { 1793 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1794 return CFP->getValueAPF().isZero(); 1795 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1796 // Maybe this has already been legalized into the constant pool? 1797 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1798 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1799 return CFP->getValueAPF().isZero(); 1800 } 1801 return false; 1802 } 1803 1804 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1805 /// true if Op is undef or if it matches the specified value. 1806 static bool isConstantOrUndef(int Op, int Val) { 1807 return Op < 0 || Op == Val; 1808 } 1809 1810 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1811 /// VPKUHUM instruction. 1812 /// The ShuffleKind distinguishes between big-endian operations with 1813 /// two different inputs (0), either-endian operations with two identical 1814 /// inputs (1), and little-endian operations with two different inputs (2). 1815 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1816 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1817 SelectionDAG &DAG) { 1818 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1819 if (ShuffleKind == 0) { 1820 if (IsLE) 1821 return false; 1822 for (unsigned i = 0; i != 16; ++i) 1823 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1824 return false; 1825 } else if (ShuffleKind == 2) { 1826 if (!IsLE) 1827 return false; 1828 for (unsigned i = 0; i != 16; ++i) 1829 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1830 return false; 1831 } else if (ShuffleKind == 1) { 1832 unsigned j = IsLE ? 0 : 1; 1833 for (unsigned i = 0; i != 8; ++i) 1834 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1835 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1842 /// VPKUWUM instruction. 1843 /// The ShuffleKind distinguishes between big-endian operations with 1844 /// two different inputs (0), either-endian operations with two identical 1845 /// inputs (1), and little-endian operations with two different inputs (2). 1846 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1847 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1848 SelectionDAG &DAG) { 1849 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1850 if (ShuffleKind == 0) { 1851 if (IsLE) 1852 return false; 1853 for (unsigned i = 0; i != 16; i += 2) 1854 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1855 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1856 return false; 1857 } else if (ShuffleKind == 2) { 1858 if (!IsLE) 1859 return false; 1860 for (unsigned i = 0; i != 16; i += 2) 1861 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1862 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1863 return false; 1864 } else if (ShuffleKind == 1) { 1865 unsigned j = IsLE ? 0 : 2; 1866 for (unsigned i = 0; i != 8; i += 2) 1867 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1868 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1869 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1870 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1871 return false; 1872 } 1873 return true; 1874 } 1875 1876 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1877 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1878 /// current subtarget. 1879 /// 1880 /// The ShuffleKind distinguishes between big-endian operations with 1881 /// two different inputs (0), either-endian operations with two identical 1882 /// inputs (1), and little-endian operations with two different inputs (2). 1883 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1884 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1885 SelectionDAG &DAG) { 1886 const PPCSubtarget& Subtarget = 1887 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1888 if (!Subtarget.hasP8Vector()) 1889 return false; 1890 1891 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1892 if (ShuffleKind == 0) { 1893 if (IsLE) 1894 return false; 1895 for (unsigned i = 0; i != 16; i += 4) 1896 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1897 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1898 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1899 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1900 return false; 1901 } else if (ShuffleKind == 2) { 1902 if (!IsLE) 1903 return false; 1904 for (unsigned i = 0; i != 16; i += 4) 1905 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1906 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1907 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1908 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1909 return false; 1910 } else if (ShuffleKind == 1) { 1911 unsigned j = IsLE ? 0 : 4; 1912 for (unsigned i = 0; i != 8; i += 4) 1913 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1914 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1915 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1916 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1917 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1918 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1919 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1920 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1921 return false; 1922 } 1923 return true; 1924 } 1925 1926 /// isVMerge - Common function, used to match vmrg* shuffles. 1927 /// 1928 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1929 unsigned LHSStart, unsigned RHSStart) { 1930 if (N->getValueType(0) != MVT::v16i8) 1931 return false; 1932 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1933 "Unsupported merge size!"); 1934 1935 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1936 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1937 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1938 LHSStart+j+i*UnitSize) || 1939 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1940 RHSStart+j+i*UnitSize)) 1941 return false; 1942 } 1943 return true; 1944 } 1945 1946 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1947 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1948 /// The ShuffleKind distinguishes between big-endian merges with two 1949 /// different inputs (0), either-endian merges with two identical inputs (1), 1950 /// and little-endian merges with two different inputs (2). For the latter, 1951 /// the input operands are swapped (see PPCInstrAltivec.td). 1952 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1953 unsigned ShuffleKind, SelectionDAG &DAG) { 1954 if (DAG.getDataLayout().isLittleEndian()) { 1955 if (ShuffleKind == 1) // unary 1956 return isVMerge(N, UnitSize, 0, 0); 1957 else if (ShuffleKind == 2) // swapped 1958 return isVMerge(N, UnitSize, 0, 16); 1959 else 1960 return false; 1961 } else { 1962 if (ShuffleKind == 1) // unary 1963 return isVMerge(N, UnitSize, 8, 8); 1964 else if (ShuffleKind == 0) // normal 1965 return isVMerge(N, UnitSize, 8, 24); 1966 else 1967 return false; 1968 } 1969 } 1970 1971 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1972 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1973 /// The ShuffleKind distinguishes between big-endian merges with two 1974 /// different inputs (0), either-endian merges with two identical inputs (1), 1975 /// and little-endian merges with two different inputs (2). For the latter, 1976 /// the input operands are swapped (see PPCInstrAltivec.td). 1977 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1978 unsigned ShuffleKind, SelectionDAG &DAG) { 1979 if (DAG.getDataLayout().isLittleEndian()) { 1980 if (ShuffleKind == 1) // unary 1981 return isVMerge(N, UnitSize, 8, 8); 1982 else if (ShuffleKind == 2) // swapped 1983 return isVMerge(N, UnitSize, 8, 24); 1984 else 1985 return false; 1986 } else { 1987 if (ShuffleKind == 1) // unary 1988 return isVMerge(N, UnitSize, 0, 0); 1989 else if (ShuffleKind == 0) // normal 1990 return isVMerge(N, UnitSize, 0, 16); 1991 else 1992 return false; 1993 } 1994 } 1995 1996 /** 1997 * Common function used to match vmrgew and vmrgow shuffles 1998 * 1999 * The indexOffset determines whether to look for even or odd words in 2000 * the shuffle mask. This is based on the of the endianness of the target 2001 * machine. 2002 * - Little Endian: 2003 * - Use offset of 0 to check for odd elements 2004 * - Use offset of 4 to check for even elements 2005 * - Big Endian: 2006 * - Use offset of 0 to check for even elements 2007 * - Use offset of 4 to check for odd elements 2008 * A detailed description of the vector element ordering for little endian and 2009 * big endian can be found at 2010 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2011 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2012 * compiler differences mean to you 2013 * 2014 * The mask to the shuffle vector instruction specifies the indices of the 2015 * elements from the two input vectors to place in the result. The elements are 2016 * numbered in array-access order, starting with the first vector. These vectors 2017 * are always of type v16i8, thus each vector will contain 16 elements of size 2018 * 8. More info on the shuffle vector can be found in the 2019 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2020 * Language Reference. 2021 * 2022 * The RHSStartValue indicates whether the same input vectors are used (unary) 2023 * or two different input vectors are used, based on the following: 2024 * - If the instruction uses the same vector for both inputs, the range of the 2025 * indices will be 0 to 15. In this case, the RHSStart value passed should 2026 * be 0. 2027 * - If the instruction has two different vectors then the range of the 2028 * indices will be 0 to 31. In this case, the RHSStart value passed should 2029 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2030 * to 31 specify elements in the second vector). 2031 * 2032 * \param[in] N The shuffle vector SD Node to analyze 2033 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2034 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2035 * vector to the shuffle_vector instruction 2036 * \return true iff this shuffle vector represents an even or odd word merge 2037 */ 2038 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2039 unsigned RHSStartValue) { 2040 if (N->getValueType(0) != MVT::v16i8) 2041 return false; 2042 2043 for (unsigned i = 0; i < 2; ++i) 2044 for (unsigned j = 0; j < 4; ++j) 2045 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2046 i*RHSStartValue+j+IndexOffset) || 2047 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2048 i*RHSStartValue+j+IndexOffset+8)) 2049 return false; 2050 return true; 2051 } 2052 2053 /** 2054 * Determine if the specified shuffle mask is suitable for the vmrgew or 2055 * vmrgow instructions. 2056 * 2057 * \param[in] N The shuffle vector SD Node to analyze 2058 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2059 * \param[in] ShuffleKind Identify the type of merge: 2060 * - 0 = big-endian merge with two different inputs; 2061 * - 1 = either-endian merge with two identical inputs; 2062 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2063 * little-endian merges). 2064 * \param[in] DAG The current SelectionDAG 2065 * \return true iff this shuffle mask 2066 */ 2067 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2068 unsigned ShuffleKind, SelectionDAG &DAG) { 2069 if (DAG.getDataLayout().isLittleEndian()) { 2070 unsigned indexOffset = CheckEven ? 4 : 0; 2071 if (ShuffleKind == 1) // Unary 2072 return isVMerge(N, indexOffset, 0); 2073 else if (ShuffleKind == 2) // swapped 2074 return isVMerge(N, indexOffset, 16); 2075 else 2076 return false; 2077 } 2078 else { 2079 unsigned indexOffset = CheckEven ? 0 : 4; 2080 if (ShuffleKind == 1) // Unary 2081 return isVMerge(N, indexOffset, 0); 2082 else if (ShuffleKind == 0) // Normal 2083 return isVMerge(N, indexOffset, 16); 2084 else 2085 return false; 2086 } 2087 return false; 2088 } 2089 2090 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2091 /// amount, otherwise return -1. 2092 /// The ShuffleKind distinguishes between big-endian operations with two 2093 /// different inputs (0), either-endian operations with two identical inputs 2094 /// (1), and little-endian operations with two different inputs (2). For the 2095 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2096 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2097 SelectionDAG &DAG) { 2098 if (N->getValueType(0) != MVT::v16i8) 2099 return -1; 2100 2101 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2102 2103 // Find the first non-undef value in the shuffle mask. 2104 unsigned i; 2105 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2106 /*search*/; 2107 2108 if (i == 16) return -1; // all undef. 2109 2110 // Otherwise, check to see if the rest of the elements are consecutively 2111 // numbered from this value. 2112 unsigned ShiftAmt = SVOp->getMaskElt(i); 2113 if (ShiftAmt < i) return -1; 2114 2115 ShiftAmt -= i; 2116 bool isLE = DAG.getDataLayout().isLittleEndian(); 2117 2118 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2119 // Check the rest of the elements to see if they are consecutive. 2120 for (++i; i != 16; ++i) 2121 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2122 return -1; 2123 } else if (ShuffleKind == 1) { 2124 // Check the rest of the elements to see if they are consecutive. 2125 for (++i; i != 16; ++i) 2126 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2127 return -1; 2128 } else 2129 return -1; 2130 2131 if (isLE) 2132 ShiftAmt = 16 - ShiftAmt; 2133 2134 return ShiftAmt; 2135 } 2136 2137 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2138 /// specifies a splat of a single element that is suitable for input to 2139 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2140 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2141 EVT VT = N->getValueType(0); 2142 if (VT == MVT::v2i64 || VT == MVT::v2f64) 2143 return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1); 2144 2145 assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) && 2146 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2147 2148 // The consecutive indices need to specify an element, not part of two 2149 // different elements. So abandon ship early if this isn't the case. 2150 if (N->getMaskElt(0) % EltSize != 0) 2151 return false; 2152 2153 // This is a splat operation if each element of the permute is the same, and 2154 // if the value doesn't reference the second vector. 2155 unsigned ElementBase = N->getMaskElt(0); 2156 2157 // FIXME: Handle UNDEF elements too! 2158 if (ElementBase >= 16) 2159 return false; 2160 2161 // Check that the indices are consecutive, in the case of a multi-byte element 2162 // splatted with a v16i8 mask. 2163 for (unsigned i = 1; i != EltSize; ++i) 2164 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2165 return false; 2166 2167 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2168 if (N->getMaskElt(i) < 0) continue; 2169 for (unsigned j = 0; j != EltSize; ++j) 2170 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2171 return false; 2172 } 2173 return true; 2174 } 2175 2176 /// Check that the mask is shuffling N byte elements. Within each N byte 2177 /// element of the mask, the indices could be either in increasing or 2178 /// decreasing order as long as they are consecutive. 2179 /// \param[in] N the shuffle vector SD Node to analyze 2180 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2181 /// Word/DoubleWord/QuadWord). 2182 /// \param[in] StepLen the delta indices number among the N byte element, if 2183 /// the mask is in increasing/decreasing order then it is 1/-1. 2184 /// \return true iff the mask is shuffling N byte elements. 2185 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2186 int StepLen) { 2187 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2188 "Unexpected element width."); 2189 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2190 2191 unsigned NumOfElem = 16 / Width; 2192 unsigned MaskVal[16]; // Width is never greater than 16 2193 for (unsigned i = 0; i < NumOfElem; ++i) { 2194 MaskVal[0] = N->getMaskElt(i * Width); 2195 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2196 return false; 2197 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2198 return false; 2199 } 2200 2201 for (unsigned int j = 1; j < Width; ++j) { 2202 MaskVal[j] = N->getMaskElt(i * Width + j); 2203 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2204 return false; 2205 } 2206 } 2207 } 2208 2209 return true; 2210 } 2211 2212 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2213 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2214 if (!isNByteElemShuffleMask(N, 4, 1)) 2215 return false; 2216 2217 // Now we look at mask elements 0,4,8,12 2218 unsigned M0 = N->getMaskElt(0) / 4; 2219 unsigned M1 = N->getMaskElt(4) / 4; 2220 unsigned M2 = N->getMaskElt(8) / 4; 2221 unsigned M3 = N->getMaskElt(12) / 4; 2222 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2223 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2224 2225 // Below, let H and L be arbitrary elements of the shuffle mask 2226 // where H is in the range [4,7] and L is in the range [0,3]. 2227 // H, 1, 2, 3 or L, 5, 6, 7 2228 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2229 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2230 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2231 InsertAtByte = IsLE ? 12 : 0; 2232 Swap = M0 < 4; 2233 return true; 2234 } 2235 // 0, H, 2, 3 or 4, L, 6, 7 2236 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2237 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2238 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2239 InsertAtByte = IsLE ? 8 : 4; 2240 Swap = M1 < 4; 2241 return true; 2242 } 2243 // 0, 1, H, 3 or 4, 5, L, 7 2244 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2245 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2246 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2247 InsertAtByte = IsLE ? 4 : 8; 2248 Swap = M2 < 4; 2249 return true; 2250 } 2251 // 0, 1, 2, H or 4, 5, 6, L 2252 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2253 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2254 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2255 InsertAtByte = IsLE ? 0 : 12; 2256 Swap = M3 < 4; 2257 return true; 2258 } 2259 2260 // If both vector operands for the shuffle are the same vector, the mask will 2261 // contain only elements from the first one and the second one will be undef. 2262 if (N->getOperand(1).isUndef()) { 2263 ShiftElts = 0; 2264 Swap = true; 2265 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2266 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2267 InsertAtByte = IsLE ? 12 : 0; 2268 return true; 2269 } 2270 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2271 InsertAtByte = IsLE ? 8 : 4; 2272 return true; 2273 } 2274 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2275 InsertAtByte = IsLE ? 4 : 8; 2276 return true; 2277 } 2278 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2279 InsertAtByte = IsLE ? 0 : 12; 2280 return true; 2281 } 2282 } 2283 2284 return false; 2285 } 2286 2287 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2288 bool &Swap, bool IsLE) { 2289 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2290 // Ensure each byte index of the word is consecutive. 2291 if (!isNByteElemShuffleMask(N, 4, 1)) 2292 return false; 2293 2294 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2295 unsigned M0 = N->getMaskElt(0) / 4; 2296 unsigned M1 = N->getMaskElt(4) / 4; 2297 unsigned M2 = N->getMaskElt(8) / 4; 2298 unsigned M3 = N->getMaskElt(12) / 4; 2299 2300 // If both vector operands for the shuffle are the same vector, the mask will 2301 // contain only elements from the first one and the second one will be undef. 2302 if (N->getOperand(1).isUndef()) { 2303 assert(M0 < 4 && "Indexing into an undef vector?"); 2304 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2305 return false; 2306 2307 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2308 Swap = false; 2309 return true; 2310 } 2311 2312 // Ensure each word index of the ShuffleVector Mask is consecutive. 2313 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2314 return false; 2315 2316 if (IsLE) { 2317 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2318 // Input vectors don't need to be swapped if the leading element 2319 // of the result is one of the 3 left elements of the second vector 2320 // (or if there is no shift to be done at all). 2321 Swap = false; 2322 ShiftElts = (8 - M0) % 8; 2323 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2324 // Input vectors need to be swapped if the leading element 2325 // of the result is one of the 3 left elements of the first vector 2326 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2327 Swap = true; 2328 ShiftElts = (4 - M0) % 4; 2329 } 2330 2331 return true; 2332 } else { // BE 2333 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2334 // Input vectors don't need to be swapped if the leading element 2335 // of the result is one of the 4 elements of the first vector. 2336 Swap = false; 2337 ShiftElts = M0; 2338 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2339 // Input vectors need to be swapped if the leading element 2340 // of the result is one of the 4 elements of the right vector. 2341 Swap = true; 2342 ShiftElts = M0 - 4; 2343 } 2344 2345 return true; 2346 } 2347 } 2348 2349 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2350 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2351 2352 if (!isNByteElemShuffleMask(N, Width, -1)) 2353 return false; 2354 2355 for (int i = 0; i < 16; i += Width) 2356 if (N->getMaskElt(i) != i + Width - 1) 2357 return false; 2358 2359 return true; 2360 } 2361 2362 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2363 return isXXBRShuffleMaskHelper(N, 2); 2364 } 2365 2366 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2367 return isXXBRShuffleMaskHelper(N, 4); 2368 } 2369 2370 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2371 return isXXBRShuffleMaskHelper(N, 8); 2372 } 2373 2374 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2375 return isXXBRShuffleMaskHelper(N, 16); 2376 } 2377 2378 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2379 /// if the inputs to the instruction should be swapped and set \p DM to the 2380 /// value for the immediate. 2381 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2382 /// AND element 0 of the result comes from the first input (LE) or second input 2383 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2384 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2385 /// mask. 2386 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2387 bool &Swap, bool IsLE) { 2388 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2389 2390 // Ensure each byte index of the double word is consecutive. 2391 if (!isNByteElemShuffleMask(N, 8, 1)) 2392 return false; 2393 2394 unsigned M0 = N->getMaskElt(0) / 8; 2395 unsigned M1 = N->getMaskElt(8) / 8; 2396 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2397 2398 // If both vector operands for the shuffle are the same vector, the mask will 2399 // contain only elements from the first one and the second one will be undef. 2400 if (N->getOperand(1).isUndef()) { 2401 if ((M0 | M1) < 2) { 2402 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2403 Swap = false; 2404 return true; 2405 } else 2406 return false; 2407 } 2408 2409 if (IsLE) { 2410 if (M0 > 1 && M1 < 2) { 2411 Swap = false; 2412 } else if (M0 < 2 && M1 > 1) { 2413 M0 = (M0 + 2) % 4; 2414 M1 = (M1 + 2) % 4; 2415 Swap = true; 2416 } else 2417 return false; 2418 2419 // Note: if control flow comes here that means Swap is already set above 2420 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2421 return true; 2422 } else { // BE 2423 if (M0 < 2 && M1 > 1) { 2424 Swap = false; 2425 } else if (M0 > 1 && M1 < 2) { 2426 M0 = (M0 + 2) % 4; 2427 M1 = (M1 + 2) % 4; 2428 Swap = true; 2429 } else 2430 return false; 2431 2432 // Note: if control flow comes here that means Swap is already set above 2433 DM = (M0 << 1) + (M1 & 1); 2434 return true; 2435 } 2436 } 2437 2438 2439 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2440 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2441 /// elements are counted from the left of the vector register). 2442 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2443 SelectionDAG &DAG) { 2444 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2445 assert(isSplatShuffleMask(SVOp, EltSize)); 2446 EVT VT = SVOp->getValueType(0); 2447 2448 if (VT == MVT::v2i64 || VT == MVT::v2f64) 2449 return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0) 2450 : SVOp->getMaskElt(0); 2451 2452 if (DAG.getDataLayout().isLittleEndian()) 2453 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2454 else 2455 return SVOp->getMaskElt(0) / EltSize; 2456 } 2457 2458 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2459 /// by using a vspltis[bhw] instruction of the specified element size, return 2460 /// the constant being splatted. The ByteSize field indicates the number of 2461 /// bytes of each element [124] -> [bhw]. 2462 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2463 SDValue OpVal; 2464 2465 // If ByteSize of the splat is bigger than the element size of the 2466 // build_vector, then we have a case where we are checking for a splat where 2467 // multiple elements of the buildvector are folded together into a single 2468 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2469 unsigned EltSize = 16/N->getNumOperands(); 2470 if (EltSize < ByteSize) { 2471 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2472 SDValue UniquedVals[4]; 2473 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2474 2475 // See if all of the elements in the buildvector agree across. 2476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2477 if (N->getOperand(i).isUndef()) continue; 2478 // If the element isn't a constant, bail fully out. 2479 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2480 2481 if (!UniquedVals[i&(Multiple-1)].getNode()) 2482 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2483 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2484 return SDValue(); // no match. 2485 } 2486 2487 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2488 // either constant or undef values that are identical for each chunk. See 2489 // if these chunks can form into a larger vspltis*. 2490 2491 // Check to see if all of the leading entries are either 0 or -1. If 2492 // neither, then this won't fit into the immediate field. 2493 bool LeadingZero = true; 2494 bool LeadingOnes = true; 2495 for (unsigned i = 0; i != Multiple-1; ++i) { 2496 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2497 2498 LeadingZero &= isNullConstant(UniquedVals[i]); 2499 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2500 } 2501 // Finally, check the least significant entry. 2502 if (LeadingZero) { 2503 if (!UniquedVals[Multiple-1].getNode()) 2504 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2505 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2506 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2507 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2508 } 2509 if (LeadingOnes) { 2510 if (!UniquedVals[Multiple-1].getNode()) 2511 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2512 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2513 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2514 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2515 } 2516 2517 return SDValue(); 2518 } 2519 2520 // Check to see if this buildvec has a single non-undef value in its elements. 2521 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2522 if (N->getOperand(i).isUndef()) continue; 2523 if (!OpVal.getNode()) 2524 OpVal = N->getOperand(i); 2525 else if (OpVal != N->getOperand(i)) 2526 return SDValue(); 2527 } 2528 2529 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2530 2531 unsigned ValSizeInBytes = EltSize; 2532 uint64_t Value = 0; 2533 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2534 Value = CN->getZExtValue(); 2535 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2536 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2537 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2538 } 2539 2540 // If the splat value is larger than the element value, then we can never do 2541 // this splat. The only case that we could fit the replicated bits into our 2542 // immediate field for would be zero, and we prefer to use vxor for it. 2543 if (ValSizeInBytes < ByteSize) return SDValue(); 2544 2545 // If the element value is larger than the splat value, check if it consists 2546 // of a repeated bit pattern of size ByteSize. 2547 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2548 return SDValue(); 2549 2550 // Properly sign extend the value. 2551 int MaskVal = SignExtend32(Value, ByteSize * 8); 2552 2553 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2554 if (MaskVal == 0) return SDValue(); 2555 2556 // Finally, if this value fits in a 5 bit sext field, return it 2557 if (SignExtend32<5>(MaskVal) == MaskVal) 2558 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2559 return SDValue(); 2560 } 2561 2562 //===----------------------------------------------------------------------===// 2563 // Addressing Mode Selection 2564 //===----------------------------------------------------------------------===// 2565 2566 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2567 /// or 64-bit immediate, and if the value can be accurately represented as a 2568 /// sign extension from a 16-bit value. If so, this returns true and the 2569 /// immediate. 2570 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2571 if (!isa<ConstantSDNode>(N)) 2572 return false; 2573 2574 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2575 if (N->getValueType(0) == MVT::i32) 2576 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2577 else 2578 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2579 } 2580 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2581 return isIntS16Immediate(Op.getNode(), Imm); 2582 } 2583 2584 /// Used when computing address flags for selecting loads and stores. 2585 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2586 /// An OR of two provably disjoint values is equivalent to an ADD. 2587 /// Most PPC load/store instructions compute the effective address as a sum, 2588 /// so doing this conversion is useful. 2589 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2590 if (N.getOpcode() != ISD::OR) 2591 return false; 2592 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2593 if (!LHSKnown.Zero.getBoolValue()) 2594 return false; 2595 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2596 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2597 } 2598 2599 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2600 /// be represented as an indexed [r+r] operation. 2601 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2602 SDValue &Index, 2603 SelectionDAG &DAG) const { 2604 for (SDNode *U : N->uses()) { 2605 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2606 if (Memop->getMemoryVT() == MVT::f64) { 2607 Base = N.getOperand(0); 2608 Index = N.getOperand(1); 2609 return true; 2610 } 2611 } 2612 } 2613 return false; 2614 } 2615 2616 /// isIntS34Immediate - This method tests if value of node given can be 2617 /// accurately represented as a sign extension from a 34-bit value. If so, 2618 /// this returns true and the immediate. 2619 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2620 if (!isa<ConstantSDNode>(N)) 2621 return false; 2622 2623 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2624 return isInt<34>(Imm); 2625 } 2626 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2627 return isIntS34Immediate(Op.getNode(), Imm); 2628 } 2629 2630 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2631 /// can be represented as an indexed [r+r] operation. Returns false if it 2632 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2633 /// non-zero and N can be represented by a base register plus a signed 16-bit 2634 /// displacement, make a more precise judgement by checking (displacement % \p 2635 /// EncodingAlignment). 2636 bool PPCTargetLowering::SelectAddressRegReg( 2637 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2638 MaybeAlign EncodingAlignment) const { 2639 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2640 // a [pc+imm]. 2641 if (SelectAddressPCRel(N, Base)) 2642 return false; 2643 2644 int16_t Imm = 0; 2645 if (N.getOpcode() == ISD::ADD) { 2646 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2647 // SPE load/store can only handle 8-bit offsets. 2648 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2649 return true; 2650 if (isIntS16Immediate(N.getOperand(1), Imm) && 2651 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2652 return false; // r+i 2653 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2654 return false; // r+i 2655 2656 Base = N.getOperand(0); 2657 Index = N.getOperand(1); 2658 return true; 2659 } else if (N.getOpcode() == ISD::OR) { 2660 if (isIntS16Immediate(N.getOperand(1), Imm) && 2661 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2662 return false; // r+i can fold it if we can. 2663 2664 // If this is an or of disjoint bitfields, we can codegen this as an add 2665 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2666 // disjoint. 2667 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2668 2669 if (LHSKnown.Zero.getBoolValue()) { 2670 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2671 // If all of the bits are known zero on the LHS or RHS, the add won't 2672 // carry. 2673 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2674 Base = N.getOperand(0); 2675 Index = N.getOperand(1); 2676 return true; 2677 } 2678 } 2679 } 2680 2681 return false; 2682 } 2683 2684 // If we happen to be doing an i64 load or store into a stack slot that has 2685 // less than a 4-byte alignment, then the frame-index elimination may need to 2686 // use an indexed load or store instruction (because the offset may not be a 2687 // multiple of 4). The extra register needed to hold the offset comes from the 2688 // register scavenger, and it is possible that the scavenger will need to use 2689 // an emergency spill slot. As a result, we need to make sure that a spill slot 2690 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2691 // stack slot. 2692 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2693 // FIXME: This does not handle the LWA case. 2694 if (VT != MVT::i64) 2695 return; 2696 2697 // NOTE: We'll exclude negative FIs here, which come from argument 2698 // lowering, because there are no known test cases triggering this problem 2699 // using packed structures (or similar). We can remove this exclusion if 2700 // we find such a test case. The reason why this is so test-case driven is 2701 // because this entire 'fixup' is only to prevent crashes (from the 2702 // register scavenger) on not-really-valid inputs. For example, if we have: 2703 // %a = alloca i1 2704 // %b = bitcast i1* %a to i64* 2705 // store i64* a, i64 b 2706 // then the store should really be marked as 'align 1', but is not. If it 2707 // were marked as 'align 1' then the indexed form would have been 2708 // instruction-selected initially, and the problem this 'fixup' is preventing 2709 // won't happen regardless. 2710 if (FrameIdx < 0) 2711 return; 2712 2713 MachineFunction &MF = DAG.getMachineFunction(); 2714 MachineFrameInfo &MFI = MF.getFrameInfo(); 2715 2716 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2717 return; 2718 2719 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2720 FuncInfo->setHasNonRISpills(); 2721 } 2722 2723 /// Returns true if the address N can be represented by a base register plus 2724 /// a signed 16-bit displacement [r+imm], and if it is not better 2725 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2726 /// displacements that are multiples of that value. 2727 bool PPCTargetLowering::SelectAddressRegImm( 2728 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2729 MaybeAlign EncodingAlignment) const { 2730 // FIXME dl should come from parent load or store, not from address 2731 SDLoc dl(N); 2732 2733 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2734 // a [pc+imm]. 2735 if (SelectAddressPCRel(N, Base)) 2736 return false; 2737 2738 // If this can be more profitably realized as r+r, fail. 2739 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2740 return false; 2741 2742 if (N.getOpcode() == ISD::ADD) { 2743 int16_t imm = 0; 2744 if (isIntS16Immediate(N.getOperand(1), imm) && 2745 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2746 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2747 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2748 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2749 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2750 } else { 2751 Base = N.getOperand(0); 2752 } 2753 return true; // [r+i] 2754 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2755 // Match LOAD (ADD (X, Lo(G))). 2756 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2757 && "Cannot handle constant offsets yet!"); 2758 Disp = N.getOperand(1).getOperand(0); // The global address. 2759 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2760 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2761 Disp.getOpcode() == ISD::TargetConstantPool || 2762 Disp.getOpcode() == ISD::TargetJumpTable); 2763 Base = N.getOperand(0); 2764 return true; // [&g+r] 2765 } 2766 } else if (N.getOpcode() == ISD::OR) { 2767 int16_t imm = 0; 2768 if (isIntS16Immediate(N.getOperand(1), imm) && 2769 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2770 // If this is an or of disjoint bitfields, we can codegen this as an add 2771 // (for better address arithmetic) if the LHS and RHS of the OR are 2772 // provably disjoint. 2773 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2774 2775 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2776 // If all of the bits are known zero on the LHS or RHS, the add won't 2777 // carry. 2778 if (FrameIndexSDNode *FI = 2779 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2780 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2781 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2782 } else { 2783 Base = N.getOperand(0); 2784 } 2785 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2786 return true; 2787 } 2788 } 2789 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2790 // Loading from a constant address. 2791 2792 // If this address fits entirely in a 16-bit sext immediate field, codegen 2793 // this as "d, 0" 2794 int16_t Imm; 2795 if (isIntS16Immediate(CN, Imm) && 2796 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2797 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2798 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2799 CN->getValueType(0)); 2800 return true; 2801 } 2802 2803 // Handle 32-bit sext immediates with LIS + addr mode. 2804 if ((CN->getValueType(0) == MVT::i32 || 2805 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2806 (!EncodingAlignment || 2807 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2808 int Addr = (int)CN->getZExtValue(); 2809 2810 // Otherwise, break this down into an LIS + disp. 2811 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2812 2813 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2814 MVT::i32); 2815 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2816 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2817 return true; 2818 } 2819 } 2820 2821 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2822 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2823 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2824 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2825 } else 2826 Base = N; 2827 return true; // [r+0] 2828 } 2829 2830 /// Similar to the 16-bit case but for instructions that take a 34-bit 2831 /// displacement field (prefixed loads/stores). 2832 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2833 SDValue &Base, 2834 SelectionDAG &DAG) const { 2835 // Only on 64-bit targets. 2836 if (N.getValueType() != MVT::i64) 2837 return false; 2838 2839 SDLoc dl(N); 2840 int64_t Imm = 0; 2841 2842 if (N.getOpcode() == ISD::ADD) { 2843 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2844 return false; 2845 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2846 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2847 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2848 else 2849 Base = N.getOperand(0); 2850 return true; 2851 } 2852 2853 if (N.getOpcode() == ISD::OR) { 2854 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2855 return false; 2856 // If this is an or of disjoint bitfields, we can codegen this as an add 2857 // (for better address arithmetic) if the LHS and RHS of the OR are 2858 // provably disjoint. 2859 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2860 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2861 return false; 2862 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2863 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2864 else 2865 Base = N.getOperand(0); 2866 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2867 return true; 2868 } 2869 2870 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2871 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2872 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2873 return true; 2874 } 2875 2876 return false; 2877 } 2878 2879 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2880 /// represented as an indexed [r+r] operation. 2881 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2882 SDValue &Index, 2883 SelectionDAG &DAG) const { 2884 // Check to see if we can easily represent this as an [r+r] address. This 2885 // will fail if it thinks that the address is more profitably represented as 2886 // reg+imm, e.g. where imm = 0. 2887 if (SelectAddressRegReg(N, Base, Index, DAG)) 2888 return true; 2889 2890 // If the address is the result of an add, we will utilize the fact that the 2891 // address calculation includes an implicit add. However, we can reduce 2892 // register pressure if we do not materialize a constant just for use as the 2893 // index register. We only get rid of the add if it is not an add of a 2894 // value and a 16-bit signed constant and both have a single use. 2895 int16_t imm = 0; 2896 if (N.getOpcode() == ISD::ADD && 2897 (!isIntS16Immediate(N.getOperand(1), imm) || 2898 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2899 Base = N.getOperand(0); 2900 Index = N.getOperand(1); 2901 return true; 2902 } 2903 2904 // Otherwise, do it the hard way, using R0 as the base register. 2905 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2906 N.getValueType()); 2907 Index = N; 2908 return true; 2909 } 2910 2911 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2912 Ty *PCRelCand = dyn_cast<Ty>(N); 2913 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2914 } 2915 2916 /// Returns true if this address is a PC Relative address. 2917 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2918 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2919 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2920 // This is a materialize PC Relative node. Always select this as PC Relative. 2921 Base = N; 2922 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2923 return true; 2924 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2925 isValidPCRelNode<GlobalAddressSDNode>(N) || 2926 isValidPCRelNode<JumpTableSDNode>(N) || 2927 isValidPCRelNode<BlockAddressSDNode>(N)) 2928 return true; 2929 return false; 2930 } 2931 2932 /// Returns true if we should use a direct load into vector instruction 2933 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2934 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2935 2936 // If there are any other uses other than scalar to vector, then we should 2937 // keep it as a scalar load -> direct move pattern to prevent multiple 2938 // loads. 2939 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2940 if (!LD) 2941 return false; 2942 2943 EVT MemVT = LD->getMemoryVT(); 2944 if (!MemVT.isSimple()) 2945 return false; 2946 switch(MemVT.getSimpleVT().SimpleTy) { 2947 case MVT::i64: 2948 break; 2949 case MVT::i32: 2950 if (!ST.hasP8Vector()) 2951 return false; 2952 break; 2953 case MVT::i16: 2954 case MVT::i8: 2955 if (!ST.hasP9Vector()) 2956 return false; 2957 break; 2958 default: 2959 return false; 2960 } 2961 2962 SDValue LoadedVal(N, 0); 2963 if (!LoadedVal.hasOneUse()) 2964 return false; 2965 2966 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2967 UI != UE; ++UI) 2968 if (UI.getUse().get().getResNo() == 0 && 2969 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2970 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2971 return false; 2972 2973 return true; 2974 } 2975 2976 /// getPreIndexedAddressParts - returns true by value, base pointer and 2977 /// offset pointer and addressing mode by reference if the node's address 2978 /// can be legally represented as pre-indexed load / store address. 2979 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2980 SDValue &Offset, 2981 ISD::MemIndexedMode &AM, 2982 SelectionDAG &DAG) const { 2983 if (DisablePPCPreinc) return false; 2984 2985 bool isLoad = true; 2986 SDValue Ptr; 2987 EVT VT; 2988 unsigned Alignment; 2989 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2990 Ptr = LD->getBasePtr(); 2991 VT = LD->getMemoryVT(); 2992 Alignment = LD->getAlignment(); 2993 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2994 Ptr = ST->getBasePtr(); 2995 VT = ST->getMemoryVT(); 2996 Alignment = ST->getAlignment(); 2997 isLoad = false; 2998 } else 2999 return false; 3000 3001 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 3002 // instructions because we can fold these into a more efficient instruction 3003 // instead, (such as LXSD). 3004 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 3005 return false; 3006 } 3007 3008 // PowerPC doesn't have preinc load/store instructions for vectors 3009 if (VT.isVector()) 3010 return false; 3011 3012 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3013 // Common code will reject creating a pre-inc form if the base pointer 3014 // is a frame index, or if N is a store and the base pointer is either 3015 // the same as or a predecessor of the value being stored. Check for 3016 // those situations here, and try with swapped Base/Offset instead. 3017 bool Swap = false; 3018 3019 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3020 Swap = true; 3021 else if (!isLoad) { 3022 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3023 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3024 Swap = true; 3025 } 3026 3027 if (Swap) 3028 std::swap(Base, Offset); 3029 3030 AM = ISD::PRE_INC; 3031 return true; 3032 } 3033 3034 // LDU/STU can only handle immediates that are a multiple of 4. 3035 if (VT != MVT::i64) { 3036 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3037 return false; 3038 } else { 3039 // LDU/STU need an address with at least 4-byte alignment. 3040 if (Alignment < 4) 3041 return false; 3042 3043 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3044 return false; 3045 } 3046 3047 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3048 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3049 // sext i32 to i64 when addr mode is r+i. 3050 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3051 LD->getExtensionType() == ISD::SEXTLOAD && 3052 isa<ConstantSDNode>(Offset)) 3053 return false; 3054 } 3055 3056 AM = ISD::PRE_INC; 3057 return true; 3058 } 3059 3060 //===----------------------------------------------------------------------===// 3061 // LowerOperation implementation 3062 //===----------------------------------------------------------------------===// 3063 3064 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3065 /// and LoOpFlags to the target MO flags. 3066 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3067 unsigned &HiOpFlags, unsigned &LoOpFlags, 3068 const GlobalValue *GV = nullptr) { 3069 HiOpFlags = PPCII::MO_HA; 3070 LoOpFlags = PPCII::MO_LO; 3071 3072 // Don't use the pic base if not in PIC relocation model. 3073 if (IsPIC) { 3074 HiOpFlags |= PPCII::MO_PIC_FLAG; 3075 LoOpFlags |= PPCII::MO_PIC_FLAG; 3076 } 3077 } 3078 3079 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3080 SelectionDAG &DAG) { 3081 SDLoc DL(HiPart); 3082 EVT PtrVT = HiPart.getValueType(); 3083 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3084 3085 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3086 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3087 3088 // With PIC, the first instruction is actually "GR+hi(&G)". 3089 if (isPIC) 3090 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3091 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3092 3093 // Generate non-pic code that has direct accesses to the constant pool. 3094 // The address of the global is just (hi(&g)+lo(&g)). 3095 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3096 } 3097 3098 static void setUsesTOCBasePtr(MachineFunction &MF) { 3099 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3100 FuncInfo->setUsesTOCBasePtr(); 3101 } 3102 3103 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3104 setUsesTOCBasePtr(DAG.getMachineFunction()); 3105 } 3106 3107 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3108 SDValue GA) const { 3109 const bool Is64Bit = Subtarget.isPPC64(); 3110 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3111 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3112 : Subtarget.isAIXABI() 3113 ? DAG.getRegister(PPC::R2, VT) 3114 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3115 SDValue Ops[] = { GA, Reg }; 3116 return DAG.getMemIntrinsicNode( 3117 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3118 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3119 MachineMemOperand::MOLoad); 3120 } 3121 3122 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3123 SelectionDAG &DAG) const { 3124 EVT PtrVT = Op.getValueType(); 3125 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3126 const Constant *C = CP->getConstVal(); 3127 3128 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3129 // The actual address of the GlobalValue is stored in the TOC. 3130 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3131 if (Subtarget.isUsingPCRelativeCalls()) { 3132 SDLoc DL(CP); 3133 EVT Ty = getPointerTy(DAG.getDataLayout()); 3134 SDValue ConstPool = DAG.getTargetConstantPool( 3135 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3136 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3137 } 3138 setUsesTOCBasePtr(DAG); 3139 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3140 return getTOCEntry(DAG, SDLoc(CP), GA); 3141 } 3142 3143 unsigned MOHiFlag, MOLoFlag; 3144 bool IsPIC = isPositionIndependent(); 3145 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3146 3147 if (IsPIC && Subtarget.isSVR4ABI()) { 3148 SDValue GA = 3149 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3150 return getTOCEntry(DAG, SDLoc(CP), GA); 3151 } 3152 3153 SDValue CPIHi = 3154 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3155 SDValue CPILo = 3156 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3157 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3158 } 3159 3160 // For 64-bit PowerPC, prefer the more compact relative encodings. 3161 // This trades 32 bits per jump table entry for one or two instructions 3162 // on the jump site. 3163 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3164 if (isJumpTableRelative()) 3165 return MachineJumpTableInfo::EK_LabelDifference32; 3166 3167 return TargetLowering::getJumpTableEncoding(); 3168 } 3169 3170 bool PPCTargetLowering::isJumpTableRelative() const { 3171 if (UseAbsoluteJumpTables) 3172 return false; 3173 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3174 return true; 3175 return TargetLowering::isJumpTableRelative(); 3176 } 3177 3178 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3179 SelectionDAG &DAG) const { 3180 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3181 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3182 3183 switch (getTargetMachine().getCodeModel()) { 3184 case CodeModel::Small: 3185 case CodeModel::Medium: 3186 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3187 default: 3188 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3189 getPointerTy(DAG.getDataLayout())); 3190 } 3191 } 3192 3193 const MCExpr * 3194 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3195 unsigned JTI, 3196 MCContext &Ctx) const { 3197 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3198 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3199 3200 switch (getTargetMachine().getCodeModel()) { 3201 case CodeModel::Small: 3202 case CodeModel::Medium: 3203 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3204 default: 3205 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3206 } 3207 } 3208 3209 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3210 EVT PtrVT = Op.getValueType(); 3211 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3212 3213 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3214 if (Subtarget.isUsingPCRelativeCalls()) { 3215 SDLoc DL(JT); 3216 EVT Ty = getPointerTy(DAG.getDataLayout()); 3217 SDValue GA = 3218 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3219 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3220 return MatAddr; 3221 } 3222 3223 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3224 // The actual address of the GlobalValue is stored in the TOC. 3225 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3226 setUsesTOCBasePtr(DAG); 3227 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3228 return getTOCEntry(DAG, SDLoc(JT), GA); 3229 } 3230 3231 unsigned MOHiFlag, MOLoFlag; 3232 bool IsPIC = isPositionIndependent(); 3233 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3234 3235 if (IsPIC && Subtarget.isSVR4ABI()) { 3236 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3237 PPCII::MO_PIC_FLAG); 3238 return getTOCEntry(DAG, SDLoc(GA), GA); 3239 } 3240 3241 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3242 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3243 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3244 } 3245 3246 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3247 SelectionDAG &DAG) const { 3248 EVT PtrVT = Op.getValueType(); 3249 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3250 const BlockAddress *BA = BASDN->getBlockAddress(); 3251 3252 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3253 if (Subtarget.isUsingPCRelativeCalls()) { 3254 SDLoc DL(BASDN); 3255 EVT Ty = getPointerTy(DAG.getDataLayout()); 3256 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3257 PPCII::MO_PCREL_FLAG); 3258 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3259 return MatAddr; 3260 } 3261 3262 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3263 // The actual BlockAddress is stored in the TOC. 3264 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3265 setUsesTOCBasePtr(DAG); 3266 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3267 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3268 } 3269 3270 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3271 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3272 return getTOCEntry( 3273 DAG, SDLoc(BASDN), 3274 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3275 3276 unsigned MOHiFlag, MOLoFlag; 3277 bool IsPIC = isPositionIndependent(); 3278 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3279 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3280 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3281 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3282 } 3283 3284 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3285 SelectionDAG &DAG) const { 3286 if (Subtarget.isAIXABI()) 3287 return LowerGlobalTLSAddressAIX(Op, DAG); 3288 3289 return LowerGlobalTLSAddressLinux(Op, DAG); 3290 } 3291 3292 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3293 SelectionDAG &DAG) const { 3294 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3295 3296 if (DAG.getTarget().useEmulatedTLS()) 3297 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3298 3299 SDLoc dl(GA); 3300 const GlobalValue *GV = GA->getGlobal(); 3301 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3302 3303 // The general-dynamic model is the only access model supported for now, so 3304 // all the GlobalTLSAddress nodes are lowered with this model. 3305 // We need to generate two TOC entries, one for the variable offset, one for 3306 // the region handle. The global address for the TOC entry of the region 3307 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3308 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3309 SDValue VariableOffsetTGA = 3310 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3311 SDValue RegionHandleTGA = 3312 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3313 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3314 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3315 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3316 RegionHandle); 3317 } 3318 3319 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3320 SelectionDAG &DAG) const { 3321 // FIXME: TLS addresses currently use medium model code sequences, 3322 // which is the most useful form. Eventually support for small and 3323 // large models could be added if users need it, at the cost of 3324 // additional complexity. 3325 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3326 if (DAG.getTarget().useEmulatedTLS()) 3327 return LowerToTLSEmulatedModel(GA, DAG); 3328 3329 SDLoc dl(GA); 3330 const GlobalValue *GV = GA->getGlobal(); 3331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3332 bool is64bit = Subtarget.isPPC64(); 3333 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3334 PICLevel::Level picLevel = M->getPICLevel(); 3335 3336 const TargetMachine &TM = getTargetMachine(); 3337 TLSModel::Model Model = TM.getTLSModel(GV); 3338 3339 if (Model == TLSModel::LocalExec) { 3340 if (Subtarget.isUsingPCRelativeCalls()) { 3341 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3342 SDValue TGA = DAG.getTargetGlobalAddress( 3343 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3344 SDValue MatAddr = 3345 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3346 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3347 } 3348 3349 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3350 PPCII::MO_TPREL_HA); 3351 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3352 PPCII::MO_TPREL_LO); 3353 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3354 : DAG.getRegister(PPC::R2, MVT::i32); 3355 3356 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3357 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3358 } 3359 3360 if (Model == TLSModel::InitialExec) { 3361 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3362 SDValue TGA = DAG.getTargetGlobalAddress( 3363 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3364 SDValue TGATLS = DAG.getTargetGlobalAddress( 3365 GV, dl, PtrVT, 0, 3366 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3367 SDValue TPOffset; 3368 if (IsPCRel) { 3369 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3370 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3371 MachinePointerInfo()); 3372 } else { 3373 SDValue GOTPtr; 3374 if (is64bit) { 3375 setUsesTOCBasePtr(DAG); 3376 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3377 GOTPtr = 3378 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3379 } else { 3380 if (!TM.isPositionIndependent()) 3381 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3382 else if (picLevel == PICLevel::SmallPIC) 3383 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3384 else 3385 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3386 } 3387 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3388 } 3389 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3390 } 3391 3392 if (Model == TLSModel::GeneralDynamic) { 3393 if (Subtarget.isUsingPCRelativeCalls()) { 3394 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3395 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3396 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3397 } 3398 3399 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3400 SDValue GOTPtr; 3401 if (is64bit) { 3402 setUsesTOCBasePtr(DAG); 3403 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3404 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3405 GOTReg, TGA); 3406 } else { 3407 if (picLevel == PICLevel::SmallPIC) 3408 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3409 else 3410 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3411 } 3412 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3413 GOTPtr, TGA, TGA); 3414 } 3415 3416 if (Model == TLSModel::LocalDynamic) { 3417 if (Subtarget.isUsingPCRelativeCalls()) { 3418 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3419 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3420 SDValue MatPCRel = 3421 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3422 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3423 } 3424 3425 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3426 SDValue GOTPtr; 3427 if (is64bit) { 3428 setUsesTOCBasePtr(DAG); 3429 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3430 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3431 GOTReg, TGA); 3432 } else { 3433 if (picLevel == PICLevel::SmallPIC) 3434 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3435 else 3436 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3437 } 3438 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3439 PtrVT, GOTPtr, TGA, TGA); 3440 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3441 PtrVT, TLSAddr, TGA); 3442 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3443 } 3444 3445 llvm_unreachable("Unknown TLS model!"); 3446 } 3447 3448 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3449 SelectionDAG &DAG) const { 3450 EVT PtrVT = Op.getValueType(); 3451 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3452 SDLoc DL(GSDN); 3453 const GlobalValue *GV = GSDN->getGlobal(); 3454 3455 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3456 // The actual address of the GlobalValue is stored in the TOC. 3457 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3458 if (Subtarget.isUsingPCRelativeCalls()) { 3459 EVT Ty = getPointerTy(DAG.getDataLayout()); 3460 if (isAccessedAsGotIndirect(Op)) { 3461 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3462 PPCII::MO_PCREL_FLAG | 3463 PPCII::MO_GOT_FLAG); 3464 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3465 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3466 MachinePointerInfo()); 3467 return Load; 3468 } else { 3469 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3470 PPCII::MO_PCREL_FLAG); 3471 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3472 } 3473 } 3474 setUsesTOCBasePtr(DAG); 3475 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3476 return getTOCEntry(DAG, DL, GA); 3477 } 3478 3479 unsigned MOHiFlag, MOLoFlag; 3480 bool IsPIC = isPositionIndependent(); 3481 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3482 3483 if (IsPIC && Subtarget.isSVR4ABI()) { 3484 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3485 GSDN->getOffset(), 3486 PPCII::MO_PIC_FLAG); 3487 return getTOCEntry(DAG, DL, GA); 3488 } 3489 3490 SDValue GAHi = 3491 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3492 SDValue GALo = 3493 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3494 3495 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3496 } 3497 3498 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3499 bool IsStrict = Op->isStrictFPOpcode(); 3500 ISD::CondCode CC = 3501 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3502 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3503 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3504 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3505 EVT LHSVT = LHS.getValueType(); 3506 SDLoc dl(Op); 3507 3508 // Soften the setcc with libcall if it is fp128. 3509 if (LHSVT == MVT::f128) { 3510 assert(!Subtarget.hasP9Vector() && 3511 "SETCC for f128 is already legal under Power9!"); 3512 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3513 Op->getOpcode() == ISD::STRICT_FSETCCS); 3514 if (RHS.getNode()) 3515 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3516 DAG.getCondCode(CC)); 3517 if (IsStrict) 3518 return DAG.getMergeValues({LHS, Chain}, dl); 3519 return LHS; 3520 } 3521 3522 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3523 3524 if (Op.getValueType() == MVT::v2i64) { 3525 // When the operands themselves are v2i64 values, we need to do something 3526 // special because VSX has no underlying comparison operations for these. 3527 if (LHS.getValueType() == MVT::v2i64) { 3528 // Equality can be handled by casting to the legal type for Altivec 3529 // comparisons, everything else needs to be expanded. 3530 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3531 return SDValue(); 3532 SDValue SetCC32 = DAG.getSetCC( 3533 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3534 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3535 int ShuffV[] = {1, 0, 3, 2}; 3536 SDValue Shuff = 3537 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3538 return DAG.getBitcast(MVT::v2i64, 3539 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3540 dl, MVT::v4i32, Shuff, SetCC32)); 3541 } 3542 3543 // We handle most of these in the usual way. 3544 return Op; 3545 } 3546 3547 // If we're comparing for equality to zero, expose the fact that this is 3548 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3549 // fold the new nodes. 3550 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3551 return V; 3552 3553 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3554 // Leave comparisons against 0 and -1 alone for now, since they're usually 3555 // optimized. FIXME: revisit this when we can custom lower all setcc 3556 // optimizations. 3557 if (C->isAllOnes() || C->isZero()) 3558 return SDValue(); 3559 } 3560 3561 // If we have an integer seteq/setne, turn it into a compare against zero 3562 // by xor'ing the rhs with the lhs, which is faster than setting a 3563 // condition register, reading it back out, and masking the correct bit. The 3564 // normal approach here uses sub to do this instead of xor. Using xor exposes 3565 // the result to other bit-twiddling opportunities. 3566 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3567 EVT VT = Op.getValueType(); 3568 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3569 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3570 } 3571 return SDValue(); 3572 } 3573 3574 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3575 SDNode *Node = Op.getNode(); 3576 EVT VT = Node->getValueType(0); 3577 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3578 SDValue InChain = Node->getOperand(0); 3579 SDValue VAListPtr = Node->getOperand(1); 3580 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3581 SDLoc dl(Node); 3582 3583 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3584 3585 // gpr_index 3586 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3587 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3588 InChain = GprIndex.getValue(1); 3589 3590 if (VT == MVT::i64) { 3591 // Check if GprIndex is even 3592 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3593 DAG.getConstant(1, dl, MVT::i32)); 3594 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3595 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3596 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3597 DAG.getConstant(1, dl, MVT::i32)); 3598 // Align GprIndex to be even if it isn't 3599 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3600 GprIndex); 3601 } 3602 3603 // fpr index is 1 byte after gpr 3604 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3605 DAG.getConstant(1, dl, MVT::i32)); 3606 3607 // fpr 3608 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3609 FprPtr, MachinePointerInfo(SV), MVT::i8); 3610 InChain = FprIndex.getValue(1); 3611 3612 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3613 DAG.getConstant(8, dl, MVT::i32)); 3614 3615 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3616 DAG.getConstant(4, dl, MVT::i32)); 3617 3618 // areas 3619 SDValue OverflowArea = 3620 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3621 InChain = OverflowArea.getValue(1); 3622 3623 SDValue RegSaveArea = 3624 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3625 InChain = RegSaveArea.getValue(1); 3626 3627 // select overflow_area if index > 8 3628 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3629 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3630 3631 // adjustment constant gpr_index * 4/8 3632 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3633 VT.isInteger() ? GprIndex : FprIndex, 3634 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3635 MVT::i32)); 3636 3637 // OurReg = RegSaveArea + RegConstant 3638 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3639 RegConstant); 3640 3641 // Floating types are 32 bytes into RegSaveArea 3642 if (VT.isFloatingPoint()) 3643 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3644 DAG.getConstant(32, dl, MVT::i32)); 3645 3646 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3647 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3648 VT.isInteger() ? GprIndex : FprIndex, 3649 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3650 MVT::i32)); 3651 3652 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3653 VT.isInteger() ? VAListPtr : FprPtr, 3654 MachinePointerInfo(SV), MVT::i8); 3655 3656 // determine if we should load from reg_save_area or overflow_area 3657 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3658 3659 // increase overflow_area by 4/8 if gpr/fpr > 8 3660 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3661 DAG.getConstant(VT.isInteger() ? 4 : 8, 3662 dl, MVT::i32)); 3663 3664 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3665 OverflowAreaPlusN); 3666 3667 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3668 MachinePointerInfo(), MVT::i32); 3669 3670 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3671 } 3672 3673 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3674 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3675 3676 // We have to copy the entire va_list struct: 3677 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3678 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3679 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3680 false, true, false, MachinePointerInfo(), 3681 MachinePointerInfo()); 3682 } 3683 3684 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3685 SelectionDAG &DAG) const { 3686 if (Subtarget.isAIXABI()) 3687 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3688 3689 return Op.getOperand(0); 3690 } 3691 3692 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3693 MachineFunction &MF = DAG.getMachineFunction(); 3694 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3695 3696 assert((Op.getOpcode() == ISD::INLINEASM || 3697 Op.getOpcode() == ISD::INLINEASM_BR) && 3698 "Expecting Inline ASM node."); 3699 3700 // If an LR store is already known to be required then there is not point in 3701 // checking this ASM as well. 3702 if (MFI.isLRStoreRequired()) 3703 return Op; 3704 3705 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3706 // type MVT::Glue. We want to ignore this last operand if that is the case. 3707 unsigned NumOps = Op.getNumOperands(); 3708 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3709 --NumOps; 3710 3711 // Check all operands that may contain the LR. 3712 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3713 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3714 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3715 ++i; // Skip the ID value. 3716 3717 switch (InlineAsm::getKind(Flags)) { 3718 default: 3719 llvm_unreachable("Bad flags!"); 3720 case InlineAsm::Kind_RegUse: 3721 case InlineAsm::Kind_Imm: 3722 case InlineAsm::Kind_Mem: 3723 i += NumVals; 3724 break; 3725 case InlineAsm::Kind_Clobber: 3726 case InlineAsm::Kind_RegDef: 3727 case InlineAsm::Kind_RegDefEarlyClobber: { 3728 for (; NumVals; --NumVals, ++i) { 3729 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3730 if (Reg != PPC::LR && Reg != PPC::LR8) 3731 continue; 3732 MFI.setLRStoreRequired(); 3733 return Op; 3734 } 3735 break; 3736 } 3737 } 3738 } 3739 3740 return Op; 3741 } 3742 3743 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3744 SelectionDAG &DAG) const { 3745 if (Subtarget.isAIXABI()) 3746 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3747 3748 SDValue Chain = Op.getOperand(0); 3749 SDValue Trmp = Op.getOperand(1); // trampoline 3750 SDValue FPtr = Op.getOperand(2); // nested function 3751 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3752 SDLoc dl(Op); 3753 3754 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3755 bool isPPC64 = (PtrVT == MVT::i64); 3756 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3757 3758 TargetLowering::ArgListTy Args; 3759 TargetLowering::ArgListEntry Entry; 3760 3761 Entry.Ty = IntPtrTy; 3762 Entry.Node = Trmp; Args.push_back(Entry); 3763 3764 // TrampSize == (isPPC64 ? 48 : 40); 3765 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3766 isPPC64 ? MVT::i64 : MVT::i32); 3767 Args.push_back(Entry); 3768 3769 Entry.Node = FPtr; Args.push_back(Entry); 3770 Entry.Node = Nest; Args.push_back(Entry); 3771 3772 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3773 TargetLowering::CallLoweringInfo CLI(DAG); 3774 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3775 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3776 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3777 3778 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3779 return CallResult.second; 3780 } 3781 3782 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3783 MachineFunction &MF = DAG.getMachineFunction(); 3784 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3785 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3786 3787 SDLoc dl(Op); 3788 3789 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3790 // vastart just stores the address of the VarArgsFrameIndex slot into the 3791 // memory location argument. 3792 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3793 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3794 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3795 MachinePointerInfo(SV)); 3796 } 3797 3798 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3799 // We suppose the given va_list is already allocated. 3800 // 3801 // typedef struct { 3802 // char gpr; /* index into the array of 8 GPRs 3803 // * stored in the register save area 3804 // * gpr=0 corresponds to r3, 3805 // * gpr=1 to r4, etc. 3806 // */ 3807 // char fpr; /* index into the array of 8 FPRs 3808 // * stored in the register save area 3809 // * fpr=0 corresponds to f1, 3810 // * fpr=1 to f2, etc. 3811 // */ 3812 // char *overflow_arg_area; 3813 // /* location on stack that holds 3814 // * the next overflow argument 3815 // */ 3816 // char *reg_save_area; 3817 // /* where r3:r10 and f1:f8 (if saved) 3818 // * are stored 3819 // */ 3820 // } va_list[1]; 3821 3822 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3823 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3824 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3825 PtrVT); 3826 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3827 PtrVT); 3828 3829 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3830 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3831 3832 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3833 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3834 3835 uint64_t FPROffset = 1; 3836 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3837 3838 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3839 3840 // Store first byte : number of int regs 3841 SDValue firstStore = 3842 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3843 MachinePointerInfo(SV), MVT::i8); 3844 uint64_t nextOffset = FPROffset; 3845 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3846 ConstFPROffset); 3847 3848 // Store second byte : number of float regs 3849 SDValue secondStore = 3850 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3851 MachinePointerInfo(SV, nextOffset), MVT::i8); 3852 nextOffset += StackOffset; 3853 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3854 3855 // Store second word : arguments given on stack 3856 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3857 MachinePointerInfo(SV, nextOffset)); 3858 nextOffset += FrameOffset; 3859 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3860 3861 // Store third word : arguments given in registers 3862 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3863 MachinePointerInfo(SV, nextOffset)); 3864 } 3865 3866 /// FPR - The set of FP registers that should be allocated for arguments 3867 /// on Darwin and AIX. 3868 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3869 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3870 PPC::F11, PPC::F12, PPC::F13}; 3871 3872 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3873 /// the stack. 3874 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3875 unsigned PtrByteSize) { 3876 unsigned ArgSize = ArgVT.getStoreSize(); 3877 if (Flags.isByVal()) 3878 ArgSize = Flags.getByValSize(); 3879 3880 // Round up to multiples of the pointer size, except for array members, 3881 // which are always packed. 3882 if (!Flags.isInConsecutiveRegs()) 3883 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3884 3885 return ArgSize; 3886 } 3887 3888 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3889 /// on the stack. 3890 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3891 ISD::ArgFlagsTy Flags, 3892 unsigned PtrByteSize) { 3893 Align Alignment(PtrByteSize); 3894 3895 // Altivec parameters are padded to a 16 byte boundary. 3896 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3897 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3898 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3899 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3900 Alignment = Align(16); 3901 3902 // ByVal parameters are aligned as requested. 3903 if (Flags.isByVal()) { 3904 auto BVAlign = Flags.getNonZeroByValAlign(); 3905 if (BVAlign > PtrByteSize) { 3906 if (BVAlign.value() % PtrByteSize != 0) 3907 llvm_unreachable( 3908 "ByVal alignment is not a multiple of the pointer size"); 3909 3910 Alignment = BVAlign; 3911 } 3912 } 3913 3914 // Array members are always packed to their original alignment. 3915 if (Flags.isInConsecutiveRegs()) { 3916 // If the array member was split into multiple registers, the first 3917 // needs to be aligned to the size of the full type. (Except for 3918 // ppcf128, which is only aligned as its f64 components.) 3919 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3920 Alignment = Align(OrigVT.getStoreSize()); 3921 else 3922 Alignment = Align(ArgVT.getStoreSize()); 3923 } 3924 3925 return Alignment; 3926 } 3927 3928 /// CalculateStackSlotUsed - Return whether this argument will use its 3929 /// stack slot (instead of being passed in registers). ArgOffset, 3930 /// AvailableFPRs, and AvailableVRs must hold the current argument 3931 /// position, and will be updated to account for this argument. 3932 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3933 unsigned PtrByteSize, unsigned LinkageSize, 3934 unsigned ParamAreaSize, unsigned &ArgOffset, 3935 unsigned &AvailableFPRs, 3936 unsigned &AvailableVRs) { 3937 bool UseMemory = false; 3938 3939 // Respect alignment of argument on the stack. 3940 Align Alignment = 3941 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3942 ArgOffset = alignTo(ArgOffset, Alignment); 3943 // If there's no space left in the argument save area, we must 3944 // use memory (this check also catches zero-sized arguments). 3945 if (ArgOffset >= LinkageSize + ParamAreaSize) 3946 UseMemory = true; 3947 3948 // Allocate argument on the stack. 3949 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3950 if (Flags.isInConsecutiveRegsLast()) 3951 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3952 // If we overran the argument save area, we must use memory 3953 // (this check catches arguments passed partially in memory) 3954 if (ArgOffset > LinkageSize + ParamAreaSize) 3955 UseMemory = true; 3956 3957 // However, if the argument is actually passed in an FPR or a VR, 3958 // we don't use memory after all. 3959 if (!Flags.isByVal()) { 3960 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3961 if (AvailableFPRs > 0) { 3962 --AvailableFPRs; 3963 return false; 3964 } 3965 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3966 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3967 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3968 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3969 if (AvailableVRs > 0) { 3970 --AvailableVRs; 3971 return false; 3972 } 3973 } 3974 3975 return UseMemory; 3976 } 3977 3978 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3979 /// ensure minimum alignment required for target. 3980 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3981 unsigned NumBytes) { 3982 return alignTo(NumBytes, Lowering->getStackAlign()); 3983 } 3984 3985 SDValue PPCTargetLowering::LowerFormalArguments( 3986 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3987 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3988 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3989 if (Subtarget.isAIXABI()) 3990 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3991 InVals); 3992 if (Subtarget.is64BitELFABI()) 3993 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3994 InVals); 3995 assert(Subtarget.is32BitELFABI()); 3996 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3997 InVals); 3998 } 3999 4000 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 4001 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4002 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4003 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4004 4005 // 32-bit SVR4 ABI Stack Frame Layout: 4006 // +-----------------------------------+ 4007 // +--> | Back chain | 4008 // | +-----------------------------------+ 4009 // | | Floating-point register save area | 4010 // | +-----------------------------------+ 4011 // | | General register save area | 4012 // | +-----------------------------------+ 4013 // | | CR save word | 4014 // | +-----------------------------------+ 4015 // | | VRSAVE save word | 4016 // | +-----------------------------------+ 4017 // | | Alignment padding | 4018 // | +-----------------------------------+ 4019 // | | Vector register save area | 4020 // | +-----------------------------------+ 4021 // | | Local variable space | 4022 // | +-----------------------------------+ 4023 // | | Parameter list area | 4024 // | +-----------------------------------+ 4025 // | | LR save word | 4026 // | +-----------------------------------+ 4027 // SP--> +--- | Back chain | 4028 // +-----------------------------------+ 4029 // 4030 // Specifications: 4031 // System V Application Binary Interface PowerPC Processor Supplement 4032 // AltiVec Technology Programming Interface Manual 4033 4034 MachineFunction &MF = DAG.getMachineFunction(); 4035 MachineFrameInfo &MFI = MF.getFrameInfo(); 4036 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4037 4038 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4039 // Potential tail calls could cause overwriting of argument stack slots. 4040 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4041 (CallConv == CallingConv::Fast)); 4042 const Align PtrAlign(4); 4043 4044 // Assign locations to all of the incoming arguments. 4045 SmallVector<CCValAssign, 16> ArgLocs; 4046 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4047 *DAG.getContext()); 4048 4049 // Reserve space for the linkage area on the stack. 4050 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4051 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4052 if (useSoftFloat()) 4053 CCInfo.PreAnalyzeFormalArguments(Ins); 4054 4055 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4056 CCInfo.clearWasPPCF128(); 4057 4058 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4059 CCValAssign &VA = ArgLocs[i]; 4060 4061 // Arguments stored in registers. 4062 if (VA.isRegLoc()) { 4063 const TargetRegisterClass *RC; 4064 EVT ValVT = VA.getValVT(); 4065 4066 switch (ValVT.getSimpleVT().SimpleTy) { 4067 default: 4068 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4069 case MVT::i1: 4070 case MVT::i32: 4071 RC = &PPC::GPRCRegClass; 4072 break; 4073 case MVT::f32: 4074 if (Subtarget.hasP8Vector()) 4075 RC = &PPC::VSSRCRegClass; 4076 else if (Subtarget.hasSPE()) 4077 RC = &PPC::GPRCRegClass; 4078 else 4079 RC = &PPC::F4RCRegClass; 4080 break; 4081 case MVT::f64: 4082 if (Subtarget.hasVSX()) 4083 RC = &PPC::VSFRCRegClass; 4084 else if (Subtarget.hasSPE()) 4085 // SPE passes doubles in GPR pairs. 4086 RC = &PPC::GPRCRegClass; 4087 else 4088 RC = &PPC::F8RCRegClass; 4089 break; 4090 case MVT::v16i8: 4091 case MVT::v8i16: 4092 case MVT::v4i32: 4093 RC = &PPC::VRRCRegClass; 4094 break; 4095 case MVT::v4f32: 4096 RC = &PPC::VRRCRegClass; 4097 break; 4098 case MVT::v2f64: 4099 case MVT::v2i64: 4100 RC = &PPC::VRRCRegClass; 4101 break; 4102 } 4103 4104 SDValue ArgValue; 4105 // Transform the arguments stored in physical registers into 4106 // virtual ones. 4107 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4108 assert(i + 1 < e && "No second half of double precision argument"); 4109 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4110 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4111 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4112 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4113 if (!Subtarget.isLittleEndian()) 4114 std::swap (ArgValueLo, ArgValueHi); 4115 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4116 ArgValueHi); 4117 } else { 4118 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4119 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4120 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4121 if (ValVT == MVT::i1) 4122 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4123 } 4124 4125 InVals.push_back(ArgValue); 4126 } else { 4127 // Argument stored in memory. 4128 assert(VA.isMemLoc()); 4129 4130 // Get the extended size of the argument type in stack 4131 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4132 // Get the actual size of the argument type 4133 unsigned ObjSize = VA.getValVT().getStoreSize(); 4134 unsigned ArgOffset = VA.getLocMemOffset(); 4135 // Stack objects in PPC32 are right justified. 4136 ArgOffset += ArgSize - ObjSize; 4137 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4138 4139 // Create load nodes to retrieve arguments from the stack. 4140 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4141 InVals.push_back( 4142 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4143 } 4144 } 4145 4146 // Assign locations to all of the incoming aggregate by value arguments. 4147 // Aggregates passed by value are stored in the local variable space of the 4148 // caller's stack frame, right above the parameter list area. 4149 SmallVector<CCValAssign, 16> ByValArgLocs; 4150 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4151 ByValArgLocs, *DAG.getContext()); 4152 4153 // Reserve stack space for the allocations in CCInfo. 4154 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4155 4156 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4157 4158 // Area that is at least reserved in the caller of this function. 4159 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4160 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4161 4162 // Set the size that is at least reserved in caller of this function. Tail 4163 // call optimized function's reserved stack space needs to be aligned so that 4164 // taking the difference between two stack areas will result in an aligned 4165 // stack. 4166 MinReservedArea = 4167 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4168 FuncInfo->setMinReservedArea(MinReservedArea); 4169 4170 SmallVector<SDValue, 8> MemOps; 4171 4172 // If the function takes variable number of arguments, make a frame index for 4173 // the start of the first vararg value... for expansion of llvm.va_start. 4174 if (isVarArg) { 4175 static const MCPhysReg GPArgRegs[] = { 4176 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4177 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4178 }; 4179 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4180 4181 static const MCPhysReg FPArgRegs[] = { 4182 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4183 PPC::F8 4184 }; 4185 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4186 4187 if (useSoftFloat() || hasSPE()) 4188 NumFPArgRegs = 0; 4189 4190 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4191 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4192 4193 // Make room for NumGPArgRegs and NumFPArgRegs. 4194 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4195 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4196 4197 FuncInfo->setVarArgsStackOffset( 4198 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4199 CCInfo.getNextStackOffset(), true)); 4200 4201 FuncInfo->setVarArgsFrameIndex( 4202 MFI.CreateStackObject(Depth, Align(8), false)); 4203 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4204 4205 // The fixed integer arguments of a variadic function are stored to the 4206 // VarArgsFrameIndex on the stack so that they may be loaded by 4207 // dereferencing the result of va_next. 4208 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4209 // Get an existing live-in vreg, or add a new one. 4210 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4211 if (!VReg) 4212 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4213 4214 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4215 SDValue Store = 4216 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4217 MemOps.push_back(Store); 4218 // Increment the address by four for the next argument to store 4219 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4220 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4221 } 4222 4223 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4224 // is set. 4225 // The double arguments are stored to the VarArgsFrameIndex 4226 // on the stack. 4227 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4228 // Get an existing live-in vreg, or add a new one. 4229 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4230 if (!VReg) 4231 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4232 4233 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4234 SDValue Store = 4235 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4236 MemOps.push_back(Store); 4237 // Increment the address by eight for the next argument to store 4238 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4239 PtrVT); 4240 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4241 } 4242 } 4243 4244 if (!MemOps.empty()) 4245 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4246 4247 return Chain; 4248 } 4249 4250 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4251 // value to MVT::i64 and then truncate to the correct register size. 4252 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4253 EVT ObjectVT, SelectionDAG &DAG, 4254 SDValue ArgVal, 4255 const SDLoc &dl) const { 4256 if (Flags.isSExt()) 4257 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4258 DAG.getValueType(ObjectVT)); 4259 else if (Flags.isZExt()) 4260 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4261 DAG.getValueType(ObjectVT)); 4262 4263 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4264 } 4265 4266 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4267 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4268 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4269 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4270 // TODO: add description of PPC stack frame format, or at least some docs. 4271 // 4272 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4273 bool isLittleEndian = Subtarget.isLittleEndian(); 4274 MachineFunction &MF = DAG.getMachineFunction(); 4275 MachineFrameInfo &MFI = MF.getFrameInfo(); 4276 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4277 4278 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4279 "fastcc not supported on varargs functions"); 4280 4281 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4282 // Potential tail calls could cause overwriting of argument stack slots. 4283 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4284 (CallConv == CallingConv::Fast)); 4285 unsigned PtrByteSize = 8; 4286 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4287 4288 static const MCPhysReg GPR[] = { 4289 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4290 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4291 }; 4292 static const MCPhysReg VR[] = { 4293 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4294 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4295 }; 4296 4297 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4298 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4299 const unsigned Num_VR_Regs = array_lengthof(VR); 4300 4301 // Do a first pass over the arguments to determine whether the ABI 4302 // guarantees that our caller has allocated the parameter save area 4303 // on its stack frame. In the ELFv1 ABI, this is always the case; 4304 // in the ELFv2 ABI, it is true if this is a vararg function or if 4305 // any parameter is located in a stack slot. 4306 4307 bool HasParameterArea = !isELFv2ABI || isVarArg; 4308 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4309 unsigned NumBytes = LinkageSize; 4310 unsigned AvailableFPRs = Num_FPR_Regs; 4311 unsigned AvailableVRs = Num_VR_Regs; 4312 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4313 if (Ins[i].Flags.isNest()) 4314 continue; 4315 4316 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4317 PtrByteSize, LinkageSize, ParamAreaSize, 4318 NumBytes, AvailableFPRs, AvailableVRs)) 4319 HasParameterArea = true; 4320 } 4321 4322 // Add DAG nodes to load the arguments or copy them out of registers. On 4323 // entry to a function on PPC, the arguments start after the linkage area, 4324 // although the first ones are often in registers. 4325 4326 unsigned ArgOffset = LinkageSize; 4327 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4328 SmallVector<SDValue, 8> MemOps; 4329 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4330 unsigned CurArgIdx = 0; 4331 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4332 SDValue ArgVal; 4333 bool needsLoad = false; 4334 EVT ObjectVT = Ins[ArgNo].VT; 4335 EVT OrigVT = Ins[ArgNo].ArgVT; 4336 unsigned ObjSize = ObjectVT.getStoreSize(); 4337 unsigned ArgSize = ObjSize; 4338 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4339 if (Ins[ArgNo].isOrigArg()) { 4340 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4341 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4342 } 4343 // We re-align the argument offset for each argument, except when using the 4344 // fast calling convention, when we need to make sure we do that only when 4345 // we'll actually use a stack slot. 4346 unsigned CurArgOffset; 4347 Align Alignment; 4348 auto ComputeArgOffset = [&]() { 4349 /* Respect alignment of argument on the stack. */ 4350 Alignment = 4351 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4352 ArgOffset = alignTo(ArgOffset, Alignment); 4353 CurArgOffset = ArgOffset; 4354 }; 4355 4356 if (CallConv != CallingConv::Fast) { 4357 ComputeArgOffset(); 4358 4359 /* Compute GPR index associated with argument offset. */ 4360 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4361 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4362 } 4363 4364 // FIXME the codegen can be much improved in some cases. 4365 // We do not have to keep everything in memory. 4366 if (Flags.isByVal()) { 4367 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4368 4369 if (CallConv == CallingConv::Fast) 4370 ComputeArgOffset(); 4371 4372 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4373 ObjSize = Flags.getByValSize(); 4374 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4375 // Empty aggregate parameters do not take up registers. Examples: 4376 // struct { } a; 4377 // union { } b; 4378 // int c[0]; 4379 // etc. However, we have to provide a place-holder in InVals, so 4380 // pretend we have an 8-byte item at the current address for that 4381 // purpose. 4382 if (!ObjSize) { 4383 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4384 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4385 InVals.push_back(FIN); 4386 continue; 4387 } 4388 4389 // Create a stack object covering all stack doublewords occupied 4390 // by the argument. If the argument is (fully or partially) on 4391 // the stack, or if the argument is fully in registers but the 4392 // caller has allocated the parameter save anyway, we can refer 4393 // directly to the caller's stack frame. Otherwise, create a 4394 // local copy in our own frame. 4395 int FI; 4396 if (HasParameterArea || 4397 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4398 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4399 else 4400 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4401 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4402 4403 // Handle aggregates smaller than 8 bytes. 4404 if (ObjSize < PtrByteSize) { 4405 // The value of the object is its address, which differs from the 4406 // address of the enclosing doubleword on big-endian systems. 4407 SDValue Arg = FIN; 4408 if (!isLittleEndian) { 4409 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4410 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4411 } 4412 InVals.push_back(Arg); 4413 4414 if (GPR_idx != Num_GPR_Regs) { 4415 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4416 FuncInfo->addLiveInAttr(VReg, Flags); 4417 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4418 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4419 SDValue Store = 4420 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4421 MachinePointerInfo(&*FuncArg), ObjType); 4422 MemOps.push_back(Store); 4423 } 4424 // Whether we copied from a register or not, advance the offset 4425 // into the parameter save area by a full doubleword. 4426 ArgOffset += PtrByteSize; 4427 continue; 4428 } 4429 4430 // The value of the object is its address, which is the address of 4431 // its first stack doubleword. 4432 InVals.push_back(FIN); 4433 4434 // Store whatever pieces of the object are in registers to memory. 4435 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4436 if (GPR_idx == Num_GPR_Regs) 4437 break; 4438 4439 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4440 FuncInfo->addLiveInAttr(VReg, Flags); 4441 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4442 SDValue Addr = FIN; 4443 if (j) { 4444 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4445 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4446 } 4447 unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; 4448 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); 4449 SDValue Store = 4450 DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, 4451 MachinePointerInfo(&*FuncArg, j), ObjType); 4452 MemOps.push_back(Store); 4453 ++GPR_idx; 4454 } 4455 ArgOffset += ArgSize; 4456 continue; 4457 } 4458 4459 switch (ObjectVT.getSimpleVT().SimpleTy) { 4460 default: llvm_unreachable("Unhandled argument type!"); 4461 case MVT::i1: 4462 case MVT::i32: 4463 case MVT::i64: 4464 if (Flags.isNest()) { 4465 // The 'nest' parameter, if any, is passed in R11. 4466 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4467 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4468 4469 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4470 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4471 4472 break; 4473 } 4474 4475 // These can be scalar arguments or elements of an integer array type 4476 // passed directly. Clang may use those instead of "byval" aggregate 4477 // types to avoid forcing arguments to memory unnecessarily. 4478 if (GPR_idx != Num_GPR_Regs) { 4479 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4480 FuncInfo->addLiveInAttr(VReg, Flags); 4481 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4482 4483 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4484 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4485 // value to MVT::i64 and then truncate to the correct register size. 4486 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4487 } else { 4488 if (CallConv == CallingConv::Fast) 4489 ComputeArgOffset(); 4490 4491 needsLoad = true; 4492 ArgSize = PtrByteSize; 4493 } 4494 if (CallConv != CallingConv::Fast || needsLoad) 4495 ArgOffset += 8; 4496 break; 4497 4498 case MVT::f32: 4499 case MVT::f64: 4500 // These can be scalar arguments or elements of a float array type 4501 // passed directly. The latter are used to implement ELFv2 homogenous 4502 // float aggregates. 4503 if (FPR_idx != Num_FPR_Regs) { 4504 unsigned VReg; 4505 4506 if (ObjectVT == MVT::f32) 4507 VReg = MF.addLiveIn(FPR[FPR_idx], 4508 Subtarget.hasP8Vector() 4509 ? &PPC::VSSRCRegClass 4510 : &PPC::F4RCRegClass); 4511 else 4512 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4513 ? &PPC::VSFRCRegClass 4514 : &PPC::F8RCRegClass); 4515 4516 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4517 ++FPR_idx; 4518 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4519 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4520 // once we support fp <-> gpr moves. 4521 4522 // This can only ever happen in the presence of f32 array types, 4523 // since otherwise we never run out of FPRs before running out 4524 // of GPRs. 4525 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4526 FuncInfo->addLiveInAttr(VReg, Flags); 4527 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4528 4529 if (ObjectVT == MVT::f32) { 4530 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4531 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4532 DAG.getConstant(32, dl, MVT::i32)); 4533 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4534 } 4535 4536 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4537 } else { 4538 if (CallConv == CallingConv::Fast) 4539 ComputeArgOffset(); 4540 4541 needsLoad = true; 4542 } 4543 4544 // When passing an array of floats, the array occupies consecutive 4545 // space in the argument area; only round up to the next doubleword 4546 // at the end of the array. Otherwise, each float takes 8 bytes. 4547 if (CallConv != CallingConv::Fast || needsLoad) { 4548 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4549 ArgOffset += ArgSize; 4550 if (Flags.isInConsecutiveRegsLast()) 4551 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4552 } 4553 break; 4554 case MVT::v4f32: 4555 case MVT::v4i32: 4556 case MVT::v8i16: 4557 case MVT::v16i8: 4558 case MVT::v2f64: 4559 case MVT::v2i64: 4560 case MVT::v1i128: 4561 case MVT::f128: 4562 // These can be scalar arguments or elements of a vector array type 4563 // passed directly. The latter are used to implement ELFv2 homogenous 4564 // vector aggregates. 4565 if (VR_idx != Num_VR_Regs) { 4566 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4567 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4568 ++VR_idx; 4569 } else { 4570 if (CallConv == CallingConv::Fast) 4571 ComputeArgOffset(); 4572 needsLoad = true; 4573 } 4574 if (CallConv != CallingConv::Fast || needsLoad) 4575 ArgOffset += 16; 4576 break; 4577 } 4578 4579 // We need to load the argument to a virtual register if we determined 4580 // above that we ran out of physical registers of the appropriate type. 4581 if (needsLoad) { 4582 if (ObjSize < ArgSize && !isLittleEndian) 4583 CurArgOffset += ArgSize - ObjSize; 4584 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4585 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4586 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4587 } 4588 4589 InVals.push_back(ArgVal); 4590 } 4591 4592 // Area that is at least reserved in the caller of this function. 4593 unsigned MinReservedArea; 4594 if (HasParameterArea) 4595 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4596 else 4597 MinReservedArea = LinkageSize; 4598 4599 // Set the size that is at least reserved in caller of this function. Tail 4600 // call optimized functions' reserved stack space needs to be aligned so that 4601 // taking the difference between two stack areas will result in an aligned 4602 // stack. 4603 MinReservedArea = 4604 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4605 FuncInfo->setMinReservedArea(MinReservedArea); 4606 4607 // If the function takes variable number of arguments, make a frame index for 4608 // the start of the first vararg value... for expansion of llvm.va_start. 4609 // On ELFv2ABI spec, it writes: 4610 // C programs that are intended to be *portable* across different compilers 4611 // and architectures must use the header file <stdarg.h> to deal with variable 4612 // argument lists. 4613 if (isVarArg && MFI.hasVAStart()) { 4614 int Depth = ArgOffset; 4615 4616 FuncInfo->setVarArgsFrameIndex( 4617 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4618 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4619 4620 // If this function is vararg, store any remaining integer argument regs 4621 // to their spots on the stack so that they may be loaded by dereferencing 4622 // the result of va_next. 4623 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4624 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4625 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4626 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4627 SDValue Store = 4628 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4629 MemOps.push_back(Store); 4630 // Increment the address by four for the next argument to store 4631 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4632 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4633 } 4634 } 4635 4636 if (!MemOps.empty()) 4637 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4638 4639 return Chain; 4640 } 4641 4642 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4643 /// adjusted to accommodate the arguments for the tailcall. 4644 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4645 unsigned ParamSize) { 4646 4647 if (!isTailCall) return 0; 4648 4649 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4650 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4651 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4652 // Remember only if the new adjustment is bigger. 4653 if (SPDiff < FI->getTailCallSPDelta()) 4654 FI->setTailCallSPDelta(SPDiff); 4655 4656 return SPDiff; 4657 } 4658 4659 static bool isFunctionGlobalAddress(SDValue Callee); 4660 4661 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4662 const TargetMachine &TM) { 4663 // It does not make sense to call callsShareTOCBase() with a caller that 4664 // is PC Relative since PC Relative callers do not have a TOC. 4665 #ifndef NDEBUG 4666 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4667 assert(!STICaller->isUsingPCRelativeCalls() && 4668 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4669 #endif 4670 4671 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4672 // don't have enough information to determine if the caller and callee share 4673 // the same TOC base, so we have to pessimistically assume they don't for 4674 // correctness. 4675 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4676 if (!G) 4677 return false; 4678 4679 const GlobalValue *GV = G->getGlobal(); 4680 4681 // If the callee is preemptable, then the static linker will use a plt-stub 4682 // which saves the toc to the stack, and needs a nop after the call 4683 // instruction to convert to a toc-restore. 4684 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4685 return false; 4686 4687 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4688 // We may need a TOC restore in the situation where the caller requires a 4689 // valid TOC but the callee is PC Relative and does not. 4690 const Function *F = dyn_cast<Function>(GV); 4691 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4692 4693 // If we have an Alias we can try to get the function from there. 4694 if (Alias) { 4695 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4696 F = dyn_cast<Function>(GlobalObj); 4697 } 4698 4699 // If we still have no valid function pointer we do not have enough 4700 // information to determine if the callee uses PC Relative calls so we must 4701 // assume that it does. 4702 if (!F) 4703 return false; 4704 4705 // If the callee uses PC Relative we cannot guarantee that the callee won't 4706 // clobber the TOC of the caller and so we must assume that the two 4707 // functions do not share a TOC base. 4708 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4709 if (STICallee->isUsingPCRelativeCalls()) 4710 return false; 4711 4712 // If the GV is not a strong definition then we need to assume it can be 4713 // replaced by another function at link time. The function that replaces 4714 // it may not share the same TOC as the caller since the callee may be 4715 // replaced by a PC Relative version of the same function. 4716 if (!GV->isStrongDefinitionForLinker()) 4717 return false; 4718 4719 // The medium and large code models are expected to provide a sufficiently 4720 // large TOC to provide all data addressing needs of a module with a 4721 // single TOC. 4722 if (CodeModel::Medium == TM.getCodeModel() || 4723 CodeModel::Large == TM.getCodeModel()) 4724 return true; 4725 4726 // Any explicitly-specified sections and section prefixes must also match. 4727 // Also, if we're using -ffunction-sections, then each function is always in 4728 // a different section (the same is true for COMDAT functions). 4729 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4730 GV->getSection() != Caller->getSection()) 4731 return false; 4732 if (const auto *F = dyn_cast<Function>(GV)) { 4733 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4734 return false; 4735 } 4736 4737 return true; 4738 } 4739 4740 static bool 4741 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4742 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4743 assert(Subtarget.is64BitELFABI()); 4744 4745 const unsigned PtrByteSize = 8; 4746 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4747 4748 static const MCPhysReg GPR[] = { 4749 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4750 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4751 }; 4752 static const MCPhysReg VR[] = { 4753 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4754 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4755 }; 4756 4757 const unsigned NumGPRs = array_lengthof(GPR); 4758 const unsigned NumFPRs = 13; 4759 const unsigned NumVRs = array_lengthof(VR); 4760 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4761 4762 unsigned NumBytes = LinkageSize; 4763 unsigned AvailableFPRs = NumFPRs; 4764 unsigned AvailableVRs = NumVRs; 4765 4766 for (const ISD::OutputArg& Param : Outs) { 4767 if (Param.Flags.isNest()) continue; 4768 4769 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4770 LinkageSize, ParamAreaSize, NumBytes, 4771 AvailableFPRs, AvailableVRs)) 4772 return true; 4773 } 4774 return false; 4775 } 4776 4777 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4778 if (CB.arg_size() != CallerFn->arg_size()) 4779 return false; 4780 4781 auto CalleeArgIter = CB.arg_begin(); 4782 auto CalleeArgEnd = CB.arg_end(); 4783 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4784 4785 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4786 const Value* CalleeArg = *CalleeArgIter; 4787 const Value* CallerArg = &(*CallerArgIter); 4788 if (CalleeArg == CallerArg) 4789 continue; 4790 4791 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4792 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4793 // } 4794 // 1st argument of callee is undef and has the same type as caller. 4795 if (CalleeArg->getType() == CallerArg->getType() && 4796 isa<UndefValue>(CalleeArg)) 4797 continue; 4798 4799 return false; 4800 } 4801 4802 return true; 4803 } 4804 4805 // Returns true if TCO is possible between the callers and callees 4806 // calling conventions. 4807 static bool 4808 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4809 CallingConv::ID CalleeCC) { 4810 // Tail calls are possible with fastcc and ccc. 4811 auto isTailCallableCC = [] (CallingConv::ID CC){ 4812 return CC == CallingConv::C || CC == CallingConv::Fast; 4813 }; 4814 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4815 return false; 4816 4817 // We can safely tail call both fastcc and ccc callees from a c calling 4818 // convention caller. If the caller is fastcc, we may have less stack space 4819 // than a non-fastcc caller with the same signature so disable tail-calls in 4820 // that case. 4821 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4822 } 4823 4824 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4825 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4826 const SmallVectorImpl<ISD::OutputArg> &Outs, 4827 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4828 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4829 4830 if (DisableSCO && !TailCallOpt) return false; 4831 4832 // Variadic argument functions are not supported. 4833 if (isVarArg) return false; 4834 4835 auto &Caller = DAG.getMachineFunction().getFunction(); 4836 // Check that the calling conventions are compatible for tco. 4837 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4838 return false; 4839 4840 // Caller contains any byval parameter is not supported. 4841 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4842 return false; 4843 4844 // Callee contains any byval parameter is not supported, too. 4845 // Note: This is a quick work around, because in some cases, e.g. 4846 // caller's stack size > callee's stack size, we are still able to apply 4847 // sibling call optimization. For example, gcc is able to do SCO for caller1 4848 // in the following example, but not for caller2. 4849 // struct test { 4850 // long int a; 4851 // char ary[56]; 4852 // } gTest; 4853 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4854 // b->a = v.a; 4855 // return 0; 4856 // } 4857 // void caller1(struct test a, struct test c, struct test *b) { 4858 // callee(gTest, b); } 4859 // void caller2(struct test *b) { callee(gTest, b); } 4860 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4861 return false; 4862 4863 // If callee and caller use different calling conventions, we cannot pass 4864 // parameters on stack since offsets for the parameter area may be different. 4865 if (Caller.getCallingConv() != CalleeCC && 4866 needStackSlotPassParameters(Subtarget, Outs)) 4867 return false; 4868 4869 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4870 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4871 // callee potentially have different TOC bases then we cannot tail call since 4872 // we need to restore the TOC pointer after the call. 4873 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4874 // We cannot guarantee this for indirect calls or calls to external functions. 4875 // When PC-Relative addressing is used, the concept of the TOC is no longer 4876 // applicable so this check is not required. 4877 // Check first for indirect calls. 4878 if (!Subtarget.isUsingPCRelativeCalls() && 4879 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4880 return false; 4881 4882 // Check if we share the TOC base. 4883 if (!Subtarget.isUsingPCRelativeCalls() && 4884 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4885 return false; 4886 4887 // TCO allows altering callee ABI, so we don't have to check further. 4888 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4889 return true; 4890 4891 if (DisableSCO) return false; 4892 4893 // If callee use the same argument list that caller is using, then we can 4894 // apply SCO on this case. If it is not, then we need to check if callee needs 4895 // stack for passing arguments. 4896 // PC Relative tail calls may not have a CallBase. 4897 // If there is no CallBase we cannot verify if we have the same argument 4898 // list so assume that we don't have the same argument list. 4899 if (CB && !hasSameArgumentList(&Caller, *CB) && 4900 needStackSlotPassParameters(Subtarget, Outs)) 4901 return false; 4902 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4903 return false; 4904 4905 return true; 4906 } 4907 4908 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4909 /// for tail call optimization. Targets which want to do tail call 4910 /// optimization should implement this function. 4911 bool 4912 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4913 CallingConv::ID CalleeCC, 4914 bool isVarArg, 4915 const SmallVectorImpl<ISD::InputArg> &Ins, 4916 SelectionDAG& DAG) const { 4917 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4918 return false; 4919 4920 // Variable argument functions are not supported. 4921 if (isVarArg) 4922 return false; 4923 4924 MachineFunction &MF = DAG.getMachineFunction(); 4925 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4926 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4927 // Functions containing by val parameters are not supported. 4928 for (unsigned i = 0; i != Ins.size(); i++) { 4929 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4930 if (Flags.isByVal()) return false; 4931 } 4932 4933 // Non-PIC/GOT tail calls are supported. 4934 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4935 return true; 4936 4937 // At the moment we can only do local tail calls (in same module, hidden 4938 // or protected) if we are generating PIC. 4939 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4940 return G->getGlobal()->hasHiddenVisibility() 4941 || G->getGlobal()->hasProtectedVisibility(); 4942 } 4943 4944 return false; 4945 } 4946 4947 /// isCallCompatibleAddress - Return the immediate to use if the specified 4948 /// 32-bit value is representable in the immediate field of a BxA instruction. 4949 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4950 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4951 if (!C) return nullptr; 4952 4953 int Addr = C->getZExtValue(); 4954 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4955 SignExtend32<26>(Addr) != Addr) 4956 return nullptr; // Top 6 bits have to be sext of immediate. 4957 4958 return DAG 4959 .getConstant( 4960 (int)C->getZExtValue() >> 2, SDLoc(Op), 4961 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4962 .getNode(); 4963 } 4964 4965 namespace { 4966 4967 struct TailCallArgumentInfo { 4968 SDValue Arg; 4969 SDValue FrameIdxOp; 4970 int FrameIdx = 0; 4971 4972 TailCallArgumentInfo() = default; 4973 }; 4974 4975 } // end anonymous namespace 4976 4977 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4978 static void StoreTailCallArgumentsToStackSlot( 4979 SelectionDAG &DAG, SDValue Chain, 4980 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4981 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4982 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4983 SDValue Arg = TailCallArgs[i].Arg; 4984 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4985 int FI = TailCallArgs[i].FrameIdx; 4986 // Store relative to framepointer. 4987 MemOpChains.push_back(DAG.getStore( 4988 Chain, dl, Arg, FIN, 4989 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4990 } 4991 } 4992 4993 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4994 /// the appropriate stack slot for the tail call optimized function call. 4995 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4996 SDValue OldRetAddr, SDValue OldFP, 4997 int SPDiff, const SDLoc &dl) { 4998 if (SPDiff) { 4999 // Calculate the new stack slot for the return address. 5000 MachineFunction &MF = DAG.getMachineFunction(); 5001 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5002 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5003 bool isPPC64 = Subtarget.isPPC64(); 5004 int SlotSize = isPPC64 ? 8 : 4; 5005 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5006 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5007 NewRetAddrLoc, true); 5008 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5009 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5010 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5011 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5012 } 5013 return Chain; 5014 } 5015 5016 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5017 /// the position of the argument. 5018 static void 5019 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5020 SDValue Arg, int SPDiff, unsigned ArgOffset, 5021 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5022 int Offset = ArgOffset + SPDiff; 5023 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5024 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5025 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5026 SDValue FIN = DAG.getFrameIndex(FI, VT); 5027 TailCallArgumentInfo Info; 5028 Info.Arg = Arg; 5029 Info.FrameIdxOp = FIN; 5030 Info.FrameIdx = FI; 5031 TailCallArguments.push_back(Info); 5032 } 5033 5034 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5035 /// stack slot. Returns the chain as result and the loaded frame pointers in 5036 /// LROpOut/FPOpout. Used when tail calling. 5037 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5038 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5039 SDValue &FPOpOut, const SDLoc &dl) const { 5040 if (SPDiff) { 5041 // Load the LR and FP stack slot for later adjusting. 5042 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5043 LROpOut = getReturnAddrFrameIndex(DAG); 5044 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5045 Chain = SDValue(LROpOut.getNode(), 1); 5046 } 5047 return Chain; 5048 } 5049 5050 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5051 /// by "Src" to address "Dst" of size "Size". Alignment information is 5052 /// specified by the specific parameter attribute. The copy will be passed as 5053 /// a byval function parameter. 5054 /// Sometimes what we are copying is the end of a larger object, the part that 5055 /// does not fit in registers. 5056 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5057 SDValue Chain, ISD::ArgFlagsTy Flags, 5058 SelectionDAG &DAG, const SDLoc &dl) { 5059 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5060 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5061 Flags.getNonZeroByValAlign(), false, false, false, 5062 MachinePointerInfo(), MachinePointerInfo()); 5063 } 5064 5065 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5066 /// tail calls. 5067 static void LowerMemOpCallTo( 5068 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5069 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5070 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5071 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5072 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5073 if (!isTailCall) { 5074 if (isVector) { 5075 SDValue StackPtr; 5076 if (isPPC64) 5077 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5078 else 5079 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5080 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5081 DAG.getConstant(ArgOffset, dl, PtrVT)); 5082 } 5083 MemOpChains.push_back( 5084 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5085 // Calculate and remember argument location. 5086 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5087 TailCallArguments); 5088 } 5089 5090 static void 5091 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5092 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5093 SDValue FPOp, 5094 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5095 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5096 // might overwrite each other in case of tail call optimization. 5097 SmallVector<SDValue, 8> MemOpChains2; 5098 // Do not flag preceding copytoreg stuff together with the following stuff. 5099 InFlag = SDValue(); 5100 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5101 MemOpChains2, dl); 5102 if (!MemOpChains2.empty()) 5103 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5104 5105 // Store the return address to the appropriate stack slot. 5106 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5107 5108 // Emit callseq_end just before tailcall node. 5109 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5110 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5111 InFlag = Chain.getValue(1); 5112 } 5113 5114 // Is this global address that of a function that can be called by name? (as 5115 // opposed to something that must hold a descriptor for an indirect call). 5116 static bool isFunctionGlobalAddress(SDValue Callee) { 5117 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5118 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5119 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5120 return false; 5121 5122 return G->getGlobal()->getValueType()->isFunctionTy(); 5123 } 5124 5125 return false; 5126 } 5127 5128 SDValue PPCTargetLowering::LowerCallResult( 5129 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5130 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5131 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5132 SmallVector<CCValAssign, 16> RVLocs; 5133 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5134 *DAG.getContext()); 5135 5136 CCRetInfo.AnalyzeCallResult( 5137 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5138 ? RetCC_PPC_Cold 5139 : RetCC_PPC); 5140 5141 // Copy all of the result registers out of their specified physreg. 5142 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5143 CCValAssign &VA = RVLocs[i]; 5144 assert(VA.isRegLoc() && "Can only return in registers!"); 5145 5146 SDValue Val; 5147 5148 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5149 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5150 InFlag); 5151 Chain = Lo.getValue(1); 5152 InFlag = Lo.getValue(2); 5153 VA = RVLocs[++i]; // skip ahead to next loc 5154 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5155 InFlag); 5156 Chain = Hi.getValue(1); 5157 InFlag = Hi.getValue(2); 5158 if (!Subtarget.isLittleEndian()) 5159 std::swap (Lo, Hi); 5160 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5161 } else { 5162 Val = DAG.getCopyFromReg(Chain, dl, 5163 VA.getLocReg(), VA.getLocVT(), InFlag); 5164 Chain = Val.getValue(1); 5165 InFlag = Val.getValue(2); 5166 } 5167 5168 switch (VA.getLocInfo()) { 5169 default: llvm_unreachable("Unknown loc info!"); 5170 case CCValAssign::Full: break; 5171 case CCValAssign::AExt: 5172 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5173 break; 5174 case CCValAssign::ZExt: 5175 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5176 DAG.getValueType(VA.getValVT())); 5177 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5178 break; 5179 case CCValAssign::SExt: 5180 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5181 DAG.getValueType(VA.getValVT())); 5182 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5183 break; 5184 } 5185 5186 InVals.push_back(Val); 5187 } 5188 5189 return Chain; 5190 } 5191 5192 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5193 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5194 // PatchPoint calls are not indirect. 5195 if (isPatchPoint) 5196 return false; 5197 5198 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5199 return false; 5200 5201 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5202 // becuase the immediate function pointer points to a descriptor instead of 5203 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5204 // pointer immediate points to the global entry point, while the BLA would 5205 // need to jump to the local entry point (see rL211174). 5206 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5207 isBLACompatibleAddress(Callee, DAG)) 5208 return false; 5209 5210 return true; 5211 } 5212 5213 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5214 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5215 return Subtarget.isAIXABI() || 5216 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5217 } 5218 5219 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5220 const Function &Caller, const SDValue &Callee, 5221 const PPCSubtarget &Subtarget, 5222 const TargetMachine &TM, 5223 bool IsStrictFPCall = false) { 5224 if (CFlags.IsTailCall) 5225 return PPCISD::TC_RETURN; 5226 5227 unsigned RetOpc = 0; 5228 // This is a call through a function pointer. 5229 if (CFlags.IsIndirect) { 5230 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5231 // indirect calls. The save of the caller's TOC pointer to the stack will be 5232 // inserted into the DAG as part of call lowering. The restore of the TOC 5233 // pointer is modeled by using a pseudo instruction for the call opcode that 5234 // represents the 2 instruction sequence of an indirect branch and link, 5235 // immediately followed by a load of the TOC pointer from the the stack save 5236 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5237 // as it is not saved or used. 5238 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5239 : PPCISD::BCTRL; 5240 } else if (Subtarget.isUsingPCRelativeCalls()) { 5241 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5242 RetOpc = PPCISD::CALL_NOTOC; 5243 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5244 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5245 // immediately following the call instruction if the caller and callee may 5246 // have different TOC bases. At link time if the linker determines the calls 5247 // may not share a TOC base, the call is redirected to a trampoline inserted 5248 // by the linker. The trampoline will (among other things) save the callers 5249 // TOC pointer at an ABI designated offset in the linkage area and the 5250 // linker will rewrite the nop to be a load of the TOC pointer from the 5251 // linkage area into gpr2. 5252 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5253 : PPCISD::CALL_NOP; 5254 else 5255 RetOpc = PPCISD::CALL; 5256 if (IsStrictFPCall) { 5257 switch (RetOpc) { 5258 default: 5259 llvm_unreachable("Unknown call opcode"); 5260 case PPCISD::BCTRL_LOAD_TOC: 5261 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5262 break; 5263 case PPCISD::BCTRL: 5264 RetOpc = PPCISD::BCTRL_RM; 5265 break; 5266 case PPCISD::CALL_NOTOC: 5267 RetOpc = PPCISD::CALL_NOTOC_RM; 5268 break; 5269 case PPCISD::CALL: 5270 RetOpc = PPCISD::CALL_RM; 5271 break; 5272 case PPCISD::CALL_NOP: 5273 RetOpc = PPCISD::CALL_NOP_RM; 5274 break; 5275 } 5276 } 5277 return RetOpc; 5278 } 5279 5280 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5281 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5282 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5283 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5284 return SDValue(Dest, 0); 5285 5286 // Returns true if the callee is local, and false otherwise. 5287 auto isLocalCallee = [&]() { 5288 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5289 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5290 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5291 5292 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5293 !isa_and_nonnull<GlobalIFunc>(GV); 5294 }; 5295 5296 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5297 // a static relocation model causes some versions of GNU LD (2.17.50, at 5298 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5299 // built with secure-PLT. 5300 bool UsePlt = 5301 Subtarget.is32BitELFABI() && !isLocalCallee() && 5302 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5303 5304 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5305 const TargetMachine &TM = Subtarget.getTargetMachine(); 5306 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5307 MCSymbolXCOFF *S = 5308 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5309 5310 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5311 return DAG.getMCSymbol(S, PtrVT); 5312 }; 5313 5314 if (isFunctionGlobalAddress(Callee)) { 5315 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5316 5317 if (Subtarget.isAIXABI()) { 5318 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5319 return getAIXFuncEntryPointSymbolSDNode(GV); 5320 } 5321 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5322 UsePlt ? PPCII::MO_PLT : 0); 5323 } 5324 5325 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5326 const char *SymName = S->getSymbol(); 5327 if (Subtarget.isAIXABI()) { 5328 // If there exists a user-declared function whose name is the same as the 5329 // ExternalSymbol's, then we pick up the user-declared version. 5330 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5331 if (const Function *F = 5332 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5333 return getAIXFuncEntryPointSymbolSDNode(F); 5334 5335 // On AIX, direct function calls reference the symbol for the function's 5336 // entry point, which is named by prepending a "." before the function's 5337 // C-linkage name. A Qualname is returned here because an external 5338 // function entry point is a csect with XTY_ER property. 5339 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5340 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5341 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5342 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5343 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5344 return Sec->getQualNameSymbol(); 5345 }; 5346 5347 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5348 } 5349 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5350 UsePlt ? PPCII::MO_PLT : 0); 5351 } 5352 5353 // No transformation needed. 5354 assert(Callee.getNode() && "What no callee?"); 5355 return Callee; 5356 } 5357 5358 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5359 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5360 "Expected a CALLSEQ_STARTSDNode."); 5361 5362 // The last operand is the chain, except when the node has glue. If the node 5363 // has glue, then the last operand is the glue, and the chain is the second 5364 // last operand. 5365 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5366 if (LastValue.getValueType() != MVT::Glue) 5367 return LastValue; 5368 5369 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5370 } 5371 5372 // Creates the node that moves a functions address into the count register 5373 // to prepare for an indirect call instruction. 5374 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5375 SDValue &Glue, SDValue &Chain, 5376 const SDLoc &dl) { 5377 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5378 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5379 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5380 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5381 // The glue is the second value produced. 5382 Glue = Chain.getValue(1); 5383 } 5384 5385 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5386 SDValue &Glue, SDValue &Chain, 5387 SDValue CallSeqStart, 5388 const CallBase *CB, const SDLoc &dl, 5389 bool hasNest, 5390 const PPCSubtarget &Subtarget) { 5391 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5392 // entry point, but to the function descriptor (the function entry point 5393 // address is part of the function descriptor though). 5394 // The function descriptor is a three doubleword structure with the 5395 // following fields: function entry point, TOC base address and 5396 // environment pointer. 5397 // Thus for a call through a function pointer, the following actions need 5398 // to be performed: 5399 // 1. Save the TOC of the caller in the TOC save area of its stack 5400 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5401 // 2. Load the address of the function entry point from the function 5402 // descriptor. 5403 // 3. Load the TOC of the callee from the function descriptor into r2. 5404 // 4. Load the environment pointer from the function descriptor into 5405 // r11. 5406 // 5. Branch to the function entry point address. 5407 // 6. On return of the callee, the TOC of the caller needs to be 5408 // restored (this is done in FinishCall()). 5409 // 5410 // The loads are scheduled at the beginning of the call sequence, and the 5411 // register copies are flagged together to ensure that no other 5412 // operations can be scheduled in between. E.g. without flagging the 5413 // copies together, a TOC access in the caller could be scheduled between 5414 // the assignment of the callee TOC and the branch to the callee, which leads 5415 // to incorrect code. 5416 5417 // Start by loading the function address from the descriptor. 5418 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5419 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5420 ? (MachineMemOperand::MODereferenceable | 5421 MachineMemOperand::MOInvariant) 5422 : MachineMemOperand::MONone; 5423 5424 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5425 5426 // Registers used in building the DAG. 5427 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5428 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5429 5430 // Offsets of descriptor members. 5431 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5432 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5433 5434 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5435 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5436 5437 // One load for the functions entry point address. 5438 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5439 Alignment, MMOFlags); 5440 5441 // One for loading the TOC anchor for the module that contains the called 5442 // function. 5443 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5444 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5445 SDValue TOCPtr = 5446 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5447 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5448 5449 // One for loading the environment pointer. 5450 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5451 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5452 SDValue LoadEnvPtr = 5453 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5454 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5455 5456 5457 // Then copy the newly loaded TOC anchor to the TOC pointer. 5458 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5459 Chain = TOCVal.getValue(0); 5460 Glue = TOCVal.getValue(1); 5461 5462 // If the function call has an explicit 'nest' parameter, it takes the 5463 // place of the environment pointer. 5464 assert((!hasNest || !Subtarget.isAIXABI()) && 5465 "Nest parameter is not supported on AIX."); 5466 if (!hasNest) { 5467 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5468 Chain = EnvVal.getValue(0); 5469 Glue = EnvVal.getValue(1); 5470 } 5471 5472 // The rest of the indirect call sequence is the same as the non-descriptor 5473 // DAG. 5474 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5475 } 5476 5477 static void 5478 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5479 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5480 SelectionDAG &DAG, 5481 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5482 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5483 const PPCSubtarget &Subtarget) { 5484 const bool IsPPC64 = Subtarget.isPPC64(); 5485 // MVT for a general purpose register. 5486 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5487 5488 // First operand is always the chain. 5489 Ops.push_back(Chain); 5490 5491 // If it's a direct call pass the callee as the second operand. 5492 if (!CFlags.IsIndirect) 5493 Ops.push_back(Callee); 5494 else { 5495 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5496 5497 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5498 // on the stack (this would have been done in `LowerCall_64SVR4` or 5499 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5500 // represents both the indirect branch and a load that restores the TOC 5501 // pointer from the linkage area. The operand for the TOC restore is an add 5502 // of the TOC save offset to the stack pointer. This must be the second 5503 // operand: after the chain input but before any other variadic arguments. 5504 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5505 // saved or used. 5506 if (isTOCSaveRestoreRequired(Subtarget)) { 5507 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5508 5509 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5510 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5511 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5512 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5513 Ops.push_back(AddTOC); 5514 } 5515 5516 // Add the register used for the environment pointer. 5517 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5518 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5519 RegVT)); 5520 5521 5522 // Add CTR register as callee so a bctr can be emitted later. 5523 if (CFlags.IsTailCall) 5524 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5525 } 5526 5527 // If this is a tail call add stack pointer delta. 5528 if (CFlags.IsTailCall) 5529 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5530 5531 // Add argument registers to the end of the list so that they are known live 5532 // into the call. 5533 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5534 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5535 RegsToPass[i].second.getValueType())); 5536 5537 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5538 // no way to mark dependencies as implicit here. 5539 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5540 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5541 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5542 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5543 5544 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5545 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5546 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5547 5548 // Add a register mask operand representing the call-preserved registers. 5549 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5550 const uint32_t *Mask = 5551 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5552 assert(Mask && "Missing call preserved mask for calling convention"); 5553 Ops.push_back(DAG.getRegisterMask(Mask)); 5554 5555 // If the glue is valid, it is the last operand. 5556 if (Glue.getNode()) 5557 Ops.push_back(Glue); 5558 } 5559 5560 SDValue PPCTargetLowering::FinishCall( 5561 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5562 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5563 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5564 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5565 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5566 5567 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5568 Subtarget.isAIXABI()) 5569 setUsesTOCBasePtr(DAG); 5570 5571 unsigned CallOpc = 5572 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5573 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5574 5575 if (!CFlags.IsIndirect) 5576 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5577 else if (Subtarget.usesFunctionDescriptors()) 5578 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5579 dl, CFlags.HasNest, Subtarget); 5580 else 5581 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5582 5583 // Build the operand list for the call instruction. 5584 SmallVector<SDValue, 8> Ops; 5585 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5586 SPDiff, Subtarget); 5587 5588 // Emit tail call. 5589 if (CFlags.IsTailCall) { 5590 // Indirect tail call when using PC Relative calls do not have the same 5591 // constraints. 5592 assert(((Callee.getOpcode() == ISD::Register && 5593 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5594 Callee.getOpcode() == ISD::TargetExternalSymbol || 5595 Callee.getOpcode() == ISD::TargetGlobalAddress || 5596 isa<ConstantSDNode>(Callee) || 5597 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5598 "Expecting a global address, external symbol, absolute value, " 5599 "register or an indirect tail call when PC Relative calls are " 5600 "used."); 5601 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5602 assert(CallOpc == PPCISD::TC_RETURN && 5603 "Unexpected call opcode for a tail call."); 5604 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5605 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5606 } 5607 5608 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5609 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5610 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5611 Glue = Chain.getValue(1); 5612 5613 // When performing tail call optimization the callee pops its arguments off 5614 // the stack. Account for this here so these bytes can be pushed back on in 5615 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5616 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5617 getTargetMachine().Options.GuaranteedTailCallOpt) 5618 ? NumBytes 5619 : 0; 5620 5621 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5622 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5623 Glue, dl); 5624 Glue = Chain.getValue(1); 5625 5626 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5627 DAG, InVals); 5628 } 5629 5630 SDValue 5631 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5632 SmallVectorImpl<SDValue> &InVals) const { 5633 SelectionDAG &DAG = CLI.DAG; 5634 SDLoc &dl = CLI.DL; 5635 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5636 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5637 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5638 SDValue Chain = CLI.Chain; 5639 SDValue Callee = CLI.Callee; 5640 bool &isTailCall = CLI.IsTailCall; 5641 CallingConv::ID CallConv = CLI.CallConv; 5642 bool isVarArg = CLI.IsVarArg; 5643 bool isPatchPoint = CLI.IsPatchPoint; 5644 const CallBase *CB = CLI.CB; 5645 5646 if (isTailCall) { 5647 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5648 isTailCall = false; 5649 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5650 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5651 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5652 else 5653 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5654 Ins, DAG); 5655 if (isTailCall) { 5656 ++NumTailCalls; 5657 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5658 ++NumSiblingCalls; 5659 5660 // PC Relative calls no longer guarantee that the callee is a Global 5661 // Address Node. The callee could be an indirect tail call in which 5662 // case the SDValue for the callee could be a load (to load the address 5663 // of a function pointer) or it may be a register copy (to move the 5664 // address of the callee from a function parameter into a virtual 5665 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5666 assert((Subtarget.isUsingPCRelativeCalls() || 5667 isa<GlobalAddressSDNode>(Callee)) && 5668 "Callee should be an llvm::Function object."); 5669 5670 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5671 << "\nTCO callee: "); 5672 LLVM_DEBUG(Callee.dump()); 5673 } 5674 } 5675 5676 if (!isTailCall && CB && CB->isMustTailCall()) 5677 report_fatal_error("failed to perform tail call elimination on a call " 5678 "site marked musttail"); 5679 5680 // When long calls (i.e. indirect calls) are always used, calls are always 5681 // made via function pointer. If we have a function name, first translate it 5682 // into a pointer. 5683 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5684 !isTailCall) 5685 Callee = LowerGlobalAddress(Callee, DAG); 5686 5687 CallFlags CFlags( 5688 CallConv, isTailCall, isVarArg, isPatchPoint, 5689 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5690 // hasNest 5691 Subtarget.is64BitELFABI() && 5692 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5693 CLI.NoMerge); 5694 5695 if (Subtarget.isAIXABI()) 5696 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5697 InVals, CB); 5698 5699 assert(Subtarget.isSVR4ABI()); 5700 if (Subtarget.isPPC64()) 5701 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5702 InVals, CB); 5703 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5704 InVals, CB); 5705 } 5706 5707 SDValue PPCTargetLowering::LowerCall_32SVR4( 5708 SDValue Chain, SDValue Callee, CallFlags CFlags, 5709 const SmallVectorImpl<ISD::OutputArg> &Outs, 5710 const SmallVectorImpl<SDValue> &OutVals, 5711 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5712 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5713 const CallBase *CB) const { 5714 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5715 // of the 32-bit SVR4 ABI stack frame layout. 5716 5717 const CallingConv::ID CallConv = CFlags.CallConv; 5718 const bool IsVarArg = CFlags.IsVarArg; 5719 const bool IsTailCall = CFlags.IsTailCall; 5720 5721 assert((CallConv == CallingConv::C || 5722 CallConv == CallingConv::Cold || 5723 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5724 5725 const Align PtrAlign(4); 5726 5727 MachineFunction &MF = DAG.getMachineFunction(); 5728 5729 // Mark this function as potentially containing a function that contains a 5730 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5731 // and restoring the callers stack pointer in this functions epilog. This is 5732 // done because by tail calling the called function might overwrite the value 5733 // in this function's (MF) stack pointer stack slot 0(SP). 5734 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5735 CallConv == CallingConv::Fast) 5736 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5737 5738 // Count how many bytes are to be pushed on the stack, including the linkage 5739 // area, parameter list area and the part of the local variable space which 5740 // contains copies of aggregates which are passed by value. 5741 5742 // Assign locations to all of the outgoing arguments. 5743 SmallVector<CCValAssign, 16> ArgLocs; 5744 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5745 5746 // Reserve space for the linkage area on the stack. 5747 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5748 PtrAlign); 5749 if (useSoftFloat()) 5750 CCInfo.PreAnalyzeCallOperands(Outs); 5751 5752 if (IsVarArg) { 5753 // Handle fixed and variable vector arguments differently. 5754 // Fixed vector arguments go into registers as long as registers are 5755 // available. Variable vector arguments always go into memory. 5756 unsigned NumArgs = Outs.size(); 5757 5758 for (unsigned i = 0; i != NumArgs; ++i) { 5759 MVT ArgVT = Outs[i].VT; 5760 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5761 bool Result; 5762 5763 if (Outs[i].IsFixed) { 5764 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5765 CCInfo); 5766 } else { 5767 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5768 ArgFlags, CCInfo); 5769 } 5770 5771 if (Result) { 5772 #ifndef NDEBUG 5773 errs() << "Call operand #" << i << " has unhandled type " 5774 << EVT(ArgVT).getEVTString() << "\n"; 5775 #endif 5776 llvm_unreachable(nullptr); 5777 } 5778 } 5779 } else { 5780 // All arguments are treated the same. 5781 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5782 } 5783 CCInfo.clearWasPPCF128(); 5784 5785 // Assign locations to all of the outgoing aggregate by value arguments. 5786 SmallVector<CCValAssign, 16> ByValArgLocs; 5787 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5788 5789 // Reserve stack space for the allocations in CCInfo. 5790 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5791 5792 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5793 5794 // Size of the linkage area, parameter list area and the part of the local 5795 // space variable where copies of aggregates which are passed by value are 5796 // stored. 5797 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5798 5799 // Calculate by how many bytes the stack has to be adjusted in case of tail 5800 // call optimization. 5801 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5802 5803 // Adjust the stack pointer for the new arguments... 5804 // These operations are automatically eliminated by the prolog/epilog pass 5805 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5806 SDValue CallSeqStart = Chain; 5807 5808 // Load the return address and frame pointer so it can be moved somewhere else 5809 // later. 5810 SDValue LROp, FPOp; 5811 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5812 5813 // Set up a copy of the stack pointer for use loading and storing any 5814 // arguments that may not fit in the registers available for argument 5815 // passing. 5816 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5817 5818 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5819 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5820 SmallVector<SDValue, 8> MemOpChains; 5821 5822 bool seenFloatArg = false; 5823 // Walk the register/memloc assignments, inserting copies/loads. 5824 // i - Tracks the index into the list of registers allocated for the call 5825 // RealArgIdx - Tracks the index into the list of actual function arguments 5826 // j - Tracks the index into the list of byval arguments 5827 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5828 i != e; 5829 ++i, ++RealArgIdx) { 5830 CCValAssign &VA = ArgLocs[i]; 5831 SDValue Arg = OutVals[RealArgIdx]; 5832 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5833 5834 if (Flags.isByVal()) { 5835 // Argument is an aggregate which is passed by value, thus we need to 5836 // create a copy of it in the local variable space of the current stack 5837 // frame (which is the stack frame of the caller) and pass the address of 5838 // this copy to the callee. 5839 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5840 CCValAssign &ByValVA = ByValArgLocs[j++]; 5841 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5842 5843 // Memory reserved in the local variable space of the callers stack frame. 5844 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5845 5846 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5847 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5848 StackPtr, PtrOff); 5849 5850 // Create a copy of the argument in the local area of the current 5851 // stack frame. 5852 SDValue MemcpyCall = 5853 CreateCopyOfByValArgument(Arg, PtrOff, 5854 CallSeqStart.getNode()->getOperand(0), 5855 Flags, DAG, dl); 5856 5857 // This must go outside the CALLSEQ_START..END. 5858 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5859 SDLoc(MemcpyCall)); 5860 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5861 NewCallSeqStart.getNode()); 5862 Chain = CallSeqStart = NewCallSeqStart; 5863 5864 // Pass the address of the aggregate copy on the stack either in a 5865 // physical register or in the parameter list area of the current stack 5866 // frame to the callee. 5867 Arg = PtrOff; 5868 } 5869 5870 // When useCRBits() is true, there can be i1 arguments. 5871 // It is because getRegisterType(MVT::i1) => MVT::i1, 5872 // and for other integer types getRegisterType() => MVT::i32. 5873 // Extend i1 and ensure callee will get i32. 5874 if (Arg.getValueType() == MVT::i1) 5875 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5876 dl, MVT::i32, Arg); 5877 5878 if (VA.isRegLoc()) { 5879 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5880 // Put argument in a physical register. 5881 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5882 bool IsLE = Subtarget.isLittleEndian(); 5883 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5884 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5885 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5886 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5887 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5888 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5889 SVal.getValue(0))); 5890 } else 5891 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5892 } else { 5893 // Put argument in the parameter list area of the current stack frame. 5894 assert(VA.isMemLoc()); 5895 unsigned LocMemOffset = VA.getLocMemOffset(); 5896 5897 if (!IsTailCall) { 5898 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5899 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5900 StackPtr, PtrOff); 5901 5902 MemOpChains.push_back( 5903 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5904 } else { 5905 // Calculate and remember argument location. 5906 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5907 TailCallArguments); 5908 } 5909 } 5910 } 5911 5912 if (!MemOpChains.empty()) 5913 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5914 5915 // Build a sequence of copy-to-reg nodes chained together with token chain 5916 // and flag operands which copy the outgoing args into the appropriate regs. 5917 SDValue InFlag; 5918 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5919 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5920 RegsToPass[i].second, InFlag); 5921 InFlag = Chain.getValue(1); 5922 } 5923 5924 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5925 // registers. 5926 if (IsVarArg) { 5927 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5928 SDValue Ops[] = { Chain, InFlag }; 5929 5930 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5931 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5932 5933 InFlag = Chain.getValue(1); 5934 } 5935 5936 if (IsTailCall) 5937 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5938 TailCallArguments); 5939 5940 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5941 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5942 } 5943 5944 // Copy an argument into memory, being careful to do this outside the 5945 // call sequence for the call to which the argument belongs. 5946 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5947 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5948 SelectionDAG &DAG, const SDLoc &dl) const { 5949 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5950 CallSeqStart.getNode()->getOperand(0), 5951 Flags, DAG, dl); 5952 // The MEMCPY must go outside the CALLSEQ_START..END. 5953 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5954 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5955 SDLoc(MemcpyCall)); 5956 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5957 NewCallSeqStart.getNode()); 5958 return NewCallSeqStart; 5959 } 5960 5961 SDValue PPCTargetLowering::LowerCall_64SVR4( 5962 SDValue Chain, SDValue Callee, CallFlags CFlags, 5963 const SmallVectorImpl<ISD::OutputArg> &Outs, 5964 const SmallVectorImpl<SDValue> &OutVals, 5965 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5966 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5967 const CallBase *CB) const { 5968 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5969 bool isLittleEndian = Subtarget.isLittleEndian(); 5970 unsigned NumOps = Outs.size(); 5971 bool IsSibCall = false; 5972 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5973 5974 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5975 unsigned PtrByteSize = 8; 5976 5977 MachineFunction &MF = DAG.getMachineFunction(); 5978 5979 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5980 IsSibCall = true; 5981 5982 // Mark this function as potentially containing a function that contains a 5983 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5984 // and restoring the callers stack pointer in this functions epilog. This is 5985 // done because by tail calling the called function might overwrite the value 5986 // in this function's (MF) stack pointer stack slot 0(SP). 5987 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5988 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5989 5990 assert(!(IsFastCall && CFlags.IsVarArg) && 5991 "fastcc not supported on varargs functions"); 5992 5993 // Count how many bytes are to be pushed on the stack, including the linkage 5994 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5995 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5996 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5997 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5998 unsigned NumBytes = LinkageSize; 5999 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6000 6001 static const MCPhysReg GPR[] = { 6002 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6003 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6004 }; 6005 static const MCPhysReg VR[] = { 6006 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6007 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6008 }; 6009 6010 const unsigned NumGPRs = array_lengthof(GPR); 6011 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6012 const unsigned NumVRs = array_lengthof(VR); 6013 6014 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6015 // can be passed to the callee in registers. 6016 // For the fast calling convention, there is another check below. 6017 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6018 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6019 if (!HasParameterArea) { 6020 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6021 unsigned AvailableFPRs = NumFPRs; 6022 unsigned AvailableVRs = NumVRs; 6023 unsigned NumBytesTmp = NumBytes; 6024 for (unsigned i = 0; i != NumOps; ++i) { 6025 if (Outs[i].Flags.isNest()) continue; 6026 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6027 PtrByteSize, LinkageSize, ParamAreaSize, 6028 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6029 HasParameterArea = true; 6030 } 6031 } 6032 6033 // When using the fast calling convention, we don't provide backing for 6034 // arguments that will be in registers. 6035 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6036 6037 // Avoid allocating parameter area for fastcc functions if all the arguments 6038 // can be passed in the registers. 6039 if (IsFastCall) 6040 HasParameterArea = false; 6041 6042 // Add up all the space actually used. 6043 for (unsigned i = 0; i != NumOps; ++i) { 6044 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6045 EVT ArgVT = Outs[i].VT; 6046 EVT OrigVT = Outs[i].ArgVT; 6047 6048 if (Flags.isNest()) 6049 continue; 6050 6051 if (IsFastCall) { 6052 if (Flags.isByVal()) { 6053 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6054 if (NumGPRsUsed > NumGPRs) 6055 HasParameterArea = true; 6056 } else { 6057 switch (ArgVT.getSimpleVT().SimpleTy) { 6058 default: llvm_unreachable("Unexpected ValueType for argument!"); 6059 case MVT::i1: 6060 case MVT::i32: 6061 case MVT::i64: 6062 if (++NumGPRsUsed <= NumGPRs) 6063 continue; 6064 break; 6065 case MVT::v4i32: 6066 case MVT::v8i16: 6067 case MVT::v16i8: 6068 case MVT::v2f64: 6069 case MVT::v2i64: 6070 case MVT::v1i128: 6071 case MVT::f128: 6072 if (++NumVRsUsed <= NumVRs) 6073 continue; 6074 break; 6075 case MVT::v4f32: 6076 if (++NumVRsUsed <= NumVRs) 6077 continue; 6078 break; 6079 case MVT::f32: 6080 case MVT::f64: 6081 if (++NumFPRsUsed <= NumFPRs) 6082 continue; 6083 break; 6084 } 6085 HasParameterArea = true; 6086 } 6087 } 6088 6089 /* Respect alignment of argument on the stack. */ 6090 auto Alignement = 6091 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6092 NumBytes = alignTo(NumBytes, Alignement); 6093 6094 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6095 if (Flags.isInConsecutiveRegsLast()) 6096 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6097 } 6098 6099 unsigned NumBytesActuallyUsed = NumBytes; 6100 6101 // In the old ELFv1 ABI, 6102 // the prolog code of the callee may store up to 8 GPR argument registers to 6103 // the stack, allowing va_start to index over them in memory if its varargs. 6104 // Because we cannot tell if this is needed on the caller side, we have to 6105 // conservatively assume that it is needed. As such, make sure we have at 6106 // least enough stack space for the caller to store the 8 GPRs. 6107 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6108 // really requires memory operands, e.g. a vararg function. 6109 if (HasParameterArea) 6110 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6111 else 6112 NumBytes = LinkageSize; 6113 6114 // Tail call needs the stack to be aligned. 6115 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6116 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6117 6118 int SPDiff = 0; 6119 6120 // Calculate by how many bytes the stack has to be adjusted in case of tail 6121 // call optimization. 6122 if (!IsSibCall) 6123 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6124 6125 // To protect arguments on the stack from being clobbered in a tail call, 6126 // force all the loads to happen before doing any other lowering. 6127 if (CFlags.IsTailCall) 6128 Chain = DAG.getStackArgumentTokenFactor(Chain); 6129 6130 // Adjust the stack pointer for the new arguments... 6131 // These operations are automatically eliminated by the prolog/epilog pass 6132 if (!IsSibCall) 6133 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6134 SDValue CallSeqStart = Chain; 6135 6136 // Load the return address and frame pointer so it can be move somewhere else 6137 // later. 6138 SDValue LROp, FPOp; 6139 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6140 6141 // Set up a copy of the stack pointer for use loading and storing any 6142 // arguments that may not fit in the registers available for argument 6143 // passing. 6144 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6145 6146 // Figure out which arguments are going to go in registers, and which in 6147 // memory. Also, if this is a vararg function, floating point operations 6148 // must be stored to our stack, and loaded into integer regs as well, if 6149 // any integer regs are available for argument passing. 6150 unsigned ArgOffset = LinkageSize; 6151 6152 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6153 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6154 6155 SmallVector<SDValue, 8> MemOpChains; 6156 for (unsigned i = 0; i != NumOps; ++i) { 6157 SDValue Arg = OutVals[i]; 6158 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6159 EVT ArgVT = Outs[i].VT; 6160 EVT OrigVT = Outs[i].ArgVT; 6161 6162 // PtrOff will be used to store the current argument to the stack if a 6163 // register cannot be found for it. 6164 SDValue PtrOff; 6165 6166 // We re-align the argument offset for each argument, except when using the 6167 // fast calling convention, when we need to make sure we do that only when 6168 // we'll actually use a stack slot. 6169 auto ComputePtrOff = [&]() { 6170 /* Respect alignment of argument on the stack. */ 6171 auto Alignment = 6172 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6173 ArgOffset = alignTo(ArgOffset, Alignment); 6174 6175 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6176 6177 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6178 }; 6179 6180 if (!IsFastCall) { 6181 ComputePtrOff(); 6182 6183 /* Compute GPR index associated with argument offset. */ 6184 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6185 GPR_idx = std::min(GPR_idx, NumGPRs); 6186 } 6187 6188 // Promote integers to 64-bit values. 6189 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6190 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6191 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6192 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6193 } 6194 6195 // FIXME memcpy is used way more than necessary. Correctness first. 6196 // Note: "by value" is code for passing a structure by value, not 6197 // basic types. 6198 if (Flags.isByVal()) { 6199 // Note: Size includes alignment padding, so 6200 // struct x { short a; char b; } 6201 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6202 // These are the proper values we need for right-justifying the 6203 // aggregate in a parameter register. 6204 unsigned Size = Flags.getByValSize(); 6205 6206 // An empty aggregate parameter takes up no storage and no 6207 // registers. 6208 if (Size == 0) 6209 continue; 6210 6211 if (IsFastCall) 6212 ComputePtrOff(); 6213 6214 // All aggregates smaller than 8 bytes must be passed right-justified. 6215 if (Size==1 || Size==2 || Size==4) { 6216 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6217 if (GPR_idx != NumGPRs) { 6218 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6219 MachinePointerInfo(), VT); 6220 MemOpChains.push_back(Load.getValue(1)); 6221 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6222 6223 ArgOffset += PtrByteSize; 6224 continue; 6225 } 6226 } 6227 6228 if (GPR_idx == NumGPRs && Size < 8) { 6229 SDValue AddPtr = PtrOff; 6230 if (!isLittleEndian) { 6231 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6232 PtrOff.getValueType()); 6233 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6234 } 6235 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6236 CallSeqStart, 6237 Flags, DAG, dl); 6238 ArgOffset += PtrByteSize; 6239 continue; 6240 } 6241 // Copy the object to parameter save area if it can not be entirely passed 6242 // by registers. 6243 // FIXME: we only need to copy the parts which need to be passed in 6244 // parameter save area. For the parts passed by registers, we don't need 6245 // to copy them to the stack although we need to allocate space for them 6246 // in parameter save area. 6247 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6248 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6249 CallSeqStart, 6250 Flags, DAG, dl); 6251 6252 // When a register is available, pass a small aggregate right-justified. 6253 if (Size < 8 && GPR_idx != NumGPRs) { 6254 // The easiest way to get this right-justified in a register 6255 // is to copy the structure into the rightmost portion of a 6256 // local variable slot, then load the whole slot into the 6257 // register. 6258 // FIXME: The memcpy seems to produce pretty awful code for 6259 // small aggregates, particularly for packed ones. 6260 // FIXME: It would be preferable to use the slot in the 6261 // parameter save area instead of a new local variable. 6262 SDValue AddPtr = PtrOff; 6263 if (!isLittleEndian) { 6264 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6265 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6266 } 6267 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6268 CallSeqStart, 6269 Flags, DAG, dl); 6270 6271 // Load the slot into the register. 6272 SDValue Load = 6273 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6274 MemOpChains.push_back(Load.getValue(1)); 6275 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6276 6277 // Done with this argument. 6278 ArgOffset += PtrByteSize; 6279 continue; 6280 } 6281 6282 // For aggregates larger than PtrByteSize, copy the pieces of the 6283 // object that fit into registers from the parameter save area. 6284 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6285 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6286 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6287 if (GPR_idx != NumGPRs) { 6288 unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; 6289 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); 6290 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, 6291 MachinePointerInfo(), ObjType); 6292 6293 MemOpChains.push_back(Load.getValue(1)); 6294 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6295 ArgOffset += PtrByteSize; 6296 } else { 6297 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6298 break; 6299 } 6300 } 6301 continue; 6302 } 6303 6304 switch (Arg.getSimpleValueType().SimpleTy) { 6305 default: llvm_unreachable("Unexpected ValueType for argument!"); 6306 case MVT::i1: 6307 case MVT::i32: 6308 case MVT::i64: 6309 if (Flags.isNest()) { 6310 // The 'nest' parameter, if any, is passed in R11. 6311 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6312 break; 6313 } 6314 6315 // These can be scalar arguments or elements of an integer array type 6316 // passed directly. Clang may use those instead of "byval" aggregate 6317 // types to avoid forcing arguments to memory unnecessarily. 6318 if (GPR_idx != NumGPRs) { 6319 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6320 } else { 6321 if (IsFastCall) 6322 ComputePtrOff(); 6323 6324 assert(HasParameterArea && 6325 "Parameter area must exist to pass an argument in memory."); 6326 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6327 true, CFlags.IsTailCall, false, MemOpChains, 6328 TailCallArguments, dl); 6329 if (IsFastCall) 6330 ArgOffset += PtrByteSize; 6331 } 6332 if (!IsFastCall) 6333 ArgOffset += PtrByteSize; 6334 break; 6335 case MVT::f32: 6336 case MVT::f64: { 6337 // These can be scalar arguments or elements of a float array type 6338 // passed directly. The latter are used to implement ELFv2 homogenous 6339 // float aggregates. 6340 6341 // Named arguments go into FPRs first, and once they overflow, the 6342 // remaining arguments go into GPRs and then the parameter save area. 6343 // Unnamed arguments for vararg functions always go to GPRs and 6344 // then the parameter save area. For now, put all arguments to vararg 6345 // routines always in both locations (FPR *and* GPR or stack slot). 6346 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6347 bool NeededLoad = false; 6348 6349 // First load the argument into the next available FPR. 6350 if (FPR_idx != NumFPRs) 6351 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6352 6353 // Next, load the argument into GPR or stack slot if needed. 6354 if (!NeedGPROrStack) 6355 ; 6356 else if (GPR_idx != NumGPRs && !IsFastCall) { 6357 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6358 // once we support fp <-> gpr moves. 6359 6360 // In the non-vararg case, this can only ever happen in the 6361 // presence of f32 array types, since otherwise we never run 6362 // out of FPRs before running out of GPRs. 6363 SDValue ArgVal; 6364 6365 // Double values are always passed in a single GPR. 6366 if (Arg.getValueType() != MVT::f32) { 6367 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6368 6369 // Non-array float values are extended and passed in a GPR. 6370 } else if (!Flags.isInConsecutiveRegs()) { 6371 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6372 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6373 6374 // If we have an array of floats, we collect every odd element 6375 // together with its predecessor into one GPR. 6376 } else if (ArgOffset % PtrByteSize != 0) { 6377 SDValue Lo, Hi; 6378 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6379 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6380 if (!isLittleEndian) 6381 std::swap(Lo, Hi); 6382 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6383 6384 // The final element, if even, goes into the first half of a GPR. 6385 } else if (Flags.isInConsecutiveRegsLast()) { 6386 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6387 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6388 if (!isLittleEndian) 6389 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6390 DAG.getConstant(32, dl, MVT::i32)); 6391 6392 // Non-final even elements are skipped; they will be handled 6393 // together the with subsequent argument on the next go-around. 6394 } else 6395 ArgVal = SDValue(); 6396 6397 if (ArgVal.getNode()) 6398 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6399 } else { 6400 if (IsFastCall) 6401 ComputePtrOff(); 6402 6403 // Single-precision floating-point values are mapped to the 6404 // second (rightmost) word of the stack doubleword. 6405 if (Arg.getValueType() == MVT::f32 && 6406 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6407 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6408 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6409 } 6410 6411 assert(HasParameterArea && 6412 "Parameter area must exist to pass an argument in memory."); 6413 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6414 true, CFlags.IsTailCall, false, MemOpChains, 6415 TailCallArguments, dl); 6416 6417 NeededLoad = true; 6418 } 6419 // When passing an array of floats, the array occupies consecutive 6420 // space in the argument area; only round up to the next doubleword 6421 // at the end of the array. Otherwise, each float takes 8 bytes. 6422 if (!IsFastCall || NeededLoad) { 6423 ArgOffset += (Arg.getValueType() == MVT::f32 && 6424 Flags.isInConsecutiveRegs()) ? 4 : 8; 6425 if (Flags.isInConsecutiveRegsLast()) 6426 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6427 } 6428 break; 6429 } 6430 case MVT::v4f32: 6431 case MVT::v4i32: 6432 case MVT::v8i16: 6433 case MVT::v16i8: 6434 case MVT::v2f64: 6435 case MVT::v2i64: 6436 case MVT::v1i128: 6437 case MVT::f128: 6438 // These can be scalar arguments or elements of a vector array type 6439 // passed directly. The latter are used to implement ELFv2 homogenous 6440 // vector aggregates. 6441 6442 // For a varargs call, named arguments go into VRs or on the stack as 6443 // usual; unnamed arguments always go to the stack or the corresponding 6444 // GPRs when within range. For now, we always put the value in both 6445 // locations (or even all three). 6446 if (CFlags.IsVarArg) { 6447 assert(HasParameterArea && 6448 "Parameter area must exist if we have a varargs call."); 6449 // We could elide this store in the case where the object fits 6450 // entirely in R registers. Maybe later. 6451 SDValue Store = 6452 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6453 MemOpChains.push_back(Store); 6454 if (VR_idx != NumVRs) { 6455 SDValue Load = 6456 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6457 MemOpChains.push_back(Load.getValue(1)); 6458 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6459 } 6460 ArgOffset += 16; 6461 for (unsigned i=0; i<16; i+=PtrByteSize) { 6462 if (GPR_idx == NumGPRs) 6463 break; 6464 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6465 DAG.getConstant(i, dl, PtrVT)); 6466 SDValue Load = 6467 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6468 MemOpChains.push_back(Load.getValue(1)); 6469 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6470 } 6471 break; 6472 } 6473 6474 // Non-varargs Altivec params go into VRs or on the stack. 6475 if (VR_idx != NumVRs) { 6476 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6477 } else { 6478 if (IsFastCall) 6479 ComputePtrOff(); 6480 6481 assert(HasParameterArea && 6482 "Parameter area must exist to pass an argument in memory."); 6483 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6484 true, CFlags.IsTailCall, true, MemOpChains, 6485 TailCallArguments, dl); 6486 if (IsFastCall) 6487 ArgOffset += 16; 6488 } 6489 6490 if (!IsFastCall) 6491 ArgOffset += 16; 6492 break; 6493 } 6494 } 6495 6496 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6497 "mismatch in size of parameter area"); 6498 (void)NumBytesActuallyUsed; 6499 6500 if (!MemOpChains.empty()) 6501 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6502 6503 // Check if this is an indirect call (MTCTR/BCTRL). 6504 // See prepareDescriptorIndirectCall and buildCallOperands for more 6505 // information about calls through function pointers in the 64-bit SVR4 ABI. 6506 if (CFlags.IsIndirect) { 6507 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6508 // caller in the TOC save area. 6509 if (isTOCSaveRestoreRequired(Subtarget)) { 6510 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6511 // Load r2 into a virtual register and store it to the TOC save area. 6512 setUsesTOCBasePtr(DAG); 6513 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6514 // TOC save area offset. 6515 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6516 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6517 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6518 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6519 MachinePointerInfo::getStack( 6520 DAG.getMachineFunction(), TOCSaveOffset)); 6521 } 6522 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6523 // This does not mean the MTCTR instruction must use R12; it's easier 6524 // to model this as an extra parameter, so do that. 6525 if (isELFv2ABI && !CFlags.IsPatchPoint) 6526 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6527 } 6528 6529 // Build a sequence of copy-to-reg nodes chained together with token chain 6530 // and flag operands which copy the outgoing args into the appropriate regs. 6531 SDValue InFlag; 6532 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6533 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6534 RegsToPass[i].second, InFlag); 6535 InFlag = Chain.getValue(1); 6536 } 6537 6538 if (CFlags.IsTailCall && !IsSibCall) 6539 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6540 TailCallArguments); 6541 6542 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6543 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6544 } 6545 6546 // Returns true when the shadow of a general purpose argument register 6547 // in the parameter save area is aligned to at least 'RequiredAlign'. 6548 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6549 assert(RequiredAlign.value() <= 16 && 6550 "Required alignment greater than stack alignment."); 6551 switch (Reg) { 6552 default: 6553 report_fatal_error("called on invalid register."); 6554 case PPC::R5: 6555 case PPC::R9: 6556 case PPC::X3: 6557 case PPC::X5: 6558 case PPC::X7: 6559 case PPC::X9: 6560 // These registers are 16 byte aligned which is the most strict aligment 6561 // we can support. 6562 return true; 6563 case PPC::R3: 6564 case PPC::R7: 6565 case PPC::X4: 6566 case PPC::X6: 6567 case PPC::X8: 6568 case PPC::X10: 6569 // The shadow of these registers in the PSA is 8 byte aligned. 6570 return RequiredAlign <= 8; 6571 case PPC::R4: 6572 case PPC::R6: 6573 case PPC::R8: 6574 case PPC::R10: 6575 return RequiredAlign <= 4; 6576 } 6577 } 6578 6579 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6580 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6581 CCState &S) { 6582 AIXCCState &State = static_cast<AIXCCState &>(S); 6583 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6584 State.getMachineFunction().getSubtarget()); 6585 const bool IsPPC64 = Subtarget.isPPC64(); 6586 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6587 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6588 6589 if (ValVT == MVT::f128) 6590 report_fatal_error("f128 is unimplemented on AIX."); 6591 6592 if (ArgFlags.isNest()) 6593 report_fatal_error("Nest arguments are unimplemented."); 6594 6595 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6596 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6597 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6598 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6599 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6600 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6601 6602 static const MCPhysReg VR[] = {// Vector registers. 6603 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6604 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6605 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6606 6607 if (ArgFlags.isByVal()) { 6608 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6609 report_fatal_error("Pass-by-value arguments with alignment greater than " 6610 "register width are not supported."); 6611 6612 const unsigned ByValSize = ArgFlags.getByValSize(); 6613 6614 // An empty aggregate parameter takes up no storage and no registers, 6615 // but needs a MemLoc for a stack slot for the formal arguments side. 6616 if (ByValSize == 0) { 6617 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6618 State.getNextStackOffset(), RegVT, 6619 LocInfo)); 6620 return false; 6621 } 6622 6623 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6624 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6625 for (const unsigned E = Offset + StackSize; Offset < E; 6626 Offset += PtrAlign.value()) { 6627 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6628 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6629 else { 6630 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6631 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6632 LocInfo)); 6633 break; 6634 } 6635 } 6636 return false; 6637 } 6638 6639 // Arguments always reserve parameter save area. 6640 switch (ValVT.SimpleTy) { 6641 default: 6642 report_fatal_error("Unhandled value type for argument."); 6643 case MVT::i64: 6644 // i64 arguments should have been split to i32 for PPC32. 6645 assert(IsPPC64 && "PPC32 should have split i64 values."); 6646 LLVM_FALLTHROUGH; 6647 case MVT::i1: 6648 case MVT::i32: { 6649 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6650 // AIX integer arguments are always passed in register width. 6651 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6652 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6653 : CCValAssign::LocInfo::ZExt; 6654 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6655 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6656 else 6657 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6658 6659 return false; 6660 } 6661 case MVT::f32: 6662 case MVT::f64: { 6663 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6664 const unsigned StoreSize = LocVT.getStoreSize(); 6665 // Floats are always 4-byte aligned in the PSA on AIX. 6666 // This includes f64 in 64-bit mode for ABI compatibility. 6667 const unsigned Offset = 6668 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6669 unsigned FReg = State.AllocateReg(FPR); 6670 if (FReg) 6671 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6672 6673 // Reserve and initialize GPRs or initialize the PSA as required. 6674 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6675 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6676 assert(FReg && "An FPR should be available when a GPR is reserved."); 6677 if (State.isVarArg()) { 6678 // Successfully reserved GPRs are only initialized for vararg calls. 6679 // Custom handling is required for: 6680 // f64 in PPC32 needs to be split into 2 GPRs. 6681 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6682 State.addLoc( 6683 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6684 } 6685 } else { 6686 // If there are insufficient GPRs, the PSA needs to be initialized. 6687 // Initialization occurs even if an FPR was initialized for 6688 // compatibility with the AIX XL compiler. The full memory for the 6689 // argument will be initialized even if a prior word is saved in GPR. 6690 // A custom memLoc is used when the argument also passes in FPR so 6691 // that the callee handling can skip over it easily. 6692 State.addLoc( 6693 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6694 LocInfo) 6695 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6696 break; 6697 } 6698 } 6699 6700 return false; 6701 } 6702 case MVT::v4f32: 6703 case MVT::v4i32: 6704 case MVT::v8i16: 6705 case MVT::v16i8: 6706 case MVT::v2i64: 6707 case MVT::v2f64: 6708 case MVT::v1i128: { 6709 const unsigned VecSize = 16; 6710 const Align VecAlign(VecSize); 6711 6712 if (!State.isVarArg()) { 6713 // If there are vector registers remaining we don't consume any stack 6714 // space. 6715 if (unsigned VReg = State.AllocateReg(VR)) { 6716 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6717 return false; 6718 } 6719 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6720 // might be allocated in the portion of the PSA that is shadowed by the 6721 // GPRs. 6722 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6723 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6724 return false; 6725 } 6726 6727 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6728 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6729 6730 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6731 // Burn any underaligned registers and their shadowed stack space until 6732 // we reach the required alignment. 6733 while (NextRegIndex != GPRs.size() && 6734 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6735 // Shadow allocate register and its stack shadow. 6736 unsigned Reg = State.AllocateReg(GPRs); 6737 State.AllocateStack(PtrSize, PtrAlign); 6738 assert(Reg && "Allocating register unexpectedly failed."); 6739 (void)Reg; 6740 NextRegIndex = State.getFirstUnallocated(GPRs); 6741 } 6742 6743 // Vectors that are passed as fixed arguments are handled differently. 6744 // They are passed in VRs if any are available (unlike arguments passed 6745 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6746 // functions) 6747 if (State.isFixed(ValNo)) { 6748 if (unsigned VReg = State.AllocateReg(VR)) { 6749 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6750 // Shadow allocate GPRs and stack space even though we pass in a VR. 6751 for (unsigned I = 0; I != VecSize; I += PtrSize) 6752 State.AllocateReg(GPRs); 6753 State.AllocateStack(VecSize, VecAlign); 6754 return false; 6755 } 6756 // No vector registers remain so pass on the stack. 6757 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6758 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6759 return false; 6760 } 6761 6762 // If all GPRS are consumed then we pass the argument fully on the stack. 6763 if (NextRegIndex == GPRs.size()) { 6764 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6765 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6766 return false; 6767 } 6768 6769 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6770 // half of the argument, and then need to pass the remaining half on the 6771 // stack. 6772 if (GPRs[NextRegIndex] == PPC::R9) { 6773 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6774 State.addLoc( 6775 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6776 6777 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6778 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6779 assert(FirstReg && SecondReg && 6780 "Allocating R9 or R10 unexpectedly failed."); 6781 State.addLoc( 6782 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6783 State.addLoc( 6784 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6785 return false; 6786 } 6787 6788 // We have enough GPRs to fully pass the vector argument, and we have 6789 // already consumed any underaligned registers. Start with the custom 6790 // MemLoc and then the custom RegLocs. 6791 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6792 State.addLoc( 6793 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6794 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6795 const unsigned Reg = State.AllocateReg(GPRs); 6796 assert(Reg && "Failed to allocated register for vararg vector argument"); 6797 State.addLoc( 6798 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6799 } 6800 return false; 6801 } 6802 } 6803 return true; 6804 } 6805 6806 // So far, this function is only used by LowerFormalArguments_AIX() 6807 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6808 bool IsPPC64, 6809 bool HasP8Vector, 6810 bool HasVSX) { 6811 assert((IsPPC64 || SVT != MVT::i64) && 6812 "i64 should have been split for 32-bit codegen."); 6813 6814 switch (SVT) { 6815 default: 6816 report_fatal_error("Unexpected value type for formal argument"); 6817 case MVT::i1: 6818 case MVT::i32: 6819 case MVT::i64: 6820 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6821 case MVT::f32: 6822 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6823 case MVT::f64: 6824 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6825 case MVT::v4f32: 6826 case MVT::v4i32: 6827 case MVT::v8i16: 6828 case MVT::v16i8: 6829 case MVT::v2i64: 6830 case MVT::v2f64: 6831 case MVT::v1i128: 6832 return &PPC::VRRCRegClass; 6833 } 6834 } 6835 6836 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6837 SelectionDAG &DAG, SDValue ArgValue, 6838 MVT LocVT, const SDLoc &dl) { 6839 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6840 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6841 6842 if (Flags.isSExt()) 6843 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6844 DAG.getValueType(ValVT)); 6845 else if (Flags.isZExt()) 6846 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6847 DAG.getValueType(ValVT)); 6848 6849 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6850 } 6851 6852 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6853 const unsigned LASize = FL->getLinkageSize(); 6854 6855 if (PPC::GPRCRegClass.contains(Reg)) { 6856 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6857 "Reg must be a valid argument register!"); 6858 return LASize + 4 * (Reg - PPC::R3); 6859 } 6860 6861 if (PPC::G8RCRegClass.contains(Reg)) { 6862 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6863 "Reg must be a valid argument register!"); 6864 return LASize + 8 * (Reg - PPC::X3); 6865 } 6866 6867 llvm_unreachable("Only general purpose registers expected."); 6868 } 6869 6870 // AIX ABI Stack Frame Layout: 6871 // 6872 // Low Memory +--------------------------------------------+ 6873 // SP +---> | Back chain | ---+ 6874 // | +--------------------------------------------+ | 6875 // | | Saved Condition Register | | 6876 // | +--------------------------------------------+ | 6877 // | | Saved Linkage Register | | 6878 // | +--------------------------------------------+ | Linkage Area 6879 // | | Reserved for compilers | | 6880 // | +--------------------------------------------+ | 6881 // | | Reserved for binders | | 6882 // | +--------------------------------------------+ | 6883 // | | Saved TOC pointer | ---+ 6884 // | +--------------------------------------------+ 6885 // | | Parameter save area | 6886 // | +--------------------------------------------+ 6887 // | | Alloca space | 6888 // | +--------------------------------------------+ 6889 // | | Local variable space | 6890 // | +--------------------------------------------+ 6891 // | | Float/int conversion temporary | 6892 // | +--------------------------------------------+ 6893 // | | Save area for AltiVec registers | 6894 // | +--------------------------------------------+ 6895 // | | AltiVec alignment padding | 6896 // | +--------------------------------------------+ 6897 // | | Save area for VRSAVE register | 6898 // | +--------------------------------------------+ 6899 // | | Save area for General Purpose registers | 6900 // | +--------------------------------------------+ 6901 // | | Save area for Floating Point registers | 6902 // | +--------------------------------------------+ 6903 // +---- | Back chain | 6904 // High Memory +--------------------------------------------+ 6905 // 6906 // Specifications: 6907 // AIX 7.2 Assembler Language Reference 6908 // Subroutine linkage convention 6909 6910 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6911 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6912 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6913 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6914 6915 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6916 CallConv == CallingConv::Fast) && 6917 "Unexpected calling convention!"); 6918 6919 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6920 report_fatal_error("Tail call support is unimplemented on AIX."); 6921 6922 if (useSoftFloat()) 6923 report_fatal_error("Soft float support is unimplemented on AIX."); 6924 6925 const PPCSubtarget &Subtarget = 6926 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6927 6928 const bool IsPPC64 = Subtarget.isPPC64(); 6929 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6930 6931 // Assign locations to all of the incoming arguments. 6932 SmallVector<CCValAssign, 16> ArgLocs; 6933 MachineFunction &MF = DAG.getMachineFunction(); 6934 MachineFrameInfo &MFI = MF.getFrameInfo(); 6935 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6936 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6937 6938 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6939 // Reserve space for the linkage area on the stack. 6940 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6941 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6942 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6943 6944 SmallVector<SDValue, 8> MemOps; 6945 6946 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6947 CCValAssign &VA = ArgLocs[I++]; 6948 MVT LocVT = VA.getLocVT(); 6949 MVT ValVT = VA.getValVT(); 6950 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6951 // For compatibility with the AIX XL compiler, the float args in the 6952 // parameter save area are initialized even if the argument is available 6953 // in register. The caller is required to initialize both the register 6954 // and memory, however, the callee can choose to expect it in either. 6955 // The memloc is dismissed here because the argument is retrieved from 6956 // the register. 6957 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6958 continue; 6959 6960 auto HandleMemLoc = [&]() { 6961 const unsigned LocSize = LocVT.getStoreSize(); 6962 const unsigned ValSize = ValVT.getStoreSize(); 6963 assert((ValSize <= LocSize) && 6964 "Object size is larger than size of MemLoc"); 6965 int CurArgOffset = VA.getLocMemOffset(); 6966 // Objects are right-justified because AIX is big-endian. 6967 if (LocSize > ValSize) 6968 CurArgOffset += LocSize - ValSize; 6969 // Potential tail calls could cause overwriting of argument stack slots. 6970 const bool IsImmutable = 6971 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6972 (CallConv == CallingConv::Fast)); 6973 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6974 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6975 SDValue ArgValue = 6976 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6977 InVals.push_back(ArgValue); 6978 }; 6979 6980 // Vector arguments to VaArg functions are passed both on the stack, and 6981 // in any available GPRs. Load the value from the stack and add the GPRs 6982 // as live ins. 6983 if (VA.isMemLoc() && VA.needsCustom()) { 6984 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6985 assert(isVarArg && "Only use custom memloc for vararg."); 6986 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6987 // matching custom RegLocs. 6988 const unsigned OriginalValNo = VA.getValNo(); 6989 (void)OriginalValNo; 6990 6991 auto HandleCustomVecRegLoc = [&]() { 6992 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6993 "Missing custom RegLoc."); 6994 VA = ArgLocs[I++]; 6995 assert(VA.getValVT().isVector() && 6996 "Unexpected Val type for custom RegLoc."); 6997 assert(VA.getValNo() == OriginalValNo && 6998 "ValNo mismatch between custom MemLoc and RegLoc."); 6999 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 7000 MF.addLiveIn(VA.getLocReg(), 7001 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7002 Subtarget.hasVSX())); 7003 }; 7004 7005 HandleMemLoc(); 7006 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7007 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7008 // R10. 7009 HandleCustomVecRegLoc(); 7010 HandleCustomVecRegLoc(); 7011 7012 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7013 // we passed the vector in R5, R6, R7 and R8. 7014 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7015 assert(!IsPPC64 && 7016 "Only 2 custom RegLocs expected for 64-bit codegen."); 7017 HandleCustomVecRegLoc(); 7018 HandleCustomVecRegLoc(); 7019 } 7020 7021 continue; 7022 } 7023 7024 if (VA.isRegLoc()) { 7025 if (VA.getValVT().isScalarInteger()) 7026 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7027 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7028 switch (VA.getValVT().SimpleTy) { 7029 default: 7030 report_fatal_error("Unhandled value type for argument."); 7031 case MVT::f32: 7032 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7033 break; 7034 case MVT::f64: 7035 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7036 break; 7037 } 7038 } else if (VA.getValVT().isVector()) { 7039 switch (VA.getValVT().SimpleTy) { 7040 default: 7041 report_fatal_error("Unhandled value type for argument."); 7042 case MVT::v16i8: 7043 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7044 break; 7045 case MVT::v8i16: 7046 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7047 break; 7048 case MVT::v4i32: 7049 case MVT::v2i64: 7050 case MVT::v1i128: 7051 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7052 break; 7053 case MVT::v4f32: 7054 case MVT::v2f64: 7055 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7056 break; 7057 } 7058 } 7059 } 7060 7061 if (Flags.isByVal() && VA.isMemLoc()) { 7062 const unsigned Size = 7063 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7064 PtrByteSize); 7065 const int FI = MF.getFrameInfo().CreateFixedObject( 7066 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7067 /* IsAliased */ true); 7068 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7069 InVals.push_back(FIN); 7070 7071 continue; 7072 } 7073 7074 if (Flags.isByVal()) { 7075 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7076 7077 const MCPhysReg ArgReg = VA.getLocReg(); 7078 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7079 7080 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7081 report_fatal_error("Over aligned byvals not supported yet."); 7082 7083 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7084 const int FI = MF.getFrameInfo().CreateFixedObject( 7085 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7086 /* IsAliased */ true); 7087 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7088 InVals.push_back(FIN); 7089 7090 // Add live ins for all the RegLocs for the same ByVal. 7091 const TargetRegisterClass *RegClass = 7092 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7093 7094 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7095 unsigned Offset) { 7096 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7097 // Since the callers side has left justified the aggregate in the 7098 // register, we can simply store the entire register into the stack 7099 // slot. 7100 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7101 // The store to the fixedstack object is needed becuase accessing a 7102 // field of the ByVal will use a gep and load. Ideally we will optimize 7103 // to extracting the value from the register directly, and elide the 7104 // stores when the arguments address is not taken, but that will need to 7105 // be future work. 7106 SDValue Store = DAG.getStore( 7107 CopyFrom.getValue(1), dl, CopyFrom, 7108 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7109 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7110 7111 MemOps.push_back(Store); 7112 }; 7113 7114 unsigned Offset = 0; 7115 HandleRegLoc(VA.getLocReg(), Offset); 7116 Offset += PtrByteSize; 7117 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7118 Offset += PtrByteSize) { 7119 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7120 "RegLocs should be for ByVal argument."); 7121 7122 const CCValAssign RL = ArgLocs[I++]; 7123 HandleRegLoc(RL.getLocReg(), Offset); 7124 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7125 } 7126 7127 if (Offset != StackSize) { 7128 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7129 "Expected MemLoc for remaining bytes."); 7130 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7131 // Consume the MemLoc.The InVal has already been emitted, so nothing 7132 // more needs to be done. 7133 ++I; 7134 } 7135 7136 continue; 7137 } 7138 7139 if (VA.isRegLoc() && !VA.needsCustom()) { 7140 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7141 Register VReg = 7142 MF.addLiveIn(VA.getLocReg(), 7143 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7144 Subtarget.hasVSX())); 7145 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7146 if (ValVT.isScalarInteger() && 7147 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7148 ArgValue = 7149 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7150 } 7151 InVals.push_back(ArgValue); 7152 continue; 7153 } 7154 if (VA.isMemLoc()) { 7155 HandleMemLoc(); 7156 continue; 7157 } 7158 } 7159 7160 // On AIX a minimum of 8 words is saved to the parameter save area. 7161 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7162 // Area that is at least reserved in the caller of this function. 7163 unsigned CallerReservedArea = 7164 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7165 7166 // Set the size that is at least reserved in caller of this function. Tail 7167 // call optimized function's reserved stack space needs to be aligned so 7168 // that taking the difference between two stack areas will result in an 7169 // aligned stack. 7170 CallerReservedArea = 7171 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7172 FuncInfo->setMinReservedArea(CallerReservedArea); 7173 7174 if (isVarArg) { 7175 FuncInfo->setVarArgsFrameIndex( 7176 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7177 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7178 7179 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7180 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7181 7182 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7183 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7184 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7185 7186 // The fixed integer arguments of a variadic function are stored to the 7187 // VarArgsFrameIndex on the stack so that they may be loaded by 7188 // dereferencing the result of va_next. 7189 for (unsigned GPRIndex = 7190 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7191 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7192 7193 const Register VReg = 7194 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7195 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7196 7197 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7198 SDValue Store = 7199 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7200 MemOps.push_back(Store); 7201 // Increment the address for the next argument to store. 7202 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7203 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7204 } 7205 } 7206 7207 if (!MemOps.empty()) 7208 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7209 7210 return Chain; 7211 } 7212 7213 SDValue PPCTargetLowering::LowerCall_AIX( 7214 SDValue Chain, SDValue Callee, CallFlags CFlags, 7215 const SmallVectorImpl<ISD::OutputArg> &Outs, 7216 const SmallVectorImpl<SDValue> &OutVals, 7217 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7218 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7219 const CallBase *CB) const { 7220 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7221 // AIX ABI stack frame layout. 7222 7223 assert((CFlags.CallConv == CallingConv::C || 7224 CFlags.CallConv == CallingConv::Cold || 7225 CFlags.CallConv == CallingConv::Fast) && 7226 "Unexpected calling convention!"); 7227 7228 if (CFlags.IsPatchPoint) 7229 report_fatal_error("This call type is unimplemented on AIX."); 7230 7231 const PPCSubtarget& Subtarget = 7232 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7233 7234 MachineFunction &MF = DAG.getMachineFunction(); 7235 SmallVector<CCValAssign, 16> ArgLocs; 7236 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7237 *DAG.getContext()); 7238 7239 // Reserve space for the linkage save area (LSA) on the stack. 7240 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7241 // [SP][CR][LR][2 x reserved][TOC]. 7242 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7243 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7244 const bool IsPPC64 = Subtarget.isPPC64(); 7245 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7246 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7247 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7248 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7249 7250 // The prolog code of the callee may store up to 8 GPR argument registers to 7251 // the stack, allowing va_start to index over them in memory if the callee 7252 // is variadic. 7253 // Because we cannot tell if this is needed on the caller side, we have to 7254 // conservatively assume that it is needed. As such, make sure we have at 7255 // least enough stack space for the caller to store the 8 GPRs. 7256 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7257 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7258 CCInfo.getNextStackOffset()); 7259 7260 // Adjust the stack pointer for the new arguments... 7261 // These operations are automatically eliminated by the prolog/epilog pass. 7262 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7263 SDValue CallSeqStart = Chain; 7264 7265 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7266 SmallVector<SDValue, 8> MemOpChains; 7267 7268 // Set up a copy of the stack pointer for loading and storing any 7269 // arguments that may not fit in the registers available for argument 7270 // passing. 7271 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7272 : DAG.getRegister(PPC::R1, MVT::i32); 7273 7274 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7275 const unsigned ValNo = ArgLocs[I].getValNo(); 7276 SDValue Arg = OutVals[ValNo]; 7277 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7278 7279 if (Flags.isByVal()) { 7280 const unsigned ByValSize = Flags.getByValSize(); 7281 7282 // Nothing to do for zero-sized ByVals on the caller side. 7283 if (!ByValSize) { 7284 ++I; 7285 continue; 7286 } 7287 7288 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7289 return DAG.getExtLoad( 7290 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7291 (LoadOffset != 0) 7292 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7293 : Arg, 7294 MachinePointerInfo(), VT); 7295 }; 7296 7297 unsigned LoadOffset = 0; 7298 7299 // Initialize registers, which are fully occupied by the by-val argument. 7300 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7301 SDValue Load = GetLoad(PtrVT, LoadOffset); 7302 MemOpChains.push_back(Load.getValue(1)); 7303 LoadOffset += PtrByteSize; 7304 const CCValAssign &ByValVA = ArgLocs[I++]; 7305 assert(ByValVA.getValNo() == ValNo && 7306 "Unexpected location for pass-by-value argument."); 7307 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7308 } 7309 7310 if (LoadOffset == ByValSize) 7311 continue; 7312 7313 // There must be one more loc to handle the remainder. 7314 assert(ArgLocs[I].getValNo() == ValNo && 7315 "Expected additional location for by-value argument."); 7316 7317 if (ArgLocs[I].isMemLoc()) { 7318 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7319 const CCValAssign &ByValVA = ArgLocs[I++]; 7320 ISD::ArgFlagsTy MemcpyFlags = Flags; 7321 // Only memcpy the bytes that don't pass in register. 7322 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7323 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7324 (LoadOffset != 0) 7325 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7326 : Arg, 7327 DAG.getObjectPtrOffset(dl, StackPtr, 7328 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7329 CallSeqStart, MemcpyFlags, DAG, dl); 7330 continue; 7331 } 7332 7333 // Initialize the final register residue. 7334 // Any residue that occupies the final by-val arg register must be 7335 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7336 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7337 // 2 and 1 byte loads. 7338 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7339 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7340 "Unexpected register residue for by-value argument."); 7341 SDValue ResidueVal; 7342 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7343 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7344 const MVT VT = 7345 N == 1 ? MVT::i8 7346 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7347 SDValue Load = GetLoad(VT, LoadOffset); 7348 MemOpChains.push_back(Load.getValue(1)); 7349 LoadOffset += N; 7350 Bytes += N; 7351 7352 // By-val arguments are passed left-justfied in register. 7353 // Every load here needs to be shifted, otherwise a full register load 7354 // should have been used. 7355 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7356 "Unexpected load emitted during handling of pass-by-value " 7357 "argument."); 7358 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7359 EVT ShiftAmountTy = 7360 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7361 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7362 SDValue ShiftedLoad = 7363 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7364 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7365 ShiftedLoad) 7366 : ShiftedLoad; 7367 } 7368 7369 const CCValAssign &ByValVA = ArgLocs[I++]; 7370 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7371 continue; 7372 } 7373 7374 CCValAssign &VA = ArgLocs[I++]; 7375 const MVT LocVT = VA.getLocVT(); 7376 const MVT ValVT = VA.getValVT(); 7377 7378 switch (VA.getLocInfo()) { 7379 default: 7380 report_fatal_error("Unexpected argument extension type."); 7381 case CCValAssign::Full: 7382 break; 7383 case CCValAssign::ZExt: 7384 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7385 break; 7386 case CCValAssign::SExt: 7387 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7388 break; 7389 } 7390 7391 if (VA.isRegLoc() && !VA.needsCustom()) { 7392 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7393 continue; 7394 } 7395 7396 // Vector arguments passed to VarArg functions need custom handling when 7397 // they are passed (at least partially) in GPRs. 7398 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7399 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7400 // Store value to its stack slot. 7401 SDValue PtrOff = 7402 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7403 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7404 SDValue Store = 7405 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7406 MemOpChains.push_back(Store); 7407 const unsigned OriginalValNo = VA.getValNo(); 7408 // Then load the GPRs from the stack 7409 unsigned LoadOffset = 0; 7410 auto HandleCustomVecRegLoc = [&]() { 7411 assert(I != E && "Unexpected end of CCvalAssigns."); 7412 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7413 "Expected custom RegLoc."); 7414 CCValAssign RegVA = ArgLocs[I++]; 7415 assert(RegVA.getValNo() == OriginalValNo && 7416 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7417 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7418 DAG.getConstant(LoadOffset, dl, PtrVT)); 7419 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7420 MemOpChains.push_back(Load.getValue(1)); 7421 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7422 LoadOffset += PtrByteSize; 7423 }; 7424 7425 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7426 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7427 // R10. 7428 HandleCustomVecRegLoc(); 7429 HandleCustomVecRegLoc(); 7430 7431 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7432 ArgLocs[I].getValNo() == OriginalValNo) { 7433 assert(!IsPPC64 && 7434 "Only 2 custom RegLocs expected for 64-bit codegen."); 7435 HandleCustomVecRegLoc(); 7436 HandleCustomVecRegLoc(); 7437 } 7438 7439 continue; 7440 } 7441 7442 if (VA.isMemLoc()) { 7443 SDValue PtrOff = 7444 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7445 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7446 MemOpChains.push_back( 7447 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7448 7449 continue; 7450 } 7451 7452 if (!ValVT.isFloatingPoint()) 7453 report_fatal_error( 7454 "Unexpected register handling for calling convention."); 7455 7456 // Custom handling is used for GPR initializations for vararg float 7457 // arguments. 7458 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7459 LocVT.isInteger() && 7460 "Custom register handling only expected for VarArg."); 7461 7462 SDValue ArgAsInt = 7463 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7464 7465 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7466 // f32 in 32-bit GPR 7467 // f64 in 64-bit GPR 7468 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7469 else if (Arg.getValueType().getFixedSizeInBits() < 7470 LocVT.getFixedSizeInBits()) 7471 // f32 in 64-bit GPR. 7472 RegsToPass.push_back(std::make_pair( 7473 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7474 else { 7475 // f64 in two 32-bit GPRs 7476 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7477 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7478 "Unexpected custom register for argument!"); 7479 CCValAssign &GPR1 = VA; 7480 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7481 DAG.getConstant(32, dl, MVT::i8)); 7482 RegsToPass.push_back(std::make_pair( 7483 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7484 7485 if (I != E) { 7486 // If only 1 GPR was available, there will only be one custom GPR and 7487 // the argument will also pass in memory. 7488 CCValAssign &PeekArg = ArgLocs[I]; 7489 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7490 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7491 CCValAssign &GPR2 = ArgLocs[I++]; 7492 RegsToPass.push_back(std::make_pair( 7493 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7494 } 7495 } 7496 } 7497 } 7498 7499 if (!MemOpChains.empty()) 7500 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7501 7502 // For indirect calls, we need to save the TOC base to the stack for 7503 // restoration after the call. 7504 if (CFlags.IsIndirect) { 7505 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7506 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7507 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7508 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7509 const unsigned TOCSaveOffset = 7510 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7511 7512 setUsesTOCBasePtr(DAG); 7513 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7514 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7515 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7516 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7517 Chain = DAG.getStore( 7518 Val.getValue(1), dl, Val, AddPtr, 7519 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7520 } 7521 7522 // Build a sequence of copy-to-reg nodes chained together with token chain 7523 // and flag operands which copy the outgoing args into the appropriate regs. 7524 SDValue InFlag; 7525 for (auto Reg : RegsToPass) { 7526 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7527 InFlag = Chain.getValue(1); 7528 } 7529 7530 const int SPDiff = 0; 7531 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7532 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7533 } 7534 7535 bool 7536 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7537 MachineFunction &MF, bool isVarArg, 7538 const SmallVectorImpl<ISD::OutputArg> &Outs, 7539 LLVMContext &Context) const { 7540 SmallVector<CCValAssign, 16> RVLocs; 7541 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7542 return CCInfo.CheckReturn( 7543 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7544 ? RetCC_PPC_Cold 7545 : RetCC_PPC); 7546 } 7547 7548 SDValue 7549 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7550 bool isVarArg, 7551 const SmallVectorImpl<ISD::OutputArg> &Outs, 7552 const SmallVectorImpl<SDValue> &OutVals, 7553 const SDLoc &dl, SelectionDAG &DAG) const { 7554 SmallVector<CCValAssign, 16> RVLocs; 7555 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7556 *DAG.getContext()); 7557 CCInfo.AnalyzeReturn(Outs, 7558 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7559 ? RetCC_PPC_Cold 7560 : RetCC_PPC); 7561 7562 SDValue Flag; 7563 SmallVector<SDValue, 4> RetOps(1, Chain); 7564 7565 // Copy the result values into the output registers. 7566 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7567 CCValAssign &VA = RVLocs[i]; 7568 assert(VA.isRegLoc() && "Can only return in registers!"); 7569 7570 SDValue Arg = OutVals[RealResIdx]; 7571 7572 switch (VA.getLocInfo()) { 7573 default: llvm_unreachable("Unknown loc info!"); 7574 case CCValAssign::Full: break; 7575 case CCValAssign::AExt: 7576 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7577 break; 7578 case CCValAssign::ZExt: 7579 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7580 break; 7581 case CCValAssign::SExt: 7582 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7583 break; 7584 } 7585 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7586 bool isLittleEndian = Subtarget.isLittleEndian(); 7587 // Legalize ret f64 -> ret 2 x i32. 7588 SDValue SVal = 7589 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7590 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7591 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7592 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7593 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7594 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7595 Flag = Chain.getValue(1); 7596 VA = RVLocs[++i]; // skip ahead to next loc 7597 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7598 } else 7599 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7600 Flag = Chain.getValue(1); 7601 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7602 } 7603 7604 RetOps[0] = Chain; // Update chain. 7605 7606 // Add the flag if we have it. 7607 if (Flag.getNode()) 7608 RetOps.push_back(Flag); 7609 7610 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7611 } 7612 7613 SDValue 7614 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7615 SelectionDAG &DAG) const { 7616 SDLoc dl(Op); 7617 7618 // Get the correct type for integers. 7619 EVT IntVT = Op.getValueType(); 7620 7621 // Get the inputs. 7622 SDValue Chain = Op.getOperand(0); 7623 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7624 // Build a DYNAREAOFFSET node. 7625 SDValue Ops[2] = {Chain, FPSIdx}; 7626 SDVTList VTs = DAG.getVTList(IntVT); 7627 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7628 } 7629 7630 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7631 SelectionDAG &DAG) const { 7632 // When we pop the dynamic allocation we need to restore the SP link. 7633 SDLoc dl(Op); 7634 7635 // Get the correct type for pointers. 7636 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7637 7638 // Construct the stack pointer operand. 7639 bool isPPC64 = Subtarget.isPPC64(); 7640 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7641 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7642 7643 // Get the operands for the STACKRESTORE. 7644 SDValue Chain = Op.getOperand(0); 7645 SDValue SaveSP = Op.getOperand(1); 7646 7647 // Load the old link SP. 7648 SDValue LoadLinkSP = 7649 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7650 7651 // Restore the stack pointer. 7652 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7653 7654 // Store the old link SP. 7655 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7656 } 7657 7658 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7659 MachineFunction &MF = DAG.getMachineFunction(); 7660 bool isPPC64 = Subtarget.isPPC64(); 7661 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7662 7663 // Get current frame pointer save index. The users of this index will be 7664 // primarily DYNALLOC instructions. 7665 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7666 int RASI = FI->getReturnAddrSaveIndex(); 7667 7668 // If the frame pointer save index hasn't been defined yet. 7669 if (!RASI) { 7670 // Find out what the fix offset of the frame pointer save area. 7671 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7672 // Allocate the frame index for frame pointer save area. 7673 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7674 // Save the result. 7675 FI->setReturnAddrSaveIndex(RASI); 7676 } 7677 return DAG.getFrameIndex(RASI, PtrVT); 7678 } 7679 7680 SDValue 7681 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7682 MachineFunction &MF = DAG.getMachineFunction(); 7683 bool isPPC64 = Subtarget.isPPC64(); 7684 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7685 7686 // Get current frame pointer save index. The users of this index will be 7687 // primarily DYNALLOC instructions. 7688 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7689 int FPSI = FI->getFramePointerSaveIndex(); 7690 7691 // If the frame pointer save index hasn't been defined yet. 7692 if (!FPSI) { 7693 // Find out what the fix offset of the frame pointer save area. 7694 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7695 // Allocate the frame index for frame pointer save area. 7696 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7697 // Save the result. 7698 FI->setFramePointerSaveIndex(FPSI); 7699 } 7700 return DAG.getFrameIndex(FPSI, PtrVT); 7701 } 7702 7703 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7704 SelectionDAG &DAG) const { 7705 MachineFunction &MF = DAG.getMachineFunction(); 7706 // Get the inputs. 7707 SDValue Chain = Op.getOperand(0); 7708 SDValue Size = Op.getOperand(1); 7709 SDLoc dl(Op); 7710 7711 // Get the correct type for pointers. 7712 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7713 // Negate the size. 7714 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7715 DAG.getConstant(0, dl, PtrVT), Size); 7716 // Construct a node for the frame pointer save index. 7717 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7718 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7719 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7720 if (hasInlineStackProbe(MF)) 7721 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7722 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7723 } 7724 7725 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7726 SelectionDAG &DAG) const { 7727 MachineFunction &MF = DAG.getMachineFunction(); 7728 7729 bool isPPC64 = Subtarget.isPPC64(); 7730 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7731 7732 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7733 return DAG.getFrameIndex(FI, PtrVT); 7734 } 7735 7736 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7737 SelectionDAG &DAG) const { 7738 SDLoc DL(Op); 7739 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7740 DAG.getVTList(MVT::i32, MVT::Other), 7741 Op.getOperand(0), Op.getOperand(1)); 7742 } 7743 7744 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7745 SelectionDAG &DAG) const { 7746 SDLoc DL(Op); 7747 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7748 Op.getOperand(0), Op.getOperand(1)); 7749 } 7750 7751 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7752 if (Op.getValueType().isVector()) 7753 return LowerVectorLoad(Op, DAG); 7754 7755 assert(Op.getValueType() == MVT::i1 && 7756 "Custom lowering only for i1 loads"); 7757 7758 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7759 7760 SDLoc dl(Op); 7761 LoadSDNode *LD = cast<LoadSDNode>(Op); 7762 7763 SDValue Chain = LD->getChain(); 7764 SDValue BasePtr = LD->getBasePtr(); 7765 MachineMemOperand *MMO = LD->getMemOperand(); 7766 7767 SDValue NewLD = 7768 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7769 BasePtr, MVT::i8, MMO); 7770 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7771 7772 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7773 return DAG.getMergeValues(Ops, dl); 7774 } 7775 7776 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7777 if (Op.getOperand(1).getValueType().isVector()) 7778 return LowerVectorStore(Op, DAG); 7779 7780 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7781 "Custom lowering only for i1 stores"); 7782 7783 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7784 7785 SDLoc dl(Op); 7786 StoreSDNode *ST = cast<StoreSDNode>(Op); 7787 7788 SDValue Chain = ST->getChain(); 7789 SDValue BasePtr = ST->getBasePtr(); 7790 SDValue Value = ST->getValue(); 7791 MachineMemOperand *MMO = ST->getMemOperand(); 7792 7793 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7794 Value); 7795 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7796 } 7797 7798 // FIXME: Remove this once the ANDI glue bug is fixed: 7799 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7800 assert(Op.getValueType() == MVT::i1 && 7801 "Custom lowering only for i1 results"); 7802 7803 SDLoc DL(Op); 7804 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7805 } 7806 7807 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7808 SelectionDAG &DAG) const { 7809 7810 // Implements a vector truncate that fits in a vector register as a shuffle. 7811 // We want to legalize vector truncates down to where the source fits in 7812 // a vector register (and target is therefore smaller than vector register 7813 // size). At that point legalization will try to custom lower the sub-legal 7814 // result and get here - where we can contain the truncate as a single target 7815 // operation. 7816 7817 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7818 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7819 // 7820 // We will implement it for big-endian ordering as this (where x denotes 7821 // undefined): 7822 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7823 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7824 // 7825 // The same operation in little-endian ordering will be: 7826 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7827 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7828 7829 EVT TrgVT = Op.getValueType(); 7830 assert(TrgVT.isVector() && "Vector type expected."); 7831 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7832 EVT EltVT = TrgVT.getVectorElementType(); 7833 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7834 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7835 !isPowerOf2_32(EltVT.getSizeInBits())) 7836 return SDValue(); 7837 7838 SDValue N1 = Op.getOperand(0); 7839 EVT SrcVT = N1.getValueType(); 7840 unsigned SrcSize = SrcVT.getSizeInBits(); 7841 if (SrcSize > 256 || 7842 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7843 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7844 return SDValue(); 7845 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7846 return SDValue(); 7847 7848 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7849 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7850 7851 SDLoc DL(Op); 7852 SDValue Op1, Op2; 7853 if (SrcSize == 256) { 7854 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7855 EVT SplitVT = 7856 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7857 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7858 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7859 DAG.getConstant(0, DL, VecIdxTy)); 7860 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7861 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7862 } 7863 else { 7864 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7865 Op2 = DAG.getUNDEF(WideVT); 7866 } 7867 7868 // First list the elements we want to keep. 7869 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7870 SmallVector<int, 16> ShuffV; 7871 if (Subtarget.isLittleEndian()) 7872 for (unsigned i = 0; i < TrgNumElts; ++i) 7873 ShuffV.push_back(i * SizeMult); 7874 else 7875 for (unsigned i = 1; i <= TrgNumElts; ++i) 7876 ShuffV.push_back(i * SizeMult - 1); 7877 7878 // Populate the remaining elements with undefs. 7879 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7880 // ShuffV.push_back(i + WideNumElts); 7881 ShuffV.push_back(WideNumElts + 1); 7882 7883 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7884 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7885 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7886 } 7887 7888 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7889 /// possible. 7890 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7891 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7892 EVT ResVT = Op.getValueType(); 7893 EVT CmpVT = Op.getOperand(0).getValueType(); 7894 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7895 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7896 SDLoc dl(Op); 7897 7898 // Without power9-vector, we don't have native instruction for f128 comparison. 7899 // Following transformation to libcall is needed for setcc: 7900 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7901 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7902 SDValue Z = DAG.getSetCC( 7903 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7904 LHS, RHS, CC); 7905 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7906 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7907 } 7908 7909 // Not FP, or using SPE? Not a fsel. 7910 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7911 Subtarget.hasSPE()) 7912 return Op; 7913 7914 SDNodeFlags Flags = Op.getNode()->getFlags(); 7915 7916 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 7917 // presence of infinities. 7918 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7919 switch (CC) { 7920 default: 7921 break; 7922 case ISD::SETOGT: 7923 case ISD::SETGT: 7924 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 7925 case ISD::SETOLT: 7926 case ISD::SETLT: 7927 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 7928 } 7929 } 7930 7931 // We might be able to do better than this under some circumstances, but in 7932 // general, fsel-based lowering of select is a finite-math-only optimization. 7933 // For more information, see section F.3 of the 2.06 ISA specification. 7934 // With ISA 3.0 7935 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7936 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7937 return Op; 7938 7939 // If the RHS of the comparison is a 0.0, we don't need to do the 7940 // subtraction at all. 7941 SDValue Sel1; 7942 if (isFloatingPointZero(RHS)) 7943 switch (CC) { 7944 default: break; // SETUO etc aren't handled by fsel. 7945 case ISD::SETNE: 7946 std::swap(TV, FV); 7947 LLVM_FALLTHROUGH; 7948 case ISD::SETEQ: 7949 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7950 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7951 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7952 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7953 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7954 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7955 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7956 case ISD::SETULT: 7957 case ISD::SETLT: 7958 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7959 LLVM_FALLTHROUGH; 7960 case ISD::SETOGE: 7961 case ISD::SETGE: 7962 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7963 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7964 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7965 case ISD::SETUGT: 7966 case ISD::SETGT: 7967 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7968 LLVM_FALLTHROUGH; 7969 case ISD::SETOLE: 7970 case ISD::SETLE: 7971 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7972 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7973 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7974 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7975 } 7976 7977 SDValue Cmp; 7978 switch (CC) { 7979 default: break; // SETUO etc aren't handled by fsel. 7980 case ISD::SETNE: 7981 std::swap(TV, FV); 7982 LLVM_FALLTHROUGH; 7983 case ISD::SETEQ: 7984 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7985 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7986 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7987 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7988 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7989 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7990 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7991 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7992 case ISD::SETULT: 7993 case ISD::SETLT: 7994 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7995 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7996 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7997 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7998 case ISD::SETOGE: 7999 case ISD::SETGE: 8000 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8001 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8002 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8003 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8004 case ISD::SETUGT: 8005 case ISD::SETGT: 8006 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8007 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8008 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8009 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8010 case ISD::SETOLE: 8011 case ISD::SETLE: 8012 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8013 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8014 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8015 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8016 } 8017 return Op; 8018 } 8019 8020 static unsigned getPPCStrictOpcode(unsigned Opc) { 8021 switch (Opc) { 8022 default: 8023 llvm_unreachable("No strict version of this opcode!"); 8024 case PPCISD::FCTIDZ: 8025 return PPCISD::STRICT_FCTIDZ; 8026 case PPCISD::FCTIWZ: 8027 return PPCISD::STRICT_FCTIWZ; 8028 case PPCISD::FCTIDUZ: 8029 return PPCISD::STRICT_FCTIDUZ; 8030 case PPCISD::FCTIWUZ: 8031 return PPCISD::STRICT_FCTIWUZ; 8032 case PPCISD::FCFID: 8033 return PPCISD::STRICT_FCFID; 8034 case PPCISD::FCFIDU: 8035 return PPCISD::STRICT_FCFIDU; 8036 case PPCISD::FCFIDS: 8037 return PPCISD::STRICT_FCFIDS; 8038 case PPCISD::FCFIDUS: 8039 return PPCISD::STRICT_FCFIDUS; 8040 } 8041 } 8042 8043 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8044 const PPCSubtarget &Subtarget) { 8045 SDLoc dl(Op); 8046 bool IsStrict = Op->isStrictFPOpcode(); 8047 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8048 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8049 8050 // TODO: Any other flags to propagate? 8051 SDNodeFlags Flags; 8052 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8053 8054 // For strict nodes, source is the second operand. 8055 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8056 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8057 assert(Src.getValueType().isFloatingPoint()); 8058 if (Src.getValueType() == MVT::f32) { 8059 if (IsStrict) { 8060 Src = 8061 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8062 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8063 Chain = Src.getValue(1); 8064 } else 8065 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8066 } 8067 SDValue Conv; 8068 unsigned Opc = ISD::DELETED_NODE; 8069 switch (Op.getSimpleValueType().SimpleTy) { 8070 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8071 case MVT::i32: 8072 Opc = IsSigned ? PPCISD::FCTIWZ 8073 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8074 break; 8075 case MVT::i64: 8076 assert((IsSigned || Subtarget.hasFPCVT()) && 8077 "i64 FP_TO_UINT is supported only with FPCVT"); 8078 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8079 } 8080 if (IsStrict) { 8081 Opc = getPPCStrictOpcode(Opc); 8082 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8083 {Chain, Src}, Flags); 8084 } else { 8085 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8086 } 8087 return Conv; 8088 } 8089 8090 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8091 SelectionDAG &DAG, 8092 const SDLoc &dl) const { 8093 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8094 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8095 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8096 bool IsStrict = Op->isStrictFPOpcode(); 8097 8098 // Convert the FP value to an int value through memory. 8099 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8100 (IsSigned || Subtarget.hasFPCVT()); 8101 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8102 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8103 MachinePointerInfo MPI = 8104 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8105 8106 // Emit a store to the stack slot. 8107 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8108 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8109 if (i32Stack) { 8110 MachineFunction &MF = DAG.getMachineFunction(); 8111 Alignment = Align(4); 8112 MachineMemOperand *MMO = 8113 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8114 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8115 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8116 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8117 } else 8118 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8119 8120 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8121 // add in a bias on big endian. 8122 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8123 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8124 DAG.getConstant(4, dl, FIPtr.getValueType())); 8125 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8126 } 8127 8128 RLI.Chain = Chain; 8129 RLI.Ptr = FIPtr; 8130 RLI.MPI = MPI; 8131 RLI.Alignment = Alignment; 8132 } 8133 8134 /// Custom lowers floating point to integer conversions to use 8135 /// the direct move instructions available in ISA 2.07 to avoid the 8136 /// need for load/store combinations. 8137 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8138 SelectionDAG &DAG, 8139 const SDLoc &dl) const { 8140 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8141 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8142 if (Op->isStrictFPOpcode()) 8143 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8144 else 8145 return Mov; 8146 } 8147 8148 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8149 const SDLoc &dl) const { 8150 bool IsStrict = Op->isStrictFPOpcode(); 8151 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8152 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8153 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8154 EVT SrcVT = Src.getValueType(); 8155 EVT DstVT = Op.getValueType(); 8156 8157 // FP to INT conversions are legal for f128. 8158 if (SrcVT == MVT::f128) 8159 return Subtarget.hasP9Vector() ? Op : SDValue(); 8160 8161 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8162 // PPC (the libcall is not available). 8163 if (SrcVT == MVT::ppcf128) { 8164 if (DstVT == MVT::i32) { 8165 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8166 // set other fast-math flags to FP operations in both strict and 8167 // non-strict cases. (FP_TO_SINT, FSUB) 8168 SDNodeFlags Flags; 8169 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8170 8171 if (IsSigned) { 8172 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8173 DAG.getIntPtrConstant(0, dl)); 8174 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8175 DAG.getIntPtrConstant(1, dl)); 8176 8177 // Add the two halves of the long double in round-to-zero mode, and use 8178 // a smaller FP_TO_SINT. 8179 if (IsStrict) { 8180 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8181 DAG.getVTList(MVT::f64, MVT::Other), 8182 {Op.getOperand(0), Lo, Hi}, Flags); 8183 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8184 DAG.getVTList(MVT::i32, MVT::Other), 8185 {Res.getValue(1), Res}, Flags); 8186 } else { 8187 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8188 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8189 } 8190 } else { 8191 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8192 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8193 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8194 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8195 if (IsStrict) { 8196 // Sel = Src < 0x80000000 8197 // FltOfs = select Sel, 0.0, 0x80000000 8198 // IntOfs = select Sel, 0, 0x80000000 8199 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8200 SDValue Chain = Op.getOperand(0); 8201 EVT SetCCVT = 8202 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8203 EVT DstSetCCVT = 8204 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8205 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8206 Chain, true); 8207 Chain = Sel.getValue(1); 8208 8209 SDValue FltOfs = DAG.getSelect( 8210 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8211 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8212 8213 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8214 DAG.getVTList(SrcVT, MVT::Other), 8215 {Chain, Src, FltOfs}, Flags); 8216 Chain = Val.getValue(1); 8217 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8218 DAG.getVTList(DstVT, MVT::Other), 8219 {Chain, Val}, Flags); 8220 Chain = SInt.getValue(1); 8221 SDValue IntOfs = DAG.getSelect( 8222 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8223 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8224 return DAG.getMergeValues({Result, Chain}, dl); 8225 } else { 8226 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8227 // FIXME: generated code sucks. 8228 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8229 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8230 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8231 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8232 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8233 } 8234 } 8235 } 8236 8237 return SDValue(); 8238 } 8239 8240 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8241 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8242 8243 ReuseLoadInfo RLI; 8244 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8245 8246 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8247 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8248 } 8249 8250 // We're trying to insert a regular store, S, and then a load, L. If the 8251 // incoming value, O, is a load, we might just be able to have our load use the 8252 // address used by O. However, we don't know if anything else will store to 8253 // that address before we can load from it. To prevent this situation, we need 8254 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8255 // the same chain operand as O, we create a token factor from the chain results 8256 // of O and L, and we replace all uses of O's chain result with that token 8257 // factor (see spliceIntoChain below for this last part). 8258 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8259 ReuseLoadInfo &RLI, 8260 SelectionDAG &DAG, 8261 ISD::LoadExtType ET) const { 8262 // Conservatively skip reusing for constrained FP nodes. 8263 if (Op->isStrictFPOpcode()) 8264 return false; 8265 8266 SDLoc dl(Op); 8267 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8268 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8269 if (ET == ISD::NON_EXTLOAD && 8270 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8271 isOperationLegalOrCustom(Op.getOpcode(), 8272 Op.getOperand(0).getValueType())) { 8273 8274 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8275 return true; 8276 } 8277 8278 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8279 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8280 LD->isNonTemporal()) 8281 return false; 8282 if (LD->getMemoryVT() != MemVT) 8283 return false; 8284 8285 // If the result of the load is an illegal type, then we can't build a 8286 // valid chain for reuse since the legalised loads and token factor node that 8287 // ties the legalised loads together uses a different output chain then the 8288 // illegal load. 8289 if (!isTypeLegal(LD->getValueType(0))) 8290 return false; 8291 8292 RLI.Ptr = LD->getBasePtr(); 8293 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8294 assert(LD->getAddressingMode() == ISD::PRE_INC && 8295 "Non-pre-inc AM on PPC?"); 8296 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8297 LD->getOffset()); 8298 } 8299 8300 RLI.Chain = LD->getChain(); 8301 RLI.MPI = LD->getPointerInfo(); 8302 RLI.IsDereferenceable = LD->isDereferenceable(); 8303 RLI.IsInvariant = LD->isInvariant(); 8304 RLI.Alignment = LD->getAlign(); 8305 RLI.AAInfo = LD->getAAInfo(); 8306 RLI.Ranges = LD->getRanges(); 8307 8308 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8309 return true; 8310 } 8311 8312 // Given the head of the old chain, ResChain, insert a token factor containing 8313 // it and NewResChain, and make users of ResChain now be users of that token 8314 // factor. 8315 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8316 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8317 SDValue NewResChain, 8318 SelectionDAG &DAG) const { 8319 if (!ResChain) 8320 return; 8321 8322 SDLoc dl(NewResChain); 8323 8324 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8325 NewResChain, DAG.getUNDEF(MVT::Other)); 8326 assert(TF.getNode() != NewResChain.getNode() && 8327 "A new TF really is required here"); 8328 8329 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8330 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8331 } 8332 8333 /// Analyze profitability of direct move 8334 /// prefer float load to int load plus direct move 8335 /// when there is no integer use of int load 8336 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8337 SDNode *Origin = Op.getOperand(0).getNode(); 8338 if (Origin->getOpcode() != ISD::LOAD) 8339 return true; 8340 8341 // If there is no LXSIBZX/LXSIHZX, like Power8, 8342 // prefer direct move if the memory size is 1 or 2 bytes. 8343 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8344 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8345 return true; 8346 8347 for (SDNode::use_iterator UI = Origin->use_begin(), 8348 UE = Origin->use_end(); 8349 UI != UE; ++UI) { 8350 8351 // Only look at the users of the loaded value. 8352 if (UI.getUse().get().getResNo() != 0) 8353 continue; 8354 8355 if (UI->getOpcode() != ISD::SINT_TO_FP && 8356 UI->getOpcode() != ISD::UINT_TO_FP && 8357 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8358 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8359 return true; 8360 } 8361 8362 return false; 8363 } 8364 8365 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8366 const PPCSubtarget &Subtarget, 8367 SDValue Chain = SDValue()) { 8368 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8369 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8370 SDLoc dl(Op); 8371 8372 // TODO: Any other flags to propagate? 8373 SDNodeFlags Flags; 8374 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8375 8376 // If we have FCFIDS, then use it when converting to single-precision. 8377 // Otherwise, convert to double-precision and then round. 8378 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8379 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8380 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8381 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8382 if (Op->isStrictFPOpcode()) { 8383 if (!Chain) 8384 Chain = Op.getOperand(0); 8385 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8386 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8387 } else 8388 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8389 } 8390 8391 /// Custom lowers integer to floating point conversions to use 8392 /// the direct move instructions available in ISA 2.07 to avoid the 8393 /// need for load/store combinations. 8394 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8395 SelectionDAG &DAG, 8396 const SDLoc &dl) const { 8397 assert((Op.getValueType() == MVT::f32 || 8398 Op.getValueType() == MVT::f64) && 8399 "Invalid floating point type as target of conversion"); 8400 assert(Subtarget.hasFPCVT() && 8401 "Int to FP conversions with direct moves require FPCVT"); 8402 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8403 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8404 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8405 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8406 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8407 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8408 return convertIntToFP(Op, Mov, DAG, Subtarget); 8409 } 8410 8411 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8412 8413 EVT VecVT = Vec.getValueType(); 8414 assert(VecVT.isVector() && "Expected a vector type."); 8415 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8416 8417 EVT EltVT = VecVT.getVectorElementType(); 8418 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8419 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8420 8421 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8422 SmallVector<SDValue, 16> Ops(NumConcat); 8423 Ops[0] = Vec; 8424 SDValue UndefVec = DAG.getUNDEF(VecVT); 8425 for (unsigned i = 1; i < NumConcat; ++i) 8426 Ops[i] = UndefVec; 8427 8428 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8429 } 8430 8431 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8432 const SDLoc &dl) const { 8433 bool IsStrict = Op->isStrictFPOpcode(); 8434 unsigned Opc = Op.getOpcode(); 8435 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8436 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8437 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8438 "Unexpected conversion type"); 8439 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8440 "Supports conversions to v2f64/v4f32 only."); 8441 8442 // TODO: Any other flags to propagate? 8443 SDNodeFlags Flags; 8444 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8445 8446 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8447 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8448 8449 SDValue Wide = widenVec(DAG, Src, dl); 8450 EVT WideVT = Wide.getValueType(); 8451 unsigned WideNumElts = WideVT.getVectorNumElements(); 8452 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8453 8454 SmallVector<int, 16> ShuffV; 8455 for (unsigned i = 0; i < WideNumElts; ++i) 8456 ShuffV.push_back(i + WideNumElts); 8457 8458 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8459 int SaveElts = FourEltRes ? 4 : 2; 8460 if (Subtarget.isLittleEndian()) 8461 for (int i = 0; i < SaveElts; i++) 8462 ShuffV[i * Stride] = i; 8463 else 8464 for (int i = 1; i <= SaveElts; i++) 8465 ShuffV[i * Stride - 1] = i - 1; 8466 8467 SDValue ShuffleSrc2 = 8468 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8469 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8470 8471 SDValue Extend; 8472 if (SignedConv) { 8473 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8474 EVT ExtVT = Src.getValueType(); 8475 if (Subtarget.hasP9Altivec()) 8476 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8477 IntermediateVT.getVectorNumElements()); 8478 8479 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8480 DAG.getValueType(ExtVT)); 8481 } else 8482 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8483 8484 if (IsStrict) 8485 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8486 {Op.getOperand(0), Extend}, Flags); 8487 8488 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8489 } 8490 8491 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8492 SelectionDAG &DAG) const { 8493 SDLoc dl(Op); 8494 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8495 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8496 bool IsStrict = Op->isStrictFPOpcode(); 8497 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8498 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8499 8500 // TODO: Any other flags to propagate? 8501 SDNodeFlags Flags; 8502 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8503 8504 EVT InVT = Src.getValueType(); 8505 EVT OutVT = Op.getValueType(); 8506 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8507 isOperationCustom(Op.getOpcode(), InVT)) 8508 return LowerINT_TO_FPVector(Op, DAG, dl); 8509 8510 // Conversions to f128 are legal. 8511 if (Op.getValueType() == MVT::f128) 8512 return Subtarget.hasP9Vector() ? Op : SDValue(); 8513 8514 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8515 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8516 return SDValue(); 8517 8518 if (Src.getValueType() == MVT::i1) { 8519 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8520 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8521 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8522 if (IsStrict) 8523 return DAG.getMergeValues({Sel, Chain}, dl); 8524 else 8525 return Sel; 8526 } 8527 8528 // If we have direct moves, we can do all the conversion, skip the store/load 8529 // however, without FPCVT we can't do most conversions. 8530 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8531 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8532 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8533 8534 assert((IsSigned || Subtarget.hasFPCVT()) && 8535 "UINT_TO_FP is supported only with FPCVT"); 8536 8537 if (Src.getValueType() == MVT::i64) { 8538 SDValue SINT = Src; 8539 // When converting to single-precision, we actually need to convert 8540 // to double-precision first and then round to single-precision. 8541 // To avoid double-rounding effects during that operation, we have 8542 // to prepare the input operand. Bits that might be truncated when 8543 // converting to double-precision are replaced by a bit that won't 8544 // be lost at this stage, but is below the single-precision rounding 8545 // position. 8546 // 8547 // However, if -enable-unsafe-fp-math is in effect, accept double 8548 // rounding to avoid the extra overhead. 8549 if (Op.getValueType() == MVT::f32 && 8550 !Subtarget.hasFPCVT() && 8551 !DAG.getTarget().Options.UnsafeFPMath) { 8552 8553 // Twiddle input to make sure the low 11 bits are zero. (If this 8554 // is the case, we are guaranteed the value will fit into the 53 bit 8555 // mantissa of an IEEE double-precision value without rounding.) 8556 // If any of those low 11 bits were not zero originally, make sure 8557 // bit 12 (value 2048) is set instead, so that the final rounding 8558 // to single-precision gets the correct result. 8559 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8560 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8561 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8562 Round, DAG.getConstant(2047, dl, MVT::i64)); 8563 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8564 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8565 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8566 8567 // However, we cannot use that value unconditionally: if the magnitude 8568 // of the input value is small, the bit-twiddling we did above might 8569 // end up visibly changing the output. Fortunately, in that case, we 8570 // don't need to twiddle bits since the original input will convert 8571 // exactly to double-precision floating-point already. Therefore, 8572 // construct a conditional to use the original value if the top 11 8573 // bits are all sign-bit copies, and use the rounded value computed 8574 // above otherwise. 8575 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8576 SINT, DAG.getConstant(53, dl, MVT::i32)); 8577 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8578 Cond, DAG.getConstant(1, dl, MVT::i64)); 8579 Cond = DAG.getSetCC( 8580 dl, 8581 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8582 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8583 8584 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8585 } 8586 8587 ReuseLoadInfo RLI; 8588 SDValue Bits; 8589 8590 MachineFunction &MF = DAG.getMachineFunction(); 8591 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8592 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8593 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8594 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8595 } else if (Subtarget.hasLFIWAX() && 8596 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8597 MachineMemOperand *MMO = 8598 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8599 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8600 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8601 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8602 DAG.getVTList(MVT::f64, MVT::Other), 8603 Ops, MVT::i32, MMO); 8604 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8605 } else if (Subtarget.hasFPCVT() && 8606 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8607 MachineMemOperand *MMO = 8608 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8609 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8610 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8611 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8612 DAG.getVTList(MVT::f64, MVT::Other), 8613 Ops, MVT::i32, MMO); 8614 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8615 } else if (((Subtarget.hasLFIWAX() && 8616 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8617 (Subtarget.hasFPCVT() && 8618 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8619 SINT.getOperand(0).getValueType() == MVT::i32) { 8620 MachineFrameInfo &MFI = MF.getFrameInfo(); 8621 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8622 8623 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8624 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8625 8626 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8627 MachinePointerInfo::getFixedStack( 8628 DAG.getMachineFunction(), FrameIdx)); 8629 Chain = Store; 8630 8631 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8632 "Expected an i32 store"); 8633 8634 RLI.Ptr = FIdx; 8635 RLI.Chain = Chain; 8636 RLI.MPI = 8637 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8638 RLI.Alignment = Align(4); 8639 8640 MachineMemOperand *MMO = 8641 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8642 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8643 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8644 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8645 PPCISD::LFIWZX : PPCISD::LFIWAX, 8646 dl, DAG.getVTList(MVT::f64, MVT::Other), 8647 Ops, MVT::i32, MMO); 8648 Chain = Bits.getValue(1); 8649 } else 8650 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8651 8652 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8653 if (IsStrict) 8654 Chain = FP.getValue(1); 8655 8656 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8657 if (IsStrict) 8658 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8659 DAG.getVTList(MVT::f32, MVT::Other), 8660 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8661 else 8662 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8663 DAG.getIntPtrConstant(0, dl)); 8664 } 8665 return FP; 8666 } 8667 8668 assert(Src.getValueType() == MVT::i32 && 8669 "Unhandled INT_TO_FP type in custom expander!"); 8670 // Since we only generate this in 64-bit mode, we can take advantage of 8671 // 64-bit registers. In particular, sign extend the input value into the 8672 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8673 // then lfd it and fcfid it. 8674 MachineFunction &MF = DAG.getMachineFunction(); 8675 MachineFrameInfo &MFI = MF.getFrameInfo(); 8676 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8677 8678 SDValue Ld; 8679 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8680 ReuseLoadInfo RLI; 8681 bool ReusingLoad; 8682 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8683 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8684 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8685 8686 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8687 MachinePointerInfo::getFixedStack( 8688 DAG.getMachineFunction(), FrameIdx)); 8689 Chain = Store; 8690 8691 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8692 "Expected an i32 store"); 8693 8694 RLI.Ptr = FIdx; 8695 RLI.Chain = Chain; 8696 RLI.MPI = 8697 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8698 RLI.Alignment = Align(4); 8699 } 8700 8701 MachineMemOperand *MMO = 8702 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8703 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8704 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8705 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8706 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8707 MVT::i32, MMO); 8708 Chain = Ld.getValue(1); 8709 if (ReusingLoad) 8710 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8711 } else { 8712 assert(Subtarget.isPPC64() && 8713 "i32->FP without LFIWAX supported only on PPC64"); 8714 8715 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8716 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8717 8718 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8719 8720 // STD the extended value into the stack slot. 8721 SDValue Store = DAG.getStore( 8722 Chain, dl, Ext64, FIdx, 8723 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8724 Chain = Store; 8725 8726 // Load the value as a double. 8727 Ld = DAG.getLoad( 8728 MVT::f64, dl, Chain, FIdx, 8729 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8730 Chain = Ld.getValue(1); 8731 } 8732 8733 // FCFID it and return it. 8734 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8735 if (IsStrict) 8736 Chain = FP.getValue(1); 8737 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8738 if (IsStrict) 8739 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8740 DAG.getVTList(MVT::f32, MVT::Other), 8741 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8742 else 8743 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8744 DAG.getIntPtrConstant(0, dl)); 8745 } 8746 return FP; 8747 } 8748 8749 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8750 SelectionDAG &DAG) const { 8751 SDLoc dl(Op); 8752 /* 8753 The rounding mode is in bits 30:31 of FPSR, and has the following 8754 settings: 8755 00 Round to nearest 8756 01 Round to 0 8757 10 Round to +inf 8758 11 Round to -inf 8759 8760 FLT_ROUNDS, on the other hand, expects the following: 8761 -1 Undefined 8762 0 Round to 0 8763 1 Round to nearest 8764 2 Round to +inf 8765 3 Round to -inf 8766 8767 To perform the conversion, we do: 8768 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8769 */ 8770 8771 MachineFunction &MF = DAG.getMachineFunction(); 8772 EVT VT = Op.getValueType(); 8773 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8774 8775 // Save FP Control Word to register 8776 SDValue Chain = Op.getOperand(0); 8777 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8778 Chain = MFFS.getValue(1); 8779 8780 SDValue CWD; 8781 if (isTypeLegal(MVT::i64)) { 8782 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8783 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8784 } else { 8785 // Save FP register to stack slot 8786 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8787 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8788 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8789 8790 // Load FP Control Word from low 32 bits of stack slot. 8791 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8792 "Stack slot adjustment is valid only on big endian subtargets!"); 8793 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8794 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8795 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8796 Chain = CWD.getValue(1); 8797 } 8798 8799 // Transform as necessary 8800 SDValue CWD1 = 8801 DAG.getNode(ISD::AND, dl, MVT::i32, 8802 CWD, DAG.getConstant(3, dl, MVT::i32)); 8803 SDValue CWD2 = 8804 DAG.getNode(ISD::SRL, dl, MVT::i32, 8805 DAG.getNode(ISD::AND, dl, MVT::i32, 8806 DAG.getNode(ISD::XOR, dl, MVT::i32, 8807 CWD, DAG.getConstant(3, dl, MVT::i32)), 8808 DAG.getConstant(3, dl, MVT::i32)), 8809 DAG.getConstant(1, dl, MVT::i32)); 8810 8811 SDValue RetVal = 8812 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8813 8814 RetVal = 8815 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8816 dl, VT, RetVal); 8817 8818 return DAG.getMergeValues({RetVal, Chain}, dl); 8819 } 8820 8821 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8822 EVT VT = Op.getValueType(); 8823 unsigned BitWidth = VT.getSizeInBits(); 8824 SDLoc dl(Op); 8825 assert(Op.getNumOperands() == 3 && 8826 VT == Op.getOperand(1).getValueType() && 8827 "Unexpected SHL!"); 8828 8829 // Expand into a bunch of logical ops. Note that these ops 8830 // depend on the PPC behavior for oversized shift amounts. 8831 SDValue Lo = Op.getOperand(0); 8832 SDValue Hi = Op.getOperand(1); 8833 SDValue Amt = Op.getOperand(2); 8834 EVT AmtVT = Amt.getValueType(); 8835 8836 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8837 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8838 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8839 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8840 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8841 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8842 DAG.getConstant(-BitWidth, dl, AmtVT)); 8843 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8844 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8845 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8846 SDValue OutOps[] = { OutLo, OutHi }; 8847 return DAG.getMergeValues(OutOps, dl); 8848 } 8849 8850 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8851 EVT VT = Op.getValueType(); 8852 SDLoc dl(Op); 8853 unsigned BitWidth = VT.getSizeInBits(); 8854 assert(Op.getNumOperands() == 3 && 8855 VT == Op.getOperand(1).getValueType() && 8856 "Unexpected SRL!"); 8857 8858 // Expand into a bunch of logical ops. Note that these ops 8859 // depend on the PPC behavior for oversized shift amounts. 8860 SDValue Lo = Op.getOperand(0); 8861 SDValue Hi = Op.getOperand(1); 8862 SDValue Amt = Op.getOperand(2); 8863 EVT AmtVT = Amt.getValueType(); 8864 8865 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8866 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8867 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8868 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8869 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8870 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8871 DAG.getConstant(-BitWidth, dl, AmtVT)); 8872 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8873 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8874 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8875 SDValue OutOps[] = { OutLo, OutHi }; 8876 return DAG.getMergeValues(OutOps, dl); 8877 } 8878 8879 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8880 SDLoc dl(Op); 8881 EVT VT = Op.getValueType(); 8882 unsigned BitWidth = VT.getSizeInBits(); 8883 assert(Op.getNumOperands() == 3 && 8884 VT == Op.getOperand(1).getValueType() && 8885 "Unexpected SRA!"); 8886 8887 // Expand into a bunch of logical ops, followed by a select_cc. 8888 SDValue Lo = Op.getOperand(0); 8889 SDValue Hi = Op.getOperand(1); 8890 SDValue Amt = Op.getOperand(2); 8891 EVT AmtVT = Amt.getValueType(); 8892 8893 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8894 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8895 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8896 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8897 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8898 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8899 DAG.getConstant(-BitWidth, dl, AmtVT)); 8900 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8901 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8902 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8903 Tmp4, Tmp6, ISD::SETLE); 8904 SDValue OutOps[] = { OutLo, OutHi }; 8905 return DAG.getMergeValues(OutOps, dl); 8906 } 8907 8908 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8909 SelectionDAG &DAG) const { 8910 SDLoc dl(Op); 8911 EVT VT = Op.getValueType(); 8912 unsigned BitWidth = VT.getSizeInBits(); 8913 8914 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8915 SDValue X = Op.getOperand(0); 8916 SDValue Y = Op.getOperand(1); 8917 SDValue Z = Op.getOperand(2); 8918 EVT AmtVT = Z.getValueType(); 8919 8920 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8921 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8922 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8923 // on PowerPC shift by BW being well defined. 8924 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8925 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8926 SDValue SubZ = 8927 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8928 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8929 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8930 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8931 } 8932 8933 //===----------------------------------------------------------------------===// 8934 // Vector related lowering. 8935 // 8936 8937 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8938 /// element size of SplatSize. Cast the result to VT. 8939 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8940 SelectionDAG &DAG, const SDLoc &dl) { 8941 static const MVT VTys[] = { // canonical VT to use for each size. 8942 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8943 }; 8944 8945 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8946 8947 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8948 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8949 SplatSize = 1; 8950 Val = 0xFF; 8951 } 8952 8953 EVT CanonicalVT = VTys[SplatSize-1]; 8954 8955 // Build a canonical splat for this value. 8956 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8957 } 8958 8959 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8960 /// specified intrinsic ID. 8961 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8962 const SDLoc &dl, EVT DestVT = MVT::Other) { 8963 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8964 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8965 DAG.getConstant(IID, dl, MVT::i32), Op); 8966 } 8967 8968 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8969 /// specified intrinsic ID. 8970 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8971 SelectionDAG &DAG, const SDLoc &dl, 8972 EVT DestVT = MVT::Other) { 8973 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8974 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8975 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8976 } 8977 8978 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8979 /// specified intrinsic ID. 8980 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8981 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8982 EVT DestVT = MVT::Other) { 8983 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8984 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8985 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8986 } 8987 8988 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8989 /// amount. The result has the specified value type. 8990 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8991 SelectionDAG &DAG, const SDLoc &dl) { 8992 // Force LHS/RHS to be the right type. 8993 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8994 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8995 8996 int Ops[16]; 8997 for (unsigned i = 0; i != 16; ++i) 8998 Ops[i] = i + Amt; 8999 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9000 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9001 } 9002 9003 /// Do we have an efficient pattern in a .td file for this node? 9004 /// 9005 /// \param V - pointer to the BuildVectorSDNode being matched 9006 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9007 /// 9008 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9009 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9010 /// the opposite is true (expansion is beneficial) are: 9011 /// - The node builds a vector out of integers that are not 32 or 64-bits 9012 /// - The node builds a vector out of constants 9013 /// - The node is a "load-and-splat" 9014 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9015 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9016 bool HasDirectMove, 9017 bool HasP8Vector) { 9018 EVT VecVT = V->getValueType(0); 9019 bool RightType = VecVT == MVT::v2f64 || 9020 (HasP8Vector && VecVT == MVT::v4f32) || 9021 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9022 if (!RightType) 9023 return false; 9024 9025 bool IsSplat = true; 9026 bool IsLoad = false; 9027 SDValue Op0 = V->getOperand(0); 9028 9029 // This function is called in a block that confirms the node is not a constant 9030 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9031 // different constants. 9032 if (V->isConstant()) 9033 return false; 9034 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9035 if (V->getOperand(i).isUndef()) 9036 return false; 9037 // We want to expand nodes that represent load-and-splat even if the 9038 // loaded value is a floating point truncation or conversion to int. 9039 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9040 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9041 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9042 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9043 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9044 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9045 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9046 IsLoad = true; 9047 // If the operands are different or the input is not a load and has more 9048 // uses than just this BV node, then it isn't a splat. 9049 if (V->getOperand(i) != Op0 || 9050 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9051 IsSplat = false; 9052 } 9053 return !(IsSplat && IsLoad); 9054 } 9055 9056 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9057 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9058 9059 SDLoc dl(Op); 9060 SDValue Op0 = Op->getOperand(0); 9061 9062 if ((Op.getValueType() != MVT::f128) || 9063 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9064 (Op0.getOperand(0).getValueType() != MVT::i64) || 9065 (Op0.getOperand(1).getValueType() != MVT::i64)) 9066 return SDValue(); 9067 9068 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9069 Op0.getOperand(1)); 9070 } 9071 9072 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9073 const SDValue *InputLoad = &Op; 9074 if (InputLoad->getOpcode() == ISD::BITCAST) 9075 InputLoad = &InputLoad->getOperand(0); 9076 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9077 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9078 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9079 InputLoad = &InputLoad->getOperand(0); 9080 } 9081 if (InputLoad->getOpcode() != ISD::LOAD) 9082 return nullptr; 9083 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9084 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9085 } 9086 9087 // Convert the argument APFloat to a single precision APFloat if there is no 9088 // loss in information during the conversion to single precision APFloat and the 9089 // resulting number is not a denormal number. Return true if successful. 9090 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9091 APFloat APFloatToConvert = ArgAPFloat; 9092 bool LosesInfo = true; 9093 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9094 &LosesInfo); 9095 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9096 if (Success) 9097 ArgAPFloat = APFloatToConvert; 9098 return Success; 9099 } 9100 9101 // Bitcast the argument APInt to a double and convert it to a single precision 9102 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9103 // argument if there is no loss in information during the conversion from 9104 // double to single precision APFloat and the resulting number is not a denormal 9105 // number. Return true if successful. 9106 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9107 double DpValue = ArgAPInt.bitsToDouble(); 9108 APFloat APFloatDp(DpValue); 9109 bool Success = convertToNonDenormSingle(APFloatDp); 9110 if (Success) 9111 ArgAPInt = APFloatDp.bitcastToAPInt(); 9112 return Success; 9113 } 9114 9115 // Nondestructive check for convertTonNonDenormSingle. 9116 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9117 // Only convert if it loses info, since XXSPLTIDP should 9118 // handle the other case. 9119 APFloat APFloatToConvert = ArgAPFloat; 9120 bool LosesInfo = true; 9121 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9122 &LosesInfo); 9123 9124 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9125 } 9126 9127 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9128 unsigned &Opcode) { 9129 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9130 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9131 return false; 9132 9133 EVT Ty = Op->getValueType(0); 9134 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9135 // as we cannot handle extending loads for these types. 9136 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9137 ISD::isNON_EXTLoad(InputNode)) 9138 return true; 9139 9140 EVT MemVT = InputNode->getMemoryVT(); 9141 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9142 // memory VT is the same vector element VT type. 9143 // The loads feeding into the v8i16 and v16i8 types will be extending because 9144 // scalar i8/i16 are not legal types. 9145 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9146 (MemVT == Ty.getVectorElementType())) 9147 return true; 9148 9149 if (Ty == MVT::v2i64) { 9150 // Check the extend type, when the input type is i32, and the output vector 9151 // type is v2i64. 9152 if (MemVT == MVT::i32) { 9153 if (ISD::isZEXTLoad(InputNode)) 9154 Opcode = PPCISD::ZEXT_LD_SPLAT; 9155 if (ISD::isSEXTLoad(InputNode)) 9156 Opcode = PPCISD::SEXT_LD_SPLAT; 9157 } 9158 return true; 9159 } 9160 return false; 9161 } 9162 9163 // If this is a case we can't handle, return null and let the default 9164 // expansion code take care of it. If we CAN select this case, and if it 9165 // selects to a single instruction, return Op. Otherwise, if we can codegen 9166 // this case more efficiently than a constant pool load, lower it to the 9167 // sequence of ops that should be used. 9168 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9169 SelectionDAG &DAG) const { 9170 SDLoc dl(Op); 9171 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9172 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9173 9174 // Check if this is a splat of a constant value. 9175 APInt APSplatBits, APSplatUndef; 9176 unsigned SplatBitSize; 9177 bool HasAnyUndefs; 9178 bool BVNIsConstantSplat = 9179 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9180 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9181 9182 // If it is a splat of a double, check if we can shrink it to a 32 bit 9183 // non-denormal float which when converted back to double gives us the same 9184 // double. This is to exploit the XXSPLTIDP instruction. 9185 // If we lose precision, we use XXSPLTI32DX. 9186 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9187 Subtarget.hasPrefixInstrs()) { 9188 // Check the type first to short-circuit so we don't modify APSplatBits if 9189 // this block isn't executed. 9190 if ((Op->getValueType(0) == MVT::v2f64) && 9191 convertToNonDenormSingle(APSplatBits)) { 9192 SDValue SplatNode = DAG.getNode( 9193 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9194 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9195 return DAG.getBitcast(Op.getValueType(), SplatNode); 9196 } else { 9197 // We may lose precision, so we have to use XXSPLTI32DX. 9198 9199 uint32_t Hi = 9200 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9201 uint32_t Lo = 9202 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9203 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9204 9205 if (!Hi || !Lo) 9206 // If either load is 0, then we should generate XXLXOR to set to 0. 9207 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9208 9209 if (Hi) 9210 SplatNode = DAG.getNode( 9211 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9212 DAG.getTargetConstant(0, dl, MVT::i32), 9213 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9214 9215 if (Lo) 9216 SplatNode = 9217 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9218 DAG.getTargetConstant(1, dl, MVT::i32), 9219 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9220 9221 return DAG.getBitcast(Op.getValueType(), SplatNode); 9222 } 9223 } 9224 9225 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9226 unsigned NewOpcode = PPCISD::LD_SPLAT; 9227 9228 // Handle load-and-splat patterns as we have instructions that will do this 9229 // in one go. 9230 if (DAG.isSplatValue(Op, true) && 9231 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9232 const SDValue *InputLoad = &Op.getOperand(0); 9233 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9234 9235 // If the input load is an extending load, it will be an i32 -> i64 9236 // extending load and isValidSplatLoad() will update NewOpcode. 9237 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9238 unsigned ElementSize = 9239 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9240 9241 assert(((ElementSize == 2 * MemorySize) 9242 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9243 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9244 : (NewOpcode == PPCISD::LD_SPLAT)) && 9245 "Unmatched element size and opcode!\n"); 9246 9247 // Checking for a single use of this load, we have to check for vector 9248 // width (128 bits) / ElementSize uses (since each operand of the 9249 // BUILD_VECTOR is a separate use of the value. 9250 unsigned NumUsesOfInputLD = 128 / ElementSize; 9251 for (SDValue BVInOp : Op->ops()) 9252 if (BVInOp.isUndef()) 9253 NumUsesOfInputLD--; 9254 9255 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9256 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9257 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9258 // 15", but funciton IsValidSplatLoad() now will only return true when 9259 // the data at index 0 is not nullptr. So we will not get into trouble for 9260 // these cases. 9261 // 9262 // case 1 - lfiwzx/lfiwax 9263 // 1.1: load result is i32 and is sign/zero extend to i64; 9264 // 1.2: build a v2i64 vector type with above loaded value; 9265 // 1.3: the vector has only one value at index 0, others are all undef; 9266 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9267 if (NumUsesOfInputLD == 1 && 9268 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9269 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9270 Subtarget.hasLFIWAX())) 9271 return SDValue(); 9272 9273 // case 2 - lxvr[hb]x 9274 // 2.1: load result is at most i16; 9275 // 2.2: build a vector with above loaded value; 9276 // 2.3: the vector has only one value at index 0, others are all undef; 9277 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9278 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9279 Subtarget.isISA3_1() && ElementSize <= 16) 9280 return SDValue(); 9281 9282 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9283 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9284 Subtarget.hasVSX()) { 9285 SDValue Ops[] = { 9286 LD->getChain(), // Chain 9287 LD->getBasePtr(), // Ptr 9288 DAG.getValueType(Op.getValueType()) // VT 9289 }; 9290 SDValue LdSplt = DAG.getMemIntrinsicNode( 9291 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9292 LD->getMemoryVT(), LD->getMemOperand()); 9293 // Replace all uses of the output chain of the original load with the 9294 // output chain of the new load. 9295 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9296 LdSplt.getValue(1)); 9297 return LdSplt; 9298 } 9299 } 9300 9301 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9302 // 32-bits can be lowered to VSX instructions under certain conditions. 9303 // Without VSX, there is no pattern more efficient than expanding the node. 9304 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9305 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9306 Subtarget.hasP8Vector())) 9307 return Op; 9308 return SDValue(); 9309 } 9310 9311 uint64_t SplatBits = APSplatBits.getZExtValue(); 9312 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9313 unsigned SplatSize = SplatBitSize / 8; 9314 9315 // First, handle single instruction cases. 9316 9317 // All zeros? 9318 if (SplatBits == 0) { 9319 // Canonicalize all zero vectors to be v4i32. 9320 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9321 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9322 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9323 } 9324 return Op; 9325 } 9326 9327 // We have XXSPLTIW for constant splats four bytes wide. 9328 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9329 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9330 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9331 // turned into a 4-byte splat of 0xABABABAB. 9332 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9333 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9334 Op.getValueType(), DAG, dl); 9335 9336 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9337 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9338 dl); 9339 9340 // We have XXSPLTIB for constant splats one byte wide. 9341 if (Subtarget.hasP9Vector() && SplatSize == 1) 9342 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9343 dl); 9344 9345 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9346 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9347 (32-SplatBitSize)); 9348 if (SextVal >= -16 && SextVal <= 15) 9349 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9350 dl); 9351 9352 // Two instruction sequences. 9353 9354 // If this value is in the range [-32,30] and is even, use: 9355 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9356 // If this value is in the range [17,31] and is odd, use: 9357 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9358 // If this value is in the range [-31,-17] and is odd, use: 9359 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9360 // Note the last two are three-instruction sequences. 9361 if (SextVal >= -32 && SextVal <= 31) { 9362 // To avoid having these optimizations undone by constant folding, 9363 // we convert to a pseudo that will be expanded later into one of 9364 // the above forms. 9365 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9366 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9367 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9368 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9369 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9370 if (VT == Op.getValueType()) 9371 return RetVal; 9372 else 9373 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9374 } 9375 9376 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9377 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9378 // for fneg/fabs. 9379 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9380 // Make -1 and vspltisw -1: 9381 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9382 9383 // Make the VSLW intrinsic, computing 0x8000_0000. 9384 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9385 OnesV, DAG, dl); 9386 9387 // xor by OnesV to invert it. 9388 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9389 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9390 } 9391 9392 // Check to see if this is a wide variety of vsplti*, binop self cases. 9393 static const signed char SplatCsts[] = { 9394 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9395 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9396 }; 9397 9398 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9399 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9400 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9401 int i = SplatCsts[idx]; 9402 9403 // Figure out what shift amount will be used by altivec if shifted by i in 9404 // this splat size. 9405 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9406 9407 // vsplti + shl self. 9408 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9409 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9410 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9411 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9412 Intrinsic::ppc_altivec_vslw 9413 }; 9414 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9415 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9416 } 9417 9418 // vsplti + srl self. 9419 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9420 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9421 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9422 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9423 Intrinsic::ppc_altivec_vsrw 9424 }; 9425 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9426 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9427 } 9428 9429 // vsplti + rol self. 9430 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9431 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9432 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9433 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9434 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9435 Intrinsic::ppc_altivec_vrlw 9436 }; 9437 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9438 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9439 } 9440 9441 // t = vsplti c, result = vsldoi t, t, 1 9442 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9443 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9444 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9445 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9446 } 9447 // t = vsplti c, result = vsldoi t, t, 2 9448 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9449 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9450 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9451 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9452 } 9453 // t = vsplti c, result = vsldoi t, t, 3 9454 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9455 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9456 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9457 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9458 } 9459 } 9460 9461 return SDValue(); 9462 } 9463 9464 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9465 /// the specified operations to build the shuffle. 9466 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9467 SDValue RHS, SelectionDAG &DAG, 9468 const SDLoc &dl) { 9469 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9470 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9471 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9472 9473 enum { 9474 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9475 OP_VMRGHW, 9476 OP_VMRGLW, 9477 OP_VSPLTISW0, 9478 OP_VSPLTISW1, 9479 OP_VSPLTISW2, 9480 OP_VSPLTISW3, 9481 OP_VSLDOI4, 9482 OP_VSLDOI8, 9483 OP_VSLDOI12 9484 }; 9485 9486 if (OpNum == OP_COPY) { 9487 if (LHSID == (1*9+2)*9+3) return LHS; 9488 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9489 return RHS; 9490 } 9491 9492 SDValue OpLHS, OpRHS; 9493 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9494 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9495 9496 int ShufIdxs[16]; 9497 switch (OpNum) { 9498 default: llvm_unreachable("Unknown i32 permute!"); 9499 case OP_VMRGHW: 9500 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9501 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9502 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9503 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9504 break; 9505 case OP_VMRGLW: 9506 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9507 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9508 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9509 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9510 break; 9511 case OP_VSPLTISW0: 9512 for (unsigned i = 0; i != 16; ++i) 9513 ShufIdxs[i] = (i&3)+0; 9514 break; 9515 case OP_VSPLTISW1: 9516 for (unsigned i = 0; i != 16; ++i) 9517 ShufIdxs[i] = (i&3)+4; 9518 break; 9519 case OP_VSPLTISW2: 9520 for (unsigned i = 0; i != 16; ++i) 9521 ShufIdxs[i] = (i&3)+8; 9522 break; 9523 case OP_VSPLTISW3: 9524 for (unsigned i = 0; i != 16; ++i) 9525 ShufIdxs[i] = (i&3)+12; 9526 break; 9527 case OP_VSLDOI4: 9528 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9529 case OP_VSLDOI8: 9530 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9531 case OP_VSLDOI12: 9532 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9533 } 9534 EVT VT = OpLHS.getValueType(); 9535 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9536 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9537 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9538 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9539 } 9540 9541 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9542 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9543 /// SDValue. 9544 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9545 SelectionDAG &DAG) const { 9546 const unsigned BytesInVector = 16; 9547 bool IsLE = Subtarget.isLittleEndian(); 9548 SDLoc dl(N); 9549 SDValue V1 = N->getOperand(0); 9550 SDValue V2 = N->getOperand(1); 9551 unsigned ShiftElts = 0, InsertAtByte = 0; 9552 bool Swap = false; 9553 9554 // Shifts required to get the byte we want at element 7. 9555 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9556 0, 15, 14, 13, 12, 11, 10, 9}; 9557 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9558 1, 2, 3, 4, 5, 6, 7, 8}; 9559 9560 ArrayRef<int> Mask = N->getMask(); 9561 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9562 9563 // For each mask element, find out if we're just inserting something 9564 // from V2 into V1 or vice versa. 9565 // Possible permutations inserting an element from V2 into V1: 9566 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9567 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9568 // ... 9569 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9570 // Inserting from V1 into V2 will be similar, except mask range will be 9571 // [16,31]. 9572 9573 bool FoundCandidate = false; 9574 // If both vector operands for the shuffle are the same vector, the mask 9575 // will contain only elements from the first one and the second one will be 9576 // undef. 9577 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9578 // Go through the mask of half-words to find an element that's being moved 9579 // from one vector to the other. 9580 for (unsigned i = 0; i < BytesInVector; ++i) { 9581 unsigned CurrentElement = Mask[i]; 9582 // If 2nd operand is undefined, we should only look for element 7 in the 9583 // Mask. 9584 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9585 continue; 9586 9587 bool OtherElementsInOrder = true; 9588 // Examine the other elements in the Mask to see if they're in original 9589 // order. 9590 for (unsigned j = 0; j < BytesInVector; ++j) { 9591 if (j == i) 9592 continue; 9593 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9594 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9595 // in which we always assume we're always picking from the 1st operand. 9596 int MaskOffset = 9597 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9598 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9599 OtherElementsInOrder = false; 9600 break; 9601 } 9602 } 9603 // If other elements are in original order, we record the number of shifts 9604 // we need to get the element we want into element 7. Also record which byte 9605 // in the vector we should insert into. 9606 if (OtherElementsInOrder) { 9607 // If 2nd operand is undefined, we assume no shifts and no swapping. 9608 if (V2.isUndef()) { 9609 ShiftElts = 0; 9610 Swap = false; 9611 } else { 9612 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9613 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9614 : BigEndianShifts[CurrentElement & 0xF]; 9615 Swap = CurrentElement < BytesInVector; 9616 } 9617 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9618 FoundCandidate = true; 9619 break; 9620 } 9621 } 9622 9623 if (!FoundCandidate) 9624 return SDValue(); 9625 9626 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9627 // optionally with VECSHL if shift is required. 9628 if (Swap) 9629 std::swap(V1, V2); 9630 if (V2.isUndef()) 9631 V2 = V1; 9632 if (ShiftElts) { 9633 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9634 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9635 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9636 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9637 } 9638 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9639 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9640 } 9641 9642 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9643 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9644 /// SDValue. 9645 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9646 SelectionDAG &DAG) const { 9647 const unsigned NumHalfWords = 8; 9648 const unsigned BytesInVector = NumHalfWords * 2; 9649 // Check that the shuffle is on half-words. 9650 if (!isNByteElemShuffleMask(N, 2, 1)) 9651 return SDValue(); 9652 9653 bool IsLE = Subtarget.isLittleEndian(); 9654 SDLoc dl(N); 9655 SDValue V1 = N->getOperand(0); 9656 SDValue V2 = N->getOperand(1); 9657 unsigned ShiftElts = 0, InsertAtByte = 0; 9658 bool Swap = false; 9659 9660 // Shifts required to get the half-word we want at element 3. 9661 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9662 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9663 9664 uint32_t Mask = 0; 9665 uint32_t OriginalOrderLow = 0x1234567; 9666 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9667 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9668 // 32-bit space, only need 4-bit nibbles per element. 9669 for (unsigned i = 0; i < NumHalfWords; ++i) { 9670 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9671 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9672 } 9673 9674 // For each mask element, find out if we're just inserting something 9675 // from V2 into V1 or vice versa. Possible permutations inserting an element 9676 // from V2 into V1: 9677 // X, 1, 2, 3, 4, 5, 6, 7 9678 // 0, X, 2, 3, 4, 5, 6, 7 9679 // 0, 1, X, 3, 4, 5, 6, 7 9680 // 0, 1, 2, X, 4, 5, 6, 7 9681 // 0, 1, 2, 3, X, 5, 6, 7 9682 // 0, 1, 2, 3, 4, X, 6, 7 9683 // 0, 1, 2, 3, 4, 5, X, 7 9684 // 0, 1, 2, 3, 4, 5, 6, X 9685 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9686 9687 bool FoundCandidate = false; 9688 // Go through the mask of half-words to find an element that's being moved 9689 // from one vector to the other. 9690 for (unsigned i = 0; i < NumHalfWords; ++i) { 9691 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9692 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9693 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9694 uint32_t TargetOrder = 0x0; 9695 9696 // If both vector operands for the shuffle are the same vector, the mask 9697 // will contain only elements from the first one and the second one will be 9698 // undef. 9699 if (V2.isUndef()) { 9700 ShiftElts = 0; 9701 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9702 TargetOrder = OriginalOrderLow; 9703 Swap = false; 9704 // Skip if not the correct element or mask of other elements don't equal 9705 // to our expected order. 9706 if (MaskOneElt == VINSERTHSrcElem && 9707 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9708 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9709 FoundCandidate = true; 9710 break; 9711 } 9712 } else { // If both operands are defined. 9713 // Target order is [8,15] if the current mask is between [0,7]. 9714 TargetOrder = 9715 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9716 // Skip if mask of other elements don't equal our expected order. 9717 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9718 // We only need the last 3 bits for the number of shifts. 9719 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9720 : BigEndianShifts[MaskOneElt & 0x7]; 9721 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9722 Swap = MaskOneElt < NumHalfWords; 9723 FoundCandidate = true; 9724 break; 9725 } 9726 } 9727 } 9728 9729 if (!FoundCandidate) 9730 return SDValue(); 9731 9732 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9733 // optionally with VECSHL if shift is required. 9734 if (Swap) 9735 std::swap(V1, V2); 9736 if (V2.isUndef()) 9737 V2 = V1; 9738 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9739 if (ShiftElts) { 9740 // Double ShiftElts because we're left shifting on v16i8 type. 9741 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9742 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9743 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9744 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9745 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9746 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9747 } 9748 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9749 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9750 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9751 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9752 } 9753 9754 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9755 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9756 /// return the default SDValue. 9757 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9758 SelectionDAG &DAG) const { 9759 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9760 // to v16i8. Peek through the bitcasts to get the actual operands. 9761 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9762 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9763 9764 auto ShuffleMask = SVN->getMask(); 9765 SDValue VecShuffle(SVN, 0); 9766 SDLoc DL(SVN); 9767 9768 // Check that we have a four byte shuffle. 9769 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9770 return SDValue(); 9771 9772 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9773 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9774 std::swap(LHS, RHS); 9775 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9776 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9777 } 9778 9779 // Ensure that the RHS is a vector of constants. 9780 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9781 if (!BVN) 9782 return SDValue(); 9783 9784 // Check if RHS is a splat of 4-bytes (or smaller). 9785 APInt APSplatValue, APSplatUndef; 9786 unsigned SplatBitSize; 9787 bool HasAnyUndefs; 9788 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9789 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9790 SplatBitSize > 32) 9791 return SDValue(); 9792 9793 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9794 // The instruction splats a constant C into two words of the source vector 9795 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9796 // Thus we check that the shuffle mask is the equivalent of 9797 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9798 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9799 // within each word are consecutive, so we only need to check the first byte. 9800 SDValue Index; 9801 bool IsLE = Subtarget.isLittleEndian(); 9802 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9803 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9804 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9805 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9806 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9807 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9808 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9809 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9810 else 9811 return SDValue(); 9812 9813 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9814 // for XXSPLTI32DX. 9815 unsigned SplatVal = APSplatValue.getZExtValue(); 9816 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9817 SplatVal |= (SplatVal << SplatBitSize); 9818 9819 SDValue SplatNode = DAG.getNode( 9820 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9821 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9822 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9823 } 9824 9825 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9826 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9827 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9828 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9829 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9830 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9831 assert(Op.getValueType() == MVT::v1i128 && 9832 "Only set v1i128 as custom, other type shouldn't reach here!"); 9833 SDLoc dl(Op); 9834 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9835 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9836 unsigned SHLAmt = N1.getConstantOperandVal(0); 9837 if (SHLAmt % 8 == 0) { 9838 std::array<int, 16> Mask; 9839 std::iota(Mask.begin(), Mask.end(), 0); 9840 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9841 if (SDValue Shuffle = 9842 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9843 DAG.getUNDEF(MVT::v16i8), Mask)) 9844 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9845 } 9846 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9847 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9848 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9849 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9850 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9851 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9852 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9853 } 9854 9855 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9856 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9857 /// return the code it can be lowered into. Worst case, it can always be 9858 /// lowered into a vperm. 9859 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9860 SelectionDAG &DAG) const { 9861 SDLoc dl(Op); 9862 SDValue V1 = Op.getOperand(0); 9863 SDValue V2 = Op.getOperand(1); 9864 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9865 9866 // Any nodes that were combined in the target-independent combiner prior 9867 // to vector legalization will not be sent to the target combine. Try to 9868 // combine it here. 9869 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9870 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9871 return NewShuffle; 9872 Op = NewShuffle; 9873 SVOp = cast<ShuffleVectorSDNode>(Op); 9874 V1 = Op.getOperand(0); 9875 V2 = Op.getOperand(1); 9876 } 9877 EVT VT = Op.getValueType(); 9878 bool isLittleEndian = Subtarget.isLittleEndian(); 9879 9880 unsigned ShiftElts, InsertAtByte; 9881 bool Swap = false; 9882 9883 // If this is a load-and-splat, we can do that with a single instruction 9884 // in some cases. However if the load has multiple uses, we don't want to 9885 // combine it because that will just produce multiple loads. 9886 bool IsPermutedLoad = false; 9887 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9888 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9889 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9890 InputLoad->hasOneUse()) { 9891 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9892 int SplatIdx = 9893 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9894 9895 // The splat index for permuted loads will be in the left half of the vector 9896 // which is strictly wider than the loaded value by 8 bytes. So we need to 9897 // adjust the splat index to point to the correct address in memory. 9898 if (IsPermutedLoad) { 9899 assert((isLittleEndian || IsFourByte) && 9900 "Unexpected size for permuted load on big endian target"); 9901 SplatIdx += IsFourByte ? 2 : 1; 9902 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9903 "Splat of a value outside of the loaded memory"); 9904 } 9905 9906 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9907 // For 4-byte load-and-splat, we need Power9. 9908 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9909 uint64_t Offset = 0; 9910 if (IsFourByte) 9911 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9912 else 9913 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9914 9915 // If the width of the load is the same as the width of the splat, 9916 // loading with an offset would load the wrong memory. 9917 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9918 Offset = 0; 9919 9920 SDValue BasePtr = LD->getBasePtr(); 9921 if (Offset != 0) 9922 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9923 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9924 SDValue Ops[] = { 9925 LD->getChain(), // Chain 9926 BasePtr, // BasePtr 9927 DAG.getValueType(Op.getValueType()) // VT 9928 }; 9929 SDVTList VTL = 9930 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9931 SDValue LdSplt = 9932 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9933 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9934 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9935 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9936 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9937 return LdSplt; 9938 } 9939 } 9940 9941 // All v2i64 and v2f64 shuffles are legal 9942 if (VT == MVT::v2i64 || VT == MVT::v2f64) 9943 return Op; 9944 9945 if (Subtarget.hasP9Vector() && 9946 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9947 isLittleEndian)) { 9948 if (Swap) 9949 std::swap(V1, V2); 9950 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9951 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9952 if (ShiftElts) { 9953 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9954 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9955 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9956 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9957 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9958 } 9959 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9960 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9961 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9962 } 9963 9964 if (Subtarget.hasPrefixInstrs()) { 9965 SDValue SplatInsertNode; 9966 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9967 return SplatInsertNode; 9968 } 9969 9970 if (Subtarget.hasP9Altivec()) { 9971 SDValue NewISDNode; 9972 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9973 return NewISDNode; 9974 9975 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9976 return NewISDNode; 9977 } 9978 9979 if (Subtarget.hasVSX() && 9980 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9981 if (Swap) 9982 std::swap(V1, V2); 9983 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9984 SDValue Conv2 = 9985 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9986 9987 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9988 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9989 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9990 } 9991 9992 if (Subtarget.hasVSX() && 9993 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9994 if (Swap) 9995 std::swap(V1, V2); 9996 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9997 SDValue Conv2 = 9998 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9999 10000 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10001 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10002 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10003 } 10004 10005 if (Subtarget.hasP9Vector()) { 10006 if (PPC::isXXBRHShuffleMask(SVOp)) { 10007 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10008 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10009 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10010 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10011 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10012 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10013 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10014 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10015 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10016 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10017 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10018 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10019 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10020 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10021 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10022 } 10023 } 10024 10025 if (Subtarget.hasVSX()) { 10026 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10027 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10028 10029 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10030 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10031 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10032 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10033 } 10034 10035 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10036 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10037 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10038 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10039 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10040 } 10041 } 10042 10043 // Cases that are handled by instructions that take permute immediates 10044 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10045 // selected by the instruction selector. 10046 if (V2.isUndef()) { 10047 if (PPC::isSplatShuffleMask(SVOp, 1) || 10048 PPC::isSplatShuffleMask(SVOp, 2) || 10049 PPC::isSplatShuffleMask(SVOp, 4) || 10050 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10051 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10052 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10053 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10054 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10055 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10056 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10057 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10058 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10059 (Subtarget.hasP8Altivec() && ( 10060 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10061 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10062 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10063 return Op; 10064 } 10065 } 10066 10067 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10068 // and produce a fixed permutation. If any of these match, do not lower to 10069 // VPERM. 10070 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10071 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10072 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10073 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10074 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10075 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10076 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10077 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10078 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10079 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10080 (Subtarget.hasP8Altivec() && ( 10081 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10082 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10083 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10084 return Op; 10085 10086 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10087 // perfect shuffle table to emit an optimal matching sequence. 10088 ArrayRef<int> PermMask = SVOp->getMask(); 10089 10090 if (!DisablePerfectShuffle && !isLittleEndian) { 10091 unsigned PFIndexes[4]; 10092 bool isFourElementShuffle = true; 10093 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10094 ++i) { // Element number 10095 unsigned EltNo = 8; // Start out undef. 10096 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10097 if (PermMask[i * 4 + j] < 0) 10098 continue; // Undef, ignore it. 10099 10100 unsigned ByteSource = PermMask[i * 4 + j]; 10101 if ((ByteSource & 3) != j) { 10102 isFourElementShuffle = false; 10103 break; 10104 } 10105 10106 if (EltNo == 8) { 10107 EltNo = ByteSource / 4; 10108 } else if (EltNo != ByteSource / 4) { 10109 isFourElementShuffle = false; 10110 break; 10111 } 10112 } 10113 PFIndexes[i] = EltNo; 10114 } 10115 10116 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10117 // perfect shuffle vector to determine if it is cost effective to do this as 10118 // discrete instructions, or whether we should use a vperm. 10119 // For now, we skip this for little endian until such time as we have a 10120 // little-endian perfect shuffle table. 10121 if (isFourElementShuffle) { 10122 // Compute the index in the perfect shuffle table. 10123 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10124 PFIndexes[2] * 9 + PFIndexes[3]; 10125 10126 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10127 unsigned Cost = (PFEntry >> 30); 10128 10129 // Determining when to avoid vperm is tricky. Many things affect the cost 10130 // of vperm, particularly how many times the perm mask needs to be 10131 // computed. For example, if the perm mask can be hoisted out of a loop or 10132 // is already used (perhaps because there are multiple permutes with the 10133 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10134 // permute mask out of the loop requires an extra register. 10135 // 10136 // As a compromise, we only emit discrete instructions if the shuffle can 10137 // be generated in 3 or fewer operations. When we have loop information 10138 // available, if this block is within a loop, we should avoid using vperm 10139 // for 3-operation perms and use a constant pool load instead. 10140 if (Cost < 3) 10141 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10142 } 10143 } 10144 10145 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10146 // vector that will get spilled to the constant pool. 10147 if (V2.isUndef()) V2 = V1; 10148 10149 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10150 // that it is in input element units, not in bytes. Convert now. 10151 10152 // For little endian, the order of the input vectors is reversed, and 10153 // the permutation mask is complemented with respect to 31. This is 10154 // necessary to produce proper semantics with the big-endian-biased vperm 10155 // instruction. 10156 EVT EltVT = V1.getValueType().getVectorElementType(); 10157 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10158 10159 SmallVector<SDValue, 16> ResultMask; 10160 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10161 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10162 10163 for (unsigned j = 0; j != BytesPerElement; ++j) 10164 if (isLittleEndian) 10165 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10166 dl, MVT::i32)); 10167 else 10168 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10169 MVT::i32)); 10170 } 10171 10172 ShufflesHandledWithVPERM++; 10173 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10174 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10175 LLVM_DEBUG(SVOp->dump()); 10176 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10177 LLVM_DEBUG(VPermMask.dump()); 10178 10179 if (isLittleEndian) 10180 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10181 V2, V1, VPermMask); 10182 else 10183 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10184 V1, V2, VPermMask); 10185 } 10186 10187 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10188 /// vector comparison. If it is, return true and fill in Opc/isDot with 10189 /// information about the intrinsic. 10190 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10191 bool &isDot, const PPCSubtarget &Subtarget) { 10192 unsigned IntrinsicID = 10193 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10194 CompareOpc = -1; 10195 isDot = false; 10196 switch (IntrinsicID) { 10197 default: 10198 return false; 10199 // Comparison predicates. 10200 case Intrinsic::ppc_altivec_vcmpbfp_p: 10201 CompareOpc = 966; 10202 isDot = true; 10203 break; 10204 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10205 CompareOpc = 198; 10206 isDot = true; 10207 break; 10208 case Intrinsic::ppc_altivec_vcmpequb_p: 10209 CompareOpc = 6; 10210 isDot = true; 10211 break; 10212 case Intrinsic::ppc_altivec_vcmpequh_p: 10213 CompareOpc = 70; 10214 isDot = true; 10215 break; 10216 case Intrinsic::ppc_altivec_vcmpequw_p: 10217 CompareOpc = 134; 10218 isDot = true; 10219 break; 10220 case Intrinsic::ppc_altivec_vcmpequd_p: 10221 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10222 CompareOpc = 199; 10223 isDot = true; 10224 } else 10225 return false; 10226 break; 10227 case Intrinsic::ppc_altivec_vcmpneb_p: 10228 case Intrinsic::ppc_altivec_vcmpneh_p: 10229 case Intrinsic::ppc_altivec_vcmpnew_p: 10230 case Intrinsic::ppc_altivec_vcmpnezb_p: 10231 case Intrinsic::ppc_altivec_vcmpnezh_p: 10232 case Intrinsic::ppc_altivec_vcmpnezw_p: 10233 if (Subtarget.hasP9Altivec()) { 10234 switch (IntrinsicID) { 10235 default: 10236 llvm_unreachable("Unknown comparison intrinsic."); 10237 case Intrinsic::ppc_altivec_vcmpneb_p: 10238 CompareOpc = 7; 10239 break; 10240 case Intrinsic::ppc_altivec_vcmpneh_p: 10241 CompareOpc = 71; 10242 break; 10243 case Intrinsic::ppc_altivec_vcmpnew_p: 10244 CompareOpc = 135; 10245 break; 10246 case Intrinsic::ppc_altivec_vcmpnezb_p: 10247 CompareOpc = 263; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpnezh_p: 10250 CompareOpc = 327; 10251 break; 10252 case Intrinsic::ppc_altivec_vcmpnezw_p: 10253 CompareOpc = 391; 10254 break; 10255 } 10256 isDot = true; 10257 } else 10258 return false; 10259 break; 10260 case Intrinsic::ppc_altivec_vcmpgefp_p: 10261 CompareOpc = 454; 10262 isDot = true; 10263 break; 10264 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10265 CompareOpc = 710; 10266 isDot = true; 10267 break; 10268 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10269 CompareOpc = 774; 10270 isDot = true; 10271 break; 10272 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10273 CompareOpc = 838; 10274 isDot = true; 10275 break; 10276 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10277 CompareOpc = 902; 10278 isDot = true; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10281 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10282 CompareOpc = 967; 10283 isDot = true; 10284 } else 10285 return false; 10286 break; 10287 case Intrinsic::ppc_altivec_vcmpgtub_p: 10288 CompareOpc = 518; 10289 isDot = true; 10290 break; 10291 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10292 CompareOpc = 582; 10293 isDot = true; 10294 break; 10295 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10296 CompareOpc = 646; 10297 isDot = true; 10298 break; 10299 case Intrinsic::ppc_altivec_vcmpgtud_p: 10300 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10301 CompareOpc = 711; 10302 isDot = true; 10303 } else 10304 return false; 10305 break; 10306 10307 case Intrinsic::ppc_altivec_vcmpequq: 10308 case Intrinsic::ppc_altivec_vcmpgtsq: 10309 case Intrinsic::ppc_altivec_vcmpgtuq: 10310 if (!Subtarget.isISA3_1()) 10311 return false; 10312 switch (IntrinsicID) { 10313 default: 10314 llvm_unreachable("Unknown comparison intrinsic."); 10315 case Intrinsic::ppc_altivec_vcmpequq: 10316 CompareOpc = 455; 10317 break; 10318 case Intrinsic::ppc_altivec_vcmpgtsq: 10319 CompareOpc = 903; 10320 break; 10321 case Intrinsic::ppc_altivec_vcmpgtuq: 10322 CompareOpc = 647; 10323 break; 10324 } 10325 break; 10326 10327 // VSX predicate comparisons use the same infrastructure 10328 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10329 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10330 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10331 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10332 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10333 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10334 if (Subtarget.hasVSX()) { 10335 switch (IntrinsicID) { 10336 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10337 CompareOpc = 99; 10338 break; 10339 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10340 CompareOpc = 115; 10341 break; 10342 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10343 CompareOpc = 107; 10344 break; 10345 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10346 CompareOpc = 67; 10347 break; 10348 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10349 CompareOpc = 83; 10350 break; 10351 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10352 CompareOpc = 75; 10353 break; 10354 } 10355 isDot = true; 10356 } else 10357 return false; 10358 break; 10359 10360 // Normal Comparisons. 10361 case Intrinsic::ppc_altivec_vcmpbfp: 10362 CompareOpc = 966; 10363 break; 10364 case Intrinsic::ppc_altivec_vcmpeqfp: 10365 CompareOpc = 198; 10366 break; 10367 case Intrinsic::ppc_altivec_vcmpequb: 10368 CompareOpc = 6; 10369 break; 10370 case Intrinsic::ppc_altivec_vcmpequh: 10371 CompareOpc = 70; 10372 break; 10373 case Intrinsic::ppc_altivec_vcmpequw: 10374 CompareOpc = 134; 10375 break; 10376 case Intrinsic::ppc_altivec_vcmpequd: 10377 if (Subtarget.hasP8Altivec()) 10378 CompareOpc = 199; 10379 else 10380 return false; 10381 break; 10382 case Intrinsic::ppc_altivec_vcmpneb: 10383 case Intrinsic::ppc_altivec_vcmpneh: 10384 case Intrinsic::ppc_altivec_vcmpnew: 10385 case Intrinsic::ppc_altivec_vcmpnezb: 10386 case Intrinsic::ppc_altivec_vcmpnezh: 10387 case Intrinsic::ppc_altivec_vcmpnezw: 10388 if (Subtarget.hasP9Altivec()) 10389 switch (IntrinsicID) { 10390 default: 10391 llvm_unreachable("Unknown comparison intrinsic."); 10392 case Intrinsic::ppc_altivec_vcmpneb: 10393 CompareOpc = 7; 10394 break; 10395 case Intrinsic::ppc_altivec_vcmpneh: 10396 CompareOpc = 71; 10397 break; 10398 case Intrinsic::ppc_altivec_vcmpnew: 10399 CompareOpc = 135; 10400 break; 10401 case Intrinsic::ppc_altivec_vcmpnezb: 10402 CompareOpc = 263; 10403 break; 10404 case Intrinsic::ppc_altivec_vcmpnezh: 10405 CompareOpc = 327; 10406 break; 10407 case Intrinsic::ppc_altivec_vcmpnezw: 10408 CompareOpc = 391; 10409 break; 10410 } 10411 else 10412 return false; 10413 break; 10414 case Intrinsic::ppc_altivec_vcmpgefp: 10415 CompareOpc = 454; 10416 break; 10417 case Intrinsic::ppc_altivec_vcmpgtfp: 10418 CompareOpc = 710; 10419 break; 10420 case Intrinsic::ppc_altivec_vcmpgtsb: 10421 CompareOpc = 774; 10422 break; 10423 case Intrinsic::ppc_altivec_vcmpgtsh: 10424 CompareOpc = 838; 10425 break; 10426 case Intrinsic::ppc_altivec_vcmpgtsw: 10427 CompareOpc = 902; 10428 break; 10429 case Intrinsic::ppc_altivec_vcmpgtsd: 10430 if (Subtarget.hasP8Altivec()) 10431 CompareOpc = 967; 10432 else 10433 return false; 10434 break; 10435 case Intrinsic::ppc_altivec_vcmpgtub: 10436 CompareOpc = 518; 10437 break; 10438 case Intrinsic::ppc_altivec_vcmpgtuh: 10439 CompareOpc = 582; 10440 break; 10441 case Intrinsic::ppc_altivec_vcmpgtuw: 10442 CompareOpc = 646; 10443 break; 10444 case Intrinsic::ppc_altivec_vcmpgtud: 10445 if (Subtarget.hasP8Altivec()) 10446 CompareOpc = 711; 10447 else 10448 return false; 10449 break; 10450 case Intrinsic::ppc_altivec_vcmpequq_p: 10451 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10452 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10453 if (!Subtarget.isISA3_1()) 10454 return false; 10455 switch (IntrinsicID) { 10456 default: 10457 llvm_unreachable("Unknown comparison intrinsic."); 10458 case Intrinsic::ppc_altivec_vcmpequq_p: 10459 CompareOpc = 455; 10460 break; 10461 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10462 CompareOpc = 903; 10463 break; 10464 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10465 CompareOpc = 647; 10466 break; 10467 } 10468 isDot = true; 10469 break; 10470 } 10471 return true; 10472 } 10473 10474 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10475 /// lower, do it, otherwise return null. 10476 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10477 SelectionDAG &DAG) const { 10478 unsigned IntrinsicID = 10479 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10480 10481 SDLoc dl(Op); 10482 10483 switch (IntrinsicID) { 10484 case Intrinsic::thread_pointer: 10485 // Reads the thread pointer register, used for __builtin_thread_pointer. 10486 if (Subtarget.isPPC64()) 10487 return DAG.getRegister(PPC::X13, MVT::i64); 10488 return DAG.getRegister(PPC::R2, MVT::i32); 10489 10490 case Intrinsic::ppc_mma_disassemble_acc: 10491 case Intrinsic::ppc_vsx_disassemble_pair: { 10492 int NumVecs = 2; 10493 SDValue WideVec = Op.getOperand(1); 10494 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10495 NumVecs = 4; 10496 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10497 } 10498 SmallVector<SDValue, 4> RetOps; 10499 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10500 SDValue Extract = DAG.getNode( 10501 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10502 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10503 : VecNo, 10504 dl, getPointerTy(DAG.getDataLayout()))); 10505 RetOps.push_back(Extract); 10506 } 10507 return DAG.getMergeValues(RetOps, dl); 10508 } 10509 10510 case Intrinsic::ppc_unpack_longdouble: { 10511 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10512 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10513 "Argument of long double unpack must be 0 or 1!"); 10514 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10515 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10516 Idx->getValueType(0))); 10517 } 10518 10519 case Intrinsic::ppc_compare_exp_lt: 10520 case Intrinsic::ppc_compare_exp_gt: 10521 case Intrinsic::ppc_compare_exp_eq: 10522 case Intrinsic::ppc_compare_exp_uo: { 10523 unsigned Pred; 10524 switch (IntrinsicID) { 10525 case Intrinsic::ppc_compare_exp_lt: 10526 Pred = PPC::PRED_LT; 10527 break; 10528 case Intrinsic::ppc_compare_exp_gt: 10529 Pred = PPC::PRED_GT; 10530 break; 10531 case Intrinsic::ppc_compare_exp_eq: 10532 Pred = PPC::PRED_EQ; 10533 break; 10534 case Intrinsic::ppc_compare_exp_uo: 10535 Pred = PPC::PRED_UN; 10536 break; 10537 } 10538 return SDValue( 10539 DAG.getMachineNode( 10540 PPC::SELECT_CC_I4, dl, MVT::i32, 10541 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10542 Op.getOperand(1), Op.getOperand(2)), 10543 0), 10544 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10545 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10546 0); 10547 } 10548 case Intrinsic::ppc_test_data_class_d: 10549 case Intrinsic::ppc_test_data_class_f: { 10550 unsigned CmprOpc = PPC::XSTSTDCDP; 10551 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10552 CmprOpc = PPC::XSTSTDCSP; 10553 return SDValue( 10554 DAG.getMachineNode( 10555 PPC::SELECT_CC_I4, dl, MVT::i32, 10556 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10557 Op.getOperand(1)), 10558 0), 10559 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10560 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10561 0); 10562 } 10563 case Intrinsic::ppc_fnmsub: { 10564 EVT VT = Op.getOperand(1).getValueType(); 10565 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 10566 return DAG.getNode( 10567 ISD::FNEG, dl, VT, 10568 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 10569 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 10570 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 10571 Op.getOperand(2), Op.getOperand(3)); 10572 } 10573 case Intrinsic::ppc_convert_f128_to_ppcf128: 10574 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10575 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10576 ? RTLIB::CONVERT_PPCF128_F128 10577 : RTLIB::CONVERT_F128_PPCF128; 10578 MakeLibCallOptions CallOptions; 10579 std::pair<SDValue, SDValue> Result = 10580 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10581 dl, SDValue()); 10582 return Result.first; 10583 } 10584 case Intrinsic::ppc_maxfe: 10585 case Intrinsic::ppc_maxfl: 10586 case Intrinsic::ppc_maxfs: 10587 case Intrinsic::ppc_minfe: 10588 case Intrinsic::ppc_minfl: 10589 case Intrinsic::ppc_minfs: { 10590 EVT VT = Op.getValueType(); 10591 assert( 10592 all_of(Op->ops().drop_front(4), 10593 [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && 10594 "ppc_[max|min]f[e|l|s] must have uniform type arguments"); 10595 (void)VT; 10596 ISD::CondCode CC = ISD::SETGT; 10597 if (IntrinsicID == Intrinsic::ppc_minfe || 10598 IntrinsicID == Intrinsic::ppc_minfl || 10599 IntrinsicID == Intrinsic::ppc_minfs) 10600 CC = ISD::SETLT; 10601 unsigned I = Op.getNumOperands() - 2, Cnt = I; 10602 SDValue Res = Op.getOperand(I); 10603 for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { 10604 Res = 10605 DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); 10606 } 10607 return Res; 10608 } 10609 } 10610 10611 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10612 // opcode number of the comparison. 10613 int CompareOpc; 10614 bool isDot; 10615 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10616 return SDValue(); // Don't custom lower most intrinsics. 10617 10618 // If this is a non-dot comparison, make the VCMP node and we are done. 10619 if (!isDot) { 10620 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10621 Op.getOperand(1), Op.getOperand(2), 10622 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10623 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10624 } 10625 10626 // Create the PPCISD altivec 'dot' comparison node. 10627 SDValue Ops[] = { 10628 Op.getOperand(2), // LHS 10629 Op.getOperand(3), // RHS 10630 DAG.getConstant(CompareOpc, dl, MVT::i32) 10631 }; 10632 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10633 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10634 10635 // Now that we have the comparison, emit a copy from the CR to a GPR. 10636 // This is flagged to the above dot comparison. 10637 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10638 DAG.getRegister(PPC::CR6, MVT::i32), 10639 CompNode.getValue(1)); 10640 10641 // Unpack the result based on how the target uses it. 10642 unsigned BitNo; // Bit # of CR6. 10643 bool InvertBit; // Invert result? 10644 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10645 default: // Can't happen, don't crash on invalid number though. 10646 case 0: // Return the value of the EQ bit of CR6. 10647 BitNo = 0; InvertBit = false; 10648 break; 10649 case 1: // Return the inverted value of the EQ bit of CR6. 10650 BitNo = 0; InvertBit = true; 10651 break; 10652 case 2: // Return the value of the LT bit of CR6. 10653 BitNo = 2; InvertBit = false; 10654 break; 10655 case 3: // Return the inverted value of the LT bit of CR6. 10656 BitNo = 2; InvertBit = true; 10657 break; 10658 } 10659 10660 // Shift the bit into the low position. 10661 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10662 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10663 // Isolate the bit. 10664 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10665 DAG.getConstant(1, dl, MVT::i32)); 10666 10667 // If we are supposed to, toggle the bit. 10668 if (InvertBit) 10669 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10670 DAG.getConstant(1, dl, MVT::i32)); 10671 return Flags; 10672 } 10673 10674 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10675 SelectionDAG &DAG) const { 10676 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10677 // the beginning of the argument list. 10678 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10679 SDLoc DL(Op); 10680 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10681 case Intrinsic::ppc_cfence: { 10682 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10683 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10684 SDValue Val = Op.getOperand(ArgStart + 1); 10685 EVT Ty = Val.getValueType(); 10686 if (Ty == MVT::i128) { 10687 // FIXME: Testing one of two paired registers is sufficient to guarantee 10688 // ordering? 10689 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10690 } 10691 return SDValue( 10692 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10693 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10694 Op.getOperand(0)), 10695 0); 10696 } 10697 default: 10698 break; 10699 } 10700 return SDValue(); 10701 } 10702 10703 // Lower scalar BSWAP64 to xxbrd. 10704 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10705 SDLoc dl(Op); 10706 if (!Subtarget.isPPC64()) 10707 return Op; 10708 // MTVSRDD 10709 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10710 Op.getOperand(0)); 10711 // XXBRD 10712 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10713 // MFVSRD 10714 int VectorIndex = 0; 10715 if (Subtarget.isLittleEndian()) 10716 VectorIndex = 1; 10717 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10718 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10719 return Op; 10720 } 10721 10722 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10723 // compared to a value that is atomically loaded (atomic loads zero-extend). 10724 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10725 SelectionDAG &DAG) const { 10726 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10727 "Expecting an atomic compare-and-swap here."); 10728 SDLoc dl(Op); 10729 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10730 EVT MemVT = AtomicNode->getMemoryVT(); 10731 if (MemVT.getSizeInBits() >= 32) 10732 return Op; 10733 10734 SDValue CmpOp = Op.getOperand(2); 10735 // If this is already correctly zero-extended, leave it alone. 10736 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10737 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10738 return Op; 10739 10740 // Clear the high bits of the compare operand. 10741 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10742 SDValue NewCmpOp = 10743 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10744 DAG.getConstant(MaskVal, dl, MVT::i32)); 10745 10746 // Replace the existing compare operand with the properly zero-extended one. 10747 SmallVector<SDValue, 4> Ops; 10748 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10749 Ops.push_back(AtomicNode->getOperand(i)); 10750 Ops[2] = NewCmpOp; 10751 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10752 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10753 auto NodeTy = 10754 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10755 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10756 } 10757 10758 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10759 SelectionDAG &DAG) const { 10760 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10761 EVT MemVT = N->getMemoryVT(); 10762 assert(MemVT.getSimpleVT() == MVT::i128 && 10763 "Expect quadword atomic operations"); 10764 SDLoc dl(N); 10765 unsigned Opc = N->getOpcode(); 10766 switch (Opc) { 10767 case ISD::ATOMIC_LOAD: { 10768 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10769 // lowered to ppc instructions by pattern matching instruction selector. 10770 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10771 SmallVector<SDValue, 4> Ops{ 10772 N->getOperand(0), 10773 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10774 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10775 Ops.push_back(N->getOperand(I)); 10776 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10777 Ops, MemVT, N->getMemOperand()); 10778 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10779 SDValue ValHi = 10780 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10781 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10782 DAG.getConstant(64, dl, MVT::i32)); 10783 SDValue Val = 10784 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10785 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10786 {Val, LoadedVal.getValue(2)}); 10787 } 10788 case ISD::ATOMIC_STORE: { 10789 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10790 // lowered to ppc instructions by pattern matching instruction selector. 10791 SDVTList Tys = DAG.getVTList(MVT::Other); 10792 SmallVector<SDValue, 4> Ops{ 10793 N->getOperand(0), 10794 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10795 SDValue Val = N->getOperand(2); 10796 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10797 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10798 DAG.getConstant(64, dl, MVT::i32)); 10799 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10800 Ops.push_back(ValLo); 10801 Ops.push_back(ValHi); 10802 Ops.push_back(N->getOperand(1)); 10803 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10804 N->getMemOperand()); 10805 } 10806 default: 10807 llvm_unreachable("Unexpected atomic opcode"); 10808 } 10809 } 10810 10811 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10812 SelectionDAG &DAG) const { 10813 SDLoc dl(Op); 10814 // Create a stack slot that is 16-byte aligned. 10815 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10816 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10817 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10818 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10819 10820 // Store the input value into Value#0 of the stack slot. 10821 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10822 MachinePointerInfo()); 10823 // Load it out. 10824 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10825 } 10826 10827 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10828 SelectionDAG &DAG) const { 10829 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10830 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10831 10832 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10833 10834 EVT VT = Op.getValueType(); 10835 SDLoc dl(Op); 10836 SDValue V1 = Op.getOperand(0); 10837 SDValue V2 = Op.getOperand(1); 10838 10839 if (VT == MVT::v2f64 && C) 10840 return Op; 10841 10842 if (Subtarget.hasP9Vector()) { 10843 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 10844 // because on P10, it allows this specific insert_vector_elt load pattern to 10845 // utilize the refactored load and store infrastructure in order to exploit 10846 // prefixed loads. 10847 // On targets with inexpensive direct moves (Power9 and up), a 10848 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 10849 // load since a single precision load will involve conversion to double 10850 // precision on the load followed by another conversion to single precision. 10851 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 10852 (isa<LoadSDNode>(V2))) { 10853 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 10854 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 10855 SDValue InsVecElt = 10856 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 10857 BitcastLoad, Op.getOperand(2)); 10858 return DAG.getBitcast(MVT::v4f32, InsVecElt); 10859 } 10860 } 10861 10862 if (Subtarget.isISA3_1()) { 10863 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10864 return SDValue(); 10865 // On P10, we have legal lowering for constant and variable indices for 10866 // all vectors. 10867 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10868 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10869 return Op; 10870 } 10871 10872 // Before P10, we have legal lowering for constant indices but not for 10873 // variable ones. 10874 if (!C) 10875 return SDValue(); 10876 10877 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10878 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10879 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10880 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10881 unsigned InsertAtElement = C->getZExtValue(); 10882 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10883 if (Subtarget.isLittleEndian()) { 10884 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10885 } 10886 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10887 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10888 } 10889 return Op; 10890 } 10891 10892 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10893 SelectionDAG &DAG) const { 10894 SDLoc dl(Op); 10895 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10896 SDValue LoadChain = LN->getChain(); 10897 SDValue BasePtr = LN->getBasePtr(); 10898 EVT VT = Op.getValueType(); 10899 10900 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10901 return Op; 10902 10903 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10904 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10905 // 2 or 4 vsx registers. 10906 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10907 "Type unsupported without MMA"); 10908 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10909 "Type unsupported without paired vector support"); 10910 Align Alignment = LN->getAlign(); 10911 SmallVector<SDValue, 4> Loads; 10912 SmallVector<SDValue, 4> LoadChains; 10913 unsigned NumVecs = VT.getSizeInBits() / 128; 10914 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10915 SDValue Load = 10916 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10917 LN->getPointerInfo().getWithOffset(Idx * 16), 10918 commonAlignment(Alignment, Idx * 16), 10919 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10920 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10921 DAG.getConstant(16, dl, BasePtr.getValueType())); 10922 Loads.push_back(Load); 10923 LoadChains.push_back(Load.getValue(1)); 10924 } 10925 if (Subtarget.isLittleEndian()) { 10926 std::reverse(Loads.begin(), Loads.end()); 10927 std::reverse(LoadChains.begin(), LoadChains.end()); 10928 } 10929 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10930 SDValue Value = 10931 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10932 dl, VT, Loads); 10933 SDValue RetOps[] = {Value, TF}; 10934 return DAG.getMergeValues(RetOps, dl); 10935 } 10936 10937 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10938 SelectionDAG &DAG) const { 10939 SDLoc dl(Op); 10940 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10941 SDValue StoreChain = SN->getChain(); 10942 SDValue BasePtr = SN->getBasePtr(); 10943 SDValue Value = SN->getValue(); 10944 EVT StoreVT = Value.getValueType(); 10945 10946 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10947 return Op; 10948 10949 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10950 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10951 // underlying registers individually. 10952 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10953 "Type unsupported without MMA"); 10954 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10955 "Type unsupported without paired vector support"); 10956 Align Alignment = SN->getAlign(); 10957 SmallVector<SDValue, 4> Stores; 10958 unsigned NumVecs = 2; 10959 if (StoreVT == MVT::v512i1) { 10960 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10961 NumVecs = 4; 10962 } 10963 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10964 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10965 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10966 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10967 SDValue Store = 10968 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10969 SN->getPointerInfo().getWithOffset(Idx * 16), 10970 commonAlignment(Alignment, Idx * 16), 10971 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10972 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10973 DAG.getConstant(16, dl, BasePtr.getValueType())); 10974 Stores.push_back(Store); 10975 } 10976 SDValue TF = DAG.getTokenFactor(dl, Stores); 10977 return TF; 10978 } 10979 10980 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10981 SDLoc dl(Op); 10982 if (Op.getValueType() == MVT::v4i32) { 10983 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10984 10985 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10986 // +16 as shift amt. 10987 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10988 SDValue RHSSwap = // = vrlw RHS, 16 10989 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10990 10991 // Shrinkify inputs to v8i16. 10992 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10993 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10994 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10995 10996 // Low parts multiplied together, generating 32-bit results (we ignore the 10997 // top parts). 10998 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10999 LHS, RHS, DAG, dl, MVT::v4i32); 11000 11001 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 11002 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 11003 // Shift the high parts up 16 bits. 11004 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 11005 Neg16, DAG, dl); 11006 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 11007 } else if (Op.getValueType() == MVT::v16i8) { 11008 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 11009 bool isLittleEndian = Subtarget.isLittleEndian(); 11010 11011 // Multiply the even 8-bit parts, producing 16-bit sums. 11012 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 11013 LHS, RHS, DAG, dl, MVT::v8i16); 11014 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 11015 11016 // Multiply the odd 8-bit parts, producing 16-bit sums. 11017 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 11018 LHS, RHS, DAG, dl, MVT::v8i16); 11019 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 11020 11021 // Merge the results together. Because vmuleub and vmuloub are 11022 // instructions with a big-endian bias, we must reverse the 11023 // element numbering and reverse the meaning of "odd" and "even" 11024 // when generating little endian code. 11025 int Ops[16]; 11026 for (unsigned i = 0; i != 8; ++i) { 11027 if (isLittleEndian) { 11028 Ops[i*2 ] = 2*i; 11029 Ops[i*2+1] = 2*i+16; 11030 } else { 11031 Ops[i*2 ] = 2*i+1; 11032 Ops[i*2+1] = 2*i+1+16; 11033 } 11034 } 11035 if (isLittleEndian) 11036 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11037 else 11038 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11039 } else { 11040 llvm_unreachable("Unknown mul to lower!"); 11041 } 11042 } 11043 11044 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11045 bool IsStrict = Op->isStrictFPOpcode(); 11046 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11047 !Subtarget.hasP9Vector()) 11048 return SDValue(); 11049 11050 return Op; 11051 } 11052 11053 // Custom lowering for fpext vf32 to v2f64 11054 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11055 11056 assert(Op.getOpcode() == ISD::FP_EXTEND && 11057 "Should only be called for ISD::FP_EXTEND"); 11058 11059 // FIXME: handle extends from half precision float vectors on P9. 11060 // We only want to custom lower an extend from v2f32 to v2f64. 11061 if (Op.getValueType() != MVT::v2f64 || 11062 Op.getOperand(0).getValueType() != MVT::v2f32) 11063 return SDValue(); 11064 11065 SDLoc dl(Op); 11066 SDValue Op0 = Op.getOperand(0); 11067 11068 switch (Op0.getOpcode()) { 11069 default: 11070 return SDValue(); 11071 case ISD::EXTRACT_SUBVECTOR: { 11072 assert(Op0.getNumOperands() == 2 && 11073 isa<ConstantSDNode>(Op0->getOperand(1)) && 11074 "Node should have 2 operands with second one being a constant!"); 11075 11076 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11077 return SDValue(); 11078 11079 // Custom lower is only done for high or low doubleword. 11080 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11081 if (Idx % 2 != 0) 11082 return SDValue(); 11083 11084 // Since input is v4f32, at this point Idx is either 0 or 2. 11085 // Shift to get the doubleword position we want. 11086 int DWord = Idx >> 1; 11087 11088 // High and low word positions are different on little endian. 11089 if (Subtarget.isLittleEndian()) 11090 DWord ^= 0x1; 11091 11092 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11093 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11094 } 11095 case ISD::FADD: 11096 case ISD::FMUL: 11097 case ISD::FSUB: { 11098 SDValue NewLoad[2]; 11099 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11100 // Ensure both input are loads. 11101 SDValue LdOp = Op0.getOperand(i); 11102 if (LdOp.getOpcode() != ISD::LOAD) 11103 return SDValue(); 11104 // Generate new load node. 11105 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11106 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11107 NewLoad[i] = DAG.getMemIntrinsicNode( 11108 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11109 LD->getMemoryVT(), LD->getMemOperand()); 11110 } 11111 SDValue NewOp = 11112 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11113 NewLoad[1], Op0.getNode()->getFlags()); 11114 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11115 DAG.getConstant(0, dl, MVT::i32)); 11116 } 11117 case ISD::LOAD: { 11118 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11119 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11120 SDValue NewLd = DAG.getMemIntrinsicNode( 11121 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11122 LD->getMemoryVT(), LD->getMemOperand()); 11123 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11124 DAG.getConstant(0, dl, MVT::i32)); 11125 } 11126 } 11127 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11128 } 11129 11130 /// LowerOperation - Provide custom lowering hooks for some operations. 11131 /// 11132 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11133 switch (Op.getOpcode()) { 11134 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11135 case ISD::FPOW: return lowerPow(Op, DAG); 11136 case ISD::FSIN: return lowerSin(Op, DAG); 11137 case ISD::FCOS: return lowerCos(Op, DAG); 11138 case ISD::FLOG: return lowerLog(Op, DAG); 11139 case ISD::FLOG10: return lowerLog10(Op, DAG); 11140 case ISD::FEXP: return lowerExp(Op, DAG); 11141 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11142 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11143 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11144 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11145 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11146 case ISD::STRICT_FSETCC: 11147 case ISD::STRICT_FSETCCS: 11148 case ISD::SETCC: return LowerSETCC(Op, DAG); 11149 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11150 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11151 11152 case ISD::INLINEASM: 11153 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11154 // Variable argument lowering. 11155 case ISD::VASTART: return LowerVASTART(Op, DAG); 11156 case ISD::VAARG: return LowerVAARG(Op, DAG); 11157 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11158 11159 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11160 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11161 case ISD::GET_DYNAMIC_AREA_OFFSET: 11162 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11163 11164 // Exception handling lowering. 11165 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11166 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11167 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11168 11169 case ISD::LOAD: return LowerLOAD(Op, DAG); 11170 case ISD::STORE: return LowerSTORE(Op, DAG); 11171 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11172 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11173 case ISD::STRICT_FP_TO_UINT: 11174 case ISD::STRICT_FP_TO_SINT: 11175 case ISD::FP_TO_UINT: 11176 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11177 case ISD::STRICT_UINT_TO_FP: 11178 case ISD::STRICT_SINT_TO_FP: 11179 case ISD::UINT_TO_FP: 11180 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11181 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11182 11183 // Lower 64-bit shifts. 11184 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11185 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11186 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11187 11188 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11189 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11190 11191 // Vector-related lowering. 11192 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11193 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11194 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11195 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11196 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11197 case ISD::MUL: return LowerMUL(Op, DAG); 11198 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11199 case ISD::STRICT_FP_ROUND: 11200 case ISD::FP_ROUND: 11201 return LowerFP_ROUND(Op, DAG); 11202 case ISD::ROTL: return LowerROTL(Op, DAG); 11203 11204 // For counter-based loop handling. 11205 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11206 11207 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11208 11209 // Frame & Return address. 11210 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11211 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11212 11213 case ISD::INTRINSIC_VOID: 11214 return LowerINTRINSIC_VOID(Op, DAG); 11215 case ISD::BSWAP: 11216 return LowerBSWAP(Op, DAG); 11217 case ISD::ATOMIC_CMP_SWAP: 11218 return LowerATOMIC_CMP_SWAP(Op, DAG); 11219 case ISD::ATOMIC_STORE: 11220 return LowerATOMIC_LOAD_STORE(Op, DAG); 11221 } 11222 } 11223 11224 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11225 SmallVectorImpl<SDValue>&Results, 11226 SelectionDAG &DAG) const { 11227 SDLoc dl(N); 11228 switch (N->getOpcode()) { 11229 default: 11230 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11231 case ISD::ATOMIC_LOAD: { 11232 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11233 Results.push_back(Res); 11234 Results.push_back(Res.getValue(1)); 11235 break; 11236 } 11237 case ISD::READCYCLECOUNTER: { 11238 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11239 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11240 11241 Results.push_back( 11242 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11243 Results.push_back(RTB.getValue(2)); 11244 break; 11245 } 11246 case ISD::INTRINSIC_W_CHAIN: { 11247 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11248 Intrinsic::loop_decrement) 11249 break; 11250 11251 assert(N->getValueType(0) == MVT::i1 && 11252 "Unexpected result type for CTR decrement intrinsic"); 11253 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11254 N->getValueType(0)); 11255 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11256 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11257 N->getOperand(1)); 11258 11259 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11260 Results.push_back(NewInt.getValue(1)); 11261 break; 11262 } 11263 case ISD::INTRINSIC_WO_CHAIN: { 11264 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11265 case Intrinsic::ppc_pack_longdouble: 11266 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11267 N->getOperand(2), N->getOperand(1))); 11268 break; 11269 case Intrinsic::ppc_maxfe: 11270 case Intrinsic::ppc_minfe: 11271 case Intrinsic::ppc_fnmsub: 11272 case Intrinsic::ppc_convert_f128_to_ppcf128: 11273 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11274 break; 11275 } 11276 break; 11277 } 11278 case ISD::VAARG: { 11279 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11280 return; 11281 11282 EVT VT = N->getValueType(0); 11283 11284 if (VT == MVT::i64) { 11285 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11286 11287 Results.push_back(NewNode); 11288 Results.push_back(NewNode.getValue(1)); 11289 } 11290 return; 11291 } 11292 case ISD::STRICT_FP_TO_SINT: 11293 case ISD::STRICT_FP_TO_UINT: 11294 case ISD::FP_TO_SINT: 11295 case ISD::FP_TO_UINT: { 11296 // LowerFP_TO_INT() can only handle f32 and f64. 11297 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11298 MVT::ppcf128) 11299 return; 11300 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11301 Results.push_back(LoweredValue); 11302 if (N->isStrictFPOpcode()) 11303 Results.push_back(LoweredValue.getValue(1)); 11304 return; 11305 } 11306 case ISD::TRUNCATE: { 11307 if (!N->getValueType(0).isVector()) 11308 return; 11309 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11310 if (Lowered) 11311 Results.push_back(Lowered); 11312 return; 11313 } 11314 case ISD::FSHL: 11315 case ISD::FSHR: 11316 // Don't handle funnel shifts here. 11317 return; 11318 case ISD::BITCAST: 11319 // Don't handle bitcast here. 11320 return; 11321 case ISD::FP_EXTEND: 11322 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11323 if (Lowered) 11324 Results.push_back(Lowered); 11325 return; 11326 } 11327 } 11328 11329 //===----------------------------------------------------------------------===// 11330 // Other Lowering Code 11331 //===----------------------------------------------------------------------===// 11332 11333 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11334 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11335 Function *Func = Intrinsic::getDeclaration(M, Id); 11336 return Builder.CreateCall(Func, {}); 11337 } 11338 11339 // The mappings for emitLeading/TrailingFence is taken from 11340 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11341 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11342 Instruction *Inst, 11343 AtomicOrdering Ord) const { 11344 if (Ord == AtomicOrdering::SequentiallyConsistent) 11345 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11346 if (isReleaseOrStronger(Ord)) 11347 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11348 return nullptr; 11349 } 11350 11351 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11352 Instruction *Inst, 11353 AtomicOrdering Ord) const { 11354 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11355 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11356 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11357 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11358 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11359 return Builder.CreateCall( 11360 Intrinsic::getDeclaration( 11361 Builder.GetInsertBlock()->getParent()->getParent(), 11362 Intrinsic::ppc_cfence, {Inst->getType()}), 11363 {Inst}); 11364 // FIXME: Can use isync for rmw operation. 11365 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11366 } 11367 return nullptr; 11368 } 11369 11370 MachineBasicBlock * 11371 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11372 unsigned AtomicSize, 11373 unsigned BinOpcode, 11374 unsigned CmpOpcode, 11375 unsigned CmpPred) const { 11376 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11377 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11378 11379 auto LoadMnemonic = PPC::LDARX; 11380 auto StoreMnemonic = PPC::STDCX; 11381 switch (AtomicSize) { 11382 default: 11383 llvm_unreachable("Unexpected size of atomic entity"); 11384 case 1: 11385 LoadMnemonic = PPC::LBARX; 11386 StoreMnemonic = PPC::STBCX; 11387 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11388 break; 11389 case 2: 11390 LoadMnemonic = PPC::LHARX; 11391 StoreMnemonic = PPC::STHCX; 11392 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11393 break; 11394 case 4: 11395 LoadMnemonic = PPC::LWARX; 11396 StoreMnemonic = PPC::STWCX; 11397 break; 11398 case 8: 11399 LoadMnemonic = PPC::LDARX; 11400 StoreMnemonic = PPC::STDCX; 11401 break; 11402 } 11403 11404 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11405 MachineFunction *F = BB->getParent(); 11406 MachineFunction::iterator It = ++BB->getIterator(); 11407 11408 Register dest = MI.getOperand(0).getReg(); 11409 Register ptrA = MI.getOperand(1).getReg(); 11410 Register ptrB = MI.getOperand(2).getReg(); 11411 Register incr = MI.getOperand(3).getReg(); 11412 DebugLoc dl = MI.getDebugLoc(); 11413 11414 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11415 MachineBasicBlock *loop2MBB = 11416 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11417 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11418 F->insert(It, loopMBB); 11419 if (CmpOpcode) 11420 F->insert(It, loop2MBB); 11421 F->insert(It, exitMBB); 11422 exitMBB->splice(exitMBB->begin(), BB, 11423 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11424 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11425 11426 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11427 Register TmpReg = (!BinOpcode) ? incr : 11428 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11429 : &PPC::GPRCRegClass); 11430 11431 // thisMBB: 11432 // ... 11433 // fallthrough --> loopMBB 11434 BB->addSuccessor(loopMBB); 11435 11436 // loopMBB: 11437 // l[wd]arx dest, ptr 11438 // add r0, dest, incr 11439 // st[wd]cx. r0, ptr 11440 // bne- loopMBB 11441 // fallthrough --> exitMBB 11442 11443 // For max/min... 11444 // loopMBB: 11445 // l[wd]arx dest, ptr 11446 // cmpl?[wd] incr, dest 11447 // bgt exitMBB 11448 // loop2MBB: 11449 // st[wd]cx. dest, ptr 11450 // bne- loopMBB 11451 // fallthrough --> exitMBB 11452 11453 BB = loopMBB; 11454 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11455 .addReg(ptrA).addReg(ptrB); 11456 if (BinOpcode) 11457 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11458 if (CmpOpcode) { 11459 // Signed comparisons of byte or halfword values must be sign-extended. 11460 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11461 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11462 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11463 ExtReg).addReg(dest); 11464 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11465 .addReg(incr).addReg(ExtReg); 11466 } else 11467 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11468 .addReg(incr).addReg(dest); 11469 11470 BuildMI(BB, dl, TII->get(PPC::BCC)) 11471 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11472 BB->addSuccessor(loop2MBB); 11473 BB->addSuccessor(exitMBB); 11474 BB = loop2MBB; 11475 } 11476 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11477 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11478 BuildMI(BB, dl, TII->get(PPC::BCC)) 11479 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11480 BB->addSuccessor(loopMBB); 11481 BB->addSuccessor(exitMBB); 11482 11483 // exitMBB: 11484 // ... 11485 BB = exitMBB; 11486 return BB; 11487 } 11488 11489 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11490 switch(MI.getOpcode()) { 11491 default: 11492 return false; 11493 case PPC::COPY: 11494 return TII->isSignExtended(MI); 11495 case PPC::LHA: 11496 case PPC::LHA8: 11497 case PPC::LHAU: 11498 case PPC::LHAU8: 11499 case PPC::LHAUX: 11500 case PPC::LHAUX8: 11501 case PPC::LHAX: 11502 case PPC::LHAX8: 11503 case PPC::LWA: 11504 case PPC::LWAUX: 11505 case PPC::LWAX: 11506 case PPC::LWAX_32: 11507 case PPC::LWA_32: 11508 case PPC::PLHA: 11509 case PPC::PLHA8: 11510 case PPC::PLHA8pc: 11511 case PPC::PLHApc: 11512 case PPC::PLWA: 11513 case PPC::PLWA8: 11514 case PPC::PLWA8pc: 11515 case PPC::PLWApc: 11516 case PPC::EXTSB: 11517 case PPC::EXTSB8: 11518 case PPC::EXTSB8_32_64: 11519 case PPC::EXTSB8_rec: 11520 case PPC::EXTSB_rec: 11521 case PPC::EXTSH: 11522 case PPC::EXTSH8: 11523 case PPC::EXTSH8_32_64: 11524 case PPC::EXTSH8_rec: 11525 case PPC::EXTSH_rec: 11526 case PPC::EXTSW: 11527 case PPC::EXTSWSLI: 11528 case PPC::EXTSWSLI_32_64: 11529 case PPC::EXTSWSLI_32_64_rec: 11530 case PPC::EXTSWSLI_rec: 11531 case PPC::EXTSW_32: 11532 case PPC::EXTSW_32_64: 11533 case PPC::EXTSW_32_64_rec: 11534 case PPC::EXTSW_rec: 11535 case PPC::SRAW: 11536 case PPC::SRAWI: 11537 case PPC::SRAWI_rec: 11538 case PPC::SRAW_rec: 11539 return true; 11540 } 11541 return false; 11542 } 11543 11544 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11545 MachineInstr &MI, MachineBasicBlock *BB, 11546 bool is8bit, // operation 11547 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11548 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11549 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11550 11551 // If this is a signed comparison and the value being compared is not known 11552 // to be sign extended, sign extend it here. 11553 DebugLoc dl = MI.getDebugLoc(); 11554 MachineFunction *F = BB->getParent(); 11555 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11556 Register incr = MI.getOperand(3).getReg(); 11557 bool IsSignExtended = Register::isVirtualRegister(incr) && 11558 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11559 11560 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11561 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11562 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11563 .addReg(MI.getOperand(3).getReg()); 11564 MI.getOperand(3).setReg(ValueReg); 11565 } 11566 // If we support part-word atomic mnemonics, just use them 11567 if (Subtarget.hasPartwordAtomics()) 11568 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11569 CmpPred); 11570 11571 // In 64 bit mode we have to use 64 bits for addresses, even though the 11572 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11573 // registers without caring whether they're 32 or 64, but here we're 11574 // doing actual arithmetic on the addresses. 11575 bool is64bit = Subtarget.isPPC64(); 11576 bool isLittleEndian = Subtarget.isLittleEndian(); 11577 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11578 11579 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11580 MachineFunction::iterator It = ++BB->getIterator(); 11581 11582 Register dest = MI.getOperand(0).getReg(); 11583 Register ptrA = MI.getOperand(1).getReg(); 11584 Register ptrB = MI.getOperand(2).getReg(); 11585 11586 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11587 MachineBasicBlock *loop2MBB = 11588 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11589 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11590 F->insert(It, loopMBB); 11591 if (CmpOpcode) 11592 F->insert(It, loop2MBB); 11593 F->insert(It, exitMBB); 11594 exitMBB->splice(exitMBB->begin(), BB, 11595 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11596 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11597 11598 const TargetRegisterClass *RC = 11599 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11600 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11601 11602 Register PtrReg = RegInfo.createVirtualRegister(RC); 11603 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11604 Register ShiftReg = 11605 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11606 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11607 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11608 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11609 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11610 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11611 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11612 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11613 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11614 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11615 Register Ptr1Reg; 11616 Register TmpReg = 11617 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11618 11619 // thisMBB: 11620 // ... 11621 // fallthrough --> loopMBB 11622 BB->addSuccessor(loopMBB); 11623 11624 // The 4-byte load must be aligned, while a char or short may be 11625 // anywhere in the word. Hence all this nasty bookkeeping code. 11626 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11627 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11628 // xori shift, shift1, 24 [16] 11629 // rlwinm ptr, ptr1, 0, 0, 29 11630 // slw incr2, incr, shift 11631 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11632 // slw mask, mask2, shift 11633 // loopMBB: 11634 // lwarx tmpDest, ptr 11635 // add tmp, tmpDest, incr2 11636 // andc tmp2, tmpDest, mask 11637 // and tmp3, tmp, mask 11638 // or tmp4, tmp3, tmp2 11639 // stwcx. tmp4, ptr 11640 // bne- loopMBB 11641 // fallthrough --> exitMBB 11642 // srw SrwDest, tmpDest, shift 11643 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11644 if (ptrA != ZeroReg) { 11645 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11646 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11647 .addReg(ptrA) 11648 .addReg(ptrB); 11649 } else { 11650 Ptr1Reg = ptrB; 11651 } 11652 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11653 // mode. 11654 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11655 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11656 .addImm(3) 11657 .addImm(27) 11658 .addImm(is8bit ? 28 : 27); 11659 if (!isLittleEndian) 11660 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11661 .addReg(Shift1Reg) 11662 .addImm(is8bit ? 24 : 16); 11663 if (is64bit) 11664 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11665 .addReg(Ptr1Reg) 11666 .addImm(0) 11667 .addImm(61); 11668 else 11669 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11670 .addReg(Ptr1Reg) 11671 .addImm(0) 11672 .addImm(0) 11673 .addImm(29); 11674 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11675 if (is8bit) 11676 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11677 else { 11678 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11679 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11680 .addReg(Mask3Reg) 11681 .addImm(65535); 11682 } 11683 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11684 .addReg(Mask2Reg) 11685 .addReg(ShiftReg); 11686 11687 BB = loopMBB; 11688 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11689 .addReg(ZeroReg) 11690 .addReg(PtrReg); 11691 if (BinOpcode) 11692 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11693 .addReg(Incr2Reg) 11694 .addReg(TmpDestReg); 11695 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11696 .addReg(TmpDestReg) 11697 .addReg(MaskReg); 11698 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11699 if (CmpOpcode) { 11700 // For unsigned comparisons, we can directly compare the shifted values. 11701 // For signed comparisons we shift and sign extend. 11702 Register SReg = RegInfo.createVirtualRegister(GPRC); 11703 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11704 .addReg(TmpDestReg) 11705 .addReg(MaskReg); 11706 unsigned ValueReg = SReg; 11707 unsigned CmpReg = Incr2Reg; 11708 if (CmpOpcode == PPC::CMPW) { 11709 ValueReg = RegInfo.createVirtualRegister(GPRC); 11710 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11711 .addReg(SReg) 11712 .addReg(ShiftReg); 11713 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11714 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11715 .addReg(ValueReg); 11716 ValueReg = ValueSReg; 11717 CmpReg = incr; 11718 } 11719 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11720 .addReg(CmpReg) 11721 .addReg(ValueReg); 11722 BuildMI(BB, dl, TII->get(PPC::BCC)) 11723 .addImm(CmpPred) 11724 .addReg(PPC::CR0) 11725 .addMBB(exitMBB); 11726 BB->addSuccessor(loop2MBB); 11727 BB->addSuccessor(exitMBB); 11728 BB = loop2MBB; 11729 } 11730 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11731 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11732 .addReg(Tmp4Reg) 11733 .addReg(ZeroReg) 11734 .addReg(PtrReg); 11735 BuildMI(BB, dl, TII->get(PPC::BCC)) 11736 .addImm(PPC::PRED_NE) 11737 .addReg(PPC::CR0) 11738 .addMBB(loopMBB); 11739 BB->addSuccessor(loopMBB); 11740 BB->addSuccessor(exitMBB); 11741 11742 // exitMBB: 11743 // ... 11744 BB = exitMBB; 11745 // Since the shift amount is not a constant, we need to clear 11746 // the upper bits with a separate RLWINM. 11747 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11748 .addReg(SrwDestReg) 11749 .addImm(0) 11750 .addImm(is8bit ? 24 : 16) 11751 .addImm(31); 11752 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11753 .addReg(TmpDestReg) 11754 .addReg(ShiftReg); 11755 return BB; 11756 } 11757 11758 llvm::MachineBasicBlock * 11759 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11760 MachineBasicBlock *MBB) const { 11761 DebugLoc DL = MI.getDebugLoc(); 11762 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11763 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11764 11765 MachineFunction *MF = MBB->getParent(); 11766 MachineRegisterInfo &MRI = MF->getRegInfo(); 11767 11768 const BasicBlock *BB = MBB->getBasicBlock(); 11769 MachineFunction::iterator I = ++MBB->getIterator(); 11770 11771 Register DstReg = MI.getOperand(0).getReg(); 11772 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11773 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11774 Register mainDstReg = MRI.createVirtualRegister(RC); 11775 Register restoreDstReg = MRI.createVirtualRegister(RC); 11776 11777 MVT PVT = getPointerTy(MF->getDataLayout()); 11778 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11779 "Invalid Pointer Size!"); 11780 // For v = setjmp(buf), we generate 11781 // 11782 // thisMBB: 11783 // SjLjSetup mainMBB 11784 // bl mainMBB 11785 // v_restore = 1 11786 // b sinkMBB 11787 // 11788 // mainMBB: 11789 // buf[LabelOffset] = LR 11790 // v_main = 0 11791 // 11792 // sinkMBB: 11793 // v = phi(main, restore) 11794 // 11795 11796 MachineBasicBlock *thisMBB = MBB; 11797 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11798 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11799 MF->insert(I, mainMBB); 11800 MF->insert(I, sinkMBB); 11801 11802 MachineInstrBuilder MIB; 11803 11804 // Transfer the remainder of BB and its successor edges to sinkMBB. 11805 sinkMBB->splice(sinkMBB->begin(), MBB, 11806 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11807 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11808 11809 // Note that the structure of the jmp_buf used here is not compatible 11810 // with that used by libc, and is not designed to be. Specifically, it 11811 // stores only those 'reserved' registers that LLVM does not otherwise 11812 // understand how to spill. Also, by convention, by the time this 11813 // intrinsic is called, Clang has already stored the frame address in the 11814 // first slot of the buffer and stack address in the third. Following the 11815 // X86 target code, we'll store the jump address in the second slot. We also 11816 // need to save the TOC pointer (R2) to handle jumps between shared 11817 // libraries, and that will be stored in the fourth slot. The thread 11818 // identifier (R13) is not affected. 11819 11820 // thisMBB: 11821 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11822 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11823 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11824 11825 // Prepare IP either in reg. 11826 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11827 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11828 Register BufReg = MI.getOperand(1).getReg(); 11829 11830 if (Subtarget.is64BitELFABI()) { 11831 setUsesTOCBasePtr(*MBB->getParent()); 11832 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11833 .addReg(PPC::X2) 11834 .addImm(TOCOffset) 11835 .addReg(BufReg) 11836 .cloneMemRefs(MI); 11837 } 11838 11839 // Naked functions never have a base pointer, and so we use r1. For all 11840 // other functions, this decision must be delayed until during PEI. 11841 unsigned BaseReg; 11842 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11843 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11844 else 11845 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11846 11847 MIB = BuildMI(*thisMBB, MI, DL, 11848 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11849 .addReg(BaseReg) 11850 .addImm(BPOffset) 11851 .addReg(BufReg) 11852 .cloneMemRefs(MI); 11853 11854 // Setup 11855 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11856 MIB.addRegMask(TRI->getNoPreservedMask()); 11857 11858 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11859 11860 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11861 .addMBB(mainMBB); 11862 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11863 11864 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11865 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11866 11867 // mainMBB: 11868 // mainDstReg = 0 11869 MIB = 11870 BuildMI(mainMBB, DL, 11871 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11872 11873 // Store IP 11874 if (Subtarget.isPPC64()) { 11875 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11876 .addReg(LabelReg) 11877 .addImm(LabelOffset) 11878 .addReg(BufReg); 11879 } else { 11880 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11881 .addReg(LabelReg) 11882 .addImm(LabelOffset) 11883 .addReg(BufReg); 11884 } 11885 MIB.cloneMemRefs(MI); 11886 11887 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11888 mainMBB->addSuccessor(sinkMBB); 11889 11890 // sinkMBB: 11891 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11892 TII->get(PPC::PHI), DstReg) 11893 .addReg(mainDstReg).addMBB(mainMBB) 11894 .addReg(restoreDstReg).addMBB(thisMBB); 11895 11896 MI.eraseFromParent(); 11897 return sinkMBB; 11898 } 11899 11900 MachineBasicBlock * 11901 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11902 MachineBasicBlock *MBB) const { 11903 DebugLoc DL = MI.getDebugLoc(); 11904 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11905 11906 MachineFunction *MF = MBB->getParent(); 11907 MachineRegisterInfo &MRI = MF->getRegInfo(); 11908 11909 MVT PVT = getPointerTy(MF->getDataLayout()); 11910 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11911 "Invalid Pointer Size!"); 11912 11913 const TargetRegisterClass *RC = 11914 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11915 Register Tmp = MRI.createVirtualRegister(RC); 11916 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11917 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11918 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11919 unsigned BP = 11920 (PVT == MVT::i64) 11921 ? PPC::X30 11922 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11923 : PPC::R30); 11924 11925 MachineInstrBuilder MIB; 11926 11927 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11928 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11929 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11930 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11931 11932 Register BufReg = MI.getOperand(0).getReg(); 11933 11934 // Reload FP (the jumped-to function may not have had a 11935 // frame pointer, and if so, then its r31 will be restored 11936 // as necessary). 11937 if (PVT == MVT::i64) { 11938 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11939 .addImm(0) 11940 .addReg(BufReg); 11941 } else { 11942 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11943 .addImm(0) 11944 .addReg(BufReg); 11945 } 11946 MIB.cloneMemRefs(MI); 11947 11948 // Reload IP 11949 if (PVT == MVT::i64) { 11950 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11951 .addImm(LabelOffset) 11952 .addReg(BufReg); 11953 } else { 11954 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11955 .addImm(LabelOffset) 11956 .addReg(BufReg); 11957 } 11958 MIB.cloneMemRefs(MI); 11959 11960 // Reload SP 11961 if (PVT == MVT::i64) { 11962 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11963 .addImm(SPOffset) 11964 .addReg(BufReg); 11965 } else { 11966 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11967 .addImm(SPOffset) 11968 .addReg(BufReg); 11969 } 11970 MIB.cloneMemRefs(MI); 11971 11972 // Reload BP 11973 if (PVT == MVT::i64) { 11974 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11975 .addImm(BPOffset) 11976 .addReg(BufReg); 11977 } else { 11978 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11979 .addImm(BPOffset) 11980 .addReg(BufReg); 11981 } 11982 MIB.cloneMemRefs(MI); 11983 11984 // Reload TOC 11985 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11986 setUsesTOCBasePtr(*MBB->getParent()); 11987 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11988 .addImm(TOCOffset) 11989 .addReg(BufReg) 11990 .cloneMemRefs(MI); 11991 } 11992 11993 // Jump 11994 BuildMI(*MBB, MI, DL, 11995 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11996 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11997 11998 MI.eraseFromParent(); 11999 return MBB; 12000 } 12001 12002 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 12003 // If the function specifically requests inline stack probes, emit them. 12004 if (MF.getFunction().hasFnAttribute("probe-stack")) 12005 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 12006 "inline-asm"; 12007 return false; 12008 } 12009 12010 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 12011 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 12012 unsigned StackAlign = TFI->getStackAlignment(); 12013 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 12014 "Unexpected stack alignment"); 12015 // The default stack probe size is 4096 if the function has no 12016 // stack-probe-size attribute. 12017 unsigned StackProbeSize = 4096; 12018 const Function &Fn = MF.getFunction(); 12019 if (Fn.hasFnAttribute("stack-probe-size")) 12020 Fn.getFnAttribute("stack-probe-size") 12021 .getValueAsString() 12022 .getAsInteger(0, StackProbeSize); 12023 // Round down to the stack alignment. 12024 StackProbeSize &= ~(StackAlign - 1); 12025 return StackProbeSize ? StackProbeSize : StackAlign; 12026 } 12027 12028 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 12029 // into three phases. In the first phase, it uses pseudo instruction 12030 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 12031 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 12032 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 12033 // MaxCallFrameSize so that it can calculate correct data area pointer. 12034 MachineBasicBlock * 12035 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12036 MachineBasicBlock *MBB) const { 12037 const bool isPPC64 = Subtarget.isPPC64(); 12038 MachineFunction *MF = MBB->getParent(); 12039 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12040 DebugLoc DL = MI.getDebugLoc(); 12041 const unsigned ProbeSize = getStackProbeSize(*MF); 12042 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12043 MachineRegisterInfo &MRI = MF->getRegInfo(); 12044 // The CFG of probing stack looks as 12045 // +-----+ 12046 // | MBB | 12047 // +--+--+ 12048 // | 12049 // +----v----+ 12050 // +--->+ TestMBB +---+ 12051 // | +----+----+ | 12052 // | | | 12053 // | +-----v----+ | 12054 // +---+ BlockMBB | | 12055 // +----------+ | 12056 // | 12057 // +---------+ | 12058 // | TailMBB +<--+ 12059 // +---------+ 12060 // In MBB, calculate previous frame pointer and final stack pointer. 12061 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12062 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12063 // TailMBB is spliced via \p MI. 12064 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12065 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12066 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12067 12068 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12069 MF->insert(MBBIter, TestMBB); 12070 MF->insert(MBBIter, BlockMBB); 12071 MF->insert(MBBIter, TailMBB); 12072 12073 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12074 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12075 12076 Register DstReg = MI.getOperand(0).getReg(); 12077 Register NegSizeReg = MI.getOperand(1).getReg(); 12078 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12079 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12080 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12081 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12082 12083 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12084 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12085 // NegSize. 12086 unsigned ProbeOpc; 12087 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12088 ProbeOpc = 12089 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12090 else 12091 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12092 // and NegSizeReg will be allocated in the same phyreg to avoid 12093 // redundant copy when NegSizeReg has only one use which is current MI and 12094 // will be replaced by PREPARE_PROBED_ALLOCA then. 12095 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12096 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12097 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12098 .addDef(ActualNegSizeReg) 12099 .addReg(NegSizeReg) 12100 .add(MI.getOperand(2)) 12101 .add(MI.getOperand(3)); 12102 12103 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12104 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12105 FinalStackPtr) 12106 .addReg(SPReg) 12107 .addReg(ActualNegSizeReg); 12108 12109 // Materialize a scratch register for update. 12110 int64_t NegProbeSize = -(int64_t)ProbeSize; 12111 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12112 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12113 if (!isInt<16>(NegProbeSize)) { 12114 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12115 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12116 .addImm(NegProbeSize >> 16); 12117 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12118 ScratchReg) 12119 .addReg(TempReg) 12120 .addImm(NegProbeSize & 0xFFFF); 12121 } else 12122 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12123 .addImm(NegProbeSize); 12124 12125 { 12126 // Probing leading residual part. 12127 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12128 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12129 .addReg(ActualNegSizeReg) 12130 .addReg(ScratchReg); 12131 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12132 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12133 .addReg(Div) 12134 .addReg(ScratchReg); 12135 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12136 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12137 .addReg(Mul) 12138 .addReg(ActualNegSizeReg); 12139 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12140 .addReg(FramePointer) 12141 .addReg(SPReg) 12142 .addReg(NegMod); 12143 } 12144 12145 { 12146 // Remaining part should be multiple of ProbeSize. 12147 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12148 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12149 .addReg(SPReg) 12150 .addReg(FinalStackPtr); 12151 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12152 .addImm(PPC::PRED_EQ) 12153 .addReg(CmpResult) 12154 .addMBB(TailMBB); 12155 TestMBB->addSuccessor(BlockMBB); 12156 TestMBB->addSuccessor(TailMBB); 12157 } 12158 12159 { 12160 // Touch the block. 12161 // |P...|P...|P... 12162 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12163 .addReg(FramePointer) 12164 .addReg(SPReg) 12165 .addReg(ScratchReg); 12166 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12167 BlockMBB->addSuccessor(TestMBB); 12168 } 12169 12170 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12171 // DYNAREAOFFSET pseudo instruction to get the future result. 12172 Register MaxCallFrameSizeReg = 12173 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12174 BuildMI(TailMBB, DL, 12175 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12176 MaxCallFrameSizeReg) 12177 .add(MI.getOperand(2)) 12178 .add(MI.getOperand(3)); 12179 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12180 .addReg(SPReg) 12181 .addReg(MaxCallFrameSizeReg); 12182 12183 // Splice instructions after MI to TailMBB. 12184 TailMBB->splice(TailMBB->end(), MBB, 12185 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12186 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12187 MBB->addSuccessor(TestMBB); 12188 12189 // Delete the pseudo instruction. 12190 MI.eraseFromParent(); 12191 12192 ++NumDynamicAllocaProbed; 12193 return TailMBB; 12194 } 12195 12196 MachineBasicBlock * 12197 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12198 MachineBasicBlock *BB) const { 12199 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12200 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12201 if (Subtarget.is64BitELFABI() && 12202 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12203 !Subtarget.isUsingPCRelativeCalls()) { 12204 // Call lowering should have added an r2 operand to indicate a dependence 12205 // on the TOC base pointer value. It can't however, because there is no 12206 // way to mark the dependence as implicit there, and so the stackmap code 12207 // will confuse it with a regular operand. Instead, add the dependence 12208 // here. 12209 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12210 } 12211 12212 return emitPatchPoint(MI, BB); 12213 } 12214 12215 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12216 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12217 return emitEHSjLjSetJmp(MI, BB); 12218 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12219 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12220 return emitEHSjLjLongJmp(MI, BB); 12221 } 12222 12223 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12224 12225 // To "insert" these instructions we actually have to insert their 12226 // control-flow patterns. 12227 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12228 MachineFunction::iterator It = ++BB->getIterator(); 12229 12230 MachineFunction *F = BB->getParent(); 12231 MachineRegisterInfo &MRI = F->getRegInfo(); 12232 12233 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12234 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12235 MI.getOpcode() == PPC::SELECT_I8) { 12236 SmallVector<MachineOperand, 2> Cond; 12237 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12238 MI.getOpcode() == PPC::SELECT_CC_I8) 12239 Cond.push_back(MI.getOperand(4)); 12240 else 12241 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12242 Cond.push_back(MI.getOperand(1)); 12243 12244 DebugLoc dl = MI.getDebugLoc(); 12245 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12246 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12247 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12248 MI.getOpcode() == PPC::SELECT_CC_F8 || 12249 MI.getOpcode() == PPC::SELECT_CC_F16 || 12250 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12251 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12252 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12253 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12254 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12255 MI.getOpcode() == PPC::SELECT_CC_SPE || 12256 MI.getOpcode() == PPC::SELECT_F4 || 12257 MI.getOpcode() == PPC::SELECT_F8 || 12258 MI.getOpcode() == PPC::SELECT_F16 || 12259 MI.getOpcode() == PPC::SELECT_SPE || 12260 MI.getOpcode() == PPC::SELECT_SPE4 || 12261 MI.getOpcode() == PPC::SELECT_VRRC || 12262 MI.getOpcode() == PPC::SELECT_VSFRC || 12263 MI.getOpcode() == PPC::SELECT_VSSRC || 12264 MI.getOpcode() == PPC::SELECT_VSRC) { 12265 // The incoming instruction knows the destination vreg to set, the 12266 // condition code register to branch on, the true/false values to 12267 // select between, and a branch opcode to use. 12268 12269 // thisMBB: 12270 // ... 12271 // TrueVal = ... 12272 // cmpTY ccX, r1, r2 12273 // bCC copy1MBB 12274 // fallthrough --> copy0MBB 12275 MachineBasicBlock *thisMBB = BB; 12276 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12277 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12278 DebugLoc dl = MI.getDebugLoc(); 12279 F->insert(It, copy0MBB); 12280 F->insert(It, sinkMBB); 12281 12282 // Transfer the remainder of BB and its successor edges to sinkMBB. 12283 sinkMBB->splice(sinkMBB->begin(), BB, 12284 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12285 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12286 12287 // Next, add the true and fallthrough blocks as its successors. 12288 BB->addSuccessor(copy0MBB); 12289 BB->addSuccessor(sinkMBB); 12290 12291 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12292 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12293 MI.getOpcode() == PPC::SELECT_F16 || 12294 MI.getOpcode() == PPC::SELECT_SPE4 || 12295 MI.getOpcode() == PPC::SELECT_SPE || 12296 MI.getOpcode() == PPC::SELECT_VRRC || 12297 MI.getOpcode() == PPC::SELECT_VSFRC || 12298 MI.getOpcode() == PPC::SELECT_VSSRC || 12299 MI.getOpcode() == PPC::SELECT_VSRC) { 12300 BuildMI(BB, dl, TII->get(PPC::BC)) 12301 .addReg(MI.getOperand(1).getReg()) 12302 .addMBB(sinkMBB); 12303 } else { 12304 unsigned SelectPred = MI.getOperand(4).getImm(); 12305 BuildMI(BB, dl, TII->get(PPC::BCC)) 12306 .addImm(SelectPred) 12307 .addReg(MI.getOperand(1).getReg()) 12308 .addMBB(sinkMBB); 12309 } 12310 12311 // copy0MBB: 12312 // %FalseValue = ... 12313 // # fallthrough to sinkMBB 12314 BB = copy0MBB; 12315 12316 // Update machine-CFG edges 12317 BB->addSuccessor(sinkMBB); 12318 12319 // sinkMBB: 12320 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12321 // ... 12322 BB = sinkMBB; 12323 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12324 .addReg(MI.getOperand(3).getReg()) 12325 .addMBB(copy0MBB) 12326 .addReg(MI.getOperand(2).getReg()) 12327 .addMBB(thisMBB); 12328 } else if (MI.getOpcode() == PPC::ReadTB) { 12329 // To read the 64-bit time-base register on a 32-bit target, we read the 12330 // two halves. Should the counter have wrapped while it was being read, we 12331 // need to try again. 12332 // ... 12333 // readLoop: 12334 // mfspr Rx,TBU # load from TBU 12335 // mfspr Ry,TB # load from TB 12336 // mfspr Rz,TBU # load from TBU 12337 // cmpw crX,Rx,Rz # check if 'old'='new' 12338 // bne readLoop # branch if they're not equal 12339 // ... 12340 12341 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12342 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12343 DebugLoc dl = MI.getDebugLoc(); 12344 F->insert(It, readMBB); 12345 F->insert(It, sinkMBB); 12346 12347 // Transfer the remainder of BB and its successor edges to sinkMBB. 12348 sinkMBB->splice(sinkMBB->begin(), BB, 12349 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12350 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12351 12352 BB->addSuccessor(readMBB); 12353 BB = readMBB; 12354 12355 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12356 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12357 Register LoReg = MI.getOperand(0).getReg(); 12358 Register HiReg = MI.getOperand(1).getReg(); 12359 12360 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12361 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12362 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12363 12364 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12365 12366 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12367 .addReg(HiReg) 12368 .addReg(ReadAgainReg); 12369 BuildMI(BB, dl, TII->get(PPC::BCC)) 12370 .addImm(PPC::PRED_NE) 12371 .addReg(CmpReg) 12372 .addMBB(readMBB); 12373 12374 BB->addSuccessor(readMBB); 12375 BB->addSuccessor(sinkMBB); 12376 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12377 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12378 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12379 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12380 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12381 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12382 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12383 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12384 12385 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12386 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12387 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12388 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12389 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12390 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12391 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12392 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12393 12394 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12395 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12396 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12397 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12398 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12399 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12400 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12401 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12402 12403 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12404 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12405 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12406 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12407 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12408 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12409 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12410 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12411 12412 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12413 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12414 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12415 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12416 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12417 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12418 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12419 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12420 12421 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12422 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12423 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12424 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12425 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12426 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12427 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12428 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12429 12430 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12431 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12432 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12433 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12434 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12435 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12436 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12437 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12438 12439 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12440 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12441 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12442 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12443 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12444 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12445 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12446 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12447 12448 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12449 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12450 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12451 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12452 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12453 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12454 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12455 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12456 12457 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12458 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12459 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12460 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12461 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12462 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12463 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12464 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12465 12466 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12467 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12468 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12469 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12470 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12471 BB = EmitAtomicBinary(MI, BB, 4, 0); 12472 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12473 BB = EmitAtomicBinary(MI, BB, 8, 0); 12474 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12475 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12476 (Subtarget.hasPartwordAtomics() && 12477 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12478 (Subtarget.hasPartwordAtomics() && 12479 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12480 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12481 12482 auto LoadMnemonic = PPC::LDARX; 12483 auto StoreMnemonic = PPC::STDCX; 12484 switch (MI.getOpcode()) { 12485 default: 12486 llvm_unreachable("Compare and swap of unknown size"); 12487 case PPC::ATOMIC_CMP_SWAP_I8: 12488 LoadMnemonic = PPC::LBARX; 12489 StoreMnemonic = PPC::STBCX; 12490 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12491 break; 12492 case PPC::ATOMIC_CMP_SWAP_I16: 12493 LoadMnemonic = PPC::LHARX; 12494 StoreMnemonic = PPC::STHCX; 12495 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12496 break; 12497 case PPC::ATOMIC_CMP_SWAP_I32: 12498 LoadMnemonic = PPC::LWARX; 12499 StoreMnemonic = PPC::STWCX; 12500 break; 12501 case PPC::ATOMIC_CMP_SWAP_I64: 12502 LoadMnemonic = PPC::LDARX; 12503 StoreMnemonic = PPC::STDCX; 12504 break; 12505 } 12506 Register dest = MI.getOperand(0).getReg(); 12507 Register ptrA = MI.getOperand(1).getReg(); 12508 Register ptrB = MI.getOperand(2).getReg(); 12509 Register oldval = MI.getOperand(3).getReg(); 12510 Register newval = MI.getOperand(4).getReg(); 12511 DebugLoc dl = MI.getDebugLoc(); 12512 12513 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12514 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12515 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12516 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12517 F->insert(It, loop1MBB); 12518 F->insert(It, loop2MBB); 12519 F->insert(It, midMBB); 12520 F->insert(It, exitMBB); 12521 exitMBB->splice(exitMBB->begin(), BB, 12522 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12523 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12524 12525 // thisMBB: 12526 // ... 12527 // fallthrough --> loopMBB 12528 BB->addSuccessor(loop1MBB); 12529 12530 // loop1MBB: 12531 // l[bhwd]arx dest, ptr 12532 // cmp[wd] dest, oldval 12533 // bne- midMBB 12534 // loop2MBB: 12535 // st[bhwd]cx. newval, ptr 12536 // bne- loopMBB 12537 // b exitBB 12538 // midMBB: 12539 // st[bhwd]cx. dest, ptr 12540 // exitBB: 12541 BB = loop1MBB; 12542 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12543 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12544 .addReg(oldval) 12545 .addReg(dest); 12546 BuildMI(BB, dl, TII->get(PPC::BCC)) 12547 .addImm(PPC::PRED_NE) 12548 .addReg(PPC::CR0) 12549 .addMBB(midMBB); 12550 BB->addSuccessor(loop2MBB); 12551 BB->addSuccessor(midMBB); 12552 12553 BB = loop2MBB; 12554 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12555 .addReg(newval) 12556 .addReg(ptrA) 12557 .addReg(ptrB); 12558 BuildMI(BB, dl, TII->get(PPC::BCC)) 12559 .addImm(PPC::PRED_NE) 12560 .addReg(PPC::CR0) 12561 .addMBB(loop1MBB); 12562 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12563 BB->addSuccessor(loop1MBB); 12564 BB->addSuccessor(exitMBB); 12565 12566 BB = midMBB; 12567 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12568 .addReg(dest) 12569 .addReg(ptrA) 12570 .addReg(ptrB); 12571 BB->addSuccessor(exitMBB); 12572 12573 // exitMBB: 12574 // ... 12575 BB = exitMBB; 12576 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12577 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12578 // We must use 64-bit registers for addresses when targeting 64-bit, 12579 // since we're actually doing arithmetic on them. Other registers 12580 // can be 32-bit. 12581 bool is64bit = Subtarget.isPPC64(); 12582 bool isLittleEndian = Subtarget.isLittleEndian(); 12583 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12584 12585 Register dest = MI.getOperand(0).getReg(); 12586 Register ptrA = MI.getOperand(1).getReg(); 12587 Register ptrB = MI.getOperand(2).getReg(); 12588 Register oldval = MI.getOperand(3).getReg(); 12589 Register newval = MI.getOperand(4).getReg(); 12590 DebugLoc dl = MI.getDebugLoc(); 12591 12592 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12593 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12594 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12595 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12596 F->insert(It, loop1MBB); 12597 F->insert(It, loop2MBB); 12598 F->insert(It, midMBB); 12599 F->insert(It, exitMBB); 12600 exitMBB->splice(exitMBB->begin(), BB, 12601 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12602 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12603 12604 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12605 const TargetRegisterClass *RC = 12606 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12607 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12608 12609 Register PtrReg = RegInfo.createVirtualRegister(RC); 12610 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12611 Register ShiftReg = 12612 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12613 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12614 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12615 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12616 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12617 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12618 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12619 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12620 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12621 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12622 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12623 Register Ptr1Reg; 12624 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12625 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12626 // thisMBB: 12627 // ... 12628 // fallthrough --> loopMBB 12629 BB->addSuccessor(loop1MBB); 12630 12631 // The 4-byte load must be aligned, while a char or short may be 12632 // anywhere in the word. Hence all this nasty bookkeeping code. 12633 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12634 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12635 // xori shift, shift1, 24 [16] 12636 // rlwinm ptr, ptr1, 0, 0, 29 12637 // slw newval2, newval, shift 12638 // slw oldval2, oldval,shift 12639 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12640 // slw mask, mask2, shift 12641 // and newval3, newval2, mask 12642 // and oldval3, oldval2, mask 12643 // loop1MBB: 12644 // lwarx tmpDest, ptr 12645 // and tmp, tmpDest, mask 12646 // cmpw tmp, oldval3 12647 // bne- midMBB 12648 // loop2MBB: 12649 // andc tmp2, tmpDest, mask 12650 // or tmp4, tmp2, newval3 12651 // stwcx. tmp4, ptr 12652 // bne- loop1MBB 12653 // b exitBB 12654 // midMBB: 12655 // stwcx. tmpDest, ptr 12656 // exitBB: 12657 // srw dest, tmpDest, shift 12658 if (ptrA != ZeroReg) { 12659 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12660 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12661 .addReg(ptrA) 12662 .addReg(ptrB); 12663 } else { 12664 Ptr1Reg = ptrB; 12665 } 12666 12667 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12668 // mode. 12669 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12670 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12671 .addImm(3) 12672 .addImm(27) 12673 .addImm(is8bit ? 28 : 27); 12674 if (!isLittleEndian) 12675 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12676 .addReg(Shift1Reg) 12677 .addImm(is8bit ? 24 : 16); 12678 if (is64bit) 12679 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12680 .addReg(Ptr1Reg) 12681 .addImm(0) 12682 .addImm(61); 12683 else 12684 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12685 .addReg(Ptr1Reg) 12686 .addImm(0) 12687 .addImm(0) 12688 .addImm(29); 12689 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12690 .addReg(newval) 12691 .addReg(ShiftReg); 12692 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12693 .addReg(oldval) 12694 .addReg(ShiftReg); 12695 if (is8bit) 12696 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12697 else { 12698 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12699 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12700 .addReg(Mask3Reg) 12701 .addImm(65535); 12702 } 12703 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12704 .addReg(Mask2Reg) 12705 .addReg(ShiftReg); 12706 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12707 .addReg(NewVal2Reg) 12708 .addReg(MaskReg); 12709 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12710 .addReg(OldVal2Reg) 12711 .addReg(MaskReg); 12712 12713 BB = loop1MBB; 12714 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12715 .addReg(ZeroReg) 12716 .addReg(PtrReg); 12717 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12718 .addReg(TmpDestReg) 12719 .addReg(MaskReg); 12720 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12721 .addReg(TmpReg) 12722 .addReg(OldVal3Reg); 12723 BuildMI(BB, dl, TII->get(PPC::BCC)) 12724 .addImm(PPC::PRED_NE) 12725 .addReg(PPC::CR0) 12726 .addMBB(midMBB); 12727 BB->addSuccessor(loop2MBB); 12728 BB->addSuccessor(midMBB); 12729 12730 BB = loop2MBB; 12731 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12732 .addReg(TmpDestReg) 12733 .addReg(MaskReg); 12734 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12735 .addReg(Tmp2Reg) 12736 .addReg(NewVal3Reg); 12737 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12738 .addReg(Tmp4Reg) 12739 .addReg(ZeroReg) 12740 .addReg(PtrReg); 12741 BuildMI(BB, dl, TII->get(PPC::BCC)) 12742 .addImm(PPC::PRED_NE) 12743 .addReg(PPC::CR0) 12744 .addMBB(loop1MBB); 12745 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12746 BB->addSuccessor(loop1MBB); 12747 BB->addSuccessor(exitMBB); 12748 12749 BB = midMBB; 12750 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12751 .addReg(TmpDestReg) 12752 .addReg(ZeroReg) 12753 .addReg(PtrReg); 12754 BB->addSuccessor(exitMBB); 12755 12756 // exitMBB: 12757 // ... 12758 BB = exitMBB; 12759 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12760 .addReg(TmpReg) 12761 .addReg(ShiftReg); 12762 } else if (MI.getOpcode() == PPC::FADDrtz) { 12763 // This pseudo performs an FADD with rounding mode temporarily forced 12764 // to round-to-zero. We emit this via custom inserter since the FPSCR 12765 // is not modeled at the SelectionDAG level. 12766 Register Dest = MI.getOperand(0).getReg(); 12767 Register Src1 = MI.getOperand(1).getReg(); 12768 Register Src2 = MI.getOperand(2).getReg(); 12769 DebugLoc dl = MI.getDebugLoc(); 12770 12771 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12772 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12773 12774 // Save FPSCR value. 12775 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12776 12777 // Set rounding mode to round-to-zero. 12778 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12779 .addImm(31) 12780 .addReg(PPC::RM, RegState::ImplicitDefine); 12781 12782 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12783 .addImm(30) 12784 .addReg(PPC::RM, RegState::ImplicitDefine); 12785 12786 // Perform addition. 12787 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12788 .addReg(Src1) 12789 .addReg(Src2); 12790 if (MI.getFlag(MachineInstr::NoFPExcept)) 12791 MIB.setMIFlag(MachineInstr::NoFPExcept); 12792 12793 // Restore FPSCR value. 12794 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12795 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12796 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12797 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12798 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12799 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12800 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12801 ? PPC::ANDI8_rec 12802 : PPC::ANDI_rec; 12803 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12804 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12805 12806 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12807 Register Dest = RegInfo.createVirtualRegister( 12808 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12809 12810 DebugLoc Dl = MI.getDebugLoc(); 12811 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12812 .addReg(MI.getOperand(1).getReg()) 12813 .addImm(1); 12814 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12815 MI.getOperand(0).getReg()) 12816 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12817 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12818 DebugLoc Dl = MI.getDebugLoc(); 12819 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12820 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12821 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12822 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12823 MI.getOperand(0).getReg()) 12824 .addReg(CRReg); 12825 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12826 DebugLoc Dl = MI.getDebugLoc(); 12827 unsigned Imm = MI.getOperand(1).getImm(); 12828 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12829 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12830 MI.getOperand(0).getReg()) 12831 .addReg(PPC::CR0EQ); 12832 } else if (MI.getOpcode() == PPC::SETRNDi) { 12833 DebugLoc dl = MI.getDebugLoc(); 12834 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12835 12836 // Save FPSCR value. 12837 if (MRI.use_empty(OldFPSCRReg)) 12838 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12839 else 12840 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12841 12842 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12843 // the following settings: 12844 // 00 Round to nearest 12845 // 01 Round to 0 12846 // 10 Round to +inf 12847 // 11 Round to -inf 12848 12849 // When the operand is immediate, using the two least significant bits of 12850 // the immediate to set the bits 62:63 of FPSCR. 12851 unsigned Mode = MI.getOperand(1).getImm(); 12852 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12853 .addImm(31) 12854 .addReg(PPC::RM, RegState::ImplicitDefine); 12855 12856 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12857 .addImm(30) 12858 .addReg(PPC::RM, RegState::ImplicitDefine); 12859 } else if (MI.getOpcode() == PPC::SETRND) { 12860 DebugLoc dl = MI.getDebugLoc(); 12861 12862 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12863 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12864 // If the target doesn't have DirectMove, we should use stack to do the 12865 // conversion, because the target doesn't have the instructions like mtvsrd 12866 // or mfvsrd to do this conversion directly. 12867 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12868 if (Subtarget.hasDirectMove()) { 12869 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12870 .addReg(SrcReg); 12871 } else { 12872 // Use stack to do the register copy. 12873 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12874 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12875 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12876 if (RC == &PPC::F8RCRegClass) { 12877 // Copy register from F8RCRegClass to G8RCRegclass. 12878 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12879 "Unsupported RegClass."); 12880 12881 StoreOp = PPC::STFD; 12882 LoadOp = PPC::LD; 12883 } else { 12884 // Copy register from G8RCRegClass to F8RCRegclass. 12885 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12886 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12887 "Unsupported RegClass."); 12888 } 12889 12890 MachineFrameInfo &MFI = F->getFrameInfo(); 12891 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12892 12893 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12894 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12895 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12896 MFI.getObjectAlign(FrameIdx)); 12897 12898 // Store the SrcReg into the stack. 12899 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12900 .addReg(SrcReg) 12901 .addImm(0) 12902 .addFrameIndex(FrameIdx) 12903 .addMemOperand(MMOStore); 12904 12905 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12906 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12907 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12908 MFI.getObjectAlign(FrameIdx)); 12909 12910 // Load from the stack where SrcReg is stored, and save to DestReg, 12911 // so we have done the RegClass conversion from RegClass::SrcReg to 12912 // RegClass::DestReg. 12913 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12914 .addImm(0) 12915 .addFrameIndex(FrameIdx) 12916 .addMemOperand(MMOLoad); 12917 } 12918 }; 12919 12920 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12921 12922 // Save FPSCR value. 12923 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12924 12925 // When the operand is gprc register, use two least significant bits of the 12926 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12927 // 12928 // copy OldFPSCRTmpReg, OldFPSCRReg 12929 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12930 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12931 // copy NewFPSCRReg, NewFPSCRTmpReg 12932 // mtfsf 255, NewFPSCRReg 12933 MachineOperand SrcOp = MI.getOperand(1); 12934 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12935 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12936 12937 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12938 12939 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12940 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12941 12942 // The first operand of INSERT_SUBREG should be a register which has 12943 // subregisters, we only care about its RegClass, so we should use an 12944 // IMPLICIT_DEF register. 12945 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12946 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12947 .addReg(ImDefReg) 12948 .add(SrcOp) 12949 .addImm(1); 12950 12951 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12952 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12953 .addReg(OldFPSCRTmpReg) 12954 .addReg(ExtSrcReg) 12955 .addImm(0) 12956 .addImm(62); 12957 12958 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12959 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12960 12961 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12962 // bits of FPSCR. 12963 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12964 .addImm(255) 12965 .addReg(NewFPSCRReg) 12966 .addImm(0) 12967 .addImm(0); 12968 } else if (MI.getOpcode() == PPC::SETFLM) { 12969 DebugLoc Dl = MI.getDebugLoc(); 12970 12971 // Result of setflm is previous FPSCR content, so we need to save it first. 12972 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12973 if (MRI.use_empty(OldFPSCRReg)) 12974 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12975 else 12976 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12977 12978 // Put bits in 32:63 to FPSCR. 12979 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12980 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12981 .addImm(255) 12982 .addReg(NewFPSCRReg) 12983 .addImm(0) 12984 .addImm(0); 12985 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12986 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12987 return emitProbedAlloca(MI, BB); 12988 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12989 DebugLoc DL = MI.getDebugLoc(); 12990 Register Src = MI.getOperand(2).getReg(); 12991 Register Lo = MI.getOperand(0).getReg(); 12992 Register Hi = MI.getOperand(1).getReg(); 12993 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12994 .addDef(Lo) 12995 .addUse(Src, 0, PPC::sub_gp8_x1); 12996 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12997 .addDef(Hi) 12998 .addUse(Src, 0, PPC::sub_gp8_x0); 12999 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 13000 MI.getOpcode() == PPC::STQX_PSEUDO) { 13001 DebugLoc DL = MI.getDebugLoc(); 13002 // Ptr is used as the ptr_rc_no_r0 part 13003 // of LQ/STQ's memory operand and adding result of RA and RB, 13004 // so it has to be g8rc_and_g8rc_nox0. 13005 Register Ptr = 13006 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 13007 Register Val = MI.getOperand(0).getReg(); 13008 Register RA = MI.getOperand(1).getReg(); 13009 Register RB = MI.getOperand(2).getReg(); 13010 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 13011 BuildMI(*BB, MI, DL, 13012 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 13013 : TII->get(PPC::STQ)) 13014 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 13015 .addImm(0) 13016 .addReg(Ptr); 13017 } else { 13018 llvm_unreachable("Unexpected instr type to insert"); 13019 } 13020 13021 MI.eraseFromParent(); // The pseudo instruction is gone now. 13022 return BB; 13023 } 13024 13025 //===----------------------------------------------------------------------===// 13026 // Target Optimization Hooks 13027 //===----------------------------------------------------------------------===// 13028 13029 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 13030 // For the estimates, convergence is quadratic, so we essentially double the 13031 // number of digits correct after every iteration. For both FRE and FRSQRTE, 13032 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 13033 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 13034 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 13035 if (VT.getScalarType() == MVT::f64) 13036 RefinementSteps++; 13037 return RefinementSteps; 13038 } 13039 13040 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13041 const DenormalMode &Mode) const { 13042 // We only have VSX Vector Test for software Square Root. 13043 EVT VT = Op.getValueType(); 13044 if (!isTypeLegal(MVT::i1) || 13045 (VT != MVT::f64 && 13046 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13047 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13048 13049 SDLoc DL(Op); 13050 // The output register of FTSQRT is CR field. 13051 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13052 // ftsqrt BF,FRB 13053 // Let e_b be the unbiased exponent of the double-precision 13054 // floating-point operand in register FRB. 13055 // fe_flag is set to 1 if either of the following conditions occurs. 13056 // - The double-precision floating-point operand in register FRB is a zero, 13057 // a NaN, or an infinity, or a negative value. 13058 // - e_b is less than or equal to -970. 13059 // Otherwise fe_flag is set to 0. 13060 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13061 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13062 // exponent is less than -970) 13063 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13064 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13065 FTSQRT, SRIdxVal), 13066 0); 13067 } 13068 13069 SDValue 13070 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13071 SelectionDAG &DAG) const { 13072 // We only have VSX Vector Square Root. 13073 EVT VT = Op.getValueType(); 13074 if (VT != MVT::f64 && 13075 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13076 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13077 13078 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13079 } 13080 13081 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13082 int Enabled, int &RefinementSteps, 13083 bool &UseOneConstNR, 13084 bool Reciprocal) const { 13085 EVT VT = Operand.getValueType(); 13086 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13087 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13088 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13089 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13090 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13091 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13092 13093 // The Newton-Raphson computation with a single constant does not provide 13094 // enough accuracy on some CPUs. 13095 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13096 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13097 } 13098 return SDValue(); 13099 } 13100 13101 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13102 int Enabled, 13103 int &RefinementSteps) const { 13104 EVT VT = Operand.getValueType(); 13105 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13106 (VT == MVT::f64 && Subtarget.hasFRE()) || 13107 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13108 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13109 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13110 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13111 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13112 } 13113 return SDValue(); 13114 } 13115 13116 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13117 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13118 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13119 // enabled for division), this functionality is redundant with the default 13120 // combiner logic (once the division -> reciprocal/multiply transformation 13121 // has taken place). As a result, this matters more for older cores than for 13122 // newer ones. 13123 13124 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13125 // reciprocal if there are two or more FDIVs (for embedded cores with only 13126 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13127 switch (Subtarget.getCPUDirective()) { 13128 default: 13129 return 3; 13130 case PPC::DIR_440: 13131 case PPC::DIR_A2: 13132 case PPC::DIR_E500: 13133 case PPC::DIR_E500mc: 13134 case PPC::DIR_E5500: 13135 return 2; 13136 } 13137 } 13138 13139 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13140 // collapsed, and so we need to look through chains of them. 13141 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13142 int64_t& Offset, SelectionDAG &DAG) { 13143 if (DAG.isBaseWithConstantOffset(Loc)) { 13144 Base = Loc.getOperand(0); 13145 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13146 13147 // The base might itself be a base plus an offset, and if so, accumulate 13148 // that as well. 13149 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13150 } 13151 } 13152 13153 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13154 unsigned Bytes, int Dist, 13155 SelectionDAG &DAG) { 13156 if (VT.getSizeInBits() / 8 != Bytes) 13157 return false; 13158 13159 SDValue BaseLoc = Base->getBasePtr(); 13160 if (Loc.getOpcode() == ISD::FrameIndex) { 13161 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13162 return false; 13163 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13164 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13165 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13166 int FS = MFI.getObjectSize(FI); 13167 int BFS = MFI.getObjectSize(BFI); 13168 if (FS != BFS || FS != (int)Bytes) return false; 13169 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13170 } 13171 13172 SDValue Base1 = Loc, Base2 = BaseLoc; 13173 int64_t Offset1 = 0, Offset2 = 0; 13174 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13175 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13176 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13177 return true; 13178 13179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13180 const GlobalValue *GV1 = nullptr; 13181 const GlobalValue *GV2 = nullptr; 13182 Offset1 = 0; 13183 Offset2 = 0; 13184 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13185 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13186 if (isGA1 && isGA2 && GV1 == GV2) 13187 return Offset1 == (Offset2 + Dist*Bytes); 13188 return false; 13189 } 13190 13191 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13192 // not enforce equality of the chain operands. 13193 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13194 unsigned Bytes, int Dist, 13195 SelectionDAG &DAG) { 13196 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13197 EVT VT = LS->getMemoryVT(); 13198 SDValue Loc = LS->getBasePtr(); 13199 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13200 } 13201 13202 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13203 EVT VT; 13204 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13205 default: return false; 13206 case Intrinsic::ppc_altivec_lvx: 13207 case Intrinsic::ppc_altivec_lvxl: 13208 case Intrinsic::ppc_vsx_lxvw4x: 13209 case Intrinsic::ppc_vsx_lxvw4x_be: 13210 VT = MVT::v4i32; 13211 break; 13212 case Intrinsic::ppc_vsx_lxvd2x: 13213 case Intrinsic::ppc_vsx_lxvd2x_be: 13214 VT = MVT::v2f64; 13215 break; 13216 case Intrinsic::ppc_altivec_lvebx: 13217 VT = MVT::i8; 13218 break; 13219 case Intrinsic::ppc_altivec_lvehx: 13220 VT = MVT::i16; 13221 break; 13222 case Intrinsic::ppc_altivec_lvewx: 13223 VT = MVT::i32; 13224 break; 13225 } 13226 13227 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13228 } 13229 13230 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13231 EVT VT; 13232 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13233 default: return false; 13234 case Intrinsic::ppc_altivec_stvx: 13235 case Intrinsic::ppc_altivec_stvxl: 13236 case Intrinsic::ppc_vsx_stxvw4x: 13237 VT = MVT::v4i32; 13238 break; 13239 case Intrinsic::ppc_vsx_stxvd2x: 13240 VT = MVT::v2f64; 13241 break; 13242 case Intrinsic::ppc_vsx_stxvw4x_be: 13243 VT = MVT::v4i32; 13244 break; 13245 case Intrinsic::ppc_vsx_stxvd2x_be: 13246 VT = MVT::v2f64; 13247 break; 13248 case Intrinsic::ppc_altivec_stvebx: 13249 VT = MVT::i8; 13250 break; 13251 case Intrinsic::ppc_altivec_stvehx: 13252 VT = MVT::i16; 13253 break; 13254 case Intrinsic::ppc_altivec_stvewx: 13255 VT = MVT::i32; 13256 break; 13257 } 13258 13259 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13260 } 13261 13262 return false; 13263 } 13264 13265 // Return true is there is a nearyby consecutive load to the one provided 13266 // (regardless of alignment). We search up and down the chain, looking though 13267 // token factors and other loads (but nothing else). As a result, a true result 13268 // indicates that it is safe to create a new consecutive load adjacent to the 13269 // load provided. 13270 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13271 SDValue Chain = LD->getChain(); 13272 EVT VT = LD->getMemoryVT(); 13273 13274 SmallSet<SDNode *, 16> LoadRoots; 13275 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13276 SmallSet<SDNode *, 16> Visited; 13277 13278 // First, search up the chain, branching to follow all token-factor operands. 13279 // If we find a consecutive load, then we're done, otherwise, record all 13280 // nodes just above the top-level loads and token factors. 13281 while (!Queue.empty()) { 13282 SDNode *ChainNext = Queue.pop_back_val(); 13283 if (!Visited.insert(ChainNext).second) 13284 continue; 13285 13286 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13287 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13288 return true; 13289 13290 if (!Visited.count(ChainLD->getChain().getNode())) 13291 Queue.push_back(ChainLD->getChain().getNode()); 13292 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13293 for (const SDUse &O : ChainNext->ops()) 13294 if (!Visited.count(O.getNode())) 13295 Queue.push_back(O.getNode()); 13296 } else 13297 LoadRoots.insert(ChainNext); 13298 } 13299 13300 // Second, search down the chain, starting from the top-level nodes recorded 13301 // in the first phase. These top-level nodes are the nodes just above all 13302 // loads and token factors. Starting with their uses, recursively look though 13303 // all loads (just the chain uses) and token factors to find a consecutive 13304 // load. 13305 Visited.clear(); 13306 Queue.clear(); 13307 13308 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13309 IE = LoadRoots.end(); I != IE; ++I) { 13310 Queue.push_back(*I); 13311 13312 while (!Queue.empty()) { 13313 SDNode *LoadRoot = Queue.pop_back_val(); 13314 if (!Visited.insert(LoadRoot).second) 13315 continue; 13316 13317 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13318 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13319 return true; 13320 13321 for (SDNode *U : LoadRoot->uses()) 13322 if (((isa<MemSDNode>(U) && 13323 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13324 U->getOpcode() == ISD::TokenFactor) && 13325 !Visited.count(U)) 13326 Queue.push_back(U); 13327 } 13328 } 13329 13330 return false; 13331 } 13332 13333 /// This function is called when we have proved that a SETCC node can be replaced 13334 /// by subtraction (and other supporting instructions) so that the result of 13335 /// comparison is kept in a GPR instead of CR. This function is purely for 13336 /// codegen purposes and has some flags to guide the codegen process. 13337 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13338 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13339 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13340 13341 // Zero extend the operands to the largest legal integer. Originally, they 13342 // must be of a strictly smaller size. 13343 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13344 DAG.getConstant(Size, DL, MVT::i32)); 13345 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13346 DAG.getConstant(Size, DL, MVT::i32)); 13347 13348 // Swap if needed. Depends on the condition code. 13349 if (Swap) 13350 std::swap(Op0, Op1); 13351 13352 // Subtract extended integers. 13353 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13354 13355 // Move the sign bit to the least significant position and zero out the rest. 13356 // Now the least significant bit carries the result of original comparison. 13357 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13358 DAG.getConstant(Size - 1, DL, MVT::i32)); 13359 auto Final = Shifted; 13360 13361 // Complement the result if needed. Based on the condition code. 13362 if (Complement) 13363 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13364 DAG.getConstant(1, DL, MVT::i64)); 13365 13366 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13367 } 13368 13369 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13370 DAGCombinerInfo &DCI) const { 13371 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13372 13373 SelectionDAG &DAG = DCI.DAG; 13374 SDLoc DL(N); 13375 13376 // Size of integers being compared has a critical role in the following 13377 // analysis, so we prefer to do this when all types are legal. 13378 if (!DCI.isAfterLegalizeDAG()) 13379 return SDValue(); 13380 13381 // If all users of SETCC extend its value to a legal integer type 13382 // then we replace SETCC with a subtraction 13383 for (const SDNode *U : N->uses()) 13384 if (U->getOpcode() != ISD::ZERO_EXTEND) 13385 return SDValue(); 13386 13387 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13388 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13389 13390 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13391 13392 if (OpSize < Size) { 13393 switch (CC) { 13394 default: break; 13395 case ISD::SETULT: 13396 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13397 case ISD::SETULE: 13398 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13399 case ISD::SETUGT: 13400 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13401 case ISD::SETUGE: 13402 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13403 } 13404 } 13405 13406 return SDValue(); 13407 } 13408 13409 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13410 DAGCombinerInfo &DCI) const { 13411 SelectionDAG &DAG = DCI.DAG; 13412 SDLoc dl(N); 13413 13414 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13415 // If we're tracking CR bits, we need to be careful that we don't have: 13416 // trunc(binary-ops(zext(x), zext(y))) 13417 // or 13418 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13419 // such that we're unnecessarily moving things into GPRs when it would be 13420 // better to keep them in CR bits. 13421 13422 // Note that trunc here can be an actual i1 trunc, or can be the effective 13423 // truncation that comes from a setcc or select_cc. 13424 if (N->getOpcode() == ISD::TRUNCATE && 13425 N->getValueType(0) != MVT::i1) 13426 return SDValue(); 13427 13428 if (N->getOperand(0).getValueType() != MVT::i32 && 13429 N->getOperand(0).getValueType() != MVT::i64) 13430 return SDValue(); 13431 13432 if (N->getOpcode() == ISD::SETCC || 13433 N->getOpcode() == ISD::SELECT_CC) { 13434 // If we're looking at a comparison, then we need to make sure that the 13435 // high bits (all except for the first) don't matter the result. 13436 ISD::CondCode CC = 13437 cast<CondCodeSDNode>(N->getOperand( 13438 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13439 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13440 13441 if (ISD::isSignedIntSetCC(CC)) { 13442 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13443 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13444 return SDValue(); 13445 } else if (ISD::isUnsignedIntSetCC(CC)) { 13446 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13447 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13448 !DAG.MaskedValueIsZero(N->getOperand(1), 13449 APInt::getHighBitsSet(OpBits, OpBits-1))) 13450 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13451 : SDValue()); 13452 } else { 13453 // This is neither a signed nor an unsigned comparison, just make sure 13454 // that the high bits are equal. 13455 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13456 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13457 13458 // We don't really care about what is known about the first bit (if 13459 // anything), so pretend that it is known zero for both to ensure they can 13460 // be compared as constants. 13461 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13462 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13463 13464 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13465 Op1Known.getConstant() != Op2Known.getConstant()) 13466 return SDValue(); 13467 } 13468 } 13469 13470 // We now know that the higher-order bits are irrelevant, we just need to 13471 // make sure that all of the intermediate operations are bit operations, and 13472 // all inputs are extensions. 13473 if (N->getOperand(0).getOpcode() != ISD::AND && 13474 N->getOperand(0).getOpcode() != ISD::OR && 13475 N->getOperand(0).getOpcode() != ISD::XOR && 13476 N->getOperand(0).getOpcode() != ISD::SELECT && 13477 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13478 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13479 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13480 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13481 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13482 return SDValue(); 13483 13484 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13485 N->getOperand(1).getOpcode() != ISD::AND && 13486 N->getOperand(1).getOpcode() != ISD::OR && 13487 N->getOperand(1).getOpcode() != ISD::XOR && 13488 N->getOperand(1).getOpcode() != ISD::SELECT && 13489 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13490 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13491 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13492 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13493 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13494 return SDValue(); 13495 13496 SmallVector<SDValue, 4> Inputs; 13497 SmallVector<SDValue, 8> BinOps, PromOps; 13498 SmallPtrSet<SDNode *, 16> Visited; 13499 13500 for (unsigned i = 0; i < 2; ++i) { 13501 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13502 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13503 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13504 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13505 isa<ConstantSDNode>(N->getOperand(i))) 13506 Inputs.push_back(N->getOperand(i)); 13507 else 13508 BinOps.push_back(N->getOperand(i)); 13509 13510 if (N->getOpcode() == ISD::TRUNCATE) 13511 break; 13512 } 13513 13514 // Visit all inputs, collect all binary operations (and, or, xor and 13515 // select) that are all fed by extensions. 13516 while (!BinOps.empty()) { 13517 SDValue BinOp = BinOps.pop_back_val(); 13518 13519 if (!Visited.insert(BinOp.getNode()).second) 13520 continue; 13521 13522 PromOps.push_back(BinOp); 13523 13524 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13525 // The condition of the select is not promoted. 13526 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13527 continue; 13528 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13529 continue; 13530 13531 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13532 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13533 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13534 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13535 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13536 Inputs.push_back(BinOp.getOperand(i)); 13537 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13538 BinOp.getOperand(i).getOpcode() == ISD::OR || 13539 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13540 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13541 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13542 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13543 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13544 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13545 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13546 BinOps.push_back(BinOp.getOperand(i)); 13547 } else { 13548 // We have an input that is not an extension or another binary 13549 // operation; we'll abort this transformation. 13550 return SDValue(); 13551 } 13552 } 13553 } 13554 13555 // Make sure that this is a self-contained cluster of operations (which 13556 // is not quite the same thing as saying that everything has only one 13557 // use). 13558 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13559 if (isa<ConstantSDNode>(Inputs[i])) 13560 continue; 13561 13562 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13563 if (User != N && !Visited.count(User)) 13564 return SDValue(); 13565 13566 // Make sure that we're not going to promote the non-output-value 13567 // operand(s) or SELECT or SELECT_CC. 13568 // FIXME: Although we could sometimes handle this, and it does occur in 13569 // practice that one of the condition inputs to the select is also one of 13570 // the outputs, we currently can't deal with this. 13571 if (User->getOpcode() == ISD::SELECT) { 13572 if (User->getOperand(0) == Inputs[i]) 13573 return SDValue(); 13574 } else if (User->getOpcode() == ISD::SELECT_CC) { 13575 if (User->getOperand(0) == Inputs[i] || 13576 User->getOperand(1) == Inputs[i]) 13577 return SDValue(); 13578 } 13579 } 13580 } 13581 13582 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13583 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13584 if (User != N && !Visited.count(User)) 13585 return SDValue(); 13586 13587 // Make sure that we're not going to promote the non-output-value 13588 // operand(s) or SELECT or SELECT_CC. 13589 // FIXME: Although we could sometimes handle this, and it does occur in 13590 // practice that one of the condition inputs to the select is also one of 13591 // the outputs, we currently can't deal with this. 13592 if (User->getOpcode() == ISD::SELECT) { 13593 if (User->getOperand(0) == PromOps[i]) 13594 return SDValue(); 13595 } else if (User->getOpcode() == ISD::SELECT_CC) { 13596 if (User->getOperand(0) == PromOps[i] || 13597 User->getOperand(1) == PromOps[i]) 13598 return SDValue(); 13599 } 13600 } 13601 } 13602 13603 // Replace all inputs with the extension operand. 13604 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13605 // Constants may have users outside the cluster of to-be-promoted nodes, 13606 // and so we need to replace those as we do the promotions. 13607 if (isa<ConstantSDNode>(Inputs[i])) 13608 continue; 13609 else 13610 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13611 } 13612 13613 std::list<HandleSDNode> PromOpHandles; 13614 for (auto &PromOp : PromOps) 13615 PromOpHandles.emplace_back(PromOp); 13616 13617 // Replace all operations (these are all the same, but have a different 13618 // (i1) return type). DAG.getNode will validate that the types of 13619 // a binary operator match, so go through the list in reverse so that 13620 // we've likely promoted both operands first. Any intermediate truncations or 13621 // extensions disappear. 13622 while (!PromOpHandles.empty()) { 13623 SDValue PromOp = PromOpHandles.back().getValue(); 13624 PromOpHandles.pop_back(); 13625 13626 if (PromOp.getOpcode() == ISD::TRUNCATE || 13627 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13628 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13629 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13630 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13631 PromOp.getOperand(0).getValueType() != MVT::i1) { 13632 // The operand is not yet ready (see comment below). 13633 PromOpHandles.emplace_front(PromOp); 13634 continue; 13635 } 13636 13637 SDValue RepValue = PromOp.getOperand(0); 13638 if (isa<ConstantSDNode>(RepValue)) 13639 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13640 13641 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13642 continue; 13643 } 13644 13645 unsigned C; 13646 switch (PromOp.getOpcode()) { 13647 default: C = 0; break; 13648 case ISD::SELECT: C = 1; break; 13649 case ISD::SELECT_CC: C = 2; break; 13650 } 13651 13652 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13653 PromOp.getOperand(C).getValueType() != MVT::i1) || 13654 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13655 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13656 // The to-be-promoted operands of this node have not yet been 13657 // promoted (this should be rare because we're going through the 13658 // list backward, but if one of the operands has several users in 13659 // this cluster of to-be-promoted nodes, it is possible). 13660 PromOpHandles.emplace_front(PromOp); 13661 continue; 13662 } 13663 13664 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13665 PromOp.getNode()->op_end()); 13666 13667 // If there are any constant inputs, make sure they're replaced now. 13668 for (unsigned i = 0; i < 2; ++i) 13669 if (isa<ConstantSDNode>(Ops[C+i])) 13670 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13671 13672 DAG.ReplaceAllUsesOfValueWith(PromOp, 13673 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13674 } 13675 13676 // Now we're left with the initial truncation itself. 13677 if (N->getOpcode() == ISD::TRUNCATE) 13678 return N->getOperand(0); 13679 13680 // Otherwise, this is a comparison. The operands to be compared have just 13681 // changed type (to i1), but everything else is the same. 13682 return SDValue(N, 0); 13683 } 13684 13685 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13686 DAGCombinerInfo &DCI) const { 13687 SelectionDAG &DAG = DCI.DAG; 13688 SDLoc dl(N); 13689 13690 // If we're tracking CR bits, we need to be careful that we don't have: 13691 // zext(binary-ops(trunc(x), trunc(y))) 13692 // or 13693 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13694 // such that we're unnecessarily moving things into CR bits that can more 13695 // efficiently stay in GPRs. Note that if we're not certain that the high 13696 // bits are set as required by the final extension, we still may need to do 13697 // some masking to get the proper behavior. 13698 13699 // This same functionality is important on PPC64 when dealing with 13700 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13701 // the return values of functions. Because it is so similar, it is handled 13702 // here as well. 13703 13704 if (N->getValueType(0) != MVT::i32 && 13705 N->getValueType(0) != MVT::i64) 13706 return SDValue(); 13707 13708 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13709 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13710 return SDValue(); 13711 13712 if (N->getOperand(0).getOpcode() != ISD::AND && 13713 N->getOperand(0).getOpcode() != ISD::OR && 13714 N->getOperand(0).getOpcode() != ISD::XOR && 13715 N->getOperand(0).getOpcode() != ISD::SELECT && 13716 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13717 return SDValue(); 13718 13719 SmallVector<SDValue, 4> Inputs; 13720 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13721 SmallPtrSet<SDNode *, 16> Visited; 13722 13723 // Visit all inputs, collect all binary operations (and, or, xor and 13724 // select) that are all fed by truncations. 13725 while (!BinOps.empty()) { 13726 SDValue BinOp = BinOps.pop_back_val(); 13727 13728 if (!Visited.insert(BinOp.getNode()).second) 13729 continue; 13730 13731 PromOps.push_back(BinOp); 13732 13733 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13734 // The condition of the select is not promoted. 13735 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13736 continue; 13737 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13738 continue; 13739 13740 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13741 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13742 Inputs.push_back(BinOp.getOperand(i)); 13743 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13744 BinOp.getOperand(i).getOpcode() == ISD::OR || 13745 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13746 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13747 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13748 BinOps.push_back(BinOp.getOperand(i)); 13749 } else { 13750 // We have an input that is not a truncation or another binary 13751 // operation; we'll abort this transformation. 13752 return SDValue(); 13753 } 13754 } 13755 } 13756 13757 // The operands of a select that must be truncated when the select is 13758 // promoted because the operand is actually part of the to-be-promoted set. 13759 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13760 13761 // Make sure that this is a self-contained cluster of operations (which 13762 // is not quite the same thing as saying that everything has only one 13763 // use). 13764 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13765 if (isa<ConstantSDNode>(Inputs[i])) 13766 continue; 13767 13768 for (SDNode *User : Inputs[i].getNode()->uses()) { 13769 if (User != N && !Visited.count(User)) 13770 return SDValue(); 13771 13772 // If we're going to promote the non-output-value operand(s) or SELECT or 13773 // SELECT_CC, record them for truncation. 13774 if (User->getOpcode() == ISD::SELECT) { 13775 if (User->getOperand(0) == Inputs[i]) 13776 SelectTruncOp[0].insert(std::make_pair(User, 13777 User->getOperand(0).getValueType())); 13778 } else if (User->getOpcode() == ISD::SELECT_CC) { 13779 if (User->getOperand(0) == Inputs[i]) 13780 SelectTruncOp[0].insert(std::make_pair(User, 13781 User->getOperand(0).getValueType())); 13782 if (User->getOperand(1) == Inputs[i]) 13783 SelectTruncOp[1].insert(std::make_pair(User, 13784 User->getOperand(1).getValueType())); 13785 } 13786 } 13787 } 13788 13789 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13790 for (SDNode *User : PromOps[i].getNode()->uses()) { 13791 if (User != N && !Visited.count(User)) 13792 return SDValue(); 13793 13794 // If we're going to promote the non-output-value operand(s) or SELECT or 13795 // SELECT_CC, record them for truncation. 13796 if (User->getOpcode() == ISD::SELECT) { 13797 if (User->getOperand(0) == PromOps[i]) 13798 SelectTruncOp[0].insert(std::make_pair(User, 13799 User->getOperand(0).getValueType())); 13800 } else if (User->getOpcode() == ISD::SELECT_CC) { 13801 if (User->getOperand(0) == PromOps[i]) 13802 SelectTruncOp[0].insert(std::make_pair(User, 13803 User->getOperand(0).getValueType())); 13804 if (User->getOperand(1) == PromOps[i]) 13805 SelectTruncOp[1].insert(std::make_pair(User, 13806 User->getOperand(1).getValueType())); 13807 } 13808 } 13809 } 13810 13811 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13812 bool ReallyNeedsExt = false; 13813 if (N->getOpcode() != ISD::ANY_EXTEND) { 13814 // If all of the inputs are not already sign/zero extended, then 13815 // we'll still need to do that at the end. 13816 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13817 if (isa<ConstantSDNode>(Inputs[i])) 13818 continue; 13819 13820 unsigned OpBits = 13821 Inputs[i].getOperand(0).getValueSizeInBits(); 13822 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13823 13824 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13825 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13826 APInt::getHighBitsSet(OpBits, 13827 OpBits-PromBits))) || 13828 (N->getOpcode() == ISD::SIGN_EXTEND && 13829 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13830 (OpBits-(PromBits-1)))) { 13831 ReallyNeedsExt = true; 13832 break; 13833 } 13834 } 13835 } 13836 13837 // Replace all inputs, either with the truncation operand, or a 13838 // truncation or extension to the final output type. 13839 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13840 // Constant inputs need to be replaced with the to-be-promoted nodes that 13841 // use them because they might have users outside of the cluster of 13842 // promoted nodes. 13843 if (isa<ConstantSDNode>(Inputs[i])) 13844 continue; 13845 13846 SDValue InSrc = Inputs[i].getOperand(0); 13847 if (Inputs[i].getValueType() == N->getValueType(0)) 13848 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13849 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13850 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13851 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13852 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13853 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13854 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13855 else 13856 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13857 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13858 } 13859 13860 std::list<HandleSDNode> PromOpHandles; 13861 for (auto &PromOp : PromOps) 13862 PromOpHandles.emplace_back(PromOp); 13863 13864 // Replace all operations (these are all the same, but have a different 13865 // (promoted) return type). DAG.getNode will validate that the types of 13866 // a binary operator match, so go through the list in reverse so that 13867 // we've likely promoted both operands first. 13868 while (!PromOpHandles.empty()) { 13869 SDValue PromOp = PromOpHandles.back().getValue(); 13870 PromOpHandles.pop_back(); 13871 13872 unsigned C; 13873 switch (PromOp.getOpcode()) { 13874 default: C = 0; break; 13875 case ISD::SELECT: C = 1; break; 13876 case ISD::SELECT_CC: C = 2; break; 13877 } 13878 13879 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13880 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13881 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13882 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13883 // The to-be-promoted operands of this node have not yet been 13884 // promoted (this should be rare because we're going through the 13885 // list backward, but if one of the operands has several users in 13886 // this cluster of to-be-promoted nodes, it is possible). 13887 PromOpHandles.emplace_front(PromOp); 13888 continue; 13889 } 13890 13891 // For SELECT and SELECT_CC nodes, we do a similar check for any 13892 // to-be-promoted comparison inputs. 13893 if (PromOp.getOpcode() == ISD::SELECT || 13894 PromOp.getOpcode() == ISD::SELECT_CC) { 13895 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13896 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13897 (SelectTruncOp[1].count(PromOp.getNode()) && 13898 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13899 PromOpHandles.emplace_front(PromOp); 13900 continue; 13901 } 13902 } 13903 13904 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13905 PromOp.getNode()->op_end()); 13906 13907 // If this node has constant inputs, then they'll need to be promoted here. 13908 for (unsigned i = 0; i < 2; ++i) { 13909 if (!isa<ConstantSDNode>(Ops[C+i])) 13910 continue; 13911 if (Ops[C+i].getValueType() == N->getValueType(0)) 13912 continue; 13913 13914 if (N->getOpcode() == ISD::SIGN_EXTEND) 13915 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13916 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13917 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13918 else 13919 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13920 } 13921 13922 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13923 // truncate them again to the original value type. 13924 if (PromOp.getOpcode() == ISD::SELECT || 13925 PromOp.getOpcode() == ISD::SELECT_CC) { 13926 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13927 if (SI0 != SelectTruncOp[0].end()) 13928 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13929 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13930 if (SI1 != SelectTruncOp[1].end()) 13931 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13932 } 13933 13934 DAG.ReplaceAllUsesOfValueWith(PromOp, 13935 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13936 } 13937 13938 // Now we're left with the initial extension itself. 13939 if (!ReallyNeedsExt) 13940 return N->getOperand(0); 13941 13942 // To zero extend, just mask off everything except for the first bit (in the 13943 // i1 case). 13944 if (N->getOpcode() == ISD::ZERO_EXTEND) 13945 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13946 DAG.getConstant(APInt::getLowBitsSet( 13947 N->getValueSizeInBits(0), PromBits), 13948 dl, N->getValueType(0))); 13949 13950 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13951 "Invalid extension type"); 13952 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13953 SDValue ShiftCst = 13954 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13955 return DAG.getNode( 13956 ISD::SRA, dl, N->getValueType(0), 13957 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13958 ShiftCst); 13959 } 13960 13961 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13962 DAGCombinerInfo &DCI) const { 13963 assert(N->getOpcode() == ISD::SETCC && 13964 "Should be called with a SETCC node"); 13965 13966 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13967 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13968 SDValue LHS = N->getOperand(0); 13969 SDValue RHS = N->getOperand(1); 13970 13971 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13972 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13973 LHS.hasOneUse()) 13974 std::swap(LHS, RHS); 13975 13976 // x == 0-y --> x+y == 0 13977 // x != 0-y --> x+y != 0 13978 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13979 RHS.hasOneUse()) { 13980 SDLoc DL(N); 13981 SelectionDAG &DAG = DCI.DAG; 13982 EVT VT = N->getValueType(0); 13983 EVT OpVT = LHS.getValueType(); 13984 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13985 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13986 } 13987 } 13988 13989 return DAGCombineTruncBoolExt(N, DCI); 13990 } 13991 13992 // Is this an extending load from an f32 to an f64? 13993 static bool isFPExtLoad(SDValue Op) { 13994 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13995 return LD->getExtensionType() == ISD::EXTLOAD && 13996 Op.getValueType() == MVT::f64; 13997 return false; 13998 } 13999 14000 /// Reduces the number of fp-to-int conversion when building a vector. 14001 /// 14002 /// If this vector is built out of floating to integer conversions, 14003 /// transform it to a vector built out of floating point values followed by a 14004 /// single floating to integer conversion of the vector. 14005 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 14006 /// becomes (fptosi (build_vector ($A, $B, ...))) 14007 SDValue PPCTargetLowering:: 14008 combineElementTruncationToVectorTruncation(SDNode *N, 14009 DAGCombinerInfo &DCI) const { 14010 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14011 "Should be called with a BUILD_VECTOR node"); 14012 14013 SelectionDAG &DAG = DCI.DAG; 14014 SDLoc dl(N); 14015 14016 SDValue FirstInput = N->getOperand(0); 14017 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 14018 "The input operand must be an fp-to-int conversion."); 14019 14020 // This combine happens after legalization so the fp_to_[su]i nodes are 14021 // already converted to PPCSISD nodes. 14022 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 14023 if (FirstConversion == PPCISD::FCTIDZ || 14024 FirstConversion == PPCISD::FCTIDUZ || 14025 FirstConversion == PPCISD::FCTIWZ || 14026 FirstConversion == PPCISD::FCTIWUZ) { 14027 bool IsSplat = true; 14028 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 14029 FirstConversion == PPCISD::FCTIWUZ; 14030 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 14031 SmallVector<SDValue, 4> Ops; 14032 EVT TargetVT = N->getValueType(0); 14033 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14034 SDValue NextOp = N->getOperand(i); 14035 if (NextOp.getOpcode() != PPCISD::MFVSR) 14036 return SDValue(); 14037 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14038 if (NextConversion != FirstConversion) 14039 return SDValue(); 14040 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14041 // This is not valid if the input was originally double precision. It is 14042 // also not profitable to do unless this is an extending load in which 14043 // case doing this combine will allow us to combine consecutive loads. 14044 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14045 return SDValue(); 14046 if (N->getOperand(i) != FirstInput) 14047 IsSplat = false; 14048 } 14049 14050 // If this is a splat, we leave it as-is since there will be only a single 14051 // fp-to-int conversion followed by a splat of the integer. This is better 14052 // for 32-bit and smaller ints and neutral for 64-bit ints. 14053 if (IsSplat) 14054 return SDValue(); 14055 14056 // Now that we know we have the right type of node, get its operands 14057 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14058 SDValue In = N->getOperand(i).getOperand(0); 14059 if (Is32Bit) { 14060 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14061 // here, we know that all inputs are extending loads so this is safe). 14062 if (In.isUndef()) 14063 Ops.push_back(DAG.getUNDEF(SrcVT)); 14064 else { 14065 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 14066 MVT::f32, In.getOperand(0), 14067 DAG.getIntPtrConstant(1, dl)); 14068 Ops.push_back(Trunc); 14069 } 14070 } else 14071 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14072 } 14073 14074 unsigned Opcode; 14075 if (FirstConversion == PPCISD::FCTIDZ || 14076 FirstConversion == PPCISD::FCTIWZ) 14077 Opcode = ISD::FP_TO_SINT; 14078 else 14079 Opcode = ISD::FP_TO_UINT; 14080 14081 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14082 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14083 return DAG.getNode(Opcode, dl, TargetVT, BV); 14084 } 14085 return SDValue(); 14086 } 14087 14088 /// Reduce the number of loads when building a vector. 14089 /// 14090 /// Building a vector out of multiple loads can be converted to a load 14091 /// of the vector type if the loads are consecutive. If the loads are 14092 /// consecutive but in descending order, a shuffle is added at the end 14093 /// to reorder the vector. 14094 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14095 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14096 "Should be called with a BUILD_VECTOR node"); 14097 14098 SDLoc dl(N); 14099 14100 // Return early for non byte-sized type, as they can't be consecutive. 14101 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14102 return SDValue(); 14103 14104 bool InputsAreConsecutiveLoads = true; 14105 bool InputsAreReverseConsecutive = true; 14106 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14107 SDValue FirstInput = N->getOperand(0); 14108 bool IsRoundOfExtLoad = false; 14109 14110 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14111 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14112 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14113 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14114 } 14115 // Not a build vector of (possibly fp_rounded) loads. 14116 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14117 N->getNumOperands() == 1) 14118 return SDValue(); 14119 14120 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14121 // If any inputs are fp_round(extload), they all must be. 14122 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14123 return SDValue(); 14124 14125 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14126 N->getOperand(i); 14127 if (NextInput.getOpcode() != ISD::LOAD) 14128 return SDValue(); 14129 14130 SDValue PreviousInput = 14131 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14132 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14133 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14134 14135 // If any inputs are fp_round(extload), they all must be. 14136 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14137 return SDValue(); 14138 14139 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14140 InputsAreConsecutiveLoads = false; 14141 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14142 InputsAreReverseConsecutive = false; 14143 14144 // Exit early if the loads are neither consecutive nor reverse consecutive. 14145 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14146 return SDValue(); 14147 } 14148 14149 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14150 "The loads cannot be both consecutive and reverse consecutive."); 14151 14152 SDValue FirstLoadOp = 14153 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14154 SDValue LastLoadOp = 14155 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14156 N->getOperand(N->getNumOperands()-1); 14157 14158 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14159 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14160 if (InputsAreConsecutiveLoads) { 14161 assert(LD1 && "Input needs to be a LoadSDNode."); 14162 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14163 LD1->getBasePtr(), LD1->getPointerInfo(), 14164 LD1->getAlignment()); 14165 } 14166 if (InputsAreReverseConsecutive) { 14167 assert(LDL && "Input needs to be a LoadSDNode."); 14168 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14169 LDL->getBasePtr(), LDL->getPointerInfo(), 14170 LDL->getAlignment()); 14171 SmallVector<int, 16> Ops; 14172 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14173 Ops.push_back(i); 14174 14175 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14176 DAG.getUNDEF(N->getValueType(0)), Ops); 14177 } 14178 return SDValue(); 14179 } 14180 14181 // This function adds the required vector_shuffle needed to get 14182 // the elements of the vector extract in the correct position 14183 // as specified by the CorrectElems encoding. 14184 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14185 SDValue Input, uint64_t Elems, 14186 uint64_t CorrectElems) { 14187 SDLoc dl(N); 14188 14189 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14190 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14191 14192 // Knowing the element indices being extracted from the original 14193 // vector and the order in which they're being inserted, just put 14194 // them at element indices required for the instruction. 14195 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14196 if (DAG.getDataLayout().isLittleEndian()) 14197 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14198 else 14199 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14200 CorrectElems = CorrectElems >> 8; 14201 Elems = Elems >> 8; 14202 } 14203 14204 SDValue Shuffle = 14205 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14206 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14207 14208 EVT VT = N->getValueType(0); 14209 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14210 14211 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14212 Input.getValueType().getVectorElementType(), 14213 VT.getVectorNumElements()); 14214 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14215 DAG.getValueType(ExtVT)); 14216 } 14217 14218 // Look for build vector patterns where input operands come from sign 14219 // extended vector_extract elements of specific indices. If the correct indices 14220 // aren't used, add a vector shuffle to fix up the indices and create 14221 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14222 // during instruction selection. 14223 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14224 // This array encodes the indices that the vector sign extend instructions 14225 // extract from when extending from one type to another for both BE and LE. 14226 // The right nibble of each byte corresponds to the LE incides. 14227 // and the left nibble of each byte corresponds to the BE incides. 14228 // For example: 0x3074B8FC byte->word 14229 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14230 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14231 // For example: 0x000070F8 byte->double word 14232 // For LE: the allowed indices are: 0x0,0x8 14233 // For BE: the allowed indices are: 0x7,0xF 14234 uint64_t TargetElems[] = { 14235 0x3074B8FC, // b->w 14236 0x000070F8, // b->d 14237 0x10325476, // h->w 14238 0x00003074, // h->d 14239 0x00001032, // w->d 14240 }; 14241 14242 uint64_t Elems = 0; 14243 int Index; 14244 SDValue Input; 14245 14246 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14247 if (!Op) 14248 return false; 14249 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14250 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14251 return false; 14252 14253 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14254 // of the right width. 14255 SDValue Extract = Op.getOperand(0); 14256 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14257 Extract = Extract.getOperand(0); 14258 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14259 return false; 14260 14261 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14262 if (!ExtOp) 14263 return false; 14264 14265 Index = ExtOp->getZExtValue(); 14266 if (Input && Input != Extract.getOperand(0)) 14267 return false; 14268 14269 if (!Input) 14270 Input = Extract.getOperand(0); 14271 14272 Elems = Elems << 8; 14273 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14274 Elems |= Index; 14275 14276 return true; 14277 }; 14278 14279 // If the build vector operands aren't sign extended vector extracts, 14280 // of the same input vector, then return. 14281 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14282 if (!isSExtOfVecExtract(N->getOperand(i))) { 14283 return SDValue(); 14284 } 14285 } 14286 14287 // If the vector extract indicies are not correct, add the appropriate 14288 // vector_shuffle. 14289 int TgtElemArrayIdx; 14290 int InputSize = Input.getValueType().getScalarSizeInBits(); 14291 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14292 if (InputSize + OutputSize == 40) 14293 TgtElemArrayIdx = 0; 14294 else if (InputSize + OutputSize == 72) 14295 TgtElemArrayIdx = 1; 14296 else if (InputSize + OutputSize == 48) 14297 TgtElemArrayIdx = 2; 14298 else if (InputSize + OutputSize == 80) 14299 TgtElemArrayIdx = 3; 14300 else if (InputSize + OutputSize == 96) 14301 TgtElemArrayIdx = 4; 14302 else 14303 return SDValue(); 14304 14305 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14306 CorrectElems = DAG.getDataLayout().isLittleEndian() 14307 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14308 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14309 if (Elems != CorrectElems) { 14310 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14311 } 14312 14313 // Regular lowering will catch cases where a shuffle is not needed. 14314 return SDValue(); 14315 } 14316 14317 // Look for the pattern of a load from a narrow width to i128, feeding 14318 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14319 // (LXVRZX). This node represents a zero extending load that will be matched 14320 // to the Load VSX Vector Rightmost instructions. 14321 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14322 SDLoc DL(N); 14323 14324 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14325 if (N->getValueType(0) != MVT::v1i128) 14326 return SDValue(); 14327 14328 SDValue Operand = N->getOperand(0); 14329 // Proceed with the transformation if the operand to the BUILD_VECTOR 14330 // is a load instruction. 14331 if (Operand.getOpcode() != ISD::LOAD) 14332 return SDValue(); 14333 14334 auto *LD = cast<LoadSDNode>(Operand); 14335 EVT MemoryType = LD->getMemoryVT(); 14336 14337 // This transformation is only valid if the we are loading either a byte, 14338 // halfword, word, or doubleword. 14339 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14340 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14341 14342 // Ensure that the load from the narrow width is being zero extended to i128. 14343 if (!ValidLDType || 14344 (LD->getExtensionType() != ISD::ZEXTLOAD && 14345 LD->getExtensionType() != ISD::EXTLOAD)) 14346 return SDValue(); 14347 14348 SDValue LoadOps[] = { 14349 LD->getChain(), LD->getBasePtr(), 14350 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14351 14352 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14353 DAG.getVTList(MVT::v1i128, MVT::Other), 14354 LoadOps, MemoryType, LD->getMemOperand()); 14355 } 14356 14357 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14358 DAGCombinerInfo &DCI) const { 14359 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14360 "Should be called with a BUILD_VECTOR node"); 14361 14362 SelectionDAG &DAG = DCI.DAG; 14363 SDLoc dl(N); 14364 14365 if (!Subtarget.hasVSX()) 14366 return SDValue(); 14367 14368 // The target independent DAG combiner will leave a build_vector of 14369 // float-to-int conversions intact. We can generate MUCH better code for 14370 // a float-to-int conversion of a vector of floats. 14371 SDValue FirstInput = N->getOperand(0); 14372 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14373 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14374 if (Reduced) 14375 return Reduced; 14376 } 14377 14378 // If we're building a vector out of consecutive loads, just load that 14379 // vector type. 14380 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14381 if (Reduced) 14382 return Reduced; 14383 14384 // If we're building a vector out of extended elements from another vector 14385 // we have P9 vector integer extend instructions. The code assumes legal 14386 // input types (i.e. it can't handle things like v4i16) so do not run before 14387 // legalization. 14388 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14389 Reduced = combineBVOfVecSExt(N, DAG); 14390 if (Reduced) 14391 return Reduced; 14392 } 14393 14394 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14395 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14396 // is a load from <valid narrow width> to i128. 14397 if (Subtarget.isISA3_1()) { 14398 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14399 if (BVOfZLoad) 14400 return BVOfZLoad; 14401 } 14402 14403 if (N->getValueType(0) != MVT::v2f64) 14404 return SDValue(); 14405 14406 // Looking for: 14407 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14408 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14409 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14410 return SDValue(); 14411 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14412 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14413 return SDValue(); 14414 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14415 return SDValue(); 14416 14417 SDValue Ext1 = FirstInput.getOperand(0); 14418 SDValue Ext2 = N->getOperand(1).getOperand(0); 14419 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14420 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14421 return SDValue(); 14422 14423 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14424 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14425 if (!Ext1Op || !Ext2Op) 14426 return SDValue(); 14427 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14428 Ext1.getOperand(0) != Ext2.getOperand(0)) 14429 return SDValue(); 14430 14431 int FirstElem = Ext1Op->getZExtValue(); 14432 int SecondElem = Ext2Op->getZExtValue(); 14433 int SubvecIdx; 14434 if (FirstElem == 0 && SecondElem == 1) 14435 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14436 else if (FirstElem == 2 && SecondElem == 3) 14437 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14438 else 14439 return SDValue(); 14440 14441 SDValue SrcVec = Ext1.getOperand(0); 14442 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14443 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14444 return DAG.getNode(NodeType, dl, MVT::v2f64, 14445 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14446 } 14447 14448 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14449 DAGCombinerInfo &DCI) const { 14450 assert((N->getOpcode() == ISD::SINT_TO_FP || 14451 N->getOpcode() == ISD::UINT_TO_FP) && 14452 "Need an int -> FP conversion node here"); 14453 14454 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14455 return SDValue(); 14456 14457 SelectionDAG &DAG = DCI.DAG; 14458 SDLoc dl(N); 14459 SDValue Op(N, 0); 14460 14461 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14462 // from the hardware. 14463 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14464 return SDValue(); 14465 if (!Op.getOperand(0).getValueType().isSimple()) 14466 return SDValue(); 14467 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14468 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14469 return SDValue(); 14470 14471 SDValue FirstOperand(Op.getOperand(0)); 14472 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14473 (FirstOperand.getValueType() == MVT::i8 || 14474 FirstOperand.getValueType() == MVT::i16); 14475 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14476 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14477 bool DstDouble = Op.getValueType() == MVT::f64; 14478 unsigned ConvOp = Signed ? 14479 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14480 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14481 SDValue WidthConst = 14482 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14483 dl, false); 14484 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14485 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14486 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14487 DAG.getVTList(MVT::f64, MVT::Other), 14488 Ops, MVT::i8, LDN->getMemOperand()); 14489 14490 // For signed conversion, we need to sign-extend the value in the VSR 14491 if (Signed) { 14492 SDValue ExtOps[] = { Ld, WidthConst }; 14493 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14494 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14495 } else 14496 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14497 } 14498 14499 14500 // For i32 intermediate values, unfortunately, the conversion functions 14501 // leave the upper 32 bits of the value are undefined. Within the set of 14502 // scalar instructions, we have no method for zero- or sign-extending the 14503 // value. Thus, we cannot handle i32 intermediate values here. 14504 if (Op.getOperand(0).getValueType() == MVT::i32) 14505 return SDValue(); 14506 14507 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14508 "UINT_TO_FP is supported only with FPCVT"); 14509 14510 // If we have FCFIDS, then use it when converting to single-precision. 14511 // Otherwise, convert to double-precision and then round. 14512 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14513 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14514 : PPCISD::FCFIDS) 14515 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14516 : PPCISD::FCFID); 14517 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14518 ? MVT::f32 14519 : MVT::f64; 14520 14521 // If we're converting from a float, to an int, and back to a float again, 14522 // then we don't need the store/load pair at all. 14523 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14524 Subtarget.hasFPCVT()) || 14525 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14526 SDValue Src = Op.getOperand(0).getOperand(0); 14527 if (Src.getValueType() == MVT::f32) { 14528 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14529 DCI.AddToWorklist(Src.getNode()); 14530 } else if (Src.getValueType() != MVT::f64) { 14531 // Make sure that we don't pick up a ppc_fp128 source value. 14532 return SDValue(); 14533 } 14534 14535 unsigned FCTOp = 14536 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14537 PPCISD::FCTIDUZ; 14538 14539 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14540 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14541 14542 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14543 FP = DAG.getNode(ISD::FP_ROUND, dl, 14544 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14545 DCI.AddToWorklist(FP.getNode()); 14546 } 14547 14548 return FP; 14549 } 14550 14551 return SDValue(); 14552 } 14553 14554 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14555 // builtins) into loads with swaps. 14556 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14557 DAGCombinerInfo &DCI) const { 14558 SelectionDAG &DAG = DCI.DAG; 14559 SDLoc dl(N); 14560 SDValue Chain; 14561 SDValue Base; 14562 MachineMemOperand *MMO; 14563 14564 switch (N->getOpcode()) { 14565 default: 14566 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14567 case ISD::LOAD: { 14568 LoadSDNode *LD = cast<LoadSDNode>(N); 14569 Chain = LD->getChain(); 14570 Base = LD->getBasePtr(); 14571 MMO = LD->getMemOperand(); 14572 // If the MMO suggests this isn't a load of a full vector, leave 14573 // things alone. For a built-in, we have to make the change for 14574 // correctness, so if there is a size problem that will be a bug. 14575 if (MMO->getSize() < 16) 14576 return SDValue(); 14577 break; 14578 } 14579 case ISD::INTRINSIC_W_CHAIN: { 14580 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14581 Chain = Intrin->getChain(); 14582 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14583 // us what we want. Get operand 2 instead. 14584 Base = Intrin->getOperand(2); 14585 MMO = Intrin->getMemOperand(); 14586 break; 14587 } 14588 } 14589 14590 MVT VecTy = N->getValueType(0).getSimpleVT(); 14591 14592 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14593 // aligned and the type is a vector with elements up to 4 bytes 14594 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14595 VecTy.getScalarSizeInBits() <= 32) { 14596 return SDValue(); 14597 } 14598 14599 SDValue LoadOps[] = { Chain, Base }; 14600 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14601 DAG.getVTList(MVT::v2f64, MVT::Other), 14602 LoadOps, MVT::v2f64, MMO); 14603 14604 DCI.AddToWorklist(Load.getNode()); 14605 Chain = Load.getValue(1); 14606 SDValue Swap = DAG.getNode( 14607 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14608 DCI.AddToWorklist(Swap.getNode()); 14609 14610 // Add a bitcast if the resulting load type doesn't match v2f64. 14611 if (VecTy != MVT::v2f64) { 14612 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14613 DCI.AddToWorklist(N.getNode()); 14614 // Package {bitcast value, swap's chain} to match Load's shape. 14615 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14616 N, Swap.getValue(1)); 14617 } 14618 14619 return Swap; 14620 } 14621 14622 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14623 // builtins) into stores with swaps. 14624 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14625 DAGCombinerInfo &DCI) const { 14626 SelectionDAG &DAG = DCI.DAG; 14627 SDLoc dl(N); 14628 SDValue Chain; 14629 SDValue Base; 14630 unsigned SrcOpnd; 14631 MachineMemOperand *MMO; 14632 14633 switch (N->getOpcode()) { 14634 default: 14635 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14636 case ISD::STORE: { 14637 StoreSDNode *ST = cast<StoreSDNode>(N); 14638 Chain = ST->getChain(); 14639 Base = ST->getBasePtr(); 14640 MMO = ST->getMemOperand(); 14641 SrcOpnd = 1; 14642 // If the MMO suggests this isn't a store of a full vector, leave 14643 // things alone. For a built-in, we have to make the change for 14644 // correctness, so if there is a size problem that will be a bug. 14645 if (MMO->getSize() < 16) 14646 return SDValue(); 14647 break; 14648 } 14649 case ISD::INTRINSIC_VOID: { 14650 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14651 Chain = Intrin->getChain(); 14652 // Intrin->getBasePtr() oddly does not get what we want. 14653 Base = Intrin->getOperand(3); 14654 MMO = Intrin->getMemOperand(); 14655 SrcOpnd = 2; 14656 break; 14657 } 14658 } 14659 14660 SDValue Src = N->getOperand(SrcOpnd); 14661 MVT VecTy = Src.getValueType().getSimpleVT(); 14662 14663 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14664 // aligned and the type is a vector with elements up to 4 bytes 14665 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14666 VecTy.getScalarSizeInBits() <= 32) { 14667 return SDValue(); 14668 } 14669 14670 // All stores are done as v2f64 and possible bit cast. 14671 if (VecTy != MVT::v2f64) { 14672 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14673 DCI.AddToWorklist(Src.getNode()); 14674 } 14675 14676 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14677 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14678 DCI.AddToWorklist(Swap.getNode()); 14679 Chain = Swap.getValue(1); 14680 SDValue StoreOps[] = { Chain, Swap, Base }; 14681 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14682 DAG.getVTList(MVT::Other), 14683 StoreOps, VecTy, MMO); 14684 DCI.AddToWorklist(Store.getNode()); 14685 return Store; 14686 } 14687 14688 // Handle DAG combine for STORE (FP_TO_INT F). 14689 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14690 DAGCombinerInfo &DCI) const { 14691 14692 SelectionDAG &DAG = DCI.DAG; 14693 SDLoc dl(N); 14694 unsigned Opcode = N->getOperand(1).getOpcode(); 14695 14696 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14697 && "Not a FP_TO_INT Instruction!"); 14698 14699 SDValue Val = N->getOperand(1).getOperand(0); 14700 EVT Op1VT = N->getOperand(1).getValueType(); 14701 EVT ResVT = Val.getValueType(); 14702 14703 if (!isTypeLegal(ResVT)) 14704 return SDValue(); 14705 14706 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14707 bool ValidTypeForStoreFltAsInt = 14708 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14709 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14710 14711 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14712 return SDValue(); 14713 14714 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14715 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14716 return SDValue(); 14717 14718 // Extend f32 values to f64 14719 if (ResVT.getScalarSizeInBits() == 32) { 14720 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14721 DCI.AddToWorklist(Val.getNode()); 14722 } 14723 14724 // Set signed or unsigned conversion opcode. 14725 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14726 PPCISD::FP_TO_SINT_IN_VSR : 14727 PPCISD::FP_TO_UINT_IN_VSR; 14728 14729 Val = DAG.getNode(ConvOpcode, 14730 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14731 DCI.AddToWorklist(Val.getNode()); 14732 14733 // Set number of bytes being converted. 14734 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14735 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14736 DAG.getIntPtrConstant(ByteSize, dl, false), 14737 DAG.getValueType(Op1VT) }; 14738 14739 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14740 DAG.getVTList(MVT::Other), Ops, 14741 cast<StoreSDNode>(N)->getMemoryVT(), 14742 cast<StoreSDNode>(N)->getMemOperand()); 14743 14744 DCI.AddToWorklist(Val.getNode()); 14745 return Val; 14746 } 14747 14748 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14749 // Check that the source of the element keeps flipping 14750 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14751 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14752 for (int i = 1, e = Mask.size(); i < e; i++) { 14753 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14754 return false; 14755 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14756 return false; 14757 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14758 } 14759 return true; 14760 } 14761 14762 static bool isSplatBV(SDValue Op) { 14763 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14764 return false; 14765 SDValue FirstOp; 14766 14767 // Find first non-undef input. 14768 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14769 FirstOp = Op.getOperand(i); 14770 if (!FirstOp.isUndef()) 14771 break; 14772 } 14773 14774 // All inputs are undef or the same as the first non-undef input. 14775 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14776 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14777 return false; 14778 return true; 14779 } 14780 14781 static SDValue isScalarToVec(SDValue Op) { 14782 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14783 return Op; 14784 if (Op.getOpcode() != ISD::BITCAST) 14785 return SDValue(); 14786 Op = Op.getOperand(0); 14787 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14788 return Op; 14789 return SDValue(); 14790 } 14791 14792 // Fix up the shuffle mask to account for the fact that the result of 14793 // scalar_to_vector is not in lane zero. This just takes all values in 14794 // the ranges specified by the min/max indices and adds the number of 14795 // elements required to ensure each element comes from the respective 14796 // position in the valid lane. 14797 // On little endian, that's just the corresponding element in the other 14798 // half of the vector. On big endian, it is in the same half but right 14799 // justified rather than left justified in that half. 14800 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14801 int LHSMaxIdx, int RHSMinIdx, 14802 int RHSMaxIdx, int HalfVec, 14803 unsigned ValidLaneWidth, 14804 const PPCSubtarget &Subtarget) { 14805 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14806 int Idx = ShuffV[i]; 14807 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14808 ShuffV[i] += 14809 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14810 } 14811 } 14812 14813 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14814 // the original is: 14815 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14816 // In such a case, just change the shuffle mask to extract the element 14817 // from the permuted index. 14818 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14819 const PPCSubtarget &Subtarget) { 14820 SDLoc dl(OrigSToV); 14821 EVT VT = OrigSToV.getValueType(); 14822 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14823 "Expecting a SCALAR_TO_VECTOR here"); 14824 SDValue Input = OrigSToV.getOperand(0); 14825 14826 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14827 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14828 SDValue OrigVector = Input.getOperand(0); 14829 14830 // Can't handle non-const element indices or different vector types 14831 // for the input to the extract and the output of the scalar_to_vector. 14832 if (Idx && VT == OrigVector.getValueType()) { 14833 unsigned NumElts = VT.getVectorNumElements(); 14834 assert( 14835 NumElts > 1 && 14836 "Cannot produce a permuted scalar_to_vector for one element vector"); 14837 SmallVector<int, 16> NewMask(NumElts, -1); 14838 unsigned ResultInElt = NumElts / 2; 14839 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14840 NewMask[ResultInElt] = Idx->getZExtValue(); 14841 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14842 } 14843 } 14844 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14845 OrigSToV.getOperand(0)); 14846 } 14847 14848 // On little endian subtargets, combine shuffles such as: 14849 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14850 // into: 14851 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14852 // because the latter can be matched to a single instruction merge. 14853 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14854 // to put the value into element zero. Adjust the shuffle mask so that the 14855 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14856 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14857 // nodes with elements smaller than doubleword because all the ways 14858 // of getting scalar data into a vector register put the value in the 14859 // rightmost element of the left half of the vector. 14860 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14861 SelectionDAG &DAG) const { 14862 SDValue LHS = SVN->getOperand(0); 14863 SDValue RHS = SVN->getOperand(1); 14864 auto Mask = SVN->getMask(); 14865 int NumElts = LHS.getValueType().getVectorNumElements(); 14866 SDValue Res(SVN, 0); 14867 SDLoc dl(SVN); 14868 bool IsLittleEndian = Subtarget.isLittleEndian(); 14869 14870 // On big endian targets this is only useful for subtargets with direct moves. 14871 // On little endian targets it would be useful for all subtargets with VSX. 14872 // However adding special handling for LE subtargets without direct moves 14873 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14874 // which includes direct moves. 14875 if (!Subtarget.hasDirectMove()) 14876 return Res; 14877 14878 // If this is not a shuffle of a shuffle and the first element comes from 14879 // the second vector, canonicalize to the commuted form. This will make it 14880 // more likely to match one of the single instruction patterns. 14881 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14882 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14883 std::swap(LHS, RHS); 14884 Res = DAG.getCommutedVectorShuffle(*SVN); 14885 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14886 } 14887 14888 // Adjust the shuffle mask if either input vector comes from a 14889 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14890 // form (to prevent the need for a swap). 14891 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14892 SDValue SToVLHS = isScalarToVec(LHS); 14893 SDValue SToVRHS = isScalarToVec(RHS); 14894 if (SToVLHS || SToVRHS) { 14895 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14896 : SToVRHS.getValueType().getVectorNumElements(); 14897 int NumEltsOut = ShuffV.size(); 14898 // The width of the "valid lane" (i.e. the lane that contains the value that 14899 // is vectorized) needs to be expressed in terms of the number of elements 14900 // of the shuffle. It is thereby the ratio of the values before and after 14901 // any bitcast. 14902 unsigned ValidLaneWidth = 14903 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14904 LHS.getValueType().getScalarSizeInBits() 14905 : SToVRHS.getValueType().getScalarSizeInBits() / 14906 RHS.getValueType().getScalarSizeInBits(); 14907 14908 // Initially assume that neither input is permuted. These will be adjusted 14909 // accordingly if either input is. 14910 int LHSMaxIdx = -1; 14911 int RHSMinIdx = -1; 14912 int RHSMaxIdx = -1; 14913 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14914 14915 // Get the permuted scalar to vector nodes for the source(s) that come from 14916 // ISD::SCALAR_TO_VECTOR. 14917 // On big endian systems, this only makes sense for element sizes smaller 14918 // than 64 bits since for 64-bit elements, all instructions already put 14919 // the value into element zero. Since scalar size of LHS and RHS may differ 14920 // after isScalarToVec, this should be checked using their own sizes. 14921 if (SToVLHS) { 14922 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14923 return Res; 14924 // Set up the values for the shuffle vector fixup. 14925 LHSMaxIdx = NumEltsOut / NumEltsIn; 14926 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14927 if (SToVLHS.getValueType() != LHS.getValueType()) 14928 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14929 LHS = SToVLHS; 14930 } 14931 if (SToVRHS) { 14932 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14933 return Res; 14934 RHSMinIdx = NumEltsOut; 14935 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14936 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14937 if (SToVRHS.getValueType() != RHS.getValueType()) 14938 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14939 RHS = SToVRHS; 14940 } 14941 14942 // Fix up the shuffle mask to reflect where the desired element actually is. 14943 // The minimum and maximum indices that correspond to element zero for both 14944 // the LHS and RHS are computed and will control which shuffle mask entries 14945 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14946 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14947 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14948 HalfVec, ValidLaneWidth, Subtarget); 14949 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14950 14951 // We may have simplified away the shuffle. We won't be able to do anything 14952 // further with it here. 14953 if (!isa<ShuffleVectorSDNode>(Res)) 14954 return Res; 14955 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14956 } 14957 14958 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14959 // The common case after we commuted the shuffle is that the RHS is a splat 14960 // and we have elements coming in from the splat at indices that are not 14961 // conducive to using a merge. 14962 // Example: 14963 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14964 if (!isSplatBV(TheSplat)) 14965 return Res; 14966 14967 // We are looking for a mask such that all even elements are from 14968 // one vector and all odd elements from the other. 14969 if (!isAlternatingShuffMask(Mask, NumElts)) 14970 return Res; 14971 14972 // Adjust the mask so we are pulling in the same index from the splat 14973 // as the index from the interesting vector in consecutive elements. 14974 if (IsLittleEndian) { 14975 // Example (even elements from first vector): 14976 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14977 if (Mask[0] < NumElts) 14978 for (int i = 1, e = Mask.size(); i < e; i += 2) 14979 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14980 // Example (odd elements from first vector): 14981 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14982 else 14983 for (int i = 0, e = Mask.size(); i < e; i += 2) 14984 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14985 } else { 14986 // Example (even elements from first vector): 14987 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14988 if (Mask[0] < NumElts) 14989 for (int i = 0, e = Mask.size(); i < e; i += 2) 14990 ShuffV[i] = ShuffV[i + 1] - NumElts; 14991 // Example (odd elements from first vector): 14992 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14993 else 14994 for (int i = 1, e = Mask.size(); i < e; i += 2) 14995 ShuffV[i] = ShuffV[i - 1] - NumElts; 14996 } 14997 14998 // If the RHS has undefs, we need to remove them since we may have created 14999 // a shuffle that adds those instead of the splat value. 15000 SDValue SplatVal = 15001 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 15002 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 15003 15004 if (IsLittleEndian) 15005 RHS = TheSplat; 15006 else 15007 LHS = TheSplat; 15008 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 15009 } 15010 15011 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 15012 LSBaseSDNode *LSBase, 15013 DAGCombinerInfo &DCI) const { 15014 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 15015 "Not a reverse memop pattern!"); 15016 15017 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 15018 auto Mask = SVN->getMask(); 15019 int i = 0; 15020 auto I = Mask.rbegin(); 15021 auto E = Mask.rend(); 15022 15023 for (; I != E; ++I) { 15024 if (*I != i) 15025 return false; 15026 i++; 15027 } 15028 return true; 15029 }; 15030 15031 SelectionDAG &DAG = DCI.DAG; 15032 EVT VT = SVN->getValueType(0); 15033 15034 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 15035 return SDValue(); 15036 15037 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15038 // See comment in PPCVSXSwapRemoval.cpp. 15039 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15040 if (!Subtarget.hasP9Vector()) 15041 return SDValue(); 15042 15043 if(!IsElementReverse(SVN)) 15044 return SDValue(); 15045 15046 if (LSBase->getOpcode() == ISD::LOAD) { 15047 // If the load return value 0 has more than one user except the 15048 // shufflevector instruction, it is not profitable to replace the 15049 // shufflevector with a reverse load. 15050 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15051 UI != UE; ++UI) 15052 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15053 return SDValue(); 15054 15055 SDLoc dl(LSBase); 15056 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15057 return DAG.getMemIntrinsicNode( 15058 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15059 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15060 } 15061 15062 if (LSBase->getOpcode() == ISD::STORE) { 15063 // If there are other uses of the shuffle, the swap cannot be avoided. 15064 // Forcing the use of an X-Form (since swapped stores only have 15065 // X-Forms) without removing the swap is unprofitable. 15066 if (!SVN->hasOneUse()) 15067 return SDValue(); 15068 15069 SDLoc dl(LSBase); 15070 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15071 LSBase->getBasePtr()}; 15072 return DAG.getMemIntrinsicNode( 15073 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15074 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15075 } 15076 15077 llvm_unreachable("Expected a load or store node here"); 15078 } 15079 15080 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15081 DAGCombinerInfo &DCI) const { 15082 SelectionDAG &DAG = DCI.DAG; 15083 SDLoc dl(N); 15084 switch (N->getOpcode()) { 15085 default: break; 15086 case ISD::ADD: 15087 return combineADD(N, DCI); 15088 case ISD::SHL: 15089 return combineSHL(N, DCI); 15090 case ISD::SRA: 15091 return combineSRA(N, DCI); 15092 case ISD::SRL: 15093 return combineSRL(N, DCI); 15094 case ISD::MUL: 15095 return combineMUL(N, DCI); 15096 case ISD::FMA: 15097 case PPCISD::FNMSUB: 15098 return combineFMALike(N, DCI); 15099 case PPCISD::SHL: 15100 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15101 return N->getOperand(0); 15102 break; 15103 case PPCISD::SRL: 15104 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15105 return N->getOperand(0); 15106 break; 15107 case PPCISD::SRA: 15108 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15109 if (C->isZero() || // 0 >>s V -> 0. 15110 C->isAllOnes()) // -1 >>s V -> -1. 15111 return N->getOperand(0); 15112 } 15113 break; 15114 case ISD::SIGN_EXTEND: 15115 case ISD::ZERO_EXTEND: 15116 case ISD::ANY_EXTEND: 15117 return DAGCombineExtBoolTrunc(N, DCI); 15118 case ISD::TRUNCATE: 15119 return combineTRUNCATE(N, DCI); 15120 case ISD::SETCC: 15121 if (SDValue CSCC = combineSetCC(N, DCI)) 15122 return CSCC; 15123 LLVM_FALLTHROUGH; 15124 case ISD::SELECT_CC: 15125 return DAGCombineTruncBoolExt(N, DCI); 15126 case ISD::SINT_TO_FP: 15127 case ISD::UINT_TO_FP: 15128 return combineFPToIntToFP(N, DCI); 15129 case ISD::VECTOR_SHUFFLE: 15130 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15131 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15132 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15133 } 15134 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15135 case ISD::STORE: { 15136 15137 EVT Op1VT = N->getOperand(1).getValueType(); 15138 unsigned Opcode = N->getOperand(1).getOpcode(); 15139 15140 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15141 SDValue Val= combineStoreFPToInt(N, DCI); 15142 if (Val) 15143 return Val; 15144 } 15145 15146 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15147 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15148 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15149 if (Val) 15150 return Val; 15151 } 15152 15153 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15154 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15155 N->getOperand(1).getNode()->hasOneUse() && 15156 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15157 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15158 15159 // STBRX can only handle simple types and it makes no sense to store less 15160 // two bytes in byte-reversed order. 15161 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15162 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15163 break; 15164 15165 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15166 // Do an any-extend to 32-bits if this is a half-word input. 15167 if (BSwapOp.getValueType() == MVT::i16) 15168 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15169 15170 // If the type of BSWAP operand is wider than stored memory width 15171 // it need to be shifted to the right side before STBRX. 15172 if (Op1VT.bitsGT(mVT)) { 15173 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15174 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15175 DAG.getConstant(Shift, dl, MVT::i32)); 15176 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15177 if (Op1VT == MVT::i64) 15178 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15179 } 15180 15181 SDValue Ops[] = { 15182 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15183 }; 15184 return 15185 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15186 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15187 cast<StoreSDNode>(N)->getMemOperand()); 15188 } 15189 15190 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15191 // So it can increase the chance of CSE constant construction. 15192 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15193 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15194 // Need to sign-extended to 64-bits to handle negative values. 15195 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15196 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15197 MemVT.getSizeInBits()); 15198 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15199 15200 // DAG.getTruncStore() can't be used here because it doesn't accept 15201 // the general (base + offset) addressing mode. 15202 // So we use UpdateNodeOperands and setTruncatingStore instead. 15203 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15204 N->getOperand(3)); 15205 cast<StoreSDNode>(N)->setTruncatingStore(true); 15206 return SDValue(N, 0); 15207 } 15208 15209 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15210 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15211 if (Op1VT.isSimple()) { 15212 MVT StoreVT = Op1VT.getSimpleVT(); 15213 if (Subtarget.needsSwapsForVSXMemOps() && 15214 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15215 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15216 return expandVSXStoreForLE(N, DCI); 15217 } 15218 break; 15219 } 15220 case ISD::LOAD: { 15221 LoadSDNode *LD = cast<LoadSDNode>(N); 15222 EVT VT = LD->getValueType(0); 15223 15224 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15225 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15226 if (VT.isSimple()) { 15227 MVT LoadVT = VT.getSimpleVT(); 15228 if (Subtarget.needsSwapsForVSXMemOps() && 15229 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15230 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15231 return expandVSXLoadForLE(N, DCI); 15232 } 15233 15234 // We sometimes end up with a 64-bit integer load, from which we extract 15235 // two single-precision floating-point numbers. This happens with 15236 // std::complex<float>, and other similar structures, because of the way we 15237 // canonicalize structure copies. However, if we lack direct moves, 15238 // then the final bitcasts from the extracted integer values to the 15239 // floating-point numbers turn into store/load pairs. Even with direct moves, 15240 // just loading the two floating-point numbers is likely better. 15241 auto ReplaceTwoFloatLoad = [&]() { 15242 if (VT != MVT::i64) 15243 return false; 15244 15245 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15246 LD->isVolatile()) 15247 return false; 15248 15249 // We're looking for a sequence like this: 15250 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15251 // t16: i64 = srl t13, Constant:i32<32> 15252 // t17: i32 = truncate t16 15253 // t18: f32 = bitcast t17 15254 // t19: i32 = truncate t13 15255 // t20: f32 = bitcast t19 15256 15257 if (!LD->hasNUsesOfValue(2, 0)) 15258 return false; 15259 15260 auto UI = LD->use_begin(); 15261 while (UI.getUse().getResNo() != 0) ++UI; 15262 SDNode *Trunc = *UI++; 15263 while (UI.getUse().getResNo() != 0) ++UI; 15264 SDNode *RightShift = *UI; 15265 if (Trunc->getOpcode() != ISD::TRUNCATE) 15266 std::swap(Trunc, RightShift); 15267 15268 if (Trunc->getOpcode() != ISD::TRUNCATE || 15269 Trunc->getValueType(0) != MVT::i32 || 15270 !Trunc->hasOneUse()) 15271 return false; 15272 if (RightShift->getOpcode() != ISD::SRL || 15273 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15274 RightShift->getConstantOperandVal(1) != 32 || 15275 !RightShift->hasOneUse()) 15276 return false; 15277 15278 SDNode *Trunc2 = *RightShift->use_begin(); 15279 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15280 Trunc2->getValueType(0) != MVT::i32 || 15281 !Trunc2->hasOneUse()) 15282 return false; 15283 15284 SDNode *Bitcast = *Trunc->use_begin(); 15285 SDNode *Bitcast2 = *Trunc2->use_begin(); 15286 15287 if (Bitcast->getOpcode() != ISD::BITCAST || 15288 Bitcast->getValueType(0) != MVT::f32) 15289 return false; 15290 if (Bitcast2->getOpcode() != ISD::BITCAST || 15291 Bitcast2->getValueType(0) != MVT::f32) 15292 return false; 15293 15294 if (Subtarget.isLittleEndian()) 15295 std::swap(Bitcast, Bitcast2); 15296 15297 // Bitcast has the second float (in memory-layout order) and Bitcast2 15298 // has the first one. 15299 15300 SDValue BasePtr = LD->getBasePtr(); 15301 if (LD->isIndexed()) { 15302 assert(LD->getAddressingMode() == ISD::PRE_INC && 15303 "Non-pre-inc AM on PPC?"); 15304 BasePtr = 15305 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15306 LD->getOffset()); 15307 } 15308 15309 auto MMOFlags = 15310 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15311 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15312 LD->getPointerInfo(), LD->getAlignment(), 15313 MMOFlags, LD->getAAInfo()); 15314 SDValue AddPtr = 15315 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15316 BasePtr, DAG.getIntPtrConstant(4, dl)); 15317 SDValue FloatLoad2 = DAG.getLoad( 15318 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15319 LD->getPointerInfo().getWithOffset(4), 15320 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15321 15322 if (LD->isIndexed()) { 15323 // Note that DAGCombine should re-form any pre-increment load(s) from 15324 // what is produced here if that makes sense. 15325 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15326 } 15327 15328 DCI.CombineTo(Bitcast2, FloatLoad); 15329 DCI.CombineTo(Bitcast, FloatLoad2); 15330 15331 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15332 SDValue(FloatLoad2.getNode(), 1)); 15333 return true; 15334 }; 15335 15336 if (ReplaceTwoFloatLoad()) 15337 return SDValue(N, 0); 15338 15339 EVT MemVT = LD->getMemoryVT(); 15340 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15341 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15342 if (LD->isUnindexed() && VT.isVector() && 15343 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15344 // P8 and later hardware should just use LOAD. 15345 !Subtarget.hasP8Vector() && 15346 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15347 VT == MVT::v4f32))) && 15348 LD->getAlign() < ABIAlignment) { 15349 // This is a type-legal unaligned Altivec load. 15350 SDValue Chain = LD->getChain(); 15351 SDValue Ptr = LD->getBasePtr(); 15352 bool isLittleEndian = Subtarget.isLittleEndian(); 15353 15354 // This implements the loading of unaligned vectors as described in 15355 // the venerable Apple Velocity Engine overview. Specifically: 15356 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15357 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15358 // 15359 // The general idea is to expand a sequence of one or more unaligned 15360 // loads into an alignment-based permutation-control instruction (lvsl 15361 // or lvsr), a series of regular vector loads (which always truncate 15362 // their input address to an aligned address), and a series of 15363 // permutations. The results of these permutations are the requested 15364 // loaded values. The trick is that the last "extra" load is not taken 15365 // from the address you might suspect (sizeof(vector) bytes after the 15366 // last requested load), but rather sizeof(vector) - 1 bytes after the 15367 // last requested vector. The point of this is to avoid a page fault if 15368 // the base address happened to be aligned. This works because if the 15369 // base address is aligned, then adding less than a full vector length 15370 // will cause the last vector in the sequence to be (re)loaded. 15371 // Otherwise, the next vector will be fetched as you might suspect was 15372 // necessary. 15373 15374 // We might be able to reuse the permutation generation from 15375 // a different base address offset from this one by an aligned amount. 15376 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15377 // optimization later. 15378 Intrinsic::ID Intr, IntrLD, IntrPerm; 15379 MVT PermCntlTy, PermTy, LDTy; 15380 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15381 : Intrinsic::ppc_altivec_lvsl; 15382 IntrLD = Intrinsic::ppc_altivec_lvx; 15383 IntrPerm = Intrinsic::ppc_altivec_vperm; 15384 PermCntlTy = MVT::v16i8; 15385 PermTy = MVT::v4i32; 15386 LDTy = MVT::v4i32; 15387 15388 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15389 15390 // Create the new MMO for the new base load. It is like the original MMO, 15391 // but represents an area in memory almost twice the vector size centered 15392 // on the original address. If the address is unaligned, we might start 15393 // reading up to (sizeof(vector)-1) bytes below the address of the 15394 // original unaligned load. 15395 MachineFunction &MF = DAG.getMachineFunction(); 15396 MachineMemOperand *BaseMMO = 15397 MF.getMachineMemOperand(LD->getMemOperand(), 15398 -(long)MemVT.getStoreSize()+1, 15399 2*MemVT.getStoreSize()-1); 15400 15401 // Create the new base load. 15402 SDValue LDXIntID = 15403 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15404 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15405 SDValue BaseLoad = 15406 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15407 DAG.getVTList(PermTy, MVT::Other), 15408 BaseLoadOps, LDTy, BaseMMO); 15409 15410 // Note that the value of IncOffset (which is provided to the next 15411 // load's pointer info offset value, and thus used to calculate the 15412 // alignment), and the value of IncValue (which is actually used to 15413 // increment the pointer value) are different! This is because we 15414 // require the next load to appear to be aligned, even though it 15415 // is actually offset from the base pointer by a lesser amount. 15416 int IncOffset = VT.getSizeInBits() / 8; 15417 int IncValue = IncOffset; 15418 15419 // Walk (both up and down) the chain looking for another load at the real 15420 // (aligned) offset (the alignment of the other load does not matter in 15421 // this case). If found, then do not use the offset reduction trick, as 15422 // that will prevent the loads from being later combined (as they would 15423 // otherwise be duplicates). 15424 if (!findConsecutiveLoad(LD, DAG)) 15425 --IncValue; 15426 15427 SDValue Increment = 15428 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15429 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15430 15431 MachineMemOperand *ExtraMMO = 15432 MF.getMachineMemOperand(LD->getMemOperand(), 15433 1, 2*MemVT.getStoreSize()-1); 15434 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15435 SDValue ExtraLoad = 15436 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15437 DAG.getVTList(PermTy, MVT::Other), 15438 ExtraLoadOps, LDTy, ExtraMMO); 15439 15440 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15441 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15442 15443 // Because vperm has a big-endian bias, we must reverse the order 15444 // of the input vectors and complement the permute control vector 15445 // when generating little endian code. We have already handled the 15446 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15447 // and ExtraLoad here. 15448 SDValue Perm; 15449 if (isLittleEndian) 15450 Perm = BuildIntrinsicOp(IntrPerm, 15451 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15452 else 15453 Perm = BuildIntrinsicOp(IntrPerm, 15454 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15455 15456 if (VT != PermTy) 15457 Perm = Subtarget.hasAltivec() 15458 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15459 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15460 DAG.getTargetConstant(1, dl, MVT::i64)); 15461 // second argument is 1 because this rounding 15462 // is always exact. 15463 15464 // The output of the permutation is our loaded result, the TokenFactor is 15465 // our new chain. 15466 DCI.CombineTo(N, Perm, TF); 15467 return SDValue(N, 0); 15468 } 15469 } 15470 break; 15471 case ISD::INTRINSIC_WO_CHAIN: { 15472 bool isLittleEndian = Subtarget.isLittleEndian(); 15473 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15474 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15475 : Intrinsic::ppc_altivec_lvsl); 15476 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15477 SDValue Add = N->getOperand(1); 15478 15479 int Bits = 4 /* 16 byte alignment */; 15480 15481 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15482 APInt::getAllOnes(Bits /* alignment */) 15483 .zext(Add.getScalarValueSizeInBits()))) { 15484 SDNode *BasePtr = Add->getOperand(0).getNode(); 15485 for (SDNode *U : BasePtr->uses()) { 15486 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15487 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15488 // We've found another LVSL/LVSR, and this address is an aligned 15489 // multiple of that one. The results will be the same, so use the 15490 // one we've just found instead. 15491 15492 return SDValue(U, 0); 15493 } 15494 } 15495 } 15496 15497 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15498 SDNode *BasePtr = Add->getOperand(0).getNode(); 15499 for (SDNode *U : BasePtr->uses()) { 15500 if (U->getOpcode() == ISD::ADD && 15501 isa<ConstantSDNode>(U->getOperand(1)) && 15502 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15503 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15504 (1ULL << Bits) == 15505 0) { 15506 SDNode *OtherAdd = U; 15507 for (SDNode *V : OtherAdd->uses()) { 15508 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15509 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15510 IID) { 15511 return SDValue(V, 0); 15512 } 15513 } 15514 } 15515 } 15516 } 15517 } 15518 15519 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15520 // Expose the vabsduw/h/b opportunity for down stream 15521 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15522 (IID == Intrinsic::ppc_altivec_vmaxsw || 15523 IID == Intrinsic::ppc_altivec_vmaxsh || 15524 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15525 SDValue V1 = N->getOperand(1); 15526 SDValue V2 = N->getOperand(2); 15527 if ((V1.getSimpleValueType() == MVT::v4i32 || 15528 V1.getSimpleValueType() == MVT::v8i16 || 15529 V1.getSimpleValueType() == MVT::v16i8) && 15530 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15531 // (0-a, a) 15532 if (V1.getOpcode() == ISD::SUB && 15533 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15534 V1.getOperand(1) == V2) { 15535 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15536 } 15537 // (a, 0-a) 15538 if (V2.getOpcode() == ISD::SUB && 15539 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15540 V2.getOperand(1) == V1) { 15541 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15542 } 15543 // (x-y, y-x) 15544 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15545 V1.getOperand(0) == V2.getOperand(1) && 15546 V1.getOperand(1) == V2.getOperand(0)) { 15547 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15548 } 15549 } 15550 } 15551 } 15552 15553 break; 15554 case ISD::INTRINSIC_W_CHAIN: 15555 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15556 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15557 if (Subtarget.needsSwapsForVSXMemOps()) { 15558 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15559 default: 15560 break; 15561 case Intrinsic::ppc_vsx_lxvw4x: 15562 case Intrinsic::ppc_vsx_lxvd2x: 15563 return expandVSXLoadForLE(N, DCI); 15564 } 15565 } 15566 break; 15567 case ISD::INTRINSIC_VOID: 15568 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15569 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15570 if (Subtarget.needsSwapsForVSXMemOps()) { 15571 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15572 default: 15573 break; 15574 case Intrinsic::ppc_vsx_stxvw4x: 15575 case Intrinsic::ppc_vsx_stxvd2x: 15576 return expandVSXStoreForLE(N, DCI); 15577 } 15578 } 15579 break; 15580 case ISD::BSWAP: { 15581 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15582 // For subtargets without LDBRX, we can still do better than the default 15583 // expansion even for 64-bit BSWAP (LOAD). 15584 bool Is64BitBswapOn64BitTgt = 15585 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15586 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15587 N->getOperand(0).hasOneUse(); 15588 if (IsSingleUseNormalLd && 15589 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15590 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15591 SDValue Load = N->getOperand(0); 15592 LoadSDNode *LD = cast<LoadSDNode>(Load); 15593 // Create the byte-swapping load. 15594 SDValue Ops[] = { 15595 LD->getChain(), // Chain 15596 LD->getBasePtr(), // Ptr 15597 DAG.getValueType(N->getValueType(0)) // VT 15598 }; 15599 SDValue BSLoad = 15600 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15601 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15602 MVT::i64 : MVT::i32, MVT::Other), 15603 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15604 15605 // If this is an i16 load, insert the truncate. 15606 SDValue ResVal = BSLoad; 15607 if (N->getValueType(0) == MVT::i16) 15608 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15609 15610 // First, combine the bswap away. This makes the value produced by the 15611 // load dead. 15612 DCI.CombineTo(N, ResVal); 15613 15614 // Next, combine the load away, we give it a bogus result value but a real 15615 // chain result. The result value is dead because the bswap is dead. 15616 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15617 15618 // Return N so it doesn't get rechecked! 15619 return SDValue(N, 0); 15620 } 15621 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15622 // before legalization so that the BUILD_PAIR is handled correctly. 15623 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15624 !IsSingleUseNormalLd) 15625 return SDValue(); 15626 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15627 15628 // Can't split volatile or atomic loads. 15629 if (!LD->isSimple()) 15630 return SDValue(); 15631 SDValue BasePtr = LD->getBasePtr(); 15632 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15633 LD->getPointerInfo(), LD->getAlignment()); 15634 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15635 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15636 DAG.getIntPtrConstant(4, dl)); 15637 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15638 LD->getMemOperand(), 4, 4); 15639 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15640 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15641 SDValue Res; 15642 if (Subtarget.isLittleEndian()) 15643 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15644 else 15645 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15646 SDValue TF = 15647 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15648 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15649 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15650 return Res; 15651 } 15652 case PPCISD::VCMP: 15653 // If a VCMP_rec node already exists with exactly the same operands as this 15654 // node, use its result instead of this node (VCMP_rec computes both a CR6 15655 // and a normal output). 15656 // 15657 if (!N->getOperand(0).hasOneUse() && 15658 !N->getOperand(1).hasOneUse() && 15659 !N->getOperand(2).hasOneUse()) { 15660 15661 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15662 SDNode *VCMPrecNode = nullptr; 15663 15664 SDNode *LHSN = N->getOperand(0).getNode(); 15665 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15666 UI != E; ++UI) 15667 if (UI->getOpcode() == PPCISD::VCMP_rec && 15668 UI->getOperand(1) == N->getOperand(1) && 15669 UI->getOperand(2) == N->getOperand(2) && 15670 UI->getOperand(0) == N->getOperand(0)) { 15671 VCMPrecNode = *UI; 15672 break; 15673 } 15674 15675 // If there is no VCMP_rec node, or if the flag value has a single use, 15676 // don't transform this. 15677 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15678 break; 15679 15680 // Look at the (necessarily single) use of the flag value. If it has a 15681 // chain, this transformation is more complex. Note that multiple things 15682 // could use the value result, which we should ignore. 15683 SDNode *FlagUser = nullptr; 15684 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15685 FlagUser == nullptr; ++UI) { 15686 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15687 SDNode *User = *UI; 15688 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15689 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15690 FlagUser = User; 15691 break; 15692 } 15693 } 15694 } 15695 15696 // If the user is a MFOCRF instruction, we know this is safe. 15697 // Otherwise we give up for right now. 15698 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15699 return SDValue(VCMPrecNode, 0); 15700 } 15701 break; 15702 case ISD::BRCOND: { 15703 SDValue Cond = N->getOperand(1); 15704 SDValue Target = N->getOperand(2); 15705 15706 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15707 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15708 Intrinsic::loop_decrement) { 15709 15710 // We now need to make the intrinsic dead (it cannot be instruction 15711 // selected). 15712 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15713 assert(Cond.getNode()->hasOneUse() && 15714 "Counter decrement has more than one use"); 15715 15716 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15717 N->getOperand(0), Target); 15718 } 15719 } 15720 break; 15721 case ISD::BR_CC: { 15722 // If this is a branch on an altivec predicate comparison, lower this so 15723 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15724 // lowering is done pre-legalize, because the legalizer lowers the predicate 15725 // compare down to code that is difficult to reassemble. 15726 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15727 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15728 15729 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15730 // value. If so, pass-through the AND to get to the intrinsic. 15731 if (LHS.getOpcode() == ISD::AND && 15732 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15733 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15734 Intrinsic::loop_decrement && 15735 isa<ConstantSDNode>(LHS.getOperand(1)) && 15736 !isNullConstant(LHS.getOperand(1))) 15737 LHS = LHS.getOperand(0); 15738 15739 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15740 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15741 Intrinsic::loop_decrement && 15742 isa<ConstantSDNode>(RHS)) { 15743 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15744 "Counter decrement comparison is not EQ or NE"); 15745 15746 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15747 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15748 (CC == ISD::SETNE && !Val); 15749 15750 // We now need to make the intrinsic dead (it cannot be instruction 15751 // selected). 15752 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15753 assert(LHS.getNode()->hasOneUse() && 15754 "Counter decrement has more than one use"); 15755 15756 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15757 N->getOperand(0), N->getOperand(4)); 15758 } 15759 15760 int CompareOpc; 15761 bool isDot; 15762 15763 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15764 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15765 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15766 assert(isDot && "Can't compare against a vector result!"); 15767 15768 // If this is a comparison against something other than 0/1, then we know 15769 // that the condition is never/always true. 15770 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15771 if (Val != 0 && Val != 1) { 15772 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15773 return N->getOperand(0); 15774 // Always !=, turn it into an unconditional branch. 15775 return DAG.getNode(ISD::BR, dl, MVT::Other, 15776 N->getOperand(0), N->getOperand(4)); 15777 } 15778 15779 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15780 15781 // Create the PPCISD altivec 'dot' comparison node. 15782 SDValue Ops[] = { 15783 LHS.getOperand(2), // LHS of compare 15784 LHS.getOperand(3), // RHS of compare 15785 DAG.getConstant(CompareOpc, dl, MVT::i32) 15786 }; 15787 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15788 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15789 15790 // Unpack the result based on how the target uses it. 15791 PPC::Predicate CompOpc; 15792 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15793 default: // Can't happen, don't crash on invalid number though. 15794 case 0: // Branch on the value of the EQ bit of CR6. 15795 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15796 break; 15797 case 1: // Branch on the inverted value of the EQ bit of CR6. 15798 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15799 break; 15800 case 2: // Branch on the value of the LT bit of CR6. 15801 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15802 break; 15803 case 3: // Branch on the inverted value of the LT bit of CR6. 15804 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15805 break; 15806 } 15807 15808 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15809 DAG.getConstant(CompOpc, dl, MVT::i32), 15810 DAG.getRegister(PPC::CR6, MVT::i32), 15811 N->getOperand(4), CompNode.getValue(1)); 15812 } 15813 break; 15814 } 15815 case ISD::BUILD_VECTOR: 15816 return DAGCombineBuildVector(N, DCI); 15817 case ISD::ABS: 15818 return combineABS(N, DCI); 15819 case ISD::VSELECT: 15820 return combineVSelect(N, DCI); 15821 } 15822 15823 return SDValue(); 15824 } 15825 15826 SDValue 15827 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15828 SelectionDAG &DAG, 15829 SmallVectorImpl<SDNode *> &Created) const { 15830 // fold (sdiv X, pow2) 15831 EVT VT = N->getValueType(0); 15832 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15833 return SDValue(); 15834 if ((VT != MVT::i32 && VT != MVT::i64) || 15835 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15836 return SDValue(); 15837 15838 SDLoc DL(N); 15839 SDValue N0 = N->getOperand(0); 15840 15841 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15842 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15843 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15844 15845 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15846 Created.push_back(Op.getNode()); 15847 15848 if (IsNegPow2) { 15849 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15850 Created.push_back(Op.getNode()); 15851 } 15852 15853 return Op; 15854 } 15855 15856 //===----------------------------------------------------------------------===// 15857 // Inline Assembly Support 15858 //===----------------------------------------------------------------------===// 15859 15860 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15861 KnownBits &Known, 15862 const APInt &DemandedElts, 15863 const SelectionDAG &DAG, 15864 unsigned Depth) const { 15865 Known.resetAll(); 15866 switch (Op.getOpcode()) { 15867 default: break; 15868 case PPCISD::LBRX: { 15869 // lhbrx is known to have the top bits cleared out. 15870 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15871 Known.Zero = 0xFFFF0000; 15872 break; 15873 } 15874 case ISD::INTRINSIC_WO_CHAIN: { 15875 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15876 default: break; 15877 case Intrinsic::ppc_altivec_vcmpbfp_p: 15878 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15879 case Intrinsic::ppc_altivec_vcmpequb_p: 15880 case Intrinsic::ppc_altivec_vcmpequh_p: 15881 case Intrinsic::ppc_altivec_vcmpequw_p: 15882 case Intrinsic::ppc_altivec_vcmpequd_p: 15883 case Intrinsic::ppc_altivec_vcmpequq_p: 15884 case Intrinsic::ppc_altivec_vcmpgefp_p: 15885 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15886 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15887 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15888 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15889 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15890 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15891 case Intrinsic::ppc_altivec_vcmpgtub_p: 15892 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15893 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15894 case Intrinsic::ppc_altivec_vcmpgtud_p: 15895 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15896 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15897 break; 15898 } 15899 break; 15900 } 15901 case ISD::INTRINSIC_W_CHAIN: { 15902 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15903 default: 15904 break; 15905 case Intrinsic::ppc_load2r: 15906 // Top bits are cleared for load2r (which is the same as lhbrx). 15907 Known.Zero = 0xFFFF0000; 15908 break; 15909 } 15910 break; 15911 } 15912 } 15913 } 15914 15915 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15916 switch (Subtarget.getCPUDirective()) { 15917 default: break; 15918 case PPC::DIR_970: 15919 case PPC::DIR_PWR4: 15920 case PPC::DIR_PWR5: 15921 case PPC::DIR_PWR5X: 15922 case PPC::DIR_PWR6: 15923 case PPC::DIR_PWR6X: 15924 case PPC::DIR_PWR7: 15925 case PPC::DIR_PWR8: 15926 case PPC::DIR_PWR9: 15927 case PPC::DIR_PWR10: 15928 case PPC::DIR_PWR_FUTURE: { 15929 if (!ML) 15930 break; 15931 15932 if (!DisableInnermostLoopAlign32) { 15933 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15934 // so that we can decrease cache misses and branch-prediction misses. 15935 // Actual alignment of the loop will depend on the hotness check and other 15936 // logic in alignBlocks. 15937 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15938 return Align(32); 15939 } 15940 15941 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15942 15943 // For small loops (between 5 and 8 instructions), align to a 32-byte 15944 // boundary so that the entire loop fits in one instruction-cache line. 15945 uint64_t LoopSize = 0; 15946 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15947 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15948 LoopSize += TII->getInstSizeInBytes(*J); 15949 if (LoopSize > 32) 15950 break; 15951 } 15952 15953 if (LoopSize > 16 && LoopSize <= 32) 15954 return Align(32); 15955 15956 break; 15957 } 15958 } 15959 15960 return TargetLowering::getPrefLoopAlignment(ML); 15961 } 15962 15963 /// getConstraintType - Given a constraint, return the type of 15964 /// constraint it is for this target. 15965 PPCTargetLowering::ConstraintType 15966 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15967 if (Constraint.size() == 1) { 15968 switch (Constraint[0]) { 15969 default: break; 15970 case 'b': 15971 case 'r': 15972 case 'f': 15973 case 'd': 15974 case 'v': 15975 case 'y': 15976 return C_RegisterClass; 15977 case 'Z': 15978 // FIXME: While Z does indicate a memory constraint, it specifically 15979 // indicates an r+r address (used in conjunction with the 'y' modifier 15980 // in the replacement string). Currently, we're forcing the base 15981 // register to be r0 in the asm printer (which is interpreted as zero) 15982 // and forming the complete address in the second register. This is 15983 // suboptimal. 15984 return C_Memory; 15985 } 15986 } else if (Constraint == "wc") { // individual CR bits. 15987 return C_RegisterClass; 15988 } else if (Constraint == "wa" || Constraint == "wd" || 15989 Constraint == "wf" || Constraint == "ws" || 15990 Constraint == "wi" || Constraint == "ww") { 15991 return C_RegisterClass; // VSX registers. 15992 } 15993 return TargetLowering::getConstraintType(Constraint); 15994 } 15995 15996 /// Examine constraint type and operand type and determine a weight value. 15997 /// This object must already have been set up with the operand type 15998 /// and the current alternative constraint selected. 15999 TargetLowering::ConstraintWeight 16000 PPCTargetLowering::getSingleConstraintMatchWeight( 16001 AsmOperandInfo &info, const char *constraint) const { 16002 ConstraintWeight weight = CW_Invalid; 16003 Value *CallOperandVal = info.CallOperandVal; 16004 // If we don't have a value, we can't do a match, 16005 // but allow it at the lowest weight. 16006 if (!CallOperandVal) 16007 return CW_Default; 16008 Type *type = CallOperandVal->getType(); 16009 16010 // Look at the constraint type. 16011 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 16012 return CW_Register; // an individual CR bit. 16013 else if ((StringRef(constraint) == "wa" || 16014 StringRef(constraint) == "wd" || 16015 StringRef(constraint) == "wf") && 16016 type->isVectorTy()) 16017 return CW_Register; 16018 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 16019 return CW_Register; // just hold 64-bit integers data. 16020 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 16021 return CW_Register; 16022 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 16023 return CW_Register; 16024 16025 switch (*constraint) { 16026 default: 16027 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 16028 break; 16029 case 'b': 16030 if (type->isIntegerTy()) 16031 weight = CW_Register; 16032 break; 16033 case 'f': 16034 if (type->isFloatTy()) 16035 weight = CW_Register; 16036 break; 16037 case 'd': 16038 if (type->isDoubleTy()) 16039 weight = CW_Register; 16040 break; 16041 case 'v': 16042 if (type->isVectorTy()) 16043 weight = CW_Register; 16044 break; 16045 case 'y': 16046 weight = CW_Register; 16047 break; 16048 case 'Z': 16049 weight = CW_Memory; 16050 break; 16051 } 16052 return weight; 16053 } 16054 16055 std::pair<unsigned, const TargetRegisterClass *> 16056 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16057 StringRef Constraint, 16058 MVT VT) const { 16059 if (Constraint.size() == 1) { 16060 // GCC RS6000 Constraint Letters 16061 switch (Constraint[0]) { 16062 case 'b': // R1-R31 16063 if (VT == MVT::i64 && Subtarget.isPPC64()) 16064 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16065 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16066 case 'r': // R0-R31 16067 if (VT == MVT::i64 && Subtarget.isPPC64()) 16068 return std::make_pair(0U, &PPC::G8RCRegClass); 16069 return std::make_pair(0U, &PPC::GPRCRegClass); 16070 // 'd' and 'f' constraints are both defined to be "the floating point 16071 // registers", where one is for 32-bit and the other for 64-bit. We don't 16072 // really care overly much here so just give them all the same reg classes. 16073 case 'd': 16074 case 'f': 16075 if (Subtarget.hasSPE()) { 16076 if (VT == MVT::f32 || VT == MVT::i32) 16077 return std::make_pair(0U, &PPC::GPRCRegClass); 16078 if (VT == MVT::f64 || VT == MVT::i64) 16079 return std::make_pair(0U, &PPC::SPERCRegClass); 16080 } else { 16081 if (VT == MVT::f32 || VT == MVT::i32) 16082 return std::make_pair(0U, &PPC::F4RCRegClass); 16083 if (VT == MVT::f64 || VT == MVT::i64) 16084 return std::make_pair(0U, &PPC::F8RCRegClass); 16085 } 16086 break; 16087 case 'v': 16088 if (Subtarget.hasAltivec() && VT.isVector()) 16089 return std::make_pair(0U, &PPC::VRRCRegClass); 16090 else if (Subtarget.hasVSX()) 16091 // Scalars in Altivec registers only make sense with VSX. 16092 return std::make_pair(0U, &PPC::VFRCRegClass); 16093 break; 16094 case 'y': // crrc 16095 return std::make_pair(0U, &PPC::CRRCRegClass); 16096 } 16097 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16098 // An individual CR bit. 16099 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16100 } else if ((Constraint == "wa" || Constraint == "wd" || 16101 Constraint == "wf" || Constraint == "wi") && 16102 Subtarget.hasVSX()) { 16103 // A VSX register for either a scalar (FP) or vector. There is no 16104 // support for single precision scalars on subtargets prior to Power8. 16105 if (VT.isVector()) 16106 return std::make_pair(0U, &PPC::VSRCRegClass); 16107 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16108 return std::make_pair(0U, &PPC::VSSRCRegClass); 16109 return std::make_pair(0U, &PPC::VSFRCRegClass); 16110 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16111 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16112 return std::make_pair(0U, &PPC::VSSRCRegClass); 16113 else 16114 return std::make_pair(0U, &PPC::VSFRCRegClass); 16115 } else if (Constraint == "lr") { 16116 if (VT == MVT::i64) 16117 return std::make_pair(0U, &PPC::LR8RCRegClass); 16118 else 16119 return std::make_pair(0U, &PPC::LRRCRegClass); 16120 } 16121 16122 // Handle special cases of physical registers that are not properly handled 16123 // by the base class. 16124 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16125 // If we name a VSX register, we can't defer to the base class because it 16126 // will not recognize the correct register (their names will be VSL{0-31} 16127 // and V{0-31} so they won't match). So we match them here. 16128 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16129 int VSNum = atoi(Constraint.data() + 3); 16130 assert(VSNum >= 0 && VSNum <= 63 && 16131 "Attempted to access a vsr out of range"); 16132 if (VSNum < 32) 16133 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16134 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16135 } 16136 16137 // For float registers, we can't defer to the base class as it will match 16138 // the SPILLTOVSRRC class. 16139 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16140 int RegNum = atoi(Constraint.data() + 2); 16141 if (RegNum > 31 || RegNum < 0) 16142 report_fatal_error("Invalid floating point register number"); 16143 if (VT == MVT::f32 || VT == MVT::i32) 16144 return Subtarget.hasSPE() 16145 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16146 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16147 if (VT == MVT::f64 || VT == MVT::i64) 16148 return Subtarget.hasSPE() 16149 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16150 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16151 } 16152 } 16153 16154 std::pair<unsigned, const TargetRegisterClass *> R = 16155 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16156 16157 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16158 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16159 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16160 // register. 16161 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16162 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16163 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16164 PPC::GPRCRegClass.contains(R.first)) 16165 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16166 PPC::sub_32, &PPC::G8RCRegClass), 16167 &PPC::G8RCRegClass); 16168 16169 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16170 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16171 R.first = PPC::CR0; 16172 R.second = &PPC::CRRCRegClass; 16173 } 16174 // FIXME: This warning should ideally be emitted in the front end. 16175 const auto &TM = getTargetMachine(); 16176 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16177 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16178 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16179 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16180 errs() << "warning: vector registers 20 to 32 are reserved in the " 16181 "default AIX AltiVec ABI and cannot be used\n"; 16182 } 16183 16184 return R; 16185 } 16186 16187 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16188 /// vector. If it is invalid, don't add anything to Ops. 16189 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16190 std::string &Constraint, 16191 std::vector<SDValue>&Ops, 16192 SelectionDAG &DAG) const { 16193 SDValue Result; 16194 16195 // Only support length 1 constraints. 16196 if (Constraint.length() > 1) return; 16197 16198 char Letter = Constraint[0]; 16199 switch (Letter) { 16200 default: break; 16201 case 'I': 16202 case 'J': 16203 case 'K': 16204 case 'L': 16205 case 'M': 16206 case 'N': 16207 case 'O': 16208 case 'P': { 16209 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16210 if (!CST) return; // Must be an immediate to match. 16211 SDLoc dl(Op); 16212 int64_t Value = CST->getSExtValue(); 16213 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16214 // numbers are printed as such. 16215 switch (Letter) { 16216 default: llvm_unreachable("Unknown constraint letter!"); 16217 case 'I': // "I" is a signed 16-bit constant. 16218 if (isInt<16>(Value)) 16219 Result = DAG.getTargetConstant(Value, dl, TCVT); 16220 break; 16221 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16222 if (isShiftedUInt<16, 16>(Value)) 16223 Result = DAG.getTargetConstant(Value, dl, TCVT); 16224 break; 16225 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16226 if (isShiftedInt<16, 16>(Value)) 16227 Result = DAG.getTargetConstant(Value, dl, TCVT); 16228 break; 16229 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16230 if (isUInt<16>(Value)) 16231 Result = DAG.getTargetConstant(Value, dl, TCVT); 16232 break; 16233 case 'M': // "M" is a constant that is greater than 31. 16234 if (Value > 31) 16235 Result = DAG.getTargetConstant(Value, dl, TCVT); 16236 break; 16237 case 'N': // "N" is a positive constant that is an exact power of two. 16238 if (Value > 0 && isPowerOf2_64(Value)) 16239 Result = DAG.getTargetConstant(Value, dl, TCVT); 16240 break; 16241 case 'O': // "O" is the constant zero. 16242 if (Value == 0) 16243 Result = DAG.getTargetConstant(Value, dl, TCVT); 16244 break; 16245 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16246 if (isInt<16>(-Value)) 16247 Result = DAG.getTargetConstant(Value, dl, TCVT); 16248 break; 16249 } 16250 break; 16251 } 16252 } 16253 16254 if (Result.getNode()) { 16255 Ops.push_back(Result); 16256 return; 16257 } 16258 16259 // Handle standard constraint letters. 16260 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16261 } 16262 16263 // isLegalAddressingMode - Return true if the addressing mode represented 16264 // by AM is legal for this target, for a load/store of the specified type. 16265 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16266 const AddrMode &AM, Type *Ty, 16267 unsigned AS, 16268 Instruction *I) const { 16269 // Vector type r+i form is supported since power9 as DQ form. We don't check 16270 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16271 // imm form is preferred and the offset can be adjusted to use imm form later 16272 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16273 // max offset to check legal addressing mode, we should be a little aggressive 16274 // to contain other offsets for that LSRUse. 16275 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16276 return false; 16277 16278 // PPC allows a sign-extended 16-bit immediate field. 16279 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16280 return false; 16281 16282 // No global is ever allowed as a base. 16283 if (AM.BaseGV) 16284 return false; 16285 16286 // PPC only support r+r, 16287 switch (AM.Scale) { 16288 case 0: // "r+i" or just "i", depending on HasBaseReg. 16289 break; 16290 case 1: 16291 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16292 return false; 16293 // Otherwise we have r+r or r+i. 16294 break; 16295 case 2: 16296 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16297 return false; 16298 // Allow 2*r as r+r. 16299 break; 16300 default: 16301 // No other scales are supported. 16302 return false; 16303 } 16304 16305 return true; 16306 } 16307 16308 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16309 SelectionDAG &DAG) const { 16310 MachineFunction &MF = DAG.getMachineFunction(); 16311 MachineFrameInfo &MFI = MF.getFrameInfo(); 16312 MFI.setReturnAddressIsTaken(true); 16313 16314 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16315 return SDValue(); 16316 16317 SDLoc dl(Op); 16318 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16319 16320 // Make sure the function does not optimize away the store of the RA to 16321 // the stack. 16322 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16323 FuncInfo->setLRStoreRequired(); 16324 bool isPPC64 = Subtarget.isPPC64(); 16325 auto PtrVT = getPointerTy(MF.getDataLayout()); 16326 16327 if (Depth > 0) { 16328 // The link register (return address) is saved in the caller's frame 16329 // not the callee's stack frame. So we must get the caller's frame 16330 // address and load the return address at the LR offset from there. 16331 SDValue FrameAddr = 16332 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16333 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16334 SDValue Offset = 16335 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16336 isPPC64 ? MVT::i64 : MVT::i32); 16337 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16338 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16339 MachinePointerInfo()); 16340 } 16341 16342 // Just load the return address off the stack. 16343 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16344 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16345 MachinePointerInfo()); 16346 } 16347 16348 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16349 SelectionDAG &DAG) const { 16350 SDLoc dl(Op); 16351 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16352 16353 MachineFunction &MF = DAG.getMachineFunction(); 16354 MachineFrameInfo &MFI = MF.getFrameInfo(); 16355 MFI.setFrameAddressIsTaken(true); 16356 16357 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16358 bool isPPC64 = PtrVT == MVT::i64; 16359 16360 // Naked functions never have a frame pointer, and so we use r1. For all 16361 // other functions, this decision must be delayed until during PEI. 16362 unsigned FrameReg; 16363 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16364 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16365 else 16366 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16367 16368 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16369 PtrVT); 16370 while (Depth--) 16371 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16372 FrameAddr, MachinePointerInfo()); 16373 return FrameAddr; 16374 } 16375 16376 // FIXME? Maybe this could be a TableGen attribute on some registers and 16377 // this table could be generated automatically from RegInfo. 16378 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16379 const MachineFunction &MF) const { 16380 bool isPPC64 = Subtarget.isPPC64(); 16381 16382 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16383 if (!is64Bit && VT != LLT::scalar(32)) 16384 report_fatal_error("Invalid register global variable type"); 16385 16386 Register Reg = StringSwitch<Register>(RegName) 16387 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16388 .Case("r2", isPPC64 ? Register() : PPC::R2) 16389 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16390 .Default(Register()); 16391 16392 if (Reg) 16393 return Reg; 16394 report_fatal_error("Invalid register name global variable"); 16395 } 16396 16397 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16398 // 32-bit SVR4 ABI access everything as got-indirect. 16399 if (Subtarget.is32BitELFABI()) 16400 return true; 16401 16402 // AIX accesses everything indirectly through the TOC, which is similar to 16403 // the GOT. 16404 if (Subtarget.isAIXABI()) 16405 return true; 16406 16407 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16408 // If it is small or large code model, module locals are accessed 16409 // indirectly by loading their address from .toc/.got. 16410 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16411 return true; 16412 16413 // JumpTable and BlockAddress are accessed as got-indirect. 16414 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16415 return true; 16416 16417 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16418 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16419 16420 return false; 16421 } 16422 16423 bool 16424 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16425 // The PowerPC target isn't yet aware of offsets. 16426 return false; 16427 } 16428 16429 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16430 const CallInst &I, 16431 MachineFunction &MF, 16432 unsigned Intrinsic) const { 16433 switch (Intrinsic) { 16434 case Intrinsic::ppc_atomicrmw_xchg_i128: 16435 case Intrinsic::ppc_atomicrmw_add_i128: 16436 case Intrinsic::ppc_atomicrmw_sub_i128: 16437 case Intrinsic::ppc_atomicrmw_nand_i128: 16438 case Intrinsic::ppc_atomicrmw_and_i128: 16439 case Intrinsic::ppc_atomicrmw_or_i128: 16440 case Intrinsic::ppc_atomicrmw_xor_i128: 16441 case Intrinsic::ppc_cmpxchg_i128: 16442 Info.opc = ISD::INTRINSIC_W_CHAIN; 16443 Info.memVT = MVT::i128; 16444 Info.ptrVal = I.getArgOperand(0); 16445 Info.offset = 0; 16446 Info.align = Align(16); 16447 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16448 MachineMemOperand::MOVolatile; 16449 return true; 16450 case Intrinsic::ppc_atomic_load_i128: 16451 Info.opc = ISD::INTRINSIC_W_CHAIN; 16452 Info.memVT = MVT::i128; 16453 Info.ptrVal = I.getArgOperand(0); 16454 Info.offset = 0; 16455 Info.align = Align(16); 16456 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16457 return true; 16458 case Intrinsic::ppc_atomic_store_i128: 16459 Info.opc = ISD::INTRINSIC_VOID; 16460 Info.memVT = MVT::i128; 16461 Info.ptrVal = I.getArgOperand(2); 16462 Info.offset = 0; 16463 Info.align = Align(16); 16464 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16465 return true; 16466 case Intrinsic::ppc_altivec_lvx: 16467 case Intrinsic::ppc_altivec_lvxl: 16468 case Intrinsic::ppc_altivec_lvebx: 16469 case Intrinsic::ppc_altivec_lvehx: 16470 case Intrinsic::ppc_altivec_lvewx: 16471 case Intrinsic::ppc_vsx_lxvd2x: 16472 case Intrinsic::ppc_vsx_lxvw4x: 16473 case Intrinsic::ppc_vsx_lxvd2x_be: 16474 case Intrinsic::ppc_vsx_lxvw4x_be: 16475 case Intrinsic::ppc_vsx_lxvl: 16476 case Intrinsic::ppc_vsx_lxvll: { 16477 EVT VT; 16478 switch (Intrinsic) { 16479 case Intrinsic::ppc_altivec_lvebx: 16480 VT = MVT::i8; 16481 break; 16482 case Intrinsic::ppc_altivec_lvehx: 16483 VT = MVT::i16; 16484 break; 16485 case Intrinsic::ppc_altivec_lvewx: 16486 VT = MVT::i32; 16487 break; 16488 case Intrinsic::ppc_vsx_lxvd2x: 16489 case Intrinsic::ppc_vsx_lxvd2x_be: 16490 VT = MVT::v2f64; 16491 break; 16492 default: 16493 VT = MVT::v4i32; 16494 break; 16495 } 16496 16497 Info.opc = ISD::INTRINSIC_W_CHAIN; 16498 Info.memVT = VT; 16499 Info.ptrVal = I.getArgOperand(0); 16500 Info.offset = -VT.getStoreSize()+1; 16501 Info.size = 2*VT.getStoreSize()-1; 16502 Info.align = Align(1); 16503 Info.flags = MachineMemOperand::MOLoad; 16504 return true; 16505 } 16506 case Intrinsic::ppc_altivec_stvx: 16507 case Intrinsic::ppc_altivec_stvxl: 16508 case Intrinsic::ppc_altivec_stvebx: 16509 case Intrinsic::ppc_altivec_stvehx: 16510 case Intrinsic::ppc_altivec_stvewx: 16511 case Intrinsic::ppc_vsx_stxvd2x: 16512 case Intrinsic::ppc_vsx_stxvw4x: 16513 case Intrinsic::ppc_vsx_stxvd2x_be: 16514 case Intrinsic::ppc_vsx_stxvw4x_be: 16515 case Intrinsic::ppc_vsx_stxvl: 16516 case Intrinsic::ppc_vsx_stxvll: { 16517 EVT VT; 16518 switch (Intrinsic) { 16519 case Intrinsic::ppc_altivec_stvebx: 16520 VT = MVT::i8; 16521 break; 16522 case Intrinsic::ppc_altivec_stvehx: 16523 VT = MVT::i16; 16524 break; 16525 case Intrinsic::ppc_altivec_stvewx: 16526 VT = MVT::i32; 16527 break; 16528 case Intrinsic::ppc_vsx_stxvd2x: 16529 case Intrinsic::ppc_vsx_stxvd2x_be: 16530 VT = MVT::v2f64; 16531 break; 16532 default: 16533 VT = MVT::v4i32; 16534 break; 16535 } 16536 16537 Info.opc = ISD::INTRINSIC_VOID; 16538 Info.memVT = VT; 16539 Info.ptrVal = I.getArgOperand(1); 16540 Info.offset = -VT.getStoreSize()+1; 16541 Info.size = 2*VT.getStoreSize()-1; 16542 Info.align = Align(1); 16543 Info.flags = MachineMemOperand::MOStore; 16544 return true; 16545 } 16546 default: 16547 break; 16548 } 16549 16550 return false; 16551 } 16552 16553 /// It returns EVT::Other if the type should be determined using generic 16554 /// target-independent logic. 16555 EVT PPCTargetLowering::getOptimalMemOpType( 16556 const MemOp &Op, const AttributeList &FuncAttributes) const { 16557 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16558 // We should use Altivec/VSX loads and stores when available. For unaligned 16559 // addresses, unaligned VSX loads are only fast starting with the P8. 16560 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16561 (Op.isAligned(Align(16)) || 16562 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16563 return MVT::v4i32; 16564 } 16565 16566 if (Subtarget.isPPC64()) { 16567 return MVT::i64; 16568 } 16569 16570 return MVT::i32; 16571 } 16572 16573 /// Returns true if it is beneficial to convert a load of a constant 16574 /// to just the constant itself. 16575 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16576 Type *Ty) const { 16577 assert(Ty->isIntegerTy()); 16578 16579 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16580 return !(BitSize == 0 || BitSize > 64); 16581 } 16582 16583 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16584 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16585 return false; 16586 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16587 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16588 return NumBits1 == 64 && NumBits2 == 32; 16589 } 16590 16591 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16592 if (!VT1.isInteger() || !VT2.isInteger()) 16593 return false; 16594 unsigned NumBits1 = VT1.getSizeInBits(); 16595 unsigned NumBits2 = VT2.getSizeInBits(); 16596 return NumBits1 == 64 && NumBits2 == 32; 16597 } 16598 16599 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16600 // Generally speaking, zexts are not free, but they are free when they can be 16601 // folded with other operations. 16602 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16603 EVT MemVT = LD->getMemoryVT(); 16604 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16605 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16606 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16607 LD->getExtensionType() == ISD::ZEXTLOAD)) 16608 return true; 16609 } 16610 16611 // FIXME: Add other cases... 16612 // - 32-bit shifts with a zext to i64 16613 // - zext after ctlz, bswap, etc. 16614 // - zext after and by a constant mask 16615 16616 return TargetLowering::isZExtFree(Val, VT2); 16617 } 16618 16619 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16620 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16621 "invalid fpext types"); 16622 // Extending to float128 is not free. 16623 if (DestVT == MVT::f128) 16624 return false; 16625 return true; 16626 } 16627 16628 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16629 return isInt<16>(Imm) || isUInt<16>(Imm); 16630 } 16631 16632 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16633 return isInt<16>(Imm) || isUInt<16>(Imm); 16634 } 16635 16636 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16637 MachineMemOperand::Flags, 16638 bool *Fast) const { 16639 if (DisablePPCUnaligned) 16640 return false; 16641 16642 // PowerPC supports unaligned memory access for simple non-vector types. 16643 // Although accessing unaligned addresses is not as efficient as accessing 16644 // aligned addresses, it is generally more efficient than manual expansion, 16645 // and generally only traps for software emulation when crossing page 16646 // boundaries. 16647 16648 if (!VT.isSimple()) 16649 return false; 16650 16651 if (VT.isFloatingPoint() && !VT.isVector() && 16652 !Subtarget.allowsUnalignedFPAccess()) 16653 return false; 16654 16655 if (VT.getSimpleVT().isVector()) { 16656 if (Subtarget.hasVSX()) { 16657 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16658 VT != MVT::v4f32 && VT != MVT::v4i32) 16659 return false; 16660 } else { 16661 return false; 16662 } 16663 } 16664 16665 if (VT == MVT::ppcf128) 16666 return false; 16667 16668 if (Fast) 16669 *Fast = true; 16670 16671 return true; 16672 } 16673 16674 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16675 SDValue C) const { 16676 // Check integral scalar types. 16677 if (!VT.isScalarInteger()) 16678 return false; 16679 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16680 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16681 return false; 16682 // This transformation will generate >= 2 operations. But the following 16683 // cases will generate <= 2 instructions during ISEL. So exclude them. 16684 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16685 // HW instruction, ie. MULLI 16686 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16687 // instruction is needed than case 1, ie. MULLI and RLDICR 16688 int64_t Imm = ConstNode->getSExtValue(); 16689 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16690 Imm >>= Shift; 16691 if (isInt<16>(Imm)) 16692 return false; 16693 uint64_t UImm = static_cast<uint64_t>(Imm); 16694 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16695 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16696 return true; 16697 } 16698 return false; 16699 } 16700 16701 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16702 EVT VT) const { 16703 return isFMAFasterThanFMulAndFAdd( 16704 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16705 } 16706 16707 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16708 Type *Ty) const { 16709 switch (Ty->getScalarType()->getTypeID()) { 16710 case Type::FloatTyID: 16711 case Type::DoubleTyID: 16712 return true; 16713 case Type::FP128TyID: 16714 return Subtarget.hasP9Vector(); 16715 default: 16716 return false; 16717 } 16718 } 16719 16720 // FIXME: add more patterns which are not profitable to hoist. 16721 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16722 if (!I->hasOneUse()) 16723 return true; 16724 16725 Instruction *User = I->user_back(); 16726 assert(User && "A single use instruction with no uses."); 16727 16728 switch (I->getOpcode()) { 16729 case Instruction::FMul: { 16730 // Don't break FMA, PowerPC prefers FMA. 16731 if (User->getOpcode() != Instruction::FSub && 16732 User->getOpcode() != Instruction::FAdd) 16733 return true; 16734 16735 const TargetOptions &Options = getTargetMachine().Options; 16736 const Function *F = I->getFunction(); 16737 const DataLayout &DL = F->getParent()->getDataLayout(); 16738 Type *Ty = User->getOperand(0)->getType(); 16739 16740 return !( 16741 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16742 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16743 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16744 } 16745 case Instruction::Load: { 16746 // Don't break "store (load float*)" pattern, this pattern will be combined 16747 // to "store (load int32)" in later InstCombine pass. See function 16748 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16749 // cycles than loading a 32 bit integer. 16750 LoadInst *LI = cast<LoadInst>(I); 16751 // For the loads that combineLoadToOperationType does nothing, like 16752 // ordered load, it should be profitable to hoist them. 16753 // For swifterror load, it can only be used for pointer to pointer type, so 16754 // later type check should get rid of this case. 16755 if (!LI->isUnordered()) 16756 return true; 16757 16758 if (User->getOpcode() != Instruction::Store) 16759 return true; 16760 16761 if (I->getType()->getTypeID() != Type::FloatTyID) 16762 return true; 16763 16764 return false; 16765 } 16766 default: 16767 return true; 16768 } 16769 return true; 16770 } 16771 16772 const MCPhysReg * 16773 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16774 // LR is a callee-save register, but we must treat it as clobbered by any call 16775 // site. Hence we include LR in the scratch registers, which are in turn added 16776 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16777 // to CTR, which is used by any indirect call. 16778 static const MCPhysReg ScratchRegs[] = { 16779 PPC::X12, PPC::LR8, PPC::CTR8, 0 16780 }; 16781 16782 return ScratchRegs; 16783 } 16784 16785 Register PPCTargetLowering::getExceptionPointerRegister( 16786 const Constant *PersonalityFn) const { 16787 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16788 } 16789 16790 Register PPCTargetLowering::getExceptionSelectorRegister( 16791 const Constant *PersonalityFn) const { 16792 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16793 } 16794 16795 bool 16796 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16797 EVT VT , unsigned DefinedValues) const { 16798 if (VT == MVT::v2i64) 16799 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16800 16801 if (Subtarget.hasVSX()) 16802 return true; 16803 16804 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16805 } 16806 16807 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16808 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16809 return TargetLowering::getSchedulingPreference(N); 16810 16811 return Sched::ILP; 16812 } 16813 16814 // Create a fast isel object. 16815 FastISel * 16816 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16817 const TargetLibraryInfo *LibInfo) const { 16818 return PPC::createFastISel(FuncInfo, LibInfo); 16819 } 16820 16821 // 'Inverted' means the FMA opcode after negating one multiplicand. 16822 // For example, (fma -a b c) = (fnmsub a b c) 16823 static unsigned invertFMAOpcode(unsigned Opc) { 16824 switch (Opc) { 16825 default: 16826 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16827 case ISD::FMA: 16828 return PPCISD::FNMSUB; 16829 case PPCISD::FNMSUB: 16830 return ISD::FMA; 16831 } 16832 } 16833 16834 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16835 bool LegalOps, bool OptForSize, 16836 NegatibleCost &Cost, 16837 unsigned Depth) const { 16838 if (Depth > SelectionDAG::MaxRecursionDepth) 16839 return SDValue(); 16840 16841 unsigned Opc = Op.getOpcode(); 16842 EVT VT = Op.getValueType(); 16843 SDNodeFlags Flags = Op.getNode()->getFlags(); 16844 16845 switch (Opc) { 16846 case PPCISD::FNMSUB: 16847 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16848 break; 16849 16850 const TargetOptions &Options = getTargetMachine().Options; 16851 SDValue N0 = Op.getOperand(0); 16852 SDValue N1 = Op.getOperand(1); 16853 SDValue N2 = Op.getOperand(2); 16854 SDLoc Loc(Op); 16855 16856 NegatibleCost N2Cost = NegatibleCost::Expensive; 16857 SDValue NegN2 = 16858 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16859 16860 if (!NegN2) 16861 return SDValue(); 16862 16863 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16864 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16865 // These transformations may change sign of zeroes. For example, 16866 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16867 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16868 // Try and choose the cheaper one to negate. 16869 NegatibleCost N0Cost = NegatibleCost::Expensive; 16870 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16871 N0Cost, Depth + 1); 16872 16873 NegatibleCost N1Cost = NegatibleCost::Expensive; 16874 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16875 N1Cost, Depth + 1); 16876 16877 if (NegN0 && N0Cost <= N1Cost) { 16878 Cost = std::min(N0Cost, N2Cost); 16879 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16880 } else if (NegN1) { 16881 Cost = std::min(N1Cost, N2Cost); 16882 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16883 } 16884 } 16885 16886 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16887 if (isOperationLegal(ISD::FMA, VT)) { 16888 Cost = N2Cost; 16889 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16890 } 16891 16892 break; 16893 } 16894 16895 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16896 Cost, Depth); 16897 } 16898 16899 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16900 bool PPCTargetLowering::useLoadStackGuardNode() const { 16901 if (!Subtarget.isTargetLinux()) 16902 return TargetLowering::useLoadStackGuardNode(); 16903 return true; 16904 } 16905 16906 // Override to disable global variable loading on Linux and insert AIX canary 16907 // word declaration. 16908 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16909 if (Subtarget.isAIXABI()) { 16910 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16911 Type::getInt8PtrTy(M.getContext())); 16912 return; 16913 } 16914 if (!Subtarget.isTargetLinux()) 16915 return TargetLowering::insertSSPDeclarations(M); 16916 } 16917 16918 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16919 if (Subtarget.isAIXABI()) 16920 return M.getGlobalVariable(AIXSSPCanaryWordName); 16921 return TargetLowering::getSDagStackGuard(M); 16922 } 16923 16924 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16925 bool ForCodeSize) const { 16926 if (!VT.isSimple() || !Subtarget.hasVSX()) 16927 return false; 16928 16929 switch(VT.getSimpleVT().SimpleTy) { 16930 default: 16931 // For FP types that are currently not supported by PPC backend, return 16932 // false. Examples: f16, f80. 16933 return false; 16934 case MVT::f32: 16935 case MVT::f64: 16936 if (Subtarget.hasPrefixInstrs()) { 16937 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16938 return true; 16939 } 16940 LLVM_FALLTHROUGH; 16941 case MVT::ppcf128: 16942 return Imm.isPosZero(); 16943 } 16944 } 16945 16946 // For vector shift operation op, fold 16947 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16948 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16949 SelectionDAG &DAG) { 16950 SDValue N0 = N->getOperand(0); 16951 SDValue N1 = N->getOperand(1); 16952 EVT VT = N0.getValueType(); 16953 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16954 unsigned Opcode = N->getOpcode(); 16955 unsigned TargetOpcode; 16956 16957 switch (Opcode) { 16958 default: 16959 llvm_unreachable("Unexpected shift operation"); 16960 case ISD::SHL: 16961 TargetOpcode = PPCISD::SHL; 16962 break; 16963 case ISD::SRL: 16964 TargetOpcode = PPCISD::SRL; 16965 break; 16966 case ISD::SRA: 16967 TargetOpcode = PPCISD::SRA; 16968 break; 16969 } 16970 16971 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16972 N1->getOpcode() == ISD::AND) 16973 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16974 if (Mask->getZExtValue() == OpSizeInBits - 1) 16975 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16976 16977 return SDValue(); 16978 } 16979 16980 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16981 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16982 return Value; 16983 16984 SDValue N0 = N->getOperand(0); 16985 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16986 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16987 N0.getOpcode() != ISD::SIGN_EXTEND || 16988 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16989 N->getValueType(0) != MVT::i64) 16990 return SDValue(); 16991 16992 // We can't save an operation here if the value is already extended, and 16993 // the existing shift is easier to combine. 16994 SDValue ExtsSrc = N0.getOperand(0); 16995 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16996 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16997 return SDValue(); 16998 16999 SDLoc DL(N0); 17000 SDValue ShiftBy = SDValue(CN1, 0); 17001 // We want the shift amount to be i32 on the extswli, but the shift could 17002 // have an i64. 17003 if (ShiftBy.getValueType() == MVT::i64) 17004 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 17005 17006 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 17007 ShiftBy); 17008 } 17009 17010 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 17011 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17012 return Value; 17013 17014 return SDValue(); 17015 } 17016 17017 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 17018 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17019 return Value; 17020 17021 return SDValue(); 17022 } 17023 17024 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 17025 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 17026 // When C is zero, the equation (addi Z, -C) can be simplified to Z 17027 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 17028 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 17029 const PPCSubtarget &Subtarget) { 17030 if (!Subtarget.isPPC64()) 17031 return SDValue(); 17032 17033 SDValue LHS = N->getOperand(0); 17034 SDValue RHS = N->getOperand(1); 17035 17036 auto isZextOfCompareWithConstant = [](SDValue Op) { 17037 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17038 Op.getValueType() != MVT::i64) 17039 return false; 17040 17041 SDValue Cmp = Op.getOperand(0); 17042 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17043 Cmp.getOperand(0).getValueType() != MVT::i64) 17044 return false; 17045 17046 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17047 int64_t NegConstant = 0 - Constant->getSExtValue(); 17048 // Due to the limitations of the addi instruction, 17049 // -C is required to be [-32768, 32767]. 17050 return isInt<16>(NegConstant); 17051 } 17052 17053 return false; 17054 }; 17055 17056 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17057 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17058 17059 // If there is a pattern, canonicalize a zext operand to the RHS. 17060 if (LHSHasPattern && !RHSHasPattern) 17061 std::swap(LHS, RHS); 17062 else if (!LHSHasPattern && !RHSHasPattern) 17063 return SDValue(); 17064 17065 SDLoc DL(N); 17066 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17067 SDValue Cmp = RHS.getOperand(0); 17068 SDValue Z = Cmp.getOperand(0); 17069 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17070 int64_t NegConstant = 0 - Constant->getSExtValue(); 17071 17072 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17073 default: break; 17074 case ISD::SETNE: { 17075 // when C == 0 17076 // --> addze X, (addic Z, -1).carry 17077 // / 17078 // add X, (zext(setne Z, C))-- 17079 // \ when -32768 <= -C <= 32767 && C != 0 17080 // --> addze X, (addic (addi Z, -C), -1).carry 17081 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17082 DAG.getConstant(NegConstant, DL, MVT::i64)); 17083 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17084 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17085 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17086 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17087 SDValue(Addc.getNode(), 1)); 17088 } 17089 case ISD::SETEQ: { 17090 // when C == 0 17091 // --> addze X, (subfic Z, 0).carry 17092 // / 17093 // add X, (zext(sete Z, C))-- 17094 // \ when -32768 <= -C <= 32767 && C != 0 17095 // --> addze X, (subfic (addi Z, -C), 0).carry 17096 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17097 DAG.getConstant(NegConstant, DL, MVT::i64)); 17098 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17099 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17100 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17101 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17102 SDValue(Subc.getNode(), 1)); 17103 } 17104 } 17105 17106 return SDValue(); 17107 } 17108 17109 // Transform 17110 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17111 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17112 // In this case both C1 and C2 must be known constants. 17113 // C1+C2 must fit into a 34 bit signed integer. 17114 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17115 const PPCSubtarget &Subtarget) { 17116 if (!Subtarget.isUsingPCRelativeCalls()) 17117 return SDValue(); 17118 17119 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17120 // If we find that node try to cast the Global Address and the Constant. 17121 SDValue LHS = N->getOperand(0); 17122 SDValue RHS = N->getOperand(1); 17123 17124 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17125 std::swap(LHS, RHS); 17126 17127 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17128 return SDValue(); 17129 17130 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17131 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17132 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17133 17134 // Check that both casts succeeded. 17135 if (!GSDN || !ConstNode) 17136 return SDValue(); 17137 17138 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17139 SDLoc DL(GSDN); 17140 17141 // The signed int offset needs to fit in 34 bits. 17142 if (!isInt<34>(NewOffset)) 17143 return SDValue(); 17144 17145 // The new global address is a copy of the old global address except 17146 // that it has the updated Offset. 17147 SDValue GA = 17148 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17149 NewOffset, GSDN->getTargetFlags()); 17150 SDValue MatPCRel = 17151 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17152 return MatPCRel; 17153 } 17154 17155 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17156 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17157 return Value; 17158 17159 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17160 return Value; 17161 17162 return SDValue(); 17163 } 17164 17165 // Detect TRUNCATE operations on bitcasts of float128 values. 17166 // What we are looking for here is the situtation where we extract a subset 17167 // of bits from a 128 bit float. 17168 // This can be of two forms: 17169 // 1) BITCAST of f128 feeding TRUNCATE 17170 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17171 // The reason this is required is because we do not have a legal i128 type 17172 // and so we want to prevent having to store the f128 and then reload part 17173 // of it. 17174 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17175 DAGCombinerInfo &DCI) const { 17176 // If we are using CRBits then try that first. 17177 if (Subtarget.useCRBits()) { 17178 // Check if CRBits did anything and return that if it did. 17179 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17180 return CRTruncValue; 17181 } 17182 17183 SDLoc dl(N); 17184 SDValue Op0 = N->getOperand(0); 17185 17186 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17187 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17188 EVT VT = N->getValueType(0); 17189 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17190 return SDValue(); 17191 SDValue Sub = Op0.getOperand(0); 17192 if (Sub.getOpcode() == ISD::SUB) { 17193 SDValue SubOp0 = Sub.getOperand(0); 17194 SDValue SubOp1 = Sub.getOperand(1); 17195 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17196 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17197 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17198 SubOp1.getOperand(0), 17199 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17200 } 17201 } 17202 } 17203 17204 // Looking for a truncate of i128 to i64. 17205 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17206 return SDValue(); 17207 17208 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17209 17210 // SRL feeding TRUNCATE. 17211 if (Op0.getOpcode() == ISD::SRL) { 17212 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17213 // The right shift has to be by 64 bits. 17214 if (!ConstNode || ConstNode->getZExtValue() != 64) 17215 return SDValue(); 17216 17217 // Switch the element number to extract. 17218 EltToExtract = EltToExtract ? 0 : 1; 17219 // Update Op0 past the SRL. 17220 Op0 = Op0.getOperand(0); 17221 } 17222 17223 // BITCAST feeding a TRUNCATE possibly via SRL. 17224 if (Op0.getOpcode() == ISD::BITCAST && 17225 Op0.getValueType() == MVT::i128 && 17226 Op0.getOperand(0).getValueType() == MVT::f128) { 17227 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17228 return DCI.DAG.getNode( 17229 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17230 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17231 } 17232 return SDValue(); 17233 } 17234 17235 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17236 SelectionDAG &DAG = DCI.DAG; 17237 17238 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17239 if (!ConstOpOrElement) 17240 return SDValue(); 17241 17242 // An imul is usually smaller than the alternative sequence for legal type. 17243 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17244 isOperationLegal(ISD::MUL, N->getValueType(0))) 17245 return SDValue(); 17246 17247 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17248 switch (this->Subtarget.getCPUDirective()) { 17249 default: 17250 // TODO: enhance the condition for subtarget before pwr8 17251 return false; 17252 case PPC::DIR_PWR8: 17253 // type mul add shl 17254 // scalar 4 1 1 17255 // vector 7 2 2 17256 return true; 17257 case PPC::DIR_PWR9: 17258 case PPC::DIR_PWR10: 17259 case PPC::DIR_PWR_FUTURE: 17260 // type mul add shl 17261 // scalar 5 2 2 17262 // vector 7 2 2 17263 17264 // The cycle RATIO of related operations are showed as a table above. 17265 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17266 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17267 // are 4, it is always profitable; but for 3 instrs patterns 17268 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17269 // So we should only do it for vector type. 17270 return IsAddOne && IsNeg ? VT.isVector() : true; 17271 } 17272 }; 17273 17274 EVT VT = N->getValueType(0); 17275 SDLoc DL(N); 17276 17277 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17278 bool IsNeg = MulAmt.isNegative(); 17279 APInt MulAmtAbs = MulAmt.abs(); 17280 17281 if ((MulAmtAbs - 1).isPowerOf2()) { 17282 // (mul x, 2^N + 1) => (add (shl x, N), x) 17283 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17284 17285 if (!IsProfitable(IsNeg, true, VT)) 17286 return SDValue(); 17287 17288 SDValue Op0 = N->getOperand(0); 17289 SDValue Op1 = 17290 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17291 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17292 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17293 17294 if (!IsNeg) 17295 return Res; 17296 17297 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17298 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17299 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17300 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17301 17302 if (!IsProfitable(IsNeg, false, VT)) 17303 return SDValue(); 17304 17305 SDValue Op0 = N->getOperand(0); 17306 SDValue Op1 = 17307 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17308 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17309 17310 if (!IsNeg) 17311 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17312 else 17313 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17314 17315 } else { 17316 return SDValue(); 17317 } 17318 } 17319 17320 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17321 // in combiner since we need to check SD flags and other subtarget features. 17322 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17323 DAGCombinerInfo &DCI) const { 17324 SDValue N0 = N->getOperand(0); 17325 SDValue N1 = N->getOperand(1); 17326 SDValue N2 = N->getOperand(2); 17327 SDNodeFlags Flags = N->getFlags(); 17328 EVT VT = N->getValueType(0); 17329 SelectionDAG &DAG = DCI.DAG; 17330 const TargetOptions &Options = getTargetMachine().Options; 17331 unsigned Opc = N->getOpcode(); 17332 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17333 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17334 SDLoc Loc(N); 17335 17336 if (!isOperationLegal(ISD::FMA, VT)) 17337 return SDValue(); 17338 17339 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17340 // since (fnmsub a b c)=-0 while c-ab=+0. 17341 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17342 return SDValue(); 17343 17344 // (fma (fneg a) b c) => (fnmsub a b c) 17345 // (fnmsub (fneg a) b c) => (fma a b c) 17346 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17347 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17348 17349 // (fma a (fneg b) c) => (fnmsub a b c) 17350 // (fnmsub a (fneg b) c) => (fma a b c) 17351 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17352 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17353 17354 return SDValue(); 17355 } 17356 17357 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17358 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17359 if (!Subtarget.is64BitELFABI()) 17360 return false; 17361 17362 // If not a tail call then no need to proceed. 17363 if (!CI->isTailCall()) 17364 return false; 17365 17366 // If sibling calls have been disabled and tail-calls aren't guaranteed 17367 // there is no reason to duplicate. 17368 auto &TM = getTargetMachine(); 17369 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17370 return false; 17371 17372 // Can't tail call a function called indirectly, or if it has variadic args. 17373 const Function *Callee = CI->getCalledFunction(); 17374 if (!Callee || Callee->isVarArg()) 17375 return false; 17376 17377 // Make sure the callee and caller calling conventions are eligible for tco. 17378 const Function *Caller = CI->getParent()->getParent(); 17379 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17380 CI->getCallingConv())) 17381 return false; 17382 17383 // If the function is local then we have a good chance at tail-calling it 17384 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17385 } 17386 17387 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17388 if (!Subtarget.hasVSX()) 17389 return false; 17390 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17391 return true; 17392 return VT == MVT::f32 || VT == MVT::f64 || 17393 VT == MVT::v4f32 || VT == MVT::v2f64; 17394 } 17395 17396 bool PPCTargetLowering:: 17397 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17398 const Value *Mask = AndI.getOperand(1); 17399 // If the mask is suitable for andi. or andis. we should sink the and. 17400 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17401 // Can't handle constants wider than 64-bits. 17402 if (CI->getBitWidth() > 64) 17403 return false; 17404 int64_t ConstVal = CI->getZExtValue(); 17405 return isUInt<16>(ConstVal) || 17406 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17407 } 17408 17409 // For non-constant masks, we can always use the record-form and. 17410 return true; 17411 } 17412 17413 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17414 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17415 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17416 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17417 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17418 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17419 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17420 assert(Subtarget.hasP9Altivec() && 17421 "Only combine this when P9 altivec supported!"); 17422 EVT VT = N->getValueType(0); 17423 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17424 return SDValue(); 17425 17426 SelectionDAG &DAG = DCI.DAG; 17427 SDLoc dl(N); 17428 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17429 // Even for signed integers, if it's known to be positive (as signed 17430 // integer) due to zero-extended inputs. 17431 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17432 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17433 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17434 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17435 (SubOpcd1 == ISD::ZERO_EXTEND || 17436 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17437 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17438 N->getOperand(0)->getOperand(0), 17439 N->getOperand(0)->getOperand(1), 17440 DAG.getTargetConstant(0, dl, MVT::i32)); 17441 } 17442 17443 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17444 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17445 N->getOperand(0).hasOneUse()) { 17446 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17447 N->getOperand(0)->getOperand(0), 17448 N->getOperand(0)->getOperand(1), 17449 DAG.getTargetConstant(1, dl, MVT::i32)); 17450 } 17451 } 17452 17453 return SDValue(); 17454 } 17455 17456 // For type v4i32/v8ii16/v16i8, transform 17457 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17458 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17459 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17460 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17461 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17462 DAGCombinerInfo &DCI) const { 17463 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17464 assert(Subtarget.hasP9Altivec() && 17465 "Only combine this when P9 altivec supported!"); 17466 17467 SelectionDAG &DAG = DCI.DAG; 17468 SDLoc dl(N); 17469 SDValue Cond = N->getOperand(0); 17470 SDValue TrueOpnd = N->getOperand(1); 17471 SDValue FalseOpnd = N->getOperand(2); 17472 EVT VT = N->getOperand(1).getValueType(); 17473 17474 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17475 FalseOpnd.getOpcode() != ISD::SUB) 17476 return SDValue(); 17477 17478 // ABSD only available for type v4i32/v8i16/v16i8 17479 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17480 return SDValue(); 17481 17482 // At least to save one more dependent computation 17483 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17484 return SDValue(); 17485 17486 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17487 17488 // Can only handle unsigned comparison here 17489 switch (CC) { 17490 default: 17491 return SDValue(); 17492 case ISD::SETUGT: 17493 case ISD::SETUGE: 17494 break; 17495 case ISD::SETULT: 17496 case ISD::SETULE: 17497 std::swap(TrueOpnd, FalseOpnd); 17498 break; 17499 } 17500 17501 SDValue CmpOpnd1 = Cond.getOperand(0); 17502 SDValue CmpOpnd2 = Cond.getOperand(1); 17503 17504 // SETCC CmpOpnd1 CmpOpnd2 cond 17505 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17506 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17507 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17508 TrueOpnd.getOperand(1) == CmpOpnd2 && 17509 FalseOpnd.getOperand(0) == CmpOpnd2 && 17510 FalseOpnd.getOperand(1) == CmpOpnd1) { 17511 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17512 CmpOpnd1, CmpOpnd2, 17513 DAG.getTargetConstant(0, dl, MVT::i32)); 17514 } 17515 17516 return SDValue(); 17517 } 17518 17519 /// getAddrModeForFlags - Based on the set of address flags, select the most 17520 /// optimal instruction format to match by. 17521 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17522 // This is not a node we should be handling here. 17523 if (Flags == PPC::MOF_None) 17524 return PPC::AM_None; 17525 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17526 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17527 if ((Flags & FlagSet) == FlagSet) 17528 return PPC::AM_DForm; 17529 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17530 if ((Flags & FlagSet) == FlagSet) 17531 return PPC::AM_DSForm; 17532 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17533 if ((Flags & FlagSet) == FlagSet) 17534 return PPC::AM_DQForm; 17535 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17536 if ((Flags & FlagSet) == FlagSet) 17537 return PPC::AM_PrefixDForm; 17538 // If no other forms are selected, return an X-Form as it is the most 17539 // general addressing mode. 17540 return PPC::AM_XForm; 17541 } 17542 17543 /// Set alignment flags based on whether or not the Frame Index is aligned. 17544 /// Utilized when computing flags for address computation when selecting 17545 /// load and store instructions. 17546 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17547 SelectionDAG &DAG) { 17548 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17549 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17550 if (!FI) 17551 return; 17552 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17553 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17554 // If this is (add $FI, $S16Imm), the alignment flags are already set 17555 // based on the immediate. We just need to clear the alignment flags 17556 // if the FI alignment is weaker. 17557 if ((FrameIndexAlign % 4) != 0) 17558 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17559 if ((FrameIndexAlign % 16) != 0) 17560 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17561 // If the address is a plain FrameIndex, set alignment flags based on 17562 // FI alignment. 17563 if (!IsAdd) { 17564 if ((FrameIndexAlign % 4) == 0) 17565 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17566 if ((FrameIndexAlign % 16) == 0) 17567 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17568 } 17569 } 17570 17571 /// Given a node, compute flags that are used for address computation when 17572 /// selecting load and store instructions. The flags computed are stored in 17573 /// FlagSet. This function takes into account whether the node is a constant, 17574 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17575 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17576 SelectionDAG &DAG) { 17577 // Set the alignment flags for the node depending on if the node is 17578 // 4-byte or 16-byte aligned. 17579 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17580 if ((Imm & 0x3) == 0) 17581 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17582 if ((Imm & 0xf) == 0) 17583 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17584 }; 17585 17586 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17587 // All 32-bit constants can be computed as LIS + Disp. 17588 const APInt &ConstImm = CN->getAPIntValue(); 17589 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17590 FlagSet |= PPC::MOF_AddrIsSImm32; 17591 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17592 setAlignFlagsForFI(N, FlagSet, DAG); 17593 } 17594 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17595 FlagSet |= PPC::MOF_RPlusSImm34; 17596 else // Let constant materialization handle large constants. 17597 FlagSet |= PPC::MOF_NotAddNorCst; 17598 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17599 // This address can be represented as an addition of: 17600 // - Register + Imm16 (possibly a multiple of 4/16) 17601 // - Register + Imm34 17602 // - Register + PPCISD::Lo 17603 // - Register + Register 17604 // In any case, we won't have to match this as Base + Zero. 17605 SDValue RHS = N.getOperand(1); 17606 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17607 const APInt &ConstImm = CN->getAPIntValue(); 17608 if (ConstImm.isSignedIntN(16)) { 17609 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17610 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17611 setAlignFlagsForFI(N, FlagSet, DAG); 17612 } 17613 if (ConstImm.isSignedIntN(34)) 17614 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17615 else 17616 FlagSet |= PPC::MOF_RPlusR; // Register. 17617 } else if (RHS.getOpcode() == PPCISD::Lo && 17618 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17619 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17620 else 17621 FlagSet |= PPC::MOF_RPlusR; 17622 } else { // The address computation is not a constant or an addition. 17623 setAlignFlagsForFI(N, FlagSet, DAG); 17624 FlagSet |= PPC::MOF_NotAddNorCst; 17625 } 17626 } 17627 17628 static bool isPCRelNode(SDValue N) { 17629 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17630 isValidPCRelNode<ConstantPoolSDNode>(N) || 17631 isValidPCRelNode<GlobalAddressSDNode>(N) || 17632 isValidPCRelNode<JumpTableSDNode>(N) || 17633 isValidPCRelNode<BlockAddressSDNode>(N)); 17634 } 17635 17636 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17637 /// the address flags of the load/store instruction that is to be matched. 17638 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17639 SelectionDAG &DAG) const { 17640 unsigned FlagSet = PPC::MOF_None; 17641 17642 // Compute subtarget flags. 17643 if (!Subtarget.hasP9Vector()) 17644 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17645 else { 17646 FlagSet |= PPC::MOF_SubtargetP9; 17647 if (Subtarget.hasPrefixInstrs()) 17648 FlagSet |= PPC::MOF_SubtargetP10; 17649 } 17650 if (Subtarget.hasSPE()) 17651 FlagSet |= PPC::MOF_SubtargetSPE; 17652 17653 // Check if we have a PCRel node and return early. 17654 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17655 return FlagSet; 17656 17657 // If the node is the paired load/store intrinsics, compute flags for 17658 // address computation and return early. 17659 unsigned ParentOp = Parent->getOpcode(); 17660 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17661 (ParentOp == ISD::INTRINSIC_VOID))) { 17662 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17663 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17664 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17665 ? Parent->getOperand(2) 17666 : Parent->getOperand(3); 17667 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17668 FlagSet |= PPC::MOF_Vector; 17669 return FlagSet; 17670 } 17671 } 17672 17673 // Mark this as something we don't want to handle here if it is atomic 17674 // or pre-increment instruction. 17675 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17676 if (LSB->isIndexed()) 17677 return PPC::MOF_None; 17678 17679 // Compute in-memory type flags. This is based on if there are scalars, 17680 // floats or vectors. 17681 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17682 assert(MN && "Parent should be a MemSDNode!"); 17683 EVT MemVT = MN->getMemoryVT(); 17684 unsigned Size = MemVT.getSizeInBits(); 17685 if (MemVT.isScalarInteger()) { 17686 assert(Size <= 128 && 17687 "Not expecting scalar integers larger than 16 bytes!"); 17688 if (Size < 32) 17689 FlagSet |= PPC::MOF_SubWordInt; 17690 else if (Size == 32) 17691 FlagSet |= PPC::MOF_WordInt; 17692 else 17693 FlagSet |= PPC::MOF_DoubleWordInt; 17694 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17695 if (Size == 128) 17696 FlagSet |= PPC::MOF_Vector; 17697 else if (Size == 256) { 17698 assert(Subtarget.pairedVectorMemops() && 17699 "256-bit vectors are only available when paired vector memops is " 17700 "enabled!"); 17701 FlagSet |= PPC::MOF_Vector; 17702 } else 17703 llvm_unreachable("Not expecting illegal vectors!"); 17704 } else { // Floating point type: can be scalar, f128 or vector types. 17705 if (Size == 32 || Size == 64) 17706 FlagSet |= PPC::MOF_ScalarFloat; 17707 else if (MemVT == MVT::f128 || MemVT.isVector()) 17708 FlagSet |= PPC::MOF_Vector; 17709 else 17710 llvm_unreachable("Not expecting illegal scalar floats!"); 17711 } 17712 17713 // Compute flags for address computation. 17714 computeFlagsForAddressComputation(N, FlagSet, DAG); 17715 17716 // Compute type extension flags. 17717 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17718 switch (LN->getExtensionType()) { 17719 case ISD::SEXTLOAD: 17720 FlagSet |= PPC::MOF_SExt; 17721 break; 17722 case ISD::EXTLOAD: 17723 case ISD::ZEXTLOAD: 17724 FlagSet |= PPC::MOF_ZExt; 17725 break; 17726 case ISD::NON_EXTLOAD: 17727 FlagSet |= PPC::MOF_NoExt; 17728 break; 17729 } 17730 } else 17731 FlagSet |= PPC::MOF_NoExt; 17732 17733 // For integers, no extension is the same as zero extension. 17734 // We set the extension mode to zero extension so we don't have 17735 // to add separate entries in AddrModesMap for loads and stores. 17736 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17737 FlagSet |= PPC::MOF_ZExt; 17738 FlagSet &= ~PPC::MOF_NoExt; 17739 } 17740 17741 // If we don't have prefixed instructions, 34-bit constants should be 17742 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17743 bool IsNonP1034BitConst = 17744 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17745 FlagSet) == PPC::MOF_RPlusSImm34; 17746 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17747 IsNonP1034BitConst) 17748 FlagSet |= PPC::MOF_NotAddNorCst; 17749 17750 return FlagSet; 17751 } 17752 17753 /// SelectForceXFormMode - Given the specified address, force it to be 17754 /// represented as an indexed [r+r] operation (an XForm instruction). 17755 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17756 SDValue &Base, 17757 SelectionDAG &DAG) const { 17758 17759 PPC::AddrMode Mode = PPC::AM_XForm; 17760 int16_t ForceXFormImm = 0; 17761 if (provablyDisjointOr(DAG, N) && 17762 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17763 Disp = N.getOperand(0); 17764 Base = N.getOperand(1); 17765 return Mode; 17766 } 17767 17768 // If the address is the result of an add, we will utilize the fact that the 17769 // address calculation includes an implicit add. However, we can reduce 17770 // register pressure if we do not materialize a constant just for use as the 17771 // index register. We only get rid of the add if it is not an add of a 17772 // value and a 16-bit signed constant and both have a single use. 17773 if (N.getOpcode() == ISD::ADD && 17774 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17775 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17776 Disp = N.getOperand(0); 17777 Base = N.getOperand(1); 17778 return Mode; 17779 } 17780 17781 // Otherwise, use R0 as the base register. 17782 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17783 N.getValueType()); 17784 Base = N; 17785 17786 return Mode; 17787 } 17788 17789 bool PPCTargetLowering::splitValueIntoRegisterParts( 17790 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17791 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17792 EVT ValVT = Val.getValueType(); 17793 // If we are splitting a scalar integer into f64 parts (i.e. so they 17794 // can be placed into VFRC registers), we need to zero extend and 17795 // bitcast the values. This will ensure the value is placed into a 17796 // VSR using direct moves or stack operations as needed. 17797 if (PartVT == MVT::f64 && 17798 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17799 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17800 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17801 Parts[0] = Val; 17802 return true; 17803 } 17804 return false; 17805 } 17806 17807 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 17808 SelectionDAG &DAG) const { 17809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17810 TargetLowering::CallLoweringInfo CLI(DAG); 17811 EVT RetVT = Op.getValueType(); 17812 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 17813 SDValue Callee = 17814 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 17815 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 17816 TargetLowering::ArgListTy Args; 17817 TargetLowering::ArgListEntry Entry; 17818 for (const SDValue &N : Op->op_values()) { 17819 EVT ArgVT = N.getValueType(); 17820 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 17821 Entry.Node = N; 17822 Entry.Ty = ArgTy; 17823 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 17824 Entry.IsZExt = !Entry.IsSExt; 17825 Args.push_back(Entry); 17826 } 17827 17828 SDValue InChain = DAG.getEntryNode(); 17829 SDValue TCChain = InChain; 17830 const Function &F = DAG.getMachineFunction().getFunction(); 17831 bool isTailCall = 17832 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 17833 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 17834 if (isTailCall) 17835 InChain = TCChain; 17836 CLI.setDebugLoc(SDLoc(Op)) 17837 .setChain(InChain) 17838 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 17839 .setTailCall(isTailCall) 17840 .setSExtResult(SignExtend) 17841 .setZExtResult(!SignExtend) 17842 .setIsPostTypeLegalization(true); 17843 return TLI.LowerCallTo(CLI).first; 17844 } 17845 17846 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 17847 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 17848 SelectionDAG &DAG) const { 17849 if (Op.getValueType() == MVT::f32) 17850 return lowerToLibCall(LibCallFloatName, Op, DAG); 17851 17852 if (Op.getValueType() == MVT::f64) 17853 return lowerToLibCall(LibCallDoubleName, Op, DAG); 17854 17855 return SDValue(); 17856 } 17857 17858 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 17859 SDNodeFlags Flags = Op.getNode()->getFlags(); 17860 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 17861 Flags.hasNoNaNs() && Flags.hasNoInfs(); 17862 } 17863 17864 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 17865 return Op.getNode()->getFlags().hasApproximateFuncs(); 17866 } 17867 17868 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 17869 const char *LibCallFloatName, 17870 const char *LibCallDoubleNameFinite, 17871 const char *LibCallFloatNameFinite, 17872 SDValue Op, 17873 SelectionDAG &DAG) const { 17874 if (!isLowringToMASSSafe(Op)) 17875 return SDValue(); 17876 17877 if (!isLowringToMASSFiniteSafe(Op)) 17878 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 17879 DAG); 17880 17881 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 17882 LibCallDoubleNameFinite, Op, DAG); 17883 } 17884 17885 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 17886 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 17887 "__xl_powf_finite", Op, DAG); 17888 } 17889 17890 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 17891 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 17892 "__xl_sinf_finite", Op, DAG); 17893 } 17894 17895 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 17896 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 17897 "__xl_cosf_finite", Op, DAG); 17898 } 17899 17900 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 17901 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 17902 "__xl_logf_finite", Op, DAG); 17903 } 17904 17905 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 17906 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 17907 "__xl_log10f_finite", Op, DAG); 17908 } 17909 17910 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 17911 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 17912 "__xl_expf_finite", Op, DAG); 17913 } 17914 17915 // If we happen to match to an aligned D-Form, check if the Frame Index is 17916 // adequately aligned. If it is not, reset the mode to match to X-Form. 17917 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17918 PPC::AddrMode &Mode) { 17919 if (!isa<FrameIndexSDNode>(N)) 17920 return; 17921 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17922 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17923 Mode = PPC::AM_XForm; 17924 } 17925 17926 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17927 /// compute the address flags of the node, get the optimal address mode based 17928 /// on the flags, and set the Base and Disp based on the address mode. 17929 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17930 SDValue N, SDValue &Disp, 17931 SDValue &Base, 17932 SelectionDAG &DAG, 17933 MaybeAlign Align) const { 17934 SDLoc DL(Parent); 17935 17936 // Compute the address flags. 17937 unsigned Flags = computeMOFlags(Parent, N, DAG); 17938 17939 // Get the optimal address mode based on the Flags. 17940 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17941 17942 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17943 // Select an X-Form load if it is not. 17944 setXFormForUnalignedFI(N, Flags, Mode); 17945 17946 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17947 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17948 assert(Subtarget.isUsingPCRelativeCalls() && 17949 "Must be using PC-Relative calls when a valid PC-Relative node is " 17950 "present!"); 17951 Mode = PPC::AM_PCRel; 17952 } 17953 17954 // Set Base and Disp accordingly depending on the address mode. 17955 switch (Mode) { 17956 case PPC::AM_DForm: 17957 case PPC::AM_DSForm: 17958 case PPC::AM_DQForm: { 17959 // This is a register plus a 16-bit immediate. The base will be the 17960 // register and the displacement will be the immediate unless it 17961 // isn't sufficiently aligned. 17962 if (Flags & PPC::MOF_RPlusSImm16) { 17963 SDValue Op0 = N.getOperand(0); 17964 SDValue Op1 = N.getOperand(1); 17965 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17966 if (!Align || isAligned(*Align, Imm)) { 17967 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17968 Base = Op0; 17969 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17970 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17971 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17972 } 17973 break; 17974 } 17975 } 17976 // This is a register plus the @lo relocation. The base is the register 17977 // and the displacement is the global address. 17978 else if (Flags & PPC::MOF_RPlusLo) { 17979 Disp = N.getOperand(1).getOperand(0); // The global address. 17980 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17981 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17982 Disp.getOpcode() == ISD::TargetConstantPool || 17983 Disp.getOpcode() == ISD::TargetJumpTable); 17984 Base = N.getOperand(0); 17985 break; 17986 } 17987 // This is a constant address at most 32 bits. The base will be 17988 // zero or load-immediate-shifted and the displacement will be 17989 // the low 16 bits of the address. 17990 else if (Flags & PPC::MOF_AddrIsSImm32) { 17991 auto *CN = cast<ConstantSDNode>(N); 17992 EVT CNType = CN->getValueType(0); 17993 uint64_t CNImm = CN->getZExtValue(); 17994 // If this address fits entirely in a 16-bit sext immediate field, codegen 17995 // this as "d, 0". 17996 int16_t Imm; 17997 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17998 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17999 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18000 CNType); 18001 break; 18002 } 18003 // Handle 32-bit sext immediate with LIS + Addr mode. 18004 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 18005 (!Align || isAligned(*Align, CNImm))) { 18006 int32_t Addr = (int32_t)CNImm; 18007 // Otherwise, break this down into LIS + Disp. 18008 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 18009 Base = 18010 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 18011 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 18012 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 18013 break; 18014 } 18015 } 18016 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 18017 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 18018 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 18019 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18020 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18021 } else 18022 Base = N; 18023 break; 18024 } 18025 case PPC::AM_PrefixDForm: { 18026 int64_t Imm34 = 0; 18027 unsigned Opcode = N.getOpcode(); 18028 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 18029 (isIntS34Immediate(N.getOperand(1), Imm34))) { 18030 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 18031 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18032 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 18033 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18034 else 18035 Base = N.getOperand(0); 18036 } else if (isIntS34Immediate(N, Imm34)) { 18037 // The address is a 34-bit signed immediate. 18038 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18039 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18040 } 18041 break; 18042 } 18043 case PPC::AM_PCRel: { 18044 // When selecting PC-Relative instructions, "Base" is not utilized as 18045 // we select the address as [PC+imm]. 18046 Disp = N; 18047 break; 18048 } 18049 case PPC::AM_None: 18050 break; 18051 default: { // By default, X-Form is always available to be selected. 18052 // When a frame index is not aligned, we also match by XForm. 18053 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18054 Base = FI ? N : N.getOperand(1); 18055 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18056 N.getValueType()) 18057 : N.getOperand(0); 18058 break; 18059 } 18060 } 18061 return Mode; 18062 } 18063 18064 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18065 bool Return, 18066 bool IsVarArg) const { 18067 switch (CC) { 18068 case CallingConv::Cold: 18069 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 18070 default: 18071 return CC_PPC64_ELF_FIS; 18072 } 18073 } 18074 18075 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { 18076 // TODO: 16-byte atomic type support for AIX is in progress; we should be able 18077 // to inline 16-byte atomic ops on AIX too in the future. 18078 return Subtarget.isPPC64() && 18079 (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) && 18080 Subtarget.hasQuadwordAtomics(); 18081 } 18082 18083 TargetLowering::AtomicExpansionKind 18084 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18085 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18086 if (shouldInlineQuadwordAtomics() && Size == 128) 18087 return AtomicExpansionKind::MaskedIntrinsic; 18088 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18089 } 18090 18091 TargetLowering::AtomicExpansionKind 18092 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18093 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18094 if (shouldInlineQuadwordAtomics() && Size == 128) 18095 return AtomicExpansionKind::MaskedIntrinsic; 18096 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18097 } 18098 18099 static Intrinsic::ID 18100 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18101 switch (BinOp) { 18102 default: 18103 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18104 case AtomicRMWInst::Xchg: 18105 return Intrinsic::ppc_atomicrmw_xchg_i128; 18106 case AtomicRMWInst::Add: 18107 return Intrinsic::ppc_atomicrmw_add_i128; 18108 case AtomicRMWInst::Sub: 18109 return Intrinsic::ppc_atomicrmw_sub_i128; 18110 case AtomicRMWInst::And: 18111 return Intrinsic::ppc_atomicrmw_and_i128; 18112 case AtomicRMWInst::Or: 18113 return Intrinsic::ppc_atomicrmw_or_i128; 18114 case AtomicRMWInst::Xor: 18115 return Intrinsic::ppc_atomicrmw_xor_i128; 18116 case AtomicRMWInst::Nand: 18117 return Intrinsic::ppc_atomicrmw_nand_i128; 18118 } 18119 } 18120 18121 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18122 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18123 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18124 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18125 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18126 Type *ValTy = Incr->getType(); 18127 assert(ValTy->getPrimitiveSizeInBits() == 128); 18128 Function *RMW = Intrinsic::getDeclaration( 18129 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18130 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18131 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18132 Value *IncrHi = 18133 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18134 Value *Addr = 18135 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18136 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18137 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18138 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18139 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18140 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18141 return Builder.CreateOr( 18142 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18143 } 18144 18145 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18146 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18147 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18148 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18149 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18150 Type *ValTy = CmpVal->getType(); 18151 assert(ValTy->getPrimitiveSizeInBits() == 128); 18152 Function *IntCmpXchg = 18153 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18154 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18155 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18156 Value *CmpHi = 18157 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18158 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18159 Value *NewHi = 18160 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18161 Value *Addr = 18162 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18163 emitLeadingFence(Builder, CI, Ord); 18164 Value *LoHi = 18165 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18166 emitTrailingFence(Builder, CI, Ord); 18167 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18168 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18169 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18170 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18171 return Builder.CreateOr( 18172 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18173 } 18174