1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 121 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 122 123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 124 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 125 126 STATISTIC(NumTailCalls, "Number of tail calls"); 127 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 128 129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 130 131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 132 133 // FIXME: Remove this once the bug has been fixed! 134 extern cl::opt<bool> ANDIGlueBug; 135 136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 137 const PPCSubtarget &STI) 138 : TargetLowering(TM), Subtarget(STI) { 139 // Use _setjmp/_longjmp instead of setjmp/longjmp. 140 setUseUnderscoreSetJmp(true); 141 setUseUnderscoreLongJmp(true); 142 143 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 144 // arguments are at least 4/8 bytes aligned. 145 bool isPPC64 = Subtarget.isPPC64(); 146 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 147 148 // Set up the register classes. 149 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 150 if (!useSoftFloat()) { 151 if (hasSPE()) { 152 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 153 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 154 } else { 155 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 156 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 157 } 158 } 159 160 // Match BITREVERSE to customized fast code sequence in the td file. 161 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 162 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 163 164 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 165 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 166 167 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 168 for (MVT VT : MVT::integer_valuetypes()) { 169 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 171 } 172 173 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 174 175 // PowerPC has pre-inc load and store's. 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 178 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 179 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 180 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 182 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 183 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 184 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 186 if (!Subtarget.hasSPE()) { 187 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 188 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 189 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 190 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 191 } 192 193 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 194 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 195 for (MVT VT : ScalarIntVTs) { 196 setOperationAction(ISD::ADDC, VT, Legal); 197 setOperationAction(ISD::ADDE, VT, Legal); 198 setOperationAction(ISD::SUBC, VT, Legal); 199 setOperationAction(ISD::SUBE, VT, Legal); 200 } 201 202 if (Subtarget.useCRBits()) { 203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 204 205 if (isPPC64 || Subtarget.hasFPCVT()) { 206 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 207 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 208 isPPC64 ? MVT::i64 : MVT::i32); 209 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 210 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 211 isPPC64 ? MVT::i64 : MVT::i32); 212 } else { 213 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 214 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 215 } 216 217 // PowerPC does not support direct load/store of condition registers. 218 setOperationAction(ISD::LOAD, MVT::i1, Custom); 219 setOperationAction(ISD::STORE, MVT::i1, Custom); 220 221 // FIXME: Remove this once the ANDI glue bug is fixed: 222 if (ANDIGlueBug) 223 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 224 225 for (MVT VT : MVT::integer_valuetypes()) { 226 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 227 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 228 setTruncStoreAction(VT, MVT::i1, Expand); 229 } 230 231 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 232 } 233 234 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 235 // PPC (the libcall is not available). 236 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 237 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 238 239 // We do not currently implement these libm ops for PowerPC. 240 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 242 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 243 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 244 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 245 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 246 247 // PowerPC has no SREM/UREM instructions unless we are on P9 248 // On P9 we may use a hardware instruction to compute the remainder. 249 // The instructions are not legalized directly because in the cases where the 250 // result of both the remainder and the division is required it is more 251 // efficient to compute the remainder from the result of the division rather 252 // than use the remainder instruction. 253 if (Subtarget.isISA3_0()) { 254 setOperationAction(ISD::SREM, MVT::i32, Custom); 255 setOperationAction(ISD::UREM, MVT::i32, Custom); 256 setOperationAction(ISD::SREM, MVT::i64, Custom); 257 setOperationAction(ISD::UREM, MVT::i64, Custom); 258 } else { 259 setOperationAction(ISD::SREM, MVT::i32, Expand); 260 setOperationAction(ISD::UREM, MVT::i32, Expand); 261 setOperationAction(ISD::SREM, MVT::i64, Expand); 262 setOperationAction(ISD::UREM, MVT::i64, Expand); 263 } 264 265 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 266 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 267 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 268 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 269 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 270 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 271 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 272 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 273 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 274 275 // We don't support sin/cos/sqrt/fmod/pow 276 setOperationAction(ISD::FSIN , MVT::f64, Expand); 277 setOperationAction(ISD::FCOS , MVT::f64, Expand); 278 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 279 setOperationAction(ISD::FREM , MVT::f64, Expand); 280 setOperationAction(ISD::FPOW , MVT::f64, Expand); 281 setOperationAction(ISD::FSIN , MVT::f32, Expand); 282 setOperationAction(ISD::FCOS , MVT::f32, Expand); 283 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 284 setOperationAction(ISD::FREM , MVT::f32, Expand); 285 setOperationAction(ISD::FPOW , MVT::f32, Expand); 286 if (Subtarget.hasSPE()) { 287 setOperationAction(ISD::FMA , MVT::f64, Expand); 288 setOperationAction(ISD::FMA , MVT::f32, Expand); 289 } else { 290 setOperationAction(ISD::FMA , MVT::f64, Legal); 291 setOperationAction(ISD::FMA , MVT::f32, Legal); 292 } 293 294 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 295 296 // If we're enabling GP optimizations, use hardware square root 297 if (!Subtarget.hasFSQRT() && 298 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 299 Subtarget.hasFRE())) 300 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 301 302 if (!Subtarget.hasFSQRT() && 303 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 304 Subtarget.hasFRES())) 305 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 306 307 if (Subtarget.hasFCPSGN()) { 308 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 309 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 310 } else { 311 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 312 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 313 } 314 315 if (Subtarget.hasFPRND()) { 316 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 317 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 318 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 319 setOperationAction(ISD::FROUND, MVT::f64, Legal); 320 321 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 322 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 323 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 324 setOperationAction(ISD::FROUND, MVT::f32, Legal); 325 } 326 327 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 328 // to speed up scalar BSWAP64. 329 // CTPOP or CTTZ were introduced in P8/P9 respectively 330 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 331 if (Subtarget.hasP9Vector()) 332 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 333 else 334 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 335 if (Subtarget.isISA3_0()) { 336 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 337 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 338 } else { 339 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 340 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 341 } 342 343 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 344 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 345 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 346 } else { 347 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 348 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 349 } 350 351 // PowerPC does not have ROTR 352 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 353 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 354 355 if (!Subtarget.useCRBits()) { 356 // PowerPC does not have Select 357 setOperationAction(ISD::SELECT, MVT::i32, Expand); 358 setOperationAction(ISD::SELECT, MVT::i64, Expand); 359 setOperationAction(ISD::SELECT, MVT::f32, Expand); 360 setOperationAction(ISD::SELECT, MVT::f64, Expand); 361 } 362 363 // PowerPC wants to turn select_cc of FP into fsel when possible. 364 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 365 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 366 367 // PowerPC wants to optimize integer setcc a bit 368 if (!Subtarget.useCRBits()) 369 setOperationAction(ISD::SETCC, MVT::i32, Custom); 370 371 // PowerPC does not have BRCOND which requires SetCC 372 if (!Subtarget.useCRBits()) 373 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 374 375 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 376 377 if (Subtarget.hasSPE()) { 378 // SPE has built-in conversions 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 380 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 381 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 382 } else { 383 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 384 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 385 386 // PowerPC does not have [U|S]INT_TO_FP 387 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 388 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 389 } 390 391 if (Subtarget.hasDirectMove() && isPPC64) { 392 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 393 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 394 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 395 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 396 } else { 397 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 398 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 399 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 400 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 401 } 402 403 // We cannot sextinreg(i1). Expand to shifts. 404 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 405 406 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 407 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 408 // support continuation, user-level threading, and etc.. As a result, no 409 // other SjLj exception interfaces are implemented and please don't build 410 // your own exception handling based on them. 411 // LLVM/Clang supports zero-cost DWARF exception handling. 412 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 413 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 414 415 // We want to legalize GlobalAddress and ConstantPool nodes into the 416 // appropriate instructions to materialize the address. 417 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 418 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 419 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 420 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 421 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 422 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 423 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 424 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 425 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 426 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 427 428 // TRAP is legal. 429 setOperationAction(ISD::TRAP, MVT::Other, Legal); 430 431 // TRAMPOLINE is custom lowered. 432 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 433 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 434 435 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 436 setOperationAction(ISD::VASTART , MVT::Other, Custom); 437 438 if (Subtarget.is64BitELFABI()) { 439 // VAARG always uses double-word chunks, so promote anything smaller. 440 setOperationAction(ISD::VAARG, MVT::i1, Promote); 441 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 442 setOperationAction(ISD::VAARG, MVT::i8, Promote); 443 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 444 setOperationAction(ISD::VAARG, MVT::i16, Promote); 445 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 446 setOperationAction(ISD::VAARG, MVT::i32, Promote); 447 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 448 setOperationAction(ISD::VAARG, MVT::Other, Expand); 449 } else if (Subtarget.is32BitELFABI()) { 450 // VAARG is custom lowered with the 32-bit SVR4 ABI. 451 setOperationAction(ISD::VAARG, MVT::Other, Custom); 452 setOperationAction(ISD::VAARG, MVT::i64, Custom); 453 } else 454 setOperationAction(ISD::VAARG, MVT::Other, Expand); 455 456 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 457 if (Subtarget.is32BitELFABI()) 458 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 459 else 460 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 461 462 // Use the default implementation. 463 setOperationAction(ISD::VAEND , MVT::Other, Expand); 464 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 465 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 466 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 467 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 468 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 469 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 470 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 471 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 472 473 // We want to custom lower some of our intrinsics. 474 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 475 476 // To handle counter-based loop conditions. 477 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 478 479 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 480 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 481 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 482 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 483 484 // Comparisons that require checking two conditions. 485 if (Subtarget.hasSPE()) { 486 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 487 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 488 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 489 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 490 } 491 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 497 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 498 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 499 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 500 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 501 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 502 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 503 504 if (Subtarget.has64BitSupport()) { 505 // They also have instructions for converting between i64 and fp. 506 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 507 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 508 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 509 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 510 // This is just the low 32 bits of a (signed) fp->i64 conversion. 511 // We cannot do this with Promote because i64 is not a legal type. 512 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 513 514 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 515 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 516 } else { 517 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 518 if (Subtarget.hasSPE()) 519 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 520 else 521 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 522 } 523 524 // With the instructions enabled under FPCVT, we can do everything. 525 if (Subtarget.hasFPCVT()) { 526 if (Subtarget.has64BitSupport()) { 527 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 528 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 529 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 530 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 531 } 532 533 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 534 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 535 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 536 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 537 } 538 539 if (Subtarget.use64BitRegs()) { 540 // 64-bit PowerPC implementations can support i64 types directly 541 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 542 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 543 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 544 // 64-bit PowerPC wants to expand i128 shifts itself. 545 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 546 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 547 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 548 } else { 549 // 32-bit PowerPC wants to expand i64 shifts itself. 550 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 551 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 552 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 553 } 554 555 if (Subtarget.hasVSX()) { 556 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 557 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 559 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 560 } 561 562 if (Subtarget.hasAltivec()) { 563 // First set operation action for all vector types to expand. Then we 564 // will selectively turn on ones that can be effectively codegen'd. 565 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 566 // add/sub are legal for all supported vector VT's. 567 setOperationAction(ISD::ADD, VT, Legal); 568 setOperationAction(ISD::SUB, VT, Legal); 569 570 // For v2i64, these are only valid with P8Vector. This is corrected after 571 // the loop. 572 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 573 setOperationAction(ISD::SMAX, VT, Legal); 574 setOperationAction(ISD::SMIN, VT, Legal); 575 setOperationAction(ISD::UMAX, VT, Legal); 576 setOperationAction(ISD::UMIN, VT, Legal); 577 } 578 else { 579 setOperationAction(ISD::SMAX, VT, Expand); 580 setOperationAction(ISD::SMIN, VT, Expand); 581 setOperationAction(ISD::UMAX, VT, Expand); 582 setOperationAction(ISD::UMIN, VT, Expand); 583 } 584 585 if (Subtarget.hasVSX()) { 586 setOperationAction(ISD::FMAXNUM, VT, Legal); 587 setOperationAction(ISD::FMINNUM, VT, Legal); 588 } 589 590 // Vector instructions introduced in P8 591 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 592 setOperationAction(ISD::CTPOP, VT, Legal); 593 setOperationAction(ISD::CTLZ, VT, Legal); 594 } 595 else { 596 setOperationAction(ISD::CTPOP, VT, Expand); 597 setOperationAction(ISD::CTLZ, VT, Expand); 598 } 599 600 // Vector instructions introduced in P9 601 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 602 setOperationAction(ISD::CTTZ, VT, Legal); 603 else 604 setOperationAction(ISD::CTTZ, VT, Expand); 605 606 // We promote all shuffles to v16i8. 607 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 608 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 609 610 // We promote all non-typed operations to v4i32. 611 setOperationAction(ISD::AND , VT, Promote); 612 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 613 setOperationAction(ISD::OR , VT, Promote); 614 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 615 setOperationAction(ISD::XOR , VT, Promote); 616 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 617 setOperationAction(ISD::LOAD , VT, Promote); 618 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 619 setOperationAction(ISD::SELECT, VT, Promote); 620 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 621 setOperationAction(ISD::VSELECT, VT, Legal); 622 setOperationAction(ISD::SELECT_CC, VT, Promote); 623 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 624 setOperationAction(ISD::STORE, VT, Promote); 625 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 626 627 // No other operations are legal. 628 setOperationAction(ISD::MUL , VT, Expand); 629 setOperationAction(ISD::SDIV, VT, Expand); 630 setOperationAction(ISD::SREM, VT, Expand); 631 setOperationAction(ISD::UDIV, VT, Expand); 632 setOperationAction(ISD::UREM, VT, Expand); 633 setOperationAction(ISD::FDIV, VT, Expand); 634 setOperationAction(ISD::FREM, VT, Expand); 635 setOperationAction(ISD::FNEG, VT, Expand); 636 setOperationAction(ISD::FSQRT, VT, Expand); 637 setOperationAction(ISD::FLOG, VT, Expand); 638 setOperationAction(ISD::FLOG10, VT, Expand); 639 setOperationAction(ISD::FLOG2, VT, Expand); 640 setOperationAction(ISD::FEXP, VT, Expand); 641 setOperationAction(ISD::FEXP2, VT, Expand); 642 setOperationAction(ISD::FSIN, VT, Expand); 643 setOperationAction(ISD::FCOS, VT, Expand); 644 setOperationAction(ISD::FABS, VT, Expand); 645 setOperationAction(ISD::FFLOOR, VT, Expand); 646 setOperationAction(ISD::FCEIL, VT, Expand); 647 setOperationAction(ISD::FTRUNC, VT, Expand); 648 setOperationAction(ISD::FRINT, VT, Expand); 649 setOperationAction(ISD::FNEARBYINT, VT, Expand); 650 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 651 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 652 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 653 setOperationAction(ISD::MULHU, VT, Expand); 654 setOperationAction(ISD::MULHS, VT, Expand); 655 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 656 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 657 setOperationAction(ISD::UDIVREM, VT, Expand); 658 setOperationAction(ISD::SDIVREM, VT, Expand); 659 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 660 setOperationAction(ISD::FPOW, VT, Expand); 661 setOperationAction(ISD::BSWAP, VT, Expand); 662 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 663 setOperationAction(ISD::ROTL, VT, Expand); 664 setOperationAction(ISD::ROTR, VT, Expand); 665 666 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 667 setTruncStoreAction(VT, InnerVT, Expand); 668 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 669 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 670 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 671 } 672 } 673 if (!Subtarget.hasP8Vector()) { 674 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 675 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 676 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 677 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 678 } 679 680 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 681 setOperationAction(ISD::ABS, VT, Custom); 682 683 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 684 // with merges, splats, etc. 685 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 686 687 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 688 // are cheap, so handle them before they get expanded to scalar. 689 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 690 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 691 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 692 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 693 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 694 695 setOperationAction(ISD::AND , MVT::v4i32, Legal); 696 setOperationAction(ISD::OR , MVT::v4i32, Legal); 697 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 698 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 699 setOperationAction(ISD::SELECT, MVT::v4i32, 700 Subtarget.useCRBits() ? Legal : Expand); 701 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 702 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 703 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 704 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 705 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 706 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 707 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 708 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 709 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 710 711 // Without hasP8Altivec set, v2i64 SMAX isn't available. 712 // But ABS custom lowering requires SMAX support. 713 if (!Subtarget.hasP8Altivec()) 714 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 715 716 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 717 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 718 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 719 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 720 721 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 722 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 723 724 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 725 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 726 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 727 } 728 729 if (Subtarget.hasP8Altivec()) 730 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 731 else 732 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 733 734 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 735 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 736 737 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 738 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 739 740 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 741 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 742 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 743 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 744 745 // Altivec does not contain unordered floating-point compare instructions 746 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 747 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 748 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 749 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 750 751 if (Subtarget.hasVSX()) { 752 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 753 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 754 if (Subtarget.hasP8Vector()) { 755 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 756 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 757 } 758 if (Subtarget.hasDirectMove() && isPPC64) { 759 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 760 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 761 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 762 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 763 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 764 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 765 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 766 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 767 } 768 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 769 770 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 771 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 772 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 773 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 774 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 775 776 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 777 778 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 779 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 780 781 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 782 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 783 784 // Share the Altivec comparison restrictions. 785 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 786 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 787 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 788 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 789 790 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 791 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 792 793 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 794 795 if (Subtarget.hasP8Vector()) 796 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 797 798 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 799 800 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 801 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 802 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 803 804 if (Subtarget.hasP8Altivec()) { 805 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 806 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 807 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 808 809 // 128 bit shifts can be accomplished via 3 instructions for SHL and 810 // SRL, but not for SRA because of the instructions available: 811 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 812 // doing 813 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 814 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 815 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 816 817 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 818 } 819 else { 820 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 821 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 822 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 823 824 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 825 826 // VSX v2i64 only supports non-arithmetic operations. 827 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 828 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 829 } 830 831 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 832 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 833 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 834 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 835 836 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 837 838 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 839 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 840 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 841 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 842 843 // Custom handling for partial vectors of integers converted to 844 // floating point. We already have optimal handling for v2i32 through 845 // the DAG combine, so those aren't necessary. 846 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 847 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 848 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 849 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 850 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 851 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 852 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 853 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 854 855 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 856 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 857 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 858 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 859 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 860 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 861 862 if (Subtarget.hasDirectMove()) 863 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 864 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 865 866 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 867 } 868 869 if (Subtarget.hasP8Altivec()) { 870 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 871 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 872 } 873 874 if (Subtarget.hasP9Vector()) { 875 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 876 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 877 878 // 128 bit shifts can be accomplished via 3 instructions for SHL and 879 // SRL, but not for SRA because of the instructions available: 880 // VS{RL} and VS{RL}O. 881 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 882 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 883 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 884 885 if (EnableQuadPrecision) { 886 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 887 setOperationAction(ISD::FADD, MVT::f128, Legal); 888 setOperationAction(ISD::FSUB, MVT::f128, Legal); 889 setOperationAction(ISD::FDIV, MVT::f128, Legal); 890 setOperationAction(ISD::FMUL, MVT::f128, Legal); 891 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 892 // No extending loads to f128 on PPC. 893 for (MVT FPT : MVT::fp_valuetypes()) 894 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 895 setOperationAction(ISD::FMA, MVT::f128, Legal); 896 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 897 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 898 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 899 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 900 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 901 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 902 903 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 904 setOperationAction(ISD::FRINT, MVT::f128, Legal); 905 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 906 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 907 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 908 setOperationAction(ISD::FROUND, MVT::f128, Legal); 909 910 setOperationAction(ISD::SELECT, MVT::f128, Expand); 911 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 912 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 913 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 914 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 915 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 916 // No implementation for these ops for PowerPC. 917 setOperationAction(ISD::FSIN , MVT::f128, Expand); 918 setOperationAction(ISD::FCOS , MVT::f128, Expand); 919 setOperationAction(ISD::FPOW, MVT::f128, Expand); 920 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 921 setOperationAction(ISD::FREM, MVT::f128, Expand); 922 } 923 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 924 925 } 926 927 if (Subtarget.hasP9Altivec()) { 928 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 929 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 930 931 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 932 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 933 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 934 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 935 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 936 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 937 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 938 } 939 } 940 941 if (Subtarget.hasQPX()) { 942 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 943 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 944 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 945 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 946 947 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 948 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 949 950 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 951 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 952 953 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 954 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 955 956 if (!Subtarget.useCRBits()) 957 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 958 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 959 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 961 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 962 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 963 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 964 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 965 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 966 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 967 968 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 969 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 970 971 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 972 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 973 974 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 975 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 976 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 977 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 978 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 979 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 980 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 981 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 982 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 983 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 984 985 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 986 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 987 988 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 989 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 990 991 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 992 993 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 994 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 995 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 996 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 997 998 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 999 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1000 1001 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1002 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1003 1004 if (!Subtarget.useCRBits()) 1005 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1006 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1007 1008 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1009 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1010 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1011 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1012 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1013 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1014 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1015 1016 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1017 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1018 1019 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1020 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1021 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1022 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1023 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1024 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1025 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1026 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1027 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1028 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1029 1030 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1031 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1032 1033 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1034 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1035 1036 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1037 1038 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1039 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1040 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1041 1042 if (!Subtarget.useCRBits()) 1043 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1044 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1045 1046 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1047 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1048 1049 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1050 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1051 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1052 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1053 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1054 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1055 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1056 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1058 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1059 1060 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1061 1062 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1063 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1064 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1065 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1066 1067 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1068 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1069 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1070 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1071 1072 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1073 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1074 1075 // These need to set FE_INEXACT, and so cannot be vectorized here. 1076 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1077 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1078 1079 if (TM.Options.UnsafeFPMath) { 1080 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1081 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1082 1083 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1084 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1085 } else { 1086 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1087 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1088 1089 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1090 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1091 } 1092 } 1093 1094 if (Subtarget.has64BitSupport()) 1095 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1096 1097 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1098 1099 if (!isPPC64) { 1100 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1101 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1102 } 1103 1104 setBooleanContents(ZeroOrOneBooleanContent); 1105 1106 if (Subtarget.hasAltivec()) { 1107 // Altivec instructions set fields to all zeros or all ones. 1108 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1109 } 1110 1111 if (!isPPC64) { 1112 // These libcalls are not available in 32-bit. 1113 setLibcallName(RTLIB::SHL_I128, nullptr); 1114 setLibcallName(RTLIB::SRL_I128, nullptr); 1115 setLibcallName(RTLIB::SRA_I128, nullptr); 1116 } 1117 1118 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1119 1120 // We have target-specific dag combine patterns for the following nodes: 1121 setTargetDAGCombine(ISD::ADD); 1122 setTargetDAGCombine(ISD::SHL); 1123 setTargetDAGCombine(ISD::SRA); 1124 setTargetDAGCombine(ISD::SRL); 1125 setTargetDAGCombine(ISD::MUL); 1126 setTargetDAGCombine(ISD::SINT_TO_FP); 1127 setTargetDAGCombine(ISD::BUILD_VECTOR); 1128 if (Subtarget.hasFPCVT()) 1129 setTargetDAGCombine(ISD::UINT_TO_FP); 1130 setTargetDAGCombine(ISD::LOAD); 1131 setTargetDAGCombine(ISD::STORE); 1132 setTargetDAGCombine(ISD::BR_CC); 1133 if (Subtarget.useCRBits()) 1134 setTargetDAGCombine(ISD::BRCOND); 1135 setTargetDAGCombine(ISD::BSWAP); 1136 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1137 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1138 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1139 1140 setTargetDAGCombine(ISD::SIGN_EXTEND); 1141 setTargetDAGCombine(ISD::ZERO_EXTEND); 1142 setTargetDAGCombine(ISD::ANY_EXTEND); 1143 1144 setTargetDAGCombine(ISD::TRUNCATE); 1145 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1146 1147 1148 if (Subtarget.useCRBits()) { 1149 setTargetDAGCombine(ISD::TRUNCATE); 1150 setTargetDAGCombine(ISD::SETCC); 1151 setTargetDAGCombine(ISD::SELECT_CC); 1152 } 1153 1154 // Use reciprocal estimates. 1155 if (TM.Options.UnsafeFPMath) { 1156 setTargetDAGCombine(ISD::FDIV); 1157 setTargetDAGCombine(ISD::FSQRT); 1158 } 1159 1160 if (Subtarget.hasP9Altivec()) { 1161 setTargetDAGCombine(ISD::ABS); 1162 setTargetDAGCombine(ISD::VSELECT); 1163 } 1164 1165 // Darwin long double math library functions have $LDBL128 appended. 1166 if (Subtarget.isDarwin()) { 1167 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1168 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1169 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1170 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1171 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1172 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1173 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1174 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1175 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1176 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1177 } 1178 1179 if (EnableQuadPrecision) { 1180 setLibcallName(RTLIB::LOG_F128, "logf128"); 1181 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1182 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1183 setLibcallName(RTLIB::EXP_F128, "expf128"); 1184 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1185 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1186 setLibcallName(RTLIB::COS_F128, "cosf128"); 1187 setLibcallName(RTLIB::POW_F128, "powf128"); 1188 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1189 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1190 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1191 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1192 } 1193 1194 // With 32 condition bits, we don't need to sink (and duplicate) compares 1195 // aggressively in CodeGenPrep. 1196 if (Subtarget.useCRBits()) { 1197 setHasMultipleConditionRegisters(); 1198 setJumpIsExpensive(); 1199 } 1200 1201 setMinFunctionAlignment(Align(4)); 1202 if (Subtarget.isDarwin()) 1203 setPrefFunctionAlignment(Align(16)); 1204 1205 switch (Subtarget.getCPUDirective()) { 1206 default: break; 1207 case PPC::DIR_970: 1208 case PPC::DIR_A2: 1209 case PPC::DIR_E500: 1210 case PPC::DIR_E500mc: 1211 case PPC::DIR_E5500: 1212 case PPC::DIR_PWR4: 1213 case PPC::DIR_PWR5: 1214 case PPC::DIR_PWR5X: 1215 case PPC::DIR_PWR6: 1216 case PPC::DIR_PWR6X: 1217 case PPC::DIR_PWR7: 1218 case PPC::DIR_PWR8: 1219 case PPC::DIR_PWR9: 1220 case PPC::DIR_PWR_FUTURE: 1221 setPrefLoopAlignment(Align(16)); 1222 setPrefFunctionAlignment(Align(16)); 1223 break; 1224 } 1225 1226 if (Subtarget.enableMachineScheduler()) 1227 setSchedulingPreference(Sched::Source); 1228 else 1229 setSchedulingPreference(Sched::Hybrid); 1230 1231 computeRegisterProperties(STI.getRegisterInfo()); 1232 1233 // The Freescale cores do better with aggressive inlining of memcpy and 1234 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1235 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1236 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1237 MaxStoresPerMemset = 32; 1238 MaxStoresPerMemsetOptSize = 16; 1239 MaxStoresPerMemcpy = 32; 1240 MaxStoresPerMemcpyOptSize = 8; 1241 MaxStoresPerMemmove = 32; 1242 MaxStoresPerMemmoveOptSize = 8; 1243 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1244 // The A2 also benefits from (very) aggressive inlining of memcpy and 1245 // friends. The overhead of a the function call, even when warm, can be 1246 // over one hundred cycles. 1247 MaxStoresPerMemset = 128; 1248 MaxStoresPerMemcpy = 128; 1249 MaxStoresPerMemmove = 128; 1250 MaxLoadsPerMemcmp = 128; 1251 } else { 1252 MaxLoadsPerMemcmp = 8; 1253 MaxLoadsPerMemcmpOptSize = 4; 1254 } 1255 } 1256 1257 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1258 /// the desired ByVal argument alignment. 1259 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1260 unsigned MaxMaxAlign) { 1261 if (MaxAlign == MaxMaxAlign) 1262 return; 1263 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1264 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1265 MaxAlign = 32; 1266 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1267 MaxAlign = 16; 1268 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1269 unsigned EltAlign = 0; 1270 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1271 if (EltAlign > MaxAlign) 1272 MaxAlign = EltAlign; 1273 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1274 for (auto *EltTy : STy->elements()) { 1275 unsigned EltAlign = 0; 1276 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1277 if (EltAlign > MaxAlign) 1278 MaxAlign = EltAlign; 1279 if (MaxAlign == MaxMaxAlign) 1280 break; 1281 } 1282 } 1283 } 1284 1285 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1286 /// function arguments in the caller parameter area. 1287 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1288 const DataLayout &DL) const { 1289 // Darwin passes everything on 4 byte boundary. 1290 if (Subtarget.isDarwin()) 1291 return 4; 1292 1293 // 16byte and wider vectors are passed on 16byte boundary. 1294 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1295 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1296 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1297 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1298 return Align; 1299 } 1300 1301 bool PPCTargetLowering::useSoftFloat() const { 1302 return Subtarget.useSoftFloat(); 1303 } 1304 1305 bool PPCTargetLowering::hasSPE() const { 1306 return Subtarget.hasSPE(); 1307 } 1308 1309 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1310 return VT.isScalarInteger(); 1311 } 1312 1313 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1314 switch ((PPCISD::NodeType)Opcode) { 1315 case PPCISD::FIRST_NUMBER: break; 1316 case PPCISD::FSEL: return "PPCISD::FSEL"; 1317 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1318 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1319 case PPCISD::FCFID: return "PPCISD::FCFID"; 1320 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1321 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1322 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1323 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1324 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1325 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1326 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1327 case PPCISD::FP_TO_UINT_IN_VSR: 1328 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1329 case PPCISD::FP_TO_SINT_IN_VSR: 1330 return "PPCISD::FP_TO_SINT_IN_VSR"; 1331 case PPCISD::FRE: return "PPCISD::FRE"; 1332 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1333 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1334 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1335 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1336 case PPCISD::VPERM: return "PPCISD::VPERM"; 1337 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1338 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1339 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1340 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1341 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1342 case PPCISD::CMPB: return "PPCISD::CMPB"; 1343 case PPCISD::Hi: return "PPCISD::Hi"; 1344 case PPCISD::Lo: return "PPCISD::Lo"; 1345 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1346 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1347 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1348 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1349 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1350 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1351 case PPCISD::SRL: return "PPCISD::SRL"; 1352 case PPCISD::SRA: return "PPCISD::SRA"; 1353 case PPCISD::SHL: return "PPCISD::SHL"; 1354 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1355 case PPCISD::CALL: return "PPCISD::CALL"; 1356 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1357 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1358 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1359 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1360 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1361 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1362 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1363 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1364 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1365 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1366 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1367 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1368 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1369 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1370 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1371 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1372 case PPCISD::VCMP: return "PPCISD::VCMP"; 1373 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1374 case PPCISD::LBRX: return "PPCISD::LBRX"; 1375 case PPCISD::STBRX: return "PPCISD::STBRX"; 1376 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1377 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1378 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1379 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1380 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1381 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1382 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1383 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1384 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1385 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1386 case PPCISD::ST_VSR_SCAL_INT: 1387 return "PPCISD::ST_VSR_SCAL_INT"; 1388 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1389 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1390 case PPCISD::BDZ: return "PPCISD::BDZ"; 1391 case PPCISD::MFFS: return "PPCISD::MFFS"; 1392 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1393 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1394 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1395 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1396 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1397 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1398 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1399 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1400 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1401 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1402 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1403 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1404 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1405 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1406 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1407 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1408 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1409 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1410 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1411 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1412 case PPCISD::SC: return "PPCISD::SC"; 1413 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1414 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1415 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1416 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1417 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1418 case PPCISD::VABSD: return "PPCISD::VABSD"; 1419 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1420 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1421 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1422 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1423 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1424 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1425 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1426 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1427 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1428 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1429 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1430 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1431 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1432 } 1433 return nullptr; 1434 } 1435 1436 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1437 EVT VT) const { 1438 if (!VT.isVector()) 1439 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1440 1441 if (Subtarget.hasQPX()) 1442 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1443 1444 return VT.changeVectorElementTypeToInteger(); 1445 } 1446 1447 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1448 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1449 return true; 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // Node matching predicates, for use by the tblgen matching code. 1454 //===----------------------------------------------------------------------===// 1455 1456 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1457 static bool isFloatingPointZero(SDValue Op) { 1458 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1459 return CFP->getValueAPF().isZero(); 1460 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1461 // Maybe this has already been legalized into the constant pool? 1462 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1463 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1464 return CFP->getValueAPF().isZero(); 1465 } 1466 return false; 1467 } 1468 1469 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1470 /// true if Op is undef or if it matches the specified value. 1471 static bool isConstantOrUndef(int Op, int Val) { 1472 return Op < 0 || Op == Val; 1473 } 1474 1475 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1476 /// VPKUHUM instruction. 1477 /// The ShuffleKind distinguishes between big-endian operations with 1478 /// two different inputs (0), either-endian operations with two identical 1479 /// inputs (1), and little-endian operations with two different inputs (2). 1480 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1481 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1482 SelectionDAG &DAG) { 1483 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1484 if (ShuffleKind == 0) { 1485 if (IsLE) 1486 return false; 1487 for (unsigned i = 0; i != 16; ++i) 1488 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1489 return false; 1490 } else if (ShuffleKind == 2) { 1491 if (!IsLE) 1492 return false; 1493 for (unsigned i = 0; i != 16; ++i) 1494 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1495 return false; 1496 } else if (ShuffleKind == 1) { 1497 unsigned j = IsLE ? 0 : 1; 1498 for (unsigned i = 0; i != 8; ++i) 1499 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1500 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1501 return false; 1502 } 1503 return true; 1504 } 1505 1506 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1507 /// VPKUWUM instruction. 1508 /// The ShuffleKind distinguishes between big-endian operations with 1509 /// two different inputs (0), either-endian operations with two identical 1510 /// inputs (1), and little-endian operations with two different inputs (2). 1511 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1512 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1513 SelectionDAG &DAG) { 1514 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1515 if (ShuffleKind == 0) { 1516 if (IsLE) 1517 return false; 1518 for (unsigned i = 0; i != 16; i += 2) 1519 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1520 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1521 return false; 1522 } else if (ShuffleKind == 2) { 1523 if (!IsLE) 1524 return false; 1525 for (unsigned i = 0; i != 16; i += 2) 1526 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1527 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1528 return false; 1529 } else if (ShuffleKind == 1) { 1530 unsigned j = IsLE ? 0 : 2; 1531 for (unsigned i = 0; i != 8; i += 2) 1532 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1533 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1534 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1535 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1536 return false; 1537 } 1538 return true; 1539 } 1540 1541 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1542 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1543 /// current subtarget. 1544 /// 1545 /// The ShuffleKind distinguishes between big-endian operations with 1546 /// two different inputs (0), either-endian operations with two identical 1547 /// inputs (1), and little-endian operations with two different inputs (2). 1548 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1549 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1550 SelectionDAG &DAG) { 1551 const PPCSubtarget& Subtarget = 1552 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1553 if (!Subtarget.hasP8Vector()) 1554 return false; 1555 1556 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1557 if (ShuffleKind == 0) { 1558 if (IsLE) 1559 return false; 1560 for (unsigned i = 0; i != 16; i += 4) 1561 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1562 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1563 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1564 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1565 return false; 1566 } else if (ShuffleKind == 2) { 1567 if (!IsLE) 1568 return false; 1569 for (unsigned i = 0; i != 16; i += 4) 1570 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1571 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1572 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1573 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1574 return false; 1575 } else if (ShuffleKind == 1) { 1576 unsigned j = IsLE ? 0 : 4; 1577 for (unsigned i = 0; i != 8; i += 4) 1578 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1579 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1580 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1581 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1582 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1583 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1584 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1585 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1586 return false; 1587 } 1588 return true; 1589 } 1590 1591 /// isVMerge - Common function, used to match vmrg* shuffles. 1592 /// 1593 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1594 unsigned LHSStart, unsigned RHSStart) { 1595 if (N->getValueType(0) != MVT::v16i8) 1596 return false; 1597 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1598 "Unsupported merge size!"); 1599 1600 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1601 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1602 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1603 LHSStart+j+i*UnitSize) || 1604 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1605 RHSStart+j+i*UnitSize)) 1606 return false; 1607 } 1608 return true; 1609 } 1610 1611 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1612 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1613 /// The ShuffleKind distinguishes between big-endian merges with two 1614 /// different inputs (0), either-endian merges with two identical inputs (1), 1615 /// and little-endian merges with two different inputs (2). For the latter, 1616 /// the input operands are swapped (see PPCInstrAltivec.td). 1617 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1618 unsigned ShuffleKind, SelectionDAG &DAG) { 1619 if (DAG.getDataLayout().isLittleEndian()) { 1620 if (ShuffleKind == 1) // unary 1621 return isVMerge(N, UnitSize, 0, 0); 1622 else if (ShuffleKind == 2) // swapped 1623 return isVMerge(N, UnitSize, 0, 16); 1624 else 1625 return false; 1626 } else { 1627 if (ShuffleKind == 1) // unary 1628 return isVMerge(N, UnitSize, 8, 8); 1629 else if (ShuffleKind == 0) // normal 1630 return isVMerge(N, UnitSize, 8, 24); 1631 else 1632 return false; 1633 } 1634 } 1635 1636 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1637 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1638 /// The ShuffleKind distinguishes between big-endian merges with two 1639 /// different inputs (0), either-endian merges with two identical inputs (1), 1640 /// and little-endian merges with two different inputs (2). For the latter, 1641 /// the input operands are swapped (see PPCInstrAltivec.td). 1642 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1643 unsigned ShuffleKind, SelectionDAG &DAG) { 1644 if (DAG.getDataLayout().isLittleEndian()) { 1645 if (ShuffleKind == 1) // unary 1646 return isVMerge(N, UnitSize, 8, 8); 1647 else if (ShuffleKind == 2) // swapped 1648 return isVMerge(N, UnitSize, 8, 24); 1649 else 1650 return false; 1651 } else { 1652 if (ShuffleKind == 1) // unary 1653 return isVMerge(N, UnitSize, 0, 0); 1654 else if (ShuffleKind == 0) // normal 1655 return isVMerge(N, UnitSize, 0, 16); 1656 else 1657 return false; 1658 } 1659 } 1660 1661 /** 1662 * Common function used to match vmrgew and vmrgow shuffles 1663 * 1664 * The indexOffset determines whether to look for even or odd words in 1665 * the shuffle mask. This is based on the of the endianness of the target 1666 * machine. 1667 * - Little Endian: 1668 * - Use offset of 0 to check for odd elements 1669 * - Use offset of 4 to check for even elements 1670 * - Big Endian: 1671 * - Use offset of 0 to check for even elements 1672 * - Use offset of 4 to check for odd elements 1673 * A detailed description of the vector element ordering for little endian and 1674 * big endian can be found at 1675 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1676 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1677 * compiler differences mean to you 1678 * 1679 * The mask to the shuffle vector instruction specifies the indices of the 1680 * elements from the two input vectors to place in the result. The elements are 1681 * numbered in array-access order, starting with the first vector. These vectors 1682 * are always of type v16i8, thus each vector will contain 16 elements of size 1683 * 8. More info on the shuffle vector can be found in the 1684 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1685 * Language Reference. 1686 * 1687 * The RHSStartValue indicates whether the same input vectors are used (unary) 1688 * or two different input vectors are used, based on the following: 1689 * - If the instruction uses the same vector for both inputs, the range of the 1690 * indices will be 0 to 15. In this case, the RHSStart value passed should 1691 * be 0. 1692 * - If the instruction has two different vectors then the range of the 1693 * indices will be 0 to 31. In this case, the RHSStart value passed should 1694 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1695 * to 31 specify elements in the second vector). 1696 * 1697 * \param[in] N The shuffle vector SD Node to analyze 1698 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1699 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1700 * vector to the shuffle_vector instruction 1701 * \return true iff this shuffle vector represents an even or odd word merge 1702 */ 1703 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1704 unsigned RHSStartValue) { 1705 if (N->getValueType(0) != MVT::v16i8) 1706 return false; 1707 1708 for (unsigned i = 0; i < 2; ++i) 1709 for (unsigned j = 0; j < 4; ++j) 1710 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1711 i*RHSStartValue+j+IndexOffset) || 1712 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1713 i*RHSStartValue+j+IndexOffset+8)) 1714 return false; 1715 return true; 1716 } 1717 1718 /** 1719 * Determine if the specified shuffle mask is suitable for the vmrgew or 1720 * vmrgow instructions. 1721 * 1722 * \param[in] N The shuffle vector SD Node to analyze 1723 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1724 * \param[in] ShuffleKind Identify the type of merge: 1725 * - 0 = big-endian merge with two different inputs; 1726 * - 1 = either-endian merge with two identical inputs; 1727 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1728 * little-endian merges). 1729 * \param[in] DAG The current SelectionDAG 1730 * \return true iff this shuffle mask 1731 */ 1732 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1733 unsigned ShuffleKind, SelectionDAG &DAG) { 1734 if (DAG.getDataLayout().isLittleEndian()) { 1735 unsigned indexOffset = CheckEven ? 4 : 0; 1736 if (ShuffleKind == 1) // Unary 1737 return isVMerge(N, indexOffset, 0); 1738 else if (ShuffleKind == 2) // swapped 1739 return isVMerge(N, indexOffset, 16); 1740 else 1741 return false; 1742 } 1743 else { 1744 unsigned indexOffset = CheckEven ? 0 : 4; 1745 if (ShuffleKind == 1) // Unary 1746 return isVMerge(N, indexOffset, 0); 1747 else if (ShuffleKind == 0) // Normal 1748 return isVMerge(N, indexOffset, 16); 1749 else 1750 return false; 1751 } 1752 return false; 1753 } 1754 1755 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1756 /// amount, otherwise return -1. 1757 /// The ShuffleKind distinguishes between big-endian operations with two 1758 /// different inputs (0), either-endian operations with two identical inputs 1759 /// (1), and little-endian operations with two different inputs (2). For the 1760 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1761 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1762 SelectionDAG &DAG) { 1763 if (N->getValueType(0) != MVT::v16i8) 1764 return -1; 1765 1766 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1767 1768 // Find the first non-undef value in the shuffle mask. 1769 unsigned i; 1770 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1771 /*search*/; 1772 1773 if (i == 16) return -1; // all undef. 1774 1775 // Otherwise, check to see if the rest of the elements are consecutively 1776 // numbered from this value. 1777 unsigned ShiftAmt = SVOp->getMaskElt(i); 1778 if (ShiftAmt < i) return -1; 1779 1780 ShiftAmt -= i; 1781 bool isLE = DAG.getDataLayout().isLittleEndian(); 1782 1783 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1784 // Check the rest of the elements to see if they are consecutive. 1785 for (++i; i != 16; ++i) 1786 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1787 return -1; 1788 } else if (ShuffleKind == 1) { 1789 // Check the rest of the elements to see if they are consecutive. 1790 for (++i; i != 16; ++i) 1791 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1792 return -1; 1793 } else 1794 return -1; 1795 1796 if (isLE) 1797 ShiftAmt = 16 - ShiftAmt; 1798 1799 return ShiftAmt; 1800 } 1801 1802 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1803 /// specifies a splat of a single element that is suitable for input to 1804 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1805 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1806 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1807 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1808 1809 // The consecutive indices need to specify an element, not part of two 1810 // different elements. So abandon ship early if this isn't the case. 1811 if (N->getMaskElt(0) % EltSize != 0) 1812 return false; 1813 1814 // This is a splat operation if each element of the permute is the same, and 1815 // if the value doesn't reference the second vector. 1816 unsigned ElementBase = N->getMaskElt(0); 1817 1818 // FIXME: Handle UNDEF elements too! 1819 if (ElementBase >= 16) 1820 return false; 1821 1822 // Check that the indices are consecutive, in the case of a multi-byte element 1823 // splatted with a v16i8 mask. 1824 for (unsigned i = 1; i != EltSize; ++i) 1825 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1826 return false; 1827 1828 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1829 if (N->getMaskElt(i) < 0) continue; 1830 for (unsigned j = 0; j != EltSize; ++j) 1831 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1832 return false; 1833 } 1834 return true; 1835 } 1836 1837 /// Check that the mask is shuffling N byte elements. Within each N byte 1838 /// element of the mask, the indices could be either in increasing or 1839 /// decreasing order as long as they are consecutive. 1840 /// \param[in] N the shuffle vector SD Node to analyze 1841 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1842 /// Word/DoubleWord/QuadWord). 1843 /// \param[in] StepLen the delta indices number among the N byte element, if 1844 /// the mask is in increasing/decreasing order then it is 1/-1. 1845 /// \return true iff the mask is shuffling N byte elements. 1846 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1847 int StepLen) { 1848 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1849 "Unexpected element width."); 1850 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1851 1852 unsigned NumOfElem = 16 / Width; 1853 unsigned MaskVal[16]; // Width is never greater than 16 1854 for (unsigned i = 0; i < NumOfElem; ++i) { 1855 MaskVal[0] = N->getMaskElt(i * Width); 1856 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1857 return false; 1858 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1859 return false; 1860 } 1861 1862 for (unsigned int j = 1; j < Width; ++j) { 1863 MaskVal[j] = N->getMaskElt(i * Width + j); 1864 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1865 return false; 1866 } 1867 } 1868 } 1869 1870 return true; 1871 } 1872 1873 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1874 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1875 if (!isNByteElemShuffleMask(N, 4, 1)) 1876 return false; 1877 1878 // Now we look at mask elements 0,4,8,12 1879 unsigned M0 = N->getMaskElt(0) / 4; 1880 unsigned M1 = N->getMaskElt(4) / 4; 1881 unsigned M2 = N->getMaskElt(8) / 4; 1882 unsigned M3 = N->getMaskElt(12) / 4; 1883 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1884 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1885 1886 // Below, let H and L be arbitrary elements of the shuffle mask 1887 // where H is in the range [4,7] and L is in the range [0,3]. 1888 // H, 1, 2, 3 or L, 5, 6, 7 1889 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1890 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1891 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1892 InsertAtByte = IsLE ? 12 : 0; 1893 Swap = M0 < 4; 1894 return true; 1895 } 1896 // 0, H, 2, 3 or 4, L, 6, 7 1897 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1898 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1899 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1900 InsertAtByte = IsLE ? 8 : 4; 1901 Swap = M1 < 4; 1902 return true; 1903 } 1904 // 0, 1, H, 3 or 4, 5, L, 7 1905 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1906 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1907 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1908 InsertAtByte = IsLE ? 4 : 8; 1909 Swap = M2 < 4; 1910 return true; 1911 } 1912 // 0, 1, 2, H or 4, 5, 6, L 1913 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1914 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1915 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1916 InsertAtByte = IsLE ? 0 : 12; 1917 Swap = M3 < 4; 1918 return true; 1919 } 1920 1921 // If both vector operands for the shuffle are the same vector, the mask will 1922 // contain only elements from the first one and the second one will be undef. 1923 if (N->getOperand(1).isUndef()) { 1924 ShiftElts = 0; 1925 Swap = true; 1926 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1927 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1928 InsertAtByte = IsLE ? 12 : 0; 1929 return true; 1930 } 1931 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1932 InsertAtByte = IsLE ? 8 : 4; 1933 return true; 1934 } 1935 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1936 InsertAtByte = IsLE ? 4 : 8; 1937 return true; 1938 } 1939 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1940 InsertAtByte = IsLE ? 0 : 12; 1941 return true; 1942 } 1943 } 1944 1945 return false; 1946 } 1947 1948 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1949 bool &Swap, bool IsLE) { 1950 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1951 // Ensure each byte index of the word is consecutive. 1952 if (!isNByteElemShuffleMask(N, 4, 1)) 1953 return false; 1954 1955 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1956 unsigned M0 = N->getMaskElt(0) / 4; 1957 unsigned M1 = N->getMaskElt(4) / 4; 1958 unsigned M2 = N->getMaskElt(8) / 4; 1959 unsigned M3 = N->getMaskElt(12) / 4; 1960 1961 // If both vector operands for the shuffle are the same vector, the mask will 1962 // contain only elements from the first one and the second one will be undef. 1963 if (N->getOperand(1).isUndef()) { 1964 assert(M0 < 4 && "Indexing into an undef vector?"); 1965 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1966 return false; 1967 1968 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1969 Swap = false; 1970 return true; 1971 } 1972 1973 // Ensure each word index of the ShuffleVector Mask is consecutive. 1974 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1975 return false; 1976 1977 if (IsLE) { 1978 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1979 // Input vectors don't need to be swapped if the leading element 1980 // of the result is one of the 3 left elements of the second vector 1981 // (or if there is no shift to be done at all). 1982 Swap = false; 1983 ShiftElts = (8 - M0) % 8; 1984 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1985 // Input vectors need to be swapped if the leading element 1986 // of the result is one of the 3 left elements of the first vector 1987 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1988 Swap = true; 1989 ShiftElts = (4 - M0) % 4; 1990 } 1991 1992 return true; 1993 } else { // BE 1994 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1995 // Input vectors don't need to be swapped if the leading element 1996 // of the result is one of the 4 elements of the first vector. 1997 Swap = false; 1998 ShiftElts = M0; 1999 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2000 // Input vectors need to be swapped if the leading element 2001 // of the result is one of the 4 elements of the right vector. 2002 Swap = true; 2003 ShiftElts = M0 - 4; 2004 } 2005 2006 return true; 2007 } 2008 } 2009 2010 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2011 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2012 2013 if (!isNByteElemShuffleMask(N, Width, -1)) 2014 return false; 2015 2016 for (int i = 0; i < 16; i += Width) 2017 if (N->getMaskElt(i) != i + Width - 1) 2018 return false; 2019 2020 return true; 2021 } 2022 2023 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2024 return isXXBRShuffleMaskHelper(N, 2); 2025 } 2026 2027 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2028 return isXXBRShuffleMaskHelper(N, 4); 2029 } 2030 2031 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2032 return isXXBRShuffleMaskHelper(N, 8); 2033 } 2034 2035 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2036 return isXXBRShuffleMaskHelper(N, 16); 2037 } 2038 2039 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2040 /// if the inputs to the instruction should be swapped and set \p DM to the 2041 /// value for the immediate. 2042 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2043 /// AND element 0 of the result comes from the first input (LE) or second input 2044 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2045 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2046 /// mask. 2047 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2048 bool &Swap, bool IsLE) { 2049 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2050 2051 // Ensure each byte index of the double word is consecutive. 2052 if (!isNByteElemShuffleMask(N, 8, 1)) 2053 return false; 2054 2055 unsigned M0 = N->getMaskElt(0) / 8; 2056 unsigned M1 = N->getMaskElt(8) / 8; 2057 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2058 2059 // If both vector operands for the shuffle are the same vector, the mask will 2060 // contain only elements from the first one and the second one will be undef. 2061 if (N->getOperand(1).isUndef()) { 2062 if ((M0 | M1) < 2) { 2063 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2064 Swap = false; 2065 return true; 2066 } else 2067 return false; 2068 } 2069 2070 if (IsLE) { 2071 if (M0 > 1 && M1 < 2) { 2072 Swap = false; 2073 } else if (M0 < 2 && M1 > 1) { 2074 M0 = (M0 + 2) % 4; 2075 M1 = (M1 + 2) % 4; 2076 Swap = true; 2077 } else 2078 return false; 2079 2080 // Note: if control flow comes here that means Swap is already set above 2081 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2082 return true; 2083 } else { // BE 2084 if (M0 < 2 && M1 > 1) { 2085 Swap = false; 2086 } else if (M0 > 1 && M1 < 2) { 2087 M0 = (M0 + 2) % 4; 2088 M1 = (M1 + 2) % 4; 2089 Swap = true; 2090 } else 2091 return false; 2092 2093 // Note: if control flow comes here that means Swap is already set above 2094 DM = (M0 << 1) + (M1 & 1); 2095 return true; 2096 } 2097 } 2098 2099 2100 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2101 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2102 /// elements are counted from the left of the vector register). 2103 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2104 SelectionDAG &DAG) { 2105 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2106 assert(isSplatShuffleMask(SVOp, EltSize)); 2107 if (DAG.getDataLayout().isLittleEndian()) 2108 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2109 else 2110 return SVOp->getMaskElt(0) / EltSize; 2111 } 2112 2113 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2114 /// by using a vspltis[bhw] instruction of the specified element size, return 2115 /// the constant being splatted. The ByteSize field indicates the number of 2116 /// bytes of each element [124] -> [bhw]. 2117 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2118 SDValue OpVal(nullptr, 0); 2119 2120 // If ByteSize of the splat is bigger than the element size of the 2121 // build_vector, then we have a case where we are checking for a splat where 2122 // multiple elements of the buildvector are folded together into a single 2123 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2124 unsigned EltSize = 16/N->getNumOperands(); 2125 if (EltSize < ByteSize) { 2126 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2127 SDValue UniquedVals[4]; 2128 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2129 2130 // See if all of the elements in the buildvector agree across. 2131 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2132 if (N->getOperand(i).isUndef()) continue; 2133 // If the element isn't a constant, bail fully out. 2134 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2135 2136 if (!UniquedVals[i&(Multiple-1)].getNode()) 2137 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2138 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2139 return SDValue(); // no match. 2140 } 2141 2142 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2143 // either constant or undef values that are identical for each chunk. See 2144 // if these chunks can form into a larger vspltis*. 2145 2146 // Check to see if all of the leading entries are either 0 or -1. If 2147 // neither, then this won't fit into the immediate field. 2148 bool LeadingZero = true; 2149 bool LeadingOnes = true; 2150 for (unsigned i = 0; i != Multiple-1; ++i) { 2151 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2152 2153 LeadingZero &= isNullConstant(UniquedVals[i]); 2154 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2155 } 2156 // Finally, check the least significant entry. 2157 if (LeadingZero) { 2158 if (!UniquedVals[Multiple-1].getNode()) 2159 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2160 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2161 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2162 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2163 } 2164 if (LeadingOnes) { 2165 if (!UniquedVals[Multiple-1].getNode()) 2166 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2167 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2168 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2169 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2170 } 2171 2172 return SDValue(); 2173 } 2174 2175 // Check to see if this buildvec has a single non-undef value in its elements. 2176 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2177 if (N->getOperand(i).isUndef()) continue; 2178 if (!OpVal.getNode()) 2179 OpVal = N->getOperand(i); 2180 else if (OpVal != N->getOperand(i)) 2181 return SDValue(); 2182 } 2183 2184 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2185 2186 unsigned ValSizeInBytes = EltSize; 2187 uint64_t Value = 0; 2188 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2189 Value = CN->getZExtValue(); 2190 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2191 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2192 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2193 } 2194 2195 // If the splat value is larger than the element value, then we can never do 2196 // this splat. The only case that we could fit the replicated bits into our 2197 // immediate field for would be zero, and we prefer to use vxor for it. 2198 if (ValSizeInBytes < ByteSize) return SDValue(); 2199 2200 // If the element value is larger than the splat value, check if it consists 2201 // of a repeated bit pattern of size ByteSize. 2202 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2203 return SDValue(); 2204 2205 // Properly sign extend the value. 2206 int MaskVal = SignExtend32(Value, ByteSize * 8); 2207 2208 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2209 if (MaskVal == 0) return SDValue(); 2210 2211 // Finally, if this value fits in a 5 bit sext field, return it 2212 if (SignExtend32<5>(MaskVal) == MaskVal) 2213 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2214 return SDValue(); 2215 } 2216 2217 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2218 /// amount, otherwise return -1. 2219 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2220 EVT VT = N->getValueType(0); 2221 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2222 return -1; 2223 2224 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2225 2226 // Find the first non-undef value in the shuffle mask. 2227 unsigned i; 2228 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2229 /*search*/; 2230 2231 if (i == 4) return -1; // all undef. 2232 2233 // Otherwise, check to see if the rest of the elements are consecutively 2234 // numbered from this value. 2235 unsigned ShiftAmt = SVOp->getMaskElt(i); 2236 if (ShiftAmt < i) return -1; 2237 ShiftAmt -= i; 2238 2239 // Check the rest of the elements to see if they are consecutive. 2240 for (++i; i != 4; ++i) 2241 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2242 return -1; 2243 2244 return ShiftAmt; 2245 } 2246 2247 //===----------------------------------------------------------------------===// 2248 // Addressing Mode Selection 2249 //===----------------------------------------------------------------------===// 2250 2251 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2252 /// or 64-bit immediate, and if the value can be accurately represented as a 2253 /// sign extension from a 16-bit value. If so, this returns true and the 2254 /// immediate. 2255 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2256 if (!isa<ConstantSDNode>(N)) 2257 return false; 2258 2259 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2260 if (N->getValueType(0) == MVT::i32) 2261 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2262 else 2263 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2264 } 2265 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2266 return isIntS16Immediate(Op.getNode(), Imm); 2267 } 2268 2269 2270 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2271 /// be represented as an indexed [r+r] operation. 2272 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2273 SDValue &Index, 2274 SelectionDAG &DAG) const { 2275 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2276 UI != E; ++UI) { 2277 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2278 if (Memop->getMemoryVT() == MVT::f64) { 2279 Base = N.getOperand(0); 2280 Index = N.getOperand(1); 2281 return true; 2282 } 2283 } 2284 } 2285 return false; 2286 } 2287 2288 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2289 /// can be represented as an indexed [r+r] operation. Returns false if it 2290 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2291 /// non-zero and N can be represented by a base register plus a signed 16-bit 2292 /// displacement, make a more precise judgement by checking (displacement % \p 2293 /// EncodingAlignment). 2294 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2295 SDValue &Index, SelectionDAG &DAG, 2296 unsigned EncodingAlignment) const { 2297 int16_t imm = 0; 2298 if (N.getOpcode() == ISD::ADD) { 2299 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2300 // SPE load/store can only handle 8-bit offsets. 2301 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2302 return true; 2303 if (isIntS16Immediate(N.getOperand(1), imm) && 2304 (!EncodingAlignment || !(imm % EncodingAlignment))) 2305 return false; // r+i 2306 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2307 return false; // r+i 2308 2309 Base = N.getOperand(0); 2310 Index = N.getOperand(1); 2311 return true; 2312 } else if (N.getOpcode() == ISD::OR) { 2313 if (isIntS16Immediate(N.getOperand(1), imm) && 2314 (!EncodingAlignment || !(imm % EncodingAlignment))) 2315 return false; // r+i can fold it if we can. 2316 2317 // If this is an or of disjoint bitfields, we can codegen this as an add 2318 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2319 // disjoint. 2320 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2321 2322 if (LHSKnown.Zero.getBoolValue()) { 2323 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2324 // If all of the bits are known zero on the LHS or RHS, the add won't 2325 // carry. 2326 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2327 Base = N.getOperand(0); 2328 Index = N.getOperand(1); 2329 return true; 2330 } 2331 } 2332 } 2333 2334 return false; 2335 } 2336 2337 // If we happen to be doing an i64 load or store into a stack slot that has 2338 // less than a 4-byte alignment, then the frame-index elimination may need to 2339 // use an indexed load or store instruction (because the offset may not be a 2340 // multiple of 4). The extra register needed to hold the offset comes from the 2341 // register scavenger, and it is possible that the scavenger will need to use 2342 // an emergency spill slot. As a result, we need to make sure that a spill slot 2343 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2344 // stack slot. 2345 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2346 // FIXME: This does not handle the LWA case. 2347 if (VT != MVT::i64) 2348 return; 2349 2350 // NOTE: We'll exclude negative FIs here, which come from argument 2351 // lowering, because there are no known test cases triggering this problem 2352 // using packed structures (or similar). We can remove this exclusion if 2353 // we find such a test case. The reason why this is so test-case driven is 2354 // because this entire 'fixup' is only to prevent crashes (from the 2355 // register scavenger) on not-really-valid inputs. For example, if we have: 2356 // %a = alloca i1 2357 // %b = bitcast i1* %a to i64* 2358 // store i64* a, i64 b 2359 // then the store should really be marked as 'align 1', but is not. If it 2360 // were marked as 'align 1' then the indexed form would have been 2361 // instruction-selected initially, and the problem this 'fixup' is preventing 2362 // won't happen regardless. 2363 if (FrameIdx < 0) 2364 return; 2365 2366 MachineFunction &MF = DAG.getMachineFunction(); 2367 MachineFrameInfo &MFI = MF.getFrameInfo(); 2368 2369 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2370 if (Align >= 4) 2371 return; 2372 2373 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2374 FuncInfo->setHasNonRISpills(); 2375 } 2376 2377 /// Returns true if the address N can be represented by a base register plus 2378 /// a signed 16-bit displacement [r+imm], and if it is not better 2379 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2380 /// displacements that are multiples of that value. 2381 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2382 SDValue &Base, 2383 SelectionDAG &DAG, 2384 unsigned EncodingAlignment) const { 2385 // FIXME dl should come from parent load or store, not from address 2386 SDLoc dl(N); 2387 // If this can be more profitably realized as r+r, fail. 2388 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2389 return false; 2390 2391 if (N.getOpcode() == ISD::ADD) { 2392 int16_t imm = 0; 2393 if (isIntS16Immediate(N.getOperand(1), imm) && 2394 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2395 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2396 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2397 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2398 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2399 } else { 2400 Base = N.getOperand(0); 2401 } 2402 return true; // [r+i] 2403 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2404 // Match LOAD (ADD (X, Lo(G))). 2405 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2406 && "Cannot handle constant offsets yet!"); 2407 Disp = N.getOperand(1).getOperand(0); // The global address. 2408 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2409 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2410 Disp.getOpcode() == ISD::TargetConstantPool || 2411 Disp.getOpcode() == ISD::TargetJumpTable); 2412 Base = N.getOperand(0); 2413 return true; // [&g+r] 2414 } 2415 } else if (N.getOpcode() == ISD::OR) { 2416 int16_t imm = 0; 2417 if (isIntS16Immediate(N.getOperand(1), imm) && 2418 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2419 // If this is an or of disjoint bitfields, we can codegen this as an add 2420 // (for better address arithmetic) if the LHS and RHS of the OR are 2421 // provably disjoint. 2422 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2423 2424 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2425 // If all of the bits are known zero on the LHS or RHS, the add won't 2426 // carry. 2427 if (FrameIndexSDNode *FI = 2428 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2429 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2430 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2431 } else { 2432 Base = N.getOperand(0); 2433 } 2434 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2435 return true; 2436 } 2437 } 2438 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2439 // Loading from a constant address. 2440 2441 // If this address fits entirely in a 16-bit sext immediate field, codegen 2442 // this as "d, 0" 2443 int16_t Imm; 2444 if (isIntS16Immediate(CN, Imm) && 2445 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2446 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2447 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2448 CN->getValueType(0)); 2449 return true; 2450 } 2451 2452 // Handle 32-bit sext immediates with LIS + addr mode. 2453 if ((CN->getValueType(0) == MVT::i32 || 2454 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2455 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2456 int Addr = (int)CN->getZExtValue(); 2457 2458 // Otherwise, break this down into an LIS + disp. 2459 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2460 2461 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2462 MVT::i32); 2463 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2464 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2465 return true; 2466 } 2467 } 2468 2469 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2470 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2471 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2472 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2473 } else 2474 Base = N; 2475 return true; // [r+0] 2476 } 2477 2478 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2479 /// represented as an indexed [r+r] operation. 2480 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2481 SDValue &Index, 2482 SelectionDAG &DAG) const { 2483 // Check to see if we can easily represent this as an [r+r] address. This 2484 // will fail if it thinks that the address is more profitably represented as 2485 // reg+imm, e.g. where imm = 0. 2486 if (SelectAddressRegReg(N, Base, Index, DAG)) 2487 return true; 2488 2489 // If the address is the result of an add, we will utilize the fact that the 2490 // address calculation includes an implicit add. However, we can reduce 2491 // register pressure if we do not materialize a constant just for use as the 2492 // index register. We only get rid of the add if it is not an add of a 2493 // value and a 16-bit signed constant and both have a single use. 2494 int16_t imm = 0; 2495 if (N.getOpcode() == ISD::ADD && 2496 (!isIntS16Immediate(N.getOperand(1), imm) || 2497 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2498 Base = N.getOperand(0); 2499 Index = N.getOperand(1); 2500 return true; 2501 } 2502 2503 // Otherwise, do it the hard way, using R0 as the base register. 2504 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2505 N.getValueType()); 2506 Index = N; 2507 return true; 2508 } 2509 2510 /// Returns true if we should use a direct load into vector instruction 2511 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2512 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2513 2514 // If there are any other uses other than scalar to vector, then we should 2515 // keep it as a scalar load -> direct move pattern to prevent multiple 2516 // loads. 2517 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2518 if (!LD) 2519 return false; 2520 2521 EVT MemVT = LD->getMemoryVT(); 2522 if (!MemVT.isSimple()) 2523 return false; 2524 switch(MemVT.getSimpleVT().SimpleTy) { 2525 case MVT::i64: 2526 break; 2527 case MVT::i32: 2528 if (!ST.hasP8Vector()) 2529 return false; 2530 break; 2531 case MVT::i16: 2532 case MVT::i8: 2533 if (!ST.hasP9Vector()) 2534 return false; 2535 break; 2536 default: 2537 return false; 2538 } 2539 2540 SDValue LoadedVal(N, 0); 2541 if (!LoadedVal.hasOneUse()) 2542 return false; 2543 2544 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2545 UI != UE; ++UI) 2546 if (UI.getUse().get().getResNo() == 0 && 2547 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2548 return false; 2549 2550 return true; 2551 } 2552 2553 /// getPreIndexedAddressParts - returns true by value, base pointer and 2554 /// offset pointer and addressing mode by reference if the node's address 2555 /// can be legally represented as pre-indexed load / store address. 2556 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2557 SDValue &Offset, 2558 ISD::MemIndexedMode &AM, 2559 SelectionDAG &DAG) const { 2560 if (DisablePPCPreinc) return false; 2561 2562 bool isLoad = true; 2563 SDValue Ptr; 2564 EVT VT; 2565 unsigned Alignment; 2566 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2567 Ptr = LD->getBasePtr(); 2568 VT = LD->getMemoryVT(); 2569 Alignment = LD->getAlignment(); 2570 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2571 Ptr = ST->getBasePtr(); 2572 VT = ST->getMemoryVT(); 2573 Alignment = ST->getAlignment(); 2574 isLoad = false; 2575 } else 2576 return false; 2577 2578 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2579 // instructions because we can fold these into a more efficient instruction 2580 // instead, (such as LXSD). 2581 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2582 return false; 2583 } 2584 2585 // PowerPC doesn't have preinc load/store instructions for vectors (except 2586 // for QPX, which does have preinc r+r forms). 2587 if (VT.isVector()) { 2588 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2589 return false; 2590 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2591 AM = ISD::PRE_INC; 2592 return true; 2593 } 2594 } 2595 2596 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2597 // Common code will reject creating a pre-inc form if the base pointer 2598 // is a frame index, or if N is a store and the base pointer is either 2599 // the same as or a predecessor of the value being stored. Check for 2600 // those situations here, and try with swapped Base/Offset instead. 2601 bool Swap = false; 2602 2603 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2604 Swap = true; 2605 else if (!isLoad) { 2606 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2607 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2608 Swap = true; 2609 } 2610 2611 if (Swap) 2612 std::swap(Base, Offset); 2613 2614 AM = ISD::PRE_INC; 2615 return true; 2616 } 2617 2618 // LDU/STU can only handle immediates that are a multiple of 4. 2619 if (VT != MVT::i64) { 2620 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2621 return false; 2622 } else { 2623 // LDU/STU need an address with at least 4-byte alignment. 2624 if (Alignment < 4) 2625 return false; 2626 2627 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2628 return false; 2629 } 2630 2631 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2632 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2633 // sext i32 to i64 when addr mode is r+i. 2634 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2635 LD->getExtensionType() == ISD::SEXTLOAD && 2636 isa<ConstantSDNode>(Offset)) 2637 return false; 2638 } 2639 2640 AM = ISD::PRE_INC; 2641 return true; 2642 } 2643 2644 //===----------------------------------------------------------------------===// 2645 // LowerOperation implementation 2646 //===----------------------------------------------------------------------===// 2647 2648 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2649 /// and LoOpFlags to the target MO flags. 2650 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2651 unsigned &HiOpFlags, unsigned &LoOpFlags, 2652 const GlobalValue *GV = nullptr) { 2653 HiOpFlags = PPCII::MO_HA; 2654 LoOpFlags = PPCII::MO_LO; 2655 2656 // Don't use the pic base if not in PIC relocation model. 2657 if (IsPIC) { 2658 HiOpFlags |= PPCII::MO_PIC_FLAG; 2659 LoOpFlags |= PPCII::MO_PIC_FLAG; 2660 } 2661 2662 // If this is a reference to a global value that requires a non-lazy-ptr, make 2663 // sure that instruction lowering adds it. 2664 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2665 HiOpFlags |= PPCII::MO_NLP_FLAG; 2666 LoOpFlags |= PPCII::MO_NLP_FLAG; 2667 2668 if (GV->hasHiddenVisibility()) { 2669 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2670 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2671 } 2672 } 2673 } 2674 2675 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2676 SelectionDAG &DAG) { 2677 SDLoc DL(HiPart); 2678 EVT PtrVT = HiPart.getValueType(); 2679 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2680 2681 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2682 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2683 2684 // With PIC, the first instruction is actually "GR+hi(&G)". 2685 if (isPIC) 2686 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2687 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2688 2689 // Generate non-pic code that has direct accesses to the constant pool. 2690 // The address of the global is just (hi(&g)+lo(&g)). 2691 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2692 } 2693 2694 static void setUsesTOCBasePtr(MachineFunction &MF) { 2695 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2696 FuncInfo->setUsesTOCBasePtr(); 2697 } 2698 2699 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2700 setUsesTOCBasePtr(DAG.getMachineFunction()); 2701 } 2702 2703 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2704 SDValue GA) const { 2705 const bool Is64Bit = Subtarget.isPPC64(); 2706 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2707 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2708 : Subtarget.isAIXABI() 2709 ? DAG.getRegister(PPC::R2, VT) 2710 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2711 SDValue Ops[] = { GA, Reg }; 2712 return DAG.getMemIntrinsicNode( 2713 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2714 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2715 MachineMemOperand::MOLoad); 2716 } 2717 2718 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2719 SelectionDAG &DAG) const { 2720 EVT PtrVT = Op.getValueType(); 2721 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2722 const Constant *C = CP->getConstVal(); 2723 2724 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2725 // The actual address of the GlobalValue is stored in the TOC. 2726 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2727 setUsesTOCBasePtr(DAG); 2728 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2729 return getTOCEntry(DAG, SDLoc(CP), GA); 2730 } 2731 2732 unsigned MOHiFlag, MOLoFlag; 2733 bool IsPIC = isPositionIndependent(); 2734 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2735 2736 if (IsPIC && Subtarget.isSVR4ABI()) { 2737 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2738 PPCII::MO_PIC_FLAG); 2739 return getTOCEntry(DAG, SDLoc(CP), GA); 2740 } 2741 2742 SDValue CPIHi = 2743 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2744 SDValue CPILo = 2745 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2746 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2747 } 2748 2749 // For 64-bit PowerPC, prefer the more compact relative encodings. 2750 // This trades 32 bits per jump table entry for one or two instructions 2751 // on the jump site. 2752 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2753 if (isJumpTableRelative()) 2754 return MachineJumpTableInfo::EK_LabelDifference32; 2755 2756 return TargetLowering::getJumpTableEncoding(); 2757 } 2758 2759 bool PPCTargetLowering::isJumpTableRelative() const { 2760 if (UseAbsoluteJumpTables) 2761 return false; 2762 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2763 return true; 2764 return TargetLowering::isJumpTableRelative(); 2765 } 2766 2767 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2768 SelectionDAG &DAG) const { 2769 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2770 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2771 2772 switch (getTargetMachine().getCodeModel()) { 2773 case CodeModel::Small: 2774 case CodeModel::Medium: 2775 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2776 default: 2777 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2778 getPointerTy(DAG.getDataLayout())); 2779 } 2780 } 2781 2782 const MCExpr * 2783 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2784 unsigned JTI, 2785 MCContext &Ctx) const { 2786 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2787 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2788 2789 switch (getTargetMachine().getCodeModel()) { 2790 case CodeModel::Small: 2791 case CodeModel::Medium: 2792 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2793 default: 2794 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2795 } 2796 } 2797 2798 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2799 EVT PtrVT = Op.getValueType(); 2800 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2801 2802 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2803 // The actual address of the GlobalValue is stored in the TOC. 2804 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2805 setUsesTOCBasePtr(DAG); 2806 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2807 return getTOCEntry(DAG, SDLoc(JT), GA); 2808 } 2809 2810 unsigned MOHiFlag, MOLoFlag; 2811 bool IsPIC = isPositionIndependent(); 2812 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2813 2814 if (IsPIC && Subtarget.isSVR4ABI()) { 2815 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2816 PPCII::MO_PIC_FLAG); 2817 return getTOCEntry(DAG, SDLoc(GA), GA); 2818 } 2819 2820 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2821 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2822 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2823 } 2824 2825 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2826 SelectionDAG &DAG) const { 2827 EVT PtrVT = Op.getValueType(); 2828 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2829 const BlockAddress *BA = BASDN->getBlockAddress(); 2830 2831 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2832 // The actual BlockAddress is stored in the TOC. 2833 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2834 setUsesTOCBasePtr(DAG); 2835 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2836 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2837 } 2838 2839 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2840 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2841 return getTOCEntry( 2842 DAG, SDLoc(BASDN), 2843 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2844 2845 unsigned MOHiFlag, MOLoFlag; 2846 bool IsPIC = isPositionIndependent(); 2847 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2848 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2849 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2850 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2851 } 2852 2853 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2854 SelectionDAG &DAG) const { 2855 // FIXME: TLS addresses currently use medium model code sequences, 2856 // which is the most useful form. Eventually support for small and 2857 // large models could be added if users need it, at the cost of 2858 // additional complexity. 2859 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2860 if (DAG.getTarget().useEmulatedTLS()) 2861 return LowerToTLSEmulatedModel(GA, DAG); 2862 2863 SDLoc dl(GA); 2864 const GlobalValue *GV = GA->getGlobal(); 2865 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2866 bool is64bit = Subtarget.isPPC64(); 2867 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2868 PICLevel::Level picLevel = M->getPICLevel(); 2869 2870 const TargetMachine &TM = getTargetMachine(); 2871 TLSModel::Model Model = TM.getTLSModel(GV); 2872 2873 if (Model == TLSModel::LocalExec) { 2874 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2875 PPCII::MO_TPREL_HA); 2876 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2877 PPCII::MO_TPREL_LO); 2878 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2879 : DAG.getRegister(PPC::R2, MVT::i32); 2880 2881 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2882 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2883 } 2884 2885 if (Model == TLSModel::InitialExec) { 2886 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2887 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2888 PPCII::MO_TLS); 2889 SDValue GOTPtr; 2890 if (is64bit) { 2891 setUsesTOCBasePtr(DAG); 2892 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2893 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2894 PtrVT, GOTReg, TGA); 2895 } else { 2896 if (!TM.isPositionIndependent()) 2897 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2898 else if (picLevel == PICLevel::SmallPIC) 2899 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2900 else 2901 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2902 } 2903 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2904 PtrVT, TGA, GOTPtr); 2905 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2906 } 2907 2908 if (Model == TLSModel::GeneralDynamic) { 2909 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2910 SDValue GOTPtr; 2911 if (is64bit) { 2912 setUsesTOCBasePtr(DAG); 2913 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2914 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2915 GOTReg, TGA); 2916 } else { 2917 if (picLevel == PICLevel::SmallPIC) 2918 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2919 else 2920 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2921 } 2922 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2923 GOTPtr, TGA, TGA); 2924 } 2925 2926 if (Model == TLSModel::LocalDynamic) { 2927 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2928 SDValue GOTPtr; 2929 if (is64bit) { 2930 setUsesTOCBasePtr(DAG); 2931 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2932 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2933 GOTReg, TGA); 2934 } else { 2935 if (picLevel == PICLevel::SmallPIC) 2936 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2937 else 2938 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2939 } 2940 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2941 PtrVT, GOTPtr, TGA, TGA); 2942 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2943 PtrVT, TLSAddr, TGA); 2944 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2945 } 2946 2947 llvm_unreachable("Unknown TLS model!"); 2948 } 2949 2950 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2951 SelectionDAG &DAG) const { 2952 EVT PtrVT = Op.getValueType(); 2953 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2954 SDLoc DL(GSDN); 2955 const GlobalValue *GV = GSDN->getGlobal(); 2956 2957 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2958 // The actual address of the GlobalValue is stored in the TOC. 2959 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2960 setUsesTOCBasePtr(DAG); 2961 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2962 return getTOCEntry(DAG, DL, GA); 2963 } 2964 2965 unsigned MOHiFlag, MOLoFlag; 2966 bool IsPIC = isPositionIndependent(); 2967 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2968 2969 if (IsPIC && Subtarget.isSVR4ABI()) { 2970 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2971 GSDN->getOffset(), 2972 PPCII::MO_PIC_FLAG); 2973 return getTOCEntry(DAG, DL, GA); 2974 } 2975 2976 SDValue GAHi = 2977 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2978 SDValue GALo = 2979 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2980 2981 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2982 2983 // If the global reference is actually to a non-lazy-pointer, we have to do an 2984 // extra load to get the address of the global. 2985 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2986 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2987 return Ptr; 2988 } 2989 2990 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2991 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2992 SDLoc dl(Op); 2993 2994 if (Op.getValueType() == MVT::v2i64) { 2995 // When the operands themselves are v2i64 values, we need to do something 2996 // special because VSX has no underlying comparison operations for these. 2997 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2998 // Equality can be handled by casting to the legal type for Altivec 2999 // comparisons, everything else needs to be expanded. 3000 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3001 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3002 DAG.getSetCC(dl, MVT::v4i32, 3003 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3004 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3005 CC)); 3006 } 3007 3008 return SDValue(); 3009 } 3010 3011 // We handle most of these in the usual way. 3012 return Op; 3013 } 3014 3015 // If we're comparing for equality to zero, expose the fact that this is 3016 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3017 // fold the new nodes. 3018 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3019 return V; 3020 3021 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3022 // Leave comparisons against 0 and -1 alone for now, since they're usually 3023 // optimized. FIXME: revisit this when we can custom lower all setcc 3024 // optimizations. 3025 if (C->isAllOnesValue() || C->isNullValue()) 3026 return SDValue(); 3027 } 3028 3029 // If we have an integer seteq/setne, turn it into a compare against zero 3030 // by xor'ing the rhs with the lhs, which is faster than setting a 3031 // condition register, reading it back out, and masking the correct bit. The 3032 // normal approach here uses sub to do this instead of xor. Using xor exposes 3033 // the result to other bit-twiddling opportunities. 3034 EVT LHSVT = Op.getOperand(0).getValueType(); 3035 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3036 EVT VT = Op.getValueType(); 3037 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3038 Op.getOperand(1)); 3039 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3040 } 3041 return SDValue(); 3042 } 3043 3044 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3045 SDNode *Node = Op.getNode(); 3046 EVT VT = Node->getValueType(0); 3047 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3048 SDValue InChain = Node->getOperand(0); 3049 SDValue VAListPtr = Node->getOperand(1); 3050 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3051 SDLoc dl(Node); 3052 3053 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3054 3055 // gpr_index 3056 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3057 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3058 InChain = GprIndex.getValue(1); 3059 3060 if (VT == MVT::i64) { 3061 // Check if GprIndex is even 3062 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3063 DAG.getConstant(1, dl, MVT::i32)); 3064 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3065 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3066 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3067 DAG.getConstant(1, dl, MVT::i32)); 3068 // Align GprIndex to be even if it isn't 3069 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3070 GprIndex); 3071 } 3072 3073 // fpr index is 1 byte after gpr 3074 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3075 DAG.getConstant(1, dl, MVT::i32)); 3076 3077 // fpr 3078 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3079 FprPtr, MachinePointerInfo(SV), MVT::i8); 3080 InChain = FprIndex.getValue(1); 3081 3082 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3083 DAG.getConstant(8, dl, MVT::i32)); 3084 3085 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3086 DAG.getConstant(4, dl, MVT::i32)); 3087 3088 // areas 3089 SDValue OverflowArea = 3090 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3091 InChain = OverflowArea.getValue(1); 3092 3093 SDValue RegSaveArea = 3094 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3095 InChain = RegSaveArea.getValue(1); 3096 3097 // select overflow_area if index > 8 3098 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3099 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3100 3101 // adjustment constant gpr_index * 4/8 3102 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3103 VT.isInteger() ? GprIndex : FprIndex, 3104 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3105 MVT::i32)); 3106 3107 // OurReg = RegSaveArea + RegConstant 3108 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3109 RegConstant); 3110 3111 // Floating types are 32 bytes into RegSaveArea 3112 if (VT.isFloatingPoint()) 3113 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3114 DAG.getConstant(32, dl, MVT::i32)); 3115 3116 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3117 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3118 VT.isInteger() ? GprIndex : FprIndex, 3119 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3120 MVT::i32)); 3121 3122 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3123 VT.isInteger() ? VAListPtr : FprPtr, 3124 MachinePointerInfo(SV), MVT::i8); 3125 3126 // determine if we should load from reg_save_area or overflow_area 3127 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3128 3129 // increase overflow_area by 4/8 if gpr/fpr > 8 3130 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3131 DAG.getConstant(VT.isInteger() ? 4 : 8, 3132 dl, MVT::i32)); 3133 3134 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3135 OverflowAreaPlusN); 3136 3137 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3138 MachinePointerInfo(), MVT::i32); 3139 3140 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3141 } 3142 3143 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3144 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3145 3146 // We have to copy the entire va_list struct: 3147 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3148 return DAG.getMemcpy(Op.getOperand(0), Op, 3149 Op.getOperand(1), Op.getOperand(2), 3150 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3151 false, MachinePointerInfo(), MachinePointerInfo()); 3152 } 3153 3154 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3155 SelectionDAG &DAG) const { 3156 return Op.getOperand(0); 3157 } 3158 3159 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3160 SelectionDAG &DAG) const { 3161 SDValue Chain = Op.getOperand(0); 3162 SDValue Trmp = Op.getOperand(1); // trampoline 3163 SDValue FPtr = Op.getOperand(2); // nested function 3164 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3165 SDLoc dl(Op); 3166 3167 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3168 bool isPPC64 = (PtrVT == MVT::i64); 3169 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3170 3171 TargetLowering::ArgListTy Args; 3172 TargetLowering::ArgListEntry Entry; 3173 3174 Entry.Ty = IntPtrTy; 3175 Entry.Node = Trmp; Args.push_back(Entry); 3176 3177 // TrampSize == (isPPC64 ? 48 : 40); 3178 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3179 isPPC64 ? MVT::i64 : MVT::i32); 3180 Args.push_back(Entry); 3181 3182 Entry.Node = FPtr; Args.push_back(Entry); 3183 Entry.Node = Nest; Args.push_back(Entry); 3184 3185 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3186 TargetLowering::CallLoweringInfo CLI(DAG); 3187 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3188 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3189 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3190 3191 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3192 return CallResult.second; 3193 } 3194 3195 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3196 MachineFunction &MF = DAG.getMachineFunction(); 3197 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3198 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3199 3200 SDLoc dl(Op); 3201 3202 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3203 // vastart just stores the address of the VarArgsFrameIndex slot into the 3204 // memory location argument. 3205 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3206 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3207 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3208 MachinePointerInfo(SV)); 3209 } 3210 3211 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3212 // We suppose the given va_list is already allocated. 3213 // 3214 // typedef struct { 3215 // char gpr; /* index into the array of 8 GPRs 3216 // * stored in the register save area 3217 // * gpr=0 corresponds to r3, 3218 // * gpr=1 to r4, etc. 3219 // */ 3220 // char fpr; /* index into the array of 8 FPRs 3221 // * stored in the register save area 3222 // * fpr=0 corresponds to f1, 3223 // * fpr=1 to f2, etc. 3224 // */ 3225 // char *overflow_arg_area; 3226 // /* location on stack that holds 3227 // * the next overflow argument 3228 // */ 3229 // char *reg_save_area; 3230 // /* where r3:r10 and f1:f8 (if saved) 3231 // * are stored 3232 // */ 3233 // } va_list[1]; 3234 3235 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3236 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3237 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3238 PtrVT); 3239 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3240 PtrVT); 3241 3242 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3243 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3244 3245 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3246 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3247 3248 uint64_t FPROffset = 1; 3249 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3250 3251 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3252 3253 // Store first byte : number of int regs 3254 SDValue firstStore = 3255 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3256 MachinePointerInfo(SV), MVT::i8); 3257 uint64_t nextOffset = FPROffset; 3258 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3259 ConstFPROffset); 3260 3261 // Store second byte : number of float regs 3262 SDValue secondStore = 3263 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3264 MachinePointerInfo(SV, nextOffset), MVT::i8); 3265 nextOffset += StackOffset; 3266 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3267 3268 // Store second word : arguments given on stack 3269 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3270 MachinePointerInfo(SV, nextOffset)); 3271 nextOffset += FrameOffset; 3272 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3273 3274 // Store third word : arguments given in registers 3275 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3276 MachinePointerInfo(SV, nextOffset)); 3277 } 3278 3279 /// FPR - The set of FP registers that should be allocated for arguments 3280 /// on Darwin and AIX. 3281 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3282 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3283 PPC::F11, PPC::F12, PPC::F13}; 3284 3285 /// QFPR - The set of QPX registers that should be allocated for arguments. 3286 static const MCPhysReg QFPR[] = { 3287 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3288 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3289 3290 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3291 /// the stack. 3292 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3293 unsigned PtrByteSize) { 3294 unsigned ArgSize = ArgVT.getStoreSize(); 3295 if (Flags.isByVal()) 3296 ArgSize = Flags.getByValSize(); 3297 3298 // Round up to multiples of the pointer size, except for array members, 3299 // which are always packed. 3300 if (!Flags.isInConsecutiveRegs()) 3301 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3302 3303 return ArgSize; 3304 } 3305 3306 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3307 /// on the stack. 3308 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3309 ISD::ArgFlagsTy Flags, 3310 unsigned PtrByteSize) { 3311 unsigned Align = PtrByteSize; 3312 3313 // Altivec parameters are padded to a 16 byte boundary. 3314 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3315 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3316 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3317 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3318 Align = 16; 3319 // QPX vector types stored in double-precision are padded to a 32 byte 3320 // boundary. 3321 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3322 Align = 32; 3323 3324 // ByVal parameters are aligned as requested. 3325 if (Flags.isByVal()) { 3326 unsigned BVAlign = Flags.getByValAlign(); 3327 if (BVAlign > PtrByteSize) { 3328 if (BVAlign % PtrByteSize != 0) 3329 llvm_unreachable( 3330 "ByVal alignment is not a multiple of the pointer size"); 3331 3332 Align = BVAlign; 3333 } 3334 } 3335 3336 // Array members are always packed to their original alignment. 3337 if (Flags.isInConsecutiveRegs()) { 3338 // If the array member was split into multiple registers, the first 3339 // needs to be aligned to the size of the full type. (Except for 3340 // ppcf128, which is only aligned as its f64 components.) 3341 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3342 Align = OrigVT.getStoreSize(); 3343 else 3344 Align = ArgVT.getStoreSize(); 3345 } 3346 3347 return Align; 3348 } 3349 3350 /// CalculateStackSlotUsed - Return whether this argument will use its 3351 /// stack slot (instead of being passed in registers). ArgOffset, 3352 /// AvailableFPRs, and AvailableVRs must hold the current argument 3353 /// position, and will be updated to account for this argument. 3354 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3355 ISD::ArgFlagsTy Flags, 3356 unsigned PtrByteSize, 3357 unsigned LinkageSize, 3358 unsigned ParamAreaSize, 3359 unsigned &ArgOffset, 3360 unsigned &AvailableFPRs, 3361 unsigned &AvailableVRs, bool HasQPX) { 3362 bool UseMemory = false; 3363 3364 // Respect alignment of argument on the stack. 3365 unsigned Align = 3366 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3367 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3368 // If there's no space left in the argument save area, we must 3369 // use memory (this check also catches zero-sized arguments). 3370 if (ArgOffset >= LinkageSize + ParamAreaSize) 3371 UseMemory = true; 3372 3373 // Allocate argument on the stack. 3374 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3375 if (Flags.isInConsecutiveRegsLast()) 3376 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3377 // If we overran the argument save area, we must use memory 3378 // (this check catches arguments passed partially in memory) 3379 if (ArgOffset > LinkageSize + ParamAreaSize) 3380 UseMemory = true; 3381 3382 // However, if the argument is actually passed in an FPR or a VR, 3383 // we don't use memory after all. 3384 if (!Flags.isByVal()) { 3385 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3386 // QPX registers overlap with the scalar FP registers. 3387 (HasQPX && (ArgVT == MVT::v4f32 || 3388 ArgVT == MVT::v4f64 || 3389 ArgVT == MVT::v4i1))) 3390 if (AvailableFPRs > 0) { 3391 --AvailableFPRs; 3392 return false; 3393 } 3394 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3395 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3396 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3397 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3398 if (AvailableVRs > 0) { 3399 --AvailableVRs; 3400 return false; 3401 } 3402 } 3403 3404 return UseMemory; 3405 } 3406 3407 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3408 /// ensure minimum alignment required for target. 3409 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3410 unsigned NumBytes) { 3411 unsigned TargetAlign = Lowering->getStackAlignment(); 3412 unsigned AlignMask = TargetAlign - 1; 3413 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3414 return NumBytes; 3415 } 3416 3417 SDValue PPCTargetLowering::LowerFormalArguments( 3418 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3419 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3420 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3421 if (Subtarget.isAIXABI()) 3422 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3423 InVals); 3424 if (Subtarget.is64BitELFABI()) 3425 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3426 InVals); 3427 if (Subtarget.is32BitELFABI()) 3428 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3429 InVals); 3430 3431 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3432 InVals); 3433 } 3434 3435 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3436 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3437 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3438 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3439 3440 // 32-bit SVR4 ABI Stack Frame Layout: 3441 // +-----------------------------------+ 3442 // +--> | Back chain | 3443 // | +-----------------------------------+ 3444 // | | Floating-point register save area | 3445 // | +-----------------------------------+ 3446 // | | General register save area | 3447 // | +-----------------------------------+ 3448 // | | CR save word | 3449 // | +-----------------------------------+ 3450 // | | VRSAVE save word | 3451 // | +-----------------------------------+ 3452 // | | Alignment padding | 3453 // | +-----------------------------------+ 3454 // | | Vector register save area | 3455 // | +-----------------------------------+ 3456 // | | Local variable space | 3457 // | +-----------------------------------+ 3458 // | | Parameter list area | 3459 // | +-----------------------------------+ 3460 // | | LR save word | 3461 // | +-----------------------------------+ 3462 // SP--> +--- | Back chain | 3463 // +-----------------------------------+ 3464 // 3465 // Specifications: 3466 // System V Application Binary Interface PowerPC Processor Supplement 3467 // AltiVec Technology Programming Interface Manual 3468 3469 MachineFunction &MF = DAG.getMachineFunction(); 3470 MachineFrameInfo &MFI = MF.getFrameInfo(); 3471 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3472 3473 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3474 // Potential tail calls could cause overwriting of argument stack slots. 3475 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3476 (CallConv == CallingConv::Fast)); 3477 unsigned PtrByteSize = 4; 3478 3479 // Assign locations to all of the incoming arguments. 3480 SmallVector<CCValAssign, 16> ArgLocs; 3481 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3482 *DAG.getContext()); 3483 3484 // Reserve space for the linkage area on the stack. 3485 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3486 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3487 if (useSoftFloat()) 3488 CCInfo.PreAnalyzeFormalArguments(Ins); 3489 3490 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3491 CCInfo.clearWasPPCF128(); 3492 3493 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3494 CCValAssign &VA = ArgLocs[i]; 3495 3496 // Arguments stored in registers. 3497 if (VA.isRegLoc()) { 3498 const TargetRegisterClass *RC; 3499 EVT ValVT = VA.getValVT(); 3500 3501 switch (ValVT.getSimpleVT().SimpleTy) { 3502 default: 3503 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3504 case MVT::i1: 3505 case MVT::i32: 3506 RC = &PPC::GPRCRegClass; 3507 break; 3508 case MVT::f32: 3509 if (Subtarget.hasP8Vector()) 3510 RC = &PPC::VSSRCRegClass; 3511 else if (Subtarget.hasSPE()) 3512 RC = &PPC::GPRCRegClass; 3513 else 3514 RC = &PPC::F4RCRegClass; 3515 break; 3516 case MVT::f64: 3517 if (Subtarget.hasVSX()) 3518 RC = &PPC::VSFRCRegClass; 3519 else if (Subtarget.hasSPE()) 3520 // SPE passes doubles in GPR pairs. 3521 RC = &PPC::GPRCRegClass; 3522 else 3523 RC = &PPC::F8RCRegClass; 3524 break; 3525 case MVT::v16i8: 3526 case MVT::v8i16: 3527 case MVT::v4i32: 3528 RC = &PPC::VRRCRegClass; 3529 break; 3530 case MVT::v4f32: 3531 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3532 break; 3533 case MVT::v2f64: 3534 case MVT::v2i64: 3535 RC = &PPC::VRRCRegClass; 3536 break; 3537 case MVT::v4f64: 3538 RC = &PPC::QFRCRegClass; 3539 break; 3540 case MVT::v4i1: 3541 RC = &PPC::QBRCRegClass; 3542 break; 3543 } 3544 3545 SDValue ArgValue; 3546 // Transform the arguments stored in physical registers into 3547 // virtual ones. 3548 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3549 assert(i + 1 < e && "No second half of double precision argument"); 3550 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3551 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3552 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3553 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3554 if (!Subtarget.isLittleEndian()) 3555 std::swap (ArgValueLo, ArgValueHi); 3556 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3557 ArgValueHi); 3558 } else { 3559 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3560 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3561 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3562 if (ValVT == MVT::i1) 3563 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3564 } 3565 3566 InVals.push_back(ArgValue); 3567 } else { 3568 // Argument stored in memory. 3569 assert(VA.isMemLoc()); 3570 3571 // Get the extended size of the argument type in stack 3572 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3573 // Get the actual size of the argument type 3574 unsigned ObjSize = VA.getValVT().getStoreSize(); 3575 unsigned ArgOffset = VA.getLocMemOffset(); 3576 // Stack objects in PPC32 are right justified. 3577 ArgOffset += ArgSize - ObjSize; 3578 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3579 3580 // Create load nodes to retrieve arguments from the stack. 3581 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3582 InVals.push_back( 3583 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3584 } 3585 } 3586 3587 // Assign locations to all of the incoming aggregate by value arguments. 3588 // Aggregates passed by value are stored in the local variable space of the 3589 // caller's stack frame, right above the parameter list area. 3590 SmallVector<CCValAssign, 16> ByValArgLocs; 3591 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3592 ByValArgLocs, *DAG.getContext()); 3593 3594 // Reserve stack space for the allocations in CCInfo. 3595 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3596 3597 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3598 3599 // Area that is at least reserved in the caller of this function. 3600 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3601 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3602 3603 // Set the size that is at least reserved in caller of this function. Tail 3604 // call optimized function's reserved stack space needs to be aligned so that 3605 // taking the difference between two stack areas will result in an aligned 3606 // stack. 3607 MinReservedArea = 3608 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3609 FuncInfo->setMinReservedArea(MinReservedArea); 3610 3611 SmallVector<SDValue, 8> MemOps; 3612 3613 // If the function takes variable number of arguments, make a frame index for 3614 // the start of the first vararg value... for expansion of llvm.va_start. 3615 if (isVarArg) { 3616 static const MCPhysReg GPArgRegs[] = { 3617 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3618 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3619 }; 3620 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3621 3622 static const MCPhysReg FPArgRegs[] = { 3623 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3624 PPC::F8 3625 }; 3626 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3627 3628 if (useSoftFloat() || hasSPE()) 3629 NumFPArgRegs = 0; 3630 3631 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3632 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3633 3634 // Make room for NumGPArgRegs and NumFPArgRegs. 3635 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3636 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3637 3638 FuncInfo->setVarArgsStackOffset( 3639 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3640 CCInfo.getNextStackOffset(), true)); 3641 3642 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3643 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3644 3645 // The fixed integer arguments of a variadic function are stored to the 3646 // VarArgsFrameIndex on the stack so that they may be loaded by 3647 // dereferencing the result of va_next. 3648 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3649 // Get an existing live-in vreg, or add a new one. 3650 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3651 if (!VReg) 3652 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3653 3654 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3655 SDValue Store = 3656 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3657 MemOps.push_back(Store); 3658 // Increment the address by four for the next argument to store 3659 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3660 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3661 } 3662 3663 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3664 // is set. 3665 // The double arguments are stored to the VarArgsFrameIndex 3666 // on the stack. 3667 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3668 // Get an existing live-in vreg, or add a new one. 3669 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3670 if (!VReg) 3671 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3672 3673 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3674 SDValue Store = 3675 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3676 MemOps.push_back(Store); 3677 // Increment the address by eight for the next argument to store 3678 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3679 PtrVT); 3680 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3681 } 3682 } 3683 3684 if (!MemOps.empty()) 3685 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3686 3687 return Chain; 3688 } 3689 3690 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3691 // value to MVT::i64 and then truncate to the correct register size. 3692 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3693 EVT ObjectVT, SelectionDAG &DAG, 3694 SDValue ArgVal, 3695 const SDLoc &dl) const { 3696 if (Flags.isSExt()) 3697 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3698 DAG.getValueType(ObjectVT)); 3699 else if (Flags.isZExt()) 3700 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3701 DAG.getValueType(ObjectVT)); 3702 3703 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3704 } 3705 3706 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3707 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3708 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3709 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3710 // TODO: add description of PPC stack frame format, or at least some docs. 3711 // 3712 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3713 bool isLittleEndian = Subtarget.isLittleEndian(); 3714 MachineFunction &MF = DAG.getMachineFunction(); 3715 MachineFrameInfo &MFI = MF.getFrameInfo(); 3716 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3717 3718 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3719 "fastcc not supported on varargs functions"); 3720 3721 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3722 // Potential tail calls could cause overwriting of argument stack slots. 3723 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3724 (CallConv == CallingConv::Fast)); 3725 unsigned PtrByteSize = 8; 3726 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3727 3728 static const MCPhysReg GPR[] = { 3729 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3730 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3731 }; 3732 static const MCPhysReg VR[] = { 3733 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3734 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3735 }; 3736 3737 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3738 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3739 const unsigned Num_VR_Regs = array_lengthof(VR); 3740 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3741 3742 // Do a first pass over the arguments to determine whether the ABI 3743 // guarantees that our caller has allocated the parameter save area 3744 // on its stack frame. In the ELFv1 ABI, this is always the case; 3745 // in the ELFv2 ABI, it is true if this is a vararg function or if 3746 // any parameter is located in a stack slot. 3747 3748 bool HasParameterArea = !isELFv2ABI || isVarArg; 3749 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3750 unsigned NumBytes = LinkageSize; 3751 unsigned AvailableFPRs = Num_FPR_Regs; 3752 unsigned AvailableVRs = Num_VR_Regs; 3753 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3754 if (Ins[i].Flags.isNest()) 3755 continue; 3756 3757 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3758 PtrByteSize, LinkageSize, ParamAreaSize, 3759 NumBytes, AvailableFPRs, AvailableVRs, 3760 Subtarget.hasQPX())) 3761 HasParameterArea = true; 3762 } 3763 3764 // Add DAG nodes to load the arguments or copy them out of registers. On 3765 // entry to a function on PPC, the arguments start after the linkage area, 3766 // although the first ones are often in registers. 3767 3768 unsigned ArgOffset = LinkageSize; 3769 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3770 unsigned &QFPR_idx = FPR_idx; 3771 SmallVector<SDValue, 8> MemOps; 3772 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3773 unsigned CurArgIdx = 0; 3774 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3775 SDValue ArgVal; 3776 bool needsLoad = false; 3777 EVT ObjectVT = Ins[ArgNo].VT; 3778 EVT OrigVT = Ins[ArgNo].ArgVT; 3779 unsigned ObjSize = ObjectVT.getStoreSize(); 3780 unsigned ArgSize = ObjSize; 3781 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3782 if (Ins[ArgNo].isOrigArg()) { 3783 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3784 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3785 } 3786 // We re-align the argument offset for each argument, except when using the 3787 // fast calling convention, when we need to make sure we do that only when 3788 // we'll actually use a stack slot. 3789 unsigned CurArgOffset, Align; 3790 auto ComputeArgOffset = [&]() { 3791 /* Respect alignment of argument on the stack. */ 3792 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3793 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3794 CurArgOffset = ArgOffset; 3795 }; 3796 3797 if (CallConv != CallingConv::Fast) { 3798 ComputeArgOffset(); 3799 3800 /* Compute GPR index associated with argument offset. */ 3801 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3802 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3803 } 3804 3805 // FIXME the codegen can be much improved in some cases. 3806 // We do not have to keep everything in memory. 3807 if (Flags.isByVal()) { 3808 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3809 3810 if (CallConv == CallingConv::Fast) 3811 ComputeArgOffset(); 3812 3813 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3814 ObjSize = Flags.getByValSize(); 3815 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3816 // Empty aggregate parameters do not take up registers. Examples: 3817 // struct { } a; 3818 // union { } b; 3819 // int c[0]; 3820 // etc. However, we have to provide a place-holder in InVals, so 3821 // pretend we have an 8-byte item at the current address for that 3822 // purpose. 3823 if (!ObjSize) { 3824 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3825 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3826 InVals.push_back(FIN); 3827 continue; 3828 } 3829 3830 // Create a stack object covering all stack doublewords occupied 3831 // by the argument. If the argument is (fully or partially) on 3832 // the stack, or if the argument is fully in registers but the 3833 // caller has allocated the parameter save anyway, we can refer 3834 // directly to the caller's stack frame. Otherwise, create a 3835 // local copy in our own frame. 3836 int FI; 3837 if (HasParameterArea || 3838 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3839 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3840 else 3841 FI = MFI.CreateStackObject(ArgSize, Align, false); 3842 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3843 3844 // Handle aggregates smaller than 8 bytes. 3845 if (ObjSize < PtrByteSize) { 3846 // The value of the object is its address, which differs from the 3847 // address of the enclosing doubleword on big-endian systems. 3848 SDValue Arg = FIN; 3849 if (!isLittleEndian) { 3850 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3851 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3852 } 3853 InVals.push_back(Arg); 3854 3855 if (GPR_idx != Num_GPR_Regs) { 3856 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3857 FuncInfo->addLiveInAttr(VReg, Flags); 3858 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3859 SDValue Store; 3860 3861 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3862 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3863 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3864 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3865 MachinePointerInfo(&*FuncArg), ObjType); 3866 } else { 3867 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3868 // store the whole register as-is to the parameter save area 3869 // slot. 3870 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3871 MachinePointerInfo(&*FuncArg)); 3872 } 3873 3874 MemOps.push_back(Store); 3875 } 3876 // Whether we copied from a register or not, advance the offset 3877 // into the parameter save area by a full doubleword. 3878 ArgOffset += PtrByteSize; 3879 continue; 3880 } 3881 3882 // The value of the object is its address, which is the address of 3883 // its first stack doubleword. 3884 InVals.push_back(FIN); 3885 3886 // Store whatever pieces of the object are in registers to memory. 3887 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3888 if (GPR_idx == Num_GPR_Regs) 3889 break; 3890 3891 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3892 FuncInfo->addLiveInAttr(VReg, Flags); 3893 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3894 SDValue Addr = FIN; 3895 if (j) { 3896 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3897 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3898 } 3899 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3900 MachinePointerInfo(&*FuncArg, j)); 3901 MemOps.push_back(Store); 3902 ++GPR_idx; 3903 } 3904 ArgOffset += ArgSize; 3905 continue; 3906 } 3907 3908 switch (ObjectVT.getSimpleVT().SimpleTy) { 3909 default: llvm_unreachable("Unhandled argument type!"); 3910 case MVT::i1: 3911 case MVT::i32: 3912 case MVT::i64: 3913 if (Flags.isNest()) { 3914 // The 'nest' parameter, if any, is passed in R11. 3915 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3916 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3917 3918 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3919 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3920 3921 break; 3922 } 3923 3924 // These can be scalar arguments or elements of an integer array type 3925 // passed directly. Clang may use those instead of "byval" aggregate 3926 // types to avoid forcing arguments to memory unnecessarily. 3927 if (GPR_idx != Num_GPR_Regs) { 3928 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3929 FuncInfo->addLiveInAttr(VReg, Flags); 3930 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3931 3932 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3933 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3934 // value to MVT::i64 and then truncate to the correct register size. 3935 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3936 } else { 3937 if (CallConv == CallingConv::Fast) 3938 ComputeArgOffset(); 3939 3940 needsLoad = true; 3941 ArgSize = PtrByteSize; 3942 } 3943 if (CallConv != CallingConv::Fast || needsLoad) 3944 ArgOffset += 8; 3945 break; 3946 3947 case MVT::f32: 3948 case MVT::f64: 3949 // These can be scalar arguments or elements of a float array type 3950 // passed directly. The latter are used to implement ELFv2 homogenous 3951 // float aggregates. 3952 if (FPR_idx != Num_FPR_Regs) { 3953 unsigned VReg; 3954 3955 if (ObjectVT == MVT::f32) 3956 VReg = MF.addLiveIn(FPR[FPR_idx], 3957 Subtarget.hasP8Vector() 3958 ? &PPC::VSSRCRegClass 3959 : &PPC::F4RCRegClass); 3960 else 3961 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3962 ? &PPC::VSFRCRegClass 3963 : &PPC::F8RCRegClass); 3964 3965 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3966 ++FPR_idx; 3967 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3968 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3969 // once we support fp <-> gpr moves. 3970 3971 // This can only ever happen in the presence of f32 array types, 3972 // since otherwise we never run out of FPRs before running out 3973 // of GPRs. 3974 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3975 FuncInfo->addLiveInAttr(VReg, Flags); 3976 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3977 3978 if (ObjectVT == MVT::f32) { 3979 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3980 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3981 DAG.getConstant(32, dl, MVT::i32)); 3982 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3983 } 3984 3985 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3986 } else { 3987 if (CallConv == CallingConv::Fast) 3988 ComputeArgOffset(); 3989 3990 needsLoad = true; 3991 } 3992 3993 // When passing an array of floats, the array occupies consecutive 3994 // space in the argument area; only round up to the next doubleword 3995 // at the end of the array. Otherwise, each float takes 8 bytes. 3996 if (CallConv != CallingConv::Fast || needsLoad) { 3997 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3998 ArgOffset += ArgSize; 3999 if (Flags.isInConsecutiveRegsLast()) 4000 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4001 } 4002 break; 4003 case MVT::v4f32: 4004 case MVT::v4i32: 4005 case MVT::v8i16: 4006 case MVT::v16i8: 4007 case MVT::v2f64: 4008 case MVT::v2i64: 4009 case MVT::v1i128: 4010 case MVT::f128: 4011 if (!Subtarget.hasQPX()) { 4012 // These can be scalar arguments or elements of a vector array type 4013 // passed directly. The latter are used to implement ELFv2 homogenous 4014 // vector aggregates. 4015 if (VR_idx != Num_VR_Regs) { 4016 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4017 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4018 ++VR_idx; 4019 } else { 4020 if (CallConv == CallingConv::Fast) 4021 ComputeArgOffset(); 4022 needsLoad = true; 4023 } 4024 if (CallConv != CallingConv::Fast || needsLoad) 4025 ArgOffset += 16; 4026 break; 4027 } // not QPX 4028 4029 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4030 "Invalid QPX parameter type"); 4031 LLVM_FALLTHROUGH; 4032 4033 case MVT::v4f64: 4034 case MVT::v4i1: 4035 // QPX vectors are treated like their scalar floating-point subregisters 4036 // (except that they're larger). 4037 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4038 if (QFPR_idx != Num_QFPR_Regs) { 4039 const TargetRegisterClass *RC; 4040 switch (ObjectVT.getSimpleVT().SimpleTy) { 4041 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4042 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4043 default: RC = &PPC::QBRCRegClass; break; 4044 } 4045 4046 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4047 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4048 ++QFPR_idx; 4049 } else { 4050 if (CallConv == CallingConv::Fast) 4051 ComputeArgOffset(); 4052 needsLoad = true; 4053 } 4054 if (CallConv != CallingConv::Fast || needsLoad) 4055 ArgOffset += Sz; 4056 break; 4057 } 4058 4059 // We need to load the argument to a virtual register if we determined 4060 // above that we ran out of physical registers of the appropriate type. 4061 if (needsLoad) { 4062 if (ObjSize < ArgSize && !isLittleEndian) 4063 CurArgOffset += ArgSize - ObjSize; 4064 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4065 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4066 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4067 } 4068 4069 InVals.push_back(ArgVal); 4070 } 4071 4072 // Area that is at least reserved in the caller of this function. 4073 unsigned MinReservedArea; 4074 if (HasParameterArea) 4075 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4076 else 4077 MinReservedArea = LinkageSize; 4078 4079 // Set the size that is at least reserved in caller of this function. Tail 4080 // call optimized functions' reserved stack space needs to be aligned so that 4081 // taking the difference between two stack areas will result in an aligned 4082 // stack. 4083 MinReservedArea = 4084 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4085 FuncInfo->setMinReservedArea(MinReservedArea); 4086 4087 // If the function takes variable number of arguments, make a frame index for 4088 // the start of the first vararg value... for expansion of llvm.va_start. 4089 if (isVarArg) { 4090 int Depth = ArgOffset; 4091 4092 FuncInfo->setVarArgsFrameIndex( 4093 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4094 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4095 4096 // If this function is vararg, store any remaining integer argument regs 4097 // to their spots on the stack so that they may be loaded by dereferencing 4098 // the result of va_next. 4099 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4100 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4101 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4102 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4103 SDValue Store = 4104 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4105 MemOps.push_back(Store); 4106 // Increment the address by four for the next argument to store 4107 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4108 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4109 } 4110 } 4111 4112 if (!MemOps.empty()) 4113 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4114 4115 return Chain; 4116 } 4117 4118 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4119 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4120 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4121 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4122 // TODO: add description of PPC stack frame format, or at least some docs. 4123 // 4124 MachineFunction &MF = DAG.getMachineFunction(); 4125 MachineFrameInfo &MFI = MF.getFrameInfo(); 4126 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4127 4128 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4129 bool isPPC64 = PtrVT == MVT::i64; 4130 // Potential tail calls could cause overwriting of argument stack slots. 4131 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4132 (CallConv == CallingConv::Fast)); 4133 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4134 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4135 unsigned ArgOffset = LinkageSize; 4136 // Area that is at least reserved in caller of this function. 4137 unsigned MinReservedArea = ArgOffset; 4138 4139 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4140 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4141 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4142 }; 4143 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4144 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4145 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4146 }; 4147 static const MCPhysReg VR[] = { 4148 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4149 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4150 }; 4151 4152 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4153 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4154 const unsigned Num_VR_Regs = array_lengthof( VR); 4155 4156 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4157 4158 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4159 4160 // In 32-bit non-varargs functions, the stack space for vectors is after the 4161 // stack space for non-vectors. We do not use this space unless we have 4162 // too many vectors to fit in registers, something that only occurs in 4163 // constructed examples:), but we have to walk the arglist to figure 4164 // that out...for the pathological case, compute VecArgOffset as the 4165 // start of the vector parameter area. Computing VecArgOffset is the 4166 // entire point of the following loop. 4167 unsigned VecArgOffset = ArgOffset; 4168 if (!isVarArg && !isPPC64) { 4169 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4170 ++ArgNo) { 4171 EVT ObjectVT = Ins[ArgNo].VT; 4172 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4173 4174 if (Flags.isByVal()) { 4175 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4176 unsigned ObjSize = Flags.getByValSize(); 4177 unsigned ArgSize = 4178 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4179 VecArgOffset += ArgSize; 4180 continue; 4181 } 4182 4183 switch(ObjectVT.getSimpleVT().SimpleTy) { 4184 default: llvm_unreachable("Unhandled argument type!"); 4185 case MVT::i1: 4186 case MVT::i32: 4187 case MVT::f32: 4188 VecArgOffset += 4; 4189 break; 4190 case MVT::i64: // PPC64 4191 case MVT::f64: 4192 // FIXME: We are guaranteed to be !isPPC64 at this point. 4193 // Does MVT::i64 apply? 4194 VecArgOffset += 8; 4195 break; 4196 case MVT::v4f32: 4197 case MVT::v4i32: 4198 case MVT::v8i16: 4199 case MVT::v16i8: 4200 // Nothing to do, we're only looking at Nonvector args here. 4201 break; 4202 } 4203 } 4204 } 4205 // We've found where the vector parameter area in memory is. Skip the 4206 // first 12 parameters; these don't use that memory. 4207 VecArgOffset = ((VecArgOffset+15)/16)*16; 4208 VecArgOffset += 12*16; 4209 4210 // Add DAG nodes to load the arguments or copy them out of registers. On 4211 // entry to a function on PPC, the arguments start after the linkage area, 4212 // although the first ones are often in registers. 4213 4214 SmallVector<SDValue, 8> MemOps; 4215 unsigned nAltivecParamsAtEnd = 0; 4216 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4217 unsigned CurArgIdx = 0; 4218 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4219 SDValue ArgVal; 4220 bool needsLoad = false; 4221 EVT ObjectVT = Ins[ArgNo].VT; 4222 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4223 unsigned ArgSize = ObjSize; 4224 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4225 if (Ins[ArgNo].isOrigArg()) { 4226 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4227 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4228 } 4229 unsigned CurArgOffset = ArgOffset; 4230 4231 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4232 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4233 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4234 if (isVarArg || isPPC64) { 4235 MinReservedArea = ((MinReservedArea+15)/16)*16; 4236 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4237 Flags, 4238 PtrByteSize); 4239 } else nAltivecParamsAtEnd++; 4240 } else 4241 // Calculate min reserved area. 4242 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4243 Flags, 4244 PtrByteSize); 4245 4246 // FIXME the codegen can be much improved in some cases. 4247 // We do not have to keep everything in memory. 4248 if (Flags.isByVal()) { 4249 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4250 4251 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4252 ObjSize = Flags.getByValSize(); 4253 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4254 // Objects of size 1 and 2 are right justified, everything else is 4255 // left justified. This means the memory address is adjusted forwards. 4256 if (ObjSize==1 || ObjSize==2) { 4257 CurArgOffset = CurArgOffset + (4 - ObjSize); 4258 } 4259 // The value of the object is its address. 4260 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4261 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4262 InVals.push_back(FIN); 4263 if (ObjSize==1 || ObjSize==2) { 4264 if (GPR_idx != Num_GPR_Regs) { 4265 unsigned VReg; 4266 if (isPPC64) 4267 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4268 else 4269 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4270 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4271 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4272 SDValue Store = 4273 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4274 MachinePointerInfo(&*FuncArg), ObjType); 4275 MemOps.push_back(Store); 4276 ++GPR_idx; 4277 } 4278 4279 ArgOffset += PtrByteSize; 4280 4281 continue; 4282 } 4283 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4284 // Store whatever pieces of the object are in registers 4285 // to memory. ArgOffset will be the address of the beginning 4286 // of the object. 4287 if (GPR_idx != Num_GPR_Regs) { 4288 unsigned VReg; 4289 if (isPPC64) 4290 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4291 else 4292 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4293 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4294 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4295 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4296 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4297 MachinePointerInfo(&*FuncArg, j)); 4298 MemOps.push_back(Store); 4299 ++GPR_idx; 4300 ArgOffset += PtrByteSize; 4301 } else { 4302 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4303 break; 4304 } 4305 } 4306 continue; 4307 } 4308 4309 switch (ObjectVT.getSimpleVT().SimpleTy) { 4310 default: llvm_unreachable("Unhandled argument type!"); 4311 case MVT::i1: 4312 case MVT::i32: 4313 if (!isPPC64) { 4314 if (GPR_idx != Num_GPR_Regs) { 4315 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4316 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4317 4318 if (ObjectVT == MVT::i1) 4319 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4320 4321 ++GPR_idx; 4322 } else { 4323 needsLoad = true; 4324 ArgSize = PtrByteSize; 4325 } 4326 // All int arguments reserve stack space in the Darwin ABI. 4327 ArgOffset += PtrByteSize; 4328 break; 4329 } 4330 LLVM_FALLTHROUGH; 4331 case MVT::i64: // PPC64 4332 if (GPR_idx != Num_GPR_Regs) { 4333 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4334 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4335 4336 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4337 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4338 // value to MVT::i64 and then truncate to the correct register size. 4339 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4340 4341 ++GPR_idx; 4342 } else { 4343 needsLoad = true; 4344 ArgSize = PtrByteSize; 4345 } 4346 // All int arguments reserve stack space in the Darwin ABI. 4347 ArgOffset += 8; 4348 break; 4349 4350 case MVT::f32: 4351 case MVT::f64: 4352 // Every 4 bytes of argument space consumes one of the GPRs available for 4353 // argument passing. 4354 if (GPR_idx != Num_GPR_Regs) { 4355 ++GPR_idx; 4356 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4357 ++GPR_idx; 4358 } 4359 if (FPR_idx != Num_FPR_Regs) { 4360 unsigned VReg; 4361 4362 if (ObjectVT == MVT::f32) 4363 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4364 else 4365 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4366 4367 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4368 ++FPR_idx; 4369 } else { 4370 needsLoad = true; 4371 } 4372 4373 // All FP arguments reserve stack space in the Darwin ABI. 4374 ArgOffset += isPPC64 ? 8 : ObjSize; 4375 break; 4376 case MVT::v4f32: 4377 case MVT::v4i32: 4378 case MVT::v8i16: 4379 case MVT::v16i8: 4380 // Note that vector arguments in registers don't reserve stack space, 4381 // except in varargs functions. 4382 if (VR_idx != Num_VR_Regs) { 4383 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4384 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4385 if (isVarArg) { 4386 while ((ArgOffset % 16) != 0) { 4387 ArgOffset += PtrByteSize; 4388 if (GPR_idx != Num_GPR_Regs) 4389 GPR_idx++; 4390 } 4391 ArgOffset += 16; 4392 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4393 } 4394 ++VR_idx; 4395 } else { 4396 if (!isVarArg && !isPPC64) { 4397 // Vectors go after all the nonvectors. 4398 CurArgOffset = VecArgOffset; 4399 VecArgOffset += 16; 4400 } else { 4401 // Vectors are aligned. 4402 ArgOffset = ((ArgOffset+15)/16)*16; 4403 CurArgOffset = ArgOffset; 4404 ArgOffset += 16; 4405 } 4406 needsLoad = true; 4407 } 4408 break; 4409 } 4410 4411 // We need to load the argument to a virtual register if we determined above 4412 // that we ran out of physical registers of the appropriate type. 4413 if (needsLoad) { 4414 int FI = MFI.CreateFixedObject(ObjSize, 4415 CurArgOffset + (ArgSize - ObjSize), 4416 isImmutable); 4417 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4418 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4419 } 4420 4421 InVals.push_back(ArgVal); 4422 } 4423 4424 // Allow for Altivec parameters at the end, if needed. 4425 if (nAltivecParamsAtEnd) { 4426 MinReservedArea = ((MinReservedArea+15)/16)*16; 4427 MinReservedArea += 16*nAltivecParamsAtEnd; 4428 } 4429 4430 // Area that is at least reserved in the caller of this function. 4431 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4432 4433 // Set the size that is at least reserved in caller of this function. Tail 4434 // call optimized functions' reserved stack space needs to be aligned so that 4435 // taking the difference between two stack areas will result in an aligned 4436 // stack. 4437 MinReservedArea = 4438 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4439 FuncInfo->setMinReservedArea(MinReservedArea); 4440 4441 // If the function takes variable number of arguments, make a frame index for 4442 // the start of the first vararg value... for expansion of llvm.va_start. 4443 if (isVarArg) { 4444 int Depth = ArgOffset; 4445 4446 FuncInfo->setVarArgsFrameIndex( 4447 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4448 Depth, true)); 4449 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4450 4451 // If this function is vararg, store any remaining integer argument regs 4452 // to their spots on the stack so that they may be loaded by dereferencing 4453 // the result of va_next. 4454 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4455 unsigned VReg; 4456 4457 if (isPPC64) 4458 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4459 else 4460 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4461 4462 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4463 SDValue Store = 4464 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4465 MemOps.push_back(Store); 4466 // Increment the address by four for the next argument to store 4467 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4468 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4469 } 4470 } 4471 4472 if (!MemOps.empty()) 4473 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4474 4475 return Chain; 4476 } 4477 4478 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4479 /// adjusted to accommodate the arguments for the tailcall. 4480 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4481 unsigned ParamSize) { 4482 4483 if (!isTailCall) return 0; 4484 4485 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4486 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4487 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4488 // Remember only if the new adjustment is bigger. 4489 if (SPDiff < FI->getTailCallSPDelta()) 4490 FI->setTailCallSPDelta(SPDiff); 4491 4492 return SPDiff; 4493 } 4494 4495 static bool isFunctionGlobalAddress(SDValue Callee); 4496 4497 static bool 4498 callsShareTOCBase(const Function *Caller, SDValue Callee, 4499 const TargetMachine &TM) { 4500 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4501 // don't have enough information to determine if the caller and calle share 4502 // the same TOC base, so we have to pessimistically assume they don't for 4503 // correctness. 4504 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4505 if (!G) 4506 return false; 4507 4508 const GlobalValue *GV = G->getGlobal(); 4509 // The medium and large code models are expected to provide a sufficiently 4510 // large TOC to provide all data addressing needs of a module with a 4511 // single TOC. Since each module will be addressed with a single TOC then we 4512 // only need to check that caller and callee don't cross dso boundaries. 4513 if (CodeModel::Medium == TM.getCodeModel() || 4514 CodeModel::Large == TM.getCodeModel()) 4515 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4516 4517 // Otherwise we need to ensure callee and caller are in the same section, 4518 // since the linker may allocate multiple TOCs, and we don't know which 4519 // sections will belong to the same TOC base. 4520 4521 if (!GV->isStrongDefinitionForLinker()) 4522 return false; 4523 4524 // Any explicitly-specified sections and section prefixes must also match. 4525 // Also, if we're using -ffunction-sections, then each function is always in 4526 // a different section (the same is true for COMDAT functions). 4527 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4528 GV->getSection() != Caller->getSection()) 4529 return false; 4530 if (const auto *F = dyn_cast<Function>(GV)) { 4531 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4532 return false; 4533 } 4534 4535 // If the callee might be interposed, then we can't assume the ultimate call 4536 // target will be in the same section. Even in cases where we can assume that 4537 // interposition won't happen, in any case where the linker might insert a 4538 // stub to allow for interposition, we must generate code as though 4539 // interposition might occur. To understand why this matters, consider a 4540 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4541 // in the same section, but a is in a different module (i.e. has a different 4542 // TOC base pointer). If the linker allows for interposition between b and c, 4543 // then it will generate a stub for the call edge between b and c which will 4544 // save the TOC pointer into the designated stack slot allocated by b. If we 4545 // return true here, and therefore allow a tail call between b and c, that 4546 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4547 // pointer into the stack slot allocated by a (where the a -> b stub saved 4548 // a's TOC base pointer). If we're not considering a tail call, but rather, 4549 // whether a nop is needed after the call instruction in b, because the linker 4550 // will insert a stub, it might complain about a missing nop if we omit it 4551 // (although many don't complain in this case). 4552 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4553 return false; 4554 4555 return true; 4556 } 4557 4558 static bool 4559 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4560 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4561 assert(Subtarget.is64BitELFABI()); 4562 4563 const unsigned PtrByteSize = 8; 4564 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4565 4566 static const MCPhysReg GPR[] = { 4567 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4568 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4569 }; 4570 static const MCPhysReg VR[] = { 4571 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4572 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4573 }; 4574 4575 const unsigned NumGPRs = array_lengthof(GPR); 4576 const unsigned NumFPRs = 13; 4577 const unsigned NumVRs = array_lengthof(VR); 4578 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4579 4580 unsigned NumBytes = LinkageSize; 4581 unsigned AvailableFPRs = NumFPRs; 4582 unsigned AvailableVRs = NumVRs; 4583 4584 for (const ISD::OutputArg& Param : Outs) { 4585 if (Param.Flags.isNest()) continue; 4586 4587 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4588 PtrByteSize, LinkageSize, ParamAreaSize, 4589 NumBytes, AvailableFPRs, AvailableVRs, 4590 Subtarget.hasQPX())) 4591 return true; 4592 } 4593 return false; 4594 } 4595 4596 static bool 4597 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4598 if (CS.arg_size() != CallerFn->arg_size()) 4599 return false; 4600 4601 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4602 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4603 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4604 4605 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4606 const Value* CalleeArg = *CalleeArgIter; 4607 const Value* CallerArg = &(*CallerArgIter); 4608 if (CalleeArg == CallerArg) 4609 continue; 4610 4611 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4612 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4613 // } 4614 // 1st argument of callee is undef and has the same type as caller. 4615 if (CalleeArg->getType() == CallerArg->getType() && 4616 isa<UndefValue>(CalleeArg)) 4617 continue; 4618 4619 return false; 4620 } 4621 4622 return true; 4623 } 4624 4625 // Returns true if TCO is possible between the callers and callees 4626 // calling conventions. 4627 static bool 4628 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4629 CallingConv::ID CalleeCC) { 4630 // Tail calls are possible with fastcc and ccc. 4631 auto isTailCallableCC = [] (CallingConv::ID CC){ 4632 return CC == CallingConv::C || CC == CallingConv::Fast; 4633 }; 4634 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4635 return false; 4636 4637 // We can safely tail call both fastcc and ccc callees from a c calling 4638 // convention caller. If the caller is fastcc, we may have less stack space 4639 // than a non-fastcc caller with the same signature so disable tail-calls in 4640 // that case. 4641 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4642 } 4643 4644 bool 4645 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4646 SDValue Callee, 4647 CallingConv::ID CalleeCC, 4648 ImmutableCallSite CS, 4649 bool isVarArg, 4650 const SmallVectorImpl<ISD::OutputArg> &Outs, 4651 const SmallVectorImpl<ISD::InputArg> &Ins, 4652 SelectionDAG& DAG) const { 4653 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4654 4655 if (DisableSCO && !TailCallOpt) return false; 4656 4657 // Variadic argument functions are not supported. 4658 if (isVarArg) return false; 4659 4660 auto &Caller = DAG.getMachineFunction().getFunction(); 4661 // Check that the calling conventions are compatible for tco. 4662 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4663 return false; 4664 4665 // Caller contains any byval parameter is not supported. 4666 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4667 return false; 4668 4669 // Callee contains any byval parameter is not supported, too. 4670 // Note: This is a quick work around, because in some cases, e.g. 4671 // caller's stack size > callee's stack size, we are still able to apply 4672 // sibling call optimization. For example, gcc is able to do SCO for caller1 4673 // in the following example, but not for caller2. 4674 // struct test { 4675 // long int a; 4676 // char ary[56]; 4677 // } gTest; 4678 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4679 // b->a = v.a; 4680 // return 0; 4681 // } 4682 // void caller1(struct test a, struct test c, struct test *b) { 4683 // callee(gTest, b); } 4684 // void caller2(struct test *b) { callee(gTest, b); } 4685 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4686 return false; 4687 4688 // If callee and caller use different calling conventions, we cannot pass 4689 // parameters on stack since offsets for the parameter area may be different. 4690 if (Caller.getCallingConv() != CalleeCC && 4691 needStackSlotPassParameters(Subtarget, Outs)) 4692 return false; 4693 4694 // No TCO/SCO on indirect call because Caller have to restore its TOC 4695 if (!isFunctionGlobalAddress(Callee) && 4696 !isa<ExternalSymbolSDNode>(Callee)) 4697 return false; 4698 4699 // If the caller and callee potentially have different TOC bases then we 4700 // cannot tail call since we need to restore the TOC pointer after the call. 4701 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4702 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4703 return false; 4704 4705 // TCO allows altering callee ABI, so we don't have to check further. 4706 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4707 return true; 4708 4709 if (DisableSCO) return false; 4710 4711 // If callee use the same argument list that caller is using, then we can 4712 // apply SCO on this case. If it is not, then we need to check if callee needs 4713 // stack for passing arguments. 4714 if (!hasSameArgumentList(&Caller, CS) && 4715 needStackSlotPassParameters(Subtarget, Outs)) { 4716 return false; 4717 } 4718 4719 return true; 4720 } 4721 4722 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4723 /// for tail call optimization. Targets which want to do tail call 4724 /// optimization should implement this function. 4725 bool 4726 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4727 CallingConv::ID CalleeCC, 4728 bool isVarArg, 4729 const SmallVectorImpl<ISD::InputArg> &Ins, 4730 SelectionDAG& DAG) const { 4731 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4732 return false; 4733 4734 // Variable argument functions are not supported. 4735 if (isVarArg) 4736 return false; 4737 4738 MachineFunction &MF = DAG.getMachineFunction(); 4739 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4740 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4741 // Functions containing by val parameters are not supported. 4742 for (unsigned i = 0; i != Ins.size(); i++) { 4743 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4744 if (Flags.isByVal()) return false; 4745 } 4746 4747 // Non-PIC/GOT tail calls are supported. 4748 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4749 return true; 4750 4751 // At the moment we can only do local tail calls (in same module, hidden 4752 // or protected) if we are generating PIC. 4753 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4754 return G->getGlobal()->hasHiddenVisibility() 4755 || G->getGlobal()->hasProtectedVisibility(); 4756 } 4757 4758 return false; 4759 } 4760 4761 /// isCallCompatibleAddress - Return the immediate to use if the specified 4762 /// 32-bit value is representable in the immediate field of a BxA instruction. 4763 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4764 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4765 if (!C) return nullptr; 4766 4767 int Addr = C->getZExtValue(); 4768 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4769 SignExtend32<26>(Addr) != Addr) 4770 return nullptr; // Top 6 bits have to be sext of immediate. 4771 4772 return DAG 4773 .getConstant( 4774 (int)C->getZExtValue() >> 2, SDLoc(Op), 4775 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4776 .getNode(); 4777 } 4778 4779 namespace { 4780 4781 struct TailCallArgumentInfo { 4782 SDValue Arg; 4783 SDValue FrameIdxOp; 4784 int FrameIdx = 0; 4785 4786 TailCallArgumentInfo() = default; 4787 }; 4788 4789 } // end anonymous namespace 4790 4791 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4792 static void StoreTailCallArgumentsToStackSlot( 4793 SelectionDAG &DAG, SDValue Chain, 4794 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4795 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4796 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4797 SDValue Arg = TailCallArgs[i].Arg; 4798 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4799 int FI = TailCallArgs[i].FrameIdx; 4800 // Store relative to framepointer. 4801 MemOpChains.push_back(DAG.getStore( 4802 Chain, dl, Arg, FIN, 4803 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4804 } 4805 } 4806 4807 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4808 /// the appropriate stack slot for the tail call optimized function call. 4809 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4810 SDValue OldRetAddr, SDValue OldFP, 4811 int SPDiff, const SDLoc &dl) { 4812 if (SPDiff) { 4813 // Calculate the new stack slot for the return address. 4814 MachineFunction &MF = DAG.getMachineFunction(); 4815 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4816 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4817 bool isPPC64 = Subtarget.isPPC64(); 4818 int SlotSize = isPPC64 ? 8 : 4; 4819 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4820 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4821 NewRetAddrLoc, true); 4822 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4823 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4824 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4825 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4826 4827 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4828 // slot as the FP is never overwritten. 4829 if (Subtarget.isDarwinABI()) { 4830 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4831 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4832 true); 4833 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4834 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4835 MachinePointerInfo::getFixedStack( 4836 DAG.getMachineFunction(), NewFPIdx)); 4837 } 4838 } 4839 return Chain; 4840 } 4841 4842 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4843 /// the position of the argument. 4844 static void 4845 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4846 SDValue Arg, int SPDiff, unsigned ArgOffset, 4847 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4848 int Offset = ArgOffset + SPDiff; 4849 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4850 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4851 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4852 SDValue FIN = DAG.getFrameIndex(FI, VT); 4853 TailCallArgumentInfo Info; 4854 Info.Arg = Arg; 4855 Info.FrameIdxOp = FIN; 4856 Info.FrameIdx = FI; 4857 TailCallArguments.push_back(Info); 4858 } 4859 4860 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4861 /// stack slot. Returns the chain as result and the loaded frame pointers in 4862 /// LROpOut/FPOpout. Used when tail calling. 4863 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4864 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4865 SDValue &FPOpOut, const SDLoc &dl) const { 4866 if (SPDiff) { 4867 // Load the LR and FP stack slot for later adjusting. 4868 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4869 LROpOut = getReturnAddrFrameIndex(DAG); 4870 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4871 Chain = SDValue(LROpOut.getNode(), 1); 4872 4873 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4874 // slot as the FP is never overwritten. 4875 if (Subtarget.isDarwinABI()) { 4876 FPOpOut = getFramePointerFrameIndex(DAG); 4877 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4878 Chain = SDValue(FPOpOut.getNode(), 1); 4879 } 4880 } 4881 return Chain; 4882 } 4883 4884 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4885 /// by "Src" to address "Dst" of size "Size". Alignment information is 4886 /// specified by the specific parameter attribute. The copy will be passed as 4887 /// a byval function parameter. 4888 /// Sometimes what we are copying is the end of a larger object, the part that 4889 /// does not fit in registers. 4890 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4891 SDValue Chain, ISD::ArgFlagsTy Flags, 4892 SelectionDAG &DAG, const SDLoc &dl) { 4893 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4894 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4895 false, false, false, MachinePointerInfo(), 4896 MachinePointerInfo()); 4897 } 4898 4899 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4900 /// tail calls. 4901 static void LowerMemOpCallTo( 4902 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4903 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4904 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4905 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4906 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4907 if (!isTailCall) { 4908 if (isVector) { 4909 SDValue StackPtr; 4910 if (isPPC64) 4911 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4912 else 4913 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4914 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4915 DAG.getConstant(ArgOffset, dl, PtrVT)); 4916 } 4917 MemOpChains.push_back( 4918 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4919 // Calculate and remember argument location. 4920 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4921 TailCallArguments); 4922 } 4923 4924 static void 4925 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4926 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4927 SDValue FPOp, 4928 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4929 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4930 // might overwrite each other in case of tail call optimization. 4931 SmallVector<SDValue, 8> MemOpChains2; 4932 // Do not flag preceding copytoreg stuff together with the following stuff. 4933 InFlag = SDValue(); 4934 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4935 MemOpChains2, dl); 4936 if (!MemOpChains2.empty()) 4937 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4938 4939 // Store the return address to the appropriate stack slot. 4940 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4941 4942 // Emit callseq_end just before tailcall node. 4943 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4944 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4945 InFlag = Chain.getValue(1); 4946 } 4947 4948 // Is this global address that of a function that can be called by name? (as 4949 // opposed to something that must hold a descriptor for an indirect call). 4950 static bool isFunctionGlobalAddress(SDValue Callee) { 4951 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4952 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4953 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4954 return false; 4955 4956 return G->getGlobal()->getValueType()->isFunctionTy(); 4957 } 4958 4959 return false; 4960 } 4961 4962 SDValue PPCTargetLowering::LowerCallResult( 4963 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4964 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4965 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4966 SmallVector<CCValAssign, 16> RVLocs; 4967 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4968 *DAG.getContext()); 4969 4970 CCRetInfo.AnalyzeCallResult( 4971 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4972 ? RetCC_PPC_Cold 4973 : RetCC_PPC); 4974 4975 // Copy all of the result registers out of their specified physreg. 4976 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4977 CCValAssign &VA = RVLocs[i]; 4978 assert(VA.isRegLoc() && "Can only return in registers!"); 4979 4980 SDValue Val; 4981 4982 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 4983 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4984 InFlag); 4985 Chain = Lo.getValue(1); 4986 InFlag = Lo.getValue(2); 4987 VA = RVLocs[++i]; // skip ahead to next loc 4988 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4989 InFlag); 4990 Chain = Hi.getValue(1); 4991 InFlag = Hi.getValue(2); 4992 if (!Subtarget.isLittleEndian()) 4993 std::swap (Lo, Hi); 4994 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 4995 } else { 4996 Val = DAG.getCopyFromReg(Chain, dl, 4997 VA.getLocReg(), VA.getLocVT(), InFlag); 4998 Chain = Val.getValue(1); 4999 InFlag = Val.getValue(2); 5000 } 5001 5002 switch (VA.getLocInfo()) { 5003 default: llvm_unreachable("Unknown loc info!"); 5004 case CCValAssign::Full: break; 5005 case CCValAssign::AExt: 5006 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5007 break; 5008 case CCValAssign::ZExt: 5009 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5010 DAG.getValueType(VA.getValVT())); 5011 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5012 break; 5013 case CCValAssign::SExt: 5014 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5015 DAG.getValueType(VA.getValVT())); 5016 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5017 break; 5018 } 5019 5020 InVals.push_back(Val); 5021 } 5022 5023 return Chain; 5024 } 5025 5026 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5027 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5028 // PatchPoint calls are not indirect. 5029 if (isPatchPoint) 5030 return false; 5031 5032 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5033 return false; 5034 5035 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5036 // becuase the immediate function pointer points to a descriptor instead of 5037 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5038 // pointer immediate points to the global entry point, while the BLA would 5039 // need to jump to the local entry point (see rL211174). 5040 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5041 isBLACompatibleAddress(Callee, DAG)) 5042 return false; 5043 5044 return true; 5045 } 5046 5047 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint, 5048 bool isTailCall, const Function &Caller, 5049 const SDValue &Callee, 5050 const PPCSubtarget &Subtarget, 5051 const TargetMachine &TM) { 5052 if (isTailCall) 5053 return PPCISD::TC_RETURN; 5054 5055 // This is a call through a function pointer. 5056 if (isIndirectCall) { 5057 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5058 // indirect calls. The save of the caller's TOC pointer to the stack will be 5059 // inserted into the DAG as part of call lowering. The restore of the TOC 5060 // pointer is modeled by using a pseudo instruction for the call opcode that 5061 // represents the 2 instruction sequence of an indirect branch and link, 5062 // immediately followed by a load of the TOC pointer from the the stack save 5063 // slot into gpr2. 5064 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5065 return PPCISD::BCTRL_LOAD_TOC; 5066 5067 // An indirect call that does not need a TOC restore. 5068 return PPCISD::BCTRL; 5069 } 5070 5071 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5072 // immediately following the call instruction if the caller and callee may 5073 // have different TOC bases. At link time if the linker determines the calls 5074 // may not share a TOC base, the call is redirected to a trampoline inserted 5075 // by the linker. The trampoline will (among other things) save the callers 5076 // TOC pointer at an ABI designated offset in the linkage area and the linker 5077 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5078 // into gpr2. 5079 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5080 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5081 : PPCISD::CALL_NOP; 5082 5083 return PPCISD::CALL; 5084 } 5085 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5086 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5087 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5088 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5089 return SDValue(Dest, 0); 5090 5091 // Returns true if the callee is local, and false otherwise. 5092 auto isLocalCallee = [&]() { 5093 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5094 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5095 5096 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, 5097 G ? G->getGlobal() : nullptr); 5098 }; 5099 5100 bool UsePlt = Subtarget.is32BitELFABI() && !isLocalCallee(); 5101 5102 if (isFunctionGlobalAddress(Callee)) { 5103 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5104 if (!Subtarget.isAIXABI()) 5105 return DAG.getTargetGlobalAddress(G->getGlobal(), dl, 5106 Callee.getValueType(), 0, 5107 UsePlt ? PPCII::MO_PLT : 0); 5108 5109 // On AIX, direct function calls reference the symbol for the function's 5110 // entry point, which is named by prepending a "." before the function's 5111 // C-linkage name. 5112 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5113 5114 const GlobalObject *GO = cast<GlobalObject>(G->getGlobal()); 5115 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5116 Context.getOrCreateSymbol(Twine(".") + Twine(GO->getName()))); 5117 5118 if (GO && GO->isDeclaration() && !S->hasContainingCsect()) { 5119 // On AIX, an undefined symbol needs to be associated with a 5120 // MCSectionXCOFF to get the correct storage mapping class. 5121 // In this case, XCOFF::XMC_PR. 5122 const XCOFF::StorageClass SC = 5123 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5124 MCSectionXCOFF *Sec = 5125 Context.getXCOFFSection(S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5126 SC, SectionKind::getMetadata()); 5127 S->setContainingCsect(Sec); 5128 } 5129 5130 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5131 return DAG.getMCSymbol(S, PtrVT); 5132 } 5133 5134 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 5135 return DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 5136 UsePlt ? PPCII::MO_PLT : 0); 5137 5138 // No transformation needed. 5139 assert(Callee.getNode() && "What no callee?"); 5140 return Callee; 5141 } 5142 5143 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5144 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5145 "Expected a CALLSEQ_STARTSDNode."); 5146 5147 // The last operand is the chain, except when the node has glue. If the node 5148 // has glue, then the last operand is the glue, and the chain is the second 5149 // last operand. 5150 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5151 if (LastValue.getValueType() != MVT::Glue) 5152 return LastValue; 5153 5154 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5155 } 5156 5157 // Creates the node that moves a functions address into the count register 5158 // to prepare for an indirect call instruction. 5159 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5160 SDValue &Glue, SDValue &Chain, 5161 const SDLoc &dl) { 5162 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5163 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5164 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5165 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5166 // The glue is the second value produced. 5167 Glue = Chain.getValue(1); 5168 } 5169 5170 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5171 SDValue &Glue, SDValue &Chain, 5172 SDValue CallSeqStart, 5173 ImmutableCallSite CS, const SDLoc &dl, 5174 bool hasNest, 5175 const PPCSubtarget &Subtarget) { 5176 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5177 // entry point, but to the function descriptor (the function entry point 5178 // address is part of the function descriptor though). 5179 // The function descriptor is a three doubleword structure with the 5180 // following fields: function entry point, TOC base address and 5181 // environment pointer. 5182 // Thus for a call through a function pointer, the following actions need 5183 // to be performed: 5184 // 1. Save the TOC of the caller in the TOC save area of its stack 5185 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5186 // 2. Load the address of the function entry point from the function 5187 // descriptor. 5188 // 3. Load the TOC of the callee from the function descriptor into r2. 5189 // 4. Load the environment pointer from the function descriptor into 5190 // r11. 5191 // 5. Branch to the function entry point address. 5192 // 6. On return of the callee, the TOC of the caller needs to be 5193 // restored (this is done in FinishCall()). 5194 // 5195 // The loads are scheduled at the beginning of the call sequence, and the 5196 // register copies are flagged together to ensure that no other 5197 // operations can be scheduled in between. E.g. without flagging the 5198 // copies together, a TOC access in the caller could be scheduled between 5199 // the assignment of the callee TOC and the branch to the callee, which leads 5200 // to incorrect code. 5201 5202 // Start by loading the function address from the descriptor. 5203 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5204 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5205 ? (MachineMemOperand::MODereferenceable | 5206 MachineMemOperand::MOInvariant) 5207 : MachineMemOperand::MONone; 5208 5209 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5210 5211 // One load for the functions entry point address. 5212 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5213 /* Alignment = */ 8, MMOFlags); 5214 5215 // One for loading the TOC anchor for the module that contains the called 5216 // function. 5217 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5218 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5219 SDValue TOCPtr = 5220 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5221 /* Alignment = */ 8, MMOFlags); 5222 5223 // One for loading the environment pointer. 5224 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5225 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5226 SDValue LoadEnvPtr = 5227 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5228 /* Alignment = */ 8, MMOFlags); 5229 5230 // Then copy the newly loaded TOC anchor to the TOC pointer. 5231 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, Glue); 5232 Chain = TOCVal.getValue(0); 5233 Glue = TOCVal.getValue(1); 5234 5235 // If the function call has an explicit 'nest' parameter, it takes the 5236 // place of the environment pointer. 5237 if (!hasNest) { 5238 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, Glue); 5239 Chain = EnvVal.getValue(0); 5240 Glue = EnvVal.getValue(1); 5241 } 5242 5243 // The rest of the indirect call sequence is the same as the non-descriptor 5244 // DAG. 5245 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5246 } 5247 5248 static void 5249 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv, 5250 const SDLoc &dl, bool isTailCall, bool isVarArg, 5251 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5252 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5253 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5254 const PPCSubtarget &Subtarget, bool isIndirect) { 5255 const bool IsPPC64 = Subtarget.isPPC64(); 5256 // MVT for a general purpose register. 5257 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5258 5259 // First operand is always the chain. 5260 Ops.push_back(Chain); 5261 5262 // If it's a direct call pass the callee as the second operand. 5263 if (!isIndirect) 5264 Ops.push_back(Callee); 5265 else { 5266 assert(!isPatchPoint && "Patch point call are not indirect."); 5267 if (Subtarget.isAIXABI()) 5268 report_fatal_error("Indirect call on AIX is not implemented."); 5269 5270 // For 64-bit ELF we have saved the TOC pointer to the linkage area on the 5271 // stack (this would have been done in `LowerCall_64SVR4`). The call 5272 // instruction is a pseudo instruction that represents both the indirect 5273 // branch and a load that restores the TOC pointer from the linkage area. 5274 // The operand for the TOC restore is an add of the TOC save offset to the 5275 // stack pointer. This must be the second operand: after the chain input but 5276 // before any other variadic arguments. 5277 if (Subtarget.is64BitELFABI()) { 5278 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5279 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5280 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5281 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5282 Ops.push_back(AddTOC); 5283 } 5284 5285 // Add the register used for the environment pointer. 5286 if (Subtarget.usesFunctionDescriptors() && !hasNest) 5287 Ops.push_back(DAG.getRegister(PPC::X11, MVT::i64)); 5288 5289 // Add CTR register as callee so a bctr can be emitted later. 5290 if (isTailCall) 5291 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5292 } 5293 5294 // If this is a tail call add stack pointer delta. 5295 if (isTailCall) 5296 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5297 5298 // Add argument registers to the end of the list so that they are known live 5299 // into the call. 5300 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5301 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5302 RegsToPass[i].second.getValueType())); 5303 5304 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5305 // no way to mark dependencies as implicit here. 5306 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5307 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint) 5308 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::X2 : PPC::R2, RegVT)); 5309 5310 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5311 if (isVarArg && Subtarget.is32BitELFABI()) 5312 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5313 5314 // Add a register mask operand representing the call-preserved registers. 5315 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5316 const uint32_t *Mask = 5317 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5318 assert(Mask && "Missing call preserved mask for calling convention"); 5319 Ops.push_back(DAG.getRegisterMask(Mask)); 5320 5321 // If the glue is valid, it is the last operand. 5322 if (Glue.getNode()) 5323 Ops.push_back(Glue); 5324 } 5325 5326 SDValue PPCTargetLowering::FinishCall( 5327 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5328 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5329 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5330 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5331 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5332 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5333 5334 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5335 setUsesTOCBasePtr(DAG); 5336 5337 const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint); 5338 unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall, 5339 DAG.getMachineFunction().getFunction(), 5340 Callee, Subtarget, DAG.getTarget()); 5341 5342 if (!isIndirect) 5343 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5344 else if (Subtarget.usesFunctionDescriptors()) 5345 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5346 dl, hasNest, Subtarget); 5347 else 5348 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5349 5350 // Build the operand list for the call instruction. 5351 SmallVector<SDValue, 8> Ops; 5352 buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5353 hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff, 5354 Subtarget, isIndirect); 5355 5356 // Emit tail call. 5357 if (isTailCall) { 5358 assert(((Callee.getOpcode() == ISD::Register && 5359 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5360 Callee.getOpcode() == ISD::TargetExternalSymbol || 5361 Callee.getOpcode() == ISD::TargetGlobalAddress || 5362 isa<ConstantSDNode>(Callee)) && 5363 "Expecting a global address, external symbol, absolute value or " 5364 "register"); 5365 assert(CallOpc == PPCISD::TC_RETURN && 5366 "Unexpected call opcode for a tail call."); 5367 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5368 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5369 } 5370 5371 std::array<EVT, 2> ReturnTypes = {MVT::Other, MVT::Glue}; 5372 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5373 Glue = Chain.getValue(1); 5374 5375 // When performing tail call optimization the callee pops its arguments off 5376 // the stack. Account for this here so these bytes can be pushed back on in 5377 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5378 int BytesCalleePops = (CallConv == CallingConv::Fast && 5379 getTargetMachine().Options.GuaranteedTailCallOpt) 5380 ? NumBytes 5381 : 0; 5382 5383 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5384 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5385 Glue, dl); 5386 Glue = Chain.getValue(1); 5387 5388 return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals); 5389 } 5390 5391 SDValue 5392 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5393 SmallVectorImpl<SDValue> &InVals) const { 5394 SelectionDAG &DAG = CLI.DAG; 5395 SDLoc &dl = CLI.DL; 5396 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5397 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5398 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5399 SDValue Chain = CLI.Chain; 5400 SDValue Callee = CLI.Callee; 5401 bool &isTailCall = CLI.IsTailCall; 5402 CallingConv::ID CallConv = CLI.CallConv; 5403 bool isVarArg = CLI.IsVarArg; 5404 bool isPatchPoint = CLI.IsPatchPoint; 5405 ImmutableCallSite CS = CLI.CS; 5406 5407 if (isTailCall) { 5408 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5409 isTailCall = false; 5410 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5411 isTailCall = 5412 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5413 isVarArg, Outs, Ins, DAG); 5414 else 5415 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5416 Ins, DAG); 5417 if (isTailCall) { 5418 ++NumTailCalls; 5419 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5420 ++NumSiblingCalls; 5421 5422 assert(isa<GlobalAddressSDNode>(Callee) && 5423 "Callee should be an llvm::Function object."); 5424 LLVM_DEBUG( 5425 const GlobalValue *GV = 5426 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5427 const unsigned Width = 5428 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5429 dbgs() << "TCO caller: " 5430 << left_justify(DAG.getMachineFunction().getName(), Width) 5431 << ", callee linkage: " << GV->getVisibility() << ", " 5432 << GV->getLinkage() << "\n"); 5433 } 5434 } 5435 5436 if (!isTailCall && CS && CS.isMustTailCall()) 5437 report_fatal_error("failed to perform tail call elimination on a call " 5438 "site marked musttail"); 5439 5440 // When long calls (i.e. indirect calls) are always used, calls are always 5441 // made via function pointer. If we have a function name, first translate it 5442 // into a pointer. 5443 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5444 !isTailCall) 5445 Callee = LowerGlobalAddress(Callee, DAG); 5446 5447 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5448 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5449 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5450 dl, DAG, InVals, CS); 5451 5452 if (Subtarget.isSVR4ABI()) 5453 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5454 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5455 dl, DAG, InVals, CS); 5456 5457 if (Subtarget.isAIXABI()) 5458 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5459 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5460 dl, DAG, InVals, CS); 5461 5462 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5463 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5464 dl, DAG, InVals, CS); 5465 } 5466 5467 SDValue PPCTargetLowering::LowerCall_32SVR4( 5468 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5469 bool isTailCall, bool isPatchPoint, 5470 const SmallVectorImpl<ISD::OutputArg> &Outs, 5471 const SmallVectorImpl<SDValue> &OutVals, 5472 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5473 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5474 ImmutableCallSite CS) const { 5475 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5476 // of the 32-bit SVR4 ABI stack frame layout. 5477 5478 assert((CallConv == CallingConv::C || 5479 CallConv == CallingConv::Cold || 5480 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5481 5482 unsigned PtrByteSize = 4; 5483 5484 MachineFunction &MF = DAG.getMachineFunction(); 5485 5486 // Mark this function as potentially containing a function that contains a 5487 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5488 // and restoring the callers stack pointer in this functions epilog. This is 5489 // done because by tail calling the called function might overwrite the value 5490 // in this function's (MF) stack pointer stack slot 0(SP). 5491 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5492 CallConv == CallingConv::Fast) 5493 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5494 5495 // Count how many bytes are to be pushed on the stack, including the linkage 5496 // area, parameter list area and the part of the local variable space which 5497 // contains copies of aggregates which are passed by value. 5498 5499 // Assign locations to all of the outgoing arguments. 5500 SmallVector<CCValAssign, 16> ArgLocs; 5501 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5502 5503 // Reserve space for the linkage area on the stack. 5504 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5505 PtrByteSize); 5506 if (useSoftFloat()) 5507 CCInfo.PreAnalyzeCallOperands(Outs); 5508 5509 if (isVarArg) { 5510 // Handle fixed and variable vector arguments differently. 5511 // Fixed vector arguments go into registers as long as registers are 5512 // available. Variable vector arguments always go into memory. 5513 unsigned NumArgs = Outs.size(); 5514 5515 for (unsigned i = 0; i != NumArgs; ++i) { 5516 MVT ArgVT = Outs[i].VT; 5517 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5518 bool Result; 5519 5520 if (Outs[i].IsFixed) { 5521 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5522 CCInfo); 5523 } else { 5524 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5525 ArgFlags, CCInfo); 5526 } 5527 5528 if (Result) { 5529 #ifndef NDEBUG 5530 errs() << "Call operand #" << i << " has unhandled type " 5531 << EVT(ArgVT).getEVTString() << "\n"; 5532 #endif 5533 llvm_unreachable(nullptr); 5534 } 5535 } 5536 } else { 5537 // All arguments are treated the same. 5538 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5539 } 5540 CCInfo.clearWasPPCF128(); 5541 5542 // Assign locations to all of the outgoing aggregate by value arguments. 5543 SmallVector<CCValAssign, 16> ByValArgLocs; 5544 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5545 5546 // Reserve stack space for the allocations in CCInfo. 5547 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5548 5549 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5550 5551 // Size of the linkage area, parameter list area and the part of the local 5552 // space variable where copies of aggregates which are passed by value are 5553 // stored. 5554 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5555 5556 // Calculate by how many bytes the stack has to be adjusted in case of tail 5557 // call optimization. 5558 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5559 5560 // Adjust the stack pointer for the new arguments... 5561 // These operations are automatically eliminated by the prolog/epilog pass 5562 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5563 SDValue CallSeqStart = Chain; 5564 5565 // Load the return address and frame pointer so it can be moved somewhere else 5566 // later. 5567 SDValue LROp, FPOp; 5568 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5569 5570 // Set up a copy of the stack pointer for use loading and storing any 5571 // arguments that may not fit in the registers available for argument 5572 // passing. 5573 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5574 5575 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5576 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5577 SmallVector<SDValue, 8> MemOpChains; 5578 5579 bool seenFloatArg = false; 5580 // Walk the register/memloc assignments, inserting copies/loads. 5581 // i - Tracks the index into the list of registers allocated for the call 5582 // RealArgIdx - Tracks the index into the list of actual function arguments 5583 // j - Tracks the index into the list of byval arguments 5584 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5585 i != e; 5586 ++i, ++RealArgIdx) { 5587 CCValAssign &VA = ArgLocs[i]; 5588 SDValue Arg = OutVals[RealArgIdx]; 5589 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5590 5591 if (Flags.isByVal()) { 5592 // Argument is an aggregate which is passed by value, thus we need to 5593 // create a copy of it in the local variable space of the current stack 5594 // frame (which is the stack frame of the caller) and pass the address of 5595 // this copy to the callee. 5596 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5597 CCValAssign &ByValVA = ByValArgLocs[j++]; 5598 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5599 5600 // Memory reserved in the local variable space of the callers stack frame. 5601 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5602 5603 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5604 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5605 StackPtr, PtrOff); 5606 5607 // Create a copy of the argument in the local area of the current 5608 // stack frame. 5609 SDValue MemcpyCall = 5610 CreateCopyOfByValArgument(Arg, PtrOff, 5611 CallSeqStart.getNode()->getOperand(0), 5612 Flags, DAG, dl); 5613 5614 // This must go outside the CALLSEQ_START..END. 5615 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5616 SDLoc(MemcpyCall)); 5617 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5618 NewCallSeqStart.getNode()); 5619 Chain = CallSeqStart = NewCallSeqStart; 5620 5621 // Pass the address of the aggregate copy on the stack either in a 5622 // physical register or in the parameter list area of the current stack 5623 // frame to the callee. 5624 Arg = PtrOff; 5625 } 5626 5627 // When useCRBits() is true, there can be i1 arguments. 5628 // It is because getRegisterType(MVT::i1) => MVT::i1, 5629 // and for other integer types getRegisterType() => MVT::i32. 5630 // Extend i1 and ensure callee will get i32. 5631 if (Arg.getValueType() == MVT::i1) 5632 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5633 dl, MVT::i32, Arg); 5634 5635 if (VA.isRegLoc()) { 5636 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5637 // Put argument in a physical register. 5638 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5639 bool IsLE = Subtarget.isLittleEndian(); 5640 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5641 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5642 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5643 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5644 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5645 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5646 SVal.getValue(0))); 5647 } else 5648 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5649 } else { 5650 // Put argument in the parameter list area of the current stack frame. 5651 assert(VA.isMemLoc()); 5652 unsigned LocMemOffset = VA.getLocMemOffset(); 5653 5654 if (!isTailCall) { 5655 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5656 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5657 StackPtr, PtrOff); 5658 5659 MemOpChains.push_back( 5660 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5661 } else { 5662 // Calculate and remember argument location. 5663 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5664 TailCallArguments); 5665 } 5666 } 5667 } 5668 5669 if (!MemOpChains.empty()) 5670 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5671 5672 // Build a sequence of copy-to-reg nodes chained together with token chain 5673 // and flag operands which copy the outgoing args into the appropriate regs. 5674 SDValue InFlag; 5675 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5676 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5677 RegsToPass[i].second, InFlag); 5678 InFlag = Chain.getValue(1); 5679 } 5680 5681 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5682 // registers. 5683 if (isVarArg) { 5684 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5685 SDValue Ops[] = { Chain, InFlag }; 5686 5687 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5688 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5689 5690 InFlag = Chain.getValue(1); 5691 } 5692 5693 if (isTailCall) 5694 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5695 TailCallArguments); 5696 5697 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5698 /* unused except on PPC64 ELFv1 */ false, DAG, 5699 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5700 NumBytes, Ins, InVals, CS); 5701 } 5702 5703 // Copy an argument into memory, being careful to do this outside the 5704 // call sequence for the call to which the argument belongs. 5705 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5706 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5707 SelectionDAG &DAG, const SDLoc &dl) const { 5708 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5709 CallSeqStart.getNode()->getOperand(0), 5710 Flags, DAG, dl); 5711 // The MEMCPY must go outside the CALLSEQ_START..END. 5712 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5713 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5714 SDLoc(MemcpyCall)); 5715 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5716 NewCallSeqStart.getNode()); 5717 return NewCallSeqStart; 5718 } 5719 5720 SDValue PPCTargetLowering::LowerCall_64SVR4( 5721 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5722 bool isTailCall, bool isPatchPoint, 5723 const SmallVectorImpl<ISD::OutputArg> &Outs, 5724 const SmallVectorImpl<SDValue> &OutVals, 5725 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5726 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5727 ImmutableCallSite CS) const { 5728 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5729 bool isLittleEndian = Subtarget.isLittleEndian(); 5730 unsigned NumOps = Outs.size(); 5731 bool hasNest = false; 5732 bool IsSibCall = false; 5733 5734 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5735 unsigned PtrByteSize = 8; 5736 5737 MachineFunction &MF = DAG.getMachineFunction(); 5738 5739 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5740 IsSibCall = true; 5741 5742 // Mark this function as potentially containing a function that contains a 5743 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5744 // and restoring the callers stack pointer in this functions epilog. This is 5745 // done because by tail calling the called function might overwrite the value 5746 // in this function's (MF) stack pointer stack slot 0(SP). 5747 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5748 CallConv == CallingConv::Fast) 5749 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5750 5751 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5752 "fastcc not supported on varargs functions"); 5753 5754 // Count how many bytes are to be pushed on the stack, including the linkage 5755 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5756 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5757 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5758 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5759 unsigned NumBytes = LinkageSize; 5760 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5761 unsigned &QFPR_idx = FPR_idx; 5762 5763 static const MCPhysReg GPR[] = { 5764 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5765 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5766 }; 5767 static const MCPhysReg VR[] = { 5768 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5769 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5770 }; 5771 5772 const unsigned NumGPRs = array_lengthof(GPR); 5773 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5774 const unsigned NumVRs = array_lengthof(VR); 5775 const unsigned NumQFPRs = NumFPRs; 5776 5777 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5778 // can be passed to the callee in registers. 5779 // For the fast calling convention, there is another check below. 5780 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5781 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5782 if (!HasParameterArea) { 5783 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5784 unsigned AvailableFPRs = NumFPRs; 5785 unsigned AvailableVRs = NumVRs; 5786 unsigned NumBytesTmp = NumBytes; 5787 for (unsigned i = 0; i != NumOps; ++i) { 5788 if (Outs[i].Flags.isNest()) continue; 5789 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5790 PtrByteSize, LinkageSize, ParamAreaSize, 5791 NumBytesTmp, AvailableFPRs, AvailableVRs, 5792 Subtarget.hasQPX())) 5793 HasParameterArea = true; 5794 } 5795 } 5796 5797 // When using the fast calling convention, we don't provide backing for 5798 // arguments that will be in registers. 5799 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5800 5801 // Avoid allocating parameter area for fastcc functions if all the arguments 5802 // can be passed in the registers. 5803 if (CallConv == CallingConv::Fast) 5804 HasParameterArea = false; 5805 5806 // Add up all the space actually used. 5807 for (unsigned i = 0; i != NumOps; ++i) { 5808 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5809 EVT ArgVT = Outs[i].VT; 5810 EVT OrigVT = Outs[i].ArgVT; 5811 5812 if (Flags.isNest()) 5813 continue; 5814 5815 if (CallConv == CallingConv::Fast) { 5816 if (Flags.isByVal()) { 5817 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5818 if (NumGPRsUsed > NumGPRs) 5819 HasParameterArea = true; 5820 } else { 5821 switch (ArgVT.getSimpleVT().SimpleTy) { 5822 default: llvm_unreachable("Unexpected ValueType for argument!"); 5823 case MVT::i1: 5824 case MVT::i32: 5825 case MVT::i64: 5826 if (++NumGPRsUsed <= NumGPRs) 5827 continue; 5828 break; 5829 case MVT::v4i32: 5830 case MVT::v8i16: 5831 case MVT::v16i8: 5832 case MVT::v2f64: 5833 case MVT::v2i64: 5834 case MVT::v1i128: 5835 case MVT::f128: 5836 if (++NumVRsUsed <= NumVRs) 5837 continue; 5838 break; 5839 case MVT::v4f32: 5840 // When using QPX, this is handled like a FP register, otherwise, it 5841 // is an Altivec register. 5842 if (Subtarget.hasQPX()) { 5843 if (++NumFPRsUsed <= NumFPRs) 5844 continue; 5845 } else { 5846 if (++NumVRsUsed <= NumVRs) 5847 continue; 5848 } 5849 break; 5850 case MVT::f32: 5851 case MVT::f64: 5852 case MVT::v4f64: // QPX 5853 case MVT::v4i1: // QPX 5854 if (++NumFPRsUsed <= NumFPRs) 5855 continue; 5856 break; 5857 } 5858 HasParameterArea = true; 5859 } 5860 } 5861 5862 /* Respect alignment of argument on the stack. */ 5863 unsigned Align = 5864 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5865 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5866 5867 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5868 if (Flags.isInConsecutiveRegsLast()) 5869 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5870 } 5871 5872 unsigned NumBytesActuallyUsed = NumBytes; 5873 5874 // In the old ELFv1 ABI, 5875 // the prolog code of the callee may store up to 8 GPR argument registers to 5876 // the stack, allowing va_start to index over them in memory if its varargs. 5877 // Because we cannot tell if this is needed on the caller side, we have to 5878 // conservatively assume that it is needed. As such, make sure we have at 5879 // least enough stack space for the caller to store the 8 GPRs. 5880 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5881 // really requires memory operands, e.g. a vararg function. 5882 if (HasParameterArea) 5883 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5884 else 5885 NumBytes = LinkageSize; 5886 5887 // Tail call needs the stack to be aligned. 5888 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5889 CallConv == CallingConv::Fast) 5890 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5891 5892 int SPDiff = 0; 5893 5894 // Calculate by how many bytes the stack has to be adjusted in case of tail 5895 // call optimization. 5896 if (!IsSibCall) 5897 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5898 5899 // To protect arguments on the stack from being clobbered in a tail call, 5900 // force all the loads to happen before doing any other lowering. 5901 if (isTailCall) 5902 Chain = DAG.getStackArgumentTokenFactor(Chain); 5903 5904 // Adjust the stack pointer for the new arguments... 5905 // These operations are automatically eliminated by the prolog/epilog pass 5906 if (!IsSibCall) 5907 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5908 SDValue CallSeqStart = Chain; 5909 5910 // Load the return address and frame pointer so it can be move somewhere else 5911 // later. 5912 SDValue LROp, FPOp; 5913 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5914 5915 // Set up a copy of the stack pointer for use loading and storing any 5916 // arguments that may not fit in the registers available for argument 5917 // passing. 5918 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5919 5920 // Figure out which arguments are going to go in registers, and which in 5921 // memory. Also, if this is a vararg function, floating point operations 5922 // must be stored to our stack, and loaded into integer regs as well, if 5923 // any integer regs are available for argument passing. 5924 unsigned ArgOffset = LinkageSize; 5925 5926 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5927 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5928 5929 SmallVector<SDValue, 8> MemOpChains; 5930 for (unsigned i = 0; i != NumOps; ++i) { 5931 SDValue Arg = OutVals[i]; 5932 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5933 EVT ArgVT = Outs[i].VT; 5934 EVT OrigVT = Outs[i].ArgVT; 5935 5936 // PtrOff will be used to store the current argument to the stack if a 5937 // register cannot be found for it. 5938 SDValue PtrOff; 5939 5940 // We re-align the argument offset for each argument, except when using the 5941 // fast calling convention, when we need to make sure we do that only when 5942 // we'll actually use a stack slot. 5943 auto ComputePtrOff = [&]() { 5944 /* Respect alignment of argument on the stack. */ 5945 unsigned Align = 5946 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5947 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5948 5949 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5950 5951 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5952 }; 5953 5954 if (CallConv != CallingConv::Fast) { 5955 ComputePtrOff(); 5956 5957 /* Compute GPR index associated with argument offset. */ 5958 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5959 GPR_idx = std::min(GPR_idx, NumGPRs); 5960 } 5961 5962 // Promote integers to 64-bit values. 5963 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5964 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5965 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5966 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5967 } 5968 5969 // FIXME memcpy is used way more than necessary. Correctness first. 5970 // Note: "by value" is code for passing a structure by value, not 5971 // basic types. 5972 if (Flags.isByVal()) { 5973 // Note: Size includes alignment padding, so 5974 // struct x { short a; char b; } 5975 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5976 // These are the proper values we need for right-justifying the 5977 // aggregate in a parameter register. 5978 unsigned Size = Flags.getByValSize(); 5979 5980 // An empty aggregate parameter takes up no storage and no 5981 // registers. 5982 if (Size == 0) 5983 continue; 5984 5985 if (CallConv == CallingConv::Fast) 5986 ComputePtrOff(); 5987 5988 // All aggregates smaller than 8 bytes must be passed right-justified. 5989 if (Size==1 || Size==2 || Size==4) { 5990 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5991 if (GPR_idx != NumGPRs) { 5992 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5993 MachinePointerInfo(), VT); 5994 MemOpChains.push_back(Load.getValue(1)); 5995 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5996 5997 ArgOffset += PtrByteSize; 5998 continue; 5999 } 6000 } 6001 6002 if (GPR_idx == NumGPRs && Size < 8) { 6003 SDValue AddPtr = PtrOff; 6004 if (!isLittleEndian) { 6005 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6006 PtrOff.getValueType()); 6007 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6008 } 6009 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6010 CallSeqStart, 6011 Flags, DAG, dl); 6012 ArgOffset += PtrByteSize; 6013 continue; 6014 } 6015 // Copy entire object into memory. There are cases where gcc-generated 6016 // code assumes it is there, even if it could be put entirely into 6017 // registers. (This is not what the doc says.) 6018 6019 // FIXME: The above statement is likely due to a misunderstanding of the 6020 // documents. All arguments must be copied into the parameter area BY 6021 // THE CALLEE in the event that the callee takes the address of any 6022 // formal argument. That has not yet been implemented. However, it is 6023 // reasonable to use the stack area as a staging area for the register 6024 // load. 6025 6026 // Skip this for small aggregates, as we will use the same slot for a 6027 // right-justified copy, below. 6028 if (Size >= 8) 6029 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6030 CallSeqStart, 6031 Flags, DAG, dl); 6032 6033 // When a register is available, pass a small aggregate right-justified. 6034 if (Size < 8 && GPR_idx != NumGPRs) { 6035 // The easiest way to get this right-justified in a register 6036 // is to copy the structure into the rightmost portion of a 6037 // local variable slot, then load the whole slot into the 6038 // register. 6039 // FIXME: The memcpy seems to produce pretty awful code for 6040 // small aggregates, particularly for packed ones. 6041 // FIXME: It would be preferable to use the slot in the 6042 // parameter save area instead of a new local variable. 6043 SDValue AddPtr = PtrOff; 6044 if (!isLittleEndian) { 6045 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6046 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6047 } 6048 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6049 CallSeqStart, 6050 Flags, DAG, dl); 6051 6052 // Load the slot into the register. 6053 SDValue Load = 6054 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6055 MemOpChains.push_back(Load.getValue(1)); 6056 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6057 6058 // Done with this argument. 6059 ArgOffset += PtrByteSize; 6060 continue; 6061 } 6062 6063 // For aggregates larger than PtrByteSize, copy the pieces of the 6064 // object that fit into registers from the parameter save area. 6065 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6066 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6067 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6068 if (GPR_idx != NumGPRs) { 6069 SDValue Load = 6070 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6071 MemOpChains.push_back(Load.getValue(1)); 6072 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6073 ArgOffset += PtrByteSize; 6074 } else { 6075 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6076 break; 6077 } 6078 } 6079 continue; 6080 } 6081 6082 switch (Arg.getSimpleValueType().SimpleTy) { 6083 default: llvm_unreachable("Unexpected ValueType for argument!"); 6084 case MVT::i1: 6085 case MVT::i32: 6086 case MVT::i64: 6087 if (Flags.isNest()) { 6088 // The 'nest' parameter, if any, is passed in R11. 6089 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6090 hasNest = true; 6091 break; 6092 } 6093 6094 // These can be scalar arguments or elements of an integer array type 6095 // passed directly. Clang may use those instead of "byval" aggregate 6096 // types to avoid forcing arguments to memory unnecessarily. 6097 if (GPR_idx != NumGPRs) { 6098 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6099 } else { 6100 if (CallConv == CallingConv::Fast) 6101 ComputePtrOff(); 6102 6103 assert(HasParameterArea && 6104 "Parameter area must exist to pass an argument in memory."); 6105 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6106 true, isTailCall, false, MemOpChains, 6107 TailCallArguments, dl); 6108 if (CallConv == CallingConv::Fast) 6109 ArgOffset += PtrByteSize; 6110 } 6111 if (CallConv != CallingConv::Fast) 6112 ArgOffset += PtrByteSize; 6113 break; 6114 case MVT::f32: 6115 case MVT::f64: { 6116 // These can be scalar arguments or elements of a float array type 6117 // passed directly. The latter are used to implement ELFv2 homogenous 6118 // float aggregates. 6119 6120 // Named arguments go into FPRs first, and once they overflow, the 6121 // remaining arguments go into GPRs and then the parameter save area. 6122 // Unnamed arguments for vararg functions always go to GPRs and 6123 // then the parameter save area. For now, put all arguments to vararg 6124 // routines always in both locations (FPR *and* GPR or stack slot). 6125 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6126 bool NeededLoad = false; 6127 6128 // First load the argument into the next available FPR. 6129 if (FPR_idx != NumFPRs) 6130 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6131 6132 // Next, load the argument into GPR or stack slot if needed. 6133 if (!NeedGPROrStack) 6134 ; 6135 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6136 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6137 // once we support fp <-> gpr moves. 6138 6139 // In the non-vararg case, this can only ever happen in the 6140 // presence of f32 array types, since otherwise we never run 6141 // out of FPRs before running out of GPRs. 6142 SDValue ArgVal; 6143 6144 // Double values are always passed in a single GPR. 6145 if (Arg.getValueType() != MVT::f32) { 6146 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6147 6148 // Non-array float values are extended and passed in a GPR. 6149 } else if (!Flags.isInConsecutiveRegs()) { 6150 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6151 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6152 6153 // If we have an array of floats, we collect every odd element 6154 // together with its predecessor into one GPR. 6155 } else if (ArgOffset % PtrByteSize != 0) { 6156 SDValue Lo, Hi; 6157 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6158 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6159 if (!isLittleEndian) 6160 std::swap(Lo, Hi); 6161 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6162 6163 // The final element, if even, goes into the first half of a GPR. 6164 } else if (Flags.isInConsecutiveRegsLast()) { 6165 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6166 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6167 if (!isLittleEndian) 6168 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6169 DAG.getConstant(32, dl, MVT::i32)); 6170 6171 // Non-final even elements are skipped; they will be handled 6172 // together the with subsequent argument on the next go-around. 6173 } else 6174 ArgVal = SDValue(); 6175 6176 if (ArgVal.getNode()) 6177 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6178 } else { 6179 if (CallConv == CallingConv::Fast) 6180 ComputePtrOff(); 6181 6182 // Single-precision floating-point values are mapped to the 6183 // second (rightmost) word of the stack doubleword. 6184 if (Arg.getValueType() == MVT::f32 && 6185 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6186 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6187 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6188 } 6189 6190 assert(HasParameterArea && 6191 "Parameter area must exist to pass an argument in memory."); 6192 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6193 true, isTailCall, false, MemOpChains, 6194 TailCallArguments, dl); 6195 6196 NeededLoad = true; 6197 } 6198 // When passing an array of floats, the array occupies consecutive 6199 // space in the argument area; only round up to the next doubleword 6200 // at the end of the array. Otherwise, each float takes 8 bytes. 6201 if (CallConv != CallingConv::Fast || NeededLoad) { 6202 ArgOffset += (Arg.getValueType() == MVT::f32 && 6203 Flags.isInConsecutiveRegs()) ? 4 : 8; 6204 if (Flags.isInConsecutiveRegsLast()) 6205 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6206 } 6207 break; 6208 } 6209 case MVT::v4f32: 6210 case MVT::v4i32: 6211 case MVT::v8i16: 6212 case MVT::v16i8: 6213 case MVT::v2f64: 6214 case MVT::v2i64: 6215 case MVT::v1i128: 6216 case MVT::f128: 6217 if (!Subtarget.hasQPX()) { 6218 // These can be scalar arguments or elements of a vector array type 6219 // passed directly. The latter are used to implement ELFv2 homogenous 6220 // vector aggregates. 6221 6222 // For a varargs call, named arguments go into VRs or on the stack as 6223 // usual; unnamed arguments always go to the stack or the corresponding 6224 // GPRs when within range. For now, we always put the value in both 6225 // locations (or even all three). 6226 if (isVarArg) { 6227 assert(HasParameterArea && 6228 "Parameter area must exist if we have a varargs call."); 6229 // We could elide this store in the case where the object fits 6230 // entirely in R registers. Maybe later. 6231 SDValue Store = 6232 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6233 MemOpChains.push_back(Store); 6234 if (VR_idx != NumVRs) { 6235 SDValue Load = 6236 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6237 MemOpChains.push_back(Load.getValue(1)); 6238 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6239 } 6240 ArgOffset += 16; 6241 for (unsigned i=0; i<16; i+=PtrByteSize) { 6242 if (GPR_idx == NumGPRs) 6243 break; 6244 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6245 DAG.getConstant(i, dl, PtrVT)); 6246 SDValue Load = 6247 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6248 MemOpChains.push_back(Load.getValue(1)); 6249 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6250 } 6251 break; 6252 } 6253 6254 // Non-varargs Altivec params go into VRs or on the stack. 6255 if (VR_idx != NumVRs) { 6256 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6257 } else { 6258 if (CallConv == CallingConv::Fast) 6259 ComputePtrOff(); 6260 6261 assert(HasParameterArea && 6262 "Parameter area must exist to pass an argument in memory."); 6263 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6264 true, isTailCall, true, MemOpChains, 6265 TailCallArguments, dl); 6266 if (CallConv == CallingConv::Fast) 6267 ArgOffset += 16; 6268 } 6269 6270 if (CallConv != CallingConv::Fast) 6271 ArgOffset += 16; 6272 break; 6273 } // not QPX 6274 6275 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6276 "Invalid QPX parameter type"); 6277 6278 LLVM_FALLTHROUGH; 6279 case MVT::v4f64: 6280 case MVT::v4i1: { 6281 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6282 if (isVarArg) { 6283 assert(HasParameterArea && 6284 "Parameter area must exist if we have a varargs call."); 6285 // We could elide this store in the case where the object fits 6286 // entirely in R registers. Maybe later. 6287 SDValue Store = 6288 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6289 MemOpChains.push_back(Store); 6290 if (QFPR_idx != NumQFPRs) { 6291 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6292 PtrOff, MachinePointerInfo()); 6293 MemOpChains.push_back(Load.getValue(1)); 6294 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6295 } 6296 ArgOffset += (IsF32 ? 16 : 32); 6297 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6298 if (GPR_idx == NumGPRs) 6299 break; 6300 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6301 DAG.getConstant(i, dl, PtrVT)); 6302 SDValue Load = 6303 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6304 MemOpChains.push_back(Load.getValue(1)); 6305 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6306 } 6307 break; 6308 } 6309 6310 // Non-varargs QPX params go into registers or on the stack. 6311 if (QFPR_idx != NumQFPRs) { 6312 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6313 } else { 6314 if (CallConv == CallingConv::Fast) 6315 ComputePtrOff(); 6316 6317 assert(HasParameterArea && 6318 "Parameter area must exist to pass an argument in memory."); 6319 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6320 true, isTailCall, true, MemOpChains, 6321 TailCallArguments, dl); 6322 if (CallConv == CallingConv::Fast) 6323 ArgOffset += (IsF32 ? 16 : 32); 6324 } 6325 6326 if (CallConv != CallingConv::Fast) 6327 ArgOffset += (IsF32 ? 16 : 32); 6328 break; 6329 } 6330 } 6331 } 6332 6333 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6334 "mismatch in size of parameter area"); 6335 (void)NumBytesActuallyUsed; 6336 6337 if (!MemOpChains.empty()) 6338 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6339 6340 // Check if this is an indirect call (MTCTR/BCTRL). 6341 // See prepareDescriptorIndirectCall and buildCallOperands for more 6342 // information about calls through function pointers in the 64-bit SVR4 ABI. 6343 if (!isTailCall && !isPatchPoint && 6344 !isFunctionGlobalAddress(Callee) && 6345 !isa<ExternalSymbolSDNode>(Callee)) { 6346 // Load r2 into a virtual register and store it to the TOC save area. 6347 setUsesTOCBasePtr(DAG); 6348 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6349 // TOC save area offset. 6350 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6351 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6352 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6353 Chain = DAG.getStore( 6354 Val.getValue(1), dl, Val, AddPtr, 6355 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6356 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6357 // This does not mean the MTCTR instruction must use R12; it's easier 6358 // to model this as an extra parameter, so do that. 6359 if (isELFv2ABI && !isPatchPoint) 6360 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6361 } 6362 6363 // Build a sequence of copy-to-reg nodes chained together with token chain 6364 // and flag operands which copy the outgoing args into the appropriate regs. 6365 SDValue InFlag; 6366 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6367 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6368 RegsToPass[i].second, InFlag); 6369 InFlag = Chain.getValue(1); 6370 } 6371 6372 if (isTailCall && !IsSibCall) 6373 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6374 TailCallArguments); 6375 6376 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6377 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6378 SPDiff, NumBytes, Ins, InVals, CS); 6379 } 6380 6381 SDValue PPCTargetLowering::LowerCall_Darwin( 6382 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6383 bool isTailCall, bool isPatchPoint, 6384 const SmallVectorImpl<ISD::OutputArg> &Outs, 6385 const SmallVectorImpl<SDValue> &OutVals, 6386 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6387 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6388 ImmutableCallSite CS) const { 6389 unsigned NumOps = Outs.size(); 6390 6391 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6392 bool isPPC64 = PtrVT == MVT::i64; 6393 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6394 6395 MachineFunction &MF = DAG.getMachineFunction(); 6396 6397 // Mark this function as potentially containing a function that contains a 6398 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6399 // and restoring the callers stack pointer in this functions epilog. This is 6400 // done because by tail calling the called function might overwrite the value 6401 // in this function's (MF) stack pointer stack slot 0(SP). 6402 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6403 CallConv == CallingConv::Fast) 6404 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6405 6406 // Count how many bytes are to be pushed on the stack, including the linkage 6407 // area, and parameter passing area. We start with 24/48 bytes, which is 6408 // prereserved space for [SP][CR][LR][3 x unused]. 6409 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6410 unsigned NumBytes = LinkageSize; 6411 6412 // Add up all the space actually used. 6413 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6414 // they all go in registers, but we must reserve stack space for them for 6415 // possible use by the caller. In varargs or 64-bit calls, parameters are 6416 // assigned stack space in order, with padding so Altivec parameters are 6417 // 16-byte aligned. 6418 unsigned nAltivecParamsAtEnd = 0; 6419 for (unsigned i = 0; i != NumOps; ++i) { 6420 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6421 EVT ArgVT = Outs[i].VT; 6422 // Varargs Altivec parameters are padded to a 16 byte boundary. 6423 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6424 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6425 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6426 if (!isVarArg && !isPPC64) { 6427 // Non-varargs Altivec parameters go after all the non-Altivec 6428 // parameters; handle those later so we know how much padding we need. 6429 nAltivecParamsAtEnd++; 6430 continue; 6431 } 6432 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6433 NumBytes = ((NumBytes+15)/16)*16; 6434 } 6435 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6436 } 6437 6438 // Allow for Altivec parameters at the end, if needed. 6439 if (nAltivecParamsAtEnd) { 6440 NumBytes = ((NumBytes+15)/16)*16; 6441 NumBytes += 16*nAltivecParamsAtEnd; 6442 } 6443 6444 // The prolog code of the callee may store up to 8 GPR argument registers to 6445 // the stack, allowing va_start to index over them in memory if its varargs. 6446 // Because we cannot tell if this is needed on the caller side, we have to 6447 // conservatively assume that it is needed. As such, make sure we have at 6448 // least enough stack space for the caller to store the 8 GPRs. 6449 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6450 6451 // Tail call needs the stack to be aligned. 6452 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6453 CallConv == CallingConv::Fast) 6454 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6455 6456 // Calculate by how many bytes the stack has to be adjusted in case of tail 6457 // call optimization. 6458 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6459 6460 // To protect arguments on the stack from being clobbered in a tail call, 6461 // force all the loads to happen before doing any other lowering. 6462 if (isTailCall) 6463 Chain = DAG.getStackArgumentTokenFactor(Chain); 6464 6465 // Adjust the stack pointer for the new arguments... 6466 // These operations are automatically eliminated by the prolog/epilog pass 6467 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6468 SDValue CallSeqStart = Chain; 6469 6470 // Load the return address and frame pointer so it can be move somewhere else 6471 // later. 6472 SDValue LROp, FPOp; 6473 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6474 6475 // Set up a copy of the stack pointer for use loading and storing any 6476 // arguments that may not fit in the registers available for argument 6477 // passing. 6478 SDValue StackPtr; 6479 if (isPPC64) 6480 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6481 else 6482 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6483 6484 // Figure out which arguments are going to go in registers, and which in 6485 // memory. Also, if this is a vararg function, floating point operations 6486 // must be stored to our stack, and loaded into integer regs as well, if 6487 // any integer regs are available for argument passing. 6488 unsigned ArgOffset = LinkageSize; 6489 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6490 6491 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6492 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6493 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6494 }; 6495 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6496 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6497 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6498 }; 6499 static const MCPhysReg VR[] = { 6500 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6501 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6502 }; 6503 const unsigned NumGPRs = array_lengthof(GPR_32); 6504 const unsigned NumFPRs = 13; 6505 const unsigned NumVRs = array_lengthof(VR); 6506 6507 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6508 6509 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6510 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6511 6512 SmallVector<SDValue, 8> MemOpChains; 6513 for (unsigned i = 0; i != NumOps; ++i) { 6514 SDValue Arg = OutVals[i]; 6515 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6516 6517 // PtrOff will be used to store the current argument to the stack if a 6518 // register cannot be found for it. 6519 SDValue PtrOff; 6520 6521 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6522 6523 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6524 6525 // On PPC64, promote integers to 64-bit values. 6526 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6527 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6528 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6529 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6530 } 6531 6532 // FIXME memcpy is used way more than necessary. Correctness first. 6533 // Note: "by value" is code for passing a structure by value, not 6534 // basic types. 6535 if (Flags.isByVal()) { 6536 unsigned Size = Flags.getByValSize(); 6537 // Very small objects are passed right-justified. Everything else is 6538 // passed left-justified. 6539 if (Size==1 || Size==2) { 6540 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6541 if (GPR_idx != NumGPRs) { 6542 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6543 MachinePointerInfo(), VT); 6544 MemOpChains.push_back(Load.getValue(1)); 6545 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6546 6547 ArgOffset += PtrByteSize; 6548 } else { 6549 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6550 PtrOff.getValueType()); 6551 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6552 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6553 CallSeqStart, 6554 Flags, DAG, dl); 6555 ArgOffset += PtrByteSize; 6556 } 6557 continue; 6558 } 6559 // Copy entire object into memory. There are cases where gcc-generated 6560 // code assumes it is there, even if it could be put entirely into 6561 // registers. (This is not what the doc says.) 6562 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6563 CallSeqStart, 6564 Flags, DAG, dl); 6565 6566 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6567 // copy the pieces of the object that fit into registers from the 6568 // parameter save area. 6569 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6570 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6571 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6572 if (GPR_idx != NumGPRs) { 6573 SDValue Load = 6574 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6575 MemOpChains.push_back(Load.getValue(1)); 6576 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6577 ArgOffset += PtrByteSize; 6578 } else { 6579 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6580 break; 6581 } 6582 } 6583 continue; 6584 } 6585 6586 switch (Arg.getSimpleValueType().SimpleTy) { 6587 default: llvm_unreachable("Unexpected ValueType for argument!"); 6588 case MVT::i1: 6589 case MVT::i32: 6590 case MVT::i64: 6591 if (GPR_idx != NumGPRs) { 6592 if (Arg.getValueType() == MVT::i1) 6593 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6594 6595 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6596 } else { 6597 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6598 isPPC64, isTailCall, false, MemOpChains, 6599 TailCallArguments, dl); 6600 } 6601 ArgOffset += PtrByteSize; 6602 break; 6603 case MVT::f32: 6604 case MVT::f64: 6605 if (FPR_idx != NumFPRs) { 6606 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6607 6608 if (isVarArg) { 6609 SDValue Store = 6610 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6611 MemOpChains.push_back(Store); 6612 6613 // Float varargs are always shadowed in available integer registers 6614 if (GPR_idx != NumGPRs) { 6615 SDValue Load = 6616 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6617 MemOpChains.push_back(Load.getValue(1)); 6618 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6619 } 6620 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6621 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6622 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6623 SDValue Load = 6624 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6625 MemOpChains.push_back(Load.getValue(1)); 6626 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6627 } 6628 } else { 6629 // If we have any FPRs remaining, we may also have GPRs remaining. 6630 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6631 // GPRs. 6632 if (GPR_idx != NumGPRs) 6633 ++GPR_idx; 6634 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6635 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6636 ++GPR_idx; 6637 } 6638 } else 6639 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6640 isPPC64, isTailCall, false, MemOpChains, 6641 TailCallArguments, dl); 6642 if (isPPC64) 6643 ArgOffset += 8; 6644 else 6645 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6646 break; 6647 case MVT::v4f32: 6648 case MVT::v4i32: 6649 case MVT::v8i16: 6650 case MVT::v16i8: 6651 if (isVarArg) { 6652 // These go aligned on the stack, or in the corresponding R registers 6653 // when within range. The Darwin PPC ABI doc claims they also go in 6654 // V registers; in fact gcc does this only for arguments that are 6655 // prototyped, not for those that match the ... We do it for all 6656 // arguments, seems to work. 6657 while (ArgOffset % 16 !=0) { 6658 ArgOffset += PtrByteSize; 6659 if (GPR_idx != NumGPRs) 6660 GPR_idx++; 6661 } 6662 // We could elide this store in the case where the object fits 6663 // entirely in R registers. Maybe later. 6664 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6665 DAG.getConstant(ArgOffset, dl, PtrVT)); 6666 SDValue Store = 6667 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6668 MemOpChains.push_back(Store); 6669 if (VR_idx != NumVRs) { 6670 SDValue Load = 6671 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6672 MemOpChains.push_back(Load.getValue(1)); 6673 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6674 } 6675 ArgOffset += 16; 6676 for (unsigned i=0; i<16; i+=PtrByteSize) { 6677 if (GPR_idx == NumGPRs) 6678 break; 6679 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6680 DAG.getConstant(i, dl, PtrVT)); 6681 SDValue Load = 6682 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6683 MemOpChains.push_back(Load.getValue(1)); 6684 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6685 } 6686 break; 6687 } 6688 6689 // Non-varargs Altivec params generally go in registers, but have 6690 // stack space allocated at the end. 6691 if (VR_idx != NumVRs) { 6692 // Doesn't have GPR space allocated. 6693 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6694 } else if (nAltivecParamsAtEnd==0) { 6695 // We are emitting Altivec params in order. 6696 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6697 isPPC64, isTailCall, true, MemOpChains, 6698 TailCallArguments, dl); 6699 ArgOffset += 16; 6700 } 6701 break; 6702 } 6703 } 6704 // If all Altivec parameters fit in registers, as they usually do, 6705 // they get stack space following the non-Altivec parameters. We 6706 // don't track this here because nobody below needs it. 6707 // If there are more Altivec parameters than fit in registers emit 6708 // the stores here. 6709 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6710 unsigned j = 0; 6711 // Offset is aligned; skip 1st 12 params which go in V registers. 6712 ArgOffset = ((ArgOffset+15)/16)*16; 6713 ArgOffset += 12*16; 6714 for (unsigned i = 0; i != NumOps; ++i) { 6715 SDValue Arg = OutVals[i]; 6716 EVT ArgType = Outs[i].VT; 6717 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6718 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6719 if (++j > NumVRs) { 6720 SDValue PtrOff; 6721 // We are emitting Altivec params in order. 6722 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6723 isPPC64, isTailCall, true, MemOpChains, 6724 TailCallArguments, dl); 6725 ArgOffset += 16; 6726 } 6727 } 6728 } 6729 } 6730 6731 if (!MemOpChains.empty()) 6732 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6733 6734 // On Darwin, R12 must contain the address of an indirect callee. This does 6735 // not mean the MTCTR instruction must use R12; it's easier to model this as 6736 // an extra parameter, so do that. 6737 if (!isTailCall && 6738 !isFunctionGlobalAddress(Callee) && 6739 !isa<ExternalSymbolSDNode>(Callee) && 6740 !isBLACompatibleAddress(Callee, DAG)) 6741 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6742 PPC::R12), Callee)); 6743 6744 // Build a sequence of copy-to-reg nodes chained together with token chain 6745 // and flag operands which copy the outgoing args into the appropriate regs. 6746 SDValue InFlag; 6747 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6748 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6749 RegsToPass[i].second, InFlag); 6750 InFlag = Chain.getValue(1); 6751 } 6752 6753 if (isTailCall) 6754 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6755 TailCallArguments); 6756 6757 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6758 /* unused except on PPC64 ELFv1 */ false, DAG, 6759 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6760 NumBytes, Ins, InVals, CS); 6761 } 6762 6763 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6764 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6765 CCState &State) { 6766 6767 if (ValVT == MVT::f128) 6768 report_fatal_error("f128 is unimplemented on AIX."); 6769 6770 if (ArgFlags.isByVal()) 6771 report_fatal_error("Passing structure by value is unimplemented."); 6772 6773 if (ArgFlags.isSRet()) 6774 report_fatal_error("Struct return arguments are unimplemented."); 6775 6776 if (ArgFlags.isNest()) 6777 report_fatal_error("Nest arguments are unimplemented."); 6778 6779 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6780 State.getMachineFunction().getSubtarget()); 6781 const bool IsPPC64 = Subtarget.isPPC64(); 6782 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6783 6784 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6785 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6786 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6787 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6788 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6789 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6790 6791 // Arguments always reserve parameter save area. 6792 switch (ValVT.SimpleTy) { 6793 default: 6794 report_fatal_error("Unhandled value type for argument."); 6795 case MVT::i64: 6796 // i64 arguments should have been split to i32 for PPC32. 6797 assert(IsPPC64 && "PPC32 should have split i64 values."); 6798 LLVM_FALLTHROUGH; 6799 case MVT::i1: 6800 case MVT::i32: 6801 State.AllocateStack(PtrByteSize, PtrByteSize); 6802 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6803 MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6804 // Promote integers if needed. 6805 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6806 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6807 : CCValAssign::LocInfo::ZExt; 6808 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6809 } 6810 else 6811 report_fatal_error("Handling of placing parameters on the stack is " 6812 "unimplemented!"); 6813 return false; 6814 6815 case MVT::f32: 6816 case MVT::f64: { 6817 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6818 const unsigned StoreSize = LocVT.getStoreSize(); 6819 // Floats are always 4-byte aligned in the PSA on AIX. 6820 // This includes f64 in 64-bit mode for ABI compatibility. 6821 State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6822 if (unsigned Reg = State.AllocateReg(FPR)) 6823 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::f64, LocInfo)); 6824 else 6825 report_fatal_error("Handling of placing parameters on the stack is " 6826 "unimplemented!"); 6827 6828 // f32 reserves 1 GPR in both PPC32 and PPC64. 6829 // f64 reserves 2 GPRs in PPC32 and 1 GPR in PPC64. 6830 for (unsigned i = 0; i < StoreSize; i += PtrByteSize) 6831 State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32); 6832 return false; 6833 } 6834 } 6835 } 6836 6837 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6838 bool IsPPC64) { 6839 assert((IsPPC64 || SVT != MVT::i64) && 6840 "i64 should have been split for 32-bit codegen."); 6841 6842 switch (SVT) { 6843 default: 6844 report_fatal_error("Unexpected value type for formal argument"); 6845 case MVT::i1: 6846 case MVT::i32: 6847 case MVT::i64: 6848 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6849 case MVT::f32: 6850 return &PPC::F4RCRegClass; 6851 case MVT::f64: 6852 return &PPC::F8RCRegClass; 6853 } 6854 } 6855 6856 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6857 SelectionDAG &DAG, SDValue ArgValue, 6858 MVT LocVT, const SDLoc &dl) { 6859 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6860 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6861 6862 if (Flags.isSExt()) 6863 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6864 DAG.getValueType(ValVT)); 6865 else if (Flags.isZExt()) 6866 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6867 DAG.getValueType(ValVT)); 6868 6869 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6870 } 6871 6872 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6873 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6874 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6875 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6876 6877 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6878 CallConv == CallingConv::Fast) && 6879 "Unexpected calling convention!"); 6880 6881 if (isVarArg) 6882 report_fatal_error("This call type is unimplemented on AIX."); 6883 6884 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6885 report_fatal_error("Tail call support is unimplemented on AIX."); 6886 6887 if (useSoftFloat()) 6888 report_fatal_error("Soft float support is unimplemented on AIX."); 6889 6890 const PPCSubtarget &Subtarget = 6891 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6892 if (Subtarget.hasQPX()) 6893 report_fatal_error("QPX support is not supported on AIX."); 6894 6895 const bool IsPPC64 = Subtarget.isPPC64(); 6896 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6897 6898 // Assign locations to all of the incoming arguments. 6899 SmallVector<CCValAssign, 16> ArgLocs; 6900 MachineFunction &MF = DAG.getMachineFunction(); 6901 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6902 6903 // Reserve space for the linkage area on the stack. 6904 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6905 // On AIX a minimum of 8 words is saved to the parameter save area. 6906 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6907 CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize); 6908 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6909 6910 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 6911 CCValAssign &VA = ArgLocs[i]; 6912 SDValue ArgValue; 6913 ISD::ArgFlagsTy Flags = Ins[i].Flags; 6914 if (VA.isRegLoc()) { 6915 EVT ValVT = VA.getValVT(); 6916 MVT LocVT = VA.getLocVT(); 6917 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 6918 unsigned VReg = 6919 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6920 ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6921 if (ValVT.isScalarInteger() && 6922 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 6923 ArgValue = 6924 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6925 } 6926 InVals.push_back(ArgValue); 6927 } else { 6928 report_fatal_error("Handling of formal arguments on the stack is " 6929 "unimplemented!"); 6930 } 6931 } 6932 6933 // Area that is at least reserved in the caller of this function. 6934 unsigned MinReservedArea = CCInfo.getNextStackOffset(); 6935 6936 // Set the size that is at least reserved in caller of this function. Tail 6937 // call optimized function's reserved stack space needs to be aligned so 6938 // that taking the difference between two stack areas will result in an 6939 // aligned stack. 6940 MinReservedArea = 6941 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 6942 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6943 FuncInfo->setMinReservedArea(MinReservedArea); 6944 6945 return Chain; 6946 } 6947 6948 SDValue PPCTargetLowering::LowerCall_AIX( 6949 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6950 bool isTailCall, bool isPatchPoint, 6951 const SmallVectorImpl<ISD::OutputArg> &Outs, 6952 const SmallVectorImpl<SDValue> &OutVals, 6953 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6954 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6955 ImmutableCallSite CS) const { 6956 6957 assert((CallConv == CallingConv::C || 6958 CallConv == CallingConv::Cold || 6959 CallConv == CallingConv::Fast) && "Unexpected calling convention!"); 6960 6961 if (isVarArg || isPatchPoint) 6962 report_fatal_error("This call type is unimplemented on AIX."); 6963 6964 if (!isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 6965 report_fatal_error("Handling of indirect call is unimplemented!"); 6966 6967 const PPCSubtarget& Subtarget = 6968 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 6969 if (Subtarget.hasQPX()) 6970 report_fatal_error("QPX is not supported on AIX."); 6971 if (Subtarget.hasAltivec()) 6972 report_fatal_error("Altivec support is unimplemented on AIX."); 6973 6974 MachineFunction &MF = DAG.getMachineFunction(); 6975 SmallVector<CCValAssign, 16> ArgLocs; 6976 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6977 6978 // Reserve space for the linkage save area (LSA) on the stack. 6979 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 6980 // [SP][CR][LR][2 x reserved][TOC]. 6981 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 6982 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6983 const unsigned PtrByteSize = Subtarget.isPPC64() ? 8 : 4; 6984 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 6985 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 6986 6987 // The prolog code of the callee may store up to 8 GPR argument registers to 6988 // the stack, allowing va_start to index over them in memory if the callee 6989 // is variadic. 6990 // Because we cannot tell if this is needed on the caller side, we have to 6991 // conservatively assume that it is needed. As such, make sure we have at 6992 // least enough stack space for the caller to store the 8 GPRs. 6993 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 6994 const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize; 6995 6996 // Adjust the stack pointer for the new arguments... 6997 // These operations are automatically eliminated by the prolog/epilog pass. 6998 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6999 SDValue CallSeqStart = Chain; 7000 7001 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7002 7003 for (CCValAssign &VA : ArgLocs) { 7004 SDValue Arg = OutVals[VA.getValNo()]; 7005 7006 switch (VA.getLocInfo()) { 7007 default: report_fatal_error("Unexpected argument extension type."); 7008 case CCValAssign::Full: break; 7009 case CCValAssign::ZExt: 7010 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7011 break; 7012 case CCValAssign::SExt: 7013 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7014 break; 7015 } 7016 7017 if (VA.isRegLoc()) 7018 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7019 7020 if (VA.isMemLoc()) 7021 report_fatal_error("Handling of placing parameters on the stack is " 7022 "unimplemented!"); 7023 } 7024 7025 // Build a sequence of copy-to-reg nodes chained together with token chain 7026 // and flag operands which copy the outgoing args into the appropriate regs. 7027 SDValue InFlag; 7028 for (auto Reg : RegsToPass) { 7029 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7030 InFlag = Chain.getValue(1); 7031 } 7032 7033 const int SPDiff = 0; 7034 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 7035 /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass, 7036 InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, 7037 InVals, CS); 7038 } 7039 7040 bool 7041 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7042 MachineFunction &MF, bool isVarArg, 7043 const SmallVectorImpl<ISD::OutputArg> &Outs, 7044 LLVMContext &Context) const { 7045 SmallVector<CCValAssign, 16> RVLocs; 7046 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7047 return CCInfo.CheckReturn( 7048 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7049 ? RetCC_PPC_Cold 7050 : RetCC_PPC); 7051 } 7052 7053 SDValue 7054 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7055 bool isVarArg, 7056 const SmallVectorImpl<ISD::OutputArg> &Outs, 7057 const SmallVectorImpl<SDValue> &OutVals, 7058 const SDLoc &dl, SelectionDAG &DAG) const { 7059 SmallVector<CCValAssign, 16> RVLocs; 7060 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7061 *DAG.getContext()); 7062 CCInfo.AnalyzeReturn(Outs, 7063 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7064 ? RetCC_PPC_Cold 7065 : RetCC_PPC); 7066 7067 SDValue Flag; 7068 SmallVector<SDValue, 4> RetOps(1, Chain); 7069 7070 // Copy the result values into the output registers. 7071 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7072 CCValAssign &VA = RVLocs[i]; 7073 assert(VA.isRegLoc() && "Can only return in registers!"); 7074 7075 SDValue Arg = OutVals[RealResIdx]; 7076 7077 switch (VA.getLocInfo()) { 7078 default: llvm_unreachable("Unknown loc info!"); 7079 case CCValAssign::Full: break; 7080 case CCValAssign::AExt: 7081 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7082 break; 7083 case CCValAssign::ZExt: 7084 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7085 break; 7086 case CCValAssign::SExt: 7087 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7088 break; 7089 } 7090 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7091 bool isLittleEndian = Subtarget.isLittleEndian(); 7092 // Legalize ret f64 -> ret 2 x i32. 7093 SDValue SVal = 7094 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7095 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7096 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7097 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7098 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7099 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7100 Flag = Chain.getValue(1); 7101 VA = RVLocs[++i]; // skip ahead to next loc 7102 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7103 } else 7104 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7105 Flag = Chain.getValue(1); 7106 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7107 } 7108 7109 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7110 const MCPhysReg *I = 7111 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7112 if (I) { 7113 for (; *I; ++I) { 7114 7115 if (PPC::G8RCRegClass.contains(*I)) 7116 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7117 else if (PPC::F8RCRegClass.contains(*I)) 7118 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7119 else if (PPC::CRRCRegClass.contains(*I)) 7120 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7121 else if (PPC::VRRCRegClass.contains(*I)) 7122 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7123 else 7124 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7125 } 7126 } 7127 7128 RetOps[0] = Chain; // Update chain. 7129 7130 // Add the flag if we have it. 7131 if (Flag.getNode()) 7132 RetOps.push_back(Flag); 7133 7134 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7135 } 7136 7137 SDValue 7138 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7139 SelectionDAG &DAG) const { 7140 SDLoc dl(Op); 7141 7142 // Get the correct type for integers. 7143 EVT IntVT = Op.getValueType(); 7144 7145 // Get the inputs. 7146 SDValue Chain = Op.getOperand(0); 7147 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7148 // Build a DYNAREAOFFSET node. 7149 SDValue Ops[2] = {Chain, FPSIdx}; 7150 SDVTList VTs = DAG.getVTList(IntVT); 7151 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7152 } 7153 7154 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7155 SelectionDAG &DAG) const { 7156 // When we pop the dynamic allocation we need to restore the SP link. 7157 SDLoc dl(Op); 7158 7159 // Get the correct type for pointers. 7160 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7161 7162 // Construct the stack pointer operand. 7163 bool isPPC64 = Subtarget.isPPC64(); 7164 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7165 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7166 7167 // Get the operands for the STACKRESTORE. 7168 SDValue Chain = Op.getOperand(0); 7169 SDValue SaveSP = Op.getOperand(1); 7170 7171 // Load the old link SP. 7172 SDValue LoadLinkSP = 7173 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7174 7175 // Restore the stack pointer. 7176 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7177 7178 // Store the old link SP. 7179 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7180 } 7181 7182 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7183 MachineFunction &MF = DAG.getMachineFunction(); 7184 bool isPPC64 = Subtarget.isPPC64(); 7185 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7186 7187 // Get current frame pointer save index. The users of this index will be 7188 // primarily DYNALLOC instructions. 7189 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7190 int RASI = FI->getReturnAddrSaveIndex(); 7191 7192 // If the frame pointer save index hasn't been defined yet. 7193 if (!RASI) { 7194 // Find out what the fix offset of the frame pointer save area. 7195 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7196 // Allocate the frame index for frame pointer save area. 7197 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7198 // Save the result. 7199 FI->setReturnAddrSaveIndex(RASI); 7200 } 7201 return DAG.getFrameIndex(RASI, PtrVT); 7202 } 7203 7204 SDValue 7205 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7206 MachineFunction &MF = DAG.getMachineFunction(); 7207 bool isPPC64 = Subtarget.isPPC64(); 7208 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7209 7210 // Get current frame pointer save index. The users of this index will be 7211 // primarily DYNALLOC instructions. 7212 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7213 int FPSI = FI->getFramePointerSaveIndex(); 7214 7215 // If the frame pointer save index hasn't been defined yet. 7216 if (!FPSI) { 7217 // Find out what the fix offset of the frame pointer save area. 7218 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7219 // Allocate the frame index for frame pointer save area. 7220 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7221 // Save the result. 7222 FI->setFramePointerSaveIndex(FPSI); 7223 } 7224 return DAG.getFrameIndex(FPSI, PtrVT); 7225 } 7226 7227 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7228 SelectionDAG &DAG) const { 7229 // Get the inputs. 7230 SDValue Chain = Op.getOperand(0); 7231 SDValue Size = Op.getOperand(1); 7232 SDLoc dl(Op); 7233 7234 // Get the correct type for pointers. 7235 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7236 // Negate the size. 7237 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7238 DAG.getConstant(0, dl, PtrVT), Size); 7239 // Construct a node for the frame pointer save index. 7240 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7241 // Build a DYNALLOC node. 7242 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7243 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7244 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7245 } 7246 7247 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7248 SelectionDAG &DAG) const { 7249 MachineFunction &MF = DAG.getMachineFunction(); 7250 7251 bool isPPC64 = Subtarget.isPPC64(); 7252 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7253 7254 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7255 return DAG.getFrameIndex(FI, PtrVT); 7256 } 7257 7258 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7259 SelectionDAG &DAG) const { 7260 SDLoc DL(Op); 7261 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7262 DAG.getVTList(MVT::i32, MVT::Other), 7263 Op.getOperand(0), Op.getOperand(1)); 7264 } 7265 7266 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7267 SelectionDAG &DAG) const { 7268 SDLoc DL(Op); 7269 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7270 Op.getOperand(0), Op.getOperand(1)); 7271 } 7272 7273 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7274 if (Op.getValueType().isVector()) 7275 return LowerVectorLoad(Op, DAG); 7276 7277 assert(Op.getValueType() == MVT::i1 && 7278 "Custom lowering only for i1 loads"); 7279 7280 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7281 7282 SDLoc dl(Op); 7283 LoadSDNode *LD = cast<LoadSDNode>(Op); 7284 7285 SDValue Chain = LD->getChain(); 7286 SDValue BasePtr = LD->getBasePtr(); 7287 MachineMemOperand *MMO = LD->getMemOperand(); 7288 7289 SDValue NewLD = 7290 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7291 BasePtr, MVT::i8, MMO); 7292 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7293 7294 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7295 return DAG.getMergeValues(Ops, dl); 7296 } 7297 7298 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7299 if (Op.getOperand(1).getValueType().isVector()) 7300 return LowerVectorStore(Op, DAG); 7301 7302 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7303 "Custom lowering only for i1 stores"); 7304 7305 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7306 7307 SDLoc dl(Op); 7308 StoreSDNode *ST = cast<StoreSDNode>(Op); 7309 7310 SDValue Chain = ST->getChain(); 7311 SDValue BasePtr = ST->getBasePtr(); 7312 SDValue Value = ST->getValue(); 7313 MachineMemOperand *MMO = ST->getMemOperand(); 7314 7315 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7316 Value); 7317 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7318 } 7319 7320 // FIXME: Remove this once the ANDI glue bug is fixed: 7321 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7322 assert(Op.getValueType() == MVT::i1 && 7323 "Custom lowering only for i1 results"); 7324 7325 SDLoc DL(Op); 7326 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7327 Op.getOperand(0)); 7328 } 7329 7330 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7331 SelectionDAG &DAG) const { 7332 7333 // Implements a vector truncate that fits in a vector register as a shuffle. 7334 // We want to legalize vector truncates down to where the source fits in 7335 // a vector register (and target is therefore smaller than vector register 7336 // size). At that point legalization will try to custom lower the sub-legal 7337 // result and get here - where we can contain the truncate as a single target 7338 // operation. 7339 7340 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7341 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7342 // 7343 // We will implement it for big-endian ordering as this (where x denotes 7344 // undefined): 7345 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7346 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7347 // 7348 // The same operation in little-endian ordering will be: 7349 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7350 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7351 7352 assert(Op.getValueType().isVector() && "Vector type expected."); 7353 7354 SDLoc DL(Op); 7355 SDValue N1 = Op.getOperand(0); 7356 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7357 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7358 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7359 7360 EVT TrgVT = Op.getValueType(); 7361 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7362 EVT EltVT = TrgVT.getVectorElementType(); 7363 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7364 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7365 7366 // First list the elements we want to keep. 7367 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7368 SmallVector<int, 16> ShuffV; 7369 if (Subtarget.isLittleEndian()) 7370 for (unsigned i = 0; i < TrgNumElts; ++i) 7371 ShuffV.push_back(i * SizeMult); 7372 else 7373 for (unsigned i = 1; i <= TrgNumElts; ++i) 7374 ShuffV.push_back(i * SizeMult - 1); 7375 7376 // Populate the remaining elements with undefs. 7377 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7378 // ShuffV.push_back(i + WideNumElts); 7379 ShuffV.push_back(WideNumElts + 1); 7380 7381 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7382 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7383 } 7384 7385 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7386 /// possible. 7387 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7388 // Not FP? Not a fsel. 7389 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7390 !Op.getOperand(2).getValueType().isFloatingPoint()) 7391 return Op; 7392 7393 bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath; 7394 bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath; 7395 // We might be able to do better than this under some circumstances, but in 7396 // general, fsel-based lowering of select is a finite-math-only optimization. 7397 // For more information, see section F.3 of the 2.06 ISA specification. 7398 // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the 7399 // presence of infinities. 7400 if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs)) 7401 return Op; 7402 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7403 7404 EVT ResVT = Op.getValueType(); 7405 EVT CmpVT = Op.getOperand(0).getValueType(); 7406 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7407 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7408 SDLoc dl(Op); 7409 7410 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7411 switch (CC) { 7412 default: 7413 // Not a min/max but with finite math, we may still be able to use fsel. 7414 if (HasNoInfs && HasNoNaNs) 7415 break; 7416 return Op; 7417 case ISD::SETOGT: 7418 case ISD::SETGT: 7419 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7420 case ISD::SETOLT: 7421 case ISD::SETLT: 7422 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7423 } 7424 } 7425 7426 // TODO: Propagate flags from the select rather than global settings. 7427 SDNodeFlags Flags; 7428 Flags.setNoInfs(true); 7429 Flags.setNoNaNs(true); 7430 7431 // If the RHS of the comparison is a 0.0, we don't need to do the 7432 // subtraction at all. 7433 SDValue Sel1; 7434 if (isFloatingPointZero(RHS)) 7435 switch (CC) { 7436 default: break; // SETUO etc aren't handled by fsel. 7437 case ISD::SETNE: 7438 std::swap(TV, FV); 7439 LLVM_FALLTHROUGH; 7440 case ISD::SETEQ: 7441 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7442 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7443 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7444 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7445 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7446 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7447 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7448 case ISD::SETULT: 7449 case ISD::SETLT: 7450 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7451 LLVM_FALLTHROUGH; 7452 case ISD::SETOGE: 7453 case ISD::SETGE: 7454 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7455 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7456 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7457 case ISD::SETUGT: 7458 case ISD::SETGT: 7459 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7460 LLVM_FALLTHROUGH; 7461 case ISD::SETOLE: 7462 case ISD::SETLE: 7463 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7464 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7465 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7466 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7467 } 7468 7469 SDValue Cmp; 7470 switch (CC) { 7471 default: break; // SETUO etc aren't handled by fsel. 7472 case ISD::SETNE: 7473 std::swap(TV, FV); 7474 LLVM_FALLTHROUGH; 7475 case ISD::SETEQ: 7476 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7477 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7478 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7479 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7480 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7481 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7482 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7483 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7484 case ISD::SETULT: 7485 case ISD::SETLT: 7486 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7487 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7488 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7489 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7490 case ISD::SETOGE: 7491 case ISD::SETGE: 7492 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7493 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7494 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7495 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7496 case ISD::SETUGT: 7497 case ISD::SETGT: 7498 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7499 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7500 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7501 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7502 case ISD::SETOLE: 7503 case ISD::SETLE: 7504 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7505 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7506 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7507 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7508 } 7509 return Op; 7510 } 7511 7512 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7513 SelectionDAG &DAG, 7514 const SDLoc &dl) const { 7515 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7516 SDValue Src = Op.getOperand(0); 7517 if (Src.getValueType() == MVT::f32) 7518 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7519 7520 SDValue Tmp; 7521 switch (Op.getSimpleValueType().SimpleTy) { 7522 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7523 case MVT::i32: 7524 Tmp = DAG.getNode( 7525 Op.getOpcode() == ISD::FP_TO_SINT 7526 ? PPCISD::FCTIWZ 7527 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7528 dl, MVT::f64, Src); 7529 break; 7530 case MVT::i64: 7531 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7532 "i64 FP_TO_UINT is supported only with FPCVT"); 7533 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7534 PPCISD::FCTIDUZ, 7535 dl, MVT::f64, Src); 7536 break; 7537 } 7538 7539 // Convert the FP value to an int value through memory. 7540 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7541 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7542 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7543 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7544 MachinePointerInfo MPI = 7545 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7546 7547 // Emit a store to the stack slot. 7548 SDValue Chain; 7549 if (i32Stack) { 7550 MachineFunction &MF = DAG.getMachineFunction(); 7551 MachineMemOperand *MMO = 7552 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7553 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7554 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7555 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7556 } else 7557 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7558 7559 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7560 // add in a bias on big endian. 7561 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7562 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7563 DAG.getConstant(4, dl, FIPtr.getValueType())); 7564 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7565 } 7566 7567 RLI.Chain = Chain; 7568 RLI.Ptr = FIPtr; 7569 RLI.MPI = MPI; 7570 } 7571 7572 /// Custom lowers floating point to integer conversions to use 7573 /// the direct move instructions available in ISA 2.07 to avoid the 7574 /// need for load/store combinations. 7575 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7576 SelectionDAG &DAG, 7577 const SDLoc &dl) const { 7578 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7579 SDValue Src = Op.getOperand(0); 7580 7581 if (Src.getValueType() == MVT::f32) 7582 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7583 7584 SDValue Tmp; 7585 switch (Op.getSimpleValueType().SimpleTy) { 7586 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7587 case MVT::i32: 7588 Tmp = DAG.getNode( 7589 Op.getOpcode() == ISD::FP_TO_SINT 7590 ? PPCISD::FCTIWZ 7591 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7592 dl, MVT::f64, Src); 7593 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7594 break; 7595 case MVT::i64: 7596 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7597 "i64 FP_TO_UINT is supported only with FPCVT"); 7598 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7599 PPCISD::FCTIDUZ, 7600 dl, MVT::f64, Src); 7601 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7602 break; 7603 } 7604 return Tmp; 7605 } 7606 7607 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7608 const SDLoc &dl) const { 7609 7610 // FP to INT conversions are legal for f128. 7611 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7612 return Op; 7613 7614 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7615 // PPC (the libcall is not available). 7616 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7617 if (Op.getValueType() == MVT::i32) { 7618 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7619 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7620 MVT::f64, Op.getOperand(0), 7621 DAG.getIntPtrConstant(0, dl)); 7622 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7623 MVT::f64, Op.getOperand(0), 7624 DAG.getIntPtrConstant(1, dl)); 7625 7626 // Add the two halves of the long double in round-to-zero mode. 7627 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7628 7629 // Now use a smaller FP_TO_SINT. 7630 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7631 } 7632 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7633 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7634 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7635 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7636 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7637 // FIXME: generated code sucks. 7638 // TODO: Are there fast-math-flags to propagate to this FSUB? 7639 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7640 Op.getOperand(0), Tmp); 7641 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7642 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7643 DAG.getConstant(0x80000000, dl, MVT::i32)); 7644 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7645 Op.getOperand(0)); 7646 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7647 ISD::SETGE); 7648 } 7649 } 7650 7651 return SDValue(); 7652 } 7653 7654 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7655 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7656 7657 ReuseLoadInfo RLI; 7658 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7659 7660 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7661 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7662 } 7663 7664 // We're trying to insert a regular store, S, and then a load, L. If the 7665 // incoming value, O, is a load, we might just be able to have our load use the 7666 // address used by O. However, we don't know if anything else will store to 7667 // that address before we can load from it. To prevent this situation, we need 7668 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7669 // the same chain operand as O, we create a token factor from the chain results 7670 // of O and L, and we replace all uses of O's chain result with that token 7671 // factor (see spliceIntoChain below for this last part). 7672 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7673 ReuseLoadInfo &RLI, 7674 SelectionDAG &DAG, 7675 ISD::LoadExtType ET) const { 7676 SDLoc dl(Op); 7677 if (ET == ISD::NON_EXTLOAD && 7678 (Op.getOpcode() == ISD::FP_TO_UINT || 7679 Op.getOpcode() == ISD::FP_TO_SINT) && 7680 isOperationLegalOrCustom(Op.getOpcode(), 7681 Op.getOperand(0).getValueType())) { 7682 7683 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7684 return true; 7685 } 7686 7687 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7688 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7689 LD->isNonTemporal()) 7690 return false; 7691 if (LD->getMemoryVT() != MemVT) 7692 return false; 7693 7694 RLI.Ptr = LD->getBasePtr(); 7695 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7696 assert(LD->getAddressingMode() == ISD::PRE_INC && 7697 "Non-pre-inc AM on PPC?"); 7698 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7699 LD->getOffset()); 7700 } 7701 7702 RLI.Chain = LD->getChain(); 7703 RLI.MPI = LD->getPointerInfo(); 7704 RLI.IsDereferenceable = LD->isDereferenceable(); 7705 RLI.IsInvariant = LD->isInvariant(); 7706 RLI.Alignment = LD->getAlignment(); 7707 RLI.AAInfo = LD->getAAInfo(); 7708 RLI.Ranges = LD->getRanges(); 7709 7710 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7711 return true; 7712 } 7713 7714 // Given the head of the old chain, ResChain, insert a token factor containing 7715 // it and NewResChain, and make users of ResChain now be users of that token 7716 // factor. 7717 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7718 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7719 SDValue NewResChain, 7720 SelectionDAG &DAG) const { 7721 if (!ResChain) 7722 return; 7723 7724 SDLoc dl(NewResChain); 7725 7726 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7727 NewResChain, DAG.getUNDEF(MVT::Other)); 7728 assert(TF.getNode() != NewResChain.getNode() && 7729 "A new TF really is required here"); 7730 7731 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7732 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7733 } 7734 7735 /// Analyze profitability of direct move 7736 /// prefer float load to int load plus direct move 7737 /// when there is no integer use of int load 7738 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7739 SDNode *Origin = Op.getOperand(0).getNode(); 7740 if (Origin->getOpcode() != ISD::LOAD) 7741 return true; 7742 7743 // If there is no LXSIBZX/LXSIHZX, like Power8, 7744 // prefer direct move if the memory size is 1 or 2 bytes. 7745 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7746 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7747 return true; 7748 7749 for (SDNode::use_iterator UI = Origin->use_begin(), 7750 UE = Origin->use_end(); 7751 UI != UE; ++UI) { 7752 7753 // Only look at the users of the loaded value. 7754 if (UI.getUse().get().getResNo() != 0) 7755 continue; 7756 7757 if (UI->getOpcode() != ISD::SINT_TO_FP && 7758 UI->getOpcode() != ISD::UINT_TO_FP) 7759 return true; 7760 } 7761 7762 return false; 7763 } 7764 7765 /// Custom lowers integer to floating point conversions to use 7766 /// the direct move instructions available in ISA 2.07 to avoid the 7767 /// need for load/store combinations. 7768 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7769 SelectionDAG &DAG, 7770 const SDLoc &dl) const { 7771 assert((Op.getValueType() == MVT::f32 || 7772 Op.getValueType() == MVT::f64) && 7773 "Invalid floating point type as target of conversion"); 7774 assert(Subtarget.hasFPCVT() && 7775 "Int to FP conversions with direct moves require FPCVT"); 7776 SDValue FP; 7777 SDValue Src = Op.getOperand(0); 7778 bool SinglePrec = Op.getValueType() == MVT::f32; 7779 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7780 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7781 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7782 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7783 7784 if (WordInt) { 7785 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7786 dl, MVT::f64, Src); 7787 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7788 } 7789 else { 7790 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7791 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7792 } 7793 7794 return FP; 7795 } 7796 7797 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7798 7799 EVT VecVT = Vec.getValueType(); 7800 assert(VecVT.isVector() && "Expected a vector type."); 7801 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7802 7803 EVT EltVT = VecVT.getVectorElementType(); 7804 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7805 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7806 7807 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7808 SmallVector<SDValue, 16> Ops(NumConcat); 7809 Ops[0] = Vec; 7810 SDValue UndefVec = DAG.getUNDEF(VecVT); 7811 for (unsigned i = 1; i < NumConcat; ++i) 7812 Ops[i] = UndefVec; 7813 7814 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7815 } 7816 7817 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7818 const SDLoc &dl) const { 7819 7820 unsigned Opc = Op.getOpcode(); 7821 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7822 "Unexpected conversion type"); 7823 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7824 "Supports conversions to v2f64/v4f32 only."); 7825 7826 bool SignedConv = Opc == ISD::SINT_TO_FP; 7827 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7828 7829 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7830 EVT WideVT = Wide.getValueType(); 7831 unsigned WideNumElts = WideVT.getVectorNumElements(); 7832 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7833 7834 SmallVector<int, 16> ShuffV; 7835 for (unsigned i = 0; i < WideNumElts; ++i) 7836 ShuffV.push_back(i + WideNumElts); 7837 7838 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7839 int SaveElts = FourEltRes ? 4 : 2; 7840 if (Subtarget.isLittleEndian()) 7841 for (int i = 0; i < SaveElts; i++) 7842 ShuffV[i * Stride] = i; 7843 else 7844 for (int i = 1; i <= SaveElts; i++) 7845 ShuffV[i * Stride - 1] = i - 1; 7846 7847 SDValue ShuffleSrc2 = 7848 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7849 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7850 unsigned ExtendOp = 7851 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7852 7853 SDValue Extend; 7854 if (!Subtarget.hasP9Altivec() && SignedConv) { 7855 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7856 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7857 DAG.getValueType(Op.getOperand(0).getValueType())); 7858 } else 7859 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7860 7861 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7862 } 7863 7864 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7865 SelectionDAG &DAG) const { 7866 SDLoc dl(Op); 7867 7868 EVT InVT = Op.getOperand(0).getValueType(); 7869 EVT OutVT = Op.getValueType(); 7870 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7871 isOperationCustom(Op.getOpcode(), InVT)) 7872 return LowerINT_TO_FPVector(Op, DAG, dl); 7873 7874 // Conversions to f128 are legal. 7875 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7876 return Op; 7877 7878 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7879 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7880 return SDValue(); 7881 7882 SDValue Value = Op.getOperand(0); 7883 // The values are now known to be -1 (false) or 1 (true). To convert this 7884 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7885 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7886 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7887 7888 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7889 7890 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7891 7892 if (Op.getValueType() != MVT::v4f64) 7893 Value = DAG.getNode(ISD::FP_ROUND, dl, 7894 Op.getValueType(), Value, 7895 DAG.getIntPtrConstant(1, dl)); 7896 return Value; 7897 } 7898 7899 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7900 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7901 return SDValue(); 7902 7903 if (Op.getOperand(0).getValueType() == MVT::i1) 7904 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7905 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7906 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7907 7908 // If we have direct moves, we can do all the conversion, skip the store/load 7909 // however, without FPCVT we can't do most conversions. 7910 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7911 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7912 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7913 7914 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7915 "UINT_TO_FP is supported only with FPCVT"); 7916 7917 // If we have FCFIDS, then use it when converting to single-precision. 7918 // Otherwise, convert to double-precision and then round. 7919 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7920 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7921 : PPCISD::FCFIDS) 7922 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7923 : PPCISD::FCFID); 7924 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7925 ? MVT::f32 7926 : MVT::f64; 7927 7928 if (Op.getOperand(0).getValueType() == MVT::i64) { 7929 SDValue SINT = Op.getOperand(0); 7930 // When converting to single-precision, we actually need to convert 7931 // to double-precision first and then round to single-precision. 7932 // To avoid double-rounding effects during that operation, we have 7933 // to prepare the input operand. Bits that might be truncated when 7934 // converting to double-precision are replaced by a bit that won't 7935 // be lost at this stage, but is below the single-precision rounding 7936 // position. 7937 // 7938 // However, if -enable-unsafe-fp-math is in effect, accept double 7939 // rounding to avoid the extra overhead. 7940 if (Op.getValueType() == MVT::f32 && 7941 !Subtarget.hasFPCVT() && 7942 !DAG.getTarget().Options.UnsafeFPMath) { 7943 7944 // Twiddle input to make sure the low 11 bits are zero. (If this 7945 // is the case, we are guaranteed the value will fit into the 53 bit 7946 // mantissa of an IEEE double-precision value without rounding.) 7947 // If any of those low 11 bits were not zero originally, make sure 7948 // bit 12 (value 2048) is set instead, so that the final rounding 7949 // to single-precision gets the correct result. 7950 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7951 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7952 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7953 Round, DAG.getConstant(2047, dl, MVT::i64)); 7954 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7955 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7956 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7957 7958 // However, we cannot use that value unconditionally: if the magnitude 7959 // of the input value is small, the bit-twiddling we did above might 7960 // end up visibly changing the output. Fortunately, in that case, we 7961 // don't need to twiddle bits since the original input will convert 7962 // exactly to double-precision floating-point already. Therefore, 7963 // construct a conditional to use the original value if the top 11 7964 // bits are all sign-bit copies, and use the rounded value computed 7965 // above otherwise. 7966 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7967 SINT, DAG.getConstant(53, dl, MVT::i32)); 7968 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7969 Cond, DAG.getConstant(1, dl, MVT::i64)); 7970 Cond = DAG.getSetCC(dl, MVT::i32, 7971 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7972 7973 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7974 } 7975 7976 ReuseLoadInfo RLI; 7977 SDValue Bits; 7978 7979 MachineFunction &MF = DAG.getMachineFunction(); 7980 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7981 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7982 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7983 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7984 } else if (Subtarget.hasLFIWAX() && 7985 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7986 MachineMemOperand *MMO = 7987 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7988 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7989 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7990 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7991 DAG.getVTList(MVT::f64, MVT::Other), 7992 Ops, MVT::i32, MMO); 7993 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7994 } else if (Subtarget.hasFPCVT() && 7995 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7996 MachineMemOperand *MMO = 7997 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7998 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7999 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8000 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8001 DAG.getVTList(MVT::f64, MVT::Other), 8002 Ops, MVT::i32, MMO); 8003 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8004 } else if (((Subtarget.hasLFIWAX() && 8005 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8006 (Subtarget.hasFPCVT() && 8007 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8008 SINT.getOperand(0).getValueType() == MVT::i32) { 8009 MachineFrameInfo &MFI = MF.getFrameInfo(); 8010 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8011 8012 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8013 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8014 8015 SDValue Store = 8016 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8017 MachinePointerInfo::getFixedStack( 8018 DAG.getMachineFunction(), FrameIdx)); 8019 8020 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8021 "Expected an i32 store"); 8022 8023 RLI.Ptr = FIdx; 8024 RLI.Chain = Store; 8025 RLI.MPI = 8026 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8027 RLI.Alignment = 4; 8028 8029 MachineMemOperand *MMO = 8030 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8031 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8032 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8033 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8034 PPCISD::LFIWZX : PPCISD::LFIWAX, 8035 dl, DAG.getVTList(MVT::f64, MVT::Other), 8036 Ops, MVT::i32, MMO); 8037 } else 8038 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8039 8040 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8041 8042 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8043 FP = DAG.getNode(ISD::FP_ROUND, dl, 8044 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8045 return FP; 8046 } 8047 8048 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8049 "Unhandled INT_TO_FP type in custom expander!"); 8050 // Since we only generate this in 64-bit mode, we can take advantage of 8051 // 64-bit registers. In particular, sign extend the input value into the 8052 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8053 // then lfd it and fcfid it. 8054 MachineFunction &MF = DAG.getMachineFunction(); 8055 MachineFrameInfo &MFI = MF.getFrameInfo(); 8056 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8057 8058 SDValue Ld; 8059 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8060 ReuseLoadInfo RLI; 8061 bool ReusingLoad; 8062 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8063 DAG))) { 8064 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8065 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8066 8067 SDValue Store = 8068 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8069 MachinePointerInfo::getFixedStack( 8070 DAG.getMachineFunction(), FrameIdx)); 8071 8072 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8073 "Expected an i32 store"); 8074 8075 RLI.Ptr = FIdx; 8076 RLI.Chain = Store; 8077 RLI.MPI = 8078 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8079 RLI.Alignment = 4; 8080 } 8081 8082 MachineMemOperand *MMO = 8083 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8084 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8085 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8086 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8087 PPCISD::LFIWZX : PPCISD::LFIWAX, 8088 dl, DAG.getVTList(MVT::f64, MVT::Other), 8089 Ops, MVT::i32, MMO); 8090 if (ReusingLoad) 8091 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8092 } else { 8093 assert(Subtarget.isPPC64() && 8094 "i32->FP without LFIWAX supported only on PPC64"); 8095 8096 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8097 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8098 8099 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8100 Op.getOperand(0)); 8101 8102 // STD the extended value into the stack slot. 8103 SDValue Store = DAG.getStore( 8104 DAG.getEntryNode(), dl, Ext64, FIdx, 8105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8106 8107 // Load the value as a double. 8108 Ld = DAG.getLoad( 8109 MVT::f64, dl, Store, FIdx, 8110 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8111 } 8112 8113 // FCFID it and return it. 8114 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8115 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8116 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8117 DAG.getIntPtrConstant(0, dl)); 8118 return FP; 8119 } 8120 8121 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8122 SelectionDAG &DAG) const { 8123 SDLoc dl(Op); 8124 /* 8125 The rounding mode is in bits 30:31 of FPSR, and has the following 8126 settings: 8127 00 Round to nearest 8128 01 Round to 0 8129 10 Round to +inf 8130 11 Round to -inf 8131 8132 FLT_ROUNDS, on the other hand, expects the following: 8133 -1 Undefined 8134 0 Round to 0 8135 1 Round to nearest 8136 2 Round to +inf 8137 3 Round to -inf 8138 8139 To perform the conversion, we do: 8140 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8141 */ 8142 8143 MachineFunction &MF = DAG.getMachineFunction(); 8144 EVT VT = Op.getValueType(); 8145 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8146 8147 // Save FP Control Word to register 8148 EVT NodeTys[] = { 8149 MVT::f64, // return register 8150 MVT::Glue // unused in this context 8151 }; 8152 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 8153 8154 // Save FP register to stack slot 8155 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8156 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8157 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 8158 MachinePointerInfo()); 8159 8160 // Load FP Control Word from low 32 bits of stack slot. 8161 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8162 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8163 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 8164 8165 // Transform as necessary 8166 SDValue CWD1 = 8167 DAG.getNode(ISD::AND, dl, MVT::i32, 8168 CWD, DAG.getConstant(3, dl, MVT::i32)); 8169 SDValue CWD2 = 8170 DAG.getNode(ISD::SRL, dl, MVT::i32, 8171 DAG.getNode(ISD::AND, dl, MVT::i32, 8172 DAG.getNode(ISD::XOR, dl, MVT::i32, 8173 CWD, DAG.getConstant(3, dl, MVT::i32)), 8174 DAG.getConstant(3, dl, MVT::i32)), 8175 DAG.getConstant(1, dl, MVT::i32)); 8176 8177 SDValue RetVal = 8178 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8179 8180 return DAG.getNode((VT.getSizeInBits() < 16 ? 8181 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 8182 } 8183 8184 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8185 EVT VT = Op.getValueType(); 8186 unsigned BitWidth = VT.getSizeInBits(); 8187 SDLoc dl(Op); 8188 assert(Op.getNumOperands() == 3 && 8189 VT == Op.getOperand(1).getValueType() && 8190 "Unexpected SHL!"); 8191 8192 // Expand into a bunch of logical ops. Note that these ops 8193 // depend on the PPC behavior for oversized shift amounts. 8194 SDValue Lo = Op.getOperand(0); 8195 SDValue Hi = Op.getOperand(1); 8196 SDValue Amt = Op.getOperand(2); 8197 EVT AmtVT = Amt.getValueType(); 8198 8199 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8200 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8201 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8202 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8203 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8204 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8205 DAG.getConstant(-BitWidth, dl, AmtVT)); 8206 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8207 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8208 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8209 SDValue OutOps[] = { OutLo, OutHi }; 8210 return DAG.getMergeValues(OutOps, dl); 8211 } 8212 8213 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8214 EVT VT = Op.getValueType(); 8215 SDLoc dl(Op); 8216 unsigned BitWidth = VT.getSizeInBits(); 8217 assert(Op.getNumOperands() == 3 && 8218 VT == Op.getOperand(1).getValueType() && 8219 "Unexpected SRL!"); 8220 8221 // Expand into a bunch of logical ops. Note that these ops 8222 // depend on the PPC behavior for oversized shift amounts. 8223 SDValue Lo = Op.getOperand(0); 8224 SDValue Hi = Op.getOperand(1); 8225 SDValue Amt = Op.getOperand(2); 8226 EVT AmtVT = Amt.getValueType(); 8227 8228 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8229 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8230 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8231 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8232 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8233 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8234 DAG.getConstant(-BitWidth, dl, AmtVT)); 8235 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8236 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8237 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8238 SDValue OutOps[] = { OutLo, OutHi }; 8239 return DAG.getMergeValues(OutOps, dl); 8240 } 8241 8242 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8243 SDLoc dl(Op); 8244 EVT VT = Op.getValueType(); 8245 unsigned BitWidth = VT.getSizeInBits(); 8246 assert(Op.getNumOperands() == 3 && 8247 VT == Op.getOperand(1).getValueType() && 8248 "Unexpected SRA!"); 8249 8250 // Expand into a bunch of logical ops, followed by a select_cc. 8251 SDValue Lo = Op.getOperand(0); 8252 SDValue Hi = Op.getOperand(1); 8253 SDValue Amt = Op.getOperand(2); 8254 EVT AmtVT = Amt.getValueType(); 8255 8256 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8257 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8258 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8259 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8260 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8261 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8262 DAG.getConstant(-BitWidth, dl, AmtVT)); 8263 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8264 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8265 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8266 Tmp4, Tmp6, ISD::SETLE); 8267 SDValue OutOps[] = { OutLo, OutHi }; 8268 return DAG.getMergeValues(OutOps, dl); 8269 } 8270 8271 //===----------------------------------------------------------------------===// 8272 // Vector related lowering. 8273 // 8274 8275 /// BuildSplatI - Build a canonical splati of Val with an element size of 8276 /// SplatSize. Cast the result to VT. 8277 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8278 SelectionDAG &DAG, const SDLoc &dl) { 8279 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8280 8281 static const MVT VTys[] = { // canonical VT to use for each size. 8282 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8283 }; 8284 8285 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8286 8287 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8288 if (Val == -1) 8289 SplatSize = 1; 8290 8291 EVT CanonicalVT = VTys[SplatSize-1]; 8292 8293 // Build a canonical splat for this value. 8294 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8295 } 8296 8297 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8298 /// specified intrinsic ID. 8299 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8300 const SDLoc &dl, EVT DestVT = MVT::Other) { 8301 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8302 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8303 DAG.getConstant(IID, dl, MVT::i32), Op); 8304 } 8305 8306 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8307 /// specified intrinsic ID. 8308 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8309 SelectionDAG &DAG, const SDLoc &dl, 8310 EVT DestVT = MVT::Other) { 8311 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8312 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8313 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8314 } 8315 8316 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8317 /// specified intrinsic ID. 8318 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8319 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8320 EVT DestVT = MVT::Other) { 8321 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8322 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8323 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8324 } 8325 8326 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8327 /// amount. The result has the specified value type. 8328 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8329 SelectionDAG &DAG, const SDLoc &dl) { 8330 // Force LHS/RHS to be the right type. 8331 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8332 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8333 8334 int Ops[16]; 8335 for (unsigned i = 0; i != 16; ++i) 8336 Ops[i] = i + Amt; 8337 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8338 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8339 } 8340 8341 /// Do we have an efficient pattern in a .td file for this node? 8342 /// 8343 /// \param V - pointer to the BuildVectorSDNode being matched 8344 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8345 /// 8346 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8347 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8348 /// the opposite is true (expansion is beneficial) are: 8349 /// - The node builds a vector out of integers that are not 32 or 64-bits 8350 /// - The node builds a vector out of constants 8351 /// - The node is a "load-and-splat" 8352 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8353 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8354 bool HasDirectMove, 8355 bool HasP8Vector) { 8356 EVT VecVT = V->getValueType(0); 8357 bool RightType = VecVT == MVT::v2f64 || 8358 (HasP8Vector && VecVT == MVT::v4f32) || 8359 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8360 if (!RightType) 8361 return false; 8362 8363 bool IsSplat = true; 8364 bool IsLoad = false; 8365 SDValue Op0 = V->getOperand(0); 8366 8367 // This function is called in a block that confirms the node is not a constant 8368 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8369 // different constants. 8370 if (V->isConstant()) 8371 return false; 8372 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8373 if (V->getOperand(i).isUndef()) 8374 return false; 8375 // We want to expand nodes that represent load-and-splat even if the 8376 // loaded value is a floating point truncation or conversion to int. 8377 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8378 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8379 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8380 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8381 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8382 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8383 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8384 IsLoad = true; 8385 // If the operands are different or the input is not a load and has more 8386 // uses than just this BV node, then it isn't a splat. 8387 if (V->getOperand(i) != Op0 || 8388 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8389 IsSplat = false; 8390 } 8391 return !(IsSplat && IsLoad); 8392 } 8393 8394 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8395 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8396 8397 SDLoc dl(Op); 8398 SDValue Op0 = Op->getOperand(0); 8399 8400 if (!EnableQuadPrecision || 8401 (Op.getValueType() != MVT::f128 ) || 8402 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8403 (Op0.getOperand(0).getValueType() != MVT::i64) || 8404 (Op0.getOperand(1).getValueType() != MVT::i64)) 8405 return SDValue(); 8406 8407 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8408 Op0.getOperand(1)); 8409 } 8410 8411 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8412 const SDValue *InputLoad = &Op; 8413 if (InputLoad->getOpcode() == ISD::BITCAST) 8414 InputLoad = &InputLoad->getOperand(0); 8415 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8416 InputLoad = &InputLoad->getOperand(0); 8417 if (InputLoad->getOpcode() != ISD::LOAD) 8418 return nullptr; 8419 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8420 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8421 } 8422 8423 // If this is a case we can't handle, return null and let the default 8424 // expansion code take care of it. If we CAN select this case, and if it 8425 // selects to a single instruction, return Op. Otherwise, if we can codegen 8426 // this case more efficiently than a constant pool load, lower it to the 8427 // sequence of ops that should be used. 8428 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8429 SelectionDAG &DAG) const { 8430 SDLoc dl(Op); 8431 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8432 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8433 8434 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8435 // We first build an i32 vector, load it into a QPX register, 8436 // then convert it to a floating-point vector and compare it 8437 // to a zero vector to get the boolean result. 8438 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8439 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8440 MachinePointerInfo PtrInfo = 8441 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8442 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8443 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8444 8445 assert(BVN->getNumOperands() == 4 && 8446 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8447 8448 bool IsConst = true; 8449 for (unsigned i = 0; i < 4; ++i) { 8450 if (BVN->getOperand(i).isUndef()) continue; 8451 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8452 IsConst = false; 8453 break; 8454 } 8455 } 8456 8457 if (IsConst) { 8458 Constant *One = 8459 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8460 Constant *NegOne = 8461 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8462 8463 Constant *CV[4]; 8464 for (unsigned i = 0; i < 4; ++i) { 8465 if (BVN->getOperand(i).isUndef()) 8466 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8467 else if (isNullConstant(BVN->getOperand(i))) 8468 CV[i] = NegOne; 8469 else 8470 CV[i] = One; 8471 } 8472 8473 Constant *CP = ConstantVector::get(CV); 8474 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8475 16 /* alignment */); 8476 8477 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8478 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8479 return DAG.getMemIntrinsicNode( 8480 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8481 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8482 } 8483 8484 SmallVector<SDValue, 4> Stores; 8485 for (unsigned i = 0; i < 4; ++i) { 8486 if (BVN->getOperand(i).isUndef()) continue; 8487 8488 unsigned Offset = 4*i; 8489 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8490 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8491 8492 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8493 if (StoreSize > 4) { 8494 Stores.push_back( 8495 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8496 PtrInfo.getWithOffset(Offset), MVT::i32)); 8497 } else { 8498 SDValue StoreValue = BVN->getOperand(i); 8499 if (StoreSize < 4) 8500 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8501 8502 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8503 PtrInfo.getWithOffset(Offset))); 8504 } 8505 } 8506 8507 SDValue StoreChain; 8508 if (!Stores.empty()) 8509 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8510 else 8511 StoreChain = DAG.getEntryNode(); 8512 8513 // Now load from v4i32 into the QPX register; this will extend it to 8514 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8515 // is typed as v4f64 because the QPX register integer states are not 8516 // explicitly represented. 8517 8518 SDValue Ops[] = {StoreChain, 8519 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8520 FIdx}; 8521 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8522 8523 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8524 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8525 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8526 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8527 LoadedVect); 8528 8529 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8530 8531 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8532 } 8533 8534 // All other QPX vectors are handled by generic code. 8535 if (Subtarget.hasQPX()) 8536 return SDValue(); 8537 8538 // Check if this is a splat of a constant value. 8539 APInt APSplatBits, APSplatUndef; 8540 unsigned SplatBitSize; 8541 bool HasAnyUndefs; 8542 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8543 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8544 SplatBitSize > 32) { 8545 8546 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8547 // Handle load-and-splat patterns as we have instructions that will do this 8548 // in one go. 8549 if (InputLoad && DAG.isSplatValue(Op, true)) { 8550 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8551 8552 // We have handling for 4 and 8 byte elements. 8553 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8554 8555 // Checking for a single use of this load, we have to check for vector 8556 // width (128 bits) / ElementSize uses (since each operand of the 8557 // BUILD_VECTOR is a separate use of the value. 8558 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8559 ((Subtarget.hasVSX() && ElementSize == 64) || 8560 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8561 SDValue Ops[] = { 8562 LD->getChain(), // Chain 8563 LD->getBasePtr(), // Ptr 8564 DAG.getValueType(Op.getValueType()) // VT 8565 }; 8566 return 8567 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8568 DAG.getVTList(Op.getValueType(), MVT::Other), 8569 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8570 } 8571 } 8572 8573 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8574 // lowered to VSX instructions under certain conditions. 8575 // Without VSX, there is no pattern more efficient than expanding the node. 8576 if (Subtarget.hasVSX() && 8577 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8578 Subtarget.hasP8Vector())) 8579 return Op; 8580 return SDValue(); 8581 } 8582 8583 unsigned SplatBits = APSplatBits.getZExtValue(); 8584 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8585 unsigned SplatSize = SplatBitSize / 8; 8586 8587 // First, handle single instruction cases. 8588 8589 // All zeros? 8590 if (SplatBits == 0) { 8591 // Canonicalize all zero vectors to be v4i32. 8592 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8593 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8594 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8595 } 8596 return Op; 8597 } 8598 8599 // We have XXSPLTIB for constant splats one byte wide 8600 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8601 // This is a splat of 1-byte elements with some elements potentially undef. 8602 // Rather than trying to match undef in the SDAG patterns, ensure that all 8603 // elements are the same constant. 8604 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8605 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8606 dl, MVT::i32)); 8607 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8608 if (Op.getValueType() != MVT::v16i8) 8609 return DAG.getBitcast(Op.getValueType(), NewBV); 8610 return NewBV; 8611 } 8612 8613 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8614 // detect that constant splats like v8i16: 0xABAB are really just splats 8615 // of a 1-byte constant. In this case, we need to convert the node to a 8616 // splat of v16i8 and a bitcast. 8617 if (Op.getValueType() != MVT::v16i8) 8618 return DAG.getBitcast(Op.getValueType(), 8619 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8620 8621 return Op; 8622 } 8623 8624 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8625 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8626 (32-SplatBitSize)); 8627 if (SextVal >= -16 && SextVal <= 15) 8628 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8629 8630 // Two instruction sequences. 8631 8632 // If this value is in the range [-32,30] and is even, use: 8633 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8634 // If this value is in the range [17,31] and is odd, use: 8635 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8636 // If this value is in the range [-31,-17] and is odd, use: 8637 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8638 // Note the last two are three-instruction sequences. 8639 if (SextVal >= -32 && SextVal <= 31) { 8640 // To avoid having these optimizations undone by constant folding, 8641 // we convert to a pseudo that will be expanded later into one of 8642 // the above forms. 8643 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8644 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8645 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8646 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8647 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8648 if (VT == Op.getValueType()) 8649 return RetVal; 8650 else 8651 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8652 } 8653 8654 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8655 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8656 // for fneg/fabs. 8657 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8658 // Make -1 and vspltisw -1: 8659 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8660 8661 // Make the VSLW intrinsic, computing 0x8000_0000. 8662 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8663 OnesV, DAG, dl); 8664 8665 // xor by OnesV to invert it. 8666 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8667 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8668 } 8669 8670 // Check to see if this is a wide variety of vsplti*, binop self cases. 8671 static const signed char SplatCsts[] = { 8672 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8673 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8674 }; 8675 8676 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8677 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8678 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8679 int i = SplatCsts[idx]; 8680 8681 // Figure out what shift amount will be used by altivec if shifted by i in 8682 // this splat size. 8683 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8684 8685 // vsplti + shl self. 8686 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8687 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8688 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8689 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8690 Intrinsic::ppc_altivec_vslw 8691 }; 8692 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8693 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8694 } 8695 8696 // vsplti + srl self. 8697 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8698 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8699 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8700 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8701 Intrinsic::ppc_altivec_vsrw 8702 }; 8703 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8704 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8705 } 8706 8707 // vsplti + sra self. 8708 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8709 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8710 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8711 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8712 Intrinsic::ppc_altivec_vsraw 8713 }; 8714 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8715 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8716 } 8717 8718 // vsplti + rol self. 8719 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8720 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8721 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8722 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8723 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8724 Intrinsic::ppc_altivec_vrlw 8725 }; 8726 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8727 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8728 } 8729 8730 // t = vsplti c, result = vsldoi t, t, 1 8731 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8732 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8733 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8734 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8735 } 8736 // t = vsplti c, result = vsldoi t, t, 2 8737 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8738 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8739 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8740 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8741 } 8742 // t = vsplti c, result = vsldoi t, t, 3 8743 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8744 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8745 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8746 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8747 } 8748 } 8749 8750 return SDValue(); 8751 } 8752 8753 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8754 /// the specified operations to build the shuffle. 8755 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8756 SDValue RHS, SelectionDAG &DAG, 8757 const SDLoc &dl) { 8758 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8759 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8760 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8761 8762 enum { 8763 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8764 OP_VMRGHW, 8765 OP_VMRGLW, 8766 OP_VSPLTISW0, 8767 OP_VSPLTISW1, 8768 OP_VSPLTISW2, 8769 OP_VSPLTISW3, 8770 OP_VSLDOI4, 8771 OP_VSLDOI8, 8772 OP_VSLDOI12 8773 }; 8774 8775 if (OpNum == OP_COPY) { 8776 if (LHSID == (1*9+2)*9+3) return LHS; 8777 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8778 return RHS; 8779 } 8780 8781 SDValue OpLHS, OpRHS; 8782 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8783 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8784 8785 int ShufIdxs[16]; 8786 switch (OpNum) { 8787 default: llvm_unreachable("Unknown i32 permute!"); 8788 case OP_VMRGHW: 8789 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8790 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8791 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8792 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8793 break; 8794 case OP_VMRGLW: 8795 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8796 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8797 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8798 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8799 break; 8800 case OP_VSPLTISW0: 8801 for (unsigned i = 0; i != 16; ++i) 8802 ShufIdxs[i] = (i&3)+0; 8803 break; 8804 case OP_VSPLTISW1: 8805 for (unsigned i = 0; i != 16; ++i) 8806 ShufIdxs[i] = (i&3)+4; 8807 break; 8808 case OP_VSPLTISW2: 8809 for (unsigned i = 0; i != 16; ++i) 8810 ShufIdxs[i] = (i&3)+8; 8811 break; 8812 case OP_VSPLTISW3: 8813 for (unsigned i = 0; i != 16; ++i) 8814 ShufIdxs[i] = (i&3)+12; 8815 break; 8816 case OP_VSLDOI4: 8817 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8818 case OP_VSLDOI8: 8819 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8820 case OP_VSLDOI12: 8821 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8822 } 8823 EVT VT = OpLHS.getValueType(); 8824 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8825 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8826 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8827 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8828 } 8829 8830 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8831 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8832 /// SDValue. 8833 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8834 SelectionDAG &DAG) const { 8835 const unsigned BytesInVector = 16; 8836 bool IsLE = Subtarget.isLittleEndian(); 8837 SDLoc dl(N); 8838 SDValue V1 = N->getOperand(0); 8839 SDValue V2 = N->getOperand(1); 8840 unsigned ShiftElts = 0, InsertAtByte = 0; 8841 bool Swap = false; 8842 8843 // Shifts required to get the byte we want at element 7. 8844 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8845 0, 15, 14, 13, 12, 11, 10, 9}; 8846 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8847 1, 2, 3, 4, 5, 6, 7, 8}; 8848 8849 ArrayRef<int> Mask = N->getMask(); 8850 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8851 8852 // For each mask element, find out if we're just inserting something 8853 // from V2 into V1 or vice versa. 8854 // Possible permutations inserting an element from V2 into V1: 8855 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8856 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8857 // ... 8858 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8859 // Inserting from V1 into V2 will be similar, except mask range will be 8860 // [16,31]. 8861 8862 bool FoundCandidate = false; 8863 // If both vector operands for the shuffle are the same vector, the mask 8864 // will contain only elements from the first one and the second one will be 8865 // undef. 8866 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8867 // Go through the mask of half-words to find an element that's being moved 8868 // from one vector to the other. 8869 for (unsigned i = 0; i < BytesInVector; ++i) { 8870 unsigned CurrentElement = Mask[i]; 8871 // If 2nd operand is undefined, we should only look for element 7 in the 8872 // Mask. 8873 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8874 continue; 8875 8876 bool OtherElementsInOrder = true; 8877 // Examine the other elements in the Mask to see if they're in original 8878 // order. 8879 for (unsigned j = 0; j < BytesInVector; ++j) { 8880 if (j == i) 8881 continue; 8882 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8883 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8884 // in which we always assume we're always picking from the 1st operand. 8885 int MaskOffset = 8886 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8887 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8888 OtherElementsInOrder = false; 8889 break; 8890 } 8891 } 8892 // If other elements are in original order, we record the number of shifts 8893 // we need to get the element we want into element 7. Also record which byte 8894 // in the vector we should insert into. 8895 if (OtherElementsInOrder) { 8896 // If 2nd operand is undefined, we assume no shifts and no swapping. 8897 if (V2.isUndef()) { 8898 ShiftElts = 0; 8899 Swap = false; 8900 } else { 8901 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8902 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8903 : BigEndianShifts[CurrentElement & 0xF]; 8904 Swap = CurrentElement < BytesInVector; 8905 } 8906 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8907 FoundCandidate = true; 8908 break; 8909 } 8910 } 8911 8912 if (!FoundCandidate) 8913 return SDValue(); 8914 8915 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8916 // optionally with VECSHL if shift is required. 8917 if (Swap) 8918 std::swap(V1, V2); 8919 if (V2.isUndef()) 8920 V2 = V1; 8921 if (ShiftElts) { 8922 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8923 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8924 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8925 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8926 } 8927 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8928 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8929 } 8930 8931 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8932 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8933 /// SDValue. 8934 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8935 SelectionDAG &DAG) const { 8936 const unsigned NumHalfWords = 8; 8937 const unsigned BytesInVector = NumHalfWords * 2; 8938 // Check that the shuffle is on half-words. 8939 if (!isNByteElemShuffleMask(N, 2, 1)) 8940 return SDValue(); 8941 8942 bool IsLE = Subtarget.isLittleEndian(); 8943 SDLoc dl(N); 8944 SDValue V1 = N->getOperand(0); 8945 SDValue V2 = N->getOperand(1); 8946 unsigned ShiftElts = 0, InsertAtByte = 0; 8947 bool Swap = false; 8948 8949 // Shifts required to get the half-word we want at element 3. 8950 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8951 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8952 8953 uint32_t Mask = 0; 8954 uint32_t OriginalOrderLow = 0x1234567; 8955 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8956 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8957 // 32-bit space, only need 4-bit nibbles per element. 8958 for (unsigned i = 0; i < NumHalfWords; ++i) { 8959 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8960 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8961 } 8962 8963 // For each mask element, find out if we're just inserting something 8964 // from V2 into V1 or vice versa. Possible permutations inserting an element 8965 // from V2 into V1: 8966 // X, 1, 2, 3, 4, 5, 6, 7 8967 // 0, X, 2, 3, 4, 5, 6, 7 8968 // 0, 1, X, 3, 4, 5, 6, 7 8969 // 0, 1, 2, X, 4, 5, 6, 7 8970 // 0, 1, 2, 3, X, 5, 6, 7 8971 // 0, 1, 2, 3, 4, X, 6, 7 8972 // 0, 1, 2, 3, 4, 5, X, 7 8973 // 0, 1, 2, 3, 4, 5, 6, X 8974 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8975 8976 bool FoundCandidate = false; 8977 // Go through the mask of half-words to find an element that's being moved 8978 // from one vector to the other. 8979 for (unsigned i = 0; i < NumHalfWords; ++i) { 8980 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8981 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8982 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8983 uint32_t TargetOrder = 0x0; 8984 8985 // If both vector operands for the shuffle are the same vector, the mask 8986 // will contain only elements from the first one and the second one will be 8987 // undef. 8988 if (V2.isUndef()) { 8989 ShiftElts = 0; 8990 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8991 TargetOrder = OriginalOrderLow; 8992 Swap = false; 8993 // Skip if not the correct element or mask of other elements don't equal 8994 // to our expected order. 8995 if (MaskOneElt == VINSERTHSrcElem && 8996 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8997 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8998 FoundCandidate = true; 8999 break; 9000 } 9001 } else { // If both operands are defined. 9002 // Target order is [8,15] if the current mask is between [0,7]. 9003 TargetOrder = 9004 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9005 // Skip if mask of other elements don't equal our expected order. 9006 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9007 // We only need the last 3 bits for the number of shifts. 9008 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9009 : BigEndianShifts[MaskOneElt & 0x7]; 9010 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9011 Swap = MaskOneElt < NumHalfWords; 9012 FoundCandidate = true; 9013 break; 9014 } 9015 } 9016 } 9017 9018 if (!FoundCandidate) 9019 return SDValue(); 9020 9021 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9022 // optionally with VECSHL if shift is required. 9023 if (Swap) 9024 std::swap(V1, V2); 9025 if (V2.isUndef()) 9026 V2 = V1; 9027 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9028 if (ShiftElts) { 9029 // Double ShiftElts because we're left shifting on v16i8 type. 9030 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9031 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9032 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9033 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9034 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9035 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9036 } 9037 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9038 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9039 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9040 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9041 } 9042 9043 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9044 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9045 /// return the code it can be lowered into. Worst case, it can always be 9046 /// lowered into a vperm. 9047 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9048 SelectionDAG &DAG) const { 9049 SDLoc dl(Op); 9050 SDValue V1 = Op.getOperand(0); 9051 SDValue V2 = Op.getOperand(1); 9052 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9053 EVT VT = Op.getValueType(); 9054 bool isLittleEndian = Subtarget.isLittleEndian(); 9055 9056 unsigned ShiftElts, InsertAtByte; 9057 bool Swap = false; 9058 9059 // If this is a load-and-splat, we can do that with a single instruction 9060 // in some cases. However if the load has multiple uses, we don't want to 9061 // combine it because that will just produce multiple loads. 9062 const SDValue *InputLoad = getNormalLoadInput(V1); 9063 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9064 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9065 InputLoad->hasOneUse()) { 9066 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9067 int SplatIdx = 9068 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9069 9070 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9071 // For 4-byte load-and-splat, we need Power9. 9072 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9073 uint64_t Offset = 0; 9074 if (IsFourByte) 9075 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9076 else 9077 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9078 SDValue BasePtr = LD->getBasePtr(); 9079 if (Offset != 0) 9080 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9081 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9082 SDValue Ops[] = { 9083 LD->getChain(), // Chain 9084 BasePtr, // BasePtr 9085 DAG.getValueType(Op.getValueType()) // VT 9086 }; 9087 SDVTList VTL = 9088 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9089 SDValue LdSplt = 9090 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9091 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9092 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9093 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9094 return LdSplt; 9095 } 9096 } 9097 if (Subtarget.hasP9Vector() && 9098 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9099 isLittleEndian)) { 9100 if (Swap) 9101 std::swap(V1, V2); 9102 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9103 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9104 if (ShiftElts) { 9105 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9106 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9107 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9108 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9109 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9110 } 9111 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9112 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9113 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9114 } 9115 9116 if (Subtarget.hasP9Altivec()) { 9117 SDValue NewISDNode; 9118 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9119 return NewISDNode; 9120 9121 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9122 return NewISDNode; 9123 } 9124 9125 if (Subtarget.hasVSX() && 9126 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9127 if (Swap) 9128 std::swap(V1, V2); 9129 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9130 SDValue Conv2 = 9131 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9132 9133 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9134 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9135 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9136 } 9137 9138 if (Subtarget.hasVSX() && 9139 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9140 if (Swap) 9141 std::swap(V1, V2); 9142 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9143 SDValue Conv2 = 9144 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9145 9146 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9147 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9148 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9149 } 9150 9151 if (Subtarget.hasP9Vector()) { 9152 if (PPC::isXXBRHShuffleMask(SVOp)) { 9153 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9154 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 9155 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9156 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9157 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9158 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 9159 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9160 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9161 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9162 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 9163 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9164 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9165 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9166 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 9167 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9168 } 9169 } 9170 9171 if (Subtarget.hasVSX()) { 9172 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9173 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9174 9175 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9176 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9177 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9178 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9179 } 9180 9181 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9182 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9183 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9184 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9185 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9186 } 9187 } 9188 9189 if (Subtarget.hasQPX()) { 9190 if (VT.getVectorNumElements() != 4) 9191 return SDValue(); 9192 9193 if (V2.isUndef()) V2 = V1; 9194 9195 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9196 if (AlignIdx != -1) { 9197 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9198 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9199 } else if (SVOp->isSplat()) { 9200 int SplatIdx = SVOp->getSplatIndex(); 9201 if (SplatIdx >= 4) { 9202 std::swap(V1, V2); 9203 SplatIdx -= 4; 9204 } 9205 9206 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9207 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9208 } 9209 9210 // Lower this into a qvgpci/qvfperm pair. 9211 9212 // Compute the qvgpci literal 9213 unsigned idx = 0; 9214 for (unsigned i = 0; i < 4; ++i) { 9215 int m = SVOp->getMaskElt(i); 9216 unsigned mm = m >= 0 ? (unsigned) m : i; 9217 idx |= mm << (3-i)*3; 9218 } 9219 9220 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9221 DAG.getConstant(idx, dl, MVT::i32)); 9222 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9223 } 9224 9225 // Cases that are handled by instructions that take permute immediates 9226 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9227 // selected by the instruction selector. 9228 if (V2.isUndef()) { 9229 if (PPC::isSplatShuffleMask(SVOp, 1) || 9230 PPC::isSplatShuffleMask(SVOp, 2) || 9231 PPC::isSplatShuffleMask(SVOp, 4) || 9232 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9233 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9234 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9235 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9236 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9237 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9238 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9239 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9240 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9241 (Subtarget.hasP8Altivec() && ( 9242 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9243 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9244 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9245 return Op; 9246 } 9247 } 9248 9249 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9250 // and produce a fixed permutation. If any of these match, do not lower to 9251 // VPERM. 9252 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9253 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9254 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9255 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9256 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9257 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9258 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9259 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9260 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9261 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9262 (Subtarget.hasP8Altivec() && ( 9263 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9264 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9265 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9266 return Op; 9267 9268 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9269 // perfect shuffle table to emit an optimal matching sequence. 9270 ArrayRef<int> PermMask = SVOp->getMask(); 9271 9272 unsigned PFIndexes[4]; 9273 bool isFourElementShuffle = true; 9274 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9275 unsigned EltNo = 8; // Start out undef. 9276 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9277 if (PermMask[i*4+j] < 0) 9278 continue; // Undef, ignore it. 9279 9280 unsigned ByteSource = PermMask[i*4+j]; 9281 if ((ByteSource & 3) != j) { 9282 isFourElementShuffle = false; 9283 break; 9284 } 9285 9286 if (EltNo == 8) { 9287 EltNo = ByteSource/4; 9288 } else if (EltNo != ByteSource/4) { 9289 isFourElementShuffle = false; 9290 break; 9291 } 9292 } 9293 PFIndexes[i] = EltNo; 9294 } 9295 9296 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9297 // perfect shuffle vector to determine if it is cost effective to do this as 9298 // discrete instructions, or whether we should use a vperm. 9299 // For now, we skip this for little endian until such time as we have a 9300 // little-endian perfect shuffle table. 9301 if (isFourElementShuffle && !isLittleEndian) { 9302 // Compute the index in the perfect shuffle table. 9303 unsigned PFTableIndex = 9304 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9305 9306 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9307 unsigned Cost = (PFEntry >> 30); 9308 9309 // Determining when to avoid vperm is tricky. Many things affect the cost 9310 // of vperm, particularly how many times the perm mask needs to be computed. 9311 // For example, if the perm mask can be hoisted out of a loop or is already 9312 // used (perhaps because there are multiple permutes with the same shuffle 9313 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9314 // the loop requires an extra register. 9315 // 9316 // As a compromise, we only emit discrete instructions if the shuffle can be 9317 // generated in 3 or fewer operations. When we have loop information 9318 // available, if this block is within a loop, we should avoid using vperm 9319 // for 3-operation perms and use a constant pool load instead. 9320 if (Cost < 3) 9321 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9322 } 9323 9324 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9325 // vector that will get spilled to the constant pool. 9326 if (V2.isUndef()) V2 = V1; 9327 9328 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9329 // that it is in input element units, not in bytes. Convert now. 9330 9331 // For little endian, the order of the input vectors is reversed, and 9332 // the permutation mask is complemented with respect to 31. This is 9333 // necessary to produce proper semantics with the big-endian-biased vperm 9334 // instruction. 9335 EVT EltVT = V1.getValueType().getVectorElementType(); 9336 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9337 9338 SmallVector<SDValue, 16> ResultMask; 9339 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9340 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9341 9342 for (unsigned j = 0; j != BytesPerElement; ++j) 9343 if (isLittleEndian) 9344 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9345 dl, MVT::i32)); 9346 else 9347 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9348 MVT::i32)); 9349 } 9350 9351 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9352 if (isLittleEndian) 9353 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9354 V2, V1, VPermMask); 9355 else 9356 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9357 V1, V2, VPermMask); 9358 } 9359 9360 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9361 /// vector comparison. If it is, return true and fill in Opc/isDot with 9362 /// information about the intrinsic. 9363 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9364 bool &isDot, const PPCSubtarget &Subtarget) { 9365 unsigned IntrinsicID = 9366 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9367 CompareOpc = -1; 9368 isDot = false; 9369 switch (IntrinsicID) { 9370 default: 9371 return false; 9372 // Comparison predicates. 9373 case Intrinsic::ppc_altivec_vcmpbfp_p: 9374 CompareOpc = 966; 9375 isDot = true; 9376 break; 9377 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9378 CompareOpc = 198; 9379 isDot = true; 9380 break; 9381 case Intrinsic::ppc_altivec_vcmpequb_p: 9382 CompareOpc = 6; 9383 isDot = true; 9384 break; 9385 case Intrinsic::ppc_altivec_vcmpequh_p: 9386 CompareOpc = 70; 9387 isDot = true; 9388 break; 9389 case Intrinsic::ppc_altivec_vcmpequw_p: 9390 CompareOpc = 134; 9391 isDot = true; 9392 break; 9393 case Intrinsic::ppc_altivec_vcmpequd_p: 9394 if (Subtarget.hasP8Altivec()) { 9395 CompareOpc = 199; 9396 isDot = true; 9397 } else 9398 return false; 9399 break; 9400 case Intrinsic::ppc_altivec_vcmpneb_p: 9401 case Intrinsic::ppc_altivec_vcmpneh_p: 9402 case Intrinsic::ppc_altivec_vcmpnew_p: 9403 case Intrinsic::ppc_altivec_vcmpnezb_p: 9404 case Intrinsic::ppc_altivec_vcmpnezh_p: 9405 case Intrinsic::ppc_altivec_vcmpnezw_p: 9406 if (Subtarget.hasP9Altivec()) { 9407 switch (IntrinsicID) { 9408 default: 9409 llvm_unreachable("Unknown comparison intrinsic."); 9410 case Intrinsic::ppc_altivec_vcmpneb_p: 9411 CompareOpc = 7; 9412 break; 9413 case Intrinsic::ppc_altivec_vcmpneh_p: 9414 CompareOpc = 71; 9415 break; 9416 case Intrinsic::ppc_altivec_vcmpnew_p: 9417 CompareOpc = 135; 9418 break; 9419 case Intrinsic::ppc_altivec_vcmpnezb_p: 9420 CompareOpc = 263; 9421 break; 9422 case Intrinsic::ppc_altivec_vcmpnezh_p: 9423 CompareOpc = 327; 9424 break; 9425 case Intrinsic::ppc_altivec_vcmpnezw_p: 9426 CompareOpc = 391; 9427 break; 9428 } 9429 isDot = true; 9430 } else 9431 return false; 9432 break; 9433 case Intrinsic::ppc_altivec_vcmpgefp_p: 9434 CompareOpc = 454; 9435 isDot = true; 9436 break; 9437 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9438 CompareOpc = 710; 9439 isDot = true; 9440 break; 9441 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9442 CompareOpc = 774; 9443 isDot = true; 9444 break; 9445 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9446 CompareOpc = 838; 9447 isDot = true; 9448 break; 9449 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9450 CompareOpc = 902; 9451 isDot = true; 9452 break; 9453 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9454 if (Subtarget.hasP8Altivec()) { 9455 CompareOpc = 967; 9456 isDot = true; 9457 } else 9458 return false; 9459 break; 9460 case Intrinsic::ppc_altivec_vcmpgtub_p: 9461 CompareOpc = 518; 9462 isDot = true; 9463 break; 9464 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9465 CompareOpc = 582; 9466 isDot = true; 9467 break; 9468 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9469 CompareOpc = 646; 9470 isDot = true; 9471 break; 9472 case Intrinsic::ppc_altivec_vcmpgtud_p: 9473 if (Subtarget.hasP8Altivec()) { 9474 CompareOpc = 711; 9475 isDot = true; 9476 } else 9477 return false; 9478 break; 9479 9480 // VSX predicate comparisons use the same infrastructure 9481 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9482 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9483 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9484 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9485 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9486 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9487 if (Subtarget.hasVSX()) { 9488 switch (IntrinsicID) { 9489 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9490 CompareOpc = 99; 9491 break; 9492 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9493 CompareOpc = 115; 9494 break; 9495 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9496 CompareOpc = 107; 9497 break; 9498 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9499 CompareOpc = 67; 9500 break; 9501 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9502 CompareOpc = 83; 9503 break; 9504 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9505 CompareOpc = 75; 9506 break; 9507 } 9508 isDot = true; 9509 } else 9510 return false; 9511 break; 9512 9513 // Normal Comparisons. 9514 case Intrinsic::ppc_altivec_vcmpbfp: 9515 CompareOpc = 966; 9516 break; 9517 case Intrinsic::ppc_altivec_vcmpeqfp: 9518 CompareOpc = 198; 9519 break; 9520 case Intrinsic::ppc_altivec_vcmpequb: 9521 CompareOpc = 6; 9522 break; 9523 case Intrinsic::ppc_altivec_vcmpequh: 9524 CompareOpc = 70; 9525 break; 9526 case Intrinsic::ppc_altivec_vcmpequw: 9527 CompareOpc = 134; 9528 break; 9529 case Intrinsic::ppc_altivec_vcmpequd: 9530 if (Subtarget.hasP8Altivec()) 9531 CompareOpc = 199; 9532 else 9533 return false; 9534 break; 9535 case Intrinsic::ppc_altivec_vcmpneb: 9536 case Intrinsic::ppc_altivec_vcmpneh: 9537 case Intrinsic::ppc_altivec_vcmpnew: 9538 case Intrinsic::ppc_altivec_vcmpnezb: 9539 case Intrinsic::ppc_altivec_vcmpnezh: 9540 case Intrinsic::ppc_altivec_vcmpnezw: 9541 if (Subtarget.hasP9Altivec()) 9542 switch (IntrinsicID) { 9543 default: 9544 llvm_unreachable("Unknown comparison intrinsic."); 9545 case Intrinsic::ppc_altivec_vcmpneb: 9546 CompareOpc = 7; 9547 break; 9548 case Intrinsic::ppc_altivec_vcmpneh: 9549 CompareOpc = 71; 9550 break; 9551 case Intrinsic::ppc_altivec_vcmpnew: 9552 CompareOpc = 135; 9553 break; 9554 case Intrinsic::ppc_altivec_vcmpnezb: 9555 CompareOpc = 263; 9556 break; 9557 case Intrinsic::ppc_altivec_vcmpnezh: 9558 CompareOpc = 327; 9559 break; 9560 case Intrinsic::ppc_altivec_vcmpnezw: 9561 CompareOpc = 391; 9562 break; 9563 } 9564 else 9565 return false; 9566 break; 9567 case Intrinsic::ppc_altivec_vcmpgefp: 9568 CompareOpc = 454; 9569 break; 9570 case Intrinsic::ppc_altivec_vcmpgtfp: 9571 CompareOpc = 710; 9572 break; 9573 case Intrinsic::ppc_altivec_vcmpgtsb: 9574 CompareOpc = 774; 9575 break; 9576 case Intrinsic::ppc_altivec_vcmpgtsh: 9577 CompareOpc = 838; 9578 break; 9579 case Intrinsic::ppc_altivec_vcmpgtsw: 9580 CompareOpc = 902; 9581 break; 9582 case Intrinsic::ppc_altivec_vcmpgtsd: 9583 if (Subtarget.hasP8Altivec()) 9584 CompareOpc = 967; 9585 else 9586 return false; 9587 break; 9588 case Intrinsic::ppc_altivec_vcmpgtub: 9589 CompareOpc = 518; 9590 break; 9591 case Intrinsic::ppc_altivec_vcmpgtuh: 9592 CompareOpc = 582; 9593 break; 9594 case Intrinsic::ppc_altivec_vcmpgtuw: 9595 CompareOpc = 646; 9596 break; 9597 case Intrinsic::ppc_altivec_vcmpgtud: 9598 if (Subtarget.hasP8Altivec()) 9599 CompareOpc = 711; 9600 else 9601 return false; 9602 break; 9603 } 9604 return true; 9605 } 9606 9607 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9608 /// lower, do it, otherwise return null. 9609 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9610 SelectionDAG &DAG) const { 9611 unsigned IntrinsicID = 9612 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9613 9614 SDLoc dl(Op); 9615 9616 if (IntrinsicID == Intrinsic::thread_pointer) { 9617 // Reads the thread pointer register, used for __builtin_thread_pointer. 9618 if (Subtarget.isPPC64()) 9619 return DAG.getRegister(PPC::X13, MVT::i64); 9620 return DAG.getRegister(PPC::R2, MVT::i32); 9621 } 9622 9623 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9624 // opcode number of the comparison. 9625 int CompareOpc; 9626 bool isDot; 9627 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9628 return SDValue(); // Don't custom lower most intrinsics. 9629 9630 // If this is a non-dot comparison, make the VCMP node and we are done. 9631 if (!isDot) { 9632 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9633 Op.getOperand(1), Op.getOperand(2), 9634 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9635 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9636 } 9637 9638 // Create the PPCISD altivec 'dot' comparison node. 9639 SDValue Ops[] = { 9640 Op.getOperand(2), // LHS 9641 Op.getOperand(3), // RHS 9642 DAG.getConstant(CompareOpc, dl, MVT::i32) 9643 }; 9644 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9645 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9646 9647 // Now that we have the comparison, emit a copy from the CR to a GPR. 9648 // This is flagged to the above dot comparison. 9649 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9650 DAG.getRegister(PPC::CR6, MVT::i32), 9651 CompNode.getValue(1)); 9652 9653 // Unpack the result based on how the target uses it. 9654 unsigned BitNo; // Bit # of CR6. 9655 bool InvertBit; // Invert result? 9656 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9657 default: // Can't happen, don't crash on invalid number though. 9658 case 0: // Return the value of the EQ bit of CR6. 9659 BitNo = 0; InvertBit = false; 9660 break; 9661 case 1: // Return the inverted value of the EQ bit of CR6. 9662 BitNo = 0; InvertBit = true; 9663 break; 9664 case 2: // Return the value of the LT bit of CR6. 9665 BitNo = 2; InvertBit = false; 9666 break; 9667 case 3: // Return the inverted value of the LT bit of CR6. 9668 BitNo = 2; InvertBit = true; 9669 break; 9670 } 9671 9672 // Shift the bit into the low position. 9673 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9674 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9675 // Isolate the bit. 9676 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9677 DAG.getConstant(1, dl, MVT::i32)); 9678 9679 // If we are supposed to, toggle the bit. 9680 if (InvertBit) 9681 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9682 DAG.getConstant(1, dl, MVT::i32)); 9683 return Flags; 9684 } 9685 9686 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9687 SelectionDAG &DAG) const { 9688 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9689 // the beginning of the argument list. 9690 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9691 SDLoc DL(Op); 9692 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9693 case Intrinsic::ppc_cfence: { 9694 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9695 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9696 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9697 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9698 Op.getOperand(ArgStart + 1)), 9699 Op.getOperand(0)), 9700 0); 9701 } 9702 default: 9703 break; 9704 } 9705 return SDValue(); 9706 } 9707 9708 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9709 // Check for a DIV with the same operands as this REM. 9710 for (auto UI : Op.getOperand(1)->uses()) { 9711 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9712 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9713 if (UI->getOperand(0) == Op.getOperand(0) && 9714 UI->getOperand(1) == Op.getOperand(1)) 9715 return SDValue(); 9716 } 9717 return Op; 9718 } 9719 9720 // Lower scalar BSWAP64 to xxbrd. 9721 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9722 SDLoc dl(Op); 9723 // MTVSRDD 9724 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9725 Op.getOperand(0)); 9726 // XXBRD 9727 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9728 // MFVSRD 9729 int VectorIndex = 0; 9730 if (Subtarget.isLittleEndian()) 9731 VectorIndex = 1; 9732 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9733 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9734 return Op; 9735 } 9736 9737 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9738 // compared to a value that is atomically loaded (atomic loads zero-extend). 9739 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9740 SelectionDAG &DAG) const { 9741 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9742 "Expecting an atomic compare-and-swap here."); 9743 SDLoc dl(Op); 9744 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9745 EVT MemVT = AtomicNode->getMemoryVT(); 9746 if (MemVT.getSizeInBits() >= 32) 9747 return Op; 9748 9749 SDValue CmpOp = Op.getOperand(2); 9750 // If this is already correctly zero-extended, leave it alone. 9751 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9752 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9753 return Op; 9754 9755 // Clear the high bits of the compare operand. 9756 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9757 SDValue NewCmpOp = 9758 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9759 DAG.getConstant(MaskVal, dl, MVT::i32)); 9760 9761 // Replace the existing compare operand with the properly zero-extended one. 9762 SmallVector<SDValue, 4> Ops; 9763 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9764 Ops.push_back(AtomicNode->getOperand(i)); 9765 Ops[2] = NewCmpOp; 9766 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9767 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9768 auto NodeTy = 9769 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9770 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9771 } 9772 9773 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9774 SelectionDAG &DAG) const { 9775 SDLoc dl(Op); 9776 // Create a stack slot that is 16-byte aligned. 9777 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9778 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9779 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9780 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9781 9782 // Store the input value into Value#0 of the stack slot. 9783 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9784 MachinePointerInfo()); 9785 // Load it out. 9786 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9787 } 9788 9789 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9790 SelectionDAG &DAG) const { 9791 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9792 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9793 9794 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9795 // We have legal lowering for constant indices but not for variable ones. 9796 if (!C) 9797 return SDValue(); 9798 9799 EVT VT = Op.getValueType(); 9800 SDLoc dl(Op); 9801 SDValue V1 = Op.getOperand(0); 9802 SDValue V2 = Op.getOperand(1); 9803 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9804 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9805 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9806 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9807 unsigned InsertAtElement = C->getZExtValue(); 9808 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9809 if (Subtarget.isLittleEndian()) { 9810 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9811 } 9812 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9813 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9814 } 9815 return Op; 9816 } 9817 9818 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9819 SelectionDAG &DAG) const { 9820 SDLoc dl(Op); 9821 SDNode *N = Op.getNode(); 9822 9823 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9824 "Unknown extract_vector_elt type"); 9825 9826 SDValue Value = N->getOperand(0); 9827 9828 // The first part of this is like the store lowering except that we don't 9829 // need to track the chain. 9830 9831 // The values are now known to be -1 (false) or 1 (true). To convert this 9832 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9833 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9834 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9835 9836 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9837 // understand how to form the extending load. 9838 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9839 9840 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9841 9842 // Now convert to an integer and store. 9843 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9844 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9845 Value); 9846 9847 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9848 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9849 MachinePointerInfo PtrInfo = 9850 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9851 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9852 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9853 9854 SDValue StoreChain = DAG.getEntryNode(); 9855 SDValue Ops[] = {StoreChain, 9856 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9857 Value, FIdx}; 9858 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9859 9860 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9861 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9862 9863 // Extract the value requested. 9864 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9865 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9866 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9867 9868 SDValue IntVal = 9869 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9870 9871 if (!Subtarget.useCRBits()) 9872 return IntVal; 9873 9874 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9875 } 9876 9877 /// Lowering for QPX v4i1 loads 9878 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9879 SelectionDAG &DAG) const { 9880 SDLoc dl(Op); 9881 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9882 SDValue LoadChain = LN->getChain(); 9883 SDValue BasePtr = LN->getBasePtr(); 9884 9885 if (Op.getValueType() == MVT::v4f64 || 9886 Op.getValueType() == MVT::v4f32) { 9887 EVT MemVT = LN->getMemoryVT(); 9888 unsigned Alignment = LN->getAlignment(); 9889 9890 // If this load is properly aligned, then it is legal. 9891 if (Alignment >= MemVT.getStoreSize()) 9892 return Op; 9893 9894 EVT ScalarVT = Op.getValueType().getScalarType(), 9895 ScalarMemVT = MemVT.getScalarType(); 9896 unsigned Stride = ScalarMemVT.getStoreSize(); 9897 9898 SDValue Vals[4], LoadChains[4]; 9899 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9900 SDValue Load; 9901 if (ScalarVT != ScalarMemVT) 9902 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9903 BasePtr, 9904 LN->getPointerInfo().getWithOffset(Idx * Stride), 9905 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9906 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9907 else 9908 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9909 LN->getPointerInfo().getWithOffset(Idx * Stride), 9910 MinAlign(Alignment, Idx * Stride), 9911 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9912 9913 if (Idx == 0 && LN->isIndexed()) { 9914 assert(LN->getAddressingMode() == ISD::PRE_INC && 9915 "Unknown addressing mode on vector load"); 9916 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9917 LN->getAddressingMode()); 9918 } 9919 9920 Vals[Idx] = Load; 9921 LoadChains[Idx] = Load.getValue(1); 9922 9923 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9924 DAG.getConstant(Stride, dl, 9925 BasePtr.getValueType())); 9926 } 9927 9928 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9929 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9930 9931 if (LN->isIndexed()) { 9932 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9933 return DAG.getMergeValues(RetOps, dl); 9934 } 9935 9936 SDValue RetOps[] = { Value, TF }; 9937 return DAG.getMergeValues(RetOps, dl); 9938 } 9939 9940 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9941 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9942 9943 // To lower v4i1 from a byte array, we load the byte elements of the 9944 // vector and then reuse the BUILD_VECTOR logic. 9945 9946 SDValue VectElmts[4], VectElmtChains[4]; 9947 for (unsigned i = 0; i < 4; ++i) { 9948 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9949 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9950 9951 VectElmts[i] = DAG.getExtLoad( 9952 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9953 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9954 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9955 VectElmtChains[i] = VectElmts[i].getValue(1); 9956 } 9957 9958 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9959 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9960 9961 SDValue RVals[] = { Value, LoadChain }; 9962 return DAG.getMergeValues(RVals, dl); 9963 } 9964 9965 /// Lowering for QPX v4i1 stores 9966 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9967 SelectionDAG &DAG) const { 9968 SDLoc dl(Op); 9969 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9970 SDValue StoreChain = SN->getChain(); 9971 SDValue BasePtr = SN->getBasePtr(); 9972 SDValue Value = SN->getValue(); 9973 9974 if (Value.getValueType() == MVT::v4f64 || 9975 Value.getValueType() == MVT::v4f32) { 9976 EVT MemVT = SN->getMemoryVT(); 9977 unsigned Alignment = SN->getAlignment(); 9978 9979 // If this store is properly aligned, then it is legal. 9980 if (Alignment >= MemVT.getStoreSize()) 9981 return Op; 9982 9983 EVT ScalarVT = Value.getValueType().getScalarType(), 9984 ScalarMemVT = MemVT.getScalarType(); 9985 unsigned Stride = ScalarMemVT.getStoreSize(); 9986 9987 SDValue Stores[4]; 9988 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9989 SDValue Ex = DAG.getNode( 9990 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9991 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9992 SDValue Store; 9993 if (ScalarVT != ScalarMemVT) 9994 Store = 9995 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9996 SN->getPointerInfo().getWithOffset(Idx * Stride), 9997 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9998 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9999 else 10000 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10001 SN->getPointerInfo().getWithOffset(Idx * Stride), 10002 MinAlign(Alignment, Idx * Stride), 10003 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10004 10005 if (Idx == 0 && SN->isIndexed()) { 10006 assert(SN->getAddressingMode() == ISD::PRE_INC && 10007 "Unknown addressing mode on vector store"); 10008 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10009 SN->getAddressingMode()); 10010 } 10011 10012 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10013 DAG.getConstant(Stride, dl, 10014 BasePtr.getValueType())); 10015 Stores[Idx] = Store; 10016 } 10017 10018 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10019 10020 if (SN->isIndexed()) { 10021 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10022 return DAG.getMergeValues(RetOps, dl); 10023 } 10024 10025 return TF; 10026 } 10027 10028 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10029 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10030 10031 // The values are now known to be -1 (false) or 1 (true). To convert this 10032 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10033 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10034 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10035 10036 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10037 // understand how to form the extending load. 10038 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10039 10040 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10041 10042 // Now convert to an integer and store. 10043 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10044 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10045 Value); 10046 10047 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10048 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10049 MachinePointerInfo PtrInfo = 10050 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10051 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10052 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10053 10054 SDValue Ops[] = {StoreChain, 10055 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10056 Value, FIdx}; 10057 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10058 10059 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10060 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10061 10062 // Move data into the byte array. 10063 SDValue Loads[4], LoadChains[4]; 10064 for (unsigned i = 0; i < 4; ++i) { 10065 unsigned Offset = 4*i; 10066 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10067 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10068 10069 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10070 PtrInfo.getWithOffset(Offset)); 10071 LoadChains[i] = Loads[i].getValue(1); 10072 } 10073 10074 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10075 10076 SDValue Stores[4]; 10077 for (unsigned i = 0; i < 4; ++i) { 10078 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10079 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10080 10081 Stores[i] = DAG.getTruncStore( 10082 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10083 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10084 SN->getAAInfo()); 10085 } 10086 10087 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10088 10089 return StoreChain; 10090 } 10091 10092 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10093 SDLoc dl(Op); 10094 if (Op.getValueType() == MVT::v4i32) { 10095 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10096 10097 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10098 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10099 10100 SDValue RHSSwap = // = vrlw RHS, 16 10101 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10102 10103 // Shrinkify inputs to v8i16. 10104 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10105 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10106 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10107 10108 // Low parts multiplied together, generating 32-bit results (we ignore the 10109 // top parts). 10110 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10111 LHS, RHS, DAG, dl, MVT::v4i32); 10112 10113 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10114 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10115 // Shift the high parts up 16 bits. 10116 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10117 Neg16, DAG, dl); 10118 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10119 } else if (Op.getValueType() == MVT::v8i16) { 10120 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10121 10122 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 10123 10124 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 10125 LHS, RHS, Zero, DAG, dl); 10126 } else if (Op.getValueType() == MVT::v16i8) { 10127 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10128 bool isLittleEndian = Subtarget.isLittleEndian(); 10129 10130 // Multiply the even 8-bit parts, producing 16-bit sums. 10131 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10132 LHS, RHS, DAG, dl, MVT::v8i16); 10133 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10134 10135 // Multiply the odd 8-bit parts, producing 16-bit sums. 10136 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10137 LHS, RHS, DAG, dl, MVT::v8i16); 10138 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10139 10140 // Merge the results together. Because vmuleub and vmuloub are 10141 // instructions with a big-endian bias, we must reverse the 10142 // element numbering and reverse the meaning of "odd" and "even" 10143 // when generating little endian code. 10144 int Ops[16]; 10145 for (unsigned i = 0; i != 8; ++i) { 10146 if (isLittleEndian) { 10147 Ops[i*2 ] = 2*i; 10148 Ops[i*2+1] = 2*i+16; 10149 } else { 10150 Ops[i*2 ] = 2*i+1; 10151 Ops[i*2+1] = 2*i+1+16; 10152 } 10153 } 10154 if (isLittleEndian) 10155 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10156 else 10157 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10158 } else { 10159 llvm_unreachable("Unknown mul to lower!"); 10160 } 10161 } 10162 10163 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10164 10165 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10166 10167 EVT VT = Op.getValueType(); 10168 assert(VT.isVector() && 10169 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10170 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10171 VT == MVT::v16i8) && 10172 "Unexpected vector element type!"); 10173 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10174 "Current subtarget doesn't support smax v2i64!"); 10175 10176 // For vector abs, it can be lowered to: 10177 // abs x 10178 // ==> 10179 // y = -x 10180 // smax(x, y) 10181 10182 SDLoc dl(Op); 10183 SDValue X = Op.getOperand(0); 10184 SDValue Zero = DAG.getConstant(0, dl, VT); 10185 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10186 10187 // SMAX patch https://reviews.llvm.org/D47332 10188 // hasn't landed yet, so use intrinsic first here. 10189 // TODO: Should use SMAX directly once SMAX patch landed 10190 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10191 if (VT == MVT::v2i64) 10192 BifID = Intrinsic::ppc_altivec_vmaxsd; 10193 else if (VT == MVT::v8i16) 10194 BifID = Intrinsic::ppc_altivec_vmaxsh; 10195 else if (VT == MVT::v16i8) 10196 BifID = Intrinsic::ppc_altivec_vmaxsb; 10197 10198 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10199 } 10200 10201 // Custom lowering for fpext vf32 to v2f64 10202 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10203 10204 assert(Op.getOpcode() == ISD::FP_EXTEND && 10205 "Should only be called for ISD::FP_EXTEND"); 10206 10207 // We only want to custom lower an extend from v2f32 to v2f64. 10208 if (Op.getValueType() != MVT::v2f64 || 10209 Op.getOperand(0).getValueType() != MVT::v2f32) 10210 return SDValue(); 10211 10212 SDLoc dl(Op); 10213 SDValue Op0 = Op.getOperand(0); 10214 10215 switch (Op0.getOpcode()) { 10216 default: 10217 return SDValue(); 10218 case ISD::EXTRACT_SUBVECTOR: { 10219 assert(Op0.getNumOperands() == 2 && 10220 isa<ConstantSDNode>(Op0->getOperand(1)) && 10221 "Node should have 2 operands with second one being a constant!"); 10222 10223 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10224 return SDValue(); 10225 10226 // Custom lower is only done for high or low doubleword. 10227 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10228 if (Idx % 2 != 0) 10229 return SDValue(); 10230 10231 // Since input is v4f32, at this point Idx is either 0 or 2. 10232 // Shift to get the doubleword position we want. 10233 int DWord = Idx >> 1; 10234 10235 // High and low word positions are different on little endian. 10236 if (Subtarget.isLittleEndian()) 10237 DWord ^= 0x1; 10238 10239 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10240 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10241 } 10242 case ISD::FADD: 10243 case ISD::FMUL: 10244 case ISD::FSUB: { 10245 SDValue NewLoad[2]; 10246 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10247 // Ensure both input are loads. 10248 SDValue LdOp = Op0.getOperand(i); 10249 if (LdOp.getOpcode() != ISD::LOAD) 10250 return SDValue(); 10251 // Generate new load node. 10252 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10253 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10254 NewLoad[i] = DAG.getMemIntrinsicNode( 10255 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10256 LD->getMemoryVT(), LD->getMemOperand()); 10257 } 10258 SDValue NewOp = 10259 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10260 NewLoad[1], Op0.getNode()->getFlags()); 10261 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10262 DAG.getConstant(0, dl, MVT::i32)); 10263 } 10264 case ISD::LOAD: { 10265 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10266 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10267 SDValue NewLd = DAG.getMemIntrinsicNode( 10268 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10269 LD->getMemoryVT(), LD->getMemOperand()); 10270 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10271 DAG.getConstant(0, dl, MVT::i32)); 10272 } 10273 } 10274 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10275 } 10276 10277 /// LowerOperation - Provide custom lowering hooks for some operations. 10278 /// 10279 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10280 switch (Op.getOpcode()) { 10281 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10282 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10283 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10284 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10285 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10286 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10287 case ISD::SETCC: return LowerSETCC(Op, DAG); 10288 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10289 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10290 10291 // Variable argument lowering. 10292 case ISD::VASTART: return LowerVASTART(Op, DAG); 10293 case ISD::VAARG: return LowerVAARG(Op, DAG); 10294 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10295 10296 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10297 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10298 case ISD::GET_DYNAMIC_AREA_OFFSET: 10299 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10300 10301 // Exception handling lowering. 10302 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10303 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10304 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10305 10306 case ISD::LOAD: return LowerLOAD(Op, DAG); 10307 case ISD::STORE: return LowerSTORE(Op, DAG); 10308 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10309 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10310 case ISD::FP_TO_UINT: 10311 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10312 case ISD::UINT_TO_FP: 10313 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10314 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10315 10316 // Lower 64-bit shifts. 10317 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10318 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10319 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10320 10321 // Vector-related lowering. 10322 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10323 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10324 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10325 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10326 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10327 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10328 case ISD::MUL: return LowerMUL(Op, DAG); 10329 case ISD::ABS: return LowerABS(Op, DAG); 10330 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10331 10332 // For counter-based loop handling. 10333 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10334 10335 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10336 10337 // Frame & Return address. 10338 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10339 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10340 10341 case ISD::INTRINSIC_VOID: 10342 return LowerINTRINSIC_VOID(Op, DAG); 10343 case ISD::SREM: 10344 case ISD::UREM: 10345 return LowerREM(Op, DAG); 10346 case ISD::BSWAP: 10347 return LowerBSWAP(Op, DAG); 10348 case ISD::ATOMIC_CMP_SWAP: 10349 return LowerATOMIC_CMP_SWAP(Op, DAG); 10350 } 10351 } 10352 10353 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10354 SmallVectorImpl<SDValue>&Results, 10355 SelectionDAG &DAG) const { 10356 SDLoc dl(N); 10357 switch (N->getOpcode()) { 10358 default: 10359 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10360 case ISD::READCYCLECOUNTER: { 10361 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10362 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10363 10364 Results.push_back(RTB); 10365 Results.push_back(RTB.getValue(1)); 10366 Results.push_back(RTB.getValue(2)); 10367 break; 10368 } 10369 case ISD::INTRINSIC_W_CHAIN: { 10370 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10371 Intrinsic::loop_decrement) 10372 break; 10373 10374 assert(N->getValueType(0) == MVT::i1 && 10375 "Unexpected result type for CTR decrement intrinsic"); 10376 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10377 N->getValueType(0)); 10378 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10379 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10380 N->getOperand(1)); 10381 10382 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10383 Results.push_back(NewInt.getValue(1)); 10384 break; 10385 } 10386 case ISD::VAARG: { 10387 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10388 return; 10389 10390 EVT VT = N->getValueType(0); 10391 10392 if (VT == MVT::i64) { 10393 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10394 10395 Results.push_back(NewNode); 10396 Results.push_back(NewNode.getValue(1)); 10397 } 10398 return; 10399 } 10400 case ISD::FP_TO_SINT: 10401 case ISD::FP_TO_UINT: 10402 // LowerFP_TO_INT() can only handle f32 and f64. 10403 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10404 return; 10405 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10406 return; 10407 case ISD::TRUNCATE: { 10408 EVT TrgVT = N->getValueType(0); 10409 EVT OpVT = N->getOperand(0).getValueType(); 10410 if (TrgVT.isVector() && 10411 isOperationCustom(N->getOpcode(), TrgVT) && 10412 OpVT.getSizeInBits() <= 128 && 10413 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10414 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10415 return; 10416 } 10417 case ISD::BITCAST: 10418 // Don't handle bitcast here. 10419 return; 10420 } 10421 } 10422 10423 //===----------------------------------------------------------------------===// 10424 // Other Lowering Code 10425 //===----------------------------------------------------------------------===// 10426 10427 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10428 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10429 Function *Func = Intrinsic::getDeclaration(M, Id); 10430 return Builder.CreateCall(Func, {}); 10431 } 10432 10433 // The mappings for emitLeading/TrailingFence is taken from 10434 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10435 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10436 Instruction *Inst, 10437 AtomicOrdering Ord) const { 10438 if (Ord == AtomicOrdering::SequentiallyConsistent) 10439 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10440 if (isReleaseOrStronger(Ord)) 10441 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10442 return nullptr; 10443 } 10444 10445 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10446 Instruction *Inst, 10447 AtomicOrdering Ord) const { 10448 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10449 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10450 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10451 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10452 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10453 return Builder.CreateCall( 10454 Intrinsic::getDeclaration( 10455 Builder.GetInsertBlock()->getParent()->getParent(), 10456 Intrinsic::ppc_cfence, {Inst->getType()}), 10457 {Inst}); 10458 // FIXME: Can use isync for rmw operation. 10459 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10460 } 10461 return nullptr; 10462 } 10463 10464 MachineBasicBlock * 10465 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10466 unsigned AtomicSize, 10467 unsigned BinOpcode, 10468 unsigned CmpOpcode, 10469 unsigned CmpPred) const { 10470 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10471 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10472 10473 auto LoadMnemonic = PPC::LDARX; 10474 auto StoreMnemonic = PPC::STDCX; 10475 switch (AtomicSize) { 10476 default: 10477 llvm_unreachable("Unexpected size of atomic entity"); 10478 case 1: 10479 LoadMnemonic = PPC::LBARX; 10480 StoreMnemonic = PPC::STBCX; 10481 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10482 break; 10483 case 2: 10484 LoadMnemonic = PPC::LHARX; 10485 StoreMnemonic = PPC::STHCX; 10486 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10487 break; 10488 case 4: 10489 LoadMnemonic = PPC::LWARX; 10490 StoreMnemonic = PPC::STWCX; 10491 break; 10492 case 8: 10493 LoadMnemonic = PPC::LDARX; 10494 StoreMnemonic = PPC::STDCX; 10495 break; 10496 } 10497 10498 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10499 MachineFunction *F = BB->getParent(); 10500 MachineFunction::iterator It = ++BB->getIterator(); 10501 10502 Register dest = MI.getOperand(0).getReg(); 10503 Register ptrA = MI.getOperand(1).getReg(); 10504 Register ptrB = MI.getOperand(2).getReg(); 10505 Register incr = MI.getOperand(3).getReg(); 10506 DebugLoc dl = MI.getDebugLoc(); 10507 10508 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10509 MachineBasicBlock *loop2MBB = 10510 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10511 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10512 F->insert(It, loopMBB); 10513 if (CmpOpcode) 10514 F->insert(It, loop2MBB); 10515 F->insert(It, exitMBB); 10516 exitMBB->splice(exitMBB->begin(), BB, 10517 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10518 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10519 10520 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10521 Register TmpReg = (!BinOpcode) ? incr : 10522 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10523 : &PPC::GPRCRegClass); 10524 10525 // thisMBB: 10526 // ... 10527 // fallthrough --> loopMBB 10528 BB->addSuccessor(loopMBB); 10529 10530 // loopMBB: 10531 // l[wd]arx dest, ptr 10532 // add r0, dest, incr 10533 // st[wd]cx. r0, ptr 10534 // bne- loopMBB 10535 // fallthrough --> exitMBB 10536 10537 // For max/min... 10538 // loopMBB: 10539 // l[wd]arx dest, ptr 10540 // cmpl?[wd] incr, dest 10541 // bgt exitMBB 10542 // loop2MBB: 10543 // st[wd]cx. dest, ptr 10544 // bne- loopMBB 10545 // fallthrough --> exitMBB 10546 10547 BB = loopMBB; 10548 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10549 .addReg(ptrA).addReg(ptrB); 10550 if (BinOpcode) 10551 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10552 if (CmpOpcode) { 10553 // Signed comparisons of byte or halfword values must be sign-extended. 10554 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10555 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10556 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10557 ExtReg).addReg(dest); 10558 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10559 .addReg(incr).addReg(ExtReg); 10560 } else 10561 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10562 .addReg(incr).addReg(dest); 10563 10564 BuildMI(BB, dl, TII->get(PPC::BCC)) 10565 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10566 BB->addSuccessor(loop2MBB); 10567 BB->addSuccessor(exitMBB); 10568 BB = loop2MBB; 10569 } 10570 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10571 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10572 BuildMI(BB, dl, TII->get(PPC::BCC)) 10573 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10574 BB->addSuccessor(loopMBB); 10575 BB->addSuccessor(exitMBB); 10576 10577 // exitMBB: 10578 // ... 10579 BB = exitMBB; 10580 return BB; 10581 } 10582 10583 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10584 MachineInstr &MI, MachineBasicBlock *BB, 10585 bool is8bit, // operation 10586 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10587 // If we support part-word atomic mnemonics, just use them 10588 if (Subtarget.hasPartwordAtomics()) 10589 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10590 CmpPred); 10591 10592 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10593 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10594 // In 64 bit mode we have to use 64 bits for addresses, even though the 10595 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10596 // registers without caring whether they're 32 or 64, but here we're 10597 // doing actual arithmetic on the addresses. 10598 bool is64bit = Subtarget.isPPC64(); 10599 bool isLittleEndian = Subtarget.isLittleEndian(); 10600 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10601 10602 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10603 MachineFunction *F = BB->getParent(); 10604 MachineFunction::iterator It = ++BB->getIterator(); 10605 10606 Register dest = MI.getOperand(0).getReg(); 10607 Register ptrA = MI.getOperand(1).getReg(); 10608 Register ptrB = MI.getOperand(2).getReg(); 10609 Register incr = MI.getOperand(3).getReg(); 10610 DebugLoc dl = MI.getDebugLoc(); 10611 10612 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10613 MachineBasicBlock *loop2MBB = 10614 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10615 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10616 F->insert(It, loopMBB); 10617 if (CmpOpcode) 10618 F->insert(It, loop2MBB); 10619 F->insert(It, exitMBB); 10620 exitMBB->splice(exitMBB->begin(), BB, 10621 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10622 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10623 10624 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10625 const TargetRegisterClass *RC = 10626 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10627 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10628 10629 Register PtrReg = RegInfo.createVirtualRegister(RC); 10630 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10631 Register ShiftReg = 10632 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10633 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10634 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10635 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10636 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10637 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10638 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10639 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10640 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10641 Register Ptr1Reg; 10642 Register TmpReg = 10643 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10644 10645 // thisMBB: 10646 // ... 10647 // fallthrough --> loopMBB 10648 BB->addSuccessor(loopMBB); 10649 10650 // The 4-byte load must be aligned, while a char or short may be 10651 // anywhere in the word. Hence all this nasty bookkeeping code. 10652 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10653 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10654 // xori shift, shift1, 24 [16] 10655 // rlwinm ptr, ptr1, 0, 0, 29 10656 // slw incr2, incr, shift 10657 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10658 // slw mask, mask2, shift 10659 // loopMBB: 10660 // lwarx tmpDest, ptr 10661 // add tmp, tmpDest, incr2 10662 // andc tmp2, tmpDest, mask 10663 // and tmp3, tmp, mask 10664 // or tmp4, tmp3, tmp2 10665 // stwcx. tmp4, ptr 10666 // bne- loopMBB 10667 // fallthrough --> exitMBB 10668 // srw dest, tmpDest, shift 10669 if (ptrA != ZeroReg) { 10670 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10671 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10672 .addReg(ptrA) 10673 .addReg(ptrB); 10674 } else { 10675 Ptr1Reg = ptrB; 10676 } 10677 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10678 // mode. 10679 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10680 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10681 .addImm(3) 10682 .addImm(27) 10683 .addImm(is8bit ? 28 : 27); 10684 if (!isLittleEndian) 10685 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10686 .addReg(Shift1Reg) 10687 .addImm(is8bit ? 24 : 16); 10688 if (is64bit) 10689 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10690 .addReg(Ptr1Reg) 10691 .addImm(0) 10692 .addImm(61); 10693 else 10694 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10695 .addReg(Ptr1Reg) 10696 .addImm(0) 10697 .addImm(0) 10698 .addImm(29); 10699 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10700 if (is8bit) 10701 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10702 else { 10703 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10704 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10705 .addReg(Mask3Reg) 10706 .addImm(65535); 10707 } 10708 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10709 .addReg(Mask2Reg) 10710 .addReg(ShiftReg); 10711 10712 BB = loopMBB; 10713 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10714 .addReg(ZeroReg) 10715 .addReg(PtrReg); 10716 if (BinOpcode) 10717 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10718 .addReg(Incr2Reg) 10719 .addReg(TmpDestReg); 10720 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10721 .addReg(TmpDestReg) 10722 .addReg(MaskReg); 10723 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10724 if (CmpOpcode) { 10725 // For unsigned comparisons, we can directly compare the shifted values. 10726 // For signed comparisons we shift and sign extend. 10727 Register SReg = RegInfo.createVirtualRegister(GPRC); 10728 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10729 .addReg(TmpDestReg) 10730 .addReg(MaskReg); 10731 unsigned ValueReg = SReg; 10732 unsigned CmpReg = Incr2Reg; 10733 if (CmpOpcode == PPC::CMPW) { 10734 ValueReg = RegInfo.createVirtualRegister(GPRC); 10735 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10736 .addReg(SReg) 10737 .addReg(ShiftReg); 10738 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10739 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10740 .addReg(ValueReg); 10741 ValueReg = ValueSReg; 10742 CmpReg = incr; 10743 } 10744 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10745 .addReg(CmpReg) 10746 .addReg(ValueReg); 10747 BuildMI(BB, dl, TII->get(PPC::BCC)) 10748 .addImm(CmpPred) 10749 .addReg(PPC::CR0) 10750 .addMBB(exitMBB); 10751 BB->addSuccessor(loop2MBB); 10752 BB->addSuccessor(exitMBB); 10753 BB = loop2MBB; 10754 } 10755 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10756 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10757 .addReg(Tmp4Reg) 10758 .addReg(ZeroReg) 10759 .addReg(PtrReg); 10760 BuildMI(BB, dl, TII->get(PPC::BCC)) 10761 .addImm(PPC::PRED_NE) 10762 .addReg(PPC::CR0) 10763 .addMBB(loopMBB); 10764 BB->addSuccessor(loopMBB); 10765 BB->addSuccessor(exitMBB); 10766 10767 // exitMBB: 10768 // ... 10769 BB = exitMBB; 10770 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10771 .addReg(TmpDestReg) 10772 .addReg(ShiftReg); 10773 return BB; 10774 } 10775 10776 llvm::MachineBasicBlock * 10777 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10778 MachineBasicBlock *MBB) const { 10779 DebugLoc DL = MI.getDebugLoc(); 10780 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10781 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10782 10783 MachineFunction *MF = MBB->getParent(); 10784 MachineRegisterInfo &MRI = MF->getRegInfo(); 10785 10786 const BasicBlock *BB = MBB->getBasicBlock(); 10787 MachineFunction::iterator I = ++MBB->getIterator(); 10788 10789 Register DstReg = MI.getOperand(0).getReg(); 10790 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10791 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10792 Register mainDstReg = MRI.createVirtualRegister(RC); 10793 Register restoreDstReg = MRI.createVirtualRegister(RC); 10794 10795 MVT PVT = getPointerTy(MF->getDataLayout()); 10796 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10797 "Invalid Pointer Size!"); 10798 // For v = setjmp(buf), we generate 10799 // 10800 // thisMBB: 10801 // SjLjSetup mainMBB 10802 // bl mainMBB 10803 // v_restore = 1 10804 // b sinkMBB 10805 // 10806 // mainMBB: 10807 // buf[LabelOffset] = LR 10808 // v_main = 0 10809 // 10810 // sinkMBB: 10811 // v = phi(main, restore) 10812 // 10813 10814 MachineBasicBlock *thisMBB = MBB; 10815 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10816 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10817 MF->insert(I, mainMBB); 10818 MF->insert(I, sinkMBB); 10819 10820 MachineInstrBuilder MIB; 10821 10822 // Transfer the remainder of BB and its successor edges to sinkMBB. 10823 sinkMBB->splice(sinkMBB->begin(), MBB, 10824 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10825 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10826 10827 // Note that the structure of the jmp_buf used here is not compatible 10828 // with that used by libc, and is not designed to be. Specifically, it 10829 // stores only those 'reserved' registers that LLVM does not otherwise 10830 // understand how to spill. Also, by convention, by the time this 10831 // intrinsic is called, Clang has already stored the frame address in the 10832 // first slot of the buffer and stack address in the third. Following the 10833 // X86 target code, we'll store the jump address in the second slot. We also 10834 // need to save the TOC pointer (R2) to handle jumps between shared 10835 // libraries, and that will be stored in the fourth slot. The thread 10836 // identifier (R13) is not affected. 10837 10838 // thisMBB: 10839 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10840 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10841 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10842 10843 // Prepare IP either in reg. 10844 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10845 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10846 Register BufReg = MI.getOperand(1).getReg(); 10847 10848 if (Subtarget.is64BitELFABI()) { 10849 setUsesTOCBasePtr(*MBB->getParent()); 10850 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10851 .addReg(PPC::X2) 10852 .addImm(TOCOffset) 10853 .addReg(BufReg) 10854 .cloneMemRefs(MI); 10855 } 10856 10857 // Naked functions never have a base pointer, and so we use r1. For all 10858 // other functions, this decision must be delayed until during PEI. 10859 unsigned BaseReg; 10860 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10861 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10862 else 10863 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10864 10865 MIB = BuildMI(*thisMBB, MI, DL, 10866 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10867 .addReg(BaseReg) 10868 .addImm(BPOffset) 10869 .addReg(BufReg) 10870 .cloneMemRefs(MI); 10871 10872 // Setup 10873 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10874 MIB.addRegMask(TRI->getNoPreservedMask()); 10875 10876 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10877 10878 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10879 .addMBB(mainMBB); 10880 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10881 10882 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10883 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10884 10885 // mainMBB: 10886 // mainDstReg = 0 10887 MIB = 10888 BuildMI(mainMBB, DL, 10889 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10890 10891 // Store IP 10892 if (Subtarget.isPPC64()) { 10893 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10894 .addReg(LabelReg) 10895 .addImm(LabelOffset) 10896 .addReg(BufReg); 10897 } else { 10898 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10899 .addReg(LabelReg) 10900 .addImm(LabelOffset) 10901 .addReg(BufReg); 10902 } 10903 MIB.cloneMemRefs(MI); 10904 10905 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10906 mainMBB->addSuccessor(sinkMBB); 10907 10908 // sinkMBB: 10909 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10910 TII->get(PPC::PHI), DstReg) 10911 .addReg(mainDstReg).addMBB(mainMBB) 10912 .addReg(restoreDstReg).addMBB(thisMBB); 10913 10914 MI.eraseFromParent(); 10915 return sinkMBB; 10916 } 10917 10918 MachineBasicBlock * 10919 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10920 MachineBasicBlock *MBB) const { 10921 DebugLoc DL = MI.getDebugLoc(); 10922 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10923 10924 MachineFunction *MF = MBB->getParent(); 10925 MachineRegisterInfo &MRI = MF->getRegInfo(); 10926 10927 MVT PVT = getPointerTy(MF->getDataLayout()); 10928 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10929 "Invalid Pointer Size!"); 10930 10931 const TargetRegisterClass *RC = 10932 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10933 Register Tmp = MRI.createVirtualRegister(RC); 10934 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10935 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10936 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10937 unsigned BP = 10938 (PVT == MVT::i64) 10939 ? PPC::X30 10940 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10941 : PPC::R30); 10942 10943 MachineInstrBuilder MIB; 10944 10945 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10946 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10947 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10948 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10949 10950 Register BufReg = MI.getOperand(0).getReg(); 10951 10952 // Reload FP (the jumped-to function may not have had a 10953 // frame pointer, and if so, then its r31 will be restored 10954 // as necessary). 10955 if (PVT == MVT::i64) { 10956 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10957 .addImm(0) 10958 .addReg(BufReg); 10959 } else { 10960 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10961 .addImm(0) 10962 .addReg(BufReg); 10963 } 10964 MIB.cloneMemRefs(MI); 10965 10966 // Reload IP 10967 if (PVT == MVT::i64) { 10968 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10969 .addImm(LabelOffset) 10970 .addReg(BufReg); 10971 } else { 10972 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10973 .addImm(LabelOffset) 10974 .addReg(BufReg); 10975 } 10976 MIB.cloneMemRefs(MI); 10977 10978 // Reload SP 10979 if (PVT == MVT::i64) { 10980 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10981 .addImm(SPOffset) 10982 .addReg(BufReg); 10983 } else { 10984 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10985 .addImm(SPOffset) 10986 .addReg(BufReg); 10987 } 10988 MIB.cloneMemRefs(MI); 10989 10990 // Reload BP 10991 if (PVT == MVT::i64) { 10992 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10993 .addImm(BPOffset) 10994 .addReg(BufReg); 10995 } else { 10996 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10997 .addImm(BPOffset) 10998 .addReg(BufReg); 10999 } 11000 MIB.cloneMemRefs(MI); 11001 11002 // Reload TOC 11003 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11004 setUsesTOCBasePtr(*MBB->getParent()); 11005 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11006 .addImm(TOCOffset) 11007 .addReg(BufReg) 11008 .cloneMemRefs(MI); 11009 } 11010 11011 // Jump 11012 BuildMI(*MBB, MI, DL, 11013 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11014 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11015 11016 MI.eraseFromParent(); 11017 return MBB; 11018 } 11019 11020 MachineBasicBlock * 11021 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11022 MachineBasicBlock *BB) const { 11023 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11024 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11025 if (Subtarget.is64BitELFABI() && 11026 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11027 // Call lowering should have added an r2 operand to indicate a dependence 11028 // on the TOC base pointer value. It can't however, because there is no 11029 // way to mark the dependence as implicit there, and so the stackmap code 11030 // will confuse it with a regular operand. Instead, add the dependence 11031 // here. 11032 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11033 } 11034 11035 return emitPatchPoint(MI, BB); 11036 } 11037 11038 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11039 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11040 return emitEHSjLjSetJmp(MI, BB); 11041 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11042 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11043 return emitEHSjLjLongJmp(MI, BB); 11044 } 11045 11046 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11047 11048 // To "insert" these instructions we actually have to insert their 11049 // control-flow patterns. 11050 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11051 MachineFunction::iterator It = ++BB->getIterator(); 11052 11053 MachineFunction *F = BB->getParent(); 11054 11055 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11056 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11057 MI.getOpcode() == PPC::SELECT_I8) { 11058 SmallVector<MachineOperand, 2> Cond; 11059 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11060 MI.getOpcode() == PPC::SELECT_CC_I8) 11061 Cond.push_back(MI.getOperand(4)); 11062 else 11063 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11064 Cond.push_back(MI.getOperand(1)); 11065 11066 DebugLoc dl = MI.getDebugLoc(); 11067 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11068 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11069 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11070 MI.getOpcode() == PPC::SELECT_CC_I8 || 11071 MI.getOpcode() == PPC::SELECT_CC_F4 || 11072 MI.getOpcode() == PPC::SELECT_CC_F8 || 11073 MI.getOpcode() == PPC::SELECT_CC_F16 || 11074 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11075 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11076 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11077 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11078 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11079 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11080 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11081 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11082 MI.getOpcode() == PPC::SELECT_CC_SPE || 11083 MI.getOpcode() == PPC::SELECT_I4 || 11084 MI.getOpcode() == PPC::SELECT_I8 || 11085 MI.getOpcode() == PPC::SELECT_F4 || 11086 MI.getOpcode() == PPC::SELECT_F8 || 11087 MI.getOpcode() == PPC::SELECT_F16 || 11088 MI.getOpcode() == PPC::SELECT_QFRC || 11089 MI.getOpcode() == PPC::SELECT_QSRC || 11090 MI.getOpcode() == PPC::SELECT_QBRC || 11091 MI.getOpcode() == PPC::SELECT_SPE || 11092 MI.getOpcode() == PPC::SELECT_SPE4 || 11093 MI.getOpcode() == PPC::SELECT_VRRC || 11094 MI.getOpcode() == PPC::SELECT_VSFRC || 11095 MI.getOpcode() == PPC::SELECT_VSSRC || 11096 MI.getOpcode() == PPC::SELECT_VSRC) { 11097 // The incoming instruction knows the destination vreg to set, the 11098 // condition code register to branch on, the true/false values to 11099 // select between, and a branch opcode to use. 11100 11101 // thisMBB: 11102 // ... 11103 // TrueVal = ... 11104 // cmpTY ccX, r1, r2 11105 // bCC copy1MBB 11106 // fallthrough --> copy0MBB 11107 MachineBasicBlock *thisMBB = BB; 11108 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11109 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11110 DebugLoc dl = MI.getDebugLoc(); 11111 F->insert(It, copy0MBB); 11112 F->insert(It, sinkMBB); 11113 11114 // Transfer the remainder of BB and its successor edges to sinkMBB. 11115 sinkMBB->splice(sinkMBB->begin(), BB, 11116 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11117 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11118 11119 // Next, add the true and fallthrough blocks as its successors. 11120 BB->addSuccessor(copy0MBB); 11121 BB->addSuccessor(sinkMBB); 11122 11123 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11124 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11125 MI.getOpcode() == PPC::SELECT_F16 || 11126 MI.getOpcode() == PPC::SELECT_SPE4 || 11127 MI.getOpcode() == PPC::SELECT_SPE || 11128 MI.getOpcode() == PPC::SELECT_QFRC || 11129 MI.getOpcode() == PPC::SELECT_QSRC || 11130 MI.getOpcode() == PPC::SELECT_QBRC || 11131 MI.getOpcode() == PPC::SELECT_VRRC || 11132 MI.getOpcode() == PPC::SELECT_VSFRC || 11133 MI.getOpcode() == PPC::SELECT_VSSRC || 11134 MI.getOpcode() == PPC::SELECT_VSRC) { 11135 BuildMI(BB, dl, TII->get(PPC::BC)) 11136 .addReg(MI.getOperand(1).getReg()) 11137 .addMBB(sinkMBB); 11138 } else { 11139 unsigned SelectPred = MI.getOperand(4).getImm(); 11140 BuildMI(BB, dl, TII->get(PPC::BCC)) 11141 .addImm(SelectPred) 11142 .addReg(MI.getOperand(1).getReg()) 11143 .addMBB(sinkMBB); 11144 } 11145 11146 // copy0MBB: 11147 // %FalseValue = ... 11148 // # fallthrough to sinkMBB 11149 BB = copy0MBB; 11150 11151 // Update machine-CFG edges 11152 BB->addSuccessor(sinkMBB); 11153 11154 // sinkMBB: 11155 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11156 // ... 11157 BB = sinkMBB; 11158 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11159 .addReg(MI.getOperand(3).getReg()) 11160 .addMBB(copy0MBB) 11161 .addReg(MI.getOperand(2).getReg()) 11162 .addMBB(thisMBB); 11163 } else if (MI.getOpcode() == PPC::ReadTB) { 11164 // To read the 64-bit time-base register on a 32-bit target, we read the 11165 // two halves. Should the counter have wrapped while it was being read, we 11166 // need to try again. 11167 // ... 11168 // readLoop: 11169 // mfspr Rx,TBU # load from TBU 11170 // mfspr Ry,TB # load from TB 11171 // mfspr Rz,TBU # load from TBU 11172 // cmpw crX,Rx,Rz # check if 'old'='new' 11173 // bne readLoop # branch if they're not equal 11174 // ... 11175 11176 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11177 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11178 DebugLoc dl = MI.getDebugLoc(); 11179 F->insert(It, readMBB); 11180 F->insert(It, sinkMBB); 11181 11182 // Transfer the remainder of BB and its successor edges to sinkMBB. 11183 sinkMBB->splice(sinkMBB->begin(), BB, 11184 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11185 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11186 11187 BB->addSuccessor(readMBB); 11188 BB = readMBB; 11189 11190 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11191 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11192 Register LoReg = MI.getOperand(0).getReg(); 11193 Register HiReg = MI.getOperand(1).getReg(); 11194 11195 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11196 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11197 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11198 11199 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11200 11201 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11202 .addReg(HiReg) 11203 .addReg(ReadAgainReg); 11204 BuildMI(BB, dl, TII->get(PPC::BCC)) 11205 .addImm(PPC::PRED_NE) 11206 .addReg(CmpReg) 11207 .addMBB(readMBB); 11208 11209 BB->addSuccessor(readMBB); 11210 BB->addSuccessor(sinkMBB); 11211 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11212 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11213 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11214 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11215 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11216 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11217 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11218 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11219 11220 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11221 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11222 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11223 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11224 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11225 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11226 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11227 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11228 11229 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11230 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11231 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11232 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11233 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11234 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11235 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11236 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11237 11238 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11239 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11240 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11241 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11242 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11243 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11244 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11245 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11246 11247 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11248 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11249 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11250 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11251 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11252 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11253 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11254 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11255 11256 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11257 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11258 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11259 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11260 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11261 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11262 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11263 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11264 11265 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11266 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11267 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11268 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11269 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11270 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11272 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11273 11274 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11275 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11276 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11277 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11278 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11279 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11281 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11282 11283 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11284 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11286 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11288 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11290 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11291 11292 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11293 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11295 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11297 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11299 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11300 11301 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11302 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11303 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11304 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11305 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11306 BB = EmitAtomicBinary(MI, BB, 4, 0); 11307 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11308 BB = EmitAtomicBinary(MI, BB, 8, 0); 11309 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11310 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11311 (Subtarget.hasPartwordAtomics() && 11312 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11313 (Subtarget.hasPartwordAtomics() && 11314 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11315 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11316 11317 auto LoadMnemonic = PPC::LDARX; 11318 auto StoreMnemonic = PPC::STDCX; 11319 switch (MI.getOpcode()) { 11320 default: 11321 llvm_unreachable("Compare and swap of unknown size"); 11322 case PPC::ATOMIC_CMP_SWAP_I8: 11323 LoadMnemonic = PPC::LBARX; 11324 StoreMnemonic = PPC::STBCX; 11325 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11326 break; 11327 case PPC::ATOMIC_CMP_SWAP_I16: 11328 LoadMnemonic = PPC::LHARX; 11329 StoreMnemonic = PPC::STHCX; 11330 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11331 break; 11332 case PPC::ATOMIC_CMP_SWAP_I32: 11333 LoadMnemonic = PPC::LWARX; 11334 StoreMnemonic = PPC::STWCX; 11335 break; 11336 case PPC::ATOMIC_CMP_SWAP_I64: 11337 LoadMnemonic = PPC::LDARX; 11338 StoreMnemonic = PPC::STDCX; 11339 break; 11340 } 11341 Register dest = MI.getOperand(0).getReg(); 11342 Register ptrA = MI.getOperand(1).getReg(); 11343 Register ptrB = MI.getOperand(2).getReg(); 11344 Register oldval = MI.getOperand(3).getReg(); 11345 Register newval = MI.getOperand(4).getReg(); 11346 DebugLoc dl = MI.getDebugLoc(); 11347 11348 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11349 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11350 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11351 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11352 F->insert(It, loop1MBB); 11353 F->insert(It, loop2MBB); 11354 F->insert(It, midMBB); 11355 F->insert(It, exitMBB); 11356 exitMBB->splice(exitMBB->begin(), BB, 11357 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11358 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11359 11360 // thisMBB: 11361 // ... 11362 // fallthrough --> loopMBB 11363 BB->addSuccessor(loop1MBB); 11364 11365 // loop1MBB: 11366 // l[bhwd]arx dest, ptr 11367 // cmp[wd] dest, oldval 11368 // bne- midMBB 11369 // loop2MBB: 11370 // st[bhwd]cx. newval, ptr 11371 // bne- loopMBB 11372 // b exitBB 11373 // midMBB: 11374 // st[bhwd]cx. dest, ptr 11375 // exitBB: 11376 BB = loop1MBB; 11377 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11378 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11379 .addReg(oldval) 11380 .addReg(dest); 11381 BuildMI(BB, dl, TII->get(PPC::BCC)) 11382 .addImm(PPC::PRED_NE) 11383 .addReg(PPC::CR0) 11384 .addMBB(midMBB); 11385 BB->addSuccessor(loop2MBB); 11386 BB->addSuccessor(midMBB); 11387 11388 BB = loop2MBB; 11389 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11390 .addReg(newval) 11391 .addReg(ptrA) 11392 .addReg(ptrB); 11393 BuildMI(BB, dl, TII->get(PPC::BCC)) 11394 .addImm(PPC::PRED_NE) 11395 .addReg(PPC::CR0) 11396 .addMBB(loop1MBB); 11397 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11398 BB->addSuccessor(loop1MBB); 11399 BB->addSuccessor(exitMBB); 11400 11401 BB = midMBB; 11402 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11403 .addReg(dest) 11404 .addReg(ptrA) 11405 .addReg(ptrB); 11406 BB->addSuccessor(exitMBB); 11407 11408 // exitMBB: 11409 // ... 11410 BB = exitMBB; 11411 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11412 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11413 // We must use 64-bit registers for addresses when targeting 64-bit, 11414 // since we're actually doing arithmetic on them. Other registers 11415 // can be 32-bit. 11416 bool is64bit = Subtarget.isPPC64(); 11417 bool isLittleEndian = Subtarget.isLittleEndian(); 11418 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11419 11420 Register dest = MI.getOperand(0).getReg(); 11421 Register ptrA = MI.getOperand(1).getReg(); 11422 Register ptrB = MI.getOperand(2).getReg(); 11423 Register oldval = MI.getOperand(3).getReg(); 11424 Register newval = MI.getOperand(4).getReg(); 11425 DebugLoc dl = MI.getDebugLoc(); 11426 11427 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11428 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11429 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11430 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11431 F->insert(It, loop1MBB); 11432 F->insert(It, loop2MBB); 11433 F->insert(It, midMBB); 11434 F->insert(It, exitMBB); 11435 exitMBB->splice(exitMBB->begin(), BB, 11436 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11437 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11438 11439 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11440 const TargetRegisterClass *RC = 11441 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11442 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11443 11444 Register PtrReg = RegInfo.createVirtualRegister(RC); 11445 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11446 Register ShiftReg = 11447 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11448 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11449 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11450 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11451 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11452 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11453 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11454 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11455 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11456 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11457 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11458 Register Ptr1Reg; 11459 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11460 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11461 // thisMBB: 11462 // ... 11463 // fallthrough --> loopMBB 11464 BB->addSuccessor(loop1MBB); 11465 11466 // The 4-byte load must be aligned, while a char or short may be 11467 // anywhere in the word. Hence all this nasty bookkeeping code. 11468 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11469 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11470 // xori shift, shift1, 24 [16] 11471 // rlwinm ptr, ptr1, 0, 0, 29 11472 // slw newval2, newval, shift 11473 // slw oldval2, oldval,shift 11474 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11475 // slw mask, mask2, shift 11476 // and newval3, newval2, mask 11477 // and oldval3, oldval2, mask 11478 // loop1MBB: 11479 // lwarx tmpDest, ptr 11480 // and tmp, tmpDest, mask 11481 // cmpw tmp, oldval3 11482 // bne- midMBB 11483 // loop2MBB: 11484 // andc tmp2, tmpDest, mask 11485 // or tmp4, tmp2, newval3 11486 // stwcx. tmp4, ptr 11487 // bne- loop1MBB 11488 // b exitBB 11489 // midMBB: 11490 // stwcx. tmpDest, ptr 11491 // exitBB: 11492 // srw dest, tmpDest, shift 11493 if (ptrA != ZeroReg) { 11494 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11495 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11496 .addReg(ptrA) 11497 .addReg(ptrB); 11498 } else { 11499 Ptr1Reg = ptrB; 11500 } 11501 11502 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11503 // mode. 11504 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11505 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11506 .addImm(3) 11507 .addImm(27) 11508 .addImm(is8bit ? 28 : 27); 11509 if (!isLittleEndian) 11510 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11511 .addReg(Shift1Reg) 11512 .addImm(is8bit ? 24 : 16); 11513 if (is64bit) 11514 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11515 .addReg(Ptr1Reg) 11516 .addImm(0) 11517 .addImm(61); 11518 else 11519 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11520 .addReg(Ptr1Reg) 11521 .addImm(0) 11522 .addImm(0) 11523 .addImm(29); 11524 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11525 .addReg(newval) 11526 .addReg(ShiftReg); 11527 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11528 .addReg(oldval) 11529 .addReg(ShiftReg); 11530 if (is8bit) 11531 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11532 else { 11533 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11534 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11535 .addReg(Mask3Reg) 11536 .addImm(65535); 11537 } 11538 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11539 .addReg(Mask2Reg) 11540 .addReg(ShiftReg); 11541 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11542 .addReg(NewVal2Reg) 11543 .addReg(MaskReg); 11544 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11545 .addReg(OldVal2Reg) 11546 .addReg(MaskReg); 11547 11548 BB = loop1MBB; 11549 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11550 .addReg(ZeroReg) 11551 .addReg(PtrReg); 11552 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11553 .addReg(TmpDestReg) 11554 .addReg(MaskReg); 11555 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11556 .addReg(TmpReg) 11557 .addReg(OldVal3Reg); 11558 BuildMI(BB, dl, TII->get(PPC::BCC)) 11559 .addImm(PPC::PRED_NE) 11560 .addReg(PPC::CR0) 11561 .addMBB(midMBB); 11562 BB->addSuccessor(loop2MBB); 11563 BB->addSuccessor(midMBB); 11564 11565 BB = loop2MBB; 11566 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11567 .addReg(TmpDestReg) 11568 .addReg(MaskReg); 11569 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11570 .addReg(Tmp2Reg) 11571 .addReg(NewVal3Reg); 11572 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11573 .addReg(Tmp4Reg) 11574 .addReg(ZeroReg) 11575 .addReg(PtrReg); 11576 BuildMI(BB, dl, TII->get(PPC::BCC)) 11577 .addImm(PPC::PRED_NE) 11578 .addReg(PPC::CR0) 11579 .addMBB(loop1MBB); 11580 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11581 BB->addSuccessor(loop1MBB); 11582 BB->addSuccessor(exitMBB); 11583 11584 BB = midMBB; 11585 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11586 .addReg(TmpDestReg) 11587 .addReg(ZeroReg) 11588 .addReg(PtrReg); 11589 BB->addSuccessor(exitMBB); 11590 11591 // exitMBB: 11592 // ... 11593 BB = exitMBB; 11594 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11595 .addReg(TmpReg) 11596 .addReg(ShiftReg); 11597 } else if (MI.getOpcode() == PPC::FADDrtz) { 11598 // This pseudo performs an FADD with rounding mode temporarily forced 11599 // to round-to-zero. We emit this via custom inserter since the FPSCR 11600 // is not modeled at the SelectionDAG level. 11601 Register Dest = MI.getOperand(0).getReg(); 11602 Register Src1 = MI.getOperand(1).getReg(); 11603 Register Src2 = MI.getOperand(2).getReg(); 11604 DebugLoc dl = MI.getDebugLoc(); 11605 11606 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11607 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11608 11609 // Save FPSCR value. 11610 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11611 11612 // Set rounding mode to round-to-zero. 11613 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11614 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11615 11616 // Perform addition. 11617 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11618 11619 // Restore FPSCR value. 11620 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11621 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11622 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11623 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11624 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11625 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11626 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11627 ? PPC::ANDI8o 11628 : PPC::ANDIo; 11629 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11630 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11631 11632 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11633 Register Dest = RegInfo.createVirtualRegister( 11634 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11635 11636 DebugLoc dl = MI.getDebugLoc(); 11637 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11638 .addReg(MI.getOperand(1).getReg()) 11639 .addImm(1); 11640 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11641 MI.getOperand(0).getReg()) 11642 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11643 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11644 DebugLoc Dl = MI.getDebugLoc(); 11645 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11646 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11647 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11648 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11649 MI.getOperand(0).getReg()) 11650 .addReg(CRReg); 11651 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11652 DebugLoc Dl = MI.getDebugLoc(); 11653 unsigned Imm = MI.getOperand(1).getImm(); 11654 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11655 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11656 MI.getOperand(0).getReg()) 11657 .addReg(PPC::CR0EQ); 11658 } else if (MI.getOpcode() == PPC::SETRNDi) { 11659 DebugLoc dl = MI.getDebugLoc(); 11660 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11661 11662 // Save FPSCR value. 11663 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11664 11665 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11666 // the following settings: 11667 // 00 Round to nearest 11668 // 01 Round to 0 11669 // 10 Round to +inf 11670 // 11 Round to -inf 11671 11672 // When the operand is immediate, using the two least significant bits of 11673 // the immediate to set the bits 62:63 of FPSCR. 11674 unsigned Mode = MI.getOperand(1).getImm(); 11675 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11676 .addImm(31); 11677 11678 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11679 .addImm(30); 11680 } else if (MI.getOpcode() == PPC::SETRND) { 11681 DebugLoc dl = MI.getDebugLoc(); 11682 11683 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11684 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11685 // If the target doesn't have DirectMove, we should use stack to do the 11686 // conversion, because the target doesn't have the instructions like mtvsrd 11687 // or mfvsrd to do this conversion directly. 11688 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11689 if (Subtarget.hasDirectMove()) { 11690 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11691 .addReg(SrcReg); 11692 } else { 11693 // Use stack to do the register copy. 11694 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11695 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11696 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11697 if (RC == &PPC::F8RCRegClass) { 11698 // Copy register from F8RCRegClass to G8RCRegclass. 11699 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11700 "Unsupported RegClass."); 11701 11702 StoreOp = PPC::STFD; 11703 LoadOp = PPC::LD; 11704 } else { 11705 // Copy register from G8RCRegClass to F8RCRegclass. 11706 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11707 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11708 "Unsupported RegClass."); 11709 } 11710 11711 MachineFrameInfo &MFI = F->getFrameInfo(); 11712 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11713 11714 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11715 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11716 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11717 MFI.getObjectAlignment(FrameIdx)); 11718 11719 // Store the SrcReg into the stack. 11720 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11721 .addReg(SrcReg) 11722 .addImm(0) 11723 .addFrameIndex(FrameIdx) 11724 .addMemOperand(MMOStore); 11725 11726 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11727 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11728 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11729 MFI.getObjectAlignment(FrameIdx)); 11730 11731 // Load from the stack where SrcReg is stored, and save to DestReg, 11732 // so we have done the RegClass conversion from RegClass::SrcReg to 11733 // RegClass::DestReg. 11734 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11735 .addImm(0) 11736 .addFrameIndex(FrameIdx) 11737 .addMemOperand(MMOLoad); 11738 } 11739 }; 11740 11741 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11742 11743 // Save FPSCR value. 11744 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11745 11746 // When the operand is gprc register, use two least significant bits of the 11747 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11748 // 11749 // copy OldFPSCRTmpReg, OldFPSCRReg 11750 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11751 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11752 // copy NewFPSCRReg, NewFPSCRTmpReg 11753 // mtfsf 255, NewFPSCRReg 11754 MachineOperand SrcOp = MI.getOperand(1); 11755 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11756 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11757 11758 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11759 11760 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11761 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11762 11763 // The first operand of INSERT_SUBREG should be a register which has 11764 // subregisters, we only care about its RegClass, so we should use an 11765 // IMPLICIT_DEF register. 11766 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11767 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11768 .addReg(ImDefReg) 11769 .add(SrcOp) 11770 .addImm(1); 11771 11772 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11773 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11774 .addReg(OldFPSCRTmpReg) 11775 .addReg(ExtSrcReg) 11776 .addImm(0) 11777 .addImm(62); 11778 11779 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11780 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11781 11782 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11783 // bits of FPSCR. 11784 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11785 .addImm(255) 11786 .addReg(NewFPSCRReg) 11787 .addImm(0) 11788 .addImm(0); 11789 } else { 11790 llvm_unreachable("Unexpected instr type to insert"); 11791 } 11792 11793 MI.eraseFromParent(); // The pseudo instruction is gone now. 11794 return BB; 11795 } 11796 11797 //===----------------------------------------------------------------------===// 11798 // Target Optimization Hooks 11799 //===----------------------------------------------------------------------===// 11800 11801 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11802 // For the estimates, convergence is quadratic, so we essentially double the 11803 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11804 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11805 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11806 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11807 if (VT.getScalarType() == MVT::f64) 11808 RefinementSteps++; 11809 return RefinementSteps; 11810 } 11811 11812 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11813 int Enabled, int &RefinementSteps, 11814 bool &UseOneConstNR, 11815 bool Reciprocal) const { 11816 EVT VT = Operand.getValueType(); 11817 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11818 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11819 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11820 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11821 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11822 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11823 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11824 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11825 11826 // The Newton-Raphson computation with a single constant does not provide 11827 // enough accuracy on some CPUs. 11828 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11829 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11830 } 11831 return SDValue(); 11832 } 11833 11834 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11835 int Enabled, 11836 int &RefinementSteps) const { 11837 EVT VT = Operand.getValueType(); 11838 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11839 (VT == MVT::f64 && Subtarget.hasFRE()) || 11840 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11841 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11842 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11843 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11844 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11845 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11846 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11847 } 11848 return SDValue(); 11849 } 11850 11851 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11852 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11853 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11854 // enabled for division), this functionality is redundant with the default 11855 // combiner logic (once the division -> reciprocal/multiply transformation 11856 // has taken place). As a result, this matters more for older cores than for 11857 // newer ones. 11858 11859 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11860 // reciprocal if there are two or more FDIVs (for embedded cores with only 11861 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11862 switch (Subtarget.getCPUDirective()) { 11863 default: 11864 return 3; 11865 case PPC::DIR_440: 11866 case PPC::DIR_A2: 11867 case PPC::DIR_E500: 11868 case PPC::DIR_E500mc: 11869 case PPC::DIR_E5500: 11870 return 2; 11871 } 11872 } 11873 11874 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11875 // collapsed, and so we need to look through chains of them. 11876 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11877 int64_t& Offset, SelectionDAG &DAG) { 11878 if (DAG.isBaseWithConstantOffset(Loc)) { 11879 Base = Loc.getOperand(0); 11880 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11881 11882 // The base might itself be a base plus an offset, and if so, accumulate 11883 // that as well. 11884 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11885 } 11886 } 11887 11888 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11889 unsigned Bytes, int Dist, 11890 SelectionDAG &DAG) { 11891 if (VT.getSizeInBits() / 8 != Bytes) 11892 return false; 11893 11894 SDValue BaseLoc = Base->getBasePtr(); 11895 if (Loc.getOpcode() == ISD::FrameIndex) { 11896 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11897 return false; 11898 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11899 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11900 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11901 int FS = MFI.getObjectSize(FI); 11902 int BFS = MFI.getObjectSize(BFI); 11903 if (FS != BFS || FS != (int)Bytes) return false; 11904 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11905 } 11906 11907 SDValue Base1 = Loc, Base2 = BaseLoc; 11908 int64_t Offset1 = 0, Offset2 = 0; 11909 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11910 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11911 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11912 return true; 11913 11914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11915 const GlobalValue *GV1 = nullptr; 11916 const GlobalValue *GV2 = nullptr; 11917 Offset1 = 0; 11918 Offset2 = 0; 11919 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11920 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11921 if (isGA1 && isGA2 && GV1 == GV2) 11922 return Offset1 == (Offset2 + Dist*Bytes); 11923 return false; 11924 } 11925 11926 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11927 // not enforce equality of the chain operands. 11928 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11929 unsigned Bytes, int Dist, 11930 SelectionDAG &DAG) { 11931 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11932 EVT VT = LS->getMemoryVT(); 11933 SDValue Loc = LS->getBasePtr(); 11934 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11935 } 11936 11937 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11938 EVT VT; 11939 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11940 default: return false; 11941 case Intrinsic::ppc_qpx_qvlfd: 11942 case Intrinsic::ppc_qpx_qvlfda: 11943 VT = MVT::v4f64; 11944 break; 11945 case Intrinsic::ppc_qpx_qvlfs: 11946 case Intrinsic::ppc_qpx_qvlfsa: 11947 VT = MVT::v4f32; 11948 break; 11949 case Intrinsic::ppc_qpx_qvlfcd: 11950 case Intrinsic::ppc_qpx_qvlfcda: 11951 VT = MVT::v2f64; 11952 break; 11953 case Intrinsic::ppc_qpx_qvlfcs: 11954 case Intrinsic::ppc_qpx_qvlfcsa: 11955 VT = MVT::v2f32; 11956 break; 11957 case Intrinsic::ppc_qpx_qvlfiwa: 11958 case Intrinsic::ppc_qpx_qvlfiwz: 11959 case Intrinsic::ppc_altivec_lvx: 11960 case Intrinsic::ppc_altivec_lvxl: 11961 case Intrinsic::ppc_vsx_lxvw4x: 11962 case Intrinsic::ppc_vsx_lxvw4x_be: 11963 VT = MVT::v4i32; 11964 break; 11965 case Intrinsic::ppc_vsx_lxvd2x: 11966 case Intrinsic::ppc_vsx_lxvd2x_be: 11967 VT = MVT::v2f64; 11968 break; 11969 case Intrinsic::ppc_altivec_lvebx: 11970 VT = MVT::i8; 11971 break; 11972 case Intrinsic::ppc_altivec_lvehx: 11973 VT = MVT::i16; 11974 break; 11975 case Intrinsic::ppc_altivec_lvewx: 11976 VT = MVT::i32; 11977 break; 11978 } 11979 11980 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11981 } 11982 11983 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11984 EVT VT; 11985 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11986 default: return false; 11987 case Intrinsic::ppc_qpx_qvstfd: 11988 case Intrinsic::ppc_qpx_qvstfda: 11989 VT = MVT::v4f64; 11990 break; 11991 case Intrinsic::ppc_qpx_qvstfs: 11992 case Intrinsic::ppc_qpx_qvstfsa: 11993 VT = MVT::v4f32; 11994 break; 11995 case Intrinsic::ppc_qpx_qvstfcd: 11996 case Intrinsic::ppc_qpx_qvstfcda: 11997 VT = MVT::v2f64; 11998 break; 11999 case Intrinsic::ppc_qpx_qvstfcs: 12000 case Intrinsic::ppc_qpx_qvstfcsa: 12001 VT = MVT::v2f32; 12002 break; 12003 case Intrinsic::ppc_qpx_qvstfiw: 12004 case Intrinsic::ppc_qpx_qvstfiwa: 12005 case Intrinsic::ppc_altivec_stvx: 12006 case Intrinsic::ppc_altivec_stvxl: 12007 case Intrinsic::ppc_vsx_stxvw4x: 12008 VT = MVT::v4i32; 12009 break; 12010 case Intrinsic::ppc_vsx_stxvd2x: 12011 VT = MVT::v2f64; 12012 break; 12013 case Intrinsic::ppc_vsx_stxvw4x_be: 12014 VT = MVT::v4i32; 12015 break; 12016 case Intrinsic::ppc_vsx_stxvd2x_be: 12017 VT = MVT::v2f64; 12018 break; 12019 case Intrinsic::ppc_altivec_stvebx: 12020 VT = MVT::i8; 12021 break; 12022 case Intrinsic::ppc_altivec_stvehx: 12023 VT = MVT::i16; 12024 break; 12025 case Intrinsic::ppc_altivec_stvewx: 12026 VT = MVT::i32; 12027 break; 12028 } 12029 12030 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12031 } 12032 12033 return false; 12034 } 12035 12036 // Return true is there is a nearyby consecutive load to the one provided 12037 // (regardless of alignment). We search up and down the chain, looking though 12038 // token factors and other loads (but nothing else). As a result, a true result 12039 // indicates that it is safe to create a new consecutive load adjacent to the 12040 // load provided. 12041 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12042 SDValue Chain = LD->getChain(); 12043 EVT VT = LD->getMemoryVT(); 12044 12045 SmallSet<SDNode *, 16> LoadRoots; 12046 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12047 SmallSet<SDNode *, 16> Visited; 12048 12049 // First, search up the chain, branching to follow all token-factor operands. 12050 // If we find a consecutive load, then we're done, otherwise, record all 12051 // nodes just above the top-level loads and token factors. 12052 while (!Queue.empty()) { 12053 SDNode *ChainNext = Queue.pop_back_val(); 12054 if (!Visited.insert(ChainNext).second) 12055 continue; 12056 12057 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12058 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12059 return true; 12060 12061 if (!Visited.count(ChainLD->getChain().getNode())) 12062 Queue.push_back(ChainLD->getChain().getNode()); 12063 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12064 for (const SDUse &O : ChainNext->ops()) 12065 if (!Visited.count(O.getNode())) 12066 Queue.push_back(O.getNode()); 12067 } else 12068 LoadRoots.insert(ChainNext); 12069 } 12070 12071 // Second, search down the chain, starting from the top-level nodes recorded 12072 // in the first phase. These top-level nodes are the nodes just above all 12073 // loads and token factors. Starting with their uses, recursively look though 12074 // all loads (just the chain uses) and token factors to find a consecutive 12075 // load. 12076 Visited.clear(); 12077 Queue.clear(); 12078 12079 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12080 IE = LoadRoots.end(); I != IE; ++I) { 12081 Queue.push_back(*I); 12082 12083 while (!Queue.empty()) { 12084 SDNode *LoadRoot = Queue.pop_back_val(); 12085 if (!Visited.insert(LoadRoot).second) 12086 continue; 12087 12088 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12089 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12090 return true; 12091 12092 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12093 UE = LoadRoot->use_end(); UI != UE; ++UI) 12094 if (((isa<MemSDNode>(*UI) && 12095 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12096 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12097 Queue.push_back(*UI); 12098 } 12099 } 12100 12101 return false; 12102 } 12103 12104 /// This function is called when we have proved that a SETCC node can be replaced 12105 /// by subtraction (and other supporting instructions) so that the result of 12106 /// comparison is kept in a GPR instead of CR. This function is purely for 12107 /// codegen purposes and has some flags to guide the codegen process. 12108 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12109 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12110 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12111 12112 // Zero extend the operands to the largest legal integer. Originally, they 12113 // must be of a strictly smaller size. 12114 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12115 DAG.getConstant(Size, DL, MVT::i32)); 12116 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12117 DAG.getConstant(Size, DL, MVT::i32)); 12118 12119 // Swap if needed. Depends on the condition code. 12120 if (Swap) 12121 std::swap(Op0, Op1); 12122 12123 // Subtract extended integers. 12124 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12125 12126 // Move the sign bit to the least significant position and zero out the rest. 12127 // Now the least significant bit carries the result of original comparison. 12128 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12129 DAG.getConstant(Size - 1, DL, MVT::i32)); 12130 auto Final = Shifted; 12131 12132 // Complement the result if needed. Based on the condition code. 12133 if (Complement) 12134 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12135 DAG.getConstant(1, DL, MVT::i64)); 12136 12137 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12138 } 12139 12140 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12141 DAGCombinerInfo &DCI) const { 12142 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12143 12144 SelectionDAG &DAG = DCI.DAG; 12145 SDLoc DL(N); 12146 12147 // Size of integers being compared has a critical role in the following 12148 // analysis, so we prefer to do this when all types are legal. 12149 if (!DCI.isAfterLegalizeDAG()) 12150 return SDValue(); 12151 12152 // If all users of SETCC extend its value to a legal integer type 12153 // then we replace SETCC with a subtraction 12154 for (SDNode::use_iterator UI = N->use_begin(), 12155 UE = N->use_end(); UI != UE; ++UI) { 12156 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12157 return SDValue(); 12158 } 12159 12160 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12161 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12162 12163 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12164 12165 if (OpSize < Size) { 12166 switch (CC) { 12167 default: break; 12168 case ISD::SETULT: 12169 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12170 case ISD::SETULE: 12171 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12172 case ISD::SETUGT: 12173 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12174 case ISD::SETUGE: 12175 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12176 } 12177 } 12178 12179 return SDValue(); 12180 } 12181 12182 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12183 DAGCombinerInfo &DCI) const { 12184 SelectionDAG &DAG = DCI.DAG; 12185 SDLoc dl(N); 12186 12187 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12188 // If we're tracking CR bits, we need to be careful that we don't have: 12189 // trunc(binary-ops(zext(x), zext(y))) 12190 // or 12191 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12192 // such that we're unnecessarily moving things into GPRs when it would be 12193 // better to keep them in CR bits. 12194 12195 // Note that trunc here can be an actual i1 trunc, or can be the effective 12196 // truncation that comes from a setcc or select_cc. 12197 if (N->getOpcode() == ISD::TRUNCATE && 12198 N->getValueType(0) != MVT::i1) 12199 return SDValue(); 12200 12201 if (N->getOperand(0).getValueType() != MVT::i32 && 12202 N->getOperand(0).getValueType() != MVT::i64) 12203 return SDValue(); 12204 12205 if (N->getOpcode() == ISD::SETCC || 12206 N->getOpcode() == ISD::SELECT_CC) { 12207 // If we're looking at a comparison, then we need to make sure that the 12208 // high bits (all except for the first) don't matter the result. 12209 ISD::CondCode CC = 12210 cast<CondCodeSDNode>(N->getOperand( 12211 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12212 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12213 12214 if (ISD::isSignedIntSetCC(CC)) { 12215 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12216 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12217 return SDValue(); 12218 } else if (ISD::isUnsignedIntSetCC(CC)) { 12219 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12220 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12221 !DAG.MaskedValueIsZero(N->getOperand(1), 12222 APInt::getHighBitsSet(OpBits, OpBits-1))) 12223 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12224 : SDValue()); 12225 } else { 12226 // This is neither a signed nor an unsigned comparison, just make sure 12227 // that the high bits are equal. 12228 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12229 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12230 12231 // We don't really care about what is known about the first bit (if 12232 // anything), so clear it in all masks prior to comparing them. 12233 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12234 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12235 12236 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12237 return SDValue(); 12238 } 12239 } 12240 12241 // We now know that the higher-order bits are irrelevant, we just need to 12242 // make sure that all of the intermediate operations are bit operations, and 12243 // all inputs are extensions. 12244 if (N->getOperand(0).getOpcode() != ISD::AND && 12245 N->getOperand(0).getOpcode() != ISD::OR && 12246 N->getOperand(0).getOpcode() != ISD::XOR && 12247 N->getOperand(0).getOpcode() != ISD::SELECT && 12248 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12249 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12250 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12251 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12252 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12253 return SDValue(); 12254 12255 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12256 N->getOperand(1).getOpcode() != ISD::AND && 12257 N->getOperand(1).getOpcode() != ISD::OR && 12258 N->getOperand(1).getOpcode() != ISD::XOR && 12259 N->getOperand(1).getOpcode() != ISD::SELECT && 12260 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12261 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12262 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12263 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12264 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12265 return SDValue(); 12266 12267 SmallVector<SDValue, 4> Inputs; 12268 SmallVector<SDValue, 8> BinOps, PromOps; 12269 SmallPtrSet<SDNode *, 16> Visited; 12270 12271 for (unsigned i = 0; i < 2; ++i) { 12272 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12273 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12274 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12275 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12276 isa<ConstantSDNode>(N->getOperand(i))) 12277 Inputs.push_back(N->getOperand(i)); 12278 else 12279 BinOps.push_back(N->getOperand(i)); 12280 12281 if (N->getOpcode() == ISD::TRUNCATE) 12282 break; 12283 } 12284 12285 // Visit all inputs, collect all binary operations (and, or, xor and 12286 // select) that are all fed by extensions. 12287 while (!BinOps.empty()) { 12288 SDValue BinOp = BinOps.back(); 12289 BinOps.pop_back(); 12290 12291 if (!Visited.insert(BinOp.getNode()).second) 12292 continue; 12293 12294 PromOps.push_back(BinOp); 12295 12296 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12297 // The condition of the select is not promoted. 12298 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12299 continue; 12300 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12301 continue; 12302 12303 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12304 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12305 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12306 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12307 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12308 Inputs.push_back(BinOp.getOperand(i)); 12309 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12310 BinOp.getOperand(i).getOpcode() == ISD::OR || 12311 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12312 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12313 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12314 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12315 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12316 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12317 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12318 BinOps.push_back(BinOp.getOperand(i)); 12319 } else { 12320 // We have an input that is not an extension or another binary 12321 // operation; we'll abort this transformation. 12322 return SDValue(); 12323 } 12324 } 12325 } 12326 12327 // Make sure that this is a self-contained cluster of operations (which 12328 // is not quite the same thing as saying that everything has only one 12329 // use). 12330 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12331 if (isa<ConstantSDNode>(Inputs[i])) 12332 continue; 12333 12334 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12335 UE = Inputs[i].getNode()->use_end(); 12336 UI != UE; ++UI) { 12337 SDNode *User = *UI; 12338 if (User != N && !Visited.count(User)) 12339 return SDValue(); 12340 12341 // Make sure that we're not going to promote the non-output-value 12342 // operand(s) or SELECT or SELECT_CC. 12343 // FIXME: Although we could sometimes handle this, and it does occur in 12344 // practice that one of the condition inputs to the select is also one of 12345 // the outputs, we currently can't deal with this. 12346 if (User->getOpcode() == ISD::SELECT) { 12347 if (User->getOperand(0) == Inputs[i]) 12348 return SDValue(); 12349 } else if (User->getOpcode() == ISD::SELECT_CC) { 12350 if (User->getOperand(0) == Inputs[i] || 12351 User->getOperand(1) == Inputs[i]) 12352 return SDValue(); 12353 } 12354 } 12355 } 12356 12357 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12358 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12359 UE = PromOps[i].getNode()->use_end(); 12360 UI != UE; ++UI) { 12361 SDNode *User = *UI; 12362 if (User != N && !Visited.count(User)) 12363 return SDValue(); 12364 12365 // Make sure that we're not going to promote the non-output-value 12366 // operand(s) or SELECT or SELECT_CC. 12367 // FIXME: Although we could sometimes handle this, and it does occur in 12368 // practice that one of the condition inputs to the select is also one of 12369 // the outputs, we currently can't deal with this. 12370 if (User->getOpcode() == ISD::SELECT) { 12371 if (User->getOperand(0) == PromOps[i]) 12372 return SDValue(); 12373 } else if (User->getOpcode() == ISD::SELECT_CC) { 12374 if (User->getOperand(0) == PromOps[i] || 12375 User->getOperand(1) == PromOps[i]) 12376 return SDValue(); 12377 } 12378 } 12379 } 12380 12381 // Replace all inputs with the extension operand. 12382 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12383 // Constants may have users outside the cluster of to-be-promoted nodes, 12384 // and so we need to replace those as we do the promotions. 12385 if (isa<ConstantSDNode>(Inputs[i])) 12386 continue; 12387 else 12388 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12389 } 12390 12391 std::list<HandleSDNode> PromOpHandles; 12392 for (auto &PromOp : PromOps) 12393 PromOpHandles.emplace_back(PromOp); 12394 12395 // Replace all operations (these are all the same, but have a different 12396 // (i1) return type). DAG.getNode will validate that the types of 12397 // a binary operator match, so go through the list in reverse so that 12398 // we've likely promoted both operands first. Any intermediate truncations or 12399 // extensions disappear. 12400 while (!PromOpHandles.empty()) { 12401 SDValue PromOp = PromOpHandles.back().getValue(); 12402 PromOpHandles.pop_back(); 12403 12404 if (PromOp.getOpcode() == ISD::TRUNCATE || 12405 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12406 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12407 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12408 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12409 PromOp.getOperand(0).getValueType() != MVT::i1) { 12410 // The operand is not yet ready (see comment below). 12411 PromOpHandles.emplace_front(PromOp); 12412 continue; 12413 } 12414 12415 SDValue RepValue = PromOp.getOperand(0); 12416 if (isa<ConstantSDNode>(RepValue)) 12417 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12418 12419 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12420 continue; 12421 } 12422 12423 unsigned C; 12424 switch (PromOp.getOpcode()) { 12425 default: C = 0; break; 12426 case ISD::SELECT: C = 1; break; 12427 case ISD::SELECT_CC: C = 2; break; 12428 } 12429 12430 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12431 PromOp.getOperand(C).getValueType() != MVT::i1) || 12432 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12433 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12434 // The to-be-promoted operands of this node have not yet been 12435 // promoted (this should be rare because we're going through the 12436 // list backward, but if one of the operands has several users in 12437 // this cluster of to-be-promoted nodes, it is possible). 12438 PromOpHandles.emplace_front(PromOp); 12439 continue; 12440 } 12441 12442 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12443 PromOp.getNode()->op_end()); 12444 12445 // If there are any constant inputs, make sure they're replaced now. 12446 for (unsigned i = 0; i < 2; ++i) 12447 if (isa<ConstantSDNode>(Ops[C+i])) 12448 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12449 12450 DAG.ReplaceAllUsesOfValueWith(PromOp, 12451 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12452 } 12453 12454 // Now we're left with the initial truncation itself. 12455 if (N->getOpcode() == ISD::TRUNCATE) 12456 return N->getOperand(0); 12457 12458 // Otherwise, this is a comparison. The operands to be compared have just 12459 // changed type (to i1), but everything else is the same. 12460 return SDValue(N, 0); 12461 } 12462 12463 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12464 DAGCombinerInfo &DCI) const { 12465 SelectionDAG &DAG = DCI.DAG; 12466 SDLoc dl(N); 12467 12468 // If we're tracking CR bits, we need to be careful that we don't have: 12469 // zext(binary-ops(trunc(x), trunc(y))) 12470 // or 12471 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12472 // such that we're unnecessarily moving things into CR bits that can more 12473 // efficiently stay in GPRs. Note that if we're not certain that the high 12474 // bits are set as required by the final extension, we still may need to do 12475 // some masking to get the proper behavior. 12476 12477 // This same functionality is important on PPC64 when dealing with 12478 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12479 // the return values of functions. Because it is so similar, it is handled 12480 // here as well. 12481 12482 if (N->getValueType(0) != MVT::i32 && 12483 N->getValueType(0) != MVT::i64) 12484 return SDValue(); 12485 12486 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12487 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12488 return SDValue(); 12489 12490 if (N->getOperand(0).getOpcode() != ISD::AND && 12491 N->getOperand(0).getOpcode() != ISD::OR && 12492 N->getOperand(0).getOpcode() != ISD::XOR && 12493 N->getOperand(0).getOpcode() != ISD::SELECT && 12494 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12495 return SDValue(); 12496 12497 SmallVector<SDValue, 4> Inputs; 12498 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12499 SmallPtrSet<SDNode *, 16> Visited; 12500 12501 // Visit all inputs, collect all binary operations (and, or, xor and 12502 // select) that are all fed by truncations. 12503 while (!BinOps.empty()) { 12504 SDValue BinOp = BinOps.back(); 12505 BinOps.pop_back(); 12506 12507 if (!Visited.insert(BinOp.getNode()).second) 12508 continue; 12509 12510 PromOps.push_back(BinOp); 12511 12512 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12513 // The condition of the select is not promoted. 12514 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12515 continue; 12516 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12517 continue; 12518 12519 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12520 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12521 Inputs.push_back(BinOp.getOperand(i)); 12522 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12523 BinOp.getOperand(i).getOpcode() == ISD::OR || 12524 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12525 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12526 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12527 BinOps.push_back(BinOp.getOperand(i)); 12528 } else { 12529 // We have an input that is not a truncation or another binary 12530 // operation; we'll abort this transformation. 12531 return SDValue(); 12532 } 12533 } 12534 } 12535 12536 // The operands of a select that must be truncated when the select is 12537 // promoted because the operand is actually part of the to-be-promoted set. 12538 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12539 12540 // Make sure that this is a self-contained cluster of operations (which 12541 // is not quite the same thing as saying that everything has only one 12542 // use). 12543 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12544 if (isa<ConstantSDNode>(Inputs[i])) 12545 continue; 12546 12547 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12548 UE = Inputs[i].getNode()->use_end(); 12549 UI != UE; ++UI) { 12550 SDNode *User = *UI; 12551 if (User != N && !Visited.count(User)) 12552 return SDValue(); 12553 12554 // If we're going to promote the non-output-value operand(s) or SELECT or 12555 // SELECT_CC, record them for truncation. 12556 if (User->getOpcode() == ISD::SELECT) { 12557 if (User->getOperand(0) == Inputs[i]) 12558 SelectTruncOp[0].insert(std::make_pair(User, 12559 User->getOperand(0).getValueType())); 12560 } else if (User->getOpcode() == ISD::SELECT_CC) { 12561 if (User->getOperand(0) == Inputs[i]) 12562 SelectTruncOp[0].insert(std::make_pair(User, 12563 User->getOperand(0).getValueType())); 12564 if (User->getOperand(1) == Inputs[i]) 12565 SelectTruncOp[1].insert(std::make_pair(User, 12566 User->getOperand(1).getValueType())); 12567 } 12568 } 12569 } 12570 12571 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12572 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12573 UE = PromOps[i].getNode()->use_end(); 12574 UI != UE; ++UI) { 12575 SDNode *User = *UI; 12576 if (User != N && !Visited.count(User)) 12577 return SDValue(); 12578 12579 // If we're going to promote the non-output-value operand(s) or SELECT or 12580 // SELECT_CC, record them for truncation. 12581 if (User->getOpcode() == ISD::SELECT) { 12582 if (User->getOperand(0) == PromOps[i]) 12583 SelectTruncOp[0].insert(std::make_pair(User, 12584 User->getOperand(0).getValueType())); 12585 } else if (User->getOpcode() == ISD::SELECT_CC) { 12586 if (User->getOperand(0) == PromOps[i]) 12587 SelectTruncOp[0].insert(std::make_pair(User, 12588 User->getOperand(0).getValueType())); 12589 if (User->getOperand(1) == PromOps[i]) 12590 SelectTruncOp[1].insert(std::make_pair(User, 12591 User->getOperand(1).getValueType())); 12592 } 12593 } 12594 } 12595 12596 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12597 bool ReallyNeedsExt = false; 12598 if (N->getOpcode() != ISD::ANY_EXTEND) { 12599 // If all of the inputs are not already sign/zero extended, then 12600 // we'll still need to do that at the end. 12601 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12602 if (isa<ConstantSDNode>(Inputs[i])) 12603 continue; 12604 12605 unsigned OpBits = 12606 Inputs[i].getOperand(0).getValueSizeInBits(); 12607 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12608 12609 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12610 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12611 APInt::getHighBitsSet(OpBits, 12612 OpBits-PromBits))) || 12613 (N->getOpcode() == ISD::SIGN_EXTEND && 12614 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12615 (OpBits-(PromBits-1)))) { 12616 ReallyNeedsExt = true; 12617 break; 12618 } 12619 } 12620 } 12621 12622 // Replace all inputs, either with the truncation operand, or a 12623 // truncation or extension to the final output type. 12624 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12625 // Constant inputs need to be replaced with the to-be-promoted nodes that 12626 // use them because they might have users outside of the cluster of 12627 // promoted nodes. 12628 if (isa<ConstantSDNode>(Inputs[i])) 12629 continue; 12630 12631 SDValue InSrc = Inputs[i].getOperand(0); 12632 if (Inputs[i].getValueType() == N->getValueType(0)) 12633 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12634 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12635 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12636 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12637 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12638 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12639 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12640 else 12641 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12642 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12643 } 12644 12645 std::list<HandleSDNode> PromOpHandles; 12646 for (auto &PromOp : PromOps) 12647 PromOpHandles.emplace_back(PromOp); 12648 12649 // Replace all operations (these are all the same, but have a different 12650 // (promoted) return type). DAG.getNode will validate that the types of 12651 // a binary operator match, so go through the list in reverse so that 12652 // we've likely promoted both operands first. 12653 while (!PromOpHandles.empty()) { 12654 SDValue PromOp = PromOpHandles.back().getValue(); 12655 PromOpHandles.pop_back(); 12656 12657 unsigned C; 12658 switch (PromOp.getOpcode()) { 12659 default: C = 0; break; 12660 case ISD::SELECT: C = 1; break; 12661 case ISD::SELECT_CC: C = 2; break; 12662 } 12663 12664 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12665 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12666 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12667 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12668 // The to-be-promoted operands of this node have not yet been 12669 // promoted (this should be rare because we're going through the 12670 // list backward, but if one of the operands has several users in 12671 // this cluster of to-be-promoted nodes, it is possible). 12672 PromOpHandles.emplace_front(PromOp); 12673 continue; 12674 } 12675 12676 // For SELECT and SELECT_CC nodes, we do a similar check for any 12677 // to-be-promoted comparison inputs. 12678 if (PromOp.getOpcode() == ISD::SELECT || 12679 PromOp.getOpcode() == ISD::SELECT_CC) { 12680 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12681 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12682 (SelectTruncOp[1].count(PromOp.getNode()) && 12683 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12684 PromOpHandles.emplace_front(PromOp); 12685 continue; 12686 } 12687 } 12688 12689 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12690 PromOp.getNode()->op_end()); 12691 12692 // If this node has constant inputs, then they'll need to be promoted here. 12693 for (unsigned i = 0; i < 2; ++i) { 12694 if (!isa<ConstantSDNode>(Ops[C+i])) 12695 continue; 12696 if (Ops[C+i].getValueType() == N->getValueType(0)) 12697 continue; 12698 12699 if (N->getOpcode() == ISD::SIGN_EXTEND) 12700 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12701 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12702 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12703 else 12704 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12705 } 12706 12707 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12708 // truncate them again to the original value type. 12709 if (PromOp.getOpcode() == ISD::SELECT || 12710 PromOp.getOpcode() == ISD::SELECT_CC) { 12711 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12712 if (SI0 != SelectTruncOp[0].end()) 12713 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12714 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12715 if (SI1 != SelectTruncOp[1].end()) 12716 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12717 } 12718 12719 DAG.ReplaceAllUsesOfValueWith(PromOp, 12720 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12721 } 12722 12723 // Now we're left with the initial extension itself. 12724 if (!ReallyNeedsExt) 12725 return N->getOperand(0); 12726 12727 // To zero extend, just mask off everything except for the first bit (in the 12728 // i1 case). 12729 if (N->getOpcode() == ISD::ZERO_EXTEND) 12730 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12731 DAG.getConstant(APInt::getLowBitsSet( 12732 N->getValueSizeInBits(0), PromBits), 12733 dl, N->getValueType(0))); 12734 12735 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12736 "Invalid extension type"); 12737 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12738 SDValue ShiftCst = 12739 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12740 return DAG.getNode( 12741 ISD::SRA, dl, N->getValueType(0), 12742 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12743 ShiftCst); 12744 } 12745 12746 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12747 DAGCombinerInfo &DCI) const { 12748 assert(N->getOpcode() == ISD::SETCC && 12749 "Should be called with a SETCC node"); 12750 12751 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12752 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12753 SDValue LHS = N->getOperand(0); 12754 SDValue RHS = N->getOperand(1); 12755 12756 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12757 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12758 LHS.hasOneUse()) 12759 std::swap(LHS, RHS); 12760 12761 // x == 0-y --> x+y == 0 12762 // x != 0-y --> x+y != 0 12763 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12764 RHS.hasOneUse()) { 12765 SDLoc DL(N); 12766 SelectionDAG &DAG = DCI.DAG; 12767 EVT VT = N->getValueType(0); 12768 EVT OpVT = LHS.getValueType(); 12769 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12770 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12771 } 12772 } 12773 12774 return DAGCombineTruncBoolExt(N, DCI); 12775 } 12776 12777 // Is this an extending load from an f32 to an f64? 12778 static bool isFPExtLoad(SDValue Op) { 12779 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12780 return LD->getExtensionType() == ISD::EXTLOAD && 12781 Op.getValueType() == MVT::f64; 12782 return false; 12783 } 12784 12785 /// Reduces the number of fp-to-int conversion when building a vector. 12786 /// 12787 /// If this vector is built out of floating to integer conversions, 12788 /// transform it to a vector built out of floating point values followed by a 12789 /// single floating to integer conversion of the vector. 12790 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12791 /// becomes (fptosi (build_vector ($A, $B, ...))) 12792 SDValue PPCTargetLowering:: 12793 combineElementTruncationToVectorTruncation(SDNode *N, 12794 DAGCombinerInfo &DCI) const { 12795 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12796 "Should be called with a BUILD_VECTOR node"); 12797 12798 SelectionDAG &DAG = DCI.DAG; 12799 SDLoc dl(N); 12800 12801 SDValue FirstInput = N->getOperand(0); 12802 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12803 "The input operand must be an fp-to-int conversion."); 12804 12805 // This combine happens after legalization so the fp_to_[su]i nodes are 12806 // already converted to PPCSISD nodes. 12807 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12808 if (FirstConversion == PPCISD::FCTIDZ || 12809 FirstConversion == PPCISD::FCTIDUZ || 12810 FirstConversion == PPCISD::FCTIWZ || 12811 FirstConversion == PPCISD::FCTIWUZ) { 12812 bool IsSplat = true; 12813 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12814 FirstConversion == PPCISD::FCTIWUZ; 12815 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12816 SmallVector<SDValue, 4> Ops; 12817 EVT TargetVT = N->getValueType(0); 12818 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12819 SDValue NextOp = N->getOperand(i); 12820 if (NextOp.getOpcode() != PPCISD::MFVSR) 12821 return SDValue(); 12822 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12823 if (NextConversion != FirstConversion) 12824 return SDValue(); 12825 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12826 // This is not valid if the input was originally double precision. It is 12827 // also not profitable to do unless this is an extending load in which 12828 // case doing this combine will allow us to combine consecutive loads. 12829 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12830 return SDValue(); 12831 if (N->getOperand(i) != FirstInput) 12832 IsSplat = false; 12833 } 12834 12835 // If this is a splat, we leave it as-is since there will be only a single 12836 // fp-to-int conversion followed by a splat of the integer. This is better 12837 // for 32-bit and smaller ints and neutral for 64-bit ints. 12838 if (IsSplat) 12839 return SDValue(); 12840 12841 // Now that we know we have the right type of node, get its operands 12842 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12843 SDValue In = N->getOperand(i).getOperand(0); 12844 if (Is32Bit) { 12845 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12846 // here, we know that all inputs are extending loads so this is safe). 12847 if (In.isUndef()) 12848 Ops.push_back(DAG.getUNDEF(SrcVT)); 12849 else { 12850 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12851 MVT::f32, In.getOperand(0), 12852 DAG.getIntPtrConstant(1, dl)); 12853 Ops.push_back(Trunc); 12854 } 12855 } else 12856 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12857 } 12858 12859 unsigned Opcode; 12860 if (FirstConversion == PPCISD::FCTIDZ || 12861 FirstConversion == PPCISD::FCTIWZ) 12862 Opcode = ISD::FP_TO_SINT; 12863 else 12864 Opcode = ISD::FP_TO_UINT; 12865 12866 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12867 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12868 return DAG.getNode(Opcode, dl, TargetVT, BV); 12869 } 12870 return SDValue(); 12871 } 12872 12873 /// Reduce the number of loads when building a vector. 12874 /// 12875 /// Building a vector out of multiple loads can be converted to a load 12876 /// of the vector type if the loads are consecutive. If the loads are 12877 /// consecutive but in descending order, a shuffle is added at the end 12878 /// to reorder the vector. 12879 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12880 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12881 "Should be called with a BUILD_VECTOR node"); 12882 12883 SDLoc dl(N); 12884 12885 // Return early for non byte-sized type, as they can't be consecutive. 12886 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12887 return SDValue(); 12888 12889 bool InputsAreConsecutiveLoads = true; 12890 bool InputsAreReverseConsecutive = true; 12891 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12892 SDValue FirstInput = N->getOperand(0); 12893 bool IsRoundOfExtLoad = false; 12894 12895 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12896 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12897 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12898 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12899 } 12900 // Not a build vector of (possibly fp_rounded) loads. 12901 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12902 N->getNumOperands() == 1) 12903 return SDValue(); 12904 12905 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12906 // If any inputs are fp_round(extload), they all must be. 12907 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12908 return SDValue(); 12909 12910 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12911 N->getOperand(i); 12912 if (NextInput.getOpcode() != ISD::LOAD) 12913 return SDValue(); 12914 12915 SDValue PreviousInput = 12916 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12917 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12918 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12919 12920 // If any inputs are fp_round(extload), they all must be. 12921 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12922 return SDValue(); 12923 12924 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12925 InputsAreConsecutiveLoads = false; 12926 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12927 InputsAreReverseConsecutive = false; 12928 12929 // Exit early if the loads are neither consecutive nor reverse consecutive. 12930 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12931 return SDValue(); 12932 } 12933 12934 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12935 "The loads cannot be both consecutive and reverse consecutive."); 12936 12937 SDValue FirstLoadOp = 12938 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12939 SDValue LastLoadOp = 12940 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12941 N->getOperand(N->getNumOperands()-1); 12942 12943 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12944 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12945 if (InputsAreConsecutiveLoads) { 12946 assert(LD1 && "Input needs to be a LoadSDNode."); 12947 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12948 LD1->getBasePtr(), LD1->getPointerInfo(), 12949 LD1->getAlignment()); 12950 } 12951 if (InputsAreReverseConsecutive) { 12952 assert(LDL && "Input needs to be a LoadSDNode."); 12953 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12954 LDL->getBasePtr(), LDL->getPointerInfo(), 12955 LDL->getAlignment()); 12956 SmallVector<int, 16> Ops; 12957 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12958 Ops.push_back(i); 12959 12960 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12961 DAG.getUNDEF(N->getValueType(0)), Ops); 12962 } 12963 return SDValue(); 12964 } 12965 12966 // This function adds the required vector_shuffle needed to get 12967 // the elements of the vector extract in the correct position 12968 // as specified by the CorrectElems encoding. 12969 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12970 SDValue Input, uint64_t Elems, 12971 uint64_t CorrectElems) { 12972 SDLoc dl(N); 12973 12974 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12975 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12976 12977 // Knowing the element indices being extracted from the original 12978 // vector and the order in which they're being inserted, just put 12979 // them at element indices required for the instruction. 12980 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12981 if (DAG.getDataLayout().isLittleEndian()) 12982 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12983 else 12984 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12985 CorrectElems = CorrectElems >> 8; 12986 Elems = Elems >> 8; 12987 } 12988 12989 SDValue Shuffle = 12990 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12991 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12992 12993 EVT Ty = N->getValueType(0); 12994 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12995 return BV; 12996 } 12997 12998 // Look for build vector patterns where input operands come from sign 12999 // extended vector_extract elements of specific indices. If the correct indices 13000 // aren't used, add a vector shuffle to fix up the indices and create a new 13001 // PPCISD:SExtVElems node which selects the vector sign extend instructions 13002 // during instruction selection. 13003 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13004 // This array encodes the indices that the vector sign extend instructions 13005 // extract from when extending from one type to another for both BE and LE. 13006 // The right nibble of each byte corresponds to the LE incides. 13007 // and the left nibble of each byte corresponds to the BE incides. 13008 // For example: 0x3074B8FC byte->word 13009 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13010 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13011 // For example: 0x000070F8 byte->double word 13012 // For LE: the allowed indices are: 0x0,0x8 13013 // For BE: the allowed indices are: 0x7,0xF 13014 uint64_t TargetElems[] = { 13015 0x3074B8FC, // b->w 13016 0x000070F8, // b->d 13017 0x10325476, // h->w 13018 0x00003074, // h->d 13019 0x00001032, // w->d 13020 }; 13021 13022 uint64_t Elems = 0; 13023 int Index; 13024 SDValue Input; 13025 13026 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13027 if (!Op) 13028 return false; 13029 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13030 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13031 return false; 13032 13033 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13034 // of the right width. 13035 SDValue Extract = Op.getOperand(0); 13036 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13037 Extract = Extract.getOperand(0); 13038 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13039 return false; 13040 13041 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13042 if (!ExtOp) 13043 return false; 13044 13045 Index = ExtOp->getZExtValue(); 13046 if (Input && Input != Extract.getOperand(0)) 13047 return false; 13048 13049 if (!Input) 13050 Input = Extract.getOperand(0); 13051 13052 Elems = Elems << 8; 13053 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13054 Elems |= Index; 13055 13056 return true; 13057 }; 13058 13059 // If the build vector operands aren't sign extended vector extracts, 13060 // of the same input vector, then return. 13061 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13062 if (!isSExtOfVecExtract(N->getOperand(i))) { 13063 return SDValue(); 13064 } 13065 } 13066 13067 // If the vector extract indicies are not correct, add the appropriate 13068 // vector_shuffle. 13069 int TgtElemArrayIdx; 13070 int InputSize = Input.getValueType().getScalarSizeInBits(); 13071 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13072 if (InputSize + OutputSize == 40) 13073 TgtElemArrayIdx = 0; 13074 else if (InputSize + OutputSize == 72) 13075 TgtElemArrayIdx = 1; 13076 else if (InputSize + OutputSize == 48) 13077 TgtElemArrayIdx = 2; 13078 else if (InputSize + OutputSize == 80) 13079 TgtElemArrayIdx = 3; 13080 else if (InputSize + OutputSize == 96) 13081 TgtElemArrayIdx = 4; 13082 else 13083 return SDValue(); 13084 13085 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13086 CorrectElems = DAG.getDataLayout().isLittleEndian() 13087 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13088 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13089 if (Elems != CorrectElems) { 13090 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13091 } 13092 13093 // Regular lowering will catch cases where a shuffle is not needed. 13094 return SDValue(); 13095 } 13096 13097 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13098 DAGCombinerInfo &DCI) const { 13099 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13100 "Should be called with a BUILD_VECTOR node"); 13101 13102 SelectionDAG &DAG = DCI.DAG; 13103 SDLoc dl(N); 13104 13105 if (!Subtarget.hasVSX()) 13106 return SDValue(); 13107 13108 // The target independent DAG combiner will leave a build_vector of 13109 // float-to-int conversions intact. We can generate MUCH better code for 13110 // a float-to-int conversion of a vector of floats. 13111 SDValue FirstInput = N->getOperand(0); 13112 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13113 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13114 if (Reduced) 13115 return Reduced; 13116 } 13117 13118 // If we're building a vector out of consecutive loads, just load that 13119 // vector type. 13120 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13121 if (Reduced) 13122 return Reduced; 13123 13124 // If we're building a vector out of extended elements from another vector 13125 // we have P9 vector integer extend instructions. The code assumes legal 13126 // input types (i.e. it can't handle things like v4i16) so do not run before 13127 // legalization. 13128 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13129 Reduced = combineBVOfVecSExt(N, DAG); 13130 if (Reduced) 13131 return Reduced; 13132 } 13133 13134 13135 if (N->getValueType(0) != MVT::v2f64) 13136 return SDValue(); 13137 13138 // Looking for: 13139 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13140 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13141 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13142 return SDValue(); 13143 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13144 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13145 return SDValue(); 13146 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13147 return SDValue(); 13148 13149 SDValue Ext1 = FirstInput.getOperand(0); 13150 SDValue Ext2 = N->getOperand(1).getOperand(0); 13151 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13152 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13153 return SDValue(); 13154 13155 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13156 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13157 if (!Ext1Op || !Ext2Op) 13158 return SDValue(); 13159 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13160 Ext1.getOperand(0) != Ext2.getOperand(0)) 13161 return SDValue(); 13162 13163 int FirstElem = Ext1Op->getZExtValue(); 13164 int SecondElem = Ext2Op->getZExtValue(); 13165 int SubvecIdx; 13166 if (FirstElem == 0 && SecondElem == 1) 13167 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13168 else if (FirstElem == 2 && SecondElem == 3) 13169 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13170 else 13171 return SDValue(); 13172 13173 SDValue SrcVec = Ext1.getOperand(0); 13174 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13175 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13176 return DAG.getNode(NodeType, dl, MVT::v2f64, 13177 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13178 } 13179 13180 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13181 DAGCombinerInfo &DCI) const { 13182 assert((N->getOpcode() == ISD::SINT_TO_FP || 13183 N->getOpcode() == ISD::UINT_TO_FP) && 13184 "Need an int -> FP conversion node here"); 13185 13186 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13187 return SDValue(); 13188 13189 SelectionDAG &DAG = DCI.DAG; 13190 SDLoc dl(N); 13191 SDValue Op(N, 0); 13192 13193 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13194 // from the hardware. 13195 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13196 return SDValue(); 13197 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13198 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13199 return SDValue(); 13200 13201 SDValue FirstOperand(Op.getOperand(0)); 13202 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13203 (FirstOperand.getValueType() == MVT::i8 || 13204 FirstOperand.getValueType() == MVT::i16); 13205 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13206 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13207 bool DstDouble = Op.getValueType() == MVT::f64; 13208 unsigned ConvOp = Signed ? 13209 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13210 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13211 SDValue WidthConst = 13212 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13213 dl, false); 13214 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13215 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13216 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13217 DAG.getVTList(MVT::f64, MVT::Other), 13218 Ops, MVT::i8, LDN->getMemOperand()); 13219 13220 // For signed conversion, we need to sign-extend the value in the VSR 13221 if (Signed) { 13222 SDValue ExtOps[] = { Ld, WidthConst }; 13223 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13224 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13225 } else 13226 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13227 } 13228 13229 13230 // For i32 intermediate values, unfortunately, the conversion functions 13231 // leave the upper 32 bits of the value are undefined. Within the set of 13232 // scalar instructions, we have no method for zero- or sign-extending the 13233 // value. Thus, we cannot handle i32 intermediate values here. 13234 if (Op.getOperand(0).getValueType() == MVT::i32) 13235 return SDValue(); 13236 13237 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13238 "UINT_TO_FP is supported only with FPCVT"); 13239 13240 // If we have FCFIDS, then use it when converting to single-precision. 13241 // Otherwise, convert to double-precision and then round. 13242 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13243 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13244 : PPCISD::FCFIDS) 13245 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13246 : PPCISD::FCFID); 13247 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13248 ? MVT::f32 13249 : MVT::f64; 13250 13251 // If we're converting from a float, to an int, and back to a float again, 13252 // then we don't need the store/load pair at all. 13253 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13254 Subtarget.hasFPCVT()) || 13255 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13256 SDValue Src = Op.getOperand(0).getOperand(0); 13257 if (Src.getValueType() == MVT::f32) { 13258 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13259 DCI.AddToWorklist(Src.getNode()); 13260 } else if (Src.getValueType() != MVT::f64) { 13261 // Make sure that we don't pick up a ppc_fp128 source value. 13262 return SDValue(); 13263 } 13264 13265 unsigned FCTOp = 13266 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13267 PPCISD::FCTIDUZ; 13268 13269 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13270 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13271 13272 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13273 FP = DAG.getNode(ISD::FP_ROUND, dl, 13274 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13275 DCI.AddToWorklist(FP.getNode()); 13276 } 13277 13278 return FP; 13279 } 13280 13281 return SDValue(); 13282 } 13283 13284 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13285 // builtins) into loads with swaps. 13286 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13287 DAGCombinerInfo &DCI) const { 13288 SelectionDAG &DAG = DCI.DAG; 13289 SDLoc dl(N); 13290 SDValue Chain; 13291 SDValue Base; 13292 MachineMemOperand *MMO; 13293 13294 switch (N->getOpcode()) { 13295 default: 13296 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13297 case ISD::LOAD: { 13298 LoadSDNode *LD = cast<LoadSDNode>(N); 13299 Chain = LD->getChain(); 13300 Base = LD->getBasePtr(); 13301 MMO = LD->getMemOperand(); 13302 // If the MMO suggests this isn't a load of a full vector, leave 13303 // things alone. For a built-in, we have to make the change for 13304 // correctness, so if there is a size problem that will be a bug. 13305 if (MMO->getSize() < 16) 13306 return SDValue(); 13307 break; 13308 } 13309 case ISD::INTRINSIC_W_CHAIN: { 13310 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13311 Chain = Intrin->getChain(); 13312 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13313 // us what we want. Get operand 2 instead. 13314 Base = Intrin->getOperand(2); 13315 MMO = Intrin->getMemOperand(); 13316 break; 13317 } 13318 } 13319 13320 MVT VecTy = N->getValueType(0).getSimpleVT(); 13321 13322 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13323 // aligned and the type is a vector with elements up to 4 bytes 13324 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13325 && VecTy.getScalarSizeInBits() <= 32 ) { 13326 return SDValue(); 13327 } 13328 13329 SDValue LoadOps[] = { Chain, Base }; 13330 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13331 DAG.getVTList(MVT::v2f64, MVT::Other), 13332 LoadOps, MVT::v2f64, MMO); 13333 13334 DCI.AddToWorklist(Load.getNode()); 13335 Chain = Load.getValue(1); 13336 SDValue Swap = DAG.getNode( 13337 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13338 DCI.AddToWorklist(Swap.getNode()); 13339 13340 // Add a bitcast if the resulting load type doesn't match v2f64. 13341 if (VecTy != MVT::v2f64) { 13342 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13343 DCI.AddToWorklist(N.getNode()); 13344 // Package {bitcast value, swap's chain} to match Load's shape. 13345 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13346 N, Swap.getValue(1)); 13347 } 13348 13349 return Swap; 13350 } 13351 13352 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13353 // builtins) into stores with swaps. 13354 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13355 DAGCombinerInfo &DCI) const { 13356 SelectionDAG &DAG = DCI.DAG; 13357 SDLoc dl(N); 13358 SDValue Chain; 13359 SDValue Base; 13360 unsigned SrcOpnd; 13361 MachineMemOperand *MMO; 13362 13363 switch (N->getOpcode()) { 13364 default: 13365 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13366 case ISD::STORE: { 13367 StoreSDNode *ST = cast<StoreSDNode>(N); 13368 Chain = ST->getChain(); 13369 Base = ST->getBasePtr(); 13370 MMO = ST->getMemOperand(); 13371 SrcOpnd = 1; 13372 // If the MMO suggests this isn't a store of a full vector, leave 13373 // things alone. For a built-in, we have to make the change for 13374 // correctness, so if there is a size problem that will be a bug. 13375 if (MMO->getSize() < 16) 13376 return SDValue(); 13377 break; 13378 } 13379 case ISD::INTRINSIC_VOID: { 13380 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13381 Chain = Intrin->getChain(); 13382 // Intrin->getBasePtr() oddly does not get what we want. 13383 Base = Intrin->getOperand(3); 13384 MMO = Intrin->getMemOperand(); 13385 SrcOpnd = 2; 13386 break; 13387 } 13388 } 13389 13390 SDValue Src = N->getOperand(SrcOpnd); 13391 MVT VecTy = Src.getValueType().getSimpleVT(); 13392 13393 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13394 // aligned and the type is a vector with elements up to 4 bytes 13395 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13396 && VecTy.getScalarSizeInBits() <= 32 ) { 13397 return SDValue(); 13398 } 13399 13400 // All stores are done as v2f64 and possible bit cast. 13401 if (VecTy != MVT::v2f64) { 13402 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13403 DCI.AddToWorklist(Src.getNode()); 13404 } 13405 13406 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13407 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13408 DCI.AddToWorklist(Swap.getNode()); 13409 Chain = Swap.getValue(1); 13410 SDValue StoreOps[] = { Chain, Swap, Base }; 13411 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13412 DAG.getVTList(MVT::Other), 13413 StoreOps, VecTy, MMO); 13414 DCI.AddToWorklist(Store.getNode()); 13415 return Store; 13416 } 13417 13418 // Handle DAG combine for STORE (FP_TO_INT F). 13419 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13420 DAGCombinerInfo &DCI) const { 13421 13422 SelectionDAG &DAG = DCI.DAG; 13423 SDLoc dl(N); 13424 unsigned Opcode = N->getOperand(1).getOpcode(); 13425 13426 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13427 && "Not a FP_TO_INT Instruction!"); 13428 13429 SDValue Val = N->getOperand(1).getOperand(0); 13430 EVT Op1VT = N->getOperand(1).getValueType(); 13431 EVT ResVT = Val.getValueType(); 13432 13433 // Floating point types smaller than 32 bits are not legal on Power. 13434 if (ResVT.getScalarSizeInBits() < 32) 13435 return SDValue(); 13436 13437 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13438 bool ValidTypeForStoreFltAsInt = 13439 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13440 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13441 13442 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13443 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13444 return SDValue(); 13445 13446 // Extend f32 values to f64 13447 if (ResVT.getScalarSizeInBits() == 32) { 13448 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13449 DCI.AddToWorklist(Val.getNode()); 13450 } 13451 13452 // Set signed or unsigned conversion opcode. 13453 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13454 PPCISD::FP_TO_SINT_IN_VSR : 13455 PPCISD::FP_TO_UINT_IN_VSR; 13456 13457 Val = DAG.getNode(ConvOpcode, 13458 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13459 DCI.AddToWorklist(Val.getNode()); 13460 13461 // Set number of bytes being converted. 13462 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13463 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13464 DAG.getIntPtrConstant(ByteSize, dl, false), 13465 DAG.getValueType(Op1VT) }; 13466 13467 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13468 DAG.getVTList(MVT::Other), Ops, 13469 cast<StoreSDNode>(N)->getMemoryVT(), 13470 cast<StoreSDNode>(N)->getMemOperand()); 13471 13472 DCI.AddToWorklist(Val.getNode()); 13473 return Val; 13474 } 13475 13476 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13477 LSBaseSDNode *LSBase, 13478 DAGCombinerInfo &DCI) const { 13479 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13480 "Not a reverse memop pattern!"); 13481 13482 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13483 auto Mask = SVN->getMask(); 13484 int i = 0; 13485 auto I = Mask.rbegin(); 13486 auto E = Mask.rend(); 13487 13488 for (; I != E; ++I) { 13489 if (*I != i) 13490 return false; 13491 i++; 13492 } 13493 return true; 13494 }; 13495 13496 SelectionDAG &DAG = DCI.DAG; 13497 EVT VT = SVN->getValueType(0); 13498 13499 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13500 return SDValue(); 13501 13502 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13503 // See comment in PPCVSXSwapRemoval.cpp. 13504 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13505 if (!Subtarget.hasP9Vector()) 13506 return SDValue(); 13507 13508 if(!IsElementReverse(SVN)) 13509 return SDValue(); 13510 13511 if (LSBase->getOpcode() == ISD::LOAD) { 13512 SDLoc dl(SVN); 13513 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13514 return DAG.getMemIntrinsicNode( 13515 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13516 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13517 } 13518 13519 if (LSBase->getOpcode() == ISD::STORE) { 13520 SDLoc dl(LSBase); 13521 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13522 LSBase->getBasePtr()}; 13523 return DAG.getMemIntrinsicNode( 13524 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13525 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13526 } 13527 13528 llvm_unreachable("Expected a load or store node here"); 13529 } 13530 13531 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13532 DAGCombinerInfo &DCI) const { 13533 SelectionDAG &DAG = DCI.DAG; 13534 SDLoc dl(N); 13535 switch (N->getOpcode()) { 13536 default: break; 13537 case ISD::ADD: 13538 return combineADD(N, DCI); 13539 case ISD::SHL: 13540 return combineSHL(N, DCI); 13541 case ISD::SRA: 13542 return combineSRA(N, DCI); 13543 case ISD::SRL: 13544 return combineSRL(N, DCI); 13545 case ISD::MUL: 13546 return combineMUL(N, DCI); 13547 case PPCISD::SHL: 13548 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13549 return N->getOperand(0); 13550 break; 13551 case PPCISD::SRL: 13552 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13553 return N->getOperand(0); 13554 break; 13555 case PPCISD::SRA: 13556 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13557 if (C->isNullValue() || // 0 >>s V -> 0. 13558 C->isAllOnesValue()) // -1 >>s V -> -1. 13559 return N->getOperand(0); 13560 } 13561 break; 13562 case ISD::SIGN_EXTEND: 13563 case ISD::ZERO_EXTEND: 13564 case ISD::ANY_EXTEND: 13565 return DAGCombineExtBoolTrunc(N, DCI); 13566 case ISD::TRUNCATE: 13567 return combineTRUNCATE(N, DCI); 13568 case ISD::SETCC: 13569 if (SDValue CSCC = combineSetCC(N, DCI)) 13570 return CSCC; 13571 LLVM_FALLTHROUGH; 13572 case ISD::SELECT_CC: 13573 return DAGCombineTruncBoolExt(N, DCI); 13574 case ISD::SINT_TO_FP: 13575 case ISD::UINT_TO_FP: 13576 return combineFPToIntToFP(N, DCI); 13577 case ISD::VECTOR_SHUFFLE: 13578 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13579 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13580 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13581 } 13582 break; 13583 case ISD::STORE: { 13584 13585 EVT Op1VT = N->getOperand(1).getValueType(); 13586 unsigned Opcode = N->getOperand(1).getOpcode(); 13587 13588 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13589 SDValue Val= combineStoreFPToInt(N, DCI); 13590 if (Val) 13591 return Val; 13592 } 13593 13594 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13595 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13596 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13597 if (Val) 13598 return Val; 13599 } 13600 13601 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13602 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13603 N->getOperand(1).getNode()->hasOneUse() && 13604 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13605 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13606 13607 // STBRX can only handle simple types and it makes no sense to store less 13608 // two bytes in byte-reversed order. 13609 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13610 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13611 break; 13612 13613 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13614 // Do an any-extend to 32-bits if this is a half-word input. 13615 if (BSwapOp.getValueType() == MVT::i16) 13616 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13617 13618 // If the type of BSWAP operand is wider than stored memory width 13619 // it need to be shifted to the right side before STBRX. 13620 if (Op1VT.bitsGT(mVT)) { 13621 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13622 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13623 DAG.getConstant(Shift, dl, MVT::i32)); 13624 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13625 if (Op1VT == MVT::i64) 13626 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13627 } 13628 13629 SDValue Ops[] = { 13630 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13631 }; 13632 return 13633 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13634 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13635 cast<StoreSDNode>(N)->getMemOperand()); 13636 } 13637 13638 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13639 // So it can increase the chance of CSE constant construction. 13640 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13641 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13642 // Need to sign-extended to 64-bits to handle negative values. 13643 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13644 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13645 MemVT.getSizeInBits()); 13646 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13647 13648 // DAG.getTruncStore() can't be used here because it doesn't accept 13649 // the general (base + offset) addressing mode. 13650 // So we use UpdateNodeOperands and setTruncatingStore instead. 13651 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13652 N->getOperand(3)); 13653 cast<StoreSDNode>(N)->setTruncatingStore(true); 13654 return SDValue(N, 0); 13655 } 13656 13657 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13658 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13659 if (Op1VT.isSimple()) { 13660 MVT StoreVT = Op1VT.getSimpleVT(); 13661 if (Subtarget.needsSwapsForVSXMemOps() && 13662 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13663 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13664 return expandVSXStoreForLE(N, DCI); 13665 } 13666 break; 13667 } 13668 case ISD::LOAD: { 13669 LoadSDNode *LD = cast<LoadSDNode>(N); 13670 EVT VT = LD->getValueType(0); 13671 13672 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13673 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13674 if (VT.isSimple()) { 13675 MVT LoadVT = VT.getSimpleVT(); 13676 if (Subtarget.needsSwapsForVSXMemOps() && 13677 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13678 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13679 return expandVSXLoadForLE(N, DCI); 13680 } 13681 13682 // We sometimes end up with a 64-bit integer load, from which we extract 13683 // two single-precision floating-point numbers. This happens with 13684 // std::complex<float>, and other similar structures, because of the way we 13685 // canonicalize structure copies. However, if we lack direct moves, 13686 // then the final bitcasts from the extracted integer values to the 13687 // floating-point numbers turn into store/load pairs. Even with direct moves, 13688 // just loading the two floating-point numbers is likely better. 13689 auto ReplaceTwoFloatLoad = [&]() { 13690 if (VT != MVT::i64) 13691 return false; 13692 13693 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13694 LD->isVolatile()) 13695 return false; 13696 13697 // We're looking for a sequence like this: 13698 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13699 // t16: i64 = srl t13, Constant:i32<32> 13700 // t17: i32 = truncate t16 13701 // t18: f32 = bitcast t17 13702 // t19: i32 = truncate t13 13703 // t20: f32 = bitcast t19 13704 13705 if (!LD->hasNUsesOfValue(2, 0)) 13706 return false; 13707 13708 auto UI = LD->use_begin(); 13709 while (UI.getUse().getResNo() != 0) ++UI; 13710 SDNode *Trunc = *UI++; 13711 while (UI.getUse().getResNo() != 0) ++UI; 13712 SDNode *RightShift = *UI; 13713 if (Trunc->getOpcode() != ISD::TRUNCATE) 13714 std::swap(Trunc, RightShift); 13715 13716 if (Trunc->getOpcode() != ISD::TRUNCATE || 13717 Trunc->getValueType(0) != MVT::i32 || 13718 !Trunc->hasOneUse()) 13719 return false; 13720 if (RightShift->getOpcode() != ISD::SRL || 13721 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13722 RightShift->getConstantOperandVal(1) != 32 || 13723 !RightShift->hasOneUse()) 13724 return false; 13725 13726 SDNode *Trunc2 = *RightShift->use_begin(); 13727 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13728 Trunc2->getValueType(0) != MVT::i32 || 13729 !Trunc2->hasOneUse()) 13730 return false; 13731 13732 SDNode *Bitcast = *Trunc->use_begin(); 13733 SDNode *Bitcast2 = *Trunc2->use_begin(); 13734 13735 if (Bitcast->getOpcode() != ISD::BITCAST || 13736 Bitcast->getValueType(0) != MVT::f32) 13737 return false; 13738 if (Bitcast2->getOpcode() != ISD::BITCAST || 13739 Bitcast2->getValueType(0) != MVT::f32) 13740 return false; 13741 13742 if (Subtarget.isLittleEndian()) 13743 std::swap(Bitcast, Bitcast2); 13744 13745 // Bitcast has the second float (in memory-layout order) and Bitcast2 13746 // has the first one. 13747 13748 SDValue BasePtr = LD->getBasePtr(); 13749 if (LD->isIndexed()) { 13750 assert(LD->getAddressingMode() == ISD::PRE_INC && 13751 "Non-pre-inc AM on PPC?"); 13752 BasePtr = 13753 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13754 LD->getOffset()); 13755 } 13756 13757 auto MMOFlags = 13758 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13759 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13760 LD->getPointerInfo(), LD->getAlignment(), 13761 MMOFlags, LD->getAAInfo()); 13762 SDValue AddPtr = 13763 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13764 BasePtr, DAG.getIntPtrConstant(4, dl)); 13765 SDValue FloatLoad2 = DAG.getLoad( 13766 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13767 LD->getPointerInfo().getWithOffset(4), 13768 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13769 13770 if (LD->isIndexed()) { 13771 // Note that DAGCombine should re-form any pre-increment load(s) from 13772 // what is produced here if that makes sense. 13773 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13774 } 13775 13776 DCI.CombineTo(Bitcast2, FloatLoad); 13777 DCI.CombineTo(Bitcast, FloatLoad2); 13778 13779 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13780 SDValue(FloatLoad2.getNode(), 1)); 13781 return true; 13782 }; 13783 13784 if (ReplaceTwoFloatLoad()) 13785 return SDValue(N, 0); 13786 13787 EVT MemVT = LD->getMemoryVT(); 13788 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13789 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13790 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13791 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13792 if (LD->isUnindexed() && VT.isVector() && 13793 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13794 // P8 and later hardware should just use LOAD. 13795 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13796 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13797 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13798 LD->getAlignment() >= ScalarABIAlignment)) && 13799 LD->getAlignment() < ABIAlignment) { 13800 // This is a type-legal unaligned Altivec or QPX load. 13801 SDValue Chain = LD->getChain(); 13802 SDValue Ptr = LD->getBasePtr(); 13803 bool isLittleEndian = Subtarget.isLittleEndian(); 13804 13805 // This implements the loading of unaligned vectors as described in 13806 // the venerable Apple Velocity Engine overview. Specifically: 13807 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13808 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13809 // 13810 // The general idea is to expand a sequence of one or more unaligned 13811 // loads into an alignment-based permutation-control instruction (lvsl 13812 // or lvsr), a series of regular vector loads (which always truncate 13813 // their input address to an aligned address), and a series of 13814 // permutations. The results of these permutations are the requested 13815 // loaded values. The trick is that the last "extra" load is not taken 13816 // from the address you might suspect (sizeof(vector) bytes after the 13817 // last requested load), but rather sizeof(vector) - 1 bytes after the 13818 // last requested vector. The point of this is to avoid a page fault if 13819 // the base address happened to be aligned. This works because if the 13820 // base address is aligned, then adding less than a full vector length 13821 // will cause the last vector in the sequence to be (re)loaded. 13822 // Otherwise, the next vector will be fetched as you might suspect was 13823 // necessary. 13824 13825 // We might be able to reuse the permutation generation from 13826 // a different base address offset from this one by an aligned amount. 13827 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13828 // optimization later. 13829 Intrinsic::ID Intr, IntrLD, IntrPerm; 13830 MVT PermCntlTy, PermTy, LDTy; 13831 if (Subtarget.hasAltivec()) { 13832 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13833 Intrinsic::ppc_altivec_lvsl; 13834 IntrLD = Intrinsic::ppc_altivec_lvx; 13835 IntrPerm = Intrinsic::ppc_altivec_vperm; 13836 PermCntlTy = MVT::v16i8; 13837 PermTy = MVT::v4i32; 13838 LDTy = MVT::v4i32; 13839 } else { 13840 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13841 Intrinsic::ppc_qpx_qvlpcls; 13842 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13843 Intrinsic::ppc_qpx_qvlfs; 13844 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13845 PermCntlTy = MVT::v4f64; 13846 PermTy = MVT::v4f64; 13847 LDTy = MemVT.getSimpleVT(); 13848 } 13849 13850 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13851 13852 // Create the new MMO for the new base load. It is like the original MMO, 13853 // but represents an area in memory almost twice the vector size centered 13854 // on the original address. If the address is unaligned, we might start 13855 // reading up to (sizeof(vector)-1) bytes below the address of the 13856 // original unaligned load. 13857 MachineFunction &MF = DAG.getMachineFunction(); 13858 MachineMemOperand *BaseMMO = 13859 MF.getMachineMemOperand(LD->getMemOperand(), 13860 -(long)MemVT.getStoreSize()+1, 13861 2*MemVT.getStoreSize()-1); 13862 13863 // Create the new base load. 13864 SDValue LDXIntID = 13865 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13866 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13867 SDValue BaseLoad = 13868 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13869 DAG.getVTList(PermTy, MVT::Other), 13870 BaseLoadOps, LDTy, BaseMMO); 13871 13872 // Note that the value of IncOffset (which is provided to the next 13873 // load's pointer info offset value, and thus used to calculate the 13874 // alignment), and the value of IncValue (which is actually used to 13875 // increment the pointer value) are different! This is because we 13876 // require the next load to appear to be aligned, even though it 13877 // is actually offset from the base pointer by a lesser amount. 13878 int IncOffset = VT.getSizeInBits() / 8; 13879 int IncValue = IncOffset; 13880 13881 // Walk (both up and down) the chain looking for another load at the real 13882 // (aligned) offset (the alignment of the other load does not matter in 13883 // this case). If found, then do not use the offset reduction trick, as 13884 // that will prevent the loads from being later combined (as they would 13885 // otherwise be duplicates). 13886 if (!findConsecutiveLoad(LD, DAG)) 13887 --IncValue; 13888 13889 SDValue Increment = 13890 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13891 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13892 13893 MachineMemOperand *ExtraMMO = 13894 MF.getMachineMemOperand(LD->getMemOperand(), 13895 1, 2*MemVT.getStoreSize()-1); 13896 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13897 SDValue ExtraLoad = 13898 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13899 DAG.getVTList(PermTy, MVT::Other), 13900 ExtraLoadOps, LDTy, ExtraMMO); 13901 13902 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13903 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13904 13905 // Because vperm has a big-endian bias, we must reverse the order 13906 // of the input vectors and complement the permute control vector 13907 // when generating little endian code. We have already handled the 13908 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13909 // and ExtraLoad here. 13910 SDValue Perm; 13911 if (isLittleEndian) 13912 Perm = BuildIntrinsicOp(IntrPerm, 13913 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13914 else 13915 Perm = BuildIntrinsicOp(IntrPerm, 13916 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13917 13918 if (VT != PermTy) 13919 Perm = Subtarget.hasAltivec() ? 13920 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13921 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13922 DAG.getTargetConstant(1, dl, MVT::i64)); 13923 // second argument is 1 because this rounding 13924 // is always exact. 13925 13926 // The output of the permutation is our loaded result, the TokenFactor is 13927 // our new chain. 13928 DCI.CombineTo(N, Perm, TF); 13929 return SDValue(N, 0); 13930 } 13931 } 13932 break; 13933 case ISD::INTRINSIC_WO_CHAIN: { 13934 bool isLittleEndian = Subtarget.isLittleEndian(); 13935 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13936 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13937 : Intrinsic::ppc_altivec_lvsl); 13938 if ((IID == Intr || 13939 IID == Intrinsic::ppc_qpx_qvlpcld || 13940 IID == Intrinsic::ppc_qpx_qvlpcls) && 13941 N->getOperand(1)->getOpcode() == ISD::ADD) { 13942 SDValue Add = N->getOperand(1); 13943 13944 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13945 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13946 13947 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13948 APInt::getAllOnesValue(Bits /* alignment */) 13949 .zext(Add.getScalarValueSizeInBits()))) { 13950 SDNode *BasePtr = Add->getOperand(0).getNode(); 13951 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13952 UE = BasePtr->use_end(); 13953 UI != UE; ++UI) { 13954 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13955 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13956 // We've found another LVSL/LVSR, and this address is an aligned 13957 // multiple of that one. The results will be the same, so use the 13958 // one we've just found instead. 13959 13960 return SDValue(*UI, 0); 13961 } 13962 } 13963 } 13964 13965 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13966 SDNode *BasePtr = Add->getOperand(0).getNode(); 13967 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13968 UE = BasePtr->use_end(); UI != UE; ++UI) { 13969 if (UI->getOpcode() == ISD::ADD && 13970 isa<ConstantSDNode>(UI->getOperand(1)) && 13971 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13972 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13973 (1ULL << Bits) == 0) { 13974 SDNode *OtherAdd = *UI; 13975 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13976 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13977 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13978 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13979 return SDValue(*VI, 0); 13980 } 13981 } 13982 } 13983 } 13984 } 13985 } 13986 13987 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13988 // Expose the vabsduw/h/b opportunity for down stream 13989 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13990 (IID == Intrinsic::ppc_altivec_vmaxsw || 13991 IID == Intrinsic::ppc_altivec_vmaxsh || 13992 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13993 SDValue V1 = N->getOperand(1); 13994 SDValue V2 = N->getOperand(2); 13995 if ((V1.getSimpleValueType() == MVT::v4i32 || 13996 V1.getSimpleValueType() == MVT::v8i16 || 13997 V1.getSimpleValueType() == MVT::v16i8) && 13998 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13999 // (0-a, a) 14000 if (V1.getOpcode() == ISD::SUB && 14001 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14002 V1.getOperand(1) == V2) { 14003 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14004 } 14005 // (a, 0-a) 14006 if (V2.getOpcode() == ISD::SUB && 14007 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14008 V2.getOperand(1) == V1) { 14009 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14010 } 14011 // (x-y, y-x) 14012 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14013 V1.getOperand(0) == V2.getOperand(1) && 14014 V1.getOperand(1) == V2.getOperand(0)) { 14015 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14016 } 14017 } 14018 } 14019 } 14020 14021 break; 14022 case ISD::INTRINSIC_W_CHAIN: 14023 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14024 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14025 if (Subtarget.needsSwapsForVSXMemOps()) { 14026 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14027 default: 14028 break; 14029 case Intrinsic::ppc_vsx_lxvw4x: 14030 case Intrinsic::ppc_vsx_lxvd2x: 14031 return expandVSXLoadForLE(N, DCI); 14032 } 14033 } 14034 break; 14035 case ISD::INTRINSIC_VOID: 14036 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14037 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14038 if (Subtarget.needsSwapsForVSXMemOps()) { 14039 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14040 default: 14041 break; 14042 case Intrinsic::ppc_vsx_stxvw4x: 14043 case Intrinsic::ppc_vsx_stxvd2x: 14044 return expandVSXStoreForLE(N, DCI); 14045 } 14046 } 14047 break; 14048 case ISD::BSWAP: 14049 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14050 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14051 N->getOperand(0).hasOneUse() && 14052 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14053 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14054 N->getValueType(0) == MVT::i64))) { 14055 SDValue Load = N->getOperand(0); 14056 LoadSDNode *LD = cast<LoadSDNode>(Load); 14057 // Create the byte-swapping load. 14058 SDValue Ops[] = { 14059 LD->getChain(), // Chain 14060 LD->getBasePtr(), // Ptr 14061 DAG.getValueType(N->getValueType(0)) // VT 14062 }; 14063 SDValue BSLoad = 14064 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14065 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14066 MVT::i64 : MVT::i32, MVT::Other), 14067 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14068 14069 // If this is an i16 load, insert the truncate. 14070 SDValue ResVal = BSLoad; 14071 if (N->getValueType(0) == MVT::i16) 14072 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14073 14074 // First, combine the bswap away. This makes the value produced by the 14075 // load dead. 14076 DCI.CombineTo(N, ResVal); 14077 14078 // Next, combine the load away, we give it a bogus result value but a real 14079 // chain result. The result value is dead because the bswap is dead. 14080 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14081 14082 // Return N so it doesn't get rechecked! 14083 return SDValue(N, 0); 14084 } 14085 break; 14086 case PPCISD::VCMP: 14087 // If a VCMPo node already exists with exactly the same operands as this 14088 // node, use its result instead of this node (VCMPo computes both a CR6 and 14089 // a normal output). 14090 // 14091 if (!N->getOperand(0).hasOneUse() && 14092 !N->getOperand(1).hasOneUse() && 14093 !N->getOperand(2).hasOneUse()) { 14094 14095 // Scan all of the users of the LHS, looking for VCMPo's that match. 14096 SDNode *VCMPoNode = nullptr; 14097 14098 SDNode *LHSN = N->getOperand(0).getNode(); 14099 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14100 UI != E; ++UI) 14101 if (UI->getOpcode() == PPCISD::VCMPo && 14102 UI->getOperand(1) == N->getOperand(1) && 14103 UI->getOperand(2) == N->getOperand(2) && 14104 UI->getOperand(0) == N->getOperand(0)) { 14105 VCMPoNode = *UI; 14106 break; 14107 } 14108 14109 // If there is no VCMPo node, or if the flag value has a single use, don't 14110 // transform this. 14111 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14112 break; 14113 14114 // Look at the (necessarily single) use of the flag value. If it has a 14115 // chain, this transformation is more complex. Note that multiple things 14116 // could use the value result, which we should ignore. 14117 SDNode *FlagUser = nullptr; 14118 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14119 FlagUser == nullptr; ++UI) { 14120 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14121 SDNode *User = *UI; 14122 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14123 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14124 FlagUser = User; 14125 break; 14126 } 14127 } 14128 } 14129 14130 // If the user is a MFOCRF instruction, we know this is safe. 14131 // Otherwise we give up for right now. 14132 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14133 return SDValue(VCMPoNode, 0); 14134 } 14135 break; 14136 case ISD::BRCOND: { 14137 SDValue Cond = N->getOperand(1); 14138 SDValue Target = N->getOperand(2); 14139 14140 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14141 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14142 Intrinsic::loop_decrement) { 14143 14144 // We now need to make the intrinsic dead (it cannot be instruction 14145 // selected). 14146 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14147 assert(Cond.getNode()->hasOneUse() && 14148 "Counter decrement has more than one use"); 14149 14150 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14151 N->getOperand(0), Target); 14152 } 14153 } 14154 break; 14155 case ISD::BR_CC: { 14156 // If this is a branch on an altivec predicate comparison, lower this so 14157 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14158 // lowering is done pre-legalize, because the legalizer lowers the predicate 14159 // compare down to code that is difficult to reassemble. 14160 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14161 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14162 14163 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14164 // value. If so, pass-through the AND to get to the intrinsic. 14165 if (LHS.getOpcode() == ISD::AND && 14166 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14167 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14168 Intrinsic::loop_decrement && 14169 isa<ConstantSDNode>(LHS.getOperand(1)) && 14170 !isNullConstant(LHS.getOperand(1))) 14171 LHS = LHS.getOperand(0); 14172 14173 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14174 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14175 Intrinsic::loop_decrement && 14176 isa<ConstantSDNode>(RHS)) { 14177 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14178 "Counter decrement comparison is not EQ or NE"); 14179 14180 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14181 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14182 (CC == ISD::SETNE && !Val); 14183 14184 // We now need to make the intrinsic dead (it cannot be instruction 14185 // selected). 14186 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14187 assert(LHS.getNode()->hasOneUse() && 14188 "Counter decrement has more than one use"); 14189 14190 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14191 N->getOperand(0), N->getOperand(4)); 14192 } 14193 14194 int CompareOpc; 14195 bool isDot; 14196 14197 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14198 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14199 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14200 assert(isDot && "Can't compare against a vector result!"); 14201 14202 // If this is a comparison against something other than 0/1, then we know 14203 // that the condition is never/always true. 14204 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14205 if (Val != 0 && Val != 1) { 14206 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14207 return N->getOperand(0); 14208 // Always !=, turn it into an unconditional branch. 14209 return DAG.getNode(ISD::BR, dl, MVT::Other, 14210 N->getOperand(0), N->getOperand(4)); 14211 } 14212 14213 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14214 14215 // Create the PPCISD altivec 'dot' comparison node. 14216 SDValue Ops[] = { 14217 LHS.getOperand(2), // LHS of compare 14218 LHS.getOperand(3), // RHS of compare 14219 DAG.getConstant(CompareOpc, dl, MVT::i32) 14220 }; 14221 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14222 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14223 14224 // Unpack the result based on how the target uses it. 14225 PPC::Predicate CompOpc; 14226 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14227 default: // Can't happen, don't crash on invalid number though. 14228 case 0: // Branch on the value of the EQ bit of CR6. 14229 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14230 break; 14231 case 1: // Branch on the inverted value of the EQ bit of CR6. 14232 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14233 break; 14234 case 2: // Branch on the value of the LT bit of CR6. 14235 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14236 break; 14237 case 3: // Branch on the inverted value of the LT bit of CR6. 14238 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14239 break; 14240 } 14241 14242 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14243 DAG.getConstant(CompOpc, dl, MVT::i32), 14244 DAG.getRegister(PPC::CR6, MVT::i32), 14245 N->getOperand(4), CompNode.getValue(1)); 14246 } 14247 break; 14248 } 14249 case ISD::BUILD_VECTOR: 14250 return DAGCombineBuildVector(N, DCI); 14251 case ISD::ABS: 14252 return combineABS(N, DCI); 14253 case ISD::VSELECT: 14254 return combineVSelect(N, DCI); 14255 } 14256 14257 return SDValue(); 14258 } 14259 14260 SDValue 14261 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14262 SelectionDAG &DAG, 14263 SmallVectorImpl<SDNode *> &Created) const { 14264 // fold (sdiv X, pow2) 14265 EVT VT = N->getValueType(0); 14266 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14267 return SDValue(); 14268 if ((VT != MVT::i32 && VT != MVT::i64) || 14269 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14270 return SDValue(); 14271 14272 SDLoc DL(N); 14273 SDValue N0 = N->getOperand(0); 14274 14275 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14276 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14277 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14278 14279 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14280 Created.push_back(Op.getNode()); 14281 14282 if (IsNegPow2) { 14283 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14284 Created.push_back(Op.getNode()); 14285 } 14286 14287 return Op; 14288 } 14289 14290 //===----------------------------------------------------------------------===// 14291 // Inline Assembly Support 14292 //===----------------------------------------------------------------------===// 14293 14294 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14295 KnownBits &Known, 14296 const APInt &DemandedElts, 14297 const SelectionDAG &DAG, 14298 unsigned Depth) const { 14299 Known.resetAll(); 14300 switch (Op.getOpcode()) { 14301 default: break; 14302 case PPCISD::LBRX: { 14303 // lhbrx is known to have the top bits cleared out. 14304 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14305 Known.Zero = 0xFFFF0000; 14306 break; 14307 } 14308 case ISD::INTRINSIC_WO_CHAIN: { 14309 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14310 default: break; 14311 case Intrinsic::ppc_altivec_vcmpbfp_p: 14312 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14313 case Intrinsic::ppc_altivec_vcmpequb_p: 14314 case Intrinsic::ppc_altivec_vcmpequh_p: 14315 case Intrinsic::ppc_altivec_vcmpequw_p: 14316 case Intrinsic::ppc_altivec_vcmpequd_p: 14317 case Intrinsic::ppc_altivec_vcmpgefp_p: 14318 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14319 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14320 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14321 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14322 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14323 case Intrinsic::ppc_altivec_vcmpgtub_p: 14324 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14325 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14326 case Intrinsic::ppc_altivec_vcmpgtud_p: 14327 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14328 break; 14329 } 14330 } 14331 } 14332 } 14333 14334 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14335 switch (Subtarget.getCPUDirective()) { 14336 default: break; 14337 case PPC::DIR_970: 14338 case PPC::DIR_PWR4: 14339 case PPC::DIR_PWR5: 14340 case PPC::DIR_PWR5X: 14341 case PPC::DIR_PWR6: 14342 case PPC::DIR_PWR6X: 14343 case PPC::DIR_PWR7: 14344 case PPC::DIR_PWR8: 14345 case PPC::DIR_PWR9: 14346 case PPC::DIR_PWR_FUTURE: { 14347 if (!ML) 14348 break; 14349 14350 if (!DisableInnermostLoopAlign32) { 14351 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14352 // so that we can decrease cache misses and branch-prediction misses. 14353 // Actual alignment of the loop will depend on the hotness check and other 14354 // logic in alignBlocks. 14355 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14356 return Align(32); 14357 } 14358 14359 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14360 14361 // For small loops (between 5 and 8 instructions), align to a 32-byte 14362 // boundary so that the entire loop fits in one instruction-cache line. 14363 uint64_t LoopSize = 0; 14364 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14365 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14366 LoopSize += TII->getInstSizeInBytes(*J); 14367 if (LoopSize > 32) 14368 break; 14369 } 14370 14371 if (LoopSize > 16 && LoopSize <= 32) 14372 return Align(32); 14373 14374 break; 14375 } 14376 } 14377 14378 return TargetLowering::getPrefLoopAlignment(ML); 14379 } 14380 14381 /// getConstraintType - Given a constraint, return the type of 14382 /// constraint it is for this target. 14383 PPCTargetLowering::ConstraintType 14384 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14385 if (Constraint.size() == 1) { 14386 switch (Constraint[0]) { 14387 default: break; 14388 case 'b': 14389 case 'r': 14390 case 'f': 14391 case 'd': 14392 case 'v': 14393 case 'y': 14394 return C_RegisterClass; 14395 case 'Z': 14396 // FIXME: While Z does indicate a memory constraint, it specifically 14397 // indicates an r+r address (used in conjunction with the 'y' modifier 14398 // in the replacement string). Currently, we're forcing the base 14399 // register to be r0 in the asm printer (which is interpreted as zero) 14400 // and forming the complete address in the second register. This is 14401 // suboptimal. 14402 return C_Memory; 14403 } 14404 } else if (Constraint == "wc") { // individual CR bits. 14405 return C_RegisterClass; 14406 } else if (Constraint == "wa" || Constraint == "wd" || 14407 Constraint == "wf" || Constraint == "ws" || 14408 Constraint == "wi" || Constraint == "ww") { 14409 return C_RegisterClass; // VSX registers. 14410 } 14411 return TargetLowering::getConstraintType(Constraint); 14412 } 14413 14414 /// Examine constraint type and operand type and determine a weight value. 14415 /// This object must already have been set up with the operand type 14416 /// and the current alternative constraint selected. 14417 TargetLowering::ConstraintWeight 14418 PPCTargetLowering::getSingleConstraintMatchWeight( 14419 AsmOperandInfo &info, const char *constraint) const { 14420 ConstraintWeight weight = CW_Invalid; 14421 Value *CallOperandVal = info.CallOperandVal; 14422 // If we don't have a value, we can't do a match, 14423 // but allow it at the lowest weight. 14424 if (!CallOperandVal) 14425 return CW_Default; 14426 Type *type = CallOperandVal->getType(); 14427 14428 // Look at the constraint type. 14429 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14430 return CW_Register; // an individual CR bit. 14431 else if ((StringRef(constraint) == "wa" || 14432 StringRef(constraint) == "wd" || 14433 StringRef(constraint) == "wf") && 14434 type->isVectorTy()) 14435 return CW_Register; 14436 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14437 return CW_Register; // just hold 64-bit integers data. 14438 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14439 return CW_Register; 14440 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14441 return CW_Register; 14442 14443 switch (*constraint) { 14444 default: 14445 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14446 break; 14447 case 'b': 14448 if (type->isIntegerTy()) 14449 weight = CW_Register; 14450 break; 14451 case 'f': 14452 if (type->isFloatTy()) 14453 weight = CW_Register; 14454 break; 14455 case 'd': 14456 if (type->isDoubleTy()) 14457 weight = CW_Register; 14458 break; 14459 case 'v': 14460 if (type->isVectorTy()) 14461 weight = CW_Register; 14462 break; 14463 case 'y': 14464 weight = CW_Register; 14465 break; 14466 case 'Z': 14467 weight = CW_Memory; 14468 break; 14469 } 14470 return weight; 14471 } 14472 14473 std::pair<unsigned, const TargetRegisterClass *> 14474 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14475 StringRef Constraint, 14476 MVT VT) const { 14477 if (Constraint.size() == 1) { 14478 // GCC RS6000 Constraint Letters 14479 switch (Constraint[0]) { 14480 case 'b': // R1-R31 14481 if (VT == MVT::i64 && Subtarget.isPPC64()) 14482 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14483 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14484 case 'r': // R0-R31 14485 if (VT == MVT::i64 && Subtarget.isPPC64()) 14486 return std::make_pair(0U, &PPC::G8RCRegClass); 14487 return std::make_pair(0U, &PPC::GPRCRegClass); 14488 // 'd' and 'f' constraints are both defined to be "the floating point 14489 // registers", where one is for 32-bit and the other for 64-bit. We don't 14490 // really care overly much here so just give them all the same reg classes. 14491 case 'd': 14492 case 'f': 14493 if (Subtarget.hasSPE()) { 14494 if (VT == MVT::f32 || VT == MVT::i32) 14495 return std::make_pair(0U, &PPC::GPRCRegClass); 14496 if (VT == MVT::f64 || VT == MVT::i64) 14497 return std::make_pair(0U, &PPC::SPERCRegClass); 14498 } else { 14499 if (VT == MVT::f32 || VT == MVT::i32) 14500 return std::make_pair(0U, &PPC::F4RCRegClass); 14501 if (VT == MVT::f64 || VT == MVT::i64) 14502 return std::make_pair(0U, &PPC::F8RCRegClass); 14503 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14504 return std::make_pair(0U, &PPC::QFRCRegClass); 14505 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14506 return std::make_pair(0U, &PPC::QSRCRegClass); 14507 } 14508 break; 14509 case 'v': 14510 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14511 return std::make_pair(0U, &PPC::QFRCRegClass); 14512 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14513 return std::make_pair(0U, &PPC::QSRCRegClass); 14514 if (Subtarget.hasAltivec()) 14515 return std::make_pair(0U, &PPC::VRRCRegClass); 14516 break; 14517 case 'y': // crrc 14518 return std::make_pair(0U, &PPC::CRRCRegClass); 14519 } 14520 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14521 // An individual CR bit. 14522 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14523 } else if ((Constraint == "wa" || Constraint == "wd" || 14524 Constraint == "wf" || Constraint == "wi") && 14525 Subtarget.hasVSX()) { 14526 return std::make_pair(0U, &PPC::VSRCRegClass); 14527 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14528 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14529 return std::make_pair(0U, &PPC::VSSRCRegClass); 14530 else 14531 return std::make_pair(0U, &PPC::VSFRCRegClass); 14532 } 14533 14534 // If we name a VSX register, we can't defer to the base class because it 14535 // will not recognize the correct register (their names will be VSL{0-31} 14536 // and V{0-31} so they won't match). So we match them here. 14537 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14538 int VSNum = atoi(Constraint.data() + 3); 14539 assert(VSNum >= 0 && VSNum <= 63 && 14540 "Attempted to access a vsr out of range"); 14541 if (VSNum < 32) 14542 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14543 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14544 } 14545 std::pair<unsigned, const TargetRegisterClass *> R = 14546 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14547 14548 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14549 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14550 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14551 // register. 14552 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14553 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14554 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14555 PPC::GPRCRegClass.contains(R.first)) 14556 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14557 PPC::sub_32, &PPC::G8RCRegClass), 14558 &PPC::G8RCRegClass); 14559 14560 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14561 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14562 R.first = PPC::CR0; 14563 R.second = &PPC::CRRCRegClass; 14564 } 14565 14566 return R; 14567 } 14568 14569 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14570 /// vector. If it is invalid, don't add anything to Ops. 14571 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14572 std::string &Constraint, 14573 std::vector<SDValue>&Ops, 14574 SelectionDAG &DAG) const { 14575 SDValue Result; 14576 14577 // Only support length 1 constraints. 14578 if (Constraint.length() > 1) return; 14579 14580 char Letter = Constraint[0]; 14581 switch (Letter) { 14582 default: break; 14583 case 'I': 14584 case 'J': 14585 case 'K': 14586 case 'L': 14587 case 'M': 14588 case 'N': 14589 case 'O': 14590 case 'P': { 14591 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14592 if (!CST) return; // Must be an immediate to match. 14593 SDLoc dl(Op); 14594 int64_t Value = CST->getSExtValue(); 14595 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14596 // numbers are printed as such. 14597 switch (Letter) { 14598 default: llvm_unreachable("Unknown constraint letter!"); 14599 case 'I': // "I" is a signed 16-bit constant. 14600 if (isInt<16>(Value)) 14601 Result = DAG.getTargetConstant(Value, dl, TCVT); 14602 break; 14603 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14604 if (isShiftedUInt<16, 16>(Value)) 14605 Result = DAG.getTargetConstant(Value, dl, TCVT); 14606 break; 14607 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14608 if (isShiftedInt<16, 16>(Value)) 14609 Result = DAG.getTargetConstant(Value, dl, TCVT); 14610 break; 14611 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14612 if (isUInt<16>(Value)) 14613 Result = DAG.getTargetConstant(Value, dl, TCVT); 14614 break; 14615 case 'M': // "M" is a constant that is greater than 31. 14616 if (Value > 31) 14617 Result = DAG.getTargetConstant(Value, dl, TCVT); 14618 break; 14619 case 'N': // "N" is a positive constant that is an exact power of two. 14620 if (Value > 0 && isPowerOf2_64(Value)) 14621 Result = DAG.getTargetConstant(Value, dl, TCVT); 14622 break; 14623 case 'O': // "O" is the constant zero. 14624 if (Value == 0) 14625 Result = DAG.getTargetConstant(Value, dl, TCVT); 14626 break; 14627 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14628 if (isInt<16>(-Value)) 14629 Result = DAG.getTargetConstant(Value, dl, TCVT); 14630 break; 14631 } 14632 break; 14633 } 14634 } 14635 14636 if (Result.getNode()) { 14637 Ops.push_back(Result); 14638 return; 14639 } 14640 14641 // Handle standard constraint letters. 14642 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14643 } 14644 14645 // isLegalAddressingMode - Return true if the addressing mode represented 14646 // by AM is legal for this target, for a load/store of the specified type. 14647 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14648 const AddrMode &AM, Type *Ty, 14649 unsigned AS, Instruction *I) const { 14650 // PPC does not allow r+i addressing modes for vectors! 14651 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14652 return false; 14653 14654 // PPC allows a sign-extended 16-bit immediate field. 14655 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14656 return false; 14657 14658 // No global is ever allowed as a base. 14659 if (AM.BaseGV) 14660 return false; 14661 14662 // PPC only support r+r, 14663 switch (AM.Scale) { 14664 case 0: // "r+i" or just "i", depending on HasBaseReg. 14665 break; 14666 case 1: 14667 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14668 return false; 14669 // Otherwise we have r+r or r+i. 14670 break; 14671 case 2: 14672 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14673 return false; 14674 // Allow 2*r as r+r. 14675 break; 14676 default: 14677 // No other scales are supported. 14678 return false; 14679 } 14680 14681 return true; 14682 } 14683 14684 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14685 SelectionDAG &DAG) const { 14686 MachineFunction &MF = DAG.getMachineFunction(); 14687 MachineFrameInfo &MFI = MF.getFrameInfo(); 14688 MFI.setReturnAddressIsTaken(true); 14689 14690 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14691 return SDValue(); 14692 14693 SDLoc dl(Op); 14694 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14695 14696 // Make sure the function does not optimize away the store of the RA to 14697 // the stack. 14698 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14699 FuncInfo->setLRStoreRequired(); 14700 bool isPPC64 = Subtarget.isPPC64(); 14701 auto PtrVT = getPointerTy(MF.getDataLayout()); 14702 14703 if (Depth > 0) { 14704 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14705 SDValue Offset = 14706 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14707 isPPC64 ? MVT::i64 : MVT::i32); 14708 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14709 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14710 MachinePointerInfo()); 14711 } 14712 14713 // Just load the return address off the stack. 14714 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14715 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14716 MachinePointerInfo()); 14717 } 14718 14719 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14720 SelectionDAG &DAG) const { 14721 SDLoc dl(Op); 14722 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14723 14724 MachineFunction &MF = DAG.getMachineFunction(); 14725 MachineFrameInfo &MFI = MF.getFrameInfo(); 14726 MFI.setFrameAddressIsTaken(true); 14727 14728 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14729 bool isPPC64 = PtrVT == MVT::i64; 14730 14731 // Naked functions never have a frame pointer, and so we use r1. For all 14732 // other functions, this decision must be delayed until during PEI. 14733 unsigned FrameReg; 14734 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14735 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14736 else 14737 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14738 14739 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14740 PtrVT); 14741 while (Depth--) 14742 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14743 FrameAddr, MachinePointerInfo()); 14744 return FrameAddr; 14745 } 14746 14747 // FIXME? Maybe this could be a TableGen attribute on some registers and 14748 // this table could be generated automatically from RegInfo. 14749 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14750 const MachineFunction &MF) const { 14751 bool isPPC64 = Subtarget.isPPC64(); 14752 bool IsDarwinABI = Subtarget.isDarwinABI(); 14753 14754 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14755 (!isPPC64 && VT != MVT::i32)) 14756 report_fatal_error("Invalid register global variable type"); 14757 14758 bool is64Bit = isPPC64 && VT == MVT::i64; 14759 Register Reg = StringSwitch<Register>(RegName) 14760 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14761 .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2) 14762 .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() : 14763 (is64Bit ? PPC::X13 : PPC::R13)) 14764 .Default(Register()); 14765 14766 if (Reg) 14767 return Reg; 14768 report_fatal_error("Invalid register name global variable"); 14769 } 14770 14771 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14772 // 32-bit SVR4 ABI access everything as got-indirect. 14773 if (Subtarget.is32BitELFABI()) 14774 return true; 14775 14776 // AIX accesses everything indirectly through the TOC, which is similar to 14777 // the GOT. 14778 if (Subtarget.isAIXABI()) 14779 return true; 14780 14781 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14782 // If it is small or large code model, module locals are accessed 14783 // indirectly by loading their address from .toc/.got. 14784 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14785 return true; 14786 14787 // JumpTable and BlockAddress are accessed as got-indirect. 14788 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14789 return true; 14790 14791 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 14792 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 14793 14794 return false; 14795 } 14796 14797 bool 14798 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14799 // The PowerPC target isn't yet aware of offsets. 14800 return false; 14801 } 14802 14803 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14804 const CallInst &I, 14805 MachineFunction &MF, 14806 unsigned Intrinsic) const { 14807 switch (Intrinsic) { 14808 case Intrinsic::ppc_qpx_qvlfd: 14809 case Intrinsic::ppc_qpx_qvlfs: 14810 case Intrinsic::ppc_qpx_qvlfcd: 14811 case Intrinsic::ppc_qpx_qvlfcs: 14812 case Intrinsic::ppc_qpx_qvlfiwa: 14813 case Intrinsic::ppc_qpx_qvlfiwz: 14814 case Intrinsic::ppc_altivec_lvx: 14815 case Intrinsic::ppc_altivec_lvxl: 14816 case Intrinsic::ppc_altivec_lvebx: 14817 case Intrinsic::ppc_altivec_lvehx: 14818 case Intrinsic::ppc_altivec_lvewx: 14819 case Intrinsic::ppc_vsx_lxvd2x: 14820 case Intrinsic::ppc_vsx_lxvw4x: { 14821 EVT VT; 14822 switch (Intrinsic) { 14823 case Intrinsic::ppc_altivec_lvebx: 14824 VT = MVT::i8; 14825 break; 14826 case Intrinsic::ppc_altivec_lvehx: 14827 VT = MVT::i16; 14828 break; 14829 case Intrinsic::ppc_altivec_lvewx: 14830 VT = MVT::i32; 14831 break; 14832 case Intrinsic::ppc_vsx_lxvd2x: 14833 VT = MVT::v2f64; 14834 break; 14835 case Intrinsic::ppc_qpx_qvlfd: 14836 VT = MVT::v4f64; 14837 break; 14838 case Intrinsic::ppc_qpx_qvlfs: 14839 VT = MVT::v4f32; 14840 break; 14841 case Intrinsic::ppc_qpx_qvlfcd: 14842 VT = MVT::v2f64; 14843 break; 14844 case Intrinsic::ppc_qpx_qvlfcs: 14845 VT = MVT::v2f32; 14846 break; 14847 default: 14848 VT = MVT::v4i32; 14849 break; 14850 } 14851 14852 Info.opc = ISD::INTRINSIC_W_CHAIN; 14853 Info.memVT = VT; 14854 Info.ptrVal = I.getArgOperand(0); 14855 Info.offset = -VT.getStoreSize()+1; 14856 Info.size = 2*VT.getStoreSize()-1; 14857 Info.align = Align::None(); 14858 Info.flags = MachineMemOperand::MOLoad; 14859 return true; 14860 } 14861 case Intrinsic::ppc_qpx_qvlfda: 14862 case Intrinsic::ppc_qpx_qvlfsa: 14863 case Intrinsic::ppc_qpx_qvlfcda: 14864 case Intrinsic::ppc_qpx_qvlfcsa: 14865 case Intrinsic::ppc_qpx_qvlfiwaa: 14866 case Intrinsic::ppc_qpx_qvlfiwza: { 14867 EVT VT; 14868 switch (Intrinsic) { 14869 case Intrinsic::ppc_qpx_qvlfda: 14870 VT = MVT::v4f64; 14871 break; 14872 case Intrinsic::ppc_qpx_qvlfsa: 14873 VT = MVT::v4f32; 14874 break; 14875 case Intrinsic::ppc_qpx_qvlfcda: 14876 VT = MVT::v2f64; 14877 break; 14878 case Intrinsic::ppc_qpx_qvlfcsa: 14879 VT = MVT::v2f32; 14880 break; 14881 default: 14882 VT = MVT::v4i32; 14883 break; 14884 } 14885 14886 Info.opc = ISD::INTRINSIC_W_CHAIN; 14887 Info.memVT = VT; 14888 Info.ptrVal = I.getArgOperand(0); 14889 Info.offset = 0; 14890 Info.size = VT.getStoreSize(); 14891 Info.align = Align::None(); 14892 Info.flags = MachineMemOperand::MOLoad; 14893 return true; 14894 } 14895 case Intrinsic::ppc_qpx_qvstfd: 14896 case Intrinsic::ppc_qpx_qvstfs: 14897 case Intrinsic::ppc_qpx_qvstfcd: 14898 case Intrinsic::ppc_qpx_qvstfcs: 14899 case Intrinsic::ppc_qpx_qvstfiw: 14900 case Intrinsic::ppc_altivec_stvx: 14901 case Intrinsic::ppc_altivec_stvxl: 14902 case Intrinsic::ppc_altivec_stvebx: 14903 case Intrinsic::ppc_altivec_stvehx: 14904 case Intrinsic::ppc_altivec_stvewx: 14905 case Intrinsic::ppc_vsx_stxvd2x: 14906 case Intrinsic::ppc_vsx_stxvw4x: { 14907 EVT VT; 14908 switch (Intrinsic) { 14909 case Intrinsic::ppc_altivec_stvebx: 14910 VT = MVT::i8; 14911 break; 14912 case Intrinsic::ppc_altivec_stvehx: 14913 VT = MVT::i16; 14914 break; 14915 case Intrinsic::ppc_altivec_stvewx: 14916 VT = MVT::i32; 14917 break; 14918 case Intrinsic::ppc_vsx_stxvd2x: 14919 VT = MVT::v2f64; 14920 break; 14921 case Intrinsic::ppc_qpx_qvstfd: 14922 VT = MVT::v4f64; 14923 break; 14924 case Intrinsic::ppc_qpx_qvstfs: 14925 VT = MVT::v4f32; 14926 break; 14927 case Intrinsic::ppc_qpx_qvstfcd: 14928 VT = MVT::v2f64; 14929 break; 14930 case Intrinsic::ppc_qpx_qvstfcs: 14931 VT = MVT::v2f32; 14932 break; 14933 default: 14934 VT = MVT::v4i32; 14935 break; 14936 } 14937 14938 Info.opc = ISD::INTRINSIC_VOID; 14939 Info.memVT = VT; 14940 Info.ptrVal = I.getArgOperand(1); 14941 Info.offset = -VT.getStoreSize()+1; 14942 Info.size = 2*VT.getStoreSize()-1; 14943 Info.align = Align::None(); 14944 Info.flags = MachineMemOperand::MOStore; 14945 return true; 14946 } 14947 case Intrinsic::ppc_qpx_qvstfda: 14948 case Intrinsic::ppc_qpx_qvstfsa: 14949 case Intrinsic::ppc_qpx_qvstfcda: 14950 case Intrinsic::ppc_qpx_qvstfcsa: 14951 case Intrinsic::ppc_qpx_qvstfiwa: { 14952 EVT VT; 14953 switch (Intrinsic) { 14954 case Intrinsic::ppc_qpx_qvstfda: 14955 VT = MVT::v4f64; 14956 break; 14957 case Intrinsic::ppc_qpx_qvstfsa: 14958 VT = MVT::v4f32; 14959 break; 14960 case Intrinsic::ppc_qpx_qvstfcda: 14961 VT = MVT::v2f64; 14962 break; 14963 case Intrinsic::ppc_qpx_qvstfcsa: 14964 VT = MVT::v2f32; 14965 break; 14966 default: 14967 VT = MVT::v4i32; 14968 break; 14969 } 14970 14971 Info.opc = ISD::INTRINSIC_VOID; 14972 Info.memVT = VT; 14973 Info.ptrVal = I.getArgOperand(1); 14974 Info.offset = 0; 14975 Info.size = VT.getStoreSize(); 14976 Info.align = Align::None(); 14977 Info.flags = MachineMemOperand::MOStore; 14978 return true; 14979 } 14980 default: 14981 break; 14982 } 14983 14984 return false; 14985 } 14986 14987 /// getOptimalMemOpType - Returns the target specific optimal type for load 14988 /// and store operations as a result of memset, memcpy, and memmove 14989 /// lowering. If DstAlign is zero that means it's safe to destination 14990 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14991 /// means there isn't a need to check it against alignment requirement, 14992 /// probably because the source does not need to be loaded. If 'IsMemset' is 14993 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14994 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14995 /// source is constant so it does not need to be loaded. 14996 /// It returns EVT::Other if the type should be determined using generic 14997 /// target-independent logic. 14998 EVT PPCTargetLowering::getOptimalMemOpType( 14999 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 15000 bool ZeroMemset, bool MemcpyStrSrc, 15001 const AttributeList &FuncAttributes) const { 15002 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15003 // When expanding a memset, require at least two QPX instructions to cover 15004 // the cost of loading the value to be stored from the constant pool. 15005 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 15006 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 15007 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15008 return MVT::v4f64; 15009 } 15010 15011 // We should use Altivec/VSX loads and stores when available. For unaligned 15012 // addresses, unaligned VSX loads are only fast starting with the P8. 15013 if (Subtarget.hasAltivec() && Size >= 16 && 15014 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 15015 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15016 return MVT::v4i32; 15017 } 15018 15019 if (Subtarget.isPPC64()) { 15020 return MVT::i64; 15021 } 15022 15023 return MVT::i32; 15024 } 15025 15026 /// Returns true if it is beneficial to convert a load of a constant 15027 /// to just the constant itself. 15028 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15029 Type *Ty) const { 15030 assert(Ty->isIntegerTy()); 15031 15032 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15033 return !(BitSize == 0 || BitSize > 64); 15034 } 15035 15036 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15037 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15038 return false; 15039 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15040 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15041 return NumBits1 == 64 && NumBits2 == 32; 15042 } 15043 15044 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15045 if (!VT1.isInteger() || !VT2.isInteger()) 15046 return false; 15047 unsigned NumBits1 = VT1.getSizeInBits(); 15048 unsigned NumBits2 = VT2.getSizeInBits(); 15049 return NumBits1 == 64 && NumBits2 == 32; 15050 } 15051 15052 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15053 // Generally speaking, zexts are not free, but they are free when they can be 15054 // folded with other operations. 15055 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15056 EVT MemVT = LD->getMemoryVT(); 15057 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15058 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15059 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15060 LD->getExtensionType() == ISD::ZEXTLOAD)) 15061 return true; 15062 } 15063 15064 // FIXME: Add other cases... 15065 // - 32-bit shifts with a zext to i64 15066 // - zext after ctlz, bswap, etc. 15067 // - zext after and by a constant mask 15068 15069 return TargetLowering::isZExtFree(Val, VT2); 15070 } 15071 15072 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15073 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15074 "invalid fpext types"); 15075 // Extending to float128 is not free. 15076 if (DestVT == MVT::f128) 15077 return false; 15078 return true; 15079 } 15080 15081 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15082 return isInt<16>(Imm) || isUInt<16>(Imm); 15083 } 15084 15085 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15086 return isInt<16>(Imm) || isUInt<16>(Imm); 15087 } 15088 15089 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15090 unsigned, 15091 unsigned, 15092 MachineMemOperand::Flags, 15093 bool *Fast) const { 15094 if (DisablePPCUnaligned) 15095 return false; 15096 15097 // PowerPC supports unaligned memory access for simple non-vector types. 15098 // Although accessing unaligned addresses is not as efficient as accessing 15099 // aligned addresses, it is generally more efficient than manual expansion, 15100 // and generally only traps for software emulation when crossing page 15101 // boundaries. 15102 15103 if (!VT.isSimple()) 15104 return false; 15105 15106 if (VT.getSimpleVT().isVector()) { 15107 if (Subtarget.hasVSX()) { 15108 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15109 VT != MVT::v4f32 && VT != MVT::v4i32) 15110 return false; 15111 } else { 15112 return false; 15113 } 15114 } 15115 15116 if (VT == MVT::ppcf128) 15117 return false; 15118 15119 if (Fast) 15120 *Fast = true; 15121 15122 return true; 15123 } 15124 15125 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15126 EVT VT) const { 15127 VT = VT.getScalarType(); 15128 15129 if (!VT.isSimple()) 15130 return false; 15131 15132 switch (VT.getSimpleVT().SimpleTy) { 15133 case MVT::f32: 15134 case MVT::f64: 15135 return true; 15136 case MVT::f128: 15137 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 15138 default: 15139 break; 15140 } 15141 15142 return false; 15143 } 15144 15145 const MCPhysReg * 15146 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15147 // LR is a callee-save register, but we must treat it as clobbered by any call 15148 // site. Hence we include LR in the scratch registers, which are in turn added 15149 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15150 // to CTR, which is used by any indirect call. 15151 static const MCPhysReg ScratchRegs[] = { 15152 PPC::X12, PPC::LR8, PPC::CTR8, 0 15153 }; 15154 15155 return ScratchRegs; 15156 } 15157 15158 unsigned PPCTargetLowering::getExceptionPointerRegister( 15159 const Constant *PersonalityFn) const { 15160 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15161 } 15162 15163 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15164 const Constant *PersonalityFn) const { 15165 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15166 } 15167 15168 bool 15169 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15170 EVT VT , unsigned DefinedValues) const { 15171 if (VT == MVT::v2i64) 15172 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15173 15174 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15175 return true; 15176 15177 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15178 } 15179 15180 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15181 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15182 return TargetLowering::getSchedulingPreference(N); 15183 15184 return Sched::ILP; 15185 } 15186 15187 // Create a fast isel object. 15188 FastISel * 15189 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15190 const TargetLibraryInfo *LibInfo) const { 15191 return PPC::createFastISel(FuncInfo, LibInfo); 15192 } 15193 15194 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15195 if (Subtarget.isDarwinABI()) return; 15196 if (!Subtarget.isPPC64()) return; 15197 15198 // Update IsSplitCSR in PPCFunctionInfo 15199 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15200 PFI->setIsSplitCSR(true); 15201 } 15202 15203 void PPCTargetLowering::insertCopiesSplitCSR( 15204 MachineBasicBlock *Entry, 15205 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15206 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15207 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15208 if (!IStart) 15209 return; 15210 15211 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15212 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15213 MachineBasicBlock::iterator MBBI = Entry->begin(); 15214 for (const MCPhysReg *I = IStart; *I; ++I) { 15215 const TargetRegisterClass *RC = nullptr; 15216 if (PPC::G8RCRegClass.contains(*I)) 15217 RC = &PPC::G8RCRegClass; 15218 else if (PPC::F8RCRegClass.contains(*I)) 15219 RC = &PPC::F8RCRegClass; 15220 else if (PPC::CRRCRegClass.contains(*I)) 15221 RC = &PPC::CRRCRegClass; 15222 else if (PPC::VRRCRegClass.contains(*I)) 15223 RC = &PPC::VRRCRegClass; 15224 else 15225 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15226 15227 Register NewVR = MRI->createVirtualRegister(RC); 15228 // Create copy from CSR to a virtual register. 15229 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15230 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15231 // nounwind. If we want to generalize this later, we may need to emit 15232 // CFI pseudo-instructions. 15233 assert(Entry->getParent()->getFunction().hasFnAttribute( 15234 Attribute::NoUnwind) && 15235 "Function should be nounwind in insertCopiesSplitCSR!"); 15236 Entry->addLiveIn(*I); 15237 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15238 .addReg(*I); 15239 15240 // Insert the copy-back instructions right before the terminator. 15241 for (auto *Exit : Exits) 15242 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15243 TII->get(TargetOpcode::COPY), *I) 15244 .addReg(NewVR); 15245 } 15246 } 15247 15248 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15249 bool PPCTargetLowering::useLoadStackGuardNode() const { 15250 if (!Subtarget.isTargetLinux()) 15251 return TargetLowering::useLoadStackGuardNode(); 15252 return true; 15253 } 15254 15255 // Override to disable global variable loading on Linux. 15256 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15257 if (!Subtarget.isTargetLinux()) 15258 return TargetLowering::insertSSPDeclarations(M); 15259 } 15260 15261 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15262 bool ForCodeSize) const { 15263 if (!VT.isSimple() || !Subtarget.hasVSX()) 15264 return false; 15265 15266 switch(VT.getSimpleVT().SimpleTy) { 15267 default: 15268 // For FP types that are currently not supported by PPC backend, return 15269 // false. Examples: f16, f80. 15270 return false; 15271 case MVT::f32: 15272 case MVT::f64: 15273 case MVT::ppcf128: 15274 return Imm.isPosZero(); 15275 } 15276 } 15277 15278 // For vector shift operation op, fold 15279 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15280 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15281 SelectionDAG &DAG) { 15282 SDValue N0 = N->getOperand(0); 15283 SDValue N1 = N->getOperand(1); 15284 EVT VT = N0.getValueType(); 15285 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15286 unsigned Opcode = N->getOpcode(); 15287 unsigned TargetOpcode; 15288 15289 switch (Opcode) { 15290 default: 15291 llvm_unreachable("Unexpected shift operation"); 15292 case ISD::SHL: 15293 TargetOpcode = PPCISD::SHL; 15294 break; 15295 case ISD::SRL: 15296 TargetOpcode = PPCISD::SRL; 15297 break; 15298 case ISD::SRA: 15299 TargetOpcode = PPCISD::SRA; 15300 break; 15301 } 15302 15303 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15304 N1->getOpcode() == ISD::AND) 15305 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15306 if (Mask->getZExtValue() == OpSizeInBits - 1) 15307 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15308 15309 return SDValue(); 15310 } 15311 15312 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15313 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15314 return Value; 15315 15316 SDValue N0 = N->getOperand(0); 15317 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15318 if (!Subtarget.isISA3_0() || 15319 N0.getOpcode() != ISD::SIGN_EXTEND || 15320 N0.getOperand(0).getValueType() != MVT::i32 || 15321 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15322 return SDValue(); 15323 15324 // We can't save an operation here if the value is already extended, and 15325 // the existing shift is easier to combine. 15326 SDValue ExtsSrc = N0.getOperand(0); 15327 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15328 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15329 return SDValue(); 15330 15331 SDLoc DL(N0); 15332 SDValue ShiftBy = SDValue(CN1, 0); 15333 // We want the shift amount to be i32 on the extswli, but the shift could 15334 // have an i64. 15335 if (ShiftBy.getValueType() == MVT::i64) 15336 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15337 15338 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15339 ShiftBy); 15340 } 15341 15342 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15343 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15344 return Value; 15345 15346 return SDValue(); 15347 } 15348 15349 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15350 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15351 return Value; 15352 15353 return SDValue(); 15354 } 15355 15356 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15357 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15358 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15359 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15360 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15361 const PPCSubtarget &Subtarget) { 15362 if (!Subtarget.isPPC64()) 15363 return SDValue(); 15364 15365 SDValue LHS = N->getOperand(0); 15366 SDValue RHS = N->getOperand(1); 15367 15368 auto isZextOfCompareWithConstant = [](SDValue Op) { 15369 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15370 Op.getValueType() != MVT::i64) 15371 return false; 15372 15373 SDValue Cmp = Op.getOperand(0); 15374 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15375 Cmp.getOperand(0).getValueType() != MVT::i64) 15376 return false; 15377 15378 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15379 int64_t NegConstant = 0 - Constant->getSExtValue(); 15380 // Due to the limitations of the addi instruction, 15381 // -C is required to be [-32768, 32767]. 15382 return isInt<16>(NegConstant); 15383 } 15384 15385 return false; 15386 }; 15387 15388 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15389 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15390 15391 // If there is a pattern, canonicalize a zext operand to the RHS. 15392 if (LHSHasPattern && !RHSHasPattern) 15393 std::swap(LHS, RHS); 15394 else if (!LHSHasPattern && !RHSHasPattern) 15395 return SDValue(); 15396 15397 SDLoc DL(N); 15398 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15399 SDValue Cmp = RHS.getOperand(0); 15400 SDValue Z = Cmp.getOperand(0); 15401 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15402 15403 assert(Constant && "Constant Should not be a null pointer."); 15404 int64_t NegConstant = 0 - Constant->getSExtValue(); 15405 15406 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15407 default: break; 15408 case ISD::SETNE: { 15409 // when C == 0 15410 // --> addze X, (addic Z, -1).carry 15411 // / 15412 // add X, (zext(setne Z, C))-- 15413 // \ when -32768 <= -C <= 32767 && C != 0 15414 // --> addze X, (addic (addi Z, -C), -1).carry 15415 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15416 DAG.getConstant(NegConstant, DL, MVT::i64)); 15417 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15418 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15419 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15420 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15421 SDValue(Addc.getNode(), 1)); 15422 } 15423 case ISD::SETEQ: { 15424 // when C == 0 15425 // --> addze X, (subfic Z, 0).carry 15426 // / 15427 // add X, (zext(sete Z, C))-- 15428 // \ when -32768 <= -C <= 32767 && C != 0 15429 // --> addze X, (subfic (addi Z, -C), 0).carry 15430 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15431 DAG.getConstant(NegConstant, DL, MVT::i64)); 15432 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15433 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15434 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15435 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15436 SDValue(Subc.getNode(), 1)); 15437 } 15438 } 15439 15440 return SDValue(); 15441 } 15442 15443 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15444 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15445 return Value; 15446 15447 return SDValue(); 15448 } 15449 15450 // Detect TRUNCATE operations on bitcasts of float128 values. 15451 // What we are looking for here is the situtation where we extract a subset 15452 // of bits from a 128 bit float. 15453 // This can be of two forms: 15454 // 1) BITCAST of f128 feeding TRUNCATE 15455 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15456 // The reason this is required is because we do not have a legal i128 type 15457 // and so we want to prevent having to store the f128 and then reload part 15458 // of it. 15459 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15460 DAGCombinerInfo &DCI) const { 15461 // If we are using CRBits then try that first. 15462 if (Subtarget.useCRBits()) { 15463 // Check if CRBits did anything and return that if it did. 15464 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15465 return CRTruncValue; 15466 } 15467 15468 SDLoc dl(N); 15469 SDValue Op0 = N->getOperand(0); 15470 15471 // Looking for a truncate of i128 to i64. 15472 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15473 return SDValue(); 15474 15475 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15476 15477 // SRL feeding TRUNCATE. 15478 if (Op0.getOpcode() == ISD::SRL) { 15479 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15480 // The right shift has to be by 64 bits. 15481 if (!ConstNode || ConstNode->getZExtValue() != 64) 15482 return SDValue(); 15483 15484 // Switch the element number to extract. 15485 EltToExtract = EltToExtract ? 0 : 1; 15486 // Update Op0 past the SRL. 15487 Op0 = Op0.getOperand(0); 15488 } 15489 15490 // BITCAST feeding a TRUNCATE possibly via SRL. 15491 if (Op0.getOpcode() == ISD::BITCAST && 15492 Op0.getValueType() == MVT::i128 && 15493 Op0.getOperand(0).getValueType() == MVT::f128) { 15494 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15495 return DCI.DAG.getNode( 15496 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15497 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15498 } 15499 return SDValue(); 15500 } 15501 15502 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15503 SelectionDAG &DAG = DCI.DAG; 15504 15505 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15506 if (!ConstOpOrElement) 15507 return SDValue(); 15508 15509 // An imul is usually smaller than the alternative sequence for legal type. 15510 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15511 isOperationLegal(ISD::MUL, N->getValueType(0))) 15512 return SDValue(); 15513 15514 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15515 switch (this->Subtarget.getCPUDirective()) { 15516 default: 15517 // TODO: enhance the condition for subtarget before pwr8 15518 return false; 15519 case PPC::DIR_PWR8: 15520 // type mul add shl 15521 // scalar 4 1 1 15522 // vector 7 2 2 15523 return true; 15524 case PPC::DIR_PWR9: 15525 case PPC::DIR_PWR_FUTURE: 15526 // type mul add shl 15527 // scalar 5 2 2 15528 // vector 7 2 2 15529 15530 // The cycle RATIO of related operations are showed as a table above. 15531 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15532 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15533 // are 4, it is always profitable; but for 3 instrs patterns 15534 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15535 // So we should only do it for vector type. 15536 return IsAddOne && IsNeg ? VT.isVector() : true; 15537 } 15538 }; 15539 15540 EVT VT = N->getValueType(0); 15541 SDLoc DL(N); 15542 15543 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15544 bool IsNeg = MulAmt.isNegative(); 15545 APInt MulAmtAbs = MulAmt.abs(); 15546 15547 if ((MulAmtAbs - 1).isPowerOf2()) { 15548 // (mul x, 2^N + 1) => (add (shl x, N), x) 15549 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15550 15551 if (!IsProfitable(IsNeg, true, VT)) 15552 return SDValue(); 15553 15554 SDValue Op0 = N->getOperand(0); 15555 SDValue Op1 = 15556 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15557 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15558 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15559 15560 if (!IsNeg) 15561 return Res; 15562 15563 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15564 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15565 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15566 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15567 15568 if (!IsProfitable(IsNeg, false, VT)) 15569 return SDValue(); 15570 15571 SDValue Op0 = N->getOperand(0); 15572 SDValue Op1 = 15573 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15574 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15575 15576 if (!IsNeg) 15577 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15578 else 15579 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15580 15581 } else { 15582 return SDValue(); 15583 } 15584 } 15585 15586 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15587 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15588 if (!Subtarget.is64BitELFABI()) 15589 return false; 15590 15591 // If not a tail call then no need to proceed. 15592 if (!CI->isTailCall()) 15593 return false; 15594 15595 // If tail calls are disabled for the caller then we are done. 15596 const Function *Caller = CI->getParent()->getParent(); 15597 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15598 if (Attr.getValueAsString() == "true") 15599 return false; 15600 15601 // If sibling calls have been disabled and tail-calls aren't guaranteed 15602 // there is no reason to duplicate. 15603 auto &TM = getTargetMachine(); 15604 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15605 return false; 15606 15607 // Can't tail call a function called indirectly, or if it has variadic args. 15608 const Function *Callee = CI->getCalledFunction(); 15609 if (!Callee || Callee->isVarArg()) 15610 return false; 15611 15612 // Make sure the callee and caller calling conventions are eligible for tco. 15613 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15614 CI->getCallingConv())) 15615 return false; 15616 15617 // If the function is local then we have a good chance at tail-calling it 15618 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15619 } 15620 15621 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15622 if (!Subtarget.hasVSX()) 15623 return false; 15624 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15625 return true; 15626 return VT == MVT::f32 || VT == MVT::f64 || 15627 VT == MVT::v4f32 || VT == MVT::v2f64; 15628 } 15629 15630 bool PPCTargetLowering:: 15631 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15632 const Value *Mask = AndI.getOperand(1); 15633 // If the mask is suitable for andi. or andis. we should sink the and. 15634 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15635 // Can't handle constants wider than 64-bits. 15636 if (CI->getBitWidth() > 64) 15637 return false; 15638 int64_t ConstVal = CI->getZExtValue(); 15639 return isUInt<16>(ConstVal) || 15640 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15641 } 15642 15643 // For non-constant masks, we can always use the record-form and. 15644 return true; 15645 } 15646 15647 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15648 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15649 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15650 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15651 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15652 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15653 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15654 assert(Subtarget.hasP9Altivec() && 15655 "Only combine this when P9 altivec supported!"); 15656 EVT VT = N->getValueType(0); 15657 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15658 return SDValue(); 15659 15660 SelectionDAG &DAG = DCI.DAG; 15661 SDLoc dl(N); 15662 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15663 // Even for signed integers, if it's known to be positive (as signed 15664 // integer) due to zero-extended inputs. 15665 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15666 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15667 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15668 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15669 (SubOpcd1 == ISD::ZERO_EXTEND || 15670 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15671 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15672 N->getOperand(0)->getOperand(0), 15673 N->getOperand(0)->getOperand(1), 15674 DAG.getTargetConstant(0, dl, MVT::i32)); 15675 } 15676 15677 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15678 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15679 N->getOperand(0).hasOneUse()) { 15680 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15681 N->getOperand(0)->getOperand(0), 15682 N->getOperand(0)->getOperand(1), 15683 DAG.getTargetConstant(1, dl, MVT::i32)); 15684 } 15685 } 15686 15687 return SDValue(); 15688 } 15689 15690 // For type v4i32/v8ii16/v16i8, transform 15691 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15692 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15693 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15694 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15695 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15696 DAGCombinerInfo &DCI) const { 15697 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15698 assert(Subtarget.hasP9Altivec() && 15699 "Only combine this when P9 altivec supported!"); 15700 15701 SelectionDAG &DAG = DCI.DAG; 15702 SDLoc dl(N); 15703 SDValue Cond = N->getOperand(0); 15704 SDValue TrueOpnd = N->getOperand(1); 15705 SDValue FalseOpnd = N->getOperand(2); 15706 EVT VT = N->getOperand(1).getValueType(); 15707 15708 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15709 FalseOpnd.getOpcode() != ISD::SUB) 15710 return SDValue(); 15711 15712 // ABSD only available for type v4i32/v8i16/v16i8 15713 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15714 return SDValue(); 15715 15716 // At least to save one more dependent computation 15717 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15718 return SDValue(); 15719 15720 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15721 15722 // Can only handle unsigned comparison here 15723 switch (CC) { 15724 default: 15725 return SDValue(); 15726 case ISD::SETUGT: 15727 case ISD::SETUGE: 15728 break; 15729 case ISD::SETULT: 15730 case ISD::SETULE: 15731 std::swap(TrueOpnd, FalseOpnd); 15732 break; 15733 } 15734 15735 SDValue CmpOpnd1 = Cond.getOperand(0); 15736 SDValue CmpOpnd2 = Cond.getOperand(1); 15737 15738 // SETCC CmpOpnd1 CmpOpnd2 cond 15739 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15740 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15741 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15742 TrueOpnd.getOperand(1) == CmpOpnd2 && 15743 FalseOpnd.getOperand(0) == CmpOpnd2 && 15744 FalseOpnd.getOperand(1) == CmpOpnd1) { 15745 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15746 CmpOpnd1, CmpOpnd2, 15747 DAG.getTargetConstant(0, dl, MVT::i32)); 15748 } 15749 15750 return SDValue(); 15751 } 15752