1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCSymbolXCOFF.h"
77 #include "llvm/Support/AtomicOrdering.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CodeGen.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetMachine.h"
91 #include "llvm/Target/TargetOptions.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <list>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 
102 #define DEBUG_TYPE "ppc-lowering"
103 
104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
112 
113 static cl::opt<bool> DisableSCO("disable-ppc-sco",
114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
115 
116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
118 
119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
120 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
121 
122 STATISTIC(NumTailCalls, "Number of tail calls");
123 STATISTIC(NumSiblingCalls, "Number of sibling calls");
124 
125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
126 
127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
128 
129 // FIXME: Remove this once the bug has been fixed!
130 extern cl::opt<bool> ANDIGlueBug;
131 
132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
133                                      const PPCSubtarget &STI)
134     : TargetLowering(TM), Subtarget(STI) {
135   // Use _setjmp/_longjmp instead of setjmp/longjmp.
136   setUseUnderscoreSetJmp(true);
137   setUseUnderscoreLongJmp(true);
138 
139   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140   // arguments are at least 4/8 bytes aligned.
141   bool isPPC64 = Subtarget.isPPC64();
142   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
143 
144   // Set up the register classes.
145   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
146   if (!useSoftFloat()) {
147     if (hasSPE()) {
148       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
149       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
150     } else {
151       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
152       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
153     }
154   }
155 
156   // Match BITREVERSE to customized fast code sequence in the td file.
157   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
158   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
159 
160   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
162 
163   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164   for (MVT VT : MVT::integer_valuetypes()) {
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
167   }
168 
169   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
170 
171   // PowerPC has pre-inc load and store's.
172   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
177   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
182   if (!Subtarget.hasSPE()) {
183     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
185     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
187   }
188 
189   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
190   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
191   for (MVT VT : ScalarIntVTs) {
192     setOperationAction(ISD::ADDC, VT, Legal);
193     setOperationAction(ISD::ADDE, VT, Legal);
194     setOperationAction(ISD::SUBC, VT, Legal);
195     setOperationAction(ISD::SUBE, VT, Legal);
196   }
197 
198   if (Subtarget.useCRBits()) {
199     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
200 
201     if (isPPC64 || Subtarget.hasFPCVT()) {
202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
203       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
204                          isPPC64 ? MVT::i64 : MVT::i32);
205       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
206       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
207                         isPPC64 ? MVT::i64 : MVT::i32);
208     } else {
209       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
210       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
211     }
212 
213     // PowerPC does not support direct load/store of condition registers.
214     setOperationAction(ISD::LOAD, MVT::i1, Custom);
215     setOperationAction(ISD::STORE, MVT::i1, Custom);
216 
217     // FIXME: Remove this once the ANDI glue bug is fixed:
218     if (ANDIGlueBug)
219       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
220 
221     for (MVT VT : MVT::integer_valuetypes()) {
222       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
223       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
224       setTruncStoreAction(VT, MVT::i1, Expand);
225     }
226 
227     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
228   }
229 
230   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
231   // PPC (the libcall is not available).
232   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
233   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
234 
235   // We do not currently implement these libm ops for PowerPC.
236   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
237   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
238   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
239   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
240   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
241   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
242 
243   // PowerPC has no SREM/UREM instructions unless we are on P9
244   // On P9 we may use a hardware instruction to compute the remainder.
245   // The instructions are not legalized directly because in the cases where the
246   // result of both the remainder and the division is required it is more
247   // efficient to compute the remainder from the result of the division rather
248   // than use the remainder instruction.
249   if (Subtarget.isISA3_0()) {
250     setOperationAction(ISD::SREM, MVT::i32, Custom);
251     setOperationAction(ISD::UREM, MVT::i32, Custom);
252     setOperationAction(ISD::SREM, MVT::i64, Custom);
253     setOperationAction(ISD::UREM, MVT::i64, Custom);
254   } else {
255     setOperationAction(ISD::SREM, MVT::i32, Expand);
256     setOperationAction(ISD::UREM, MVT::i32, Expand);
257     setOperationAction(ISD::SREM, MVT::i64, Expand);
258     setOperationAction(ISD::UREM, MVT::i64, Expand);
259   }
260 
261   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
262   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
263   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
265   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
267   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
269   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
270 
271   // We don't support sin/cos/sqrt/fmod/pow
272   setOperationAction(ISD::FSIN , MVT::f64, Expand);
273   setOperationAction(ISD::FCOS , MVT::f64, Expand);
274   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
275   setOperationAction(ISD::FREM , MVT::f64, Expand);
276   setOperationAction(ISD::FPOW , MVT::f64, Expand);
277   setOperationAction(ISD::FSIN , MVT::f32, Expand);
278   setOperationAction(ISD::FCOS , MVT::f32, Expand);
279   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
280   setOperationAction(ISD::FREM , MVT::f32, Expand);
281   setOperationAction(ISD::FPOW , MVT::f32, Expand);
282   if (Subtarget.hasSPE()) {
283     setOperationAction(ISD::FMA  , MVT::f64, Expand);
284     setOperationAction(ISD::FMA  , MVT::f32, Expand);
285   } else {
286     setOperationAction(ISD::FMA  , MVT::f64, Legal);
287     setOperationAction(ISD::FMA  , MVT::f32, Legal);
288   }
289 
290   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
291 
292   // If we're enabling GP optimizations, use hardware square root
293   if (!Subtarget.hasFSQRT() &&
294       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
295         Subtarget.hasFRE()))
296     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
297 
298   if (!Subtarget.hasFSQRT() &&
299       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
300         Subtarget.hasFRES()))
301     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
302 
303   if (Subtarget.hasFCPSGN()) {
304     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
305     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
306   } else {
307     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
308     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
309   }
310 
311   if (Subtarget.hasFPRND()) {
312     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
313     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
314     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
315     setOperationAction(ISD::FROUND, MVT::f64, Legal);
316 
317     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
318     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
319     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
320     setOperationAction(ISD::FROUND, MVT::f32, Legal);
321   }
322 
323   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
324   // to speed up scalar BSWAP64.
325   // CTPOP or CTTZ were introduced in P8/P9 respectively
326   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
327   if (Subtarget.hasP9Vector())
328     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
329   else
330     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
331   if (Subtarget.isISA3_0()) {
332     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
333     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
334   } else {
335     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
336     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
337   }
338 
339   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
340     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
341     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
342   } else {
343     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
344     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
345   }
346 
347   // PowerPC does not have ROTR
348   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
349   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
350 
351   if (!Subtarget.useCRBits()) {
352     // PowerPC does not have Select
353     setOperationAction(ISD::SELECT, MVT::i32, Expand);
354     setOperationAction(ISD::SELECT, MVT::i64, Expand);
355     setOperationAction(ISD::SELECT, MVT::f32, Expand);
356     setOperationAction(ISD::SELECT, MVT::f64, Expand);
357   }
358 
359   // PowerPC wants to turn select_cc of FP into fsel when possible.
360   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
361   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
362 
363   // PowerPC wants to optimize integer setcc a bit
364   if (!Subtarget.useCRBits())
365     setOperationAction(ISD::SETCC, MVT::i32, Custom);
366 
367   // PowerPC does not have BRCOND which requires SetCC
368   if (!Subtarget.useCRBits())
369     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
370 
371   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
372 
373   if (Subtarget.hasSPE()) {
374     // SPE has built-in conversions
375     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
376     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
378   } else {
379     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
380     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
381 
382     // PowerPC does not have [U|S]INT_TO_FP
383     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
384     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
385   }
386 
387   if (Subtarget.hasDirectMove() && isPPC64) {
388     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
389     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
391     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
392   } else {
393     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
394     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
395     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
396     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
397   }
398 
399   // We cannot sextinreg(i1).  Expand to shifts.
400   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
401 
402   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
403   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
404   // support continuation, user-level threading, and etc.. As a result, no
405   // other SjLj exception interfaces are implemented and please don't build
406   // your own exception handling based on them.
407   // LLVM/Clang supports zero-cost DWARF exception handling.
408   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
409   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
410 
411   // We want to legalize GlobalAddress and ConstantPool nodes into the
412   // appropriate instructions to materialize the address.
413   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
414   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
415   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
416   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
417   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
418   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
419   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
420   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
421   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
422   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
423 
424   // TRAP is legal.
425   setOperationAction(ISD::TRAP, MVT::Other, Legal);
426 
427   // TRAMPOLINE is custom lowered.
428   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
429   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
430 
431   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
432   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
433 
434   if (Subtarget.is64BitELFABI()) {
435     // VAARG always uses double-word chunks, so promote anything smaller.
436     setOperationAction(ISD::VAARG, MVT::i1, Promote);
437     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
438     setOperationAction(ISD::VAARG, MVT::i8, Promote);
439     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
440     setOperationAction(ISD::VAARG, MVT::i16, Promote);
441     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
442     setOperationAction(ISD::VAARG, MVT::i32, Promote);
443     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
444     setOperationAction(ISD::VAARG, MVT::Other, Expand);
445   } else if (Subtarget.is32BitELFABI()) {
446     // VAARG is custom lowered with the 32-bit SVR4 ABI.
447     setOperationAction(ISD::VAARG, MVT::Other, Custom);
448     setOperationAction(ISD::VAARG, MVT::i64, Custom);
449   } else
450     setOperationAction(ISD::VAARG, MVT::Other, Expand);
451 
452   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
453   if (Subtarget.is32BitELFABI())
454     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
455   else
456     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
457 
458   // Use the default implementation.
459   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
460   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
461   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
462   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
463   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
464   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
465   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
466   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
467   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
468 
469   // We want to custom lower some of our intrinsics.
470   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
471 
472   // To handle counter-based loop conditions.
473   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
474 
475   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
476   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
477   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
478   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
479 
480   // Comparisons that require checking two conditions.
481   if (Subtarget.hasSPE()) {
482     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
483     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
484     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
485     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
486   }
487   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
488   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
489   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
495   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
496   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
497   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
498   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
499 
500   if (Subtarget.has64BitSupport()) {
501     // They also have instructions for converting between i64 and fp.
502     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
503     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
504     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
505     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
506     // This is just the low 32 bits of a (signed) fp->i64 conversion.
507     // We cannot do this with Promote because i64 is not a legal type.
508     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
509 
510     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
511       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
512   } else {
513     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
514     if (Subtarget.hasSPE())
515       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
516     else
517       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
518   }
519 
520   // With the instructions enabled under FPCVT, we can do everything.
521   if (Subtarget.hasFPCVT()) {
522     if (Subtarget.has64BitSupport()) {
523       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
524       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
525       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
526       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
527     }
528 
529     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
530     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
531     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
532     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
533   }
534 
535   if (Subtarget.use64BitRegs()) {
536     // 64-bit PowerPC implementations can support i64 types directly
537     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
538     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
539     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
540     // 64-bit PowerPC wants to expand i128 shifts itself.
541     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
542     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
543     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
544   } else {
545     // 32-bit PowerPC wants to expand i64 shifts itself.
546     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
547     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
548     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
549   }
550 
551   if (Subtarget.hasVSX()) {
552     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
553     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
554     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
555     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
556   }
557 
558   if (Subtarget.hasAltivec()) {
559     // First set operation action for all vector types to expand. Then we
560     // will selectively turn on ones that can be effectively codegen'd.
561     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
562       // add/sub are legal for all supported vector VT's.
563       setOperationAction(ISD::ADD, VT, Legal);
564       setOperationAction(ISD::SUB, VT, Legal);
565 
566       // For v2i64, these are only valid with P8Vector. This is corrected after
567       // the loop.
568       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
569         setOperationAction(ISD::SMAX, VT, Legal);
570         setOperationAction(ISD::SMIN, VT, Legal);
571         setOperationAction(ISD::UMAX, VT, Legal);
572         setOperationAction(ISD::UMIN, VT, Legal);
573       }
574       else {
575         setOperationAction(ISD::SMAX, VT, Expand);
576         setOperationAction(ISD::SMIN, VT, Expand);
577         setOperationAction(ISD::UMAX, VT, Expand);
578         setOperationAction(ISD::UMIN, VT, Expand);
579       }
580 
581       if (Subtarget.hasVSX()) {
582         setOperationAction(ISD::FMAXNUM, VT, Legal);
583         setOperationAction(ISD::FMINNUM, VT, Legal);
584       }
585 
586       // Vector instructions introduced in P8
587       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
588         setOperationAction(ISD::CTPOP, VT, Legal);
589         setOperationAction(ISD::CTLZ, VT, Legal);
590       }
591       else {
592         setOperationAction(ISD::CTPOP, VT, Expand);
593         setOperationAction(ISD::CTLZ, VT, Expand);
594       }
595 
596       // Vector instructions introduced in P9
597       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
598         setOperationAction(ISD::CTTZ, VT, Legal);
599       else
600         setOperationAction(ISD::CTTZ, VT, Expand);
601 
602       // We promote all shuffles to v16i8.
603       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
604       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
605 
606       // We promote all non-typed operations to v4i32.
607       setOperationAction(ISD::AND   , VT, Promote);
608       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
609       setOperationAction(ISD::OR    , VT, Promote);
610       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
611       setOperationAction(ISD::XOR   , VT, Promote);
612       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
613       setOperationAction(ISD::LOAD  , VT, Promote);
614       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
615       setOperationAction(ISD::SELECT, VT, Promote);
616       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
617       setOperationAction(ISD::VSELECT, VT, Legal);
618       setOperationAction(ISD::SELECT_CC, VT, Promote);
619       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
620       setOperationAction(ISD::STORE, VT, Promote);
621       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
622 
623       // No other operations are legal.
624       setOperationAction(ISD::MUL , VT, Expand);
625       setOperationAction(ISD::SDIV, VT, Expand);
626       setOperationAction(ISD::SREM, VT, Expand);
627       setOperationAction(ISD::UDIV, VT, Expand);
628       setOperationAction(ISD::UREM, VT, Expand);
629       setOperationAction(ISD::FDIV, VT, Expand);
630       setOperationAction(ISD::FREM, VT, Expand);
631       setOperationAction(ISD::FNEG, VT, Expand);
632       setOperationAction(ISD::FSQRT, VT, Expand);
633       setOperationAction(ISD::FLOG, VT, Expand);
634       setOperationAction(ISD::FLOG10, VT, Expand);
635       setOperationAction(ISD::FLOG2, VT, Expand);
636       setOperationAction(ISD::FEXP, VT, Expand);
637       setOperationAction(ISD::FEXP2, VT, Expand);
638       setOperationAction(ISD::FSIN, VT, Expand);
639       setOperationAction(ISD::FCOS, VT, Expand);
640       setOperationAction(ISD::FABS, VT, Expand);
641       setOperationAction(ISD::FFLOOR, VT, Expand);
642       setOperationAction(ISD::FCEIL,  VT, Expand);
643       setOperationAction(ISD::FTRUNC, VT, Expand);
644       setOperationAction(ISD::FRINT,  VT, Expand);
645       setOperationAction(ISD::FNEARBYINT, VT, Expand);
646       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
647       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
648       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
649       setOperationAction(ISD::MULHU, VT, Expand);
650       setOperationAction(ISD::MULHS, VT, Expand);
651       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
652       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
653       setOperationAction(ISD::UDIVREM, VT, Expand);
654       setOperationAction(ISD::SDIVREM, VT, Expand);
655       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
656       setOperationAction(ISD::FPOW, VT, Expand);
657       setOperationAction(ISD::BSWAP, VT, Expand);
658       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
659       setOperationAction(ISD::ROTL, VT, Expand);
660       setOperationAction(ISD::ROTR, VT, Expand);
661 
662       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
663         setTruncStoreAction(VT, InnerVT, Expand);
664         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
665         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
666         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
667       }
668     }
669     if (!Subtarget.hasP8Vector()) {
670       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
671       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
672       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
673       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
674     }
675 
676     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
677       setOperationAction(ISD::ABS, VT, Custom);
678 
679     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
680     // with merges, splats, etc.
681     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
682 
683     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
684     // are cheap, so handle them before they get expanded to scalar.
685     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
686     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
687     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
688     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
689     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
690 
691     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
692     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
693     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
694     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
695     setOperationAction(ISD::SELECT, MVT::v4i32,
696                        Subtarget.useCRBits() ? Legal : Expand);
697     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
698     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
699     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
700     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
701     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
702     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
703     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
704     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
705     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
706 
707     // Without hasP8Altivec set, v2i64 SMAX isn't available.
708     // But ABS custom lowering requires SMAX support.
709     if (!Subtarget.hasP8Altivec())
710       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
711 
712     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
713     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
714     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
715     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
716 
717     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
718     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
719 
720     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
721       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
722       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
723     }
724 
725     if (Subtarget.hasP8Altivec())
726       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
727     else
728       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
729 
730     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
731     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
732 
733     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
734     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
735 
736     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
737     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
738     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
739     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
740 
741     // Altivec does not contain unordered floating-point compare instructions
742     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
743     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
744     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
745     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
746 
747     if (Subtarget.hasVSX()) {
748       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
749       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
750       if (Subtarget.hasP8Vector()) {
751         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
752         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
753       }
754       if (Subtarget.hasDirectMove() && isPPC64) {
755         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
756         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
757         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
758         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
759         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
760         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
761         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
762         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
763       }
764       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
765 
766       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
767       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
768       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
769       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
770       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
771 
772       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
773 
774       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
775       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
776 
777       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
778       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
779 
780       // Share the Altivec comparison restrictions.
781       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
782       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
783       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
784       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
785 
786       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
787       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
788 
789       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
790 
791       if (Subtarget.hasP8Vector())
792         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
793 
794       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
795 
796       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
797       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
798       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
799 
800       if (Subtarget.hasP8Altivec()) {
801         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
802         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
803         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
804 
805         // 128 bit shifts can be accomplished via 3 instructions for SHL and
806         // SRL, but not for SRA because of the instructions available:
807         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
808         // doing
809         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
810         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
811         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
812 
813         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
814       }
815       else {
816         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
817         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
818         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
819 
820         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
821 
822         // VSX v2i64 only supports non-arithmetic operations.
823         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
824         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
825       }
826 
827       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
828       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
829       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
830       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
831 
832       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
833 
834       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
835       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
836       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
837       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
838 
839       // Custom handling for partial vectors of integers converted to
840       // floating point. We already have optimal handling for v2i32 through
841       // the DAG combine, so those aren't necessary.
842       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
843       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
844       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
845       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
846       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
847       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
848       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
849       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
850 
851       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
852       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
853       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
854       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
855       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
856       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
857 
858       if (Subtarget.hasDirectMove())
859         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
860       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
861 
862       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
863     }
864 
865     if (Subtarget.hasP8Altivec()) {
866       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
867       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
868     }
869 
870     if (Subtarget.hasP9Vector()) {
871       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
872       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
873 
874       // 128 bit shifts can be accomplished via 3 instructions for SHL and
875       // SRL, but not for SRA because of the instructions available:
876       // VS{RL} and VS{RL}O.
877       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
878       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
879       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
880 
881       if (EnableQuadPrecision) {
882         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
883         setOperationAction(ISD::FADD, MVT::f128, Legal);
884         setOperationAction(ISD::FSUB, MVT::f128, Legal);
885         setOperationAction(ISD::FDIV, MVT::f128, Legal);
886         setOperationAction(ISD::FMUL, MVT::f128, Legal);
887         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
888         // No extending loads to f128 on PPC.
889         for (MVT FPT : MVT::fp_valuetypes())
890           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
891         setOperationAction(ISD::FMA, MVT::f128, Legal);
892         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
893         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
894         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
895         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
896         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
897         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
898 
899         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
900         setOperationAction(ISD::FRINT, MVT::f128, Legal);
901         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
902         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
903         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
904         setOperationAction(ISD::FROUND, MVT::f128, Legal);
905 
906         setOperationAction(ISD::SELECT, MVT::f128, Expand);
907         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
908         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
909         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
910         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
911         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
912         // No implementation for these ops for PowerPC.
913         setOperationAction(ISD::FSIN , MVT::f128, Expand);
914         setOperationAction(ISD::FCOS , MVT::f128, Expand);
915         setOperationAction(ISD::FPOW, MVT::f128, Expand);
916         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
917         setOperationAction(ISD::FREM, MVT::f128, Expand);
918       }
919       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
920 
921     }
922 
923     if (Subtarget.hasP9Altivec()) {
924       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
925       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
926     }
927   }
928 
929   if (Subtarget.hasQPX()) {
930     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
931     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
932     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
933     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
934 
935     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
936     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
937 
938     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
939     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
940 
941     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
942     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
943 
944     if (!Subtarget.useCRBits())
945       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
946     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
947 
948     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
949     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
950     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
951     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
952     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
953     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
954     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
955 
956     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
957     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
958 
959     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
960     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
961 
962     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
963     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
964     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
965     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
966     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
967     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
968     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
969     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
970     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
971     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
972 
973     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
974     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
975 
976     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
977     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
978 
979     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
980 
981     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
982     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
983     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
984     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
985 
986     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
987     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
988 
989     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
990     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
991 
992     if (!Subtarget.useCRBits())
993       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
994     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
995 
996     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
997     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
998     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
999     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1000     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1001     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1002     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1003 
1004     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1005     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1006 
1007     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1008     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1009     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1010     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1011     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1012     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1013     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1014     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1015     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1016     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1017 
1018     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1019     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1020 
1021     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1022     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1023 
1024     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1025 
1026     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1027     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1028     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1029 
1030     if (!Subtarget.useCRBits())
1031       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1032     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1033 
1034     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1035     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1036 
1037     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1038     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1039     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1040     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1041     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1042     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1043     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1044 
1045     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1046     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1047 
1048     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1049 
1050     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1051     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1052     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1053     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1054 
1055     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1056     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1057     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1058     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1059 
1060     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1061     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1062 
1063     // These need to set FE_INEXACT, and so cannot be vectorized here.
1064     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1065     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1066 
1067     if (TM.Options.UnsafeFPMath) {
1068       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1069       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1070 
1071       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1072       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1073     } else {
1074       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1075       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1076 
1077       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1078       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1079     }
1080   }
1081 
1082   if (Subtarget.has64BitSupport())
1083     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1084 
1085   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1086 
1087   if (!isPPC64) {
1088     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1089     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1090   }
1091 
1092   setBooleanContents(ZeroOrOneBooleanContent);
1093 
1094   if (Subtarget.hasAltivec()) {
1095     // Altivec instructions set fields to all zeros or all ones.
1096     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1097   }
1098 
1099   if (!isPPC64) {
1100     // These libcalls are not available in 32-bit.
1101     setLibcallName(RTLIB::SHL_I128, nullptr);
1102     setLibcallName(RTLIB::SRL_I128, nullptr);
1103     setLibcallName(RTLIB::SRA_I128, nullptr);
1104   }
1105 
1106   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1107 
1108   // We have target-specific dag combine patterns for the following nodes:
1109   setTargetDAGCombine(ISD::ADD);
1110   setTargetDAGCombine(ISD::SHL);
1111   setTargetDAGCombine(ISD::SRA);
1112   setTargetDAGCombine(ISD::SRL);
1113   setTargetDAGCombine(ISD::MUL);
1114   setTargetDAGCombine(ISD::SINT_TO_FP);
1115   setTargetDAGCombine(ISD::BUILD_VECTOR);
1116   if (Subtarget.hasFPCVT())
1117     setTargetDAGCombine(ISD::UINT_TO_FP);
1118   setTargetDAGCombine(ISD::LOAD);
1119   setTargetDAGCombine(ISD::STORE);
1120   setTargetDAGCombine(ISD::BR_CC);
1121   if (Subtarget.useCRBits())
1122     setTargetDAGCombine(ISD::BRCOND);
1123   setTargetDAGCombine(ISD::BSWAP);
1124   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1125   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1126   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1127 
1128   setTargetDAGCombine(ISD::SIGN_EXTEND);
1129   setTargetDAGCombine(ISD::ZERO_EXTEND);
1130   setTargetDAGCombine(ISD::ANY_EXTEND);
1131 
1132   setTargetDAGCombine(ISD::TRUNCATE);
1133   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1134 
1135 
1136   if (Subtarget.useCRBits()) {
1137     setTargetDAGCombine(ISD::TRUNCATE);
1138     setTargetDAGCombine(ISD::SETCC);
1139     setTargetDAGCombine(ISD::SELECT_CC);
1140   }
1141 
1142   // Use reciprocal estimates.
1143   if (TM.Options.UnsafeFPMath) {
1144     setTargetDAGCombine(ISD::FDIV);
1145     setTargetDAGCombine(ISD::FSQRT);
1146   }
1147 
1148   if (Subtarget.hasP9Altivec()) {
1149     setTargetDAGCombine(ISD::ABS);
1150     setTargetDAGCombine(ISD::VSELECT);
1151   }
1152 
1153   // Darwin long double math library functions have $LDBL128 appended.
1154   if (Subtarget.isDarwin()) {
1155     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1156     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1157     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1158     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1159     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1160     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1161     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1162     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1163     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1164     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1165   }
1166 
1167   if (EnableQuadPrecision) {
1168     setLibcallName(RTLIB::LOG_F128, "logf128");
1169     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1170     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1171     setLibcallName(RTLIB::EXP_F128, "expf128");
1172     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1173     setLibcallName(RTLIB::SIN_F128, "sinf128");
1174     setLibcallName(RTLIB::COS_F128, "cosf128");
1175     setLibcallName(RTLIB::POW_F128, "powf128");
1176     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1177     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1178     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1179     setLibcallName(RTLIB::REM_F128, "fmodf128");
1180   }
1181 
1182   // With 32 condition bits, we don't need to sink (and duplicate) compares
1183   // aggressively in CodeGenPrep.
1184   if (Subtarget.useCRBits()) {
1185     setHasMultipleConditionRegisters();
1186     setJumpIsExpensive();
1187   }
1188 
1189   setMinFunctionAlignment(Align(4));
1190   if (Subtarget.isDarwin())
1191     setPrefFunctionAlignment(Align(16));
1192 
1193   switch (Subtarget.getDarwinDirective()) {
1194   default: break;
1195   case PPC::DIR_970:
1196   case PPC::DIR_A2:
1197   case PPC::DIR_E500:
1198   case PPC::DIR_E500mc:
1199   case PPC::DIR_E5500:
1200   case PPC::DIR_PWR4:
1201   case PPC::DIR_PWR5:
1202   case PPC::DIR_PWR5X:
1203   case PPC::DIR_PWR6:
1204   case PPC::DIR_PWR6X:
1205   case PPC::DIR_PWR7:
1206   case PPC::DIR_PWR8:
1207   case PPC::DIR_PWR9:
1208     setPrefLoopAlignment(Align(16));
1209     setPrefFunctionAlignment(Align(16));
1210     break;
1211   }
1212 
1213   if (Subtarget.enableMachineScheduler())
1214     setSchedulingPreference(Sched::Source);
1215   else
1216     setSchedulingPreference(Sched::Hybrid);
1217 
1218   computeRegisterProperties(STI.getRegisterInfo());
1219 
1220   // The Freescale cores do better with aggressive inlining of memcpy and
1221   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1222   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1223       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1224     MaxStoresPerMemset = 32;
1225     MaxStoresPerMemsetOptSize = 16;
1226     MaxStoresPerMemcpy = 32;
1227     MaxStoresPerMemcpyOptSize = 8;
1228     MaxStoresPerMemmove = 32;
1229     MaxStoresPerMemmoveOptSize = 8;
1230   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1231     // The A2 also benefits from (very) aggressive inlining of memcpy and
1232     // friends. The overhead of a the function call, even when warm, can be
1233     // over one hundred cycles.
1234     MaxStoresPerMemset = 128;
1235     MaxStoresPerMemcpy = 128;
1236     MaxStoresPerMemmove = 128;
1237     MaxLoadsPerMemcmp = 128;
1238   } else {
1239     MaxLoadsPerMemcmp = 8;
1240     MaxLoadsPerMemcmpOptSize = 4;
1241   }
1242 }
1243 
1244 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1245 /// the desired ByVal argument alignment.
1246 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1247                              unsigned MaxMaxAlign) {
1248   if (MaxAlign == MaxMaxAlign)
1249     return;
1250   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1251     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1252       MaxAlign = 32;
1253     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1254       MaxAlign = 16;
1255   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1256     unsigned EltAlign = 0;
1257     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1258     if (EltAlign > MaxAlign)
1259       MaxAlign = EltAlign;
1260   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1261     for (auto *EltTy : STy->elements()) {
1262       unsigned EltAlign = 0;
1263       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1264       if (EltAlign > MaxAlign)
1265         MaxAlign = EltAlign;
1266       if (MaxAlign == MaxMaxAlign)
1267         break;
1268     }
1269   }
1270 }
1271 
1272 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1273 /// function arguments in the caller parameter area.
1274 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1275                                                   const DataLayout &DL) const {
1276   // Darwin passes everything on 4 byte boundary.
1277   if (Subtarget.isDarwin())
1278     return 4;
1279 
1280   // 16byte and wider vectors are passed on 16byte boundary.
1281   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1282   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1283   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1284     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1285   return Align;
1286 }
1287 
1288 bool PPCTargetLowering::useSoftFloat() const {
1289   return Subtarget.useSoftFloat();
1290 }
1291 
1292 bool PPCTargetLowering::hasSPE() const {
1293   return Subtarget.hasSPE();
1294 }
1295 
1296 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1297   return VT.isScalarInteger();
1298 }
1299 
1300 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1301   switch ((PPCISD::NodeType)Opcode) {
1302   case PPCISD::FIRST_NUMBER:    break;
1303   case PPCISD::FSEL:            return "PPCISD::FSEL";
1304   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1305   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1306   case PPCISD::FCFID:           return "PPCISD::FCFID";
1307   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1308   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1309   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1310   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1311   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1312   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1313   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1314   case PPCISD::FP_TO_UINT_IN_VSR:
1315                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1316   case PPCISD::FP_TO_SINT_IN_VSR:
1317                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1318   case PPCISD::FRE:             return "PPCISD::FRE";
1319   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1320   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1321   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1322   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1323   case PPCISD::VPERM:           return "PPCISD::VPERM";
1324   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1325   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1326   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1327   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1328   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1329   case PPCISD::CMPB:            return "PPCISD::CMPB";
1330   case PPCISD::Hi:              return "PPCISD::Hi";
1331   case PPCISD::Lo:              return "PPCISD::Lo";
1332   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1333   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1334   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1335   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1336   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1337   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1338   case PPCISD::SRL:             return "PPCISD::SRL";
1339   case PPCISD::SRA:             return "PPCISD::SRA";
1340   case PPCISD::SHL:             return "PPCISD::SHL";
1341   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1342   case PPCISD::CALL:            return "PPCISD::CALL";
1343   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1344   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1345   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1346   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1347   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1348   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1349   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1350   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1351   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1352   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1353   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1354   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1355   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1356   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1357   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1358   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1359   case PPCISD::VCMP:            return "PPCISD::VCMP";
1360   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1361   case PPCISD::LBRX:            return "PPCISD::LBRX";
1362   case PPCISD::STBRX:           return "PPCISD::STBRX";
1363   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1364   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1365   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1366   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1367   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1368   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1369   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1370   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1371   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1372   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1373   case PPCISD::ST_VSR_SCAL_INT:
1374                                 return "PPCISD::ST_VSR_SCAL_INT";
1375   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1376   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1377   case PPCISD::BDZ:             return "PPCISD::BDZ";
1378   case PPCISD::MFFS:            return "PPCISD::MFFS";
1379   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1380   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1381   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1382   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1383   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1384   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1385   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1386   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1387   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1388   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1389   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1390   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1391   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1392   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1393   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1394   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1395   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1396   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1397   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1398   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1399   case PPCISD::SC:              return "PPCISD::SC";
1400   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1401   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1402   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1403   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1404   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1405   case PPCISD::VABSD:           return "PPCISD::VABSD";
1406   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1407   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1408   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1409   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1410   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1411   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1412   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1413   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1414   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1415   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1416   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1417   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1418   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1419   }
1420   return nullptr;
1421 }
1422 
1423 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1424                                           EVT VT) const {
1425   if (!VT.isVector())
1426     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1427 
1428   if (Subtarget.hasQPX())
1429     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1430 
1431   return VT.changeVectorElementTypeToInteger();
1432 }
1433 
1434 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1435   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1436   return true;
1437 }
1438 
1439 //===----------------------------------------------------------------------===//
1440 // Node matching predicates, for use by the tblgen matching code.
1441 //===----------------------------------------------------------------------===//
1442 
1443 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1444 static bool isFloatingPointZero(SDValue Op) {
1445   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1446     return CFP->getValueAPF().isZero();
1447   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1448     // Maybe this has already been legalized into the constant pool?
1449     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1450       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1451         return CFP->getValueAPF().isZero();
1452   }
1453   return false;
1454 }
1455 
1456 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1457 /// true if Op is undef or if it matches the specified value.
1458 static bool isConstantOrUndef(int Op, int Val) {
1459   return Op < 0 || Op == Val;
1460 }
1461 
1462 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1463 /// VPKUHUM instruction.
1464 /// The ShuffleKind distinguishes between big-endian operations with
1465 /// two different inputs (0), either-endian operations with two identical
1466 /// inputs (1), and little-endian operations with two different inputs (2).
1467 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1468 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1469                                SelectionDAG &DAG) {
1470   bool IsLE = DAG.getDataLayout().isLittleEndian();
1471   if (ShuffleKind == 0) {
1472     if (IsLE)
1473       return false;
1474     for (unsigned i = 0; i != 16; ++i)
1475       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1476         return false;
1477   } else if (ShuffleKind == 2) {
1478     if (!IsLE)
1479       return false;
1480     for (unsigned i = 0; i != 16; ++i)
1481       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1482         return false;
1483   } else if (ShuffleKind == 1) {
1484     unsigned j = IsLE ? 0 : 1;
1485     for (unsigned i = 0; i != 8; ++i)
1486       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1487           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1488         return false;
1489   }
1490   return true;
1491 }
1492 
1493 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1494 /// VPKUWUM instruction.
1495 /// The ShuffleKind distinguishes between big-endian operations with
1496 /// two different inputs (0), either-endian operations with two identical
1497 /// inputs (1), and little-endian operations with two different inputs (2).
1498 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1499 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1500                                SelectionDAG &DAG) {
1501   bool IsLE = DAG.getDataLayout().isLittleEndian();
1502   if (ShuffleKind == 0) {
1503     if (IsLE)
1504       return false;
1505     for (unsigned i = 0; i != 16; i += 2)
1506       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1507           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1508         return false;
1509   } else if (ShuffleKind == 2) {
1510     if (!IsLE)
1511       return false;
1512     for (unsigned i = 0; i != 16; i += 2)
1513       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1514           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1515         return false;
1516   } else if (ShuffleKind == 1) {
1517     unsigned j = IsLE ? 0 : 2;
1518     for (unsigned i = 0; i != 8; i += 2)
1519       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1520           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1521           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1522           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1523         return false;
1524   }
1525   return true;
1526 }
1527 
1528 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1529 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1530 /// current subtarget.
1531 ///
1532 /// The ShuffleKind distinguishes between big-endian operations with
1533 /// two different inputs (0), either-endian operations with two identical
1534 /// inputs (1), and little-endian operations with two different inputs (2).
1535 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1536 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1537                                SelectionDAG &DAG) {
1538   const PPCSubtarget& Subtarget =
1539       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1540   if (!Subtarget.hasP8Vector())
1541     return false;
1542 
1543   bool IsLE = DAG.getDataLayout().isLittleEndian();
1544   if (ShuffleKind == 0) {
1545     if (IsLE)
1546       return false;
1547     for (unsigned i = 0; i != 16; i += 4)
1548       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1549           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1550           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1551           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1552         return false;
1553   } else if (ShuffleKind == 2) {
1554     if (!IsLE)
1555       return false;
1556     for (unsigned i = 0; i != 16; i += 4)
1557       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1558           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1559           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1560           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1561         return false;
1562   } else if (ShuffleKind == 1) {
1563     unsigned j = IsLE ? 0 : 4;
1564     for (unsigned i = 0; i != 8; i += 4)
1565       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1566           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1567           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1568           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1569           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1570           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1571           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1572           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1573         return false;
1574   }
1575   return true;
1576 }
1577 
1578 /// isVMerge - Common function, used to match vmrg* shuffles.
1579 ///
1580 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1581                      unsigned LHSStart, unsigned RHSStart) {
1582   if (N->getValueType(0) != MVT::v16i8)
1583     return false;
1584   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1585          "Unsupported merge size!");
1586 
1587   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1588     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1589       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1590                              LHSStart+j+i*UnitSize) ||
1591           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1592                              RHSStart+j+i*UnitSize))
1593         return false;
1594     }
1595   return true;
1596 }
1597 
1598 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1599 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1600 /// The ShuffleKind distinguishes between big-endian merges with two
1601 /// different inputs (0), either-endian merges with two identical inputs (1),
1602 /// and little-endian merges with two different inputs (2).  For the latter,
1603 /// the input operands are swapped (see PPCInstrAltivec.td).
1604 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1605                              unsigned ShuffleKind, SelectionDAG &DAG) {
1606   if (DAG.getDataLayout().isLittleEndian()) {
1607     if (ShuffleKind == 1) // unary
1608       return isVMerge(N, UnitSize, 0, 0);
1609     else if (ShuffleKind == 2) // swapped
1610       return isVMerge(N, UnitSize, 0, 16);
1611     else
1612       return false;
1613   } else {
1614     if (ShuffleKind == 1) // unary
1615       return isVMerge(N, UnitSize, 8, 8);
1616     else if (ShuffleKind == 0) // normal
1617       return isVMerge(N, UnitSize, 8, 24);
1618     else
1619       return false;
1620   }
1621 }
1622 
1623 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1624 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1625 /// The ShuffleKind distinguishes between big-endian merges with two
1626 /// different inputs (0), either-endian merges with two identical inputs (1),
1627 /// and little-endian merges with two different inputs (2).  For the latter,
1628 /// the input operands are swapped (see PPCInstrAltivec.td).
1629 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1630                              unsigned ShuffleKind, SelectionDAG &DAG) {
1631   if (DAG.getDataLayout().isLittleEndian()) {
1632     if (ShuffleKind == 1) // unary
1633       return isVMerge(N, UnitSize, 8, 8);
1634     else if (ShuffleKind == 2) // swapped
1635       return isVMerge(N, UnitSize, 8, 24);
1636     else
1637       return false;
1638   } else {
1639     if (ShuffleKind == 1) // unary
1640       return isVMerge(N, UnitSize, 0, 0);
1641     else if (ShuffleKind == 0) // normal
1642       return isVMerge(N, UnitSize, 0, 16);
1643     else
1644       return false;
1645   }
1646 }
1647 
1648 /**
1649  * Common function used to match vmrgew and vmrgow shuffles
1650  *
1651  * The indexOffset determines whether to look for even or odd words in
1652  * the shuffle mask. This is based on the of the endianness of the target
1653  * machine.
1654  *   - Little Endian:
1655  *     - Use offset of 0 to check for odd elements
1656  *     - Use offset of 4 to check for even elements
1657  *   - Big Endian:
1658  *     - Use offset of 0 to check for even elements
1659  *     - Use offset of 4 to check for odd elements
1660  * A detailed description of the vector element ordering for little endian and
1661  * big endian can be found at
1662  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1663  * Targeting your applications - what little endian and big endian IBM XL C/C++
1664  * compiler differences mean to you
1665  *
1666  * The mask to the shuffle vector instruction specifies the indices of the
1667  * elements from the two input vectors to place in the result. The elements are
1668  * numbered in array-access order, starting with the first vector. These vectors
1669  * are always of type v16i8, thus each vector will contain 16 elements of size
1670  * 8. More info on the shuffle vector can be found in the
1671  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1672  * Language Reference.
1673  *
1674  * The RHSStartValue indicates whether the same input vectors are used (unary)
1675  * or two different input vectors are used, based on the following:
1676  *   - If the instruction uses the same vector for both inputs, the range of the
1677  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1678  *     be 0.
1679  *   - If the instruction has two different vectors then the range of the
1680  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1681  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1682  *     to 31 specify elements in the second vector).
1683  *
1684  * \param[in] N The shuffle vector SD Node to analyze
1685  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1686  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1687  * vector to the shuffle_vector instruction
1688  * \return true iff this shuffle vector represents an even or odd word merge
1689  */
1690 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1691                      unsigned RHSStartValue) {
1692   if (N->getValueType(0) != MVT::v16i8)
1693     return false;
1694 
1695   for (unsigned i = 0; i < 2; ++i)
1696     for (unsigned j = 0; j < 4; ++j)
1697       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1698                              i*RHSStartValue+j+IndexOffset) ||
1699           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1700                              i*RHSStartValue+j+IndexOffset+8))
1701         return false;
1702   return true;
1703 }
1704 
1705 /**
1706  * Determine if the specified shuffle mask is suitable for the vmrgew or
1707  * vmrgow instructions.
1708  *
1709  * \param[in] N The shuffle vector SD Node to analyze
1710  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1711  * \param[in] ShuffleKind Identify the type of merge:
1712  *   - 0 = big-endian merge with two different inputs;
1713  *   - 1 = either-endian merge with two identical inputs;
1714  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1715  *     little-endian merges).
1716  * \param[in] DAG The current SelectionDAG
1717  * \return true iff this shuffle mask
1718  */
1719 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1720                               unsigned ShuffleKind, SelectionDAG &DAG) {
1721   if (DAG.getDataLayout().isLittleEndian()) {
1722     unsigned indexOffset = CheckEven ? 4 : 0;
1723     if (ShuffleKind == 1) // Unary
1724       return isVMerge(N, indexOffset, 0);
1725     else if (ShuffleKind == 2) // swapped
1726       return isVMerge(N, indexOffset, 16);
1727     else
1728       return false;
1729   }
1730   else {
1731     unsigned indexOffset = CheckEven ? 0 : 4;
1732     if (ShuffleKind == 1) // Unary
1733       return isVMerge(N, indexOffset, 0);
1734     else if (ShuffleKind == 0) // Normal
1735       return isVMerge(N, indexOffset, 16);
1736     else
1737       return false;
1738   }
1739   return false;
1740 }
1741 
1742 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1743 /// amount, otherwise return -1.
1744 /// The ShuffleKind distinguishes between big-endian operations with two
1745 /// different inputs (0), either-endian operations with two identical inputs
1746 /// (1), and little-endian operations with two different inputs (2).  For the
1747 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1748 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1749                              SelectionDAG &DAG) {
1750   if (N->getValueType(0) != MVT::v16i8)
1751     return -1;
1752 
1753   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1754 
1755   // Find the first non-undef value in the shuffle mask.
1756   unsigned i;
1757   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1758     /*search*/;
1759 
1760   if (i == 16) return -1;  // all undef.
1761 
1762   // Otherwise, check to see if the rest of the elements are consecutively
1763   // numbered from this value.
1764   unsigned ShiftAmt = SVOp->getMaskElt(i);
1765   if (ShiftAmt < i) return -1;
1766 
1767   ShiftAmt -= i;
1768   bool isLE = DAG.getDataLayout().isLittleEndian();
1769 
1770   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1771     // Check the rest of the elements to see if they are consecutive.
1772     for (++i; i != 16; ++i)
1773       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1774         return -1;
1775   } else if (ShuffleKind == 1) {
1776     // Check the rest of the elements to see if they are consecutive.
1777     for (++i; i != 16; ++i)
1778       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1779         return -1;
1780   } else
1781     return -1;
1782 
1783   if (isLE)
1784     ShiftAmt = 16 - ShiftAmt;
1785 
1786   return ShiftAmt;
1787 }
1788 
1789 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1790 /// specifies a splat of a single element that is suitable for input to
1791 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1792 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1793   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1794          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1795 
1796   // The consecutive indices need to specify an element, not part of two
1797   // different elements.  So abandon ship early if this isn't the case.
1798   if (N->getMaskElt(0) % EltSize != 0)
1799     return false;
1800 
1801   // This is a splat operation if each element of the permute is the same, and
1802   // if the value doesn't reference the second vector.
1803   unsigned ElementBase = N->getMaskElt(0);
1804 
1805   // FIXME: Handle UNDEF elements too!
1806   if (ElementBase >= 16)
1807     return false;
1808 
1809   // Check that the indices are consecutive, in the case of a multi-byte element
1810   // splatted with a v16i8 mask.
1811   for (unsigned i = 1; i != EltSize; ++i)
1812     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1813       return false;
1814 
1815   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1816     if (N->getMaskElt(i) < 0) continue;
1817     for (unsigned j = 0; j != EltSize; ++j)
1818       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1819         return false;
1820   }
1821   return true;
1822 }
1823 
1824 /// Check that the mask is shuffling N byte elements. Within each N byte
1825 /// element of the mask, the indices could be either in increasing or
1826 /// decreasing order as long as they are consecutive.
1827 /// \param[in] N the shuffle vector SD Node to analyze
1828 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1829 /// Word/DoubleWord/QuadWord).
1830 /// \param[in] StepLen the delta indices number among the N byte element, if
1831 /// the mask is in increasing/decreasing order then it is 1/-1.
1832 /// \return true iff the mask is shuffling N byte elements.
1833 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1834                                    int StepLen) {
1835   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1836          "Unexpected element width.");
1837   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1838 
1839   unsigned NumOfElem = 16 / Width;
1840   unsigned MaskVal[16]; //  Width is never greater than 16
1841   for (unsigned i = 0; i < NumOfElem; ++i) {
1842     MaskVal[0] = N->getMaskElt(i * Width);
1843     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1844       return false;
1845     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1846       return false;
1847     }
1848 
1849     for (unsigned int j = 1; j < Width; ++j) {
1850       MaskVal[j] = N->getMaskElt(i * Width + j);
1851       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1852         return false;
1853       }
1854     }
1855   }
1856 
1857   return true;
1858 }
1859 
1860 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1861                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1862   if (!isNByteElemShuffleMask(N, 4, 1))
1863     return false;
1864 
1865   // Now we look at mask elements 0,4,8,12
1866   unsigned M0 = N->getMaskElt(0) / 4;
1867   unsigned M1 = N->getMaskElt(4) / 4;
1868   unsigned M2 = N->getMaskElt(8) / 4;
1869   unsigned M3 = N->getMaskElt(12) / 4;
1870   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1871   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1872 
1873   // Below, let H and L be arbitrary elements of the shuffle mask
1874   // where H is in the range [4,7] and L is in the range [0,3].
1875   // H, 1, 2, 3 or L, 5, 6, 7
1876   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1877       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1878     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1879     InsertAtByte = IsLE ? 12 : 0;
1880     Swap = M0 < 4;
1881     return true;
1882   }
1883   // 0, H, 2, 3 or 4, L, 6, 7
1884   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1885       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1886     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1887     InsertAtByte = IsLE ? 8 : 4;
1888     Swap = M1 < 4;
1889     return true;
1890   }
1891   // 0, 1, H, 3 or 4, 5, L, 7
1892   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1893       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1894     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1895     InsertAtByte = IsLE ? 4 : 8;
1896     Swap = M2 < 4;
1897     return true;
1898   }
1899   // 0, 1, 2, H or 4, 5, 6, L
1900   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1901       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1902     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1903     InsertAtByte = IsLE ? 0 : 12;
1904     Swap = M3 < 4;
1905     return true;
1906   }
1907 
1908   // If both vector operands for the shuffle are the same vector, the mask will
1909   // contain only elements from the first one and the second one will be undef.
1910   if (N->getOperand(1).isUndef()) {
1911     ShiftElts = 0;
1912     Swap = true;
1913     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1914     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1915       InsertAtByte = IsLE ? 12 : 0;
1916       return true;
1917     }
1918     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1919       InsertAtByte = IsLE ? 8 : 4;
1920       return true;
1921     }
1922     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1923       InsertAtByte = IsLE ? 4 : 8;
1924       return true;
1925     }
1926     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1927       InsertAtByte = IsLE ? 0 : 12;
1928       return true;
1929     }
1930   }
1931 
1932   return false;
1933 }
1934 
1935 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1936                                bool &Swap, bool IsLE) {
1937   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1938   // Ensure each byte index of the word is consecutive.
1939   if (!isNByteElemShuffleMask(N, 4, 1))
1940     return false;
1941 
1942   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1943   unsigned M0 = N->getMaskElt(0) / 4;
1944   unsigned M1 = N->getMaskElt(4) / 4;
1945   unsigned M2 = N->getMaskElt(8) / 4;
1946   unsigned M3 = N->getMaskElt(12) / 4;
1947 
1948   // If both vector operands for the shuffle are the same vector, the mask will
1949   // contain only elements from the first one and the second one will be undef.
1950   if (N->getOperand(1).isUndef()) {
1951     assert(M0 < 4 && "Indexing into an undef vector?");
1952     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1953       return false;
1954 
1955     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1956     Swap = false;
1957     return true;
1958   }
1959 
1960   // Ensure each word index of the ShuffleVector Mask is consecutive.
1961   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1962     return false;
1963 
1964   if (IsLE) {
1965     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1966       // Input vectors don't need to be swapped if the leading element
1967       // of the result is one of the 3 left elements of the second vector
1968       // (or if there is no shift to be done at all).
1969       Swap = false;
1970       ShiftElts = (8 - M0) % 8;
1971     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1972       // Input vectors need to be swapped if the leading element
1973       // of the result is one of the 3 left elements of the first vector
1974       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1975       Swap = true;
1976       ShiftElts = (4 - M0) % 4;
1977     }
1978 
1979     return true;
1980   } else {                                          // BE
1981     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1982       // Input vectors don't need to be swapped if the leading element
1983       // of the result is one of the 4 elements of the first vector.
1984       Swap = false;
1985       ShiftElts = M0;
1986     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1987       // Input vectors need to be swapped if the leading element
1988       // of the result is one of the 4 elements of the right vector.
1989       Swap = true;
1990       ShiftElts = M0 - 4;
1991     }
1992 
1993     return true;
1994   }
1995 }
1996 
1997 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1998   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1999 
2000   if (!isNByteElemShuffleMask(N, Width, -1))
2001     return false;
2002 
2003   for (int i = 0; i < 16; i += Width)
2004     if (N->getMaskElt(i) != i + Width - 1)
2005       return false;
2006 
2007   return true;
2008 }
2009 
2010 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2011   return isXXBRShuffleMaskHelper(N, 2);
2012 }
2013 
2014 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2015   return isXXBRShuffleMaskHelper(N, 4);
2016 }
2017 
2018 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2019   return isXXBRShuffleMaskHelper(N, 8);
2020 }
2021 
2022 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2023   return isXXBRShuffleMaskHelper(N, 16);
2024 }
2025 
2026 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2027 /// if the inputs to the instruction should be swapped and set \p DM to the
2028 /// value for the immediate.
2029 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2030 /// AND element 0 of the result comes from the first input (LE) or second input
2031 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2032 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2033 /// mask.
2034 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2035                                bool &Swap, bool IsLE) {
2036   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2037 
2038   // Ensure each byte index of the double word is consecutive.
2039   if (!isNByteElemShuffleMask(N, 8, 1))
2040     return false;
2041 
2042   unsigned M0 = N->getMaskElt(0) / 8;
2043   unsigned M1 = N->getMaskElt(8) / 8;
2044   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2045 
2046   // If both vector operands for the shuffle are the same vector, the mask will
2047   // contain only elements from the first one and the second one will be undef.
2048   if (N->getOperand(1).isUndef()) {
2049     if ((M0 | M1) < 2) {
2050       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2051       Swap = false;
2052       return true;
2053     } else
2054       return false;
2055   }
2056 
2057   if (IsLE) {
2058     if (M0 > 1 && M1 < 2) {
2059       Swap = false;
2060     } else if (M0 < 2 && M1 > 1) {
2061       M0 = (M0 + 2) % 4;
2062       M1 = (M1 + 2) % 4;
2063       Swap = true;
2064     } else
2065       return false;
2066 
2067     // Note: if control flow comes here that means Swap is already set above
2068     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2069     return true;
2070   } else { // BE
2071     if (M0 < 2 && M1 > 1) {
2072       Swap = false;
2073     } else if (M0 > 1 && M1 < 2) {
2074       M0 = (M0 + 2) % 4;
2075       M1 = (M1 + 2) % 4;
2076       Swap = true;
2077     } else
2078       return false;
2079 
2080     // Note: if control flow comes here that means Swap is already set above
2081     DM = (M0 << 1) + (M1 & 1);
2082     return true;
2083   }
2084 }
2085 
2086 
2087 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2088 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2089 /// elements are counted from the left of the vector register).
2090 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2091                                          SelectionDAG &DAG) {
2092   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2093   assert(isSplatShuffleMask(SVOp, EltSize));
2094   if (DAG.getDataLayout().isLittleEndian())
2095     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2096   else
2097     return SVOp->getMaskElt(0) / EltSize;
2098 }
2099 
2100 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2101 /// by using a vspltis[bhw] instruction of the specified element size, return
2102 /// the constant being splatted.  The ByteSize field indicates the number of
2103 /// bytes of each element [124] -> [bhw].
2104 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2105   SDValue OpVal(nullptr, 0);
2106 
2107   // If ByteSize of the splat is bigger than the element size of the
2108   // build_vector, then we have a case where we are checking for a splat where
2109   // multiple elements of the buildvector are folded together into a single
2110   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2111   unsigned EltSize = 16/N->getNumOperands();
2112   if (EltSize < ByteSize) {
2113     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2114     SDValue UniquedVals[4];
2115     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2116 
2117     // See if all of the elements in the buildvector agree across.
2118     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2119       if (N->getOperand(i).isUndef()) continue;
2120       // If the element isn't a constant, bail fully out.
2121       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2122 
2123       if (!UniquedVals[i&(Multiple-1)].getNode())
2124         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2125       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2126         return SDValue();  // no match.
2127     }
2128 
2129     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2130     // either constant or undef values that are identical for each chunk.  See
2131     // if these chunks can form into a larger vspltis*.
2132 
2133     // Check to see if all of the leading entries are either 0 or -1.  If
2134     // neither, then this won't fit into the immediate field.
2135     bool LeadingZero = true;
2136     bool LeadingOnes = true;
2137     for (unsigned i = 0; i != Multiple-1; ++i) {
2138       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2139 
2140       LeadingZero &= isNullConstant(UniquedVals[i]);
2141       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2142     }
2143     // Finally, check the least significant entry.
2144     if (LeadingZero) {
2145       if (!UniquedVals[Multiple-1].getNode())
2146         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2147       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2148       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2149         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2150     }
2151     if (LeadingOnes) {
2152       if (!UniquedVals[Multiple-1].getNode())
2153         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2154       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2155       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2156         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2157     }
2158 
2159     return SDValue();
2160   }
2161 
2162   // Check to see if this buildvec has a single non-undef value in its elements.
2163   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2164     if (N->getOperand(i).isUndef()) continue;
2165     if (!OpVal.getNode())
2166       OpVal = N->getOperand(i);
2167     else if (OpVal != N->getOperand(i))
2168       return SDValue();
2169   }
2170 
2171   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2172 
2173   unsigned ValSizeInBytes = EltSize;
2174   uint64_t Value = 0;
2175   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2176     Value = CN->getZExtValue();
2177   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2178     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2179     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2180   }
2181 
2182   // If the splat value is larger than the element value, then we can never do
2183   // this splat.  The only case that we could fit the replicated bits into our
2184   // immediate field for would be zero, and we prefer to use vxor for it.
2185   if (ValSizeInBytes < ByteSize) return SDValue();
2186 
2187   // If the element value is larger than the splat value, check if it consists
2188   // of a repeated bit pattern of size ByteSize.
2189   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2190     return SDValue();
2191 
2192   // Properly sign extend the value.
2193   int MaskVal = SignExtend32(Value, ByteSize * 8);
2194 
2195   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2196   if (MaskVal == 0) return SDValue();
2197 
2198   // Finally, if this value fits in a 5 bit sext field, return it
2199   if (SignExtend32<5>(MaskVal) == MaskVal)
2200     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2201   return SDValue();
2202 }
2203 
2204 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2205 /// amount, otherwise return -1.
2206 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2207   EVT VT = N->getValueType(0);
2208   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2209     return -1;
2210 
2211   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2212 
2213   // Find the first non-undef value in the shuffle mask.
2214   unsigned i;
2215   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2216     /*search*/;
2217 
2218   if (i == 4) return -1;  // all undef.
2219 
2220   // Otherwise, check to see if the rest of the elements are consecutively
2221   // numbered from this value.
2222   unsigned ShiftAmt = SVOp->getMaskElt(i);
2223   if (ShiftAmt < i) return -1;
2224   ShiftAmt -= i;
2225 
2226   // Check the rest of the elements to see if they are consecutive.
2227   for (++i; i != 4; ++i)
2228     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2229       return -1;
2230 
2231   return ShiftAmt;
2232 }
2233 
2234 //===----------------------------------------------------------------------===//
2235 //  Addressing Mode Selection
2236 //===----------------------------------------------------------------------===//
2237 
2238 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2239 /// or 64-bit immediate, and if the value can be accurately represented as a
2240 /// sign extension from a 16-bit value.  If so, this returns true and the
2241 /// immediate.
2242 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2243   if (!isa<ConstantSDNode>(N))
2244     return false;
2245 
2246   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2247   if (N->getValueType(0) == MVT::i32)
2248     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2249   else
2250     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2251 }
2252 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2253   return isIntS16Immediate(Op.getNode(), Imm);
2254 }
2255 
2256 
2257 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2258 /// be represented as an indexed [r+r] operation.
2259 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2260                                                SDValue &Index,
2261                                                SelectionDAG &DAG) const {
2262   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2263       UI != E; ++UI) {
2264     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2265       if (Memop->getMemoryVT() == MVT::f64) {
2266           Base = N.getOperand(0);
2267           Index = N.getOperand(1);
2268           return true;
2269       }
2270     }
2271   }
2272   return false;
2273 }
2274 
2275 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2276 /// can be represented as an indexed [r+r] operation.  Returns false if it
2277 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2278 /// non-zero and N can be represented by a base register plus a signed 16-bit
2279 /// displacement, make a more precise judgement by checking (displacement % \p
2280 /// EncodingAlignment).
2281 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2282                                             SDValue &Index, SelectionDAG &DAG,
2283                                             unsigned EncodingAlignment) const {
2284   int16_t imm = 0;
2285   if (N.getOpcode() == ISD::ADD) {
2286     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2287     // SPE load/store can only handle 8-bit offsets.
2288     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2289         return true;
2290     if (isIntS16Immediate(N.getOperand(1), imm) &&
2291         (!EncodingAlignment || !(imm % EncodingAlignment)))
2292       return false; // r+i
2293     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2294       return false;    // r+i
2295 
2296     Base = N.getOperand(0);
2297     Index = N.getOperand(1);
2298     return true;
2299   } else if (N.getOpcode() == ISD::OR) {
2300     if (isIntS16Immediate(N.getOperand(1), imm) &&
2301         (!EncodingAlignment || !(imm % EncodingAlignment)))
2302       return false; // r+i can fold it if we can.
2303 
2304     // If this is an or of disjoint bitfields, we can codegen this as an add
2305     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2306     // disjoint.
2307     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2308 
2309     if (LHSKnown.Zero.getBoolValue()) {
2310       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2311       // If all of the bits are known zero on the LHS or RHS, the add won't
2312       // carry.
2313       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2314         Base = N.getOperand(0);
2315         Index = N.getOperand(1);
2316         return true;
2317       }
2318     }
2319   }
2320 
2321   return false;
2322 }
2323 
2324 // If we happen to be doing an i64 load or store into a stack slot that has
2325 // less than a 4-byte alignment, then the frame-index elimination may need to
2326 // use an indexed load or store instruction (because the offset may not be a
2327 // multiple of 4). The extra register needed to hold the offset comes from the
2328 // register scavenger, and it is possible that the scavenger will need to use
2329 // an emergency spill slot. As a result, we need to make sure that a spill slot
2330 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2331 // stack slot.
2332 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2333   // FIXME: This does not handle the LWA case.
2334   if (VT != MVT::i64)
2335     return;
2336 
2337   // NOTE: We'll exclude negative FIs here, which come from argument
2338   // lowering, because there are no known test cases triggering this problem
2339   // using packed structures (or similar). We can remove this exclusion if
2340   // we find such a test case. The reason why this is so test-case driven is
2341   // because this entire 'fixup' is only to prevent crashes (from the
2342   // register scavenger) on not-really-valid inputs. For example, if we have:
2343   //   %a = alloca i1
2344   //   %b = bitcast i1* %a to i64*
2345   //   store i64* a, i64 b
2346   // then the store should really be marked as 'align 1', but is not. If it
2347   // were marked as 'align 1' then the indexed form would have been
2348   // instruction-selected initially, and the problem this 'fixup' is preventing
2349   // won't happen regardless.
2350   if (FrameIdx < 0)
2351     return;
2352 
2353   MachineFunction &MF = DAG.getMachineFunction();
2354   MachineFrameInfo &MFI = MF.getFrameInfo();
2355 
2356   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2357   if (Align >= 4)
2358     return;
2359 
2360   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2361   FuncInfo->setHasNonRISpills();
2362 }
2363 
2364 /// Returns true if the address N can be represented by a base register plus
2365 /// a signed 16-bit displacement [r+imm], and if it is not better
2366 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2367 /// displacements that are multiples of that value.
2368 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2369                                             SDValue &Base,
2370                                             SelectionDAG &DAG,
2371                                             unsigned EncodingAlignment) const {
2372   // FIXME dl should come from parent load or store, not from address
2373   SDLoc dl(N);
2374   // If this can be more profitably realized as r+r, fail.
2375   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2376     return false;
2377 
2378   if (N.getOpcode() == ISD::ADD) {
2379     int16_t imm = 0;
2380     if (isIntS16Immediate(N.getOperand(1), imm) &&
2381         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2382       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2383       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2384         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2385         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2386       } else {
2387         Base = N.getOperand(0);
2388       }
2389       return true; // [r+i]
2390     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2391       // Match LOAD (ADD (X, Lo(G))).
2392       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2393              && "Cannot handle constant offsets yet!");
2394       Disp = N.getOperand(1).getOperand(0);  // The global address.
2395       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2396              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2397              Disp.getOpcode() == ISD::TargetConstantPool ||
2398              Disp.getOpcode() == ISD::TargetJumpTable);
2399       Base = N.getOperand(0);
2400       return true;  // [&g+r]
2401     }
2402   } else if (N.getOpcode() == ISD::OR) {
2403     int16_t imm = 0;
2404     if (isIntS16Immediate(N.getOperand(1), imm) &&
2405         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2406       // If this is an or of disjoint bitfields, we can codegen this as an add
2407       // (for better address arithmetic) if the LHS and RHS of the OR are
2408       // provably disjoint.
2409       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2410 
2411       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2412         // If all of the bits are known zero on the LHS or RHS, the add won't
2413         // carry.
2414         if (FrameIndexSDNode *FI =
2415               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2416           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2417           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2418         } else {
2419           Base = N.getOperand(0);
2420         }
2421         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2422         return true;
2423       }
2424     }
2425   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2426     // Loading from a constant address.
2427 
2428     // If this address fits entirely in a 16-bit sext immediate field, codegen
2429     // this as "d, 0"
2430     int16_t Imm;
2431     if (isIntS16Immediate(CN, Imm) &&
2432         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2433       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2434       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2435                              CN->getValueType(0));
2436       return true;
2437     }
2438 
2439     // Handle 32-bit sext immediates with LIS + addr mode.
2440     if ((CN->getValueType(0) == MVT::i32 ||
2441          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2442         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2443       int Addr = (int)CN->getZExtValue();
2444 
2445       // Otherwise, break this down into an LIS + disp.
2446       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2447 
2448       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2449                                    MVT::i32);
2450       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2451       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2452       return true;
2453     }
2454   }
2455 
2456   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2457   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2458     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2459     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2460   } else
2461     Base = N;
2462   return true;      // [r+0]
2463 }
2464 
2465 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2466 /// represented as an indexed [r+r] operation.
2467 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2468                                                 SDValue &Index,
2469                                                 SelectionDAG &DAG) const {
2470   // Check to see if we can easily represent this as an [r+r] address.  This
2471   // will fail if it thinks that the address is more profitably represented as
2472   // reg+imm, e.g. where imm = 0.
2473   if (SelectAddressRegReg(N, Base, Index, DAG))
2474     return true;
2475 
2476   // If the address is the result of an add, we will utilize the fact that the
2477   // address calculation includes an implicit add.  However, we can reduce
2478   // register pressure if we do not materialize a constant just for use as the
2479   // index register.  We only get rid of the add if it is not an add of a
2480   // value and a 16-bit signed constant and both have a single use.
2481   int16_t imm = 0;
2482   if (N.getOpcode() == ISD::ADD &&
2483       (!isIntS16Immediate(N.getOperand(1), imm) ||
2484        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2485     Base = N.getOperand(0);
2486     Index = N.getOperand(1);
2487     return true;
2488   }
2489 
2490   // Otherwise, do it the hard way, using R0 as the base register.
2491   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2492                          N.getValueType());
2493   Index = N;
2494   return true;
2495 }
2496 
2497 /// Returns true if we should use a direct load into vector instruction
2498 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2499 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2500 
2501   // If there are any other uses other than scalar to vector, then we should
2502   // keep it as a scalar load -> direct move pattern to prevent multiple
2503   // loads.
2504   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2505   if (!LD)
2506     return false;
2507 
2508   EVT MemVT = LD->getMemoryVT();
2509   if (!MemVT.isSimple())
2510     return false;
2511   switch(MemVT.getSimpleVT().SimpleTy) {
2512   case MVT::i64:
2513     break;
2514   case MVT::i32:
2515     if (!ST.hasP8Vector())
2516       return false;
2517     break;
2518   case MVT::i16:
2519   case MVT::i8:
2520     if (!ST.hasP9Vector())
2521       return false;
2522     break;
2523   default:
2524     return false;
2525   }
2526 
2527   SDValue LoadedVal(N, 0);
2528   if (!LoadedVal.hasOneUse())
2529     return false;
2530 
2531   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2532        UI != UE; ++UI)
2533     if (UI.getUse().get().getResNo() == 0 &&
2534         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2535       return false;
2536 
2537   return true;
2538 }
2539 
2540 /// getPreIndexedAddressParts - returns true by value, base pointer and
2541 /// offset pointer and addressing mode by reference if the node's address
2542 /// can be legally represented as pre-indexed load / store address.
2543 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2544                                                   SDValue &Offset,
2545                                                   ISD::MemIndexedMode &AM,
2546                                                   SelectionDAG &DAG) const {
2547   if (DisablePPCPreinc) return false;
2548 
2549   bool isLoad = true;
2550   SDValue Ptr;
2551   EVT VT;
2552   unsigned Alignment;
2553   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2554     Ptr = LD->getBasePtr();
2555     VT = LD->getMemoryVT();
2556     Alignment = LD->getAlignment();
2557   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2558     Ptr = ST->getBasePtr();
2559     VT  = ST->getMemoryVT();
2560     Alignment = ST->getAlignment();
2561     isLoad = false;
2562   } else
2563     return false;
2564 
2565   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2566   // instructions because we can fold these into a more efficient instruction
2567   // instead, (such as LXSD).
2568   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2569     return false;
2570   }
2571 
2572   // PowerPC doesn't have preinc load/store instructions for vectors (except
2573   // for QPX, which does have preinc r+r forms).
2574   if (VT.isVector()) {
2575     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2576       return false;
2577     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2578       AM = ISD::PRE_INC;
2579       return true;
2580     }
2581   }
2582 
2583   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2584     // Common code will reject creating a pre-inc form if the base pointer
2585     // is a frame index, or if N is a store and the base pointer is either
2586     // the same as or a predecessor of the value being stored.  Check for
2587     // those situations here, and try with swapped Base/Offset instead.
2588     bool Swap = false;
2589 
2590     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2591       Swap = true;
2592     else if (!isLoad) {
2593       SDValue Val = cast<StoreSDNode>(N)->getValue();
2594       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2595         Swap = true;
2596     }
2597 
2598     if (Swap)
2599       std::swap(Base, Offset);
2600 
2601     AM = ISD::PRE_INC;
2602     return true;
2603   }
2604 
2605   // LDU/STU can only handle immediates that are a multiple of 4.
2606   if (VT != MVT::i64) {
2607     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2608       return false;
2609   } else {
2610     // LDU/STU need an address with at least 4-byte alignment.
2611     if (Alignment < 4)
2612       return false;
2613 
2614     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2615       return false;
2616   }
2617 
2618   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2619     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2620     // sext i32 to i64 when addr mode is r+i.
2621     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2622         LD->getExtensionType() == ISD::SEXTLOAD &&
2623         isa<ConstantSDNode>(Offset))
2624       return false;
2625   }
2626 
2627   AM = ISD::PRE_INC;
2628   return true;
2629 }
2630 
2631 //===----------------------------------------------------------------------===//
2632 //  LowerOperation implementation
2633 //===----------------------------------------------------------------------===//
2634 
2635 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2636 /// and LoOpFlags to the target MO flags.
2637 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2638                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2639                                const GlobalValue *GV = nullptr) {
2640   HiOpFlags = PPCII::MO_HA;
2641   LoOpFlags = PPCII::MO_LO;
2642 
2643   // Don't use the pic base if not in PIC relocation model.
2644   if (IsPIC) {
2645     HiOpFlags |= PPCII::MO_PIC_FLAG;
2646     LoOpFlags |= PPCII::MO_PIC_FLAG;
2647   }
2648 
2649   // If this is a reference to a global value that requires a non-lazy-ptr, make
2650   // sure that instruction lowering adds it.
2651   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2652     HiOpFlags |= PPCII::MO_NLP_FLAG;
2653     LoOpFlags |= PPCII::MO_NLP_FLAG;
2654 
2655     if (GV->hasHiddenVisibility()) {
2656       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2657       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2658     }
2659   }
2660 }
2661 
2662 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2663                              SelectionDAG &DAG) {
2664   SDLoc DL(HiPart);
2665   EVT PtrVT = HiPart.getValueType();
2666   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2667 
2668   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2669   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2670 
2671   // With PIC, the first instruction is actually "GR+hi(&G)".
2672   if (isPIC)
2673     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2674                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2675 
2676   // Generate non-pic code that has direct accesses to the constant pool.
2677   // The address of the global is just (hi(&g)+lo(&g)).
2678   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2679 }
2680 
2681 static void setUsesTOCBasePtr(MachineFunction &MF) {
2682   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2683   FuncInfo->setUsesTOCBasePtr();
2684 }
2685 
2686 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2687   setUsesTOCBasePtr(DAG.getMachineFunction());
2688 }
2689 
2690 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2691                                        SDValue GA) const {
2692   const bool Is64Bit = Subtarget.isPPC64();
2693   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2694   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2695                         : Subtarget.isAIXABI()
2696                               ? DAG.getRegister(PPC::R2, VT)
2697                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2698   SDValue Ops[] = { GA, Reg };
2699   return DAG.getMemIntrinsicNode(
2700       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2701       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2702       MachineMemOperand::MOLoad);
2703 }
2704 
2705 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2706                                              SelectionDAG &DAG) const {
2707   EVT PtrVT = Op.getValueType();
2708   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2709   const Constant *C = CP->getConstVal();
2710 
2711   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2712   // The actual address of the GlobalValue is stored in the TOC.
2713   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2714     setUsesTOCBasePtr(DAG);
2715     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2716     return getTOCEntry(DAG, SDLoc(CP), GA);
2717   }
2718 
2719   unsigned MOHiFlag, MOLoFlag;
2720   bool IsPIC = isPositionIndependent();
2721   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2722 
2723   if (IsPIC && Subtarget.isSVR4ABI()) {
2724     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2725                                            PPCII::MO_PIC_FLAG);
2726     return getTOCEntry(DAG, SDLoc(CP), GA);
2727   }
2728 
2729   SDValue CPIHi =
2730     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2731   SDValue CPILo =
2732     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2733   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2734 }
2735 
2736 // For 64-bit PowerPC, prefer the more compact relative encodings.
2737 // This trades 32 bits per jump table entry for one or two instructions
2738 // on the jump site.
2739 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2740   if (isJumpTableRelative())
2741     return MachineJumpTableInfo::EK_LabelDifference32;
2742 
2743   return TargetLowering::getJumpTableEncoding();
2744 }
2745 
2746 bool PPCTargetLowering::isJumpTableRelative() const {
2747   if (Subtarget.isPPC64())
2748     return true;
2749   return TargetLowering::isJumpTableRelative();
2750 }
2751 
2752 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2753                                                     SelectionDAG &DAG) const {
2754   if (!Subtarget.isPPC64())
2755     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2756 
2757   switch (getTargetMachine().getCodeModel()) {
2758   case CodeModel::Small:
2759   case CodeModel::Medium:
2760     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2761   default:
2762     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2763                        getPointerTy(DAG.getDataLayout()));
2764   }
2765 }
2766 
2767 const MCExpr *
2768 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2769                                                 unsigned JTI,
2770                                                 MCContext &Ctx) const {
2771   if (!Subtarget.isPPC64())
2772     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2773 
2774   switch (getTargetMachine().getCodeModel()) {
2775   case CodeModel::Small:
2776   case CodeModel::Medium:
2777     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2778   default:
2779     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2780   }
2781 }
2782 
2783 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2784   EVT PtrVT = Op.getValueType();
2785   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2786 
2787   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2788   // The actual address of the GlobalValue is stored in the TOC.
2789   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2790     setUsesTOCBasePtr(DAG);
2791     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2792     return getTOCEntry(DAG, SDLoc(JT), GA);
2793   }
2794 
2795   unsigned MOHiFlag, MOLoFlag;
2796   bool IsPIC = isPositionIndependent();
2797   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2798 
2799   if (IsPIC && Subtarget.isSVR4ABI()) {
2800     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2801                                         PPCII::MO_PIC_FLAG);
2802     return getTOCEntry(DAG, SDLoc(GA), GA);
2803   }
2804 
2805   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2806   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2807   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2808 }
2809 
2810 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2811                                              SelectionDAG &DAG) const {
2812   EVT PtrVT = Op.getValueType();
2813   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2814   const BlockAddress *BA = BASDN->getBlockAddress();
2815 
2816   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2817   // The actual BlockAddress is stored in the TOC.
2818   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2819     setUsesTOCBasePtr(DAG);
2820     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2821     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2822   }
2823 
2824   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2825   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2826     return getTOCEntry(
2827         DAG, SDLoc(BASDN),
2828         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2829 
2830   unsigned MOHiFlag, MOLoFlag;
2831   bool IsPIC = isPositionIndependent();
2832   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2833   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2834   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2835   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2836 }
2837 
2838 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2839                                               SelectionDAG &DAG) const {
2840   // FIXME: TLS addresses currently use medium model code sequences,
2841   // which is the most useful form.  Eventually support for small and
2842   // large models could be added if users need it, at the cost of
2843   // additional complexity.
2844   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2845   if (DAG.getTarget().useEmulatedTLS())
2846     return LowerToTLSEmulatedModel(GA, DAG);
2847 
2848   SDLoc dl(GA);
2849   const GlobalValue *GV = GA->getGlobal();
2850   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2851   bool is64bit = Subtarget.isPPC64();
2852   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2853   PICLevel::Level picLevel = M->getPICLevel();
2854 
2855   const TargetMachine &TM = getTargetMachine();
2856   TLSModel::Model Model = TM.getTLSModel(GV);
2857 
2858   if (Model == TLSModel::LocalExec) {
2859     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2860                                                PPCII::MO_TPREL_HA);
2861     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2862                                                PPCII::MO_TPREL_LO);
2863     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2864                              : DAG.getRegister(PPC::R2, MVT::i32);
2865 
2866     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2867     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2868   }
2869 
2870   if (Model == TLSModel::InitialExec) {
2871     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2872     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2873                                                 PPCII::MO_TLS);
2874     SDValue GOTPtr;
2875     if (is64bit) {
2876       setUsesTOCBasePtr(DAG);
2877       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2878       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2879                            PtrVT, GOTReg, TGA);
2880     } else {
2881       if (!TM.isPositionIndependent())
2882         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2883       else if (picLevel == PICLevel::SmallPIC)
2884         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2885       else
2886         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2887     }
2888     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2889                                    PtrVT, TGA, GOTPtr);
2890     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2891   }
2892 
2893   if (Model == TLSModel::GeneralDynamic) {
2894     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2895     SDValue GOTPtr;
2896     if (is64bit) {
2897       setUsesTOCBasePtr(DAG);
2898       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2899       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2900                                    GOTReg, TGA);
2901     } else {
2902       if (picLevel == PICLevel::SmallPIC)
2903         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2904       else
2905         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2906     }
2907     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2908                        GOTPtr, TGA, TGA);
2909   }
2910 
2911   if (Model == TLSModel::LocalDynamic) {
2912     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2913     SDValue GOTPtr;
2914     if (is64bit) {
2915       setUsesTOCBasePtr(DAG);
2916       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2917       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2918                            GOTReg, TGA);
2919     } else {
2920       if (picLevel == PICLevel::SmallPIC)
2921         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2922       else
2923         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2924     }
2925     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2926                                   PtrVT, GOTPtr, TGA, TGA);
2927     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2928                                       PtrVT, TLSAddr, TGA);
2929     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2930   }
2931 
2932   llvm_unreachable("Unknown TLS model!");
2933 }
2934 
2935 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2936                                               SelectionDAG &DAG) const {
2937   EVT PtrVT = Op.getValueType();
2938   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2939   SDLoc DL(GSDN);
2940   const GlobalValue *GV = GSDN->getGlobal();
2941 
2942   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2943   // The actual address of the GlobalValue is stored in the TOC.
2944   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2945     setUsesTOCBasePtr(DAG);
2946     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2947     return getTOCEntry(DAG, DL, GA);
2948   }
2949 
2950   unsigned MOHiFlag, MOLoFlag;
2951   bool IsPIC = isPositionIndependent();
2952   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2953 
2954   if (IsPIC && Subtarget.isSVR4ABI()) {
2955     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2956                                             GSDN->getOffset(),
2957                                             PPCII::MO_PIC_FLAG);
2958     return getTOCEntry(DAG, DL, GA);
2959   }
2960 
2961   SDValue GAHi =
2962     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2963   SDValue GALo =
2964     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2965 
2966   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2967 
2968   // If the global reference is actually to a non-lazy-pointer, we have to do an
2969   // extra load to get the address of the global.
2970   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2971     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2972   return Ptr;
2973 }
2974 
2975 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2976   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2977   SDLoc dl(Op);
2978 
2979   if (Op.getValueType() == MVT::v2i64) {
2980     // When the operands themselves are v2i64 values, we need to do something
2981     // special because VSX has no underlying comparison operations for these.
2982     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2983       // Equality can be handled by casting to the legal type for Altivec
2984       // comparisons, everything else needs to be expanded.
2985       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2986         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2987                  DAG.getSetCC(dl, MVT::v4i32,
2988                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2989                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2990                    CC));
2991       }
2992 
2993       return SDValue();
2994     }
2995 
2996     // We handle most of these in the usual way.
2997     return Op;
2998   }
2999 
3000   // If we're comparing for equality to zero, expose the fact that this is
3001   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3002   // fold the new nodes.
3003   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3004     return V;
3005 
3006   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3007     // Leave comparisons against 0 and -1 alone for now, since they're usually
3008     // optimized.  FIXME: revisit this when we can custom lower all setcc
3009     // optimizations.
3010     if (C->isAllOnesValue() || C->isNullValue())
3011       return SDValue();
3012   }
3013 
3014   // If we have an integer seteq/setne, turn it into a compare against zero
3015   // by xor'ing the rhs with the lhs, which is faster than setting a
3016   // condition register, reading it back out, and masking the correct bit.  The
3017   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3018   // the result to other bit-twiddling opportunities.
3019   EVT LHSVT = Op.getOperand(0).getValueType();
3020   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3021     EVT VT = Op.getValueType();
3022     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3023                                 Op.getOperand(1));
3024     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3025   }
3026   return SDValue();
3027 }
3028 
3029 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3030   SDNode *Node = Op.getNode();
3031   EVT VT = Node->getValueType(0);
3032   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3033   SDValue InChain = Node->getOperand(0);
3034   SDValue VAListPtr = Node->getOperand(1);
3035   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3036   SDLoc dl(Node);
3037 
3038   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3039 
3040   // gpr_index
3041   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3042                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3043   InChain = GprIndex.getValue(1);
3044 
3045   if (VT == MVT::i64) {
3046     // Check if GprIndex is even
3047     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3048                                  DAG.getConstant(1, dl, MVT::i32));
3049     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3050                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3051     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3052                                           DAG.getConstant(1, dl, MVT::i32));
3053     // Align GprIndex to be even if it isn't
3054     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3055                            GprIndex);
3056   }
3057 
3058   // fpr index is 1 byte after gpr
3059   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3060                                DAG.getConstant(1, dl, MVT::i32));
3061 
3062   // fpr
3063   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3064                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3065   InChain = FprIndex.getValue(1);
3066 
3067   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3068                                        DAG.getConstant(8, dl, MVT::i32));
3069 
3070   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3071                                         DAG.getConstant(4, dl, MVT::i32));
3072 
3073   // areas
3074   SDValue OverflowArea =
3075       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3076   InChain = OverflowArea.getValue(1);
3077 
3078   SDValue RegSaveArea =
3079       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3080   InChain = RegSaveArea.getValue(1);
3081 
3082   // select overflow_area if index > 8
3083   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3084                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3085 
3086   // adjustment constant gpr_index * 4/8
3087   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3088                                     VT.isInteger() ? GprIndex : FprIndex,
3089                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3090                                                     MVT::i32));
3091 
3092   // OurReg = RegSaveArea + RegConstant
3093   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3094                                RegConstant);
3095 
3096   // Floating types are 32 bytes into RegSaveArea
3097   if (VT.isFloatingPoint())
3098     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3099                          DAG.getConstant(32, dl, MVT::i32));
3100 
3101   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3102   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3103                                    VT.isInteger() ? GprIndex : FprIndex,
3104                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3105                                                    MVT::i32));
3106 
3107   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3108                               VT.isInteger() ? VAListPtr : FprPtr,
3109                               MachinePointerInfo(SV), MVT::i8);
3110 
3111   // determine if we should load from reg_save_area or overflow_area
3112   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3113 
3114   // increase overflow_area by 4/8 if gpr/fpr > 8
3115   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3116                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3117                                           dl, MVT::i32));
3118 
3119   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3120                              OverflowAreaPlusN);
3121 
3122   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3123                               MachinePointerInfo(), MVT::i32);
3124 
3125   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3126 }
3127 
3128 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3129   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3130 
3131   // We have to copy the entire va_list struct:
3132   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3133   return DAG.getMemcpy(Op.getOperand(0), Op,
3134                        Op.getOperand(1), Op.getOperand(2),
3135                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3136                        false, MachinePointerInfo(), MachinePointerInfo());
3137 }
3138 
3139 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3140                                                   SelectionDAG &DAG) const {
3141   return Op.getOperand(0);
3142 }
3143 
3144 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3145                                                 SelectionDAG &DAG) const {
3146   SDValue Chain = Op.getOperand(0);
3147   SDValue Trmp = Op.getOperand(1); // trampoline
3148   SDValue FPtr = Op.getOperand(2); // nested function
3149   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3150   SDLoc dl(Op);
3151 
3152   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3153   bool isPPC64 = (PtrVT == MVT::i64);
3154   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3155 
3156   TargetLowering::ArgListTy Args;
3157   TargetLowering::ArgListEntry Entry;
3158 
3159   Entry.Ty = IntPtrTy;
3160   Entry.Node = Trmp; Args.push_back(Entry);
3161 
3162   // TrampSize == (isPPC64 ? 48 : 40);
3163   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3164                                isPPC64 ? MVT::i64 : MVT::i32);
3165   Args.push_back(Entry);
3166 
3167   Entry.Node = FPtr; Args.push_back(Entry);
3168   Entry.Node = Nest; Args.push_back(Entry);
3169 
3170   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3171   TargetLowering::CallLoweringInfo CLI(DAG);
3172   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3173       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3174       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3175 
3176   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3177   return CallResult.second;
3178 }
3179 
3180 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3181   MachineFunction &MF = DAG.getMachineFunction();
3182   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3183   EVT PtrVT = getPointerTy(MF.getDataLayout());
3184 
3185   SDLoc dl(Op);
3186 
3187   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3188     // vastart just stores the address of the VarArgsFrameIndex slot into the
3189     // memory location argument.
3190     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3191     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3192     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3193                         MachinePointerInfo(SV));
3194   }
3195 
3196   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3197   // We suppose the given va_list is already allocated.
3198   //
3199   // typedef struct {
3200   //  char gpr;     /* index into the array of 8 GPRs
3201   //                 * stored in the register save area
3202   //                 * gpr=0 corresponds to r3,
3203   //                 * gpr=1 to r4, etc.
3204   //                 */
3205   //  char fpr;     /* index into the array of 8 FPRs
3206   //                 * stored in the register save area
3207   //                 * fpr=0 corresponds to f1,
3208   //                 * fpr=1 to f2, etc.
3209   //                 */
3210   //  char *overflow_arg_area;
3211   //                /* location on stack that holds
3212   //                 * the next overflow argument
3213   //                 */
3214   //  char *reg_save_area;
3215   //               /* where r3:r10 and f1:f8 (if saved)
3216   //                * are stored
3217   //                */
3218   // } va_list[1];
3219 
3220   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3221   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3222   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3223                                             PtrVT);
3224   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3225                                  PtrVT);
3226 
3227   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3228   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3229 
3230   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3231   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3232 
3233   uint64_t FPROffset = 1;
3234   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3235 
3236   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3237 
3238   // Store first byte : number of int regs
3239   SDValue firstStore =
3240       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3241                         MachinePointerInfo(SV), MVT::i8);
3242   uint64_t nextOffset = FPROffset;
3243   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3244                                   ConstFPROffset);
3245 
3246   // Store second byte : number of float regs
3247   SDValue secondStore =
3248       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3249                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3250   nextOffset += StackOffset;
3251   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3252 
3253   // Store second word : arguments given on stack
3254   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3255                                     MachinePointerInfo(SV, nextOffset));
3256   nextOffset += FrameOffset;
3257   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3258 
3259   // Store third word : arguments given in registers
3260   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3261                       MachinePointerInfo(SV, nextOffset));
3262 }
3263 
3264 /// FPR - The set of FP registers that should be allocated for arguments
3265 /// on Darwin and AIX.
3266 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3267                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3268                                 PPC::F11, PPC::F12, PPC::F13};
3269 
3270 /// QFPR - The set of QPX registers that should be allocated for arguments.
3271 static const MCPhysReg QFPR[] = {
3272     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3273     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3274 
3275 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3276 /// the stack.
3277 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3278                                        unsigned PtrByteSize) {
3279   unsigned ArgSize = ArgVT.getStoreSize();
3280   if (Flags.isByVal())
3281     ArgSize = Flags.getByValSize();
3282 
3283   // Round up to multiples of the pointer size, except for array members,
3284   // which are always packed.
3285   if (!Flags.isInConsecutiveRegs())
3286     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3287 
3288   return ArgSize;
3289 }
3290 
3291 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3292 /// on the stack.
3293 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3294                                             ISD::ArgFlagsTy Flags,
3295                                             unsigned PtrByteSize) {
3296   unsigned Align = PtrByteSize;
3297 
3298   // Altivec parameters are padded to a 16 byte boundary.
3299   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3300       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3301       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3302       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3303     Align = 16;
3304   // QPX vector types stored in double-precision are padded to a 32 byte
3305   // boundary.
3306   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3307     Align = 32;
3308 
3309   // ByVal parameters are aligned as requested.
3310   if (Flags.isByVal()) {
3311     unsigned BVAlign = Flags.getByValAlign();
3312     if (BVAlign > PtrByteSize) {
3313       if (BVAlign % PtrByteSize != 0)
3314           llvm_unreachable(
3315             "ByVal alignment is not a multiple of the pointer size");
3316 
3317       Align = BVAlign;
3318     }
3319   }
3320 
3321   // Array members are always packed to their original alignment.
3322   if (Flags.isInConsecutiveRegs()) {
3323     // If the array member was split into multiple registers, the first
3324     // needs to be aligned to the size of the full type.  (Except for
3325     // ppcf128, which is only aligned as its f64 components.)
3326     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3327       Align = OrigVT.getStoreSize();
3328     else
3329       Align = ArgVT.getStoreSize();
3330   }
3331 
3332   return Align;
3333 }
3334 
3335 /// CalculateStackSlotUsed - Return whether this argument will use its
3336 /// stack slot (instead of being passed in registers).  ArgOffset,
3337 /// AvailableFPRs, and AvailableVRs must hold the current argument
3338 /// position, and will be updated to account for this argument.
3339 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3340                                    ISD::ArgFlagsTy Flags,
3341                                    unsigned PtrByteSize,
3342                                    unsigned LinkageSize,
3343                                    unsigned ParamAreaSize,
3344                                    unsigned &ArgOffset,
3345                                    unsigned &AvailableFPRs,
3346                                    unsigned &AvailableVRs, bool HasQPX) {
3347   bool UseMemory = false;
3348 
3349   // Respect alignment of argument on the stack.
3350   unsigned Align =
3351     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3352   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3353   // If there's no space left in the argument save area, we must
3354   // use memory (this check also catches zero-sized arguments).
3355   if (ArgOffset >= LinkageSize + ParamAreaSize)
3356     UseMemory = true;
3357 
3358   // Allocate argument on the stack.
3359   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3360   if (Flags.isInConsecutiveRegsLast())
3361     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3362   // If we overran the argument save area, we must use memory
3363   // (this check catches arguments passed partially in memory)
3364   if (ArgOffset > LinkageSize + ParamAreaSize)
3365     UseMemory = true;
3366 
3367   // However, if the argument is actually passed in an FPR or a VR,
3368   // we don't use memory after all.
3369   if (!Flags.isByVal()) {
3370     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3371         // QPX registers overlap with the scalar FP registers.
3372         (HasQPX && (ArgVT == MVT::v4f32 ||
3373                     ArgVT == MVT::v4f64 ||
3374                     ArgVT == MVT::v4i1)))
3375       if (AvailableFPRs > 0) {
3376         --AvailableFPRs;
3377         return false;
3378       }
3379     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3380         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3381         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3382         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3383       if (AvailableVRs > 0) {
3384         --AvailableVRs;
3385         return false;
3386       }
3387   }
3388 
3389   return UseMemory;
3390 }
3391 
3392 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3393 /// ensure minimum alignment required for target.
3394 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3395                                      unsigned NumBytes) {
3396   unsigned TargetAlign = Lowering->getStackAlignment();
3397   unsigned AlignMask = TargetAlign - 1;
3398   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3399   return NumBytes;
3400 }
3401 
3402 SDValue PPCTargetLowering::LowerFormalArguments(
3403     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3404     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3405     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3406   if (Subtarget.is64BitELFABI())
3407     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3408                                        InVals);
3409   else if (Subtarget.is32BitELFABI())
3410     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3411                                        InVals);
3412 
3413   // FIXME: We are using this for both AIX and Darwin. We should add appropriate
3414   // AIX testing, and rename it appropriately.
3415   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3416                                      InVals);
3417 }
3418 
3419 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3420     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3421     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3422     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3423 
3424   // 32-bit SVR4 ABI Stack Frame Layout:
3425   //              +-----------------------------------+
3426   //        +-->  |            Back chain             |
3427   //        |     +-----------------------------------+
3428   //        |     | Floating-point register save area |
3429   //        |     +-----------------------------------+
3430   //        |     |    General register save area     |
3431   //        |     +-----------------------------------+
3432   //        |     |          CR save word             |
3433   //        |     +-----------------------------------+
3434   //        |     |         VRSAVE save word          |
3435   //        |     +-----------------------------------+
3436   //        |     |         Alignment padding         |
3437   //        |     +-----------------------------------+
3438   //        |     |     Vector register save area     |
3439   //        |     +-----------------------------------+
3440   //        |     |       Local variable space        |
3441   //        |     +-----------------------------------+
3442   //        |     |        Parameter list area        |
3443   //        |     +-----------------------------------+
3444   //        |     |           LR save word            |
3445   //        |     +-----------------------------------+
3446   // SP-->  +---  |            Back chain             |
3447   //              +-----------------------------------+
3448   //
3449   // Specifications:
3450   //   System V Application Binary Interface PowerPC Processor Supplement
3451   //   AltiVec Technology Programming Interface Manual
3452 
3453   MachineFunction &MF = DAG.getMachineFunction();
3454   MachineFrameInfo &MFI = MF.getFrameInfo();
3455   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3456 
3457   EVT PtrVT = getPointerTy(MF.getDataLayout());
3458   // Potential tail calls could cause overwriting of argument stack slots.
3459   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3460                        (CallConv == CallingConv::Fast));
3461   unsigned PtrByteSize = 4;
3462 
3463   // Assign locations to all of the incoming arguments.
3464   SmallVector<CCValAssign, 16> ArgLocs;
3465   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3466                  *DAG.getContext());
3467 
3468   // Reserve space for the linkage area on the stack.
3469   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3470   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3471   if (useSoftFloat())
3472     CCInfo.PreAnalyzeFormalArguments(Ins);
3473 
3474   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3475   CCInfo.clearWasPPCF128();
3476 
3477   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3478     CCValAssign &VA = ArgLocs[i];
3479 
3480     // Arguments stored in registers.
3481     if (VA.isRegLoc()) {
3482       const TargetRegisterClass *RC;
3483       EVT ValVT = VA.getValVT();
3484 
3485       switch (ValVT.getSimpleVT().SimpleTy) {
3486         default:
3487           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3488         case MVT::i1:
3489         case MVT::i32:
3490           RC = &PPC::GPRCRegClass;
3491           break;
3492         case MVT::f32:
3493           if (Subtarget.hasP8Vector())
3494             RC = &PPC::VSSRCRegClass;
3495           else if (Subtarget.hasSPE())
3496             RC = &PPC::GPRCRegClass;
3497           else
3498             RC = &PPC::F4RCRegClass;
3499           break;
3500         case MVT::f64:
3501           if (Subtarget.hasVSX())
3502             RC = &PPC::VSFRCRegClass;
3503           else if (Subtarget.hasSPE())
3504             // SPE passes doubles in GPR pairs.
3505             RC = &PPC::GPRCRegClass;
3506           else
3507             RC = &PPC::F8RCRegClass;
3508           break;
3509         case MVT::v16i8:
3510         case MVT::v8i16:
3511         case MVT::v4i32:
3512           RC = &PPC::VRRCRegClass;
3513           break;
3514         case MVT::v4f32:
3515           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3516           break;
3517         case MVT::v2f64:
3518         case MVT::v2i64:
3519           RC = &PPC::VRRCRegClass;
3520           break;
3521         case MVT::v4f64:
3522           RC = &PPC::QFRCRegClass;
3523           break;
3524         case MVT::v4i1:
3525           RC = &PPC::QBRCRegClass;
3526           break;
3527       }
3528 
3529       SDValue ArgValue;
3530       // Transform the arguments stored in physical registers into
3531       // virtual ones.
3532       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3533         assert(i + 1 < e && "No second half of double precision argument");
3534         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3535         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3536         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3537         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3538         if (!Subtarget.isLittleEndian())
3539           std::swap (ArgValueLo, ArgValueHi);
3540         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3541                                ArgValueHi);
3542       } else {
3543         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3544         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3545                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3546         if (ValVT == MVT::i1)
3547           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3548       }
3549 
3550       InVals.push_back(ArgValue);
3551     } else {
3552       // Argument stored in memory.
3553       assert(VA.isMemLoc());
3554 
3555       // Get the extended size of the argument type in stack
3556       unsigned ArgSize = VA.getLocVT().getStoreSize();
3557       // Get the actual size of the argument type
3558       unsigned ObjSize = VA.getValVT().getStoreSize();
3559       unsigned ArgOffset = VA.getLocMemOffset();
3560       // Stack objects in PPC32 are right justified.
3561       ArgOffset += ArgSize - ObjSize;
3562       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3563 
3564       // Create load nodes to retrieve arguments from the stack.
3565       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3566       InVals.push_back(
3567           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3568     }
3569   }
3570 
3571   // Assign locations to all of the incoming aggregate by value arguments.
3572   // Aggregates passed by value are stored in the local variable space of the
3573   // caller's stack frame, right above the parameter list area.
3574   SmallVector<CCValAssign, 16> ByValArgLocs;
3575   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3576                       ByValArgLocs, *DAG.getContext());
3577 
3578   // Reserve stack space for the allocations in CCInfo.
3579   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3580 
3581   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3582 
3583   // Area that is at least reserved in the caller of this function.
3584   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3585   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3586 
3587   // Set the size that is at least reserved in caller of this function.  Tail
3588   // call optimized function's reserved stack space needs to be aligned so that
3589   // taking the difference between two stack areas will result in an aligned
3590   // stack.
3591   MinReservedArea =
3592       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3593   FuncInfo->setMinReservedArea(MinReservedArea);
3594 
3595   SmallVector<SDValue, 8> MemOps;
3596 
3597   // If the function takes variable number of arguments, make a frame index for
3598   // the start of the first vararg value... for expansion of llvm.va_start.
3599   if (isVarArg) {
3600     static const MCPhysReg GPArgRegs[] = {
3601       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3602       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3603     };
3604     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3605 
3606     static const MCPhysReg FPArgRegs[] = {
3607       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3608       PPC::F8
3609     };
3610     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3611 
3612     if (useSoftFloat() || hasSPE())
3613        NumFPArgRegs = 0;
3614 
3615     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3616     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3617 
3618     // Make room for NumGPArgRegs and NumFPArgRegs.
3619     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3620                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3621 
3622     FuncInfo->setVarArgsStackOffset(
3623       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3624                             CCInfo.getNextStackOffset(), true));
3625 
3626     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3627     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3628 
3629     // The fixed integer arguments of a variadic function are stored to the
3630     // VarArgsFrameIndex on the stack so that they may be loaded by
3631     // dereferencing the result of va_next.
3632     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3633       // Get an existing live-in vreg, or add a new one.
3634       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3635       if (!VReg)
3636         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3637 
3638       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3639       SDValue Store =
3640           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3641       MemOps.push_back(Store);
3642       // Increment the address by four for the next argument to store
3643       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3644       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3645     }
3646 
3647     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3648     // is set.
3649     // The double arguments are stored to the VarArgsFrameIndex
3650     // on the stack.
3651     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3652       // Get an existing live-in vreg, or add a new one.
3653       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3654       if (!VReg)
3655         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3656 
3657       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3658       SDValue Store =
3659           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3660       MemOps.push_back(Store);
3661       // Increment the address by eight for the next argument to store
3662       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3663                                          PtrVT);
3664       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3665     }
3666   }
3667 
3668   if (!MemOps.empty())
3669     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3670 
3671   return Chain;
3672 }
3673 
3674 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3675 // value to MVT::i64 and then truncate to the correct register size.
3676 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3677                                              EVT ObjectVT, SelectionDAG &DAG,
3678                                              SDValue ArgVal,
3679                                              const SDLoc &dl) const {
3680   if (Flags.isSExt())
3681     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3682                          DAG.getValueType(ObjectVT));
3683   else if (Flags.isZExt())
3684     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3685                          DAG.getValueType(ObjectVT));
3686 
3687   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3688 }
3689 
3690 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3691     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3692     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3693     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3694   // TODO: add description of PPC stack frame format, or at least some docs.
3695   //
3696   bool isELFv2ABI = Subtarget.isELFv2ABI();
3697   bool isLittleEndian = Subtarget.isLittleEndian();
3698   MachineFunction &MF = DAG.getMachineFunction();
3699   MachineFrameInfo &MFI = MF.getFrameInfo();
3700   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3701 
3702   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3703          "fastcc not supported on varargs functions");
3704 
3705   EVT PtrVT = getPointerTy(MF.getDataLayout());
3706   // Potential tail calls could cause overwriting of argument stack slots.
3707   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3708                        (CallConv == CallingConv::Fast));
3709   unsigned PtrByteSize = 8;
3710   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3711 
3712   static const MCPhysReg GPR[] = {
3713     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3714     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3715   };
3716   static const MCPhysReg VR[] = {
3717     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3718     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3719   };
3720 
3721   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3722   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3723   const unsigned Num_VR_Regs  = array_lengthof(VR);
3724   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3725 
3726   // Do a first pass over the arguments to determine whether the ABI
3727   // guarantees that our caller has allocated the parameter save area
3728   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3729   // in the ELFv2 ABI, it is true if this is a vararg function or if
3730   // any parameter is located in a stack slot.
3731 
3732   bool HasParameterArea = !isELFv2ABI || isVarArg;
3733   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3734   unsigned NumBytes = LinkageSize;
3735   unsigned AvailableFPRs = Num_FPR_Regs;
3736   unsigned AvailableVRs = Num_VR_Regs;
3737   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3738     if (Ins[i].Flags.isNest())
3739       continue;
3740 
3741     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3742                                PtrByteSize, LinkageSize, ParamAreaSize,
3743                                NumBytes, AvailableFPRs, AvailableVRs,
3744                                Subtarget.hasQPX()))
3745       HasParameterArea = true;
3746   }
3747 
3748   // Add DAG nodes to load the arguments or copy them out of registers.  On
3749   // entry to a function on PPC, the arguments start after the linkage area,
3750   // although the first ones are often in registers.
3751 
3752   unsigned ArgOffset = LinkageSize;
3753   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3754   unsigned &QFPR_idx = FPR_idx;
3755   SmallVector<SDValue, 8> MemOps;
3756   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3757   unsigned CurArgIdx = 0;
3758   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3759     SDValue ArgVal;
3760     bool needsLoad = false;
3761     EVT ObjectVT = Ins[ArgNo].VT;
3762     EVT OrigVT = Ins[ArgNo].ArgVT;
3763     unsigned ObjSize = ObjectVT.getStoreSize();
3764     unsigned ArgSize = ObjSize;
3765     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3766     if (Ins[ArgNo].isOrigArg()) {
3767       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3768       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3769     }
3770     // We re-align the argument offset for each argument, except when using the
3771     // fast calling convention, when we need to make sure we do that only when
3772     // we'll actually use a stack slot.
3773     unsigned CurArgOffset, Align;
3774     auto ComputeArgOffset = [&]() {
3775       /* Respect alignment of argument on the stack.  */
3776       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3777       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3778       CurArgOffset = ArgOffset;
3779     };
3780 
3781     if (CallConv != CallingConv::Fast) {
3782       ComputeArgOffset();
3783 
3784       /* Compute GPR index associated with argument offset.  */
3785       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3786       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3787     }
3788 
3789     // FIXME the codegen can be much improved in some cases.
3790     // We do not have to keep everything in memory.
3791     if (Flags.isByVal()) {
3792       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3793 
3794       if (CallConv == CallingConv::Fast)
3795         ComputeArgOffset();
3796 
3797       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3798       ObjSize = Flags.getByValSize();
3799       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3800       // Empty aggregate parameters do not take up registers.  Examples:
3801       //   struct { } a;
3802       //   union  { } b;
3803       //   int c[0];
3804       // etc.  However, we have to provide a place-holder in InVals, so
3805       // pretend we have an 8-byte item at the current address for that
3806       // purpose.
3807       if (!ObjSize) {
3808         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3809         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3810         InVals.push_back(FIN);
3811         continue;
3812       }
3813 
3814       // Create a stack object covering all stack doublewords occupied
3815       // by the argument.  If the argument is (fully or partially) on
3816       // the stack, or if the argument is fully in registers but the
3817       // caller has allocated the parameter save anyway, we can refer
3818       // directly to the caller's stack frame.  Otherwise, create a
3819       // local copy in our own frame.
3820       int FI;
3821       if (HasParameterArea ||
3822           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3823         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3824       else
3825         FI = MFI.CreateStackObject(ArgSize, Align, false);
3826       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3827 
3828       // Handle aggregates smaller than 8 bytes.
3829       if (ObjSize < PtrByteSize) {
3830         // The value of the object is its address, which differs from the
3831         // address of the enclosing doubleword on big-endian systems.
3832         SDValue Arg = FIN;
3833         if (!isLittleEndian) {
3834           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3835           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3836         }
3837         InVals.push_back(Arg);
3838 
3839         if (GPR_idx != Num_GPR_Regs) {
3840           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3841           FuncInfo->addLiveInAttr(VReg, Flags);
3842           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3843           SDValue Store;
3844 
3845           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3846             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3847                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3848             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3849                                       MachinePointerInfo(&*FuncArg), ObjType);
3850           } else {
3851             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3852             // store the whole register as-is to the parameter save area
3853             // slot.
3854             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3855                                  MachinePointerInfo(&*FuncArg));
3856           }
3857 
3858           MemOps.push_back(Store);
3859         }
3860         // Whether we copied from a register or not, advance the offset
3861         // into the parameter save area by a full doubleword.
3862         ArgOffset += PtrByteSize;
3863         continue;
3864       }
3865 
3866       // The value of the object is its address, which is the address of
3867       // its first stack doubleword.
3868       InVals.push_back(FIN);
3869 
3870       // Store whatever pieces of the object are in registers to memory.
3871       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3872         if (GPR_idx == Num_GPR_Regs)
3873           break;
3874 
3875         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3876         FuncInfo->addLiveInAttr(VReg, Flags);
3877         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3878         SDValue Addr = FIN;
3879         if (j) {
3880           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3881           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3882         }
3883         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3884                                      MachinePointerInfo(&*FuncArg, j));
3885         MemOps.push_back(Store);
3886         ++GPR_idx;
3887       }
3888       ArgOffset += ArgSize;
3889       continue;
3890     }
3891 
3892     switch (ObjectVT.getSimpleVT().SimpleTy) {
3893     default: llvm_unreachable("Unhandled argument type!");
3894     case MVT::i1:
3895     case MVT::i32:
3896     case MVT::i64:
3897       if (Flags.isNest()) {
3898         // The 'nest' parameter, if any, is passed in R11.
3899         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3900         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3901 
3902         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3903           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3904 
3905         break;
3906       }
3907 
3908       // These can be scalar arguments or elements of an integer array type
3909       // passed directly.  Clang may use those instead of "byval" aggregate
3910       // types to avoid forcing arguments to memory unnecessarily.
3911       if (GPR_idx != Num_GPR_Regs) {
3912         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3913         FuncInfo->addLiveInAttr(VReg, Flags);
3914         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3915 
3916         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3917           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3918           // value to MVT::i64 and then truncate to the correct register size.
3919           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3920       } else {
3921         if (CallConv == CallingConv::Fast)
3922           ComputeArgOffset();
3923 
3924         needsLoad = true;
3925         ArgSize = PtrByteSize;
3926       }
3927       if (CallConv != CallingConv::Fast || needsLoad)
3928         ArgOffset += 8;
3929       break;
3930 
3931     case MVT::f32:
3932     case MVT::f64:
3933       // These can be scalar arguments or elements of a float array type
3934       // passed directly.  The latter are used to implement ELFv2 homogenous
3935       // float aggregates.
3936       if (FPR_idx != Num_FPR_Regs) {
3937         unsigned VReg;
3938 
3939         if (ObjectVT == MVT::f32)
3940           VReg = MF.addLiveIn(FPR[FPR_idx],
3941                               Subtarget.hasP8Vector()
3942                                   ? &PPC::VSSRCRegClass
3943                                   : &PPC::F4RCRegClass);
3944         else
3945           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3946                                                 ? &PPC::VSFRCRegClass
3947                                                 : &PPC::F8RCRegClass);
3948 
3949         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3950         ++FPR_idx;
3951       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3952         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3953         // once we support fp <-> gpr moves.
3954 
3955         // This can only ever happen in the presence of f32 array types,
3956         // since otherwise we never run out of FPRs before running out
3957         // of GPRs.
3958         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3959         FuncInfo->addLiveInAttr(VReg, Flags);
3960         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3961 
3962         if (ObjectVT == MVT::f32) {
3963           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3964             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3965                                  DAG.getConstant(32, dl, MVT::i32));
3966           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3967         }
3968 
3969         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3970       } else {
3971         if (CallConv == CallingConv::Fast)
3972           ComputeArgOffset();
3973 
3974         needsLoad = true;
3975       }
3976 
3977       // When passing an array of floats, the array occupies consecutive
3978       // space in the argument area; only round up to the next doubleword
3979       // at the end of the array.  Otherwise, each float takes 8 bytes.
3980       if (CallConv != CallingConv::Fast || needsLoad) {
3981         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3982         ArgOffset += ArgSize;
3983         if (Flags.isInConsecutiveRegsLast())
3984           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3985       }
3986       break;
3987     case MVT::v4f32:
3988     case MVT::v4i32:
3989     case MVT::v8i16:
3990     case MVT::v16i8:
3991     case MVT::v2f64:
3992     case MVT::v2i64:
3993     case MVT::v1i128:
3994     case MVT::f128:
3995       if (!Subtarget.hasQPX()) {
3996         // These can be scalar arguments or elements of a vector array type
3997         // passed directly.  The latter are used to implement ELFv2 homogenous
3998         // vector aggregates.
3999         if (VR_idx != Num_VR_Regs) {
4000           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4001           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4002           ++VR_idx;
4003         } else {
4004           if (CallConv == CallingConv::Fast)
4005             ComputeArgOffset();
4006           needsLoad = true;
4007         }
4008         if (CallConv != CallingConv::Fast || needsLoad)
4009           ArgOffset += 16;
4010         break;
4011       } // not QPX
4012 
4013       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4014              "Invalid QPX parameter type");
4015       LLVM_FALLTHROUGH;
4016 
4017     case MVT::v4f64:
4018     case MVT::v4i1:
4019       // QPX vectors are treated like their scalar floating-point subregisters
4020       // (except that they're larger).
4021       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4022       if (QFPR_idx != Num_QFPR_Regs) {
4023         const TargetRegisterClass *RC;
4024         switch (ObjectVT.getSimpleVT().SimpleTy) {
4025         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4026         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4027         default:         RC = &PPC::QBRCRegClass; break;
4028         }
4029 
4030         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4031         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4032         ++QFPR_idx;
4033       } else {
4034         if (CallConv == CallingConv::Fast)
4035           ComputeArgOffset();
4036         needsLoad = true;
4037       }
4038       if (CallConv != CallingConv::Fast || needsLoad)
4039         ArgOffset += Sz;
4040       break;
4041     }
4042 
4043     // We need to load the argument to a virtual register if we determined
4044     // above that we ran out of physical registers of the appropriate type.
4045     if (needsLoad) {
4046       if (ObjSize < ArgSize && !isLittleEndian)
4047         CurArgOffset += ArgSize - ObjSize;
4048       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4049       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4050       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4051     }
4052 
4053     InVals.push_back(ArgVal);
4054   }
4055 
4056   // Area that is at least reserved in the caller of this function.
4057   unsigned MinReservedArea;
4058   if (HasParameterArea)
4059     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4060   else
4061     MinReservedArea = LinkageSize;
4062 
4063   // Set the size that is at least reserved in caller of this function.  Tail
4064   // call optimized functions' reserved stack space needs to be aligned so that
4065   // taking the difference between two stack areas will result in an aligned
4066   // stack.
4067   MinReservedArea =
4068       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4069   FuncInfo->setMinReservedArea(MinReservedArea);
4070 
4071   // If the function takes variable number of arguments, make a frame index for
4072   // the start of the first vararg value... for expansion of llvm.va_start.
4073   if (isVarArg) {
4074     int Depth = ArgOffset;
4075 
4076     FuncInfo->setVarArgsFrameIndex(
4077       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4078     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4079 
4080     // If this function is vararg, store any remaining integer argument regs
4081     // to their spots on the stack so that they may be loaded by dereferencing
4082     // the result of va_next.
4083     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4084          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4085       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4086       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4087       SDValue Store =
4088           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4089       MemOps.push_back(Store);
4090       // Increment the address by four for the next argument to store
4091       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4092       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4093     }
4094   }
4095 
4096   if (!MemOps.empty())
4097     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4098 
4099   return Chain;
4100 }
4101 
4102 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4103     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4104     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4105     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4106   // TODO: add description of PPC stack frame format, or at least some docs.
4107   //
4108   MachineFunction &MF = DAG.getMachineFunction();
4109   MachineFrameInfo &MFI = MF.getFrameInfo();
4110   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4111 
4112   EVT PtrVT = getPointerTy(MF.getDataLayout());
4113   bool isPPC64 = PtrVT == MVT::i64;
4114   // Potential tail calls could cause overwriting of argument stack slots.
4115   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4116                        (CallConv == CallingConv::Fast));
4117   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4118   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4119   unsigned ArgOffset = LinkageSize;
4120   // Area that is at least reserved in caller of this function.
4121   unsigned MinReservedArea = ArgOffset;
4122 
4123   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4124     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4125     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4126   };
4127   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4128     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4129     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4130   };
4131   static const MCPhysReg VR[] = {
4132     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4133     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4134   };
4135 
4136   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4137   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4138   const unsigned Num_VR_Regs  = array_lengthof( VR);
4139 
4140   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4141 
4142   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4143 
4144   // In 32-bit non-varargs functions, the stack space for vectors is after the
4145   // stack space for non-vectors.  We do not use this space unless we have
4146   // too many vectors to fit in registers, something that only occurs in
4147   // constructed examples:), but we have to walk the arglist to figure
4148   // that out...for the pathological case, compute VecArgOffset as the
4149   // start of the vector parameter area.  Computing VecArgOffset is the
4150   // entire point of the following loop.
4151   unsigned VecArgOffset = ArgOffset;
4152   if (!isVarArg && !isPPC64) {
4153     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4154          ++ArgNo) {
4155       EVT ObjectVT = Ins[ArgNo].VT;
4156       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4157 
4158       if (Flags.isByVal()) {
4159         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4160         unsigned ObjSize = Flags.getByValSize();
4161         unsigned ArgSize =
4162                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4163         VecArgOffset += ArgSize;
4164         continue;
4165       }
4166 
4167       switch(ObjectVT.getSimpleVT().SimpleTy) {
4168       default: llvm_unreachable("Unhandled argument type!");
4169       case MVT::i1:
4170       case MVT::i32:
4171       case MVT::f32:
4172         VecArgOffset += 4;
4173         break;
4174       case MVT::i64:  // PPC64
4175       case MVT::f64:
4176         // FIXME: We are guaranteed to be !isPPC64 at this point.
4177         // Does MVT::i64 apply?
4178         VecArgOffset += 8;
4179         break;
4180       case MVT::v4f32:
4181       case MVT::v4i32:
4182       case MVT::v8i16:
4183       case MVT::v16i8:
4184         // Nothing to do, we're only looking at Nonvector args here.
4185         break;
4186       }
4187     }
4188   }
4189   // We've found where the vector parameter area in memory is.  Skip the
4190   // first 12 parameters; these don't use that memory.
4191   VecArgOffset = ((VecArgOffset+15)/16)*16;
4192   VecArgOffset += 12*16;
4193 
4194   // Add DAG nodes to load the arguments or copy them out of registers.  On
4195   // entry to a function on PPC, the arguments start after the linkage area,
4196   // although the first ones are often in registers.
4197 
4198   SmallVector<SDValue, 8> MemOps;
4199   unsigned nAltivecParamsAtEnd = 0;
4200   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4201   unsigned CurArgIdx = 0;
4202   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4203     SDValue ArgVal;
4204     bool needsLoad = false;
4205     EVT ObjectVT = Ins[ArgNo].VT;
4206     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4207     unsigned ArgSize = ObjSize;
4208     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4209     if (Ins[ArgNo].isOrigArg()) {
4210       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4211       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4212     }
4213     unsigned CurArgOffset = ArgOffset;
4214 
4215     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4216     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4217         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4218       if (isVarArg || isPPC64) {
4219         MinReservedArea = ((MinReservedArea+15)/16)*16;
4220         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4221                                                   Flags,
4222                                                   PtrByteSize);
4223       } else  nAltivecParamsAtEnd++;
4224     } else
4225       // Calculate min reserved area.
4226       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4227                                                 Flags,
4228                                                 PtrByteSize);
4229 
4230     // FIXME the codegen can be much improved in some cases.
4231     // We do not have to keep everything in memory.
4232     if (Flags.isByVal()) {
4233       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4234 
4235       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4236       ObjSize = Flags.getByValSize();
4237       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4238       // Objects of size 1 and 2 are right justified, everything else is
4239       // left justified.  This means the memory address is adjusted forwards.
4240       if (ObjSize==1 || ObjSize==2) {
4241         CurArgOffset = CurArgOffset + (4 - ObjSize);
4242       }
4243       // The value of the object is its address.
4244       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4245       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4246       InVals.push_back(FIN);
4247       if (ObjSize==1 || ObjSize==2) {
4248         if (GPR_idx != Num_GPR_Regs) {
4249           unsigned VReg;
4250           if (isPPC64)
4251             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4252           else
4253             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4254           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4255           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4256           SDValue Store =
4257               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4258                                 MachinePointerInfo(&*FuncArg), ObjType);
4259           MemOps.push_back(Store);
4260           ++GPR_idx;
4261         }
4262 
4263         ArgOffset += PtrByteSize;
4264 
4265         continue;
4266       }
4267       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4268         // Store whatever pieces of the object are in registers
4269         // to memory.  ArgOffset will be the address of the beginning
4270         // of the object.
4271         if (GPR_idx != Num_GPR_Regs) {
4272           unsigned VReg;
4273           if (isPPC64)
4274             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4275           else
4276             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4277           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4278           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4279           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4280           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4281                                        MachinePointerInfo(&*FuncArg, j));
4282           MemOps.push_back(Store);
4283           ++GPR_idx;
4284           ArgOffset += PtrByteSize;
4285         } else {
4286           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4287           break;
4288         }
4289       }
4290       continue;
4291     }
4292 
4293     switch (ObjectVT.getSimpleVT().SimpleTy) {
4294     default: llvm_unreachable("Unhandled argument type!");
4295     case MVT::i1:
4296     case MVT::i32:
4297       if (!isPPC64) {
4298         if (GPR_idx != Num_GPR_Regs) {
4299           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4300           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4301 
4302           if (ObjectVT == MVT::i1)
4303             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4304 
4305           ++GPR_idx;
4306         } else {
4307           needsLoad = true;
4308           ArgSize = PtrByteSize;
4309         }
4310         // All int arguments reserve stack space in the Darwin ABI.
4311         ArgOffset += PtrByteSize;
4312         break;
4313       }
4314       LLVM_FALLTHROUGH;
4315     case MVT::i64:  // PPC64
4316       if (GPR_idx != Num_GPR_Regs) {
4317         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4318         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4319 
4320         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4321           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4322           // value to MVT::i64 and then truncate to the correct register size.
4323           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4324 
4325         ++GPR_idx;
4326       } else {
4327         needsLoad = true;
4328         ArgSize = PtrByteSize;
4329       }
4330       // All int arguments reserve stack space in the Darwin ABI.
4331       ArgOffset += 8;
4332       break;
4333 
4334     case MVT::f32:
4335     case MVT::f64:
4336       // Every 4 bytes of argument space consumes one of the GPRs available for
4337       // argument passing.
4338       if (GPR_idx != Num_GPR_Regs) {
4339         ++GPR_idx;
4340         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4341           ++GPR_idx;
4342       }
4343       if (FPR_idx != Num_FPR_Regs) {
4344         unsigned VReg;
4345 
4346         if (ObjectVT == MVT::f32)
4347           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4348         else
4349           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4350 
4351         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4352         ++FPR_idx;
4353       } else {
4354         needsLoad = true;
4355       }
4356 
4357       // All FP arguments reserve stack space in the Darwin ABI.
4358       ArgOffset += isPPC64 ? 8 : ObjSize;
4359       break;
4360     case MVT::v4f32:
4361     case MVT::v4i32:
4362     case MVT::v8i16:
4363     case MVT::v16i8:
4364       // Note that vector arguments in registers don't reserve stack space,
4365       // except in varargs functions.
4366       if (VR_idx != Num_VR_Regs) {
4367         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4368         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4369         if (isVarArg) {
4370           while ((ArgOffset % 16) != 0) {
4371             ArgOffset += PtrByteSize;
4372             if (GPR_idx != Num_GPR_Regs)
4373               GPR_idx++;
4374           }
4375           ArgOffset += 16;
4376           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4377         }
4378         ++VR_idx;
4379       } else {
4380         if (!isVarArg && !isPPC64) {
4381           // Vectors go after all the nonvectors.
4382           CurArgOffset = VecArgOffset;
4383           VecArgOffset += 16;
4384         } else {
4385           // Vectors are aligned.
4386           ArgOffset = ((ArgOffset+15)/16)*16;
4387           CurArgOffset = ArgOffset;
4388           ArgOffset += 16;
4389         }
4390         needsLoad = true;
4391       }
4392       break;
4393     }
4394 
4395     // We need to load the argument to a virtual register if we determined above
4396     // that we ran out of physical registers of the appropriate type.
4397     if (needsLoad) {
4398       int FI = MFI.CreateFixedObject(ObjSize,
4399                                      CurArgOffset + (ArgSize - ObjSize),
4400                                      isImmutable);
4401       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4402       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4403     }
4404 
4405     InVals.push_back(ArgVal);
4406   }
4407 
4408   // Allow for Altivec parameters at the end, if needed.
4409   if (nAltivecParamsAtEnd) {
4410     MinReservedArea = ((MinReservedArea+15)/16)*16;
4411     MinReservedArea += 16*nAltivecParamsAtEnd;
4412   }
4413 
4414   // Area that is at least reserved in the caller of this function.
4415   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4416 
4417   // Set the size that is at least reserved in caller of this function.  Tail
4418   // call optimized functions' reserved stack space needs to be aligned so that
4419   // taking the difference between two stack areas will result in an aligned
4420   // stack.
4421   MinReservedArea =
4422       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4423   FuncInfo->setMinReservedArea(MinReservedArea);
4424 
4425   // If the function takes variable number of arguments, make a frame index for
4426   // the start of the first vararg value... for expansion of llvm.va_start.
4427   if (isVarArg) {
4428     int Depth = ArgOffset;
4429 
4430     FuncInfo->setVarArgsFrameIndex(
4431       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4432                             Depth, true));
4433     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4434 
4435     // If this function is vararg, store any remaining integer argument regs
4436     // to their spots on the stack so that they may be loaded by dereferencing
4437     // the result of va_next.
4438     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4439       unsigned VReg;
4440 
4441       if (isPPC64)
4442         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4443       else
4444         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4445 
4446       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4447       SDValue Store =
4448           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4449       MemOps.push_back(Store);
4450       // Increment the address by four for the next argument to store
4451       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4452       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4453     }
4454   }
4455 
4456   if (!MemOps.empty())
4457     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4458 
4459   return Chain;
4460 }
4461 
4462 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4463 /// adjusted to accommodate the arguments for the tailcall.
4464 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4465                                    unsigned ParamSize) {
4466 
4467   if (!isTailCall) return 0;
4468 
4469   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4470   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4471   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4472   // Remember only if the new adjustment is bigger.
4473   if (SPDiff < FI->getTailCallSPDelta())
4474     FI->setTailCallSPDelta(SPDiff);
4475 
4476   return SPDiff;
4477 }
4478 
4479 static bool isFunctionGlobalAddress(SDValue Callee);
4480 
4481 static bool
4482 callsShareTOCBase(const Function *Caller, SDValue Callee,
4483                     const TargetMachine &TM) {
4484    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4485    // don't have enough information to determine if the caller and calle share
4486    // the same  TOC base, so we have to pessimistically assume they don't for
4487    // correctness.
4488    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4489    if (!G)
4490      return false;
4491 
4492    const GlobalValue *GV = G->getGlobal();
4493   // The medium and large code models are expected to provide a sufficiently
4494   // large TOC to provide all data addressing needs of a module with a
4495   // single TOC. Since each module will be addressed with a single TOC then we
4496   // only need to check that caller and callee don't cross dso boundaries.
4497   if (CodeModel::Medium == TM.getCodeModel() ||
4498       CodeModel::Large == TM.getCodeModel())
4499     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4500 
4501   // Otherwise we need to ensure callee and caller are in the same section,
4502   // since the linker may allocate multiple TOCs, and we don't know which
4503   // sections will belong to the same TOC base.
4504 
4505   if (!GV->isStrongDefinitionForLinker())
4506     return false;
4507 
4508   // Any explicitly-specified sections and section prefixes must also match.
4509   // Also, if we're using -ffunction-sections, then each function is always in
4510   // a different section (the same is true for COMDAT functions).
4511   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4512       GV->getSection() != Caller->getSection())
4513     return false;
4514   if (const auto *F = dyn_cast<Function>(GV)) {
4515     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4516       return false;
4517   }
4518 
4519   // If the callee might be interposed, then we can't assume the ultimate call
4520   // target will be in the same section. Even in cases where we can assume that
4521   // interposition won't happen, in any case where the linker might insert a
4522   // stub to allow for interposition, we must generate code as though
4523   // interposition might occur. To understand why this matters, consider a
4524   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4525   // in the same section, but a is in a different module (i.e. has a different
4526   // TOC base pointer). If the linker allows for interposition between b and c,
4527   // then it will generate a stub for the call edge between b and c which will
4528   // save the TOC pointer into the designated stack slot allocated by b. If we
4529   // return true here, and therefore allow a tail call between b and c, that
4530   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4531   // pointer into the stack slot allocated by a (where the a -> b stub saved
4532   // a's TOC base pointer). If we're not considering a tail call, but rather,
4533   // whether a nop is needed after the call instruction in b, because the linker
4534   // will insert a stub, it might complain about a missing nop if we omit it
4535   // (although many don't complain in this case).
4536   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4537     return false;
4538 
4539   return true;
4540 }
4541 
4542 static bool
4543 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4544                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4545   assert(Subtarget.is64BitELFABI());
4546 
4547   const unsigned PtrByteSize = 8;
4548   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4549 
4550   static const MCPhysReg GPR[] = {
4551     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4552     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4553   };
4554   static const MCPhysReg VR[] = {
4555     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4556     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4557   };
4558 
4559   const unsigned NumGPRs = array_lengthof(GPR);
4560   const unsigned NumFPRs = 13;
4561   const unsigned NumVRs = array_lengthof(VR);
4562   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4563 
4564   unsigned NumBytes = LinkageSize;
4565   unsigned AvailableFPRs = NumFPRs;
4566   unsigned AvailableVRs = NumVRs;
4567 
4568   for (const ISD::OutputArg& Param : Outs) {
4569     if (Param.Flags.isNest()) continue;
4570 
4571     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4572                                PtrByteSize, LinkageSize, ParamAreaSize,
4573                                NumBytes, AvailableFPRs, AvailableVRs,
4574                                Subtarget.hasQPX()))
4575       return true;
4576   }
4577   return false;
4578 }
4579 
4580 static bool
4581 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4582   if (CS.arg_size() != CallerFn->arg_size())
4583     return false;
4584 
4585   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4586   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4587   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4588 
4589   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4590     const Value* CalleeArg = *CalleeArgIter;
4591     const Value* CallerArg = &(*CallerArgIter);
4592     if (CalleeArg == CallerArg)
4593       continue;
4594 
4595     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4596     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4597     //      }
4598     // 1st argument of callee is undef and has the same type as caller.
4599     if (CalleeArg->getType() == CallerArg->getType() &&
4600         isa<UndefValue>(CalleeArg))
4601       continue;
4602 
4603     return false;
4604   }
4605 
4606   return true;
4607 }
4608 
4609 // Returns true if TCO is possible between the callers and callees
4610 // calling conventions.
4611 static bool
4612 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4613                                     CallingConv::ID CalleeCC) {
4614   // Tail calls are possible with fastcc and ccc.
4615   auto isTailCallableCC  = [] (CallingConv::ID CC){
4616       return  CC == CallingConv::C || CC == CallingConv::Fast;
4617   };
4618   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4619     return false;
4620 
4621   // We can safely tail call both fastcc and ccc callees from a c calling
4622   // convention caller. If the caller is fastcc, we may have less stack space
4623   // than a non-fastcc caller with the same signature so disable tail-calls in
4624   // that case.
4625   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4626 }
4627 
4628 bool
4629 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4630                                     SDValue Callee,
4631                                     CallingConv::ID CalleeCC,
4632                                     ImmutableCallSite CS,
4633                                     bool isVarArg,
4634                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4635                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4636                                     SelectionDAG& DAG) const {
4637   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4638 
4639   if (DisableSCO && !TailCallOpt) return false;
4640 
4641   // Variadic argument functions are not supported.
4642   if (isVarArg) return false;
4643 
4644   auto &Caller = DAG.getMachineFunction().getFunction();
4645   // Check that the calling conventions are compatible for tco.
4646   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4647     return false;
4648 
4649   // Caller contains any byval parameter is not supported.
4650   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4651     return false;
4652 
4653   // Callee contains any byval parameter is not supported, too.
4654   // Note: This is a quick work around, because in some cases, e.g.
4655   // caller's stack size > callee's stack size, we are still able to apply
4656   // sibling call optimization. For example, gcc is able to do SCO for caller1
4657   // in the following example, but not for caller2.
4658   //   struct test {
4659   //     long int a;
4660   //     char ary[56];
4661   //   } gTest;
4662   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4663   //     b->a = v.a;
4664   //     return 0;
4665   //   }
4666   //   void caller1(struct test a, struct test c, struct test *b) {
4667   //     callee(gTest, b); }
4668   //   void caller2(struct test *b) { callee(gTest, b); }
4669   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4670     return false;
4671 
4672   // If callee and caller use different calling conventions, we cannot pass
4673   // parameters on stack since offsets for the parameter area may be different.
4674   if (Caller.getCallingConv() != CalleeCC &&
4675       needStackSlotPassParameters(Subtarget, Outs))
4676     return false;
4677 
4678   // No TCO/SCO on indirect call because Caller have to restore its TOC
4679   if (!isFunctionGlobalAddress(Callee) &&
4680       !isa<ExternalSymbolSDNode>(Callee))
4681     return false;
4682 
4683   // If the caller and callee potentially have different TOC bases then we
4684   // cannot tail call since we need to restore the TOC pointer after the call.
4685   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4686   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4687     return false;
4688 
4689   // TCO allows altering callee ABI, so we don't have to check further.
4690   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4691     return true;
4692 
4693   if (DisableSCO) return false;
4694 
4695   // If callee use the same argument list that caller is using, then we can
4696   // apply SCO on this case. If it is not, then we need to check if callee needs
4697   // stack for passing arguments.
4698   if (!hasSameArgumentList(&Caller, CS) &&
4699       needStackSlotPassParameters(Subtarget, Outs)) {
4700     return false;
4701   }
4702 
4703   return true;
4704 }
4705 
4706 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4707 /// for tail call optimization. Targets which want to do tail call
4708 /// optimization should implement this function.
4709 bool
4710 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4711                                                      CallingConv::ID CalleeCC,
4712                                                      bool isVarArg,
4713                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4714                                                      SelectionDAG& DAG) const {
4715   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4716     return false;
4717 
4718   // Variable argument functions are not supported.
4719   if (isVarArg)
4720     return false;
4721 
4722   MachineFunction &MF = DAG.getMachineFunction();
4723   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4724   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4725     // Functions containing by val parameters are not supported.
4726     for (unsigned i = 0; i != Ins.size(); i++) {
4727        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4728        if (Flags.isByVal()) return false;
4729     }
4730 
4731     // Non-PIC/GOT tail calls are supported.
4732     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4733       return true;
4734 
4735     // At the moment we can only do local tail calls (in same module, hidden
4736     // or protected) if we are generating PIC.
4737     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4738       return G->getGlobal()->hasHiddenVisibility()
4739           || G->getGlobal()->hasProtectedVisibility();
4740   }
4741 
4742   return false;
4743 }
4744 
4745 /// isCallCompatibleAddress - Return the immediate to use if the specified
4746 /// 32-bit value is representable in the immediate field of a BxA instruction.
4747 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4748   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4749   if (!C) return nullptr;
4750 
4751   int Addr = C->getZExtValue();
4752   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4753       SignExtend32<26>(Addr) != Addr)
4754     return nullptr;  // Top 6 bits have to be sext of immediate.
4755 
4756   return DAG
4757       .getConstant(
4758           (int)C->getZExtValue() >> 2, SDLoc(Op),
4759           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4760       .getNode();
4761 }
4762 
4763 namespace {
4764 
4765 struct TailCallArgumentInfo {
4766   SDValue Arg;
4767   SDValue FrameIdxOp;
4768   int FrameIdx = 0;
4769 
4770   TailCallArgumentInfo() = default;
4771 };
4772 
4773 } // end anonymous namespace
4774 
4775 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4776 static void StoreTailCallArgumentsToStackSlot(
4777     SelectionDAG &DAG, SDValue Chain,
4778     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4779     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4780   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4781     SDValue Arg = TailCallArgs[i].Arg;
4782     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4783     int FI = TailCallArgs[i].FrameIdx;
4784     // Store relative to framepointer.
4785     MemOpChains.push_back(DAG.getStore(
4786         Chain, dl, Arg, FIN,
4787         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4788   }
4789 }
4790 
4791 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4792 /// the appropriate stack slot for the tail call optimized function call.
4793 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4794                                              SDValue OldRetAddr, SDValue OldFP,
4795                                              int SPDiff, const SDLoc &dl) {
4796   if (SPDiff) {
4797     // Calculate the new stack slot for the return address.
4798     MachineFunction &MF = DAG.getMachineFunction();
4799     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4800     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4801     bool isPPC64 = Subtarget.isPPC64();
4802     int SlotSize = isPPC64 ? 8 : 4;
4803     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4804     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4805                                                          NewRetAddrLoc, true);
4806     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4807     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4808     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4809                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4810 
4811     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4812     // slot as the FP is never overwritten.
4813     if (Subtarget.isDarwinABI()) {
4814       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4815       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4816                                                          true);
4817       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4818       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4819                            MachinePointerInfo::getFixedStack(
4820                                DAG.getMachineFunction(), NewFPIdx));
4821     }
4822   }
4823   return Chain;
4824 }
4825 
4826 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4827 /// the position of the argument.
4828 static void
4829 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4830                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4831                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4832   int Offset = ArgOffset + SPDiff;
4833   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4834   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4835   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4836   SDValue FIN = DAG.getFrameIndex(FI, VT);
4837   TailCallArgumentInfo Info;
4838   Info.Arg = Arg;
4839   Info.FrameIdxOp = FIN;
4840   Info.FrameIdx = FI;
4841   TailCallArguments.push_back(Info);
4842 }
4843 
4844 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4845 /// stack slot. Returns the chain as result and the loaded frame pointers in
4846 /// LROpOut/FPOpout. Used when tail calling.
4847 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4848     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4849     SDValue &FPOpOut, const SDLoc &dl) const {
4850   if (SPDiff) {
4851     // Load the LR and FP stack slot for later adjusting.
4852     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4853     LROpOut = getReturnAddrFrameIndex(DAG);
4854     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4855     Chain = SDValue(LROpOut.getNode(), 1);
4856 
4857     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4858     // slot as the FP is never overwritten.
4859     if (Subtarget.isDarwinABI()) {
4860       FPOpOut = getFramePointerFrameIndex(DAG);
4861       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4862       Chain = SDValue(FPOpOut.getNode(), 1);
4863     }
4864   }
4865   return Chain;
4866 }
4867 
4868 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4869 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4870 /// specified by the specific parameter attribute. The copy will be passed as
4871 /// a byval function parameter.
4872 /// Sometimes what we are copying is the end of a larger object, the part that
4873 /// does not fit in registers.
4874 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4875                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4876                                          SelectionDAG &DAG, const SDLoc &dl) {
4877   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4878   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4879                        false, false, false, MachinePointerInfo(),
4880                        MachinePointerInfo());
4881 }
4882 
4883 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4884 /// tail calls.
4885 static void LowerMemOpCallTo(
4886     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4887     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4888     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4889     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4890   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4891   if (!isTailCall) {
4892     if (isVector) {
4893       SDValue StackPtr;
4894       if (isPPC64)
4895         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4896       else
4897         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4898       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4899                            DAG.getConstant(ArgOffset, dl, PtrVT));
4900     }
4901     MemOpChains.push_back(
4902         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4903     // Calculate and remember argument location.
4904   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4905                                   TailCallArguments);
4906 }
4907 
4908 static void
4909 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4910                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4911                 SDValue FPOp,
4912                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4913   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4914   // might overwrite each other in case of tail call optimization.
4915   SmallVector<SDValue, 8> MemOpChains2;
4916   // Do not flag preceding copytoreg stuff together with the following stuff.
4917   InFlag = SDValue();
4918   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4919                                     MemOpChains2, dl);
4920   if (!MemOpChains2.empty())
4921     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4922 
4923   // Store the return address to the appropriate stack slot.
4924   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4925 
4926   // Emit callseq_end just before tailcall node.
4927   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4928                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4929   InFlag = Chain.getValue(1);
4930 }
4931 
4932 // Is this global address that of a function that can be called by name? (as
4933 // opposed to something that must hold a descriptor for an indirect call).
4934 static bool isFunctionGlobalAddress(SDValue Callee) {
4935   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4936     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4937         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4938       return false;
4939 
4940     return G->getGlobal()->getValueType()->isFunctionTy();
4941   }
4942 
4943   return false;
4944 }
4945 
4946 static unsigned
4947 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4948             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4949             bool isPatchPoint, bool hasNest,
4950             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4951             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4952             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4953   bool isPPC64 = Subtarget.isPPC64();
4954   bool isSVR4ABI = Subtarget.isSVR4ABI();
4955   bool is64BitELFv1ABI = isPPC64 && isSVR4ABI && !Subtarget.isELFv2ABI();
4956   bool isAIXABI = Subtarget.isAIXABI();
4957 
4958   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4959   NodeTys.push_back(MVT::Other);   // Returns a chain
4960   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4961 
4962   unsigned CallOpc = PPCISD::CALL;
4963 
4964   bool needIndirectCall = true;
4965   if (!isSVR4ABI || !isPPC64)
4966     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4967       // If this is an absolute destination address, use the munged value.
4968       Callee = SDValue(Dest, 0);
4969       needIndirectCall = false;
4970     }
4971 
4972   // PC-relative references to external symbols should go through $stub, unless
4973   // we're building with the leopard linker or later, which automatically
4974   // synthesizes these stubs.
4975   const TargetMachine &TM = DAG.getTarget();
4976   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4977   const GlobalValue *GV = nullptr;
4978   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4979     GV = G->getGlobal();
4980   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4981   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4982 
4983   // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4984   // every direct call is) turn it into a TargetGlobalAddress /
4985   // TargetExternalSymbol node so that legalize doesn't hack it.
4986   if (isFunctionGlobalAddress(Callee)) {
4987     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4988 
4989     // A call to a TLS address is actually an indirect call to a
4990     // thread-specific pointer.
4991     unsigned OpFlags = 0;
4992     if (UsePlt)
4993       OpFlags = PPCII::MO_PLT;
4994 
4995     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4996                                         Callee.getValueType(), 0, OpFlags);
4997     needIndirectCall = false;
4998   }
4999 
5000   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5001     unsigned char OpFlags = 0;
5002 
5003     if (UsePlt)
5004       OpFlags = PPCII::MO_PLT;
5005 
5006     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
5007                                          OpFlags);
5008     needIndirectCall = false;
5009   }
5010 
5011   if (isPatchPoint) {
5012     // We'll form an invalid direct call when lowering a patchpoint; the full
5013     // sequence for an indirect call is complicated, and many of the
5014     // instructions introduced might have side effects (and, thus, can't be
5015     // removed later). The call itself will be removed as soon as the
5016     // argument/return lowering is complete, so the fact that it has the wrong
5017     // kind of operands should not really matter.
5018     needIndirectCall = false;
5019   }
5020 
5021   if (needIndirectCall) {
5022     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
5023     // to do the call, we can't use PPCISD::CALL.
5024     SDValue MTCTROps[] = {Chain, Callee, InFlag};
5025 
5026     if (is64BitELFv1ABI) {
5027       // Function pointers in the 64-bit SVR4 ABI do not point to the function
5028       // entry point, but to the function descriptor (the function entry point
5029       // address is part of the function descriptor though).
5030       // The function descriptor is a three doubleword structure with the
5031       // following fields: function entry point, TOC base address and
5032       // environment pointer.
5033       // Thus for a call through a function pointer, the following actions need
5034       // to be performed:
5035       //   1. Save the TOC of the caller in the TOC save area of its stack
5036       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5037       //   2. Load the address of the function entry point from the function
5038       //      descriptor.
5039       //   3. Load the TOC of the callee from the function descriptor into r2.
5040       //   4. Load the environment pointer from the function descriptor into
5041       //      r11.
5042       //   5. Branch to the function entry point address.
5043       //   6. On return of the callee, the TOC of the caller needs to be
5044       //      restored (this is done in FinishCall()).
5045       //
5046       // The loads are scheduled at the beginning of the call sequence, and the
5047       // register copies are flagged together to ensure that no other
5048       // operations can be scheduled in between. E.g. without flagging the
5049       // copies together, a TOC access in the caller could be scheduled between
5050       // the assignment of the callee TOC and the branch to the callee, which
5051       // results in the TOC access going through the TOC of the callee instead
5052       // of going through the TOC of the caller, which leads to incorrect code.
5053 
5054       // Load the address of the function entry point from the function
5055       // descriptor.
5056       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
5057       if (LDChain.getValueType() == MVT::Glue)
5058         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
5059 
5060       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5061                           ? (MachineMemOperand::MODereferenceable |
5062                              MachineMemOperand::MOInvariant)
5063                           : MachineMemOperand::MONone;
5064 
5065       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5066       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
5067                                         /* Alignment = */ 8, MMOFlags);
5068 
5069       // Load environment pointer into r11.
5070       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
5071       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
5072       SDValue LoadEnvPtr =
5073           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
5074                       /* Alignment = */ 8, MMOFlags);
5075 
5076       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
5077       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
5078       SDValue TOCPtr =
5079           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
5080                       /* Alignment = */ 8, MMOFlags);
5081 
5082       setUsesTOCBasePtr(DAG);
5083       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5084                                         InFlag);
5085       Chain = TOCVal.getValue(0);
5086       InFlag = TOCVal.getValue(1);
5087 
5088       // If the function call has an explicit 'nest' parameter, it takes the
5089       // place of the environment pointer.
5090       if (!hasNest) {
5091         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5092                                           InFlag);
5093 
5094         Chain = EnvVal.getValue(0);
5095         InFlag = EnvVal.getValue(1);
5096       }
5097 
5098       MTCTROps[0] = Chain;
5099       MTCTROps[1] = LoadFuncPtr;
5100       MTCTROps[2] = InFlag;
5101     }
5102 
5103     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5104                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5105     InFlag = Chain.getValue(1);
5106 
5107     NodeTys.clear();
5108     NodeTys.push_back(MVT::Other);
5109     NodeTys.push_back(MVT::Glue);
5110     Ops.push_back(Chain);
5111     CallOpc = PPCISD::BCTRL;
5112     Callee.setNode(nullptr);
5113     // Add use of X11 (holding environment pointer)
5114     if (is64BitELFv1ABI && !hasNest)
5115       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5116     // Add CTR register as callee so a bctr can be emitted later.
5117     if (isTailCall)
5118       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5119   }
5120 
5121   // If this is a direct call, pass the chain and the callee.
5122   if (Callee.getNode()) {
5123     Ops.push_back(Chain);
5124     Ops.push_back(Callee);
5125   }
5126   // If this is a tail call add stack pointer delta.
5127   if (isTailCall)
5128     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5129 
5130   // Add argument registers to the end of the list so that they are known live
5131   // into the call.
5132   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5133     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5134                                   RegsToPass[i].second.getValueType()));
5135 
5136   // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register
5137   // live into the call.
5138   // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT.
5139   if ((isSVR4ABI && isPPC64) || isAIXABI) {
5140     setUsesTOCBasePtr(DAG);
5141 
5142     // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5143     // no way to mark dependencies as implicit here.
5144     // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5145     if (!isPatchPoint)
5146       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2
5147                                             : PPC::R2, PtrVT));
5148   }
5149 
5150   return CallOpc;
5151 }
5152 
5153 SDValue PPCTargetLowering::LowerCallResult(
5154     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5155     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5156     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5157   SmallVector<CCValAssign, 16> RVLocs;
5158   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5159                     *DAG.getContext());
5160 
5161   CCRetInfo.AnalyzeCallResult(
5162       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5163                ? RetCC_PPC_Cold
5164                : RetCC_PPC);
5165 
5166   // Copy all of the result registers out of their specified physreg.
5167   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5168     CCValAssign &VA = RVLocs[i];
5169     assert(VA.isRegLoc() && "Can only return in registers!");
5170 
5171     SDValue Val;
5172 
5173     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5174       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5175                                       InFlag);
5176       Chain = Lo.getValue(1);
5177       InFlag = Lo.getValue(2);
5178       VA = RVLocs[++i]; // skip ahead to next loc
5179       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5180                                       InFlag);
5181       Chain = Hi.getValue(1);
5182       InFlag = Hi.getValue(2);
5183       if (!Subtarget.isLittleEndian())
5184         std::swap (Lo, Hi);
5185       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5186     } else {
5187       Val = DAG.getCopyFromReg(Chain, dl,
5188                                VA.getLocReg(), VA.getLocVT(), InFlag);
5189       Chain = Val.getValue(1);
5190       InFlag = Val.getValue(2);
5191     }
5192 
5193     switch (VA.getLocInfo()) {
5194     default: llvm_unreachable("Unknown loc info!");
5195     case CCValAssign::Full: break;
5196     case CCValAssign::AExt:
5197       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5198       break;
5199     case CCValAssign::ZExt:
5200       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5201                         DAG.getValueType(VA.getValVT()));
5202       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5203       break;
5204     case CCValAssign::SExt:
5205       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5206                         DAG.getValueType(VA.getValVT()));
5207       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5208       break;
5209     }
5210 
5211     InVals.push_back(Val);
5212   }
5213 
5214   return Chain;
5215 }
5216 
5217 SDValue PPCTargetLowering::FinishCall(
5218     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5219     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5220     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5221     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5222     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5223     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5224   std::vector<EVT> NodeTys;
5225   SmallVector<SDValue, 8> Ops;
5226   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5227                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5228                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5229 
5230   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5231   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5232     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5233 
5234   // When performing tail call optimization the callee pops its arguments off
5235   // the stack. Account for this here so these bytes can be pushed back on in
5236   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5237   int BytesCalleePops =
5238     (CallConv == CallingConv::Fast &&
5239      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5240 
5241   // Add a register mask operand representing the call-preserved registers.
5242   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5243   const uint32_t *Mask =
5244       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5245   assert(Mask && "Missing call preserved mask for calling convention");
5246   Ops.push_back(DAG.getRegisterMask(Mask));
5247 
5248   if (InFlag.getNode())
5249     Ops.push_back(InFlag);
5250 
5251   // Emit tail call.
5252   if (isTailCall) {
5253     assert(((Callee.getOpcode() == ISD::Register &&
5254              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5255             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5256             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5257             isa<ConstantSDNode>(Callee)) &&
5258     "Expecting an global address, external symbol, absolute value or register");
5259 
5260     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5261     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5262   }
5263 
5264   // Add a NOP immediately after the branch instruction when using the 64-bit
5265   // SVR4 or the AIX ABI.
5266   // At link time, if caller and callee are in a different module and
5267   // thus have a different TOC, the call will be replaced with a call to a stub
5268   // function which saves the current TOC, loads the TOC of the callee and
5269   // branches to the callee. The NOP will be replaced with a load instruction
5270   // which restores the TOC of the caller from the TOC save slot of the current
5271   // stack frame. If caller and callee belong to the same module (and have the
5272   // same TOC), the NOP will remain unchanged, or become some other NOP.
5273 
5274   MachineFunction &MF = DAG.getMachineFunction();
5275   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5276   if (!isTailCall && !isPatchPoint &&
5277       ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) ||
5278        Subtarget.isAIXABI())) {
5279     if (CallOpc == PPCISD::BCTRL) {
5280       if (Subtarget.isAIXABI())
5281         report_fatal_error("Indirect call on AIX is not implemented.");
5282 
5283       // This is a call through a function pointer.
5284       // Restore the caller TOC from the save area into R2.
5285       // See PrepareCall() for more information about calls through function
5286       // pointers in the 64-bit SVR4 ABI.
5287       // We are using a target-specific load with r2 hard coded, because the
5288       // result of a target-independent load would never go directly into r2,
5289       // since r2 is a reserved register (which prevents the register allocator
5290       // from allocating it), resulting in an additional register being
5291       // allocated and an unnecessary move instruction being generated.
5292       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5293 
5294       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5295       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5296       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5297       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5298 
5299       // The address needs to go after the chain input but before the flag (or
5300       // any other variadic arguments).
5301       Ops.insert(std::next(Ops.begin()), AddTOC);
5302     } else if (CallOpc == PPCISD::CALL &&
5303       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5304       // Otherwise insert NOP for non-local calls.
5305       CallOpc = PPCISD::CALL_NOP;
5306     }
5307   }
5308 
5309   if (Subtarget.isAIXABI() && isFunctionGlobalAddress(Callee)) {
5310     // On AIX, direct function calls reference the symbol for the function's
5311     // entry point, which is named by inserting a "." before the function's
5312     // C-linkage name.
5313     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5314     auto &Context = DAG.getMachineFunction().getMMI().getContext();
5315     MCSymbol *S = Context.getOrCreateSymbol(Twine(".") +
5316                                             Twine(G->getGlobal()->getName()));
5317     Callee = DAG.getMCSymbol(S, PtrVT);
5318     // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode.
5319     Ops[1] = Callee;
5320   }
5321 
5322   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5323   InFlag = Chain.getValue(1);
5324 
5325   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5326                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5327                              InFlag, dl);
5328   if (!Ins.empty())
5329     InFlag = Chain.getValue(1);
5330 
5331   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5332                          Ins, dl, DAG, InVals);
5333 }
5334 
5335 SDValue
5336 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5337                              SmallVectorImpl<SDValue> &InVals) const {
5338   SelectionDAG &DAG                     = CLI.DAG;
5339   SDLoc &dl                             = CLI.DL;
5340   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5341   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5342   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5343   SDValue Chain                         = CLI.Chain;
5344   SDValue Callee                        = CLI.Callee;
5345   bool &isTailCall                      = CLI.IsTailCall;
5346   CallingConv::ID CallConv              = CLI.CallConv;
5347   bool isVarArg                         = CLI.IsVarArg;
5348   bool isPatchPoint                     = CLI.IsPatchPoint;
5349   ImmutableCallSite CS                  = CLI.CS;
5350 
5351   if (isTailCall) {
5352     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5353       isTailCall = false;
5354     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5355       isTailCall =
5356         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5357                                                  isVarArg, Outs, Ins, DAG);
5358     else
5359       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5360                                                      Ins, DAG);
5361     if (isTailCall) {
5362       ++NumTailCalls;
5363       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5364         ++NumSiblingCalls;
5365 
5366       assert(isa<GlobalAddressSDNode>(Callee) &&
5367              "Callee should be an llvm::Function object.");
5368       LLVM_DEBUG(
5369           const GlobalValue *GV =
5370               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5371           const unsigned Width =
5372               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5373           dbgs() << "TCO caller: "
5374                  << left_justify(DAG.getMachineFunction().getName(), Width)
5375                  << ", callee linkage: " << GV->getVisibility() << ", "
5376                  << GV->getLinkage() << "\n");
5377     }
5378   }
5379 
5380   if (!isTailCall && CS && CS.isMustTailCall())
5381     report_fatal_error("failed to perform tail call elimination on a call "
5382                        "site marked musttail");
5383 
5384   // When long calls (i.e. indirect calls) are always used, calls are always
5385   // made via function pointer. If we have a function name, first translate it
5386   // into a pointer.
5387   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5388       !isTailCall)
5389     Callee = LowerGlobalAddress(Callee, DAG);
5390 
5391   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5392     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5393                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5394                             dl, DAG, InVals, CS);
5395 
5396   if (Subtarget.isSVR4ABI())
5397     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5398                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5399                             dl, DAG, InVals, CS);
5400 
5401   if (Subtarget.isAIXABI())
5402     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5403                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5404                          dl, DAG, InVals, CS);
5405 
5406   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5407                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5408                           dl, DAG, InVals, CS);
5409 }
5410 
5411 SDValue PPCTargetLowering::LowerCall_32SVR4(
5412     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5413     bool isTailCall, bool isPatchPoint,
5414     const SmallVectorImpl<ISD::OutputArg> &Outs,
5415     const SmallVectorImpl<SDValue> &OutVals,
5416     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5417     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5418     ImmutableCallSite CS) const {
5419   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5420   // of the 32-bit SVR4 ABI stack frame layout.
5421 
5422   assert((CallConv == CallingConv::C ||
5423           CallConv == CallingConv::Cold ||
5424           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5425 
5426   unsigned PtrByteSize = 4;
5427 
5428   MachineFunction &MF = DAG.getMachineFunction();
5429 
5430   // Mark this function as potentially containing a function that contains a
5431   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5432   // and restoring the callers stack pointer in this functions epilog. This is
5433   // done because by tail calling the called function might overwrite the value
5434   // in this function's (MF) stack pointer stack slot 0(SP).
5435   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5436       CallConv == CallingConv::Fast)
5437     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5438 
5439   // Count how many bytes are to be pushed on the stack, including the linkage
5440   // area, parameter list area and the part of the local variable space which
5441   // contains copies of aggregates which are passed by value.
5442 
5443   // Assign locations to all of the outgoing arguments.
5444   SmallVector<CCValAssign, 16> ArgLocs;
5445   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5446 
5447   // Reserve space for the linkage area on the stack.
5448   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5449                        PtrByteSize);
5450   if (useSoftFloat())
5451     CCInfo.PreAnalyzeCallOperands(Outs);
5452 
5453   if (isVarArg) {
5454     // Handle fixed and variable vector arguments differently.
5455     // Fixed vector arguments go into registers as long as registers are
5456     // available. Variable vector arguments always go into memory.
5457     unsigned NumArgs = Outs.size();
5458 
5459     for (unsigned i = 0; i != NumArgs; ++i) {
5460       MVT ArgVT = Outs[i].VT;
5461       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5462       bool Result;
5463 
5464       if (Outs[i].IsFixed) {
5465         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5466                                CCInfo);
5467       } else {
5468         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5469                                       ArgFlags, CCInfo);
5470       }
5471 
5472       if (Result) {
5473 #ifndef NDEBUG
5474         errs() << "Call operand #" << i << " has unhandled type "
5475              << EVT(ArgVT).getEVTString() << "\n";
5476 #endif
5477         llvm_unreachable(nullptr);
5478       }
5479     }
5480   } else {
5481     // All arguments are treated the same.
5482     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5483   }
5484   CCInfo.clearWasPPCF128();
5485 
5486   // Assign locations to all of the outgoing aggregate by value arguments.
5487   SmallVector<CCValAssign, 16> ByValArgLocs;
5488   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5489 
5490   // Reserve stack space for the allocations in CCInfo.
5491   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5492 
5493   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5494 
5495   // Size of the linkage area, parameter list area and the part of the local
5496   // space variable where copies of aggregates which are passed by value are
5497   // stored.
5498   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5499 
5500   // Calculate by how many bytes the stack has to be adjusted in case of tail
5501   // call optimization.
5502   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5503 
5504   // Adjust the stack pointer for the new arguments...
5505   // These operations are automatically eliminated by the prolog/epilog pass
5506   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5507   SDValue CallSeqStart = Chain;
5508 
5509   // Load the return address and frame pointer so it can be moved somewhere else
5510   // later.
5511   SDValue LROp, FPOp;
5512   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5513 
5514   // Set up a copy of the stack pointer for use loading and storing any
5515   // arguments that may not fit in the registers available for argument
5516   // passing.
5517   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5518 
5519   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5520   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5521   SmallVector<SDValue, 8> MemOpChains;
5522 
5523   bool seenFloatArg = false;
5524   // Walk the register/memloc assignments, inserting copies/loads.
5525   // i - Tracks the index into the list of registers allocated for the call
5526   // RealArgIdx - Tracks the index into the list of actual function arguments
5527   // j - Tracks the index into the list of byval arguments
5528   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5529        i != e;
5530        ++i, ++RealArgIdx) {
5531     CCValAssign &VA = ArgLocs[i];
5532     SDValue Arg = OutVals[RealArgIdx];
5533     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5534 
5535     if (Flags.isByVal()) {
5536       // Argument is an aggregate which is passed by value, thus we need to
5537       // create a copy of it in the local variable space of the current stack
5538       // frame (which is the stack frame of the caller) and pass the address of
5539       // this copy to the callee.
5540       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5541       CCValAssign &ByValVA = ByValArgLocs[j++];
5542       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5543 
5544       // Memory reserved in the local variable space of the callers stack frame.
5545       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5546 
5547       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5548       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5549                            StackPtr, PtrOff);
5550 
5551       // Create a copy of the argument in the local area of the current
5552       // stack frame.
5553       SDValue MemcpyCall =
5554         CreateCopyOfByValArgument(Arg, PtrOff,
5555                                   CallSeqStart.getNode()->getOperand(0),
5556                                   Flags, DAG, dl);
5557 
5558       // This must go outside the CALLSEQ_START..END.
5559       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5560                                                      SDLoc(MemcpyCall));
5561       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5562                              NewCallSeqStart.getNode());
5563       Chain = CallSeqStart = NewCallSeqStart;
5564 
5565       // Pass the address of the aggregate copy on the stack either in a
5566       // physical register or in the parameter list area of the current stack
5567       // frame to the callee.
5568       Arg = PtrOff;
5569     }
5570 
5571     // When useCRBits() is true, there can be i1 arguments.
5572     // It is because getRegisterType(MVT::i1) => MVT::i1,
5573     // and for other integer types getRegisterType() => MVT::i32.
5574     // Extend i1 and ensure callee will get i32.
5575     if (Arg.getValueType() == MVT::i1)
5576       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5577                         dl, MVT::i32, Arg);
5578 
5579     if (VA.isRegLoc()) {
5580       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5581       // Put argument in a physical register.
5582       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5583         bool IsLE = Subtarget.isLittleEndian();
5584         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5585                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5586         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5587         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5588                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5589         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5590                              SVal.getValue(0)));
5591       } else
5592         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5593     } else {
5594       // Put argument in the parameter list area of the current stack frame.
5595       assert(VA.isMemLoc());
5596       unsigned LocMemOffset = VA.getLocMemOffset();
5597 
5598       if (!isTailCall) {
5599         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5600         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5601                              StackPtr, PtrOff);
5602 
5603         MemOpChains.push_back(
5604             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5605       } else {
5606         // Calculate and remember argument location.
5607         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5608                                  TailCallArguments);
5609       }
5610     }
5611   }
5612 
5613   if (!MemOpChains.empty())
5614     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5615 
5616   // Build a sequence of copy-to-reg nodes chained together with token chain
5617   // and flag operands which copy the outgoing args into the appropriate regs.
5618   SDValue InFlag;
5619   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5620     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5621                              RegsToPass[i].second, InFlag);
5622     InFlag = Chain.getValue(1);
5623   }
5624 
5625   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5626   // registers.
5627   if (isVarArg) {
5628     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5629     SDValue Ops[] = { Chain, InFlag };
5630 
5631     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5632                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5633 
5634     InFlag = Chain.getValue(1);
5635   }
5636 
5637   if (isTailCall)
5638     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5639                     TailCallArguments);
5640 
5641   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5642                     /* unused except on PPC64 ELFv1 */ false, DAG,
5643                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5644                     NumBytes, Ins, InVals, CS);
5645 }
5646 
5647 // Copy an argument into memory, being careful to do this outside the
5648 // call sequence for the call to which the argument belongs.
5649 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5650     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5651     SelectionDAG &DAG, const SDLoc &dl) const {
5652   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5653                         CallSeqStart.getNode()->getOperand(0),
5654                         Flags, DAG, dl);
5655   // The MEMCPY must go outside the CALLSEQ_START..END.
5656   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5657   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5658                                                  SDLoc(MemcpyCall));
5659   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5660                          NewCallSeqStart.getNode());
5661   return NewCallSeqStart;
5662 }
5663 
5664 SDValue PPCTargetLowering::LowerCall_64SVR4(
5665     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5666     bool isTailCall, bool isPatchPoint,
5667     const SmallVectorImpl<ISD::OutputArg> &Outs,
5668     const SmallVectorImpl<SDValue> &OutVals,
5669     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5670     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5671     ImmutableCallSite CS) const {
5672   bool isELFv2ABI = Subtarget.isELFv2ABI();
5673   bool isLittleEndian = Subtarget.isLittleEndian();
5674   unsigned NumOps = Outs.size();
5675   bool hasNest = false;
5676   bool IsSibCall = false;
5677 
5678   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5679   unsigned PtrByteSize = 8;
5680 
5681   MachineFunction &MF = DAG.getMachineFunction();
5682 
5683   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5684     IsSibCall = true;
5685 
5686   // Mark this function as potentially containing a function that contains a
5687   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5688   // and restoring the callers stack pointer in this functions epilog. This is
5689   // done because by tail calling the called function might overwrite the value
5690   // in this function's (MF) stack pointer stack slot 0(SP).
5691   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5692       CallConv == CallingConv::Fast)
5693     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5694 
5695   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5696          "fastcc not supported on varargs functions");
5697 
5698   // Count how many bytes are to be pushed on the stack, including the linkage
5699   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5700   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5701   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5702   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5703   unsigned NumBytes = LinkageSize;
5704   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5705   unsigned &QFPR_idx = FPR_idx;
5706 
5707   static const MCPhysReg GPR[] = {
5708     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5709     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5710   };
5711   static const MCPhysReg VR[] = {
5712     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5713     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5714   };
5715 
5716   const unsigned NumGPRs = array_lengthof(GPR);
5717   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5718   const unsigned NumVRs  = array_lengthof(VR);
5719   const unsigned NumQFPRs = NumFPRs;
5720 
5721   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5722   // can be passed to the callee in registers.
5723   // For the fast calling convention, there is another check below.
5724   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5725   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5726   if (!HasParameterArea) {
5727     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5728     unsigned AvailableFPRs = NumFPRs;
5729     unsigned AvailableVRs = NumVRs;
5730     unsigned NumBytesTmp = NumBytes;
5731     for (unsigned i = 0; i != NumOps; ++i) {
5732       if (Outs[i].Flags.isNest()) continue;
5733       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5734                                 PtrByteSize, LinkageSize, ParamAreaSize,
5735                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5736                                 Subtarget.hasQPX()))
5737         HasParameterArea = true;
5738     }
5739   }
5740 
5741   // When using the fast calling convention, we don't provide backing for
5742   // arguments that will be in registers.
5743   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5744 
5745   // Avoid allocating parameter area for fastcc functions if all the arguments
5746   // can be passed in the registers.
5747   if (CallConv == CallingConv::Fast)
5748     HasParameterArea = false;
5749 
5750   // Add up all the space actually used.
5751   for (unsigned i = 0; i != NumOps; ++i) {
5752     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5753     EVT ArgVT = Outs[i].VT;
5754     EVT OrigVT = Outs[i].ArgVT;
5755 
5756     if (Flags.isNest())
5757       continue;
5758 
5759     if (CallConv == CallingConv::Fast) {
5760       if (Flags.isByVal()) {
5761         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5762         if (NumGPRsUsed > NumGPRs)
5763           HasParameterArea = true;
5764       } else {
5765         switch (ArgVT.getSimpleVT().SimpleTy) {
5766         default: llvm_unreachable("Unexpected ValueType for argument!");
5767         case MVT::i1:
5768         case MVT::i32:
5769         case MVT::i64:
5770           if (++NumGPRsUsed <= NumGPRs)
5771             continue;
5772           break;
5773         case MVT::v4i32:
5774         case MVT::v8i16:
5775         case MVT::v16i8:
5776         case MVT::v2f64:
5777         case MVT::v2i64:
5778         case MVT::v1i128:
5779         case MVT::f128:
5780           if (++NumVRsUsed <= NumVRs)
5781             continue;
5782           break;
5783         case MVT::v4f32:
5784           // When using QPX, this is handled like a FP register, otherwise, it
5785           // is an Altivec register.
5786           if (Subtarget.hasQPX()) {
5787             if (++NumFPRsUsed <= NumFPRs)
5788               continue;
5789           } else {
5790             if (++NumVRsUsed <= NumVRs)
5791               continue;
5792           }
5793           break;
5794         case MVT::f32:
5795         case MVT::f64:
5796         case MVT::v4f64: // QPX
5797         case MVT::v4i1:  // QPX
5798           if (++NumFPRsUsed <= NumFPRs)
5799             continue;
5800           break;
5801         }
5802         HasParameterArea = true;
5803       }
5804     }
5805 
5806     /* Respect alignment of argument on the stack.  */
5807     unsigned Align =
5808       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5809     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5810 
5811     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5812     if (Flags.isInConsecutiveRegsLast())
5813       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5814   }
5815 
5816   unsigned NumBytesActuallyUsed = NumBytes;
5817 
5818   // In the old ELFv1 ABI,
5819   // the prolog code of the callee may store up to 8 GPR argument registers to
5820   // the stack, allowing va_start to index over them in memory if its varargs.
5821   // Because we cannot tell if this is needed on the caller side, we have to
5822   // conservatively assume that it is needed.  As such, make sure we have at
5823   // least enough stack space for the caller to store the 8 GPRs.
5824   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5825   // really requires memory operands, e.g. a vararg function.
5826   if (HasParameterArea)
5827     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5828   else
5829     NumBytes = LinkageSize;
5830 
5831   // Tail call needs the stack to be aligned.
5832   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5833       CallConv == CallingConv::Fast)
5834     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5835 
5836   int SPDiff = 0;
5837 
5838   // Calculate by how many bytes the stack has to be adjusted in case of tail
5839   // call optimization.
5840   if (!IsSibCall)
5841     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5842 
5843   // To protect arguments on the stack from being clobbered in a tail call,
5844   // force all the loads to happen before doing any other lowering.
5845   if (isTailCall)
5846     Chain = DAG.getStackArgumentTokenFactor(Chain);
5847 
5848   // Adjust the stack pointer for the new arguments...
5849   // These operations are automatically eliminated by the prolog/epilog pass
5850   if (!IsSibCall)
5851     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5852   SDValue CallSeqStart = Chain;
5853 
5854   // Load the return address and frame pointer so it can be move somewhere else
5855   // later.
5856   SDValue LROp, FPOp;
5857   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5858 
5859   // Set up a copy of the stack pointer for use loading and storing any
5860   // arguments that may not fit in the registers available for argument
5861   // passing.
5862   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5863 
5864   // Figure out which arguments are going to go in registers, and which in
5865   // memory.  Also, if this is a vararg function, floating point operations
5866   // must be stored to our stack, and loaded into integer regs as well, if
5867   // any integer regs are available for argument passing.
5868   unsigned ArgOffset = LinkageSize;
5869 
5870   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5871   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5872 
5873   SmallVector<SDValue, 8> MemOpChains;
5874   for (unsigned i = 0; i != NumOps; ++i) {
5875     SDValue Arg = OutVals[i];
5876     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5877     EVT ArgVT = Outs[i].VT;
5878     EVT OrigVT = Outs[i].ArgVT;
5879 
5880     // PtrOff will be used to store the current argument to the stack if a
5881     // register cannot be found for it.
5882     SDValue PtrOff;
5883 
5884     // We re-align the argument offset for each argument, except when using the
5885     // fast calling convention, when we need to make sure we do that only when
5886     // we'll actually use a stack slot.
5887     auto ComputePtrOff = [&]() {
5888       /* Respect alignment of argument on the stack.  */
5889       unsigned Align =
5890         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5891       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5892 
5893       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5894 
5895       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5896     };
5897 
5898     if (CallConv != CallingConv::Fast) {
5899       ComputePtrOff();
5900 
5901       /* Compute GPR index associated with argument offset.  */
5902       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5903       GPR_idx = std::min(GPR_idx, NumGPRs);
5904     }
5905 
5906     // Promote integers to 64-bit values.
5907     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5908       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5909       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5910       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5911     }
5912 
5913     // FIXME memcpy is used way more than necessary.  Correctness first.
5914     // Note: "by value" is code for passing a structure by value, not
5915     // basic types.
5916     if (Flags.isByVal()) {
5917       // Note: Size includes alignment padding, so
5918       //   struct x { short a; char b; }
5919       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5920       // These are the proper values we need for right-justifying the
5921       // aggregate in a parameter register.
5922       unsigned Size = Flags.getByValSize();
5923 
5924       // An empty aggregate parameter takes up no storage and no
5925       // registers.
5926       if (Size == 0)
5927         continue;
5928 
5929       if (CallConv == CallingConv::Fast)
5930         ComputePtrOff();
5931 
5932       // All aggregates smaller than 8 bytes must be passed right-justified.
5933       if (Size==1 || Size==2 || Size==4) {
5934         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5935         if (GPR_idx != NumGPRs) {
5936           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5937                                         MachinePointerInfo(), VT);
5938           MemOpChains.push_back(Load.getValue(1));
5939           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5940 
5941           ArgOffset += PtrByteSize;
5942           continue;
5943         }
5944       }
5945 
5946       if (GPR_idx == NumGPRs && Size < 8) {
5947         SDValue AddPtr = PtrOff;
5948         if (!isLittleEndian) {
5949           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5950                                           PtrOff.getValueType());
5951           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5952         }
5953         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5954                                                           CallSeqStart,
5955                                                           Flags, DAG, dl);
5956         ArgOffset += PtrByteSize;
5957         continue;
5958       }
5959       // Copy entire object into memory.  There are cases where gcc-generated
5960       // code assumes it is there, even if it could be put entirely into
5961       // registers.  (This is not what the doc says.)
5962 
5963       // FIXME: The above statement is likely due to a misunderstanding of the
5964       // documents.  All arguments must be copied into the parameter area BY
5965       // THE CALLEE in the event that the callee takes the address of any
5966       // formal argument.  That has not yet been implemented.  However, it is
5967       // reasonable to use the stack area as a staging area for the register
5968       // load.
5969 
5970       // Skip this for small aggregates, as we will use the same slot for a
5971       // right-justified copy, below.
5972       if (Size >= 8)
5973         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5974                                                           CallSeqStart,
5975                                                           Flags, DAG, dl);
5976 
5977       // When a register is available, pass a small aggregate right-justified.
5978       if (Size < 8 && GPR_idx != NumGPRs) {
5979         // The easiest way to get this right-justified in a register
5980         // is to copy the structure into the rightmost portion of a
5981         // local variable slot, then load the whole slot into the
5982         // register.
5983         // FIXME: The memcpy seems to produce pretty awful code for
5984         // small aggregates, particularly for packed ones.
5985         // FIXME: It would be preferable to use the slot in the
5986         // parameter save area instead of a new local variable.
5987         SDValue AddPtr = PtrOff;
5988         if (!isLittleEndian) {
5989           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5990           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5991         }
5992         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5993                                                           CallSeqStart,
5994                                                           Flags, DAG, dl);
5995 
5996         // Load the slot into the register.
5997         SDValue Load =
5998             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5999         MemOpChains.push_back(Load.getValue(1));
6000         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6001 
6002         // Done with this argument.
6003         ArgOffset += PtrByteSize;
6004         continue;
6005       }
6006 
6007       // For aggregates larger than PtrByteSize, copy the pieces of the
6008       // object that fit into registers from the parameter save area.
6009       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6010         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6011         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6012         if (GPR_idx != NumGPRs) {
6013           SDValue Load =
6014               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6015           MemOpChains.push_back(Load.getValue(1));
6016           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6017           ArgOffset += PtrByteSize;
6018         } else {
6019           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6020           break;
6021         }
6022       }
6023       continue;
6024     }
6025 
6026     switch (Arg.getSimpleValueType().SimpleTy) {
6027     default: llvm_unreachable("Unexpected ValueType for argument!");
6028     case MVT::i1:
6029     case MVT::i32:
6030     case MVT::i64:
6031       if (Flags.isNest()) {
6032         // The 'nest' parameter, if any, is passed in R11.
6033         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6034         hasNest = true;
6035         break;
6036       }
6037 
6038       // These can be scalar arguments or elements of an integer array type
6039       // passed directly.  Clang may use those instead of "byval" aggregate
6040       // types to avoid forcing arguments to memory unnecessarily.
6041       if (GPR_idx != NumGPRs) {
6042         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6043       } else {
6044         if (CallConv == CallingConv::Fast)
6045           ComputePtrOff();
6046 
6047         assert(HasParameterArea &&
6048                "Parameter area must exist to pass an argument in memory.");
6049         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6050                          true, isTailCall, false, MemOpChains,
6051                          TailCallArguments, dl);
6052         if (CallConv == CallingConv::Fast)
6053           ArgOffset += PtrByteSize;
6054       }
6055       if (CallConv != CallingConv::Fast)
6056         ArgOffset += PtrByteSize;
6057       break;
6058     case MVT::f32:
6059     case MVT::f64: {
6060       // These can be scalar arguments or elements of a float array type
6061       // passed directly.  The latter are used to implement ELFv2 homogenous
6062       // float aggregates.
6063 
6064       // Named arguments go into FPRs first, and once they overflow, the
6065       // remaining arguments go into GPRs and then the parameter save area.
6066       // Unnamed arguments for vararg functions always go to GPRs and
6067       // then the parameter save area.  For now, put all arguments to vararg
6068       // routines always in both locations (FPR *and* GPR or stack slot).
6069       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6070       bool NeededLoad = false;
6071 
6072       // First load the argument into the next available FPR.
6073       if (FPR_idx != NumFPRs)
6074         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6075 
6076       // Next, load the argument into GPR or stack slot if needed.
6077       if (!NeedGPROrStack)
6078         ;
6079       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6080         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6081         // once we support fp <-> gpr moves.
6082 
6083         // In the non-vararg case, this can only ever happen in the
6084         // presence of f32 array types, since otherwise we never run
6085         // out of FPRs before running out of GPRs.
6086         SDValue ArgVal;
6087 
6088         // Double values are always passed in a single GPR.
6089         if (Arg.getValueType() != MVT::f32) {
6090           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6091 
6092         // Non-array float values are extended and passed in a GPR.
6093         } else if (!Flags.isInConsecutiveRegs()) {
6094           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6095           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6096 
6097         // If we have an array of floats, we collect every odd element
6098         // together with its predecessor into one GPR.
6099         } else if (ArgOffset % PtrByteSize != 0) {
6100           SDValue Lo, Hi;
6101           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6102           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6103           if (!isLittleEndian)
6104             std::swap(Lo, Hi);
6105           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6106 
6107         // The final element, if even, goes into the first half of a GPR.
6108         } else if (Flags.isInConsecutiveRegsLast()) {
6109           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6110           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6111           if (!isLittleEndian)
6112             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6113                                  DAG.getConstant(32, dl, MVT::i32));
6114 
6115         // Non-final even elements are skipped; they will be handled
6116         // together the with subsequent argument on the next go-around.
6117         } else
6118           ArgVal = SDValue();
6119 
6120         if (ArgVal.getNode())
6121           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6122       } else {
6123         if (CallConv == CallingConv::Fast)
6124           ComputePtrOff();
6125 
6126         // Single-precision floating-point values are mapped to the
6127         // second (rightmost) word of the stack doubleword.
6128         if (Arg.getValueType() == MVT::f32 &&
6129             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6130           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6131           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6132         }
6133 
6134         assert(HasParameterArea &&
6135                "Parameter area must exist to pass an argument in memory.");
6136         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6137                          true, isTailCall, false, MemOpChains,
6138                          TailCallArguments, dl);
6139 
6140         NeededLoad = true;
6141       }
6142       // When passing an array of floats, the array occupies consecutive
6143       // space in the argument area; only round up to the next doubleword
6144       // at the end of the array.  Otherwise, each float takes 8 bytes.
6145       if (CallConv != CallingConv::Fast || NeededLoad) {
6146         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6147                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6148         if (Flags.isInConsecutiveRegsLast())
6149           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6150       }
6151       break;
6152     }
6153     case MVT::v4f32:
6154     case MVT::v4i32:
6155     case MVT::v8i16:
6156     case MVT::v16i8:
6157     case MVT::v2f64:
6158     case MVT::v2i64:
6159     case MVT::v1i128:
6160     case MVT::f128:
6161       if (!Subtarget.hasQPX()) {
6162       // These can be scalar arguments or elements of a vector array type
6163       // passed directly.  The latter are used to implement ELFv2 homogenous
6164       // vector aggregates.
6165 
6166       // For a varargs call, named arguments go into VRs or on the stack as
6167       // usual; unnamed arguments always go to the stack or the corresponding
6168       // GPRs when within range.  For now, we always put the value in both
6169       // locations (or even all three).
6170       if (isVarArg) {
6171         assert(HasParameterArea &&
6172                "Parameter area must exist if we have a varargs call.");
6173         // We could elide this store in the case where the object fits
6174         // entirely in R registers.  Maybe later.
6175         SDValue Store =
6176             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6177         MemOpChains.push_back(Store);
6178         if (VR_idx != NumVRs) {
6179           SDValue Load =
6180               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6181           MemOpChains.push_back(Load.getValue(1));
6182           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6183         }
6184         ArgOffset += 16;
6185         for (unsigned i=0; i<16; i+=PtrByteSize) {
6186           if (GPR_idx == NumGPRs)
6187             break;
6188           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6189                                    DAG.getConstant(i, dl, PtrVT));
6190           SDValue Load =
6191               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6192           MemOpChains.push_back(Load.getValue(1));
6193           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6194         }
6195         break;
6196       }
6197 
6198       // Non-varargs Altivec params go into VRs or on the stack.
6199       if (VR_idx != NumVRs) {
6200         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6201       } else {
6202         if (CallConv == CallingConv::Fast)
6203           ComputePtrOff();
6204 
6205         assert(HasParameterArea &&
6206                "Parameter area must exist to pass an argument in memory.");
6207         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6208                          true, isTailCall, true, MemOpChains,
6209                          TailCallArguments, dl);
6210         if (CallConv == CallingConv::Fast)
6211           ArgOffset += 16;
6212       }
6213 
6214       if (CallConv != CallingConv::Fast)
6215         ArgOffset += 16;
6216       break;
6217       } // not QPX
6218 
6219       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6220              "Invalid QPX parameter type");
6221 
6222       LLVM_FALLTHROUGH;
6223     case MVT::v4f64:
6224     case MVT::v4i1: {
6225       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6226       if (isVarArg) {
6227         assert(HasParameterArea &&
6228                "Parameter area must exist if we have a varargs call.");
6229         // We could elide this store in the case where the object fits
6230         // entirely in R registers.  Maybe later.
6231         SDValue Store =
6232             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6233         MemOpChains.push_back(Store);
6234         if (QFPR_idx != NumQFPRs) {
6235           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6236                                      PtrOff, MachinePointerInfo());
6237           MemOpChains.push_back(Load.getValue(1));
6238           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6239         }
6240         ArgOffset += (IsF32 ? 16 : 32);
6241         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6242           if (GPR_idx == NumGPRs)
6243             break;
6244           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6245                                    DAG.getConstant(i, dl, PtrVT));
6246           SDValue Load =
6247               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6248           MemOpChains.push_back(Load.getValue(1));
6249           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6250         }
6251         break;
6252       }
6253 
6254       // Non-varargs QPX params go into registers or on the stack.
6255       if (QFPR_idx != NumQFPRs) {
6256         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6257       } else {
6258         if (CallConv == CallingConv::Fast)
6259           ComputePtrOff();
6260 
6261         assert(HasParameterArea &&
6262                "Parameter area must exist to pass an argument in memory.");
6263         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6264                          true, isTailCall, true, MemOpChains,
6265                          TailCallArguments, dl);
6266         if (CallConv == CallingConv::Fast)
6267           ArgOffset += (IsF32 ? 16 : 32);
6268       }
6269 
6270       if (CallConv != CallingConv::Fast)
6271         ArgOffset += (IsF32 ? 16 : 32);
6272       break;
6273       }
6274     }
6275   }
6276 
6277   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6278          "mismatch in size of parameter area");
6279   (void)NumBytesActuallyUsed;
6280 
6281   if (!MemOpChains.empty())
6282     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6283 
6284   // Check if this is an indirect call (MTCTR/BCTRL).
6285   // See PrepareCall() for more information about calls through function
6286   // pointers in the 64-bit SVR4 ABI.
6287   if (!isTailCall && !isPatchPoint &&
6288       !isFunctionGlobalAddress(Callee) &&
6289       !isa<ExternalSymbolSDNode>(Callee)) {
6290     // Load r2 into a virtual register and store it to the TOC save area.
6291     setUsesTOCBasePtr(DAG);
6292     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6293     // TOC save area offset.
6294     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6295     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6296     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6297     Chain = DAG.getStore(
6298         Val.getValue(1), dl, Val, AddPtr,
6299         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6300     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6301     // This does not mean the MTCTR instruction must use R12; it's easier
6302     // to model this as an extra parameter, so do that.
6303     if (isELFv2ABI && !isPatchPoint)
6304       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6305   }
6306 
6307   // Build a sequence of copy-to-reg nodes chained together with token chain
6308   // and flag operands which copy the outgoing args into the appropriate regs.
6309   SDValue InFlag;
6310   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6311     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6312                              RegsToPass[i].second, InFlag);
6313     InFlag = Chain.getValue(1);
6314   }
6315 
6316   if (isTailCall && !IsSibCall)
6317     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6318                     TailCallArguments);
6319 
6320   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6321                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6322                     SPDiff, NumBytes, Ins, InVals, CS);
6323 }
6324 
6325 SDValue PPCTargetLowering::LowerCall_Darwin(
6326     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6327     bool isTailCall, bool isPatchPoint,
6328     const SmallVectorImpl<ISD::OutputArg> &Outs,
6329     const SmallVectorImpl<SDValue> &OutVals,
6330     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6331     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6332     ImmutableCallSite CS) const {
6333   unsigned NumOps = Outs.size();
6334 
6335   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6336   bool isPPC64 = PtrVT == MVT::i64;
6337   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6338 
6339   MachineFunction &MF = DAG.getMachineFunction();
6340 
6341   // Mark this function as potentially containing a function that contains a
6342   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6343   // and restoring the callers stack pointer in this functions epilog. This is
6344   // done because by tail calling the called function might overwrite the value
6345   // in this function's (MF) stack pointer stack slot 0(SP).
6346   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6347       CallConv == CallingConv::Fast)
6348     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6349 
6350   // Count how many bytes are to be pushed on the stack, including the linkage
6351   // area, and parameter passing area.  We start with 24/48 bytes, which is
6352   // prereserved space for [SP][CR][LR][3 x unused].
6353   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6354   unsigned NumBytes = LinkageSize;
6355 
6356   // Add up all the space actually used.
6357   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6358   // they all go in registers, but we must reserve stack space for them for
6359   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6360   // assigned stack space in order, with padding so Altivec parameters are
6361   // 16-byte aligned.
6362   unsigned nAltivecParamsAtEnd = 0;
6363   for (unsigned i = 0; i != NumOps; ++i) {
6364     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6365     EVT ArgVT = Outs[i].VT;
6366     // Varargs Altivec parameters are padded to a 16 byte boundary.
6367     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6368         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6369         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6370       if (!isVarArg && !isPPC64) {
6371         // Non-varargs Altivec parameters go after all the non-Altivec
6372         // parameters; handle those later so we know how much padding we need.
6373         nAltivecParamsAtEnd++;
6374         continue;
6375       }
6376       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6377       NumBytes = ((NumBytes+15)/16)*16;
6378     }
6379     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6380   }
6381 
6382   // Allow for Altivec parameters at the end, if needed.
6383   if (nAltivecParamsAtEnd) {
6384     NumBytes = ((NumBytes+15)/16)*16;
6385     NumBytes += 16*nAltivecParamsAtEnd;
6386   }
6387 
6388   // The prolog code of the callee may store up to 8 GPR argument registers to
6389   // the stack, allowing va_start to index over them in memory if its varargs.
6390   // Because we cannot tell if this is needed on the caller side, we have to
6391   // conservatively assume that it is needed.  As such, make sure we have at
6392   // least enough stack space for the caller to store the 8 GPRs.
6393   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6394 
6395   // Tail call needs the stack to be aligned.
6396   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6397       CallConv == CallingConv::Fast)
6398     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6399 
6400   // Calculate by how many bytes the stack has to be adjusted in case of tail
6401   // call optimization.
6402   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6403 
6404   // To protect arguments on the stack from being clobbered in a tail call,
6405   // force all the loads to happen before doing any other lowering.
6406   if (isTailCall)
6407     Chain = DAG.getStackArgumentTokenFactor(Chain);
6408 
6409   // Adjust the stack pointer for the new arguments...
6410   // These operations are automatically eliminated by the prolog/epilog pass
6411   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6412   SDValue CallSeqStart = Chain;
6413 
6414   // Load the return address and frame pointer so it can be move somewhere else
6415   // later.
6416   SDValue LROp, FPOp;
6417   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6418 
6419   // Set up a copy of the stack pointer for use loading and storing any
6420   // arguments that may not fit in the registers available for argument
6421   // passing.
6422   SDValue StackPtr;
6423   if (isPPC64)
6424     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6425   else
6426     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6427 
6428   // Figure out which arguments are going to go in registers, and which in
6429   // memory.  Also, if this is a vararg function, floating point operations
6430   // must be stored to our stack, and loaded into integer regs as well, if
6431   // any integer regs are available for argument passing.
6432   unsigned ArgOffset = LinkageSize;
6433   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6434 
6435   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6436     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6437     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6438   };
6439   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6440     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6441     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6442   };
6443   static const MCPhysReg VR[] = {
6444     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6445     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6446   };
6447   const unsigned NumGPRs = array_lengthof(GPR_32);
6448   const unsigned NumFPRs = 13;
6449   const unsigned NumVRs  = array_lengthof(VR);
6450 
6451   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6452 
6453   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6454   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6455 
6456   SmallVector<SDValue, 8> MemOpChains;
6457   for (unsigned i = 0; i != NumOps; ++i) {
6458     SDValue Arg = OutVals[i];
6459     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6460 
6461     // PtrOff will be used to store the current argument to the stack if a
6462     // register cannot be found for it.
6463     SDValue PtrOff;
6464 
6465     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6466 
6467     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6468 
6469     // On PPC64, promote integers to 64-bit values.
6470     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6471       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6472       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6473       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6474     }
6475 
6476     // FIXME memcpy is used way more than necessary.  Correctness first.
6477     // Note: "by value" is code for passing a structure by value, not
6478     // basic types.
6479     if (Flags.isByVal()) {
6480       unsigned Size = Flags.getByValSize();
6481       // Very small objects are passed right-justified.  Everything else is
6482       // passed left-justified.
6483       if (Size==1 || Size==2) {
6484         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6485         if (GPR_idx != NumGPRs) {
6486           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6487                                         MachinePointerInfo(), VT);
6488           MemOpChains.push_back(Load.getValue(1));
6489           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6490 
6491           ArgOffset += PtrByteSize;
6492         } else {
6493           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6494                                           PtrOff.getValueType());
6495           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6496           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6497                                                             CallSeqStart,
6498                                                             Flags, DAG, dl);
6499           ArgOffset += PtrByteSize;
6500         }
6501         continue;
6502       }
6503       // Copy entire object into memory.  There are cases where gcc-generated
6504       // code assumes it is there, even if it could be put entirely into
6505       // registers.  (This is not what the doc says.)
6506       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6507                                                         CallSeqStart,
6508                                                         Flags, DAG, dl);
6509 
6510       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6511       // copy the pieces of the object that fit into registers from the
6512       // parameter save area.
6513       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6514         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6515         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6516         if (GPR_idx != NumGPRs) {
6517           SDValue Load =
6518               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6519           MemOpChains.push_back(Load.getValue(1));
6520           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6521           ArgOffset += PtrByteSize;
6522         } else {
6523           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6524           break;
6525         }
6526       }
6527       continue;
6528     }
6529 
6530     switch (Arg.getSimpleValueType().SimpleTy) {
6531     default: llvm_unreachable("Unexpected ValueType for argument!");
6532     case MVT::i1:
6533     case MVT::i32:
6534     case MVT::i64:
6535       if (GPR_idx != NumGPRs) {
6536         if (Arg.getValueType() == MVT::i1)
6537           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6538 
6539         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6540       } else {
6541         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6542                          isPPC64, isTailCall, false, MemOpChains,
6543                          TailCallArguments, dl);
6544       }
6545       ArgOffset += PtrByteSize;
6546       break;
6547     case MVT::f32:
6548     case MVT::f64:
6549       if (FPR_idx != NumFPRs) {
6550         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6551 
6552         if (isVarArg) {
6553           SDValue Store =
6554               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6555           MemOpChains.push_back(Store);
6556 
6557           // Float varargs are always shadowed in available integer registers
6558           if (GPR_idx != NumGPRs) {
6559             SDValue Load =
6560                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6561             MemOpChains.push_back(Load.getValue(1));
6562             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6563           }
6564           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6565             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6566             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6567             SDValue Load =
6568                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6569             MemOpChains.push_back(Load.getValue(1));
6570             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6571           }
6572         } else {
6573           // If we have any FPRs remaining, we may also have GPRs remaining.
6574           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6575           // GPRs.
6576           if (GPR_idx != NumGPRs)
6577             ++GPR_idx;
6578           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6579               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6580             ++GPR_idx;
6581         }
6582       } else
6583         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6584                          isPPC64, isTailCall, false, MemOpChains,
6585                          TailCallArguments, dl);
6586       if (isPPC64)
6587         ArgOffset += 8;
6588       else
6589         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6590       break;
6591     case MVT::v4f32:
6592     case MVT::v4i32:
6593     case MVT::v8i16:
6594     case MVT::v16i8:
6595       if (isVarArg) {
6596         // These go aligned on the stack, or in the corresponding R registers
6597         // when within range.  The Darwin PPC ABI doc claims they also go in
6598         // V registers; in fact gcc does this only for arguments that are
6599         // prototyped, not for those that match the ...  We do it for all
6600         // arguments, seems to work.
6601         while (ArgOffset % 16 !=0) {
6602           ArgOffset += PtrByteSize;
6603           if (GPR_idx != NumGPRs)
6604             GPR_idx++;
6605         }
6606         // We could elide this store in the case where the object fits
6607         // entirely in R registers.  Maybe later.
6608         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6609                              DAG.getConstant(ArgOffset, dl, PtrVT));
6610         SDValue Store =
6611             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6612         MemOpChains.push_back(Store);
6613         if (VR_idx != NumVRs) {
6614           SDValue Load =
6615               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6616           MemOpChains.push_back(Load.getValue(1));
6617           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6618         }
6619         ArgOffset += 16;
6620         for (unsigned i=0; i<16; i+=PtrByteSize) {
6621           if (GPR_idx == NumGPRs)
6622             break;
6623           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6624                                    DAG.getConstant(i, dl, PtrVT));
6625           SDValue Load =
6626               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6627           MemOpChains.push_back(Load.getValue(1));
6628           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6629         }
6630         break;
6631       }
6632 
6633       // Non-varargs Altivec params generally go in registers, but have
6634       // stack space allocated at the end.
6635       if (VR_idx != NumVRs) {
6636         // Doesn't have GPR space allocated.
6637         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6638       } else if (nAltivecParamsAtEnd==0) {
6639         // We are emitting Altivec params in order.
6640         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6641                          isPPC64, isTailCall, true, MemOpChains,
6642                          TailCallArguments, dl);
6643         ArgOffset += 16;
6644       }
6645       break;
6646     }
6647   }
6648   // If all Altivec parameters fit in registers, as they usually do,
6649   // they get stack space following the non-Altivec parameters.  We
6650   // don't track this here because nobody below needs it.
6651   // If there are more Altivec parameters than fit in registers emit
6652   // the stores here.
6653   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6654     unsigned j = 0;
6655     // Offset is aligned; skip 1st 12 params which go in V registers.
6656     ArgOffset = ((ArgOffset+15)/16)*16;
6657     ArgOffset += 12*16;
6658     for (unsigned i = 0; i != NumOps; ++i) {
6659       SDValue Arg = OutVals[i];
6660       EVT ArgType = Outs[i].VT;
6661       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6662           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6663         if (++j > NumVRs) {
6664           SDValue PtrOff;
6665           // We are emitting Altivec params in order.
6666           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6667                            isPPC64, isTailCall, true, MemOpChains,
6668                            TailCallArguments, dl);
6669           ArgOffset += 16;
6670         }
6671       }
6672     }
6673   }
6674 
6675   if (!MemOpChains.empty())
6676     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6677 
6678   // On Darwin, R12 must contain the address of an indirect callee.  This does
6679   // not mean the MTCTR instruction must use R12; it's easier to model this as
6680   // an extra parameter, so do that.
6681   if (!isTailCall &&
6682       !isFunctionGlobalAddress(Callee) &&
6683       !isa<ExternalSymbolSDNode>(Callee) &&
6684       !isBLACompatibleAddress(Callee, DAG))
6685     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6686                                                    PPC::R12), Callee));
6687 
6688   // Build a sequence of copy-to-reg nodes chained together with token chain
6689   // and flag operands which copy the outgoing args into the appropriate regs.
6690   SDValue InFlag;
6691   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6692     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6693                              RegsToPass[i].second, InFlag);
6694     InFlag = Chain.getValue(1);
6695   }
6696 
6697   if (isTailCall)
6698     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6699                     TailCallArguments);
6700 
6701   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6702                     /* unused except on PPC64 ELFv1 */ false, DAG,
6703                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6704                     NumBytes, Ins, InVals, CS);
6705 }
6706 
6707 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6708                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6709                    CCState &State) {
6710 
6711   if (ValVT == MVT::f128)
6712     report_fatal_error("f128 is unimplemented on AIX.");
6713 
6714   if (ArgFlags.isByVal())
6715     report_fatal_error("Passing structure by value is unimplemented.");
6716 
6717   if (ArgFlags.isSRet())
6718     report_fatal_error("Struct return arguments are unimplemented.");
6719 
6720   if (ArgFlags.isNest())
6721     report_fatal_error("Nest arguments are unimplemented.");
6722 
6723   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6724       State.getMachineFunction().getSubtarget());
6725   const bool IsPPC64 = Subtarget.isPPC64();
6726   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6727 
6728   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6729                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6730                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6731   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6732                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6733                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6734 
6735   // Arguments always reserve parameter save area.
6736   switch (ValVT.SimpleTy) {
6737   default:
6738     report_fatal_error("Unhandled value type for argument.");
6739   case MVT::i64:
6740     // i64 arguments should have been split to i32 for PPC32.
6741     assert(IsPPC64 && "PPC32 should have split i64 values.");
6742     LLVM_FALLTHROUGH;
6743   case MVT::i1:
6744   case MVT::i32:
6745     State.AllocateStack(PtrByteSize, PtrByteSize);
6746     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6747       MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6748       // Promote integers if needed.
6749       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6750         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6751                                     : CCValAssign::LocInfo::ZExt;
6752       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6753     }
6754     else
6755       report_fatal_error("Handling of placing parameters on the stack is "
6756                          "unimplemented!");
6757     return false;
6758 
6759   case MVT::f32:
6760   case MVT::f64: {
6761     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6762     const unsigned StoreSize = LocVT.getStoreSize();
6763     // Floats are always 4-byte aligned in the PSA on AIX.
6764     // This includes f64 in 64-bit mode for ABI compatibility.
6765     State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6766     if (unsigned Reg = State.AllocateReg(FPR))
6767       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::f64, LocInfo));
6768     else
6769       report_fatal_error("Handling of placing parameters on the stack is "
6770                          "unimplemented!");
6771 
6772     // f32 reserves 1 GPR in both PPC32 and PPC64.
6773     // f64 reserves 2 GPRs in PPC32 and 1 GPR in PPC64.
6774     for (unsigned i = 0; i < StoreSize; i += PtrByteSize)
6775       State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32);
6776     return false;
6777   }
6778   }
6779 }
6780 
6781 SDValue PPCTargetLowering::LowerCall_AIX(
6782     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6783     bool isTailCall, bool isPatchPoint,
6784     const SmallVectorImpl<ISD::OutputArg> &Outs,
6785     const SmallVectorImpl<SDValue> &OutVals,
6786     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6787     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6788     ImmutableCallSite CS) const {
6789 
6790   assert((CallConv == CallingConv::C ||
6791           CallConv == CallingConv::Cold ||
6792           CallConv == CallingConv::Fast) && "Unexpected calling convention!");
6793 
6794   if (isVarArg || isPatchPoint)
6795     report_fatal_error("This call type is unimplemented on AIX.");
6796 
6797   if (!isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
6798     report_fatal_error("Handling of indirect call is unimplemented!");
6799 
6800   const PPCSubtarget& Subtarget =
6801       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
6802   if (Subtarget.hasQPX())
6803     report_fatal_error("QPX is not supported on AIX.");
6804   if (Subtarget.hasAltivec())
6805     report_fatal_error("Altivec support is unimplemented on AIX.");
6806 
6807   MachineFunction &MF = DAG.getMachineFunction();
6808   SmallVector<CCValAssign, 16> ArgLocs;
6809   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6810 
6811   // Reserve space for the linkage save area (LSA) on the stack.
6812   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
6813   //   [SP][CR][LR][2 x reserved][TOC].
6814   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
6815   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6816   const unsigned PtrByteSize = Subtarget.isPPC64() ? 8 : 4;
6817   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
6818   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
6819 
6820   // The prolog code of the callee may store up to 8 GPR argument registers to
6821   // the stack, allowing va_start to index over them in memory if the callee
6822   // is variadic.
6823   // Because we cannot tell if this is needed on the caller side, we have to
6824   // conservatively assume that it is needed.  As such, make sure we have at
6825   // least enough stack space for the caller to store the 8 GPRs.
6826   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
6827   const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
6828 
6829   // Adjust the stack pointer for the new arguments...
6830   // These operations are automatically eliminated by the prolog/epilog pass.
6831   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6832   SDValue CallSeqStart = Chain;
6833 
6834   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6835 
6836   for (CCValAssign &VA : ArgLocs) {
6837     SDValue Arg = OutVals[VA.getValNo()];
6838 
6839     switch (VA.getLocInfo()) {
6840     default: report_fatal_error("Unexpected argument extension type.");
6841     case CCValAssign::Full: break;
6842     case CCValAssign::ZExt:
6843       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6844       break;
6845     case CCValAssign::SExt:
6846       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6847       break;
6848     }
6849 
6850     if (VA.isRegLoc())
6851       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
6852 
6853     if (VA.isMemLoc())
6854       report_fatal_error("Handling of placing parameters on the stack is "
6855                          "unimplemented!");
6856   }
6857 
6858   // Build a sequence of copy-to-reg nodes chained together with token chain
6859   // and flag operands which copy the outgoing args into the appropriate regs.
6860   SDValue InFlag;
6861   for (auto Reg : RegsToPass) {
6862     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
6863     InFlag = Chain.getValue(1);
6864   }
6865 
6866   const int SPDiff = 0;
6867   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6868                     /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
6869                     InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
6870                     InVals, CS);
6871 }
6872 
6873 bool
6874 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6875                                   MachineFunction &MF, bool isVarArg,
6876                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6877                                   LLVMContext &Context) const {
6878   SmallVector<CCValAssign, 16> RVLocs;
6879   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6880   return CCInfo.CheckReturn(
6881       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6882                 ? RetCC_PPC_Cold
6883                 : RetCC_PPC);
6884 }
6885 
6886 SDValue
6887 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6888                                bool isVarArg,
6889                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6890                                const SmallVectorImpl<SDValue> &OutVals,
6891                                const SDLoc &dl, SelectionDAG &DAG) const {
6892   SmallVector<CCValAssign, 16> RVLocs;
6893   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6894                  *DAG.getContext());
6895   CCInfo.AnalyzeReturn(Outs,
6896                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6897                            ? RetCC_PPC_Cold
6898                            : RetCC_PPC);
6899 
6900   SDValue Flag;
6901   SmallVector<SDValue, 4> RetOps(1, Chain);
6902 
6903   // Copy the result values into the output registers.
6904   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
6905     CCValAssign &VA = RVLocs[i];
6906     assert(VA.isRegLoc() && "Can only return in registers!");
6907 
6908     SDValue Arg = OutVals[RealResIdx];
6909 
6910     switch (VA.getLocInfo()) {
6911     default: llvm_unreachable("Unknown loc info!");
6912     case CCValAssign::Full: break;
6913     case CCValAssign::AExt:
6914       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6915       break;
6916     case CCValAssign::ZExt:
6917       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6918       break;
6919     case CCValAssign::SExt:
6920       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6921       break;
6922     }
6923     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
6924       bool isLittleEndian = Subtarget.isLittleEndian();
6925       // Legalize ret f64 -> ret 2 x i32.
6926       SDValue SVal =
6927           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6928                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
6929       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
6930       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6931       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6932                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
6933       Flag = Chain.getValue(1);
6934       VA = RVLocs[++i]; // skip ahead to next loc
6935       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
6936     } else
6937       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6938     Flag = Chain.getValue(1);
6939     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6940   }
6941 
6942   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6943   const MCPhysReg *I =
6944     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6945   if (I) {
6946     for (; *I; ++I) {
6947 
6948       if (PPC::G8RCRegClass.contains(*I))
6949         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6950       else if (PPC::F8RCRegClass.contains(*I))
6951         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6952       else if (PPC::CRRCRegClass.contains(*I))
6953         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6954       else if (PPC::VRRCRegClass.contains(*I))
6955         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6956       else
6957         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6958     }
6959   }
6960 
6961   RetOps[0] = Chain;  // Update chain.
6962 
6963   // Add the flag if we have it.
6964   if (Flag.getNode())
6965     RetOps.push_back(Flag);
6966 
6967   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6968 }
6969 
6970 SDValue
6971 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6972                                                 SelectionDAG &DAG) const {
6973   SDLoc dl(Op);
6974 
6975   // Get the correct type for integers.
6976   EVT IntVT = Op.getValueType();
6977 
6978   // Get the inputs.
6979   SDValue Chain = Op.getOperand(0);
6980   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6981   // Build a DYNAREAOFFSET node.
6982   SDValue Ops[2] = {Chain, FPSIdx};
6983   SDVTList VTs = DAG.getVTList(IntVT);
6984   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6985 }
6986 
6987 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6988                                              SelectionDAG &DAG) const {
6989   // When we pop the dynamic allocation we need to restore the SP link.
6990   SDLoc dl(Op);
6991 
6992   // Get the correct type for pointers.
6993   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6994 
6995   // Construct the stack pointer operand.
6996   bool isPPC64 = Subtarget.isPPC64();
6997   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6998   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6999 
7000   // Get the operands for the STACKRESTORE.
7001   SDValue Chain = Op.getOperand(0);
7002   SDValue SaveSP = Op.getOperand(1);
7003 
7004   // Load the old link SP.
7005   SDValue LoadLinkSP =
7006       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7007 
7008   // Restore the stack pointer.
7009   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7010 
7011   // Store the old link SP.
7012   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7013 }
7014 
7015 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7016   MachineFunction &MF = DAG.getMachineFunction();
7017   bool isPPC64 = Subtarget.isPPC64();
7018   EVT PtrVT = getPointerTy(MF.getDataLayout());
7019 
7020   // Get current frame pointer save index.  The users of this index will be
7021   // primarily DYNALLOC instructions.
7022   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7023   int RASI = FI->getReturnAddrSaveIndex();
7024 
7025   // If the frame pointer save index hasn't been defined yet.
7026   if (!RASI) {
7027     // Find out what the fix offset of the frame pointer save area.
7028     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7029     // Allocate the frame index for frame pointer save area.
7030     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7031     // Save the result.
7032     FI->setReturnAddrSaveIndex(RASI);
7033   }
7034   return DAG.getFrameIndex(RASI, PtrVT);
7035 }
7036 
7037 SDValue
7038 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7039   MachineFunction &MF = DAG.getMachineFunction();
7040   bool isPPC64 = Subtarget.isPPC64();
7041   EVT PtrVT = getPointerTy(MF.getDataLayout());
7042 
7043   // Get current frame pointer save index.  The users of this index will be
7044   // primarily DYNALLOC instructions.
7045   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7046   int FPSI = FI->getFramePointerSaveIndex();
7047 
7048   // If the frame pointer save index hasn't been defined yet.
7049   if (!FPSI) {
7050     // Find out what the fix offset of the frame pointer save area.
7051     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7052     // Allocate the frame index for frame pointer save area.
7053     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7054     // Save the result.
7055     FI->setFramePointerSaveIndex(FPSI);
7056   }
7057   return DAG.getFrameIndex(FPSI, PtrVT);
7058 }
7059 
7060 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7061                                                    SelectionDAG &DAG) const {
7062   // Get the inputs.
7063   SDValue Chain = Op.getOperand(0);
7064   SDValue Size  = Op.getOperand(1);
7065   SDLoc dl(Op);
7066 
7067   // Get the correct type for pointers.
7068   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7069   // Negate the size.
7070   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7071                                 DAG.getConstant(0, dl, PtrVT), Size);
7072   // Construct a node for the frame pointer save index.
7073   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7074   // Build a DYNALLOC node.
7075   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7076   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7077   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7078 }
7079 
7080 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7081                                                      SelectionDAG &DAG) const {
7082   MachineFunction &MF = DAG.getMachineFunction();
7083 
7084   bool isPPC64 = Subtarget.isPPC64();
7085   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7086 
7087   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7088   return DAG.getFrameIndex(FI, PtrVT);
7089 }
7090 
7091 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7092                                                SelectionDAG &DAG) const {
7093   SDLoc DL(Op);
7094   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7095                      DAG.getVTList(MVT::i32, MVT::Other),
7096                      Op.getOperand(0), Op.getOperand(1));
7097 }
7098 
7099 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7100                                                 SelectionDAG &DAG) const {
7101   SDLoc DL(Op);
7102   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7103                      Op.getOperand(0), Op.getOperand(1));
7104 }
7105 
7106 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7107   if (Op.getValueType().isVector())
7108     return LowerVectorLoad(Op, DAG);
7109 
7110   assert(Op.getValueType() == MVT::i1 &&
7111          "Custom lowering only for i1 loads");
7112 
7113   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7114 
7115   SDLoc dl(Op);
7116   LoadSDNode *LD = cast<LoadSDNode>(Op);
7117 
7118   SDValue Chain = LD->getChain();
7119   SDValue BasePtr = LD->getBasePtr();
7120   MachineMemOperand *MMO = LD->getMemOperand();
7121 
7122   SDValue NewLD =
7123       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7124                      BasePtr, MVT::i8, MMO);
7125   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7126 
7127   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7128   return DAG.getMergeValues(Ops, dl);
7129 }
7130 
7131 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7132   if (Op.getOperand(1).getValueType().isVector())
7133     return LowerVectorStore(Op, DAG);
7134 
7135   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7136          "Custom lowering only for i1 stores");
7137 
7138   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7139 
7140   SDLoc dl(Op);
7141   StoreSDNode *ST = cast<StoreSDNode>(Op);
7142 
7143   SDValue Chain = ST->getChain();
7144   SDValue BasePtr = ST->getBasePtr();
7145   SDValue Value = ST->getValue();
7146   MachineMemOperand *MMO = ST->getMemOperand();
7147 
7148   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7149                       Value);
7150   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7151 }
7152 
7153 // FIXME: Remove this once the ANDI glue bug is fixed:
7154 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7155   assert(Op.getValueType() == MVT::i1 &&
7156          "Custom lowering only for i1 results");
7157 
7158   SDLoc DL(Op);
7159   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
7160                      Op.getOperand(0));
7161 }
7162 
7163 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7164                                                SelectionDAG &DAG) const {
7165 
7166   // Implements a vector truncate that fits in a vector register as a shuffle.
7167   // We want to legalize vector truncates down to where the source fits in
7168   // a vector register (and target is therefore smaller than vector register
7169   // size).  At that point legalization will try to custom lower the sub-legal
7170   // result and get here - where we can contain the truncate as a single target
7171   // operation.
7172 
7173   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7174   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7175   //
7176   // We will implement it for big-endian ordering as this (where x denotes
7177   // undefined):
7178   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7179   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7180   //
7181   // The same operation in little-endian ordering will be:
7182   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7183   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7184 
7185   assert(Op.getValueType().isVector() && "Vector type expected.");
7186 
7187   SDLoc DL(Op);
7188   SDValue N1 = Op.getOperand(0);
7189   unsigned SrcSize = N1.getValueType().getSizeInBits();
7190   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7191   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7192 
7193   EVT TrgVT = Op.getValueType();
7194   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7195   EVT EltVT = TrgVT.getVectorElementType();
7196   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7197   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7198 
7199   // First list the elements we want to keep.
7200   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7201   SmallVector<int, 16> ShuffV;
7202   if (Subtarget.isLittleEndian())
7203     for (unsigned i = 0; i < TrgNumElts; ++i)
7204       ShuffV.push_back(i * SizeMult);
7205   else
7206     for (unsigned i = 1; i <= TrgNumElts; ++i)
7207       ShuffV.push_back(i * SizeMult - 1);
7208 
7209   // Populate the remaining elements with undefs.
7210   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7211     // ShuffV.push_back(i + WideNumElts);
7212     ShuffV.push_back(WideNumElts + 1);
7213 
7214   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7215   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7216 }
7217 
7218 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7219 /// possible.
7220 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7221   // Not FP? Not a fsel.
7222   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7223       !Op.getOperand(2).getValueType().isFloatingPoint())
7224     return Op;
7225 
7226   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7227   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7228   // We might be able to do better than this under some circumstances, but in
7229   // general, fsel-based lowering of select is a finite-math-only optimization.
7230   // For more information, see section F.3 of the 2.06 ISA specification.
7231   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7232   // presence of infinities.
7233   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7234     return Op;
7235   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7236 
7237   EVT ResVT = Op.getValueType();
7238   EVT CmpVT = Op.getOperand(0).getValueType();
7239   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7240   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7241   SDLoc dl(Op);
7242 
7243   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7244     switch (CC) {
7245     default:
7246       // Not a min/max but with finite math, we may still be able to use fsel.
7247       if (HasNoInfs && HasNoNaNs)
7248         break;
7249       return Op;
7250     case ISD::SETOGT:
7251     case ISD::SETGT:
7252       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7253     case ISD::SETOLT:
7254     case ISD::SETLT:
7255       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7256     }
7257   }
7258 
7259   // TODO: Propagate flags from the select rather than global settings.
7260   SDNodeFlags Flags;
7261   Flags.setNoInfs(true);
7262   Flags.setNoNaNs(true);
7263 
7264   // If the RHS of the comparison is a 0.0, we don't need to do the
7265   // subtraction at all.
7266   SDValue Sel1;
7267   if (isFloatingPointZero(RHS))
7268     switch (CC) {
7269     default: break;       // SETUO etc aren't handled by fsel.
7270     case ISD::SETNE:
7271       std::swap(TV, FV);
7272       LLVM_FALLTHROUGH;
7273     case ISD::SETEQ:
7274       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7275         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7276       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7277       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7278         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7279       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7280                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7281     case ISD::SETULT:
7282     case ISD::SETLT:
7283       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7284       LLVM_FALLTHROUGH;
7285     case ISD::SETOGE:
7286     case ISD::SETGE:
7287       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7288         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7289       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7290     case ISD::SETUGT:
7291     case ISD::SETGT:
7292       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7293       LLVM_FALLTHROUGH;
7294     case ISD::SETOLE:
7295     case ISD::SETLE:
7296       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7297         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7298       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7299                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7300     }
7301 
7302   SDValue Cmp;
7303   switch (CC) {
7304   default: break;       // SETUO etc aren't handled by fsel.
7305   case ISD::SETNE:
7306     std::swap(TV, FV);
7307     LLVM_FALLTHROUGH;
7308   case ISD::SETEQ:
7309     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7310     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7311       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7312     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7313     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7314       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7315     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7316                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7317   case ISD::SETULT:
7318   case ISD::SETLT:
7319     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7320     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7321       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7322     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7323   case ISD::SETOGE:
7324   case ISD::SETGE:
7325     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7326     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7327       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7328     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7329   case ISD::SETUGT:
7330   case ISD::SETGT:
7331     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7332     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7333       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7334     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7335   case ISD::SETOLE:
7336   case ISD::SETLE:
7337     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7338     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7339       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7340     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7341   }
7342   return Op;
7343 }
7344 
7345 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7346                                                SelectionDAG &DAG,
7347                                                const SDLoc &dl) const {
7348   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7349   SDValue Src = Op.getOperand(0);
7350   if (Src.getValueType() == MVT::f32)
7351     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7352 
7353   SDValue Tmp;
7354   switch (Op.getSimpleValueType().SimpleTy) {
7355   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7356   case MVT::i32:
7357     Tmp = DAG.getNode(
7358         Op.getOpcode() == ISD::FP_TO_SINT
7359             ? PPCISD::FCTIWZ
7360             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7361         dl, MVT::f64, Src);
7362     break;
7363   case MVT::i64:
7364     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7365            "i64 FP_TO_UINT is supported only with FPCVT");
7366     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7367                                                         PPCISD::FCTIDUZ,
7368                       dl, MVT::f64, Src);
7369     break;
7370   }
7371 
7372   // Convert the FP value to an int value through memory.
7373   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7374     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7375   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7376   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7377   MachinePointerInfo MPI =
7378       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7379 
7380   // Emit a store to the stack slot.
7381   SDValue Chain;
7382   if (i32Stack) {
7383     MachineFunction &MF = DAG.getMachineFunction();
7384     MachineMemOperand *MMO =
7385       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7386     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7387     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7388               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7389   } else
7390     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7391 
7392   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7393   // add in a bias on big endian.
7394   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7395     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7396                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7397     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7398   }
7399 
7400   RLI.Chain = Chain;
7401   RLI.Ptr = FIPtr;
7402   RLI.MPI = MPI;
7403 }
7404 
7405 /// Custom lowers floating point to integer conversions to use
7406 /// the direct move instructions available in ISA 2.07 to avoid the
7407 /// need for load/store combinations.
7408 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7409                                                     SelectionDAG &DAG,
7410                                                     const SDLoc &dl) const {
7411   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7412   SDValue Src = Op.getOperand(0);
7413 
7414   if (Src.getValueType() == MVT::f32)
7415     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7416 
7417   SDValue Tmp;
7418   switch (Op.getSimpleValueType().SimpleTy) {
7419   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7420   case MVT::i32:
7421     Tmp = DAG.getNode(
7422         Op.getOpcode() == ISD::FP_TO_SINT
7423             ? PPCISD::FCTIWZ
7424             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7425         dl, MVT::f64, Src);
7426     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7427     break;
7428   case MVT::i64:
7429     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7430            "i64 FP_TO_UINT is supported only with FPCVT");
7431     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7432                                                         PPCISD::FCTIDUZ,
7433                       dl, MVT::f64, Src);
7434     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7435     break;
7436   }
7437   return Tmp;
7438 }
7439 
7440 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7441                                           const SDLoc &dl) const {
7442 
7443   // FP to INT conversions are legal for f128.
7444   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7445     return Op;
7446 
7447   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7448   // PPC (the libcall is not available).
7449   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7450     if (Op.getValueType() == MVT::i32) {
7451       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7452         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7453                                  MVT::f64, Op.getOperand(0),
7454                                  DAG.getIntPtrConstant(0, dl));
7455         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7456                                  MVT::f64, Op.getOperand(0),
7457                                  DAG.getIntPtrConstant(1, dl));
7458 
7459         // Add the two halves of the long double in round-to-zero mode.
7460         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7461 
7462         // Now use a smaller FP_TO_SINT.
7463         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7464       }
7465       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7466         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7467         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7468         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7469         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7470         // FIXME: generated code sucks.
7471         // TODO: Are there fast-math-flags to propagate to this FSUB?
7472         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7473                                    Op.getOperand(0), Tmp);
7474         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7475         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7476                            DAG.getConstant(0x80000000, dl, MVT::i32));
7477         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7478                                     Op.getOperand(0));
7479         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7480                                ISD::SETGE);
7481       }
7482     }
7483 
7484     return SDValue();
7485   }
7486 
7487   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7488     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7489 
7490   ReuseLoadInfo RLI;
7491   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7492 
7493   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7494                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7495 }
7496 
7497 // We're trying to insert a regular store, S, and then a load, L. If the
7498 // incoming value, O, is a load, we might just be able to have our load use the
7499 // address used by O. However, we don't know if anything else will store to
7500 // that address before we can load from it. To prevent this situation, we need
7501 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7502 // the same chain operand as O, we create a token factor from the chain results
7503 // of O and L, and we replace all uses of O's chain result with that token
7504 // factor (see spliceIntoChain below for this last part).
7505 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7506                                             ReuseLoadInfo &RLI,
7507                                             SelectionDAG &DAG,
7508                                             ISD::LoadExtType ET) const {
7509   SDLoc dl(Op);
7510   if (ET == ISD::NON_EXTLOAD &&
7511       (Op.getOpcode() == ISD::FP_TO_UINT ||
7512        Op.getOpcode() == ISD::FP_TO_SINT) &&
7513       isOperationLegalOrCustom(Op.getOpcode(),
7514                                Op.getOperand(0).getValueType())) {
7515 
7516     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7517     return true;
7518   }
7519 
7520   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7521   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7522       LD->isNonTemporal())
7523     return false;
7524   if (LD->getMemoryVT() != MemVT)
7525     return false;
7526 
7527   RLI.Ptr = LD->getBasePtr();
7528   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7529     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7530            "Non-pre-inc AM on PPC?");
7531     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7532                           LD->getOffset());
7533   }
7534 
7535   RLI.Chain = LD->getChain();
7536   RLI.MPI = LD->getPointerInfo();
7537   RLI.IsDereferenceable = LD->isDereferenceable();
7538   RLI.IsInvariant = LD->isInvariant();
7539   RLI.Alignment = LD->getAlignment();
7540   RLI.AAInfo = LD->getAAInfo();
7541   RLI.Ranges = LD->getRanges();
7542 
7543   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7544   return true;
7545 }
7546 
7547 // Given the head of the old chain, ResChain, insert a token factor containing
7548 // it and NewResChain, and make users of ResChain now be users of that token
7549 // factor.
7550 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7551 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7552                                         SDValue NewResChain,
7553                                         SelectionDAG &DAG) const {
7554   if (!ResChain)
7555     return;
7556 
7557   SDLoc dl(NewResChain);
7558 
7559   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7560                            NewResChain, DAG.getUNDEF(MVT::Other));
7561   assert(TF.getNode() != NewResChain.getNode() &&
7562          "A new TF really is required here");
7563 
7564   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7565   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7566 }
7567 
7568 /// Analyze profitability of direct move
7569 /// prefer float load to int load plus direct move
7570 /// when there is no integer use of int load
7571 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7572   SDNode *Origin = Op.getOperand(0).getNode();
7573   if (Origin->getOpcode() != ISD::LOAD)
7574     return true;
7575 
7576   // If there is no LXSIBZX/LXSIHZX, like Power8,
7577   // prefer direct move if the memory size is 1 or 2 bytes.
7578   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7579   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7580     return true;
7581 
7582   for (SDNode::use_iterator UI = Origin->use_begin(),
7583                             UE = Origin->use_end();
7584        UI != UE; ++UI) {
7585 
7586     // Only look at the users of the loaded value.
7587     if (UI.getUse().get().getResNo() != 0)
7588       continue;
7589 
7590     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7591         UI->getOpcode() != ISD::UINT_TO_FP)
7592       return true;
7593   }
7594 
7595   return false;
7596 }
7597 
7598 /// Custom lowers integer to floating point conversions to use
7599 /// the direct move instructions available in ISA 2.07 to avoid the
7600 /// need for load/store combinations.
7601 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7602                                                     SelectionDAG &DAG,
7603                                                     const SDLoc &dl) const {
7604   assert((Op.getValueType() == MVT::f32 ||
7605           Op.getValueType() == MVT::f64) &&
7606          "Invalid floating point type as target of conversion");
7607   assert(Subtarget.hasFPCVT() &&
7608          "Int to FP conversions with direct moves require FPCVT");
7609   SDValue FP;
7610   SDValue Src = Op.getOperand(0);
7611   bool SinglePrec = Op.getValueType() == MVT::f32;
7612   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7613   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7614   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7615                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7616 
7617   if (WordInt) {
7618     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7619                      dl, MVT::f64, Src);
7620     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7621   }
7622   else {
7623     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7624     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7625   }
7626 
7627   return FP;
7628 }
7629 
7630 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7631 
7632   EVT VecVT = Vec.getValueType();
7633   assert(VecVT.isVector() && "Expected a vector type.");
7634   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7635 
7636   EVT EltVT = VecVT.getVectorElementType();
7637   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7638   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7639 
7640   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7641   SmallVector<SDValue, 16> Ops(NumConcat);
7642   Ops[0] = Vec;
7643   SDValue UndefVec = DAG.getUNDEF(VecVT);
7644   for (unsigned i = 1; i < NumConcat; ++i)
7645     Ops[i] = UndefVec;
7646 
7647   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7648 }
7649 
7650 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7651                                                 const SDLoc &dl) const {
7652 
7653   unsigned Opc = Op.getOpcode();
7654   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7655          "Unexpected conversion type");
7656   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7657          "Supports conversions to v2f64/v4f32 only.");
7658 
7659   bool SignedConv = Opc == ISD::SINT_TO_FP;
7660   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7661 
7662   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7663   EVT WideVT = Wide.getValueType();
7664   unsigned WideNumElts = WideVT.getVectorNumElements();
7665   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7666 
7667   SmallVector<int, 16> ShuffV;
7668   for (unsigned i = 0; i < WideNumElts; ++i)
7669     ShuffV.push_back(i + WideNumElts);
7670 
7671   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7672   int SaveElts = FourEltRes ? 4 : 2;
7673   if (Subtarget.isLittleEndian())
7674     for (int i = 0; i < SaveElts; i++)
7675       ShuffV[i * Stride] = i;
7676   else
7677     for (int i = 1; i <= SaveElts; i++)
7678       ShuffV[i * Stride - 1] = i - 1;
7679 
7680   SDValue ShuffleSrc2 =
7681       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7682   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7683   unsigned ExtendOp =
7684       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7685 
7686   SDValue Extend;
7687   if (!Subtarget.hasP9Altivec() && SignedConv) {
7688     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7689     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7690                          DAG.getValueType(Op.getOperand(0).getValueType()));
7691   } else
7692     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7693 
7694   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7695 }
7696 
7697 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7698                                           SelectionDAG &DAG) const {
7699   SDLoc dl(Op);
7700 
7701   EVT InVT = Op.getOperand(0).getValueType();
7702   EVT OutVT = Op.getValueType();
7703   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7704       isOperationCustom(Op.getOpcode(), InVT))
7705     return LowerINT_TO_FPVector(Op, DAG, dl);
7706 
7707   // Conversions to f128 are legal.
7708   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7709     return Op;
7710 
7711   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7712     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7713       return SDValue();
7714 
7715     SDValue Value = Op.getOperand(0);
7716     // The values are now known to be -1 (false) or 1 (true). To convert this
7717     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7718     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7719     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7720 
7721     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7722 
7723     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7724 
7725     if (Op.getValueType() != MVT::v4f64)
7726       Value = DAG.getNode(ISD::FP_ROUND, dl,
7727                           Op.getValueType(), Value,
7728                           DAG.getIntPtrConstant(1, dl));
7729     return Value;
7730   }
7731 
7732   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7733   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7734     return SDValue();
7735 
7736   if (Op.getOperand(0).getValueType() == MVT::i1)
7737     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7738                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7739                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7740 
7741   // If we have direct moves, we can do all the conversion, skip the store/load
7742   // however, without FPCVT we can't do most conversions.
7743   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7744       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7745     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7746 
7747   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7748          "UINT_TO_FP is supported only with FPCVT");
7749 
7750   // If we have FCFIDS, then use it when converting to single-precision.
7751   // Otherwise, convert to double-precision and then round.
7752   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7753                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7754                                                             : PPCISD::FCFIDS)
7755                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7756                                                             : PPCISD::FCFID);
7757   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7758                   ? MVT::f32
7759                   : MVT::f64;
7760 
7761   if (Op.getOperand(0).getValueType() == MVT::i64) {
7762     SDValue SINT = Op.getOperand(0);
7763     // When converting to single-precision, we actually need to convert
7764     // to double-precision first and then round to single-precision.
7765     // To avoid double-rounding effects during that operation, we have
7766     // to prepare the input operand.  Bits that might be truncated when
7767     // converting to double-precision are replaced by a bit that won't
7768     // be lost at this stage, but is below the single-precision rounding
7769     // position.
7770     //
7771     // However, if -enable-unsafe-fp-math is in effect, accept double
7772     // rounding to avoid the extra overhead.
7773     if (Op.getValueType() == MVT::f32 &&
7774         !Subtarget.hasFPCVT() &&
7775         !DAG.getTarget().Options.UnsafeFPMath) {
7776 
7777       // Twiddle input to make sure the low 11 bits are zero.  (If this
7778       // is the case, we are guaranteed the value will fit into the 53 bit
7779       // mantissa of an IEEE double-precision value without rounding.)
7780       // If any of those low 11 bits were not zero originally, make sure
7781       // bit 12 (value 2048) is set instead, so that the final rounding
7782       // to single-precision gets the correct result.
7783       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7784                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7785       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7786                           Round, DAG.getConstant(2047, dl, MVT::i64));
7787       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7788       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7789                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7790 
7791       // However, we cannot use that value unconditionally: if the magnitude
7792       // of the input value is small, the bit-twiddling we did above might
7793       // end up visibly changing the output.  Fortunately, in that case, we
7794       // don't need to twiddle bits since the original input will convert
7795       // exactly to double-precision floating-point already.  Therefore,
7796       // construct a conditional to use the original value if the top 11
7797       // bits are all sign-bit copies, and use the rounded value computed
7798       // above otherwise.
7799       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7800                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7801       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7802                          Cond, DAG.getConstant(1, dl, MVT::i64));
7803       Cond = DAG.getSetCC(dl, MVT::i32,
7804                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7805 
7806       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7807     }
7808 
7809     ReuseLoadInfo RLI;
7810     SDValue Bits;
7811 
7812     MachineFunction &MF = DAG.getMachineFunction();
7813     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7814       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7815                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7816       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7817     } else if (Subtarget.hasLFIWAX() &&
7818                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7819       MachineMemOperand *MMO =
7820         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7821                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7822       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7823       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7824                                      DAG.getVTList(MVT::f64, MVT::Other),
7825                                      Ops, MVT::i32, MMO);
7826       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7827     } else if (Subtarget.hasFPCVT() &&
7828                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7829       MachineMemOperand *MMO =
7830         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7831                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7832       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7833       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7834                                      DAG.getVTList(MVT::f64, MVT::Other),
7835                                      Ops, MVT::i32, MMO);
7836       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7837     } else if (((Subtarget.hasLFIWAX() &&
7838                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7839                 (Subtarget.hasFPCVT() &&
7840                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7841                SINT.getOperand(0).getValueType() == MVT::i32) {
7842       MachineFrameInfo &MFI = MF.getFrameInfo();
7843       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7844 
7845       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7846       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7847 
7848       SDValue Store =
7849           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7850                        MachinePointerInfo::getFixedStack(
7851                            DAG.getMachineFunction(), FrameIdx));
7852 
7853       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7854              "Expected an i32 store");
7855 
7856       RLI.Ptr = FIdx;
7857       RLI.Chain = Store;
7858       RLI.MPI =
7859           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7860       RLI.Alignment = 4;
7861 
7862       MachineMemOperand *MMO =
7863         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7864                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7865       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7866       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7867                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7868                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7869                                      Ops, MVT::i32, MMO);
7870     } else
7871       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7872 
7873     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7874 
7875     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7876       FP = DAG.getNode(ISD::FP_ROUND, dl,
7877                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7878     return FP;
7879   }
7880 
7881   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7882          "Unhandled INT_TO_FP type in custom expander!");
7883   // Since we only generate this in 64-bit mode, we can take advantage of
7884   // 64-bit registers.  In particular, sign extend the input value into the
7885   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7886   // then lfd it and fcfid it.
7887   MachineFunction &MF = DAG.getMachineFunction();
7888   MachineFrameInfo &MFI = MF.getFrameInfo();
7889   EVT PtrVT = getPointerTy(MF.getDataLayout());
7890 
7891   SDValue Ld;
7892   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7893     ReuseLoadInfo RLI;
7894     bool ReusingLoad;
7895     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7896                                             DAG))) {
7897       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7898       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7899 
7900       SDValue Store =
7901           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7902                        MachinePointerInfo::getFixedStack(
7903                            DAG.getMachineFunction(), FrameIdx));
7904 
7905       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7906              "Expected an i32 store");
7907 
7908       RLI.Ptr = FIdx;
7909       RLI.Chain = Store;
7910       RLI.MPI =
7911           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7912       RLI.Alignment = 4;
7913     }
7914 
7915     MachineMemOperand *MMO =
7916       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7917                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7918     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7919     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7920                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7921                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7922                                  Ops, MVT::i32, MMO);
7923     if (ReusingLoad)
7924       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7925   } else {
7926     assert(Subtarget.isPPC64() &&
7927            "i32->FP without LFIWAX supported only on PPC64");
7928 
7929     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7930     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7931 
7932     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7933                                 Op.getOperand(0));
7934 
7935     // STD the extended value into the stack slot.
7936     SDValue Store = DAG.getStore(
7937         DAG.getEntryNode(), dl, Ext64, FIdx,
7938         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7939 
7940     // Load the value as a double.
7941     Ld = DAG.getLoad(
7942         MVT::f64, dl, Store, FIdx,
7943         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7944   }
7945 
7946   // FCFID it and return it.
7947   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7948   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7949     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7950                      DAG.getIntPtrConstant(0, dl));
7951   return FP;
7952 }
7953 
7954 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7955                                             SelectionDAG &DAG) const {
7956   SDLoc dl(Op);
7957   /*
7958    The rounding mode is in bits 30:31 of FPSR, and has the following
7959    settings:
7960      00 Round to nearest
7961      01 Round to 0
7962      10 Round to +inf
7963      11 Round to -inf
7964 
7965   FLT_ROUNDS, on the other hand, expects the following:
7966     -1 Undefined
7967      0 Round to 0
7968      1 Round to nearest
7969      2 Round to +inf
7970      3 Round to -inf
7971 
7972   To perform the conversion, we do:
7973     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7974   */
7975 
7976   MachineFunction &MF = DAG.getMachineFunction();
7977   EVT VT = Op.getValueType();
7978   EVT PtrVT = getPointerTy(MF.getDataLayout());
7979 
7980   // Save FP Control Word to register
7981   EVT NodeTys[] = {
7982     MVT::f64,    // return register
7983     MVT::Glue    // unused in this context
7984   };
7985   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7986 
7987   // Save FP register to stack slot
7988   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7989   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7990   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7991                                MachinePointerInfo());
7992 
7993   // Load FP Control Word from low 32 bits of stack slot.
7994   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7995   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7996   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7997 
7998   // Transform as necessary
7999   SDValue CWD1 =
8000     DAG.getNode(ISD::AND, dl, MVT::i32,
8001                 CWD, DAG.getConstant(3, dl, MVT::i32));
8002   SDValue CWD2 =
8003     DAG.getNode(ISD::SRL, dl, MVT::i32,
8004                 DAG.getNode(ISD::AND, dl, MVT::i32,
8005                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8006                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8007                             DAG.getConstant(3, dl, MVT::i32)),
8008                 DAG.getConstant(1, dl, MVT::i32));
8009 
8010   SDValue RetVal =
8011     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8012 
8013   return DAG.getNode((VT.getSizeInBits() < 16 ?
8014                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8015 }
8016 
8017 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8018   EVT VT = Op.getValueType();
8019   unsigned BitWidth = VT.getSizeInBits();
8020   SDLoc dl(Op);
8021   assert(Op.getNumOperands() == 3 &&
8022          VT == Op.getOperand(1).getValueType() &&
8023          "Unexpected SHL!");
8024 
8025   // Expand into a bunch of logical ops.  Note that these ops
8026   // depend on the PPC behavior for oversized shift amounts.
8027   SDValue Lo = Op.getOperand(0);
8028   SDValue Hi = Op.getOperand(1);
8029   SDValue Amt = Op.getOperand(2);
8030   EVT AmtVT = Amt.getValueType();
8031 
8032   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8033                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8034   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8035   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8036   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8037   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8038                              DAG.getConstant(-BitWidth, dl, AmtVT));
8039   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8040   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8041   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8042   SDValue OutOps[] = { OutLo, OutHi };
8043   return DAG.getMergeValues(OutOps, dl);
8044 }
8045 
8046 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8047   EVT VT = Op.getValueType();
8048   SDLoc dl(Op);
8049   unsigned BitWidth = VT.getSizeInBits();
8050   assert(Op.getNumOperands() == 3 &&
8051          VT == Op.getOperand(1).getValueType() &&
8052          "Unexpected SRL!");
8053 
8054   // Expand into a bunch of logical ops.  Note that these ops
8055   // depend on the PPC behavior for oversized shift amounts.
8056   SDValue Lo = Op.getOperand(0);
8057   SDValue Hi = Op.getOperand(1);
8058   SDValue Amt = Op.getOperand(2);
8059   EVT AmtVT = Amt.getValueType();
8060 
8061   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8062                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8063   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8064   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8065   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8066   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8067                              DAG.getConstant(-BitWidth, dl, AmtVT));
8068   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8069   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8070   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8071   SDValue OutOps[] = { OutLo, OutHi };
8072   return DAG.getMergeValues(OutOps, dl);
8073 }
8074 
8075 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8076   SDLoc dl(Op);
8077   EVT VT = Op.getValueType();
8078   unsigned BitWidth = VT.getSizeInBits();
8079   assert(Op.getNumOperands() == 3 &&
8080          VT == Op.getOperand(1).getValueType() &&
8081          "Unexpected SRA!");
8082 
8083   // Expand into a bunch of logical ops, followed by a select_cc.
8084   SDValue Lo = Op.getOperand(0);
8085   SDValue Hi = Op.getOperand(1);
8086   SDValue Amt = Op.getOperand(2);
8087   EVT AmtVT = Amt.getValueType();
8088 
8089   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8090                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8091   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8092   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8093   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8094   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8095                              DAG.getConstant(-BitWidth, dl, AmtVT));
8096   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8097   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8098   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8099                                   Tmp4, Tmp6, ISD::SETLE);
8100   SDValue OutOps[] = { OutLo, OutHi };
8101   return DAG.getMergeValues(OutOps, dl);
8102 }
8103 
8104 //===----------------------------------------------------------------------===//
8105 // Vector related lowering.
8106 //
8107 
8108 /// BuildSplatI - Build a canonical splati of Val with an element size of
8109 /// SplatSize.  Cast the result to VT.
8110 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8111                            SelectionDAG &DAG, const SDLoc &dl) {
8112   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
8113 
8114   static const MVT VTys[] = { // canonical VT to use for each size.
8115     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8116   };
8117 
8118   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8119 
8120   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8121   if (Val == -1)
8122     SplatSize = 1;
8123 
8124   EVT CanonicalVT = VTys[SplatSize-1];
8125 
8126   // Build a canonical splat for this value.
8127   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8128 }
8129 
8130 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8131 /// specified intrinsic ID.
8132 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8133                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8134   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8135   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8136                      DAG.getConstant(IID, dl, MVT::i32), Op);
8137 }
8138 
8139 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8140 /// specified intrinsic ID.
8141 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8142                                 SelectionDAG &DAG, const SDLoc &dl,
8143                                 EVT DestVT = MVT::Other) {
8144   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8145   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8146                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8147 }
8148 
8149 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8150 /// specified intrinsic ID.
8151 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8152                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8153                                 EVT DestVT = MVT::Other) {
8154   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8155   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8156                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8157 }
8158 
8159 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8160 /// amount.  The result has the specified value type.
8161 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8162                            SelectionDAG &DAG, const SDLoc &dl) {
8163   // Force LHS/RHS to be the right type.
8164   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8165   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8166 
8167   int Ops[16];
8168   for (unsigned i = 0; i != 16; ++i)
8169     Ops[i] = i + Amt;
8170   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8171   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8172 }
8173 
8174 /// Do we have an efficient pattern in a .td file for this node?
8175 ///
8176 /// \param V - pointer to the BuildVectorSDNode being matched
8177 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8178 ///
8179 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8180 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8181 /// the opposite is true (expansion is beneficial) are:
8182 /// - The node builds a vector out of integers that are not 32 or 64-bits
8183 /// - The node builds a vector out of constants
8184 /// - The node is a "load-and-splat"
8185 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8186 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8187                                             bool HasDirectMove,
8188                                             bool HasP8Vector) {
8189   EVT VecVT = V->getValueType(0);
8190   bool RightType = VecVT == MVT::v2f64 ||
8191     (HasP8Vector && VecVT == MVT::v4f32) ||
8192     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8193   if (!RightType)
8194     return false;
8195 
8196   bool IsSplat = true;
8197   bool IsLoad = false;
8198   SDValue Op0 = V->getOperand(0);
8199 
8200   // This function is called in a block that confirms the node is not a constant
8201   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8202   // different constants.
8203   if (V->isConstant())
8204     return false;
8205   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8206     if (V->getOperand(i).isUndef())
8207       return false;
8208     // We want to expand nodes that represent load-and-splat even if the
8209     // loaded value is a floating point truncation or conversion to int.
8210     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8211         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8212          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8213         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8214          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8215         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8216          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8217       IsLoad = true;
8218     // If the operands are different or the input is not a load and has more
8219     // uses than just this BV node, then it isn't a splat.
8220     if (V->getOperand(i) != Op0 ||
8221         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8222       IsSplat = false;
8223   }
8224   return !(IsSplat && IsLoad);
8225 }
8226 
8227 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8228 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8229 
8230   SDLoc dl(Op);
8231   SDValue Op0 = Op->getOperand(0);
8232 
8233   if (!EnableQuadPrecision ||
8234       (Op.getValueType() != MVT::f128 ) ||
8235       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8236       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8237       (Op0.getOperand(1).getValueType() != MVT::i64))
8238     return SDValue();
8239 
8240   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8241                      Op0.getOperand(1));
8242 }
8243 
8244 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8245   const SDValue *InputLoad = &Op;
8246   if (InputLoad->getOpcode() == ISD::BITCAST)
8247     InputLoad = &InputLoad->getOperand(0);
8248   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8249     InputLoad = &InputLoad->getOperand(0);
8250   if (InputLoad->getOpcode() != ISD::LOAD)
8251     return nullptr;
8252   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8253   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8254 }
8255 
8256 // If this is a case we can't handle, return null and let the default
8257 // expansion code take care of it.  If we CAN select this case, and if it
8258 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8259 // this case more efficiently than a constant pool load, lower it to the
8260 // sequence of ops that should be used.
8261 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8262                                              SelectionDAG &DAG) const {
8263   SDLoc dl(Op);
8264   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8265   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8266 
8267   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8268     // We first build an i32 vector, load it into a QPX register,
8269     // then convert it to a floating-point vector and compare it
8270     // to a zero vector to get the boolean result.
8271     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8272     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8273     MachinePointerInfo PtrInfo =
8274         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8275     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8276     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8277 
8278     assert(BVN->getNumOperands() == 4 &&
8279       "BUILD_VECTOR for v4i1 does not have 4 operands");
8280 
8281     bool IsConst = true;
8282     for (unsigned i = 0; i < 4; ++i) {
8283       if (BVN->getOperand(i).isUndef()) continue;
8284       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8285         IsConst = false;
8286         break;
8287       }
8288     }
8289 
8290     if (IsConst) {
8291       Constant *One =
8292         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8293       Constant *NegOne =
8294         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8295 
8296       Constant *CV[4];
8297       for (unsigned i = 0; i < 4; ++i) {
8298         if (BVN->getOperand(i).isUndef())
8299           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8300         else if (isNullConstant(BVN->getOperand(i)))
8301           CV[i] = NegOne;
8302         else
8303           CV[i] = One;
8304       }
8305 
8306       Constant *CP = ConstantVector::get(CV);
8307       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8308                                           16 /* alignment */);
8309 
8310       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8311       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8312       return DAG.getMemIntrinsicNode(
8313           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8314           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8315     }
8316 
8317     SmallVector<SDValue, 4> Stores;
8318     for (unsigned i = 0; i < 4; ++i) {
8319       if (BVN->getOperand(i).isUndef()) continue;
8320 
8321       unsigned Offset = 4*i;
8322       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8323       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8324 
8325       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8326       if (StoreSize > 4) {
8327         Stores.push_back(
8328             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8329                               PtrInfo.getWithOffset(Offset), MVT::i32));
8330       } else {
8331         SDValue StoreValue = BVN->getOperand(i);
8332         if (StoreSize < 4)
8333           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8334 
8335         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8336                                       PtrInfo.getWithOffset(Offset)));
8337       }
8338     }
8339 
8340     SDValue StoreChain;
8341     if (!Stores.empty())
8342       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8343     else
8344       StoreChain = DAG.getEntryNode();
8345 
8346     // Now load from v4i32 into the QPX register; this will extend it to
8347     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8348     // is typed as v4f64 because the QPX register integer states are not
8349     // explicitly represented.
8350 
8351     SDValue Ops[] = {StoreChain,
8352                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8353                      FIdx};
8354     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8355 
8356     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8357       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8358     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8359       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8360       LoadedVect);
8361 
8362     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8363 
8364     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8365   }
8366 
8367   // All other QPX vectors are handled by generic code.
8368   if (Subtarget.hasQPX())
8369     return SDValue();
8370 
8371   // Check if this is a splat of a constant value.
8372   APInt APSplatBits, APSplatUndef;
8373   unsigned SplatBitSize;
8374   bool HasAnyUndefs;
8375   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8376                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8377       SplatBitSize > 32) {
8378 
8379     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8380     // Handle load-and-splat patterns as we have instructions that will do this
8381     // in one go.
8382     if (InputLoad && DAG.isSplatValue(Op, true)) {
8383       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8384 
8385       // We have handling for 4 and 8 byte elements.
8386       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8387 
8388       // Checking for a single use of this load, we have to check for vector
8389       // width (128 bits) / ElementSize uses (since each operand of the
8390       // BUILD_VECTOR is a separate use of the value.
8391       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8392           ((Subtarget.hasVSX() && ElementSize == 64) ||
8393            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8394         SDValue Ops[] = {
8395           LD->getChain(),    // Chain
8396           LD->getBasePtr(),  // Ptr
8397           DAG.getValueType(Op.getValueType()) // VT
8398         };
8399         return
8400           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8401                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8402                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8403       }
8404     }
8405 
8406     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8407     // lowered to VSX instructions under certain conditions.
8408     // Without VSX, there is no pattern more efficient than expanding the node.
8409     if (Subtarget.hasVSX() &&
8410         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8411                                         Subtarget.hasP8Vector()))
8412       return Op;
8413     return SDValue();
8414   }
8415 
8416   unsigned SplatBits = APSplatBits.getZExtValue();
8417   unsigned SplatUndef = APSplatUndef.getZExtValue();
8418   unsigned SplatSize = SplatBitSize / 8;
8419 
8420   // First, handle single instruction cases.
8421 
8422   // All zeros?
8423   if (SplatBits == 0) {
8424     // Canonicalize all zero vectors to be v4i32.
8425     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8426       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8427       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8428     }
8429     return Op;
8430   }
8431 
8432   // We have XXSPLTIB for constant splats one byte wide
8433   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8434     // This is a splat of 1-byte elements with some elements potentially undef.
8435     // Rather than trying to match undef in the SDAG patterns, ensure that all
8436     // elements are the same constant.
8437     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8438       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8439                                                        dl, MVT::i32));
8440       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8441       if (Op.getValueType() != MVT::v16i8)
8442         return DAG.getBitcast(Op.getValueType(), NewBV);
8443       return NewBV;
8444     }
8445 
8446     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8447     // detect that constant splats like v8i16: 0xABAB are really just splats
8448     // of a 1-byte constant. In this case, we need to convert the node to a
8449     // splat of v16i8 and a bitcast.
8450     if (Op.getValueType() != MVT::v16i8)
8451       return DAG.getBitcast(Op.getValueType(),
8452                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8453 
8454     return Op;
8455   }
8456 
8457   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8458   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8459                     (32-SplatBitSize));
8460   if (SextVal >= -16 && SextVal <= 15)
8461     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8462 
8463   // Two instruction sequences.
8464 
8465   // If this value is in the range [-32,30] and is even, use:
8466   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8467   // If this value is in the range [17,31] and is odd, use:
8468   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8469   // If this value is in the range [-31,-17] and is odd, use:
8470   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8471   // Note the last two are three-instruction sequences.
8472   if (SextVal >= -32 && SextVal <= 31) {
8473     // To avoid having these optimizations undone by constant folding,
8474     // we convert to a pseudo that will be expanded later into one of
8475     // the above forms.
8476     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8477     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8478               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8479     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8480     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8481     if (VT == Op.getValueType())
8482       return RetVal;
8483     else
8484       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8485   }
8486 
8487   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8488   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8489   // for fneg/fabs.
8490   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8491     // Make -1 and vspltisw -1:
8492     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8493 
8494     // Make the VSLW intrinsic, computing 0x8000_0000.
8495     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8496                                    OnesV, DAG, dl);
8497 
8498     // xor by OnesV to invert it.
8499     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8500     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8501   }
8502 
8503   // Check to see if this is a wide variety of vsplti*, binop self cases.
8504   static const signed char SplatCsts[] = {
8505     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8506     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8507   };
8508 
8509   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8510     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8511     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8512     int i = SplatCsts[idx];
8513 
8514     // Figure out what shift amount will be used by altivec if shifted by i in
8515     // this splat size.
8516     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8517 
8518     // vsplti + shl self.
8519     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8520       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8521       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8522         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8523         Intrinsic::ppc_altivec_vslw
8524       };
8525       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8526       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8527     }
8528 
8529     // vsplti + srl self.
8530     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8531       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8532       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8533         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8534         Intrinsic::ppc_altivec_vsrw
8535       };
8536       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8537       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8538     }
8539 
8540     // vsplti + sra self.
8541     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8542       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8543       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8544         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8545         Intrinsic::ppc_altivec_vsraw
8546       };
8547       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8548       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8549     }
8550 
8551     // vsplti + rol self.
8552     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8553                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8554       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8555       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8556         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8557         Intrinsic::ppc_altivec_vrlw
8558       };
8559       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8560       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8561     }
8562 
8563     // t = vsplti c, result = vsldoi t, t, 1
8564     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8565       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8566       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8567       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8568     }
8569     // t = vsplti c, result = vsldoi t, t, 2
8570     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8571       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8572       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8573       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8574     }
8575     // t = vsplti c, result = vsldoi t, t, 3
8576     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8577       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8578       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8579       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8580     }
8581   }
8582 
8583   return SDValue();
8584 }
8585 
8586 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8587 /// the specified operations to build the shuffle.
8588 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8589                                       SDValue RHS, SelectionDAG &DAG,
8590                                       const SDLoc &dl) {
8591   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8592   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8593   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8594 
8595   enum {
8596     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8597     OP_VMRGHW,
8598     OP_VMRGLW,
8599     OP_VSPLTISW0,
8600     OP_VSPLTISW1,
8601     OP_VSPLTISW2,
8602     OP_VSPLTISW3,
8603     OP_VSLDOI4,
8604     OP_VSLDOI8,
8605     OP_VSLDOI12
8606   };
8607 
8608   if (OpNum == OP_COPY) {
8609     if (LHSID == (1*9+2)*9+3) return LHS;
8610     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8611     return RHS;
8612   }
8613 
8614   SDValue OpLHS, OpRHS;
8615   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8616   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8617 
8618   int ShufIdxs[16];
8619   switch (OpNum) {
8620   default: llvm_unreachable("Unknown i32 permute!");
8621   case OP_VMRGHW:
8622     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8623     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8624     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8625     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8626     break;
8627   case OP_VMRGLW:
8628     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8629     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8630     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8631     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8632     break;
8633   case OP_VSPLTISW0:
8634     for (unsigned i = 0; i != 16; ++i)
8635       ShufIdxs[i] = (i&3)+0;
8636     break;
8637   case OP_VSPLTISW1:
8638     for (unsigned i = 0; i != 16; ++i)
8639       ShufIdxs[i] = (i&3)+4;
8640     break;
8641   case OP_VSPLTISW2:
8642     for (unsigned i = 0; i != 16; ++i)
8643       ShufIdxs[i] = (i&3)+8;
8644     break;
8645   case OP_VSPLTISW3:
8646     for (unsigned i = 0; i != 16; ++i)
8647       ShufIdxs[i] = (i&3)+12;
8648     break;
8649   case OP_VSLDOI4:
8650     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8651   case OP_VSLDOI8:
8652     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8653   case OP_VSLDOI12:
8654     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8655   }
8656   EVT VT = OpLHS.getValueType();
8657   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8658   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8659   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8660   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8661 }
8662 
8663 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8664 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8665 /// SDValue.
8666 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8667                                            SelectionDAG &DAG) const {
8668   const unsigned BytesInVector = 16;
8669   bool IsLE = Subtarget.isLittleEndian();
8670   SDLoc dl(N);
8671   SDValue V1 = N->getOperand(0);
8672   SDValue V2 = N->getOperand(1);
8673   unsigned ShiftElts = 0, InsertAtByte = 0;
8674   bool Swap = false;
8675 
8676   // Shifts required to get the byte we want at element 7.
8677   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8678                                    0, 15, 14, 13, 12, 11, 10, 9};
8679   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8680                                 1, 2,  3,  4,  5,  6,  7,  8};
8681 
8682   ArrayRef<int> Mask = N->getMask();
8683   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8684 
8685   // For each mask element, find out if we're just inserting something
8686   // from V2 into V1 or vice versa.
8687   // Possible permutations inserting an element from V2 into V1:
8688   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8689   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8690   //   ...
8691   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8692   // Inserting from V1 into V2 will be similar, except mask range will be
8693   // [16,31].
8694 
8695   bool FoundCandidate = false;
8696   // If both vector operands for the shuffle are the same vector, the mask
8697   // will contain only elements from the first one and the second one will be
8698   // undef.
8699   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8700   // Go through the mask of half-words to find an element that's being moved
8701   // from one vector to the other.
8702   for (unsigned i = 0; i < BytesInVector; ++i) {
8703     unsigned CurrentElement = Mask[i];
8704     // If 2nd operand is undefined, we should only look for element 7 in the
8705     // Mask.
8706     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8707       continue;
8708 
8709     bool OtherElementsInOrder = true;
8710     // Examine the other elements in the Mask to see if they're in original
8711     // order.
8712     for (unsigned j = 0; j < BytesInVector; ++j) {
8713       if (j == i)
8714         continue;
8715       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8716       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8717       // in which we always assume we're always picking from the 1st operand.
8718       int MaskOffset =
8719           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8720       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8721         OtherElementsInOrder = false;
8722         break;
8723       }
8724     }
8725     // If other elements are in original order, we record the number of shifts
8726     // we need to get the element we want into element 7. Also record which byte
8727     // in the vector we should insert into.
8728     if (OtherElementsInOrder) {
8729       // If 2nd operand is undefined, we assume no shifts and no swapping.
8730       if (V2.isUndef()) {
8731         ShiftElts = 0;
8732         Swap = false;
8733       } else {
8734         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8735         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8736                          : BigEndianShifts[CurrentElement & 0xF];
8737         Swap = CurrentElement < BytesInVector;
8738       }
8739       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8740       FoundCandidate = true;
8741       break;
8742     }
8743   }
8744 
8745   if (!FoundCandidate)
8746     return SDValue();
8747 
8748   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8749   // optionally with VECSHL if shift is required.
8750   if (Swap)
8751     std::swap(V1, V2);
8752   if (V2.isUndef())
8753     V2 = V1;
8754   if (ShiftElts) {
8755     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8756                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8757     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8758                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8759   }
8760   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8761                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8762 }
8763 
8764 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8765 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8766 /// SDValue.
8767 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8768                                            SelectionDAG &DAG) const {
8769   const unsigned NumHalfWords = 8;
8770   const unsigned BytesInVector = NumHalfWords * 2;
8771   // Check that the shuffle is on half-words.
8772   if (!isNByteElemShuffleMask(N, 2, 1))
8773     return SDValue();
8774 
8775   bool IsLE = Subtarget.isLittleEndian();
8776   SDLoc dl(N);
8777   SDValue V1 = N->getOperand(0);
8778   SDValue V2 = N->getOperand(1);
8779   unsigned ShiftElts = 0, InsertAtByte = 0;
8780   bool Swap = false;
8781 
8782   // Shifts required to get the half-word we want at element 3.
8783   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8784   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8785 
8786   uint32_t Mask = 0;
8787   uint32_t OriginalOrderLow = 0x1234567;
8788   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8789   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8790   // 32-bit space, only need 4-bit nibbles per element.
8791   for (unsigned i = 0; i < NumHalfWords; ++i) {
8792     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8793     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8794   }
8795 
8796   // For each mask element, find out if we're just inserting something
8797   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8798   // from V2 into V1:
8799   //   X, 1, 2, 3, 4, 5, 6, 7
8800   //   0, X, 2, 3, 4, 5, 6, 7
8801   //   0, 1, X, 3, 4, 5, 6, 7
8802   //   0, 1, 2, X, 4, 5, 6, 7
8803   //   0, 1, 2, 3, X, 5, 6, 7
8804   //   0, 1, 2, 3, 4, X, 6, 7
8805   //   0, 1, 2, 3, 4, 5, X, 7
8806   //   0, 1, 2, 3, 4, 5, 6, X
8807   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8808 
8809   bool FoundCandidate = false;
8810   // Go through the mask of half-words to find an element that's being moved
8811   // from one vector to the other.
8812   for (unsigned i = 0; i < NumHalfWords; ++i) {
8813     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8814     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8815     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8816     uint32_t TargetOrder = 0x0;
8817 
8818     // If both vector operands for the shuffle are the same vector, the mask
8819     // will contain only elements from the first one and the second one will be
8820     // undef.
8821     if (V2.isUndef()) {
8822       ShiftElts = 0;
8823       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8824       TargetOrder = OriginalOrderLow;
8825       Swap = false;
8826       // Skip if not the correct element or mask of other elements don't equal
8827       // to our expected order.
8828       if (MaskOneElt == VINSERTHSrcElem &&
8829           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8830         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8831         FoundCandidate = true;
8832         break;
8833       }
8834     } else { // If both operands are defined.
8835       // Target order is [8,15] if the current mask is between [0,7].
8836       TargetOrder =
8837           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8838       // Skip if mask of other elements don't equal our expected order.
8839       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8840         // We only need the last 3 bits for the number of shifts.
8841         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8842                          : BigEndianShifts[MaskOneElt & 0x7];
8843         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8844         Swap = MaskOneElt < NumHalfWords;
8845         FoundCandidate = true;
8846         break;
8847       }
8848     }
8849   }
8850 
8851   if (!FoundCandidate)
8852     return SDValue();
8853 
8854   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8855   // optionally with VECSHL if shift is required.
8856   if (Swap)
8857     std::swap(V1, V2);
8858   if (V2.isUndef())
8859     V2 = V1;
8860   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8861   if (ShiftElts) {
8862     // Double ShiftElts because we're left shifting on v16i8 type.
8863     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8864                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8865     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8866     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8867                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8868     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8869   }
8870   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8871   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8872                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8873   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8874 }
8875 
8876 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8877 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8878 /// return the code it can be lowered into.  Worst case, it can always be
8879 /// lowered into a vperm.
8880 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8881                                                SelectionDAG &DAG) const {
8882   SDLoc dl(Op);
8883   SDValue V1 = Op.getOperand(0);
8884   SDValue V2 = Op.getOperand(1);
8885   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8886   EVT VT = Op.getValueType();
8887   bool isLittleEndian = Subtarget.isLittleEndian();
8888 
8889   unsigned ShiftElts, InsertAtByte;
8890   bool Swap = false;
8891 
8892   // If this is a load-and-splat, we can do that with a single instruction
8893   // in some cases. However if the load has multiple uses, we don't want to
8894   // combine it because that will just produce multiple loads.
8895   const SDValue *InputLoad = getNormalLoadInput(V1);
8896   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
8897       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
8898       InputLoad->hasOneUse()) {
8899     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
8900     int SplatIdx =
8901       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
8902 
8903     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8904     // For 4-byte load-and-splat, we need Power9.
8905     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
8906       uint64_t Offset = 0;
8907       if (IsFourByte)
8908         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
8909       else
8910         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
8911       SDValue BasePtr = LD->getBasePtr();
8912       if (Offset != 0)
8913         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
8914                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
8915       SDValue Ops[] = {
8916         LD->getChain(),    // Chain
8917         BasePtr,           // BasePtr
8918         DAG.getValueType(Op.getValueType()) // VT
8919       };
8920       SDVTList VTL =
8921         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
8922       SDValue LdSplt =
8923         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
8924                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
8925       if (LdSplt.getValueType() != SVOp->getValueType(0))
8926         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
8927       return LdSplt;
8928     }
8929   }
8930   if (Subtarget.hasP9Vector() &&
8931       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8932                            isLittleEndian)) {
8933     if (Swap)
8934       std::swap(V1, V2);
8935     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8936     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8937     if (ShiftElts) {
8938       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8939                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8940       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8941                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8942       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8943     }
8944     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8945                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8946     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8947   }
8948 
8949   if (Subtarget.hasP9Altivec()) {
8950     SDValue NewISDNode;
8951     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8952       return NewISDNode;
8953 
8954     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8955       return NewISDNode;
8956   }
8957 
8958   if (Subtarget.hasVSX() &&
8959       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8960     if (Swap)
8961       std::swap(V1, V2);
8962     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8963     SDValue Conv2 =
8964         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8965 
8966     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8967                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8968     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8969   }
8970 
8971   if (Subtarget.hasVSX() &&
8972     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8973     if (Swap)
8974       std::swap(V1, V2);
8975     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8976     SDValue Conv2 =
8977         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8978 
8979     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8980                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8981     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8982   }
8983 
8984   if (Subtarget.hasP9Vector()) {
8985      if (PPC::isXXBRHShuffleMask(SVOp)) {
8986       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8987       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8988       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8989     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8990       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8991       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8992       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8993     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8994       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8995       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8996       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8997     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8998       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8999       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
9000       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9001     }
9002   }
9003 
9004   if (Subtarget.hasVSX()) {
9005     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9006       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9007 
9008       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9009       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9010                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9011       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9012     }
9013 
9014     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9015     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9016       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9017       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9018       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9019     }
9020   }
9021 
9022   if (Subtarget.hasQPX()) {
9023     if (VT.getVectorNumElements() != 4)
9024       return SDValue();
9025 
9026     if (V2.isUndef()) V2 = V1;
9027 
9028     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9029     if (AlignIdx != -1) {
9030       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9031                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9032     } else if (SVOp->isSplat()) {
9033       int SplatIdx = SVOp->getSplatIndex();
9034       if (SplatIdx >= 4) {
9035         std::swap(V1, V2);
9036         SplatIdx -= 4;
9037       }
9038 
9039       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9040                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9041     }
9042 
9043     // Lower this into a qvgpci/qvfperm pair.
9044 
9045     // Compute the qvgpci literal
9046     unsigned idx = 0;
9047     for (unsigned i = 0; i < 4; ++i) {
9048       int m = SVOp->getMaskElt(i);
9049       unsigned mm = m >= 0 ? (unsigned) m : i;
9050       idx |= mm << (3-i)*3;
9051     }
9052 
9053     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9054                              DAG.getConstant(idx, dl, MVT::i32));
9055     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9056   }
9057 
9058   // Cases that are handled by instructions that take permute immediates
9059   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9060   // selected by the instruction selector.
9061   if (V2.isUndef()) {
9062     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9063         PPC::isSplatShuffleMask(SVOp, 2) ||
9064         PPC::isSplatShuffleMask(SVOp, 4) ||
9065         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9066         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9067         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9068         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9069         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9070         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9071         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9072         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9073         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9074         (Subtarget.hasP8Altivec() && (
9075          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9076          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9077          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9078       return Op;
9079     }
9080   }
9081 
9082   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9083   // and produce a fixed permutation.  If any of these match, do not lower to
9084   // VPERM.
9085   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9086   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9087       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9088       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9089       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9090       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9091       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9092       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9093       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9094       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9095       (Subtarget.hasP8Altivec() && (
9096        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9097        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9098        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9099     return Op;
9100 
9101   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9102   // perfect shuffle table to emit an optimal matching sequence.
9103   ArrayRef<int> PermMask = SVOp->getMask();
9104 
9105   unsigned PFIndexes[4];
9106   bool isFourElementShuffle = true;
9107   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9108     unsigned EltNo = 8;   // Start out undef.
9109     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9110       if (PermMask[i*4+j] < 0)
9111         continue;   // Undef, ignore it.
9112 
9113       unsigned ByteSource = PermMask[i*4+j];
9114       if ((ByteSource & 3) != j) {
9115         isFourElementShuffle = false;
9116         break;
9117       }
9118 
9119       if (EltNo == 8) {
9120         EltNo = ByteSource/4;
9121       } else if (EltNo != ByteSource/4) {
9122         isFourElementShuffle = false;
9123         break;
9124       }
9125     }
9126     PFIndexes[i] = EltNo;
9127   }
9128 
9129   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9130   // perfect shuffle vector to determine if it is cost effective to do this as
9131   // discrete instructions, or whether we should use a vperm.
9132   // For now, we skip this for little endian until such time as we have a
9133   // little-endian perfect shuffle table.
9134   if (isFourElementShuffle && !isLittleEndian) {
9135     // Compute the index in the perfect shuffle table.
9136     unsigned PFTableIndex =
9137       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9138 
9139     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9140     unsigned Cost  = (PFEntry >> 30);
9141 
9142     // Determining when to avoid vperm is tricky.  Many things affect the cost
9143     // of vperm, particularly how many times the perm mask needs to be computed.
9144     // For example, if the perm mask can be hoisted out of a loop or is already
9145     // used (perhaps because there are multiple permutes with the same shuffle
9146     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9147     // the loop requires an extra register.
9148     //
9149     // As a compromise, we only emit discrete instructions if the shuffle can be
9150     // generated in 3 or fewer operations.  When we have loop information
9151     // available, if this block is within a loop, we should avoid using vperm
9152     // for 3-operation perms and use a constant pool load instead.
9153     if (Cost < 3)
9154       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9155   }
9156 
9157   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9158   // vector that will get spilled to the constant pool.
9159   if (V2.isUndef()) V2 = V1;
9160 
9161   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9162   // that it is in input element units, not in bytes.  Convert now.
9163 
9164   // For little endian, the order of the input vectors is reversed, and
9165   // the permutation mask is complemented with respect to 31.  This is
9166   // necessary to produce proper semantics with the big-endian-biased vperm
9167   // instruction.
9168   EVT EltVT = V1.getValueType().getVectorElementType();
9169   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9170 
9171   SmallVector<SDValue, 16> ResultMask;
9172   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9173     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9174 
9175     for (unsigned j = 0; j != BytesPerElement; ++j)
9176       if (isLittleEndian)
9177         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9178                                              dl, MVT::i32));
9179       else
9180         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9181                                              MVT::i32));
9182   }
9183 
9184   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9185   if (isLittleEndian)
9186     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9187                        V2, V1, VPermMask);
9188   else
9189     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9190                        V1, V2, VPermMask);
9191 }
9192 
9193 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9194 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9195 /// information about the intrinsic.
9196 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9197                                  bool &isDot, const PPCSubtarget &Subtarget) {
9198   unsigned IntrinsicID =
9199       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9200   CompareOpc = -1;
9201   isDot = false;
9202   switch (IntrinsicID) {
9203   default:
9204     return false;
9205   // Comparison predicates.
9206   case Intrinsic::ppc_altivec_vcmpbfp_p:
9207     CompareOpc = 966;
9208     isDot = true;
9209     break;
9210   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9211     CompareOpc = 198;
9212     isDot = true;
9213     break;
9214   case Intrinsic::ppc_altivec_vcmpequb_p:
9215     CompareOpc = 6;
9216     isDot = true;
9217     break;
9218   case Intrinsic::ppc_altivec_vcmpequh_p:
9219     CompareOpc = 70;
9220     isDot = true;
9221     break;
9222   case Intrinsic::ppc_altivec_vcmpequw_p:
9223     CompareOpc = 134;
9224     isDot = true;
9225     break;
9226   case Intrinsic::ppc_altivec_vcmpequd_p:
9227     if (Subtarget.hasP8Altivec()) {
9228       CompareOpc = 199;
9229       isDot = true;
9230     } else
9231       return false;
9232     break;
9233   case Intrinsic::ppc_altivec_vcmpneb_p:
9234   case Intrinsic::ppc_altivec_vcmpneh_p:
9235   case Intrinsic::ppc_altivec_vcmpnew_p:
9236   case Intrinsic::ppc_altivec_vcmpnezb_p:
9237   case Intrinsic::ppc_altivec_vcmpnezh_p:
9238   case Intrinsic::ppc_altivec_vcmpnezw_p:
9239     if (Subtarget.hasP9Altivec()) {
9240       switch (IntrinsicID) {
9241       default:
9242         llvm_unreachable("Unknown comparison intrinsic.");
9243       case Intrinsic::ppc_altivec_vcmpneb_p:
9244         CompareOpc = 7;
9245         break;
9246       case Intrinsic::ppc_altivec_vcmpneh_p:
9247         CompareOpc = 71;
9248         break;
9249       case Intrinsic::ppc_altivec_vcmpnew_p:
9250         CompareOpc = 135;
9251         break;
9252       case Intrinsic::ppc_altivec_vcmpnezb_p:
9253         CompareOpc = 263;
9254         break;
9255       case Intrinsic::ppc_altivec_vcmpnezh_p:
9256         CompareOpc = 327;
9257         break;
9258       case Intrinsic::ppc_altivec_vcmpnezw_p:
9259         CompareOpc = 391;
9260         break;
9261       }
9262       isDot = true;
9263     } else
9264       return false;
9265     break;
9266   case Intrinsic::ppc_altivec_vcmpgefp_p:
9267     CompareOpc = 454;
9268     isDot = true;
9269     break;
9270   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9271     CompareOpc = 710;
9272     isDot = true;
9273     break;
9274   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9275     CompareOpc = 774;
9276     isDot = true;
9277     break;
9278   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9279     CompareOpc = 838;
9280     isDot = true;
9281     break;
9282   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9283     CompareOpc = 902;
9284     isDot = true;
9285     break;
9286   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9287     if (Subtarget.hasP8Altivec()) {
9288       CompareOpc = 967;
9289       isDot = true;
9290     } else
9291       return false;
9292     break;
9293   case Intrinsic::ppc_altivec_vcmpgtub_p:
9294     CompareOpc = 518;
9295     isDot = true;
9296     break;
9297   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9298     CompareOpc = 582;
9299     isDot = true;
9300     break;
9301   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9302     CompareOpc = 646;
9303     isDot = true;
9304     break;
9305   case Intrinsic::ppc_altivec_vcmpgtud_p:
9306     if (Subtarget.hasP8Altivec()) {
9307       CompareOpc = 711;
9308       isDot = true;
9309     } else
9310       return false;
9311     break;
9312 
9313   // VSX predicate comparisons use the same infrastructure
9314   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9315   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9316   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9317   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9318   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9319   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9320     if (Subtarget.hasVSX()) {
9321       switch (IntrinsicID) {
9322       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9323         CompareOpc = 99;
9324         break;
9325       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9326         CompareOpc = 115;
9327         break;
9328       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9329         CompareOpc = 107;
9330         break;
9331       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9332         CompareOpc = 67;
9333         break;
9334       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9335         CompareOpc = 83;
9336         break;
9337       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9338         CompareOpc = 75;
9339         break;
9340       }
9341       isDot = true;
9342     } else
9343       return false;
9344     break;
9345 
9346   // Normal Comparisons.
9347   case Intrinsic::ppc_altivec_vcmpbfp:
9348     CompareOpc = 966;
9349     break;
9350   case Intrinsic::ppc_altivec_vcmpeqfp:
9351     CompareOpc = 198;
9352     break;
9353   case Intrinsic::ppc_altivec_vcmpequb:
9354     CompareOpc = 6;
9355     break;
9356   case Intrinsic::ppc_altivec_vcmpequh:
9357     CompareOpc = 70;
9358     break;
9359   case Intrinsic::ppc_altivec_vcmpequw:
9360     CompareOpc = 134;
9361     break;
9362   case Intrinsic::ppc_altivec_vcmpequd:
9363     if (Subtarget.hasP8Altivec())
9364       CompareOpc = 199;
9365     else
9366       return false;
9367     break;
9368   case Intrinsic::ppc_altivec_vcmpneb:
9369   case Intrinsic::ppc_altivec_vcmpneh:
9370   case Intrinsic::ppc_altivec_vcmpnew:
9371   case Intrinsic::ppc_altivec_vcmpnezb:
9372   case Intrinsic::ppc_altivec_vcmpnezh:
9373   case Intrinsic::ppc_altivec_vcmpnezw:
9374     if (Subtarget.hasP9Altivec())
9375       switch (IntrinsicID) {
9376       default:
9377         llvm_unreachable("Unknown comparison intrinsic.");
9378       case Intrinsic::ppc_altivec_vcmpneb:
9379         CompareOpc = 7;
9380         break;
9381       case Intrinsic::ppc_altivec_vcmpneh:
9382         CompareOpc = 71;
9383         break;
9384       case Intrinsic::ppc_altivec_vcmpnew:
9385         CompareOpc = 135;
9386         break;
9387       case Intrinsic::ppc_altivec_vcmpnezb:
9388         CompareOpc = 263;
9389         break;
9390       case Intrinsic::ppc_altivec_vcmpnezh:
9391         CompareOpc = 327;
9392         break;
9393       case Intrinsic::ppc_altivec_vcmpnezw:
9394         CompareOpc = 391;
9395         break;
9396       }
9397     else
9398       return false;
9399     break;
9400   case Intrinsic::ppc_altivec_vcmpgefp:
9401     CompareOpc = 454;
9402     break;
9403   case Intrinsic::ppc_altivec_vcmpgtfp:
9404     CompareOpc = 710;
9405     break;
9406   case Intrinsic::ppc_altivec_vcmpgtsb:
9407     CompareOpc = 774;
9408     break;
9409   case Intrinsic::ppc_altivec_vcmpgtsh:
9410     CompareOpc = 838;
9411     break;
9412   case Intrinsic::ppc_altivec_vcmpgtsw:
9413     CompareOpc = 902;
9414     break;
9415   case Intrinsic::ppc_altivec_vcmpgtsd:
9416     if (Subtarget.hasP8Altivec())
9417       CompareOpc = 967;
9418     else
9419       return false;
9420     break;
9421   case Intrinsic::ppc_altivec_vcmpgtub:
9422     CompareOpc = 518;
9423     break;
9424   case Intrinsic::ppc_altivec_vcmpgtuh:
9425     CompareOpc = 582;
9426     break;
9427   case Intrinsic::ppc_altivec_vcmpgtuw:
9428     CompareOpc = 646;
9429     break;
9430   case Intrinsic::ppc_altivec_vcmpgtud:
9431     if (Subtarget.hasP8Altivec())
9432       CompareOpc = 711;
9433     else
9434       return false;
9435     break;
9436   }
9437   return true;
9438 }
9439 
9440 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9441 /// lower, do it, otherwise return null.
9442 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9443                                                    SelectionDAG &DAG) const {
9444   unsigned IntrinsicID =
9445     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9446 
9447   SDLoc dl(Op);
9448 
9449   if (IntrinsicID == Intrinsic::thread_pointer) {
9450     // Reads the thread pointer register, used for __builtin_thread_pointer.
9451     if (Subtarget.isPPC64())
9452       return DAG.getRegister(PPC::X13, MVT::i64);
9453     return DAG.getRegister(PPC::R2, MVT::i32);
9454   }
9455 
9456   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9457   // opcode number of the comparison.
9458   int CompareOpc;
9459   bool isDot;
9460   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9461     return SDValue();    // Don't custom lower most intrinsics.
9462 
9463   // If this is a non-dot comparison, make the VCMP node and we are done.
9464   if (!isDot) {
9465     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9466                               Op.getOperand(1), Op.getOperand(2),
9467                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9468     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9469   }
9470 
9471   // Create the PPCISD altivec 'dot' comparison node.
9472   SDValue Ops[] = {
9473     Op.getOperand(2),  // LHS
9474     Op.getOperand(3),  // RHS
9475     DAG.getConstant(CompareOpc, dl, MVT::i32)
9476   };
9477   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9478   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9479 
9480   // Now that we have the comparison, emit a copy from the CR to a GPR.
9481   // This is flagged to the above dot comparison.
9482   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9483                                 DAG.getRegister(PPC::CR6, MVT::i32),
9484                                 CompNode.getValue(1));
9485 
9486   // Unpack the result based on how the target uses it.
9487   unsigned BitNo;   // Bit # of CR6.
9488   bool InvertBit;   // Invert result?
9489   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9490   default:  // Can't happen, don't crash on invalid number though.
9491   case 0:   // Return the value of the EQ bit of CR6.
9492     BitNo = 0; InvertBit = false;
9493     break;
9494   case 1:   // Return the inverted value of the EQ bit of CR6.
9495     BitNo = 0; InvertBit = true;
9496     break;
9497   case 2:   // Return the value of the LT bit of CR6.
9498     BitNo = 2; InvertBit = false;
9499     break;
9500   case 3:   // Return the inverted value of the LT bit of CR6.
9501     BitNo = 2; InvertBit = true;
9502     break;
9503   }
9504 
9505   // Shift the bit into the low position.
9506   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9507                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9508   // Isolate the bit.
9509   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9510                       DAG.getConstant(1, dl, MVT::i32));
9511 
9512   // If we are supposed to, toggle the bit.
9513   if (InvertBit)
9514     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9515                         DAG.getConstant(1, dl, MVT::i32));
9516   return Flags;
9517 }
9518 
9519 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9520                                                SelectionDAG &DAG) const {
9521   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9522   // the beginning of the argument list.
9523   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9524   SDLoc DL(Op);
9525   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9526   case Intrinsic::ppc_cfence: {
9527     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9528     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9529     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9530                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9531                                                   Op.getOperand(ArgStart + 1)),
9532                                       Op.getOperand(0)),
9533                    0);
9534   }
9535   default:
9536     break;
9537   }
9538   return SDValue();
9539 }
9540 
9541 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9542   // Check for a DIV with the same operands as this REM.
9543   for (auto UI : Op.getOperand(1)->uses()) {
9544     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9545         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9546       if (UI->getOperand(0) == Op.getOperand(0) &&
9547           UI->getOperand(1) == Op.getOperand(1))
9548         return SDValue();
9549   }
9550   return Op;
9551 }
9552 
9553 // Lower scalar BSWAP64 to xxbrd.
9554 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9555   SDLoc dl(Op);
9556   // MTVSRDD
9557   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9558                    Op.getOperand(0));
9559   // XXBRD
9560   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9561   // MFVSRD
9562   int VectorIndex = 0;
9563   if (Subtarget.isLittleEndian())
9564     VectorIndex = 1;
9565   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9566                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9567   return Op;
9568 }
9569 
9570 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9571 // compared to a value that is atomically loaded (atomic loads zero-extend).
9572 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9573                                                 SelectionDAG &DAG) const {
9574   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9575          "Expecting an atomic compare-and-swap here.");
9576   SDLoc dl(Op);
9577   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9578   EVT MemVT = AtomicNode->getMemoryVT();
9579   if (MemVT.getSizeInBits() >= 32)
9580     return Op;
9581 
9582   SDValue CmpOp = Op.getOperand(2);
9583   // If this is already correctly zero-extended, leave it alone.
9584   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9585   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9586     return Op;
9587 
9588   // Clear the high bits of the compare operand.
9589   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9590   SDValue NewCmpOp =
9591     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9592                 DAG.getConstant(MaskVal, dl, MVT::i32));
9593 
9594   // Replace the existing compare operand with the properly zero-extended one.
9595   SmallVector<SDValue, 4> Ops;
9596   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9597     Ops.push_back(AtomicNode->getOperand(i));
9598   Ops[2] = NewCmpOp;
9599   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9600   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9601   auto NodeTy =
9602     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9603   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9604 }
9605 
9606 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9607                                                  SelectionDAG &DAG) const {
9608   SDLoc dl(Op);
9609   // Create a stack slot that is 16-byte aligned.
9610   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9611   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9613   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9614 
9615   // Store the input value into Value#0 of the stack slot.
9616   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9617                                MachinePointerInfo());
9618   // Load it out.
9619   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9620 }
9621 
9622 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9623                                                   SelectionDAG &DAG) const {
9624   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9625          "Should only be called for ISD::INSERT_VECTOR_ELT");
9626 
9627   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9628   // We have legal lowering for constant indices but not for variable ones.
9629   if (!C)
9630     return SDValue();
9631 
9632   EVT VT = Op.getValueType();
9633   SDLoc dl(Op);
9634   SDValue V1 = Op.getOperand(0);
9635   SDValue V2 = Op.getOperand(1);
9636   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9637   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9638     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9639     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9640     unsigned InsertAtElement = C->getZExtValue();
9641     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9642     if (Subtarget.isLittleEndian()) {
9643       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9644     }
9645     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9646                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9647   }
9648   return Op;
9649 }
9650 
9651 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9652                                                    SelectionDAG &DAG) const {
9653   SDLoc dl(Op);
9654   SDNode *N = Op.getNode();
9655 
9656   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9657          "Unknown extract_vector_elt type");
9658 
9659   SDValue Value = N->getOperand(0);
9660 
9661   // The first part of this is like the store lowering except that we don't
9662   // need to track the chain.
9663 
9664   // The values are now known to be -1 (false) or 1 (true). To convert this
9665   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9666   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9667   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9668 
9669   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9670   // understand how to form the extending load.
9671   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9672 
9673   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9674 
9675   // Now convert to an integer and store.
9676   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9677     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9678     Value);
9679 
9680   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9681   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9682   MachinePointerInfo PtrInfo =
9683       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9684   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9685   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9686 
9687   SDValue StoreChain = DAG.getEntryNode();
9688   SDValue Ops[] = {StoreChain,
9689                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9690                    Value, FIdx};
9691   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9692 
9693   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9694     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9695 
9696   // Extract the value requested.
9697   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9698   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9699   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9700 
9701   SDValue IntVal =
9702       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9703 
9704   if (!Subtarget.useCRBits())
9705     return IntVal;
9706 
9707   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9708 }
9709 
9710 /// Lowering for QPX v4i1 loads
9711 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9712                                            SelectionDAG &DAG) const {
9713   SDLoc dl(Op);
9714   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9715   SDValue LoadChain = LN->getChain();
9716   SDValue BasePtr = LN->getBasePtr();
9717 
9718   if (Op.getValueType() == MVT::v4f64 ||
9719       Op.getValueType() == MVT::v4f32) {
9720     EVT MemVT = LN->getMemoryVT();
9721     unsigned Alignment = LN->getAlignment();
9722 
9723     // If this load is properly aligned, then it is legal.
9724     if (Alignment >= MemVT.getStoreSize())
9725       return Op;
9726 
9727     EVT ScalarVT = Op.getValueType().getScalarType(),
9728         ScalarMemVT = MemVT.getScalarType();
9729     unsigned Stride = ScalarMemVT.getStoreSize();
9730 
9731     SDValue Vals[4], LoadChains[4];
9732     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9733       SDValue Load;
9734       if (ScalarVT != ScalarMemVT)
9735         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9736                               BasePtr,
9737                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9738                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9739                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9740       else
9741         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9742                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9743                            MinAlign(Alignment, Idx * Stride),
9744                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9745 
9746       if (Idx == 0 && LN->isIndexed()) {
9747         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9748                "Unknown addressing mode on vector load");
9749         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9750                                   LN->getAddressingMode());
9751       }
9752 
9753       Vals[Idx] = Load;
9754       LoadChains[Idx] = Load.getValue(1);
9755 
9756       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9757                             DAG.getConstant(Stride, dl,
9758                                             BasePtr.getValueType()));
9759     }
9760 
9761     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9762     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9763 
9764     if (LN->isIndexed()) {
9765       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9766       return DAG.getMergeValues(RetOps, dl);
9767     }
9768 
9769     SDValue RetOps[] = { Value, TF };
9770     return DAG.getMergeValues(RetOps, dl);
9771   }
9772 
9773   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9774   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9775 
9776   // To lower v4i1 from a byte array, we load the byte elements of the
9777   // vector and then reuse the BUILD_VECTOR logic.
9778 
9779   SDValue VectElmts[4], VectElmtChains[4];
9780   for (unsigned i = 0; i < 4; ++i) {
9781     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9782     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9783 
9784     VectElmts[i] = DAG.getExtLoad(
9785         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9786         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9787         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9788     VectElmtChains[i] = VectElmts[i].getValue(1);
9789   }
9790 
9791   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9792   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9793 
9794   SDValue RVals[] = { Value, LoadChain };
9795   return DAG.getMergeValues(RVals, dl);
9796 }
9797 
9798 /// Lowering for QPX v4i1 stores
9799 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9800                                             SelectionDAG &DAG) const {
9801   SDLoc dl(Op);
9802   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9803   SDValue StoreChain = SN->getChain();
9804   SDValue BasePtr = SN->getBasePtr();
9805   SDValue Value = SN->getValue();
9806 
9807   if (Value.getValueType() == MVT::v4f64 ||
9808       Value.getValueType() == MVT::v4f32) {
9809     EVT MemVT = SN->getMemoryVT();
9810     unsigned Alignment = SN->getAlignment();
9811 
9812     // If this store is properly aligned, then it is legal.
9813     if (Alignment >= MemVT.getStoreSize())
9814       return Op;
9815 
9816     EVT ScalarVT = Value.getValueType().getScalarType(),
9817         ScalarMemVT = MemVT.getScalarType();
9818     unsigned Stride = ScalarMemVT.getStoreSize();
9819 
9820     SDValue Stores[4];
9821     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9822       SDValue Ex = DAG.getNode(
9823           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9824           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9825       SDValue Store;
9826       if (ScalarVT != ScalarMemVT)
9827         Store =
9828             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9829                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9830                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9831                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9832       else
9833         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9834                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9835                              MinAlign(Alignment, Idx * Stride),
9836                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9837 
9838       if (Idx == 0 && SN->isIndexed()) {
9839         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9840                "Unknown addressing mode on vector store");
9841         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9842                                     SN->getAddressingMode());
9843       }
9844 
9845       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9846                             DAG.getConstant(Stride, dl,
9847                                             BasePtr.getValueType()));
9848       Stores[Idx] = Store;
9849     }
9850 
9851     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9852 
9853     if (SN->isIndexed()) {
9854       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9855       return DAG.getMergeValues(RetOps, dl);
9856     }
9857 
9858     return TF;
9859   }
9860 
9861   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9862   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9863 
9864   // The values are now known to be -1 (false) or 1 (true). To convert this
9865   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9866   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9867   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9868 
9869   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9870   // understand how to form the extending load.
9871   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9872 
9873   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9874 
9875   // Now convert to an integer and store.
9876   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9877     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9878     Value);
9879 
9880   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9881   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9882   MachinePointerInfo PtrInfo =
9883       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9884   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9885   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9886 
9887   SDValue Ops[] = {StoreChain,
9888                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9889                    Value, FIdx};
9890   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9891 
9892   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9893     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9894 
9895   // Move data into the byte array.
9896   SDValue Loads[4], LoadChains[4];
9897   for (unsigned i = 0; i < 4; ++i) {
9898     unsigned Offset = 4*i;
9899     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9900     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9901 
9902     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9903                            PtrInfo.getWithOffset(Offset));
9904     LoadChains[i] = Loads[i].getValue(1);
9905   }
9906 
9907   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9908 
9909   SDValue Stores[4];
9910   for (unsigned i = 0; i < 4; ++i) {
9911     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9912     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9913 
9914     Stores[i] = DAG.getTruncStore(
9915         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9916         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9917         SN->getAAInfo());
9918   }
9919 
9920   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9921 
9922   return StoreChain;
9923 }
9924 
9925 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9926   SDLoc dl(Op);
9927   if (Op.getValueType() == MVT::v4i32) {
9928     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9929 
9930     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9931     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9932 
9933     SDValue RHSSwap =   // = vrlw RHS, 16
9934       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9935 
9936     // Shrinkify inputs to v8i16.
9937     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9938     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9939     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9940 
9941     // Low parts multiplied together, generating 32-bit results (we ignore the
9942     // top parts).
9943     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9944                                         LHS, RHS, DAG, dl, MVT::v4i32);
9945 
9946     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9947                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9948     // Shift the high parts up 16 bits.
9949     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9950                               Neg16, DAG, dl);
9951     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9952   } else if (Op.getValueType() == MVT::v8i16) {
9953     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9954 
9955     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9956 
9957     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9958                             LHS, RHS, Zero, DAG, dl);
9959   } else if (Op.getValueType() == MVT::v16i8) {
9960     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9961     bool isLittleEndian = Subtarget.isLittleEndian();
9962 
9963     // Multiply the even 8-bit parts, producing 16-bit sums.
9964     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9965                                            LHS, RHS, DAG, dl, MVT::v8i16);
9966     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9967 
9968     // Multiply the odd 8-bit parts, producing 16-bit sums.
9969     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9970                                           LHS, RHS, DAG, dl, MVT::v8i16);
9971     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9972 
9973     // Merge the results together.  Because vmuleub and vmuloub are
9974     // instructions with a big-endian bias, we must reverse the
9975     // element numbering and reverse the meaning of "odd" and "even"
9976     // when generating little endian code.
9977     int Ops[16];
9978     for (unsigned i = 0; i != 8; ++i) {
9979       if (isLittleEndian) {
9980         Ops[i*2  ] = 2*i;
9981         Ops[i*2+1] = 2*i+16;
9982       } else {
9983         Ops[i*2  ] = 2*i+1;
9984         Ops[i*2+1] = 2*i+1+16;
9985       }
9986     }
9987     if (isLittleEndian)
9988       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9989     else
9990       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9991   } else {
9992     llvm_unreachable("Unknown mul to lower!");
9993   }
9994 }
9995 
9996 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9997 
9998   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9999 
10000   EVT VT = Op.getValueType();
10001   assert(VT.isVector() &&
10002          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10003   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10004           VT == MVT::v16i8) &&
10005          "Unexpected vector element type!");
10006   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10007          "Current subtarget doesn't support smax v2i64!");
10008 
10009   // For vector abs, it can be lowered to:
10010   // abs x
10011   // ==>
10012   // y = -x
10013   // smax(x, y)
10014 
10015   SDLoc dl(Op);
10016   SDValue X = Op.getOperand(0);
10017   SDValue Zero = DAG.getConstant(0, dl, VT);
10018   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10019 
10020   // SMAX patch https://reviews.llvm.org/D47332
10021   // hasn't landed yet, so use intrinsic first here.
10022   // TODO: Should use SMAX directly once SMAX patch landed
10023   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10024   if (VT == MVT::v2i64)
10025     BifID = Intrinsic::ppc_altivec_vmaxsd;
10026   else if (VT == MVT::v8i16)
10027     BifID = Intrinsic::ppc_altivec_vmaxsh;
10028   else if (VT == MVT::v16i8)
10029     BifID = Intrinsic::ppc_altivec_vmaxsb;
10030 
10031   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10032 }
10033 
10034 // Custom lowering for fpext vf32 to v2f64
10035 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10036 
10037   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10038          "Should only be called for ISD::FP_EXTEND");
10039 
10040   // We only want to custom lower an extend from v2f32 to v2f64.
10041   if (Op.getValueType() != MVT::v2f64 ||
10042       Op.getOperand(0).getValueType() != MVT::v2f32)
10043     return SDValue();
10044 
10045   SDLoc dl(Op);
10046   SDValue Op0 = Op.getOperand(0);
10047 
10048   switch (Op0.getOpcode()) {
10049   default:
10050     return SDValue();
10051   case ISD::EXTRACT_SUBVECTOR: {
10052     assert(Op0.getNumOperands() == 2 &&
10053            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10054            "Node should have 2 operands with second one being a constant!");
10055 
10056     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10057       return SDValue();
10058 
10059     // Custom lower is only done for high or low doubleword.
10060     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10061     if (Idx % 2 != 0)
10062       return SDValue();
10063 
10064     // Since input is v4f32, at this point Idx is either 0 or 2.
10065     // Shift to get the doubleword position we want.
10066     int DWord = Idx >> 1;
10067 
10068     // High and low word positions are different on little endian.
10069     if (Subtarget.isLittleEndian())
10070       DWord ^= 0x1;
10071 
10072     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10073                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10074   }
10075   case ISD::FADD:
10076   case ISD::FMUL:
10077   case ISD::FSUB: {
10078     SDValue NewLoad[2];
10079     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10080       // Ensure both input are loads.
10081       SDValue LdOp = Op0.getOperand(i);
10082       if (LdOp.getOpcode() != ISD::LOAD)
10083         return SDValue();
10084       // Generate new load node.
10085       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10086       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10087       NewLoad[i] = DAG.getMemIntrinsicNode(
10088           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10089           LD->getMemoryVT(), LD->getMemOperand());
10090     }
10091     SDValue NewOp =
10092         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10093                     NewLoad[1], Op0.getNode()->getFlags());
10094     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10095                        DAG.getConstant(0, dl, MVT::i32));
10096   }
10097   case ISD::LOAD: {
10098     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10099     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10100     SDValue NewLd = DAG.getMemIntrinsicNode(
10101         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10102         LD->getMemoryVT(), LD->getMemOperand());
10103     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10104                        DAG.getConstant(0, dl, MVT::i32));
10105   }
10106   }
10107   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10108 }
10109 
10110 /// LowerOperation - Provide custom lowering hooks for some operations.
10111 ///
10112 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10113   switch (Op.getOpcode()) {
10114   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10115   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10116   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10117   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10118   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10119   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10120   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10121   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10122   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10123 
10124   // Variable argument lowering.
10125   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10126   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10127   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10128 
10129   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10130   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10131   case ISD::GET_DYNAMIC_AREA_OFFSET:
10132     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10133 
10134   // Exception handling lowering.
10135   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10136   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10137   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10138 
10139   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10140   case ISD::STORE:              return LowerSTORE(Op, DAG);
10141   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10142   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10143   case ISD::FP_TO_UINT:
10144   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10145   case ISD::UINT_TO_FP:
10146   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10147   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10148 
10149   // Lower 64-bit shifts.
10150   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10151   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10152   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10153 
10154   // Vector-related lowering.
10155   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10156   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10157   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10158   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10159   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10160   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10161   case ISD::MUL:                return LowerMUL(Op, DAG);
10162   case ISD::ABS:                return LowerABS(Op, DAG);
10163   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10164 
10165   // For counter-based loop handling.
10166   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10167 
10168   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10169 
10170   // Frame & Return address.
10171   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10172   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10173 
10174   case ISD::INTRINSIC_VOID:
10175     return LowerINTRINSIC_VOID(Op, DAG);
10176   case ISD::SREM:
10177   case ISD::UREM:
10178     return LowerREM(Op, DAG);
10179   case ISD::BSWAP:
10180     return LowerBSWAP(Op, DAG);
10181   case ISD::ATOMIC_CMP_SWAP:
10182     return LowerATOMIC_CMP_SWAP(Op, DAG);
10183   }
10184 }
10185 
10186 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10187                                            SmallVectorImpl<SDValue>&Results,
10188                                            SelectionDAG &DAG) const {
10189   SDLoc dl(N);
10190   switch (N->getOpcode()) {
10191   default:
10192     llvm_unreachable("Do not know how to custom type legalize this operation!");
10193   case ISD::READCYCLECOUNTER: {
10194     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10195     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10196 
10197     Results.push_back(RTB);
10198     Results.push_back(RTB.getValue(1));
10199     Results.push_back(RTB.getValue(2));
10200     break;
10201   }
10202   case ISD::INTRINSIC_W_CHAIN: {
10203     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10204         Intrinsic::loop_decrement)
10205       break;
10206 
10207     assert(N->getValueType(0) == MVT::i1 &&
10208            "Unexpected result type for CTR decrement intrinsic");
10209     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10210                                  N->getValueType(0));
10211     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10212     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10213                                  N->getOperand(1));
10214 
10215     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10216     Results.push_back(NewInt.getValue(1));
10217     break;
10218   }
10219   case ISD::VAARG: {
10220     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10221       return;
10222 
10223     EVT VT = N->getValueType(0);
10224 
10225     if (VT == MVT::i64) {
10226       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10227 
10228       Results.push_back(NewNode);
10229       Results.push_back(NewNode.getValue(1));
10230     }
10231     return;
10232   }
10233   case ISD::FP_TO_SINT:
10234   case ISD::FP_TO_UINT:
10235     // LowerFP_TO_INT() can only handle f32 and f64.
10236     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10237       return;
10238     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10239     return;
10240   case ISD::TRUNCATE: {
10241     EVT TrgVT = N->getValueType(0);
10242     EVT OpVT = N->getOperand(0).getValueType();
10243     if (TrgVT.isVector() &&
10244         isOperationCustom(N->getOpcode(), TrgVT) &&
10245         OpVT.getSizeInBits() <= 128 &&
10246         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10247       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10248     return;
10249   }
10250   case ISD::BITCAST:
10251     // Don't handle bitcast here.
10252     return;
10253   }
10254 }
10255 
10256 //===----------------------------------------------------------------------===//
10257 //  Other Lowering Code
10258 //===----------------------------------------------------------------------===//
10259 
10260 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10261   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10262   Function *Func = Intrinsic::getDeclaration(M, Id);
10263   return Builder.CreateCall(Func, {});
10264 }
10265 
10266 // The mappings for emitLeading/TrailingFence is taken from
10267 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10268 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10269                                                  Instruction *Inst,
10270                                                  AtomicOrdering Ord) const {
10271   if (Ord == AtomicOrdering::SequentiallyConsistent)
10272     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10273   if (isReleaseOrStronger(Ord))
10274     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10275   return nullptr;
10276 }
10277 
10278 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10279                                                   Instruction *Inst,
10280                                                   AtomicOrdering Ord) const {
10281   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10282     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10283     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10284     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10285     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10286       return Builder.CreateCall(
10287           Intrinsic::getDeclaration(
10288               Builder.GetInsertBlock()->getParent()->getParent(),
10289               Intrinsic::ppc_cfence, {Inst->getType()}),
10290           {Inst});
10291     // FIXME: Can use isync for rmw operation.
10292     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10293   }
10294   return nullptr;
10295 }
10296 
10297 MachineBasicBlock *
10298 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10299                                     unsigned AtomicSize,
10300                                     unsigned BinOpcode,
10301                                     unsigned CmpOpcode,
10302                                     unsigned CmpPred) const {
10303   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10304   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10305 
10306   auto LoadMnemonic = PPC::LDARX;
10307   auto StoreMnemonic = PPC::STDCX;
10308   switch (AtomicSize) {
10309   default:
10310     llvm_unreachable("Unexpected size of atomic entity");
10311   case 1:
10312     LoadMnemonic = PPC::LBARX;
10313     StoreMnemonic = PPC::STBCX;
10314     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10315     break;
10316   case 2:
10317     LoadMnemonic = PPC::LHARX;
10318     StoreMnemonic = PPC::STHCX;
10319     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10320     break;
10321   case 4:
10322     LoadMnemonic = PPC::LWARX;
10323     StoreMnemonic = PPC::STWCX;
10324     break;
10325   case 8:
10326     LoadMnemonic = PPC::LDARX;
10327     StoreMnemonic = PPC::STDCX;
10328     break;
10329   }
10330 
10331   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10332   MachineFunction *F = BB->getParent();
10333   MachineFunction::iterator It = ++BB->getIterator();
10334 
10335   Register dest = MI.getOperand(0).getReg();
10336   Register ptrA = MI.getOperand(1).getReg();
10337   Register ptrB = MI.getOperand(2).getReg();
10338   Register incr = MI.getOperand(3).getReg();
10339   DebugLoc dl = MI.getDebugLoc();
10340 
10341   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10342   MachineBasicBlock *loop2MBB =
10343     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10344   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10345   F->insert(It, loopMBB);
10346   if (CmpOpcode)
10347     F->insert(It, loop2MBB);
10348   F->insert(It, exitMBB);
10349   exitMBB->splice(exitMBB->begin(), BB,
10350                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10351   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10352 
10353   MachineRegisterInfo &RegInfo = F->getRegInfo();
10354   Register TmpReg = (!BinOpcode) ? incr :
10355     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10356                                            : &PPC::GPRCRegClass);
10357 
10358   //  thisMBB:
10359   //   ...
10360   //   fallthrough --> loopMBB
10361   BB->addSuccessor(loopMBB);
10362 
10363   //  loopMBB:
10364   //   l[wd]arx dest, ptr
10365   //   add r0, dest, incr
10366   //   st[wd]cx. r0, ptr
10367   //   bne- loopMBB
10368   //   fallthrough --> exitMBB
10369 
10370   // For max/min...
10371   //  loopMBB:
10372   //   l[wd]arx dest, ptr
10373   //   cmpl?[wd] incr, dest
10374   //   bgt exitMBB
10375   //  loop2MBB:
10376   //   st[wd]cx. dest, ptr
10377   //   bne- loopMBB
10378   //   fallthrough --> exitMBB
10379 
10380   BB = loopMBB;
10381   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10382     .addReg(ptrA).addReg(ptrB);
10383   if (BinOpcode)
10384     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10385   if (CmpOpcode) {
10386     // Signed comparisons of byte or halfword values must be sign-extended.
10387     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10388       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10389       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10390               ExtReg).addReg(dest);
10391       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10392         .addReg(incr).addReg(ExtReg);
10393     } else
10394       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10395         .addReg(incr).addReg(dest);
10396 
10397     BuildMI(BB, dl, TII->get(PPC::BCC))
10398       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10399     BB->addSuccessor(loop2MBB);
10400     BB->addSuccessor(exitMBB);
10401     BB = loop2MBB;
10402   }
10403   BuildMI(BB, dl, TII->get(StoreMnemonic))
10404     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10405   BuildMI(BB, dl, TII->get(PPC::BCC))
10406     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10407   BB->addSuccessor(loopMBB);
10408   BB->addSuccessor(exitMBB);
10409 
10410   //  exitMBB:
10411   //   ...
10412   BB = exitMBB;
10413   return BB;
10414 }
10415 
10416 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10417     MachineInstr &MI, MachineBasicBlock *BB,
10418     bool is8bit, // operation
10419     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10420   // If we support part-word atomic mnemonics, just use them
10421   if (Subtarget.hasPartwordAtomics())
10422     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10423                             CmpPred);
10424 
10425   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10426   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10427   // In 64 bit mode we have to use 64 bits for addresses, even though the
10428   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10429   // registers without caring whether they're 32 or 64, but here we're
10430   // doing actual arithmetic on the addresses.
10431   bool is64bit = Subtarget.isPPC64();
10432   bool isLittleEndian = Subtarget.isLittleEndian();
10433   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10434 
10435   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10436   MachineFunction *F = BB->getParent();
10437   MachineFunction::iterator It = ++BB->getIterator();
10438 
10439   Register dest = MI.getOperand(0).getReg();
10440   Register ptrA = MI.getOperand(1).getReg();
10441   Register ptrB = MI.getOperand(2).getReg();
10442   Register incr = MI.getOperand(3).getReg();
10443   DebugLoc dl = MI.getDebugLoc();
10444 
10445   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10446   MachineBasicBlock *loop2MBB =
10447       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10448   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10449   F->insert(It, loopMBB);
10450   if (CmpOpcode)
10451     F->insert(It, loop2MBB);
10452   F->insert(It, exitMBB);
10453   exitMBB->splice(exitMBB->begin(), BB,
10454                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10455   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10456 
10457   MachineRegisterInfo &RegInfo = F->getRegInfo();
10458   const TargetRegisterClass *RC =
10459       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10460   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10461 
10462   Register PtrReg = RegInfo.createVirtualRegister(RC);
10463   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10464   Register ShiftReg =
10465       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10466   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10467   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10468   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10469   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10470   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10471   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10472   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10473   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10474   Register Ptr1Reg;
10475   Register TmpReg =
10476       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10477 
10478   //  thisMBB:
10479   //   ...
10480   //   fallthrough --> loopMBB
10481   BB->addSuccessor(loopMBB);
10482 
10483   // The 4-byte load must be aligned, while a char or short may be
10484   // anywhere in the word.  Hence all this nasty bookkeeping code.
10485   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10486   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10487   //   xori shift, shift1, 24 [16]
10488   //   rlwinm ptr, ptr1, 0, 0, 29
10489   //   slw incr2, incr, shift
10490   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10491   //   slw mask, mask2, shift
10492   //  loopMBB:
10493   //   lwarx tmpDest, ptr
10494   //   add tmp, tmpDest, incr2
10495   //   andc tmp2, tmpDest, mask
10496   //   and tmp3, tmp, mask
10497   //   or tmp4, tmp3, tmp2
10498   //   stwcx. tmp4, ptr
10499   //   bne- loopMBB
10500   //   fallthrough --> exitMBB
10501   //   srw dest, tmpDest, shift
10502   if (ptrA != ZeroReg) {
10503     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10504     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10505         .addReg(ptrA)
10506         .addReg(ptrB);
10507   } else {
10508     Ptr1Reg = ptrB;
10509   }
10510   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10511   // mode.
10512   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10513       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10514       .addImm(3)
10515       .addImm(27)
10516       .addImm(is8bit ? 28 : 27);
10517   if (!isLittleEndian)
10518     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10519         .addReg(Shift1Reg)
10520         .addImm(is8bit ? 24 : 16);
10521   if (is64bit)
10522     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10523         .addReg(Ptr1Reg)
10524         .addImm(0)
10525         .addImm(61);
10526   else
10527     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10528         .addReg(Ptr1Reg)
10529         .addImm(0)
10530         .addImm(0)
10531         .addImm(29);
10532   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10533   if (is8bit)
10534     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10535   else {
10536     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10537     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10538         .addReg(Mask3Reg)
10539         .addImm(65535);
10540   }
10541   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10542       .addReg(Mask2Reg)
10543       .addReg(ShiftReg);
10544 
10545   BB = loopMBB;
10546   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10547       .addReg(ZeroReg)
10548       .addReg(PtrReg);
10549   if (BinOpcode)
10550     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10551         .addReg(Incr2Reg)
10552         .addReg(TmpDestReg);
10553   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10554       .addReg(TmpDestReg)
10555       .addReg(MaskReg);
10556   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10557   if (CmpOpcode) {
10558     // For unsigned comparisons, we can directly compare the shifted values.
10559     // For signed comparisons we shift and sign extend.
10560     Register SReg = RegInfo.createVirtualRegister(GPRC);
10561     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10562         .addReg(TmpDestReg)
10563         .addReg(MaskReg);
10564     unsigned ValueReg = SReg;
10565     unsigned CmpReg = Incr2Reg;
10566     if (CmpOpcode == PPC::CMPW) {
10567       ValueReg = RegInfo.createVirtualRegister(GPRC);
10568       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10569           .addReg(SReg)
10570           .addReg(ShiftReg);
10571       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10572       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10573           .addReg(ValueReg);
10574       ValueReg = ValueSReg;
10575       CmpReg = incr;
10576     }
10577     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10578         .addReg(CmpReg)
10579         .addReg(ValueReg);
10580     BuildMI(BB, dl, TII->get(PPC::BCC))
10581         .addImm(CmpPred)
10582         .addReg(PPC::CR0)
10583         .addMBB(exitMBB);
10584     BB->addSuccessor(loop2MBB);
10585     BB->addSuccessor(exitMBB);
10586     BB = loop2MBB;
10587   }
10588   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10589   BuildMI(BB, dl, TII->get(PPC::STWCX))
10590       .addReg(Tmp4Reg)
10591       .addReg(ZeroReg)
10592       .addReg(PtrReg);
10593   BuildMI(BB, dl, TII->get(PPC::BCC))
10594       .addImm(PPC::PRED_NE)
10595       .addReg(PPC::CR0)
10596       .addMBB(loopMBB);
10597   BB->addSuccessor(loopMBB);
10598   BB->addSuccessor(exitMBB);
10599 
10600   //  exitMBB:
10601   //   ...
10602   BB = exitMBB;
10603   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10604       .addReg(TmpDestReg)
10605       .addReg(ShiftReg);
10606   return BB;
10607 }
10608 
10609 llvm::MachineBasicBlock *
10610 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10611                                     MachineBasicBlock *MBB) const {
10612   DebugLoc DL = MI.getDebugLoc();
10613   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10614   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10615 
10616   MachineFunction *MF = MBB->getParent();
10617   MachineRegisterInfo &MRI = MF->getRegInfo();
10618 
10619   const BasicBlock *BB = MBB->getBasicBlock();
10620   MachineFunction::iterator I = ++MBB->getIterator();
10621 
10622   Register DstReg = MI.getOperand(0).getReg();
10623   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10624   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10625   Register mainDstReg = MRI.createVirtualRegister(RC);
10626   Register restoreDstReg = MRI.createVirtualRegister(RC);
10627 
10628   MVT PVT = getPointerTy(MF->getDataLayout());
10629   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10630          "Invalid Pointer Size!");
10631   // For v = setjmp(buf), we generate
10632   //
10633   // thisMBB:
10634   //  SjLjSetup mainMBB
10635   //  bl mainMBB
10636   //  v_restore = 1
10637   //  b sinkMBB
10638   //
10639   // mainMBB:
10640   //  buf[LabelOffset] = LR
10641   //  v_main = 0
10642   //
10643   // sinkMBB:
10644   //  v = phi(main, restore)
10645   //
10646 
10647   MachineBasicBlock *thisMBB = MBB;
10648   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10649   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10650   MF->insert(I, mainMBB);
10651   MF->insert(I, sinkMBB);
10652 
10653   MachineInstrBuilder MIB;
10654 
10655   // Transfer the remainder of BB and its successor edges to sinkMBB.
10656   sinkMBB->splice(sinkMBB->begin(), MBB,
10657                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10658   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10659 
10660   // Note that the structure of the jmp_buf used here is not compatible
10661   // with that used by libc, and is not designed to be. Specifically, it
10662   // stores only those 'reserved' registers that LLVM does not otherwise
10663   // understand how to spill. Also, by convention, by the time this
10664   // intrinsic is called, Clang has already stored the frame address in the
10665   // first slot of the buffer and stack address in the third. Following the
10666   // X86 target code, we'll store the jump address in the second slot. We also
10667   // need to save the TOC pointer (R2) to handle jumps between shared
10668   // libraries, and that will be stored in the fourth slot. The thread
10669   // identifier (R13) is not affected.
10670 
10671   // thisMBB:
10672   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10673   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10674   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10675 
10676   // Prepare IP either in reg.
10677   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10678   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10679   Register BufReg = MI.getOperand(1).getReg();
10680 
10681   if (Subtarget.is64BitELFABI()) {
10682     setUsesTOCBasePtr(*MBB->getParent());
10683     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10684               .addReg(PPC::X2)
10685               .addImm(TOCOffset)
10686               .addReg(BufReg)
10687               .cloneMemRefs(MI);
10688   }
10689 
10690   // Naked functions never have a base pointer, and so we use r1. For all
10691   // other functions, this decision must be delayed until during PEI.
10692   unsigned BaseReg;
10693   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10694     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10695   else
10696     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10697 
10698   MIB = BuildMI(*thisMBB, MI, DL,
10699                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10700             .addReg(BaseReg)
10701             .addImm(BPOffset)
10702             .addReg(BufReg)
10703             .cloneMemRefs(MI);
10704 
10705   // Setup
10706   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10707   MIB.addRegMask(TRI->getNoPreservedMask());
10708 
10709   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10710 
10711   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10712           .addMBB(mainMBB);
10713   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10714 
10715   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10716   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10717 
10718   // mainMBB:
10719   //  mainDstReg = 0
10720   MIB =
10721       BuildMI(mainMBB, DL,
10722               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10723 
10724   // Store IP
10725   if (Subtarget.isPPC64()) {
10726     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10727             .addReg(LabelReg)
10728             .addImm(LabelOffset)
10729             .addReg(BufReg);
10730   } else {
10731     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10732             .addReg(LabelReg)
10733             .addImm(LabelOffset)
10734             .addReg(BufReg);
10735   }
10736   MIB.cloneMemRefs(MI);
10737 
10738   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10739   mainMBB->addSuccessor(sinkMBB);
10740 
10741   // sinkMBB:
10742   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10743           TII->get(PPC::PHI), DstReg)
10744     .addReg(mainDstReg).addMBB(mainMBB)
10745     .addReg(restoreDstReg).addMBB(thisMBB);
10746 
10747   MI.eraseFromParent();
10748   return sinkMBB;
10749 }
10750 
10751 MachineBasicBlock *
10752 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10753                                      MachineBasicBlock *MBB) const {
10754   DebugLoc DL = MI.getDebugLoc();
10755   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10756 
10757   MachineFunction *MF = MBB->getParent();
10758   MachineRegisterInfo &MRI = MF->getRegInfo();
10759 
10760   MVT PVT = getPointerTy(MF->getDataLayout());
10761   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10762          "Invalid Pointer Size!");
10763 
10764   const TargetRegisterClass *RC =
10765     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10766   Register Tmp = MRI.createVirtualRegister(RC);
10767   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10768   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10769   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10770   unsigned BP =
10771       (PVT == MVT::i64)
10772           ? PPC::X30
10773           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10774                                                               : PPC::R30);
10775 
10776   MachineInstrBuilder MIB;
10777 
10778   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10779   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10780   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10781   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10782 
10783   Register BufReg = MI.getOperand(0).getReg();
10784 
10785   // Reload FP (the jumped-to function may not have had a
10786   // frame pointer, and if so, then its r31 will be restored
10787   // as necessary).
10788   if (PVT == MVT::i64) {
10789     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10790             .addImm(0)
10791             .addReg(BufReg);
10792   } else {
10793     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10794             .addImm(0)
10795             .addReg(BufReg);
10796   }
10797   MIB.cloneMemRefs(MI);
10798 
10799   // Reload IP
10800   if (PVT == MVT::i64) {
10801     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10802             .addImm(LabelOffset)
10803             .addReg(BufReg);
10804   } else {
10805     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10806             .addImm(LabelOffset)
10807             .addReg(BufReg);
10808   }
10809   MIB.cloneMemRefs(MI);
10810 
10811   // Reload SP
10812   if (PVT == MVT::i64) {
10813     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10814             .addImm(SPOffset)
10815             .addReg(BufReg);
10816   } else {
10817     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10818             .addImm(SPOffset)
10819             .addReg(BufReg);
10820   }
10821   MIB.cloneMemRefs(MI);
10822 
10823   // Reload BP
10824   if (PVT == MVT::i64) {
10825     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10826             .addImm(BPOffset)
10827             .addReg(BufReg);
10828   } else {
10829     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10830             .addImm(BPOffset)
10831             .addReg(BufReg);
10832   }
10833   MIB.cloneMemRefs(MI);
10834 
10835   // Reload TOC
10836   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10837     setUsesTOCBasePtr(*MBB->getParent());
10838     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10839               .addImm(TOCOffset)
10840               .addReg(BufReg)
10841               .cloneMemRefs(MI);
10842   }
10843 
10844   // Jump
10845   BuildMI(*MBB, MI, DL,
10846           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10847   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10848 
10849   MI.eraseFromParent();
10850   return MBB;
10851 }
10852 
10853 MachineBasicBlock *
10854 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10855                                                MachineBasicBlock *BB) const {
10856   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10857       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10858     if (Subtarget.is64BitELFABI() &&
10859         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10860       // Call lowering should have added an r2 operand to indicate a dependence
10861       // on the TOC base pointer value. It can't however, because there is no
10862       // way to mark the dependence as implicit there, and so the stackmap code
10863       // will confuse it with a regular operand. Instead, add the dependence
10864       // here.
10865       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10866     }
10867 
10868     return emitPatchPoint(MI, BB);
10869   }
10870 
10871   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10872       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10873     return emitEHSjLjSetJmp(MI, BB);
10874   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10875              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10876     return emitEHSjLjLongJmp(MI, BB);
10877   }
10878 
10879   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10880 
10881   // To "insert" these instructions we actually have to insert their
10882   // control-flow patterns.
10883   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10884   MachineFunction::iterator It = ++BB->getIterator();
10885 
10886   MachineFunction *F = BB->getParent();
10887 
10888   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10889       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10890       MI.getOpcode() == PPC::SELECT_I8) {
10891     SmallVector<MachineOperand, 2> Cond;
10892     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10893         MI.getOpcode() == PPC::SELECT_CC_I8)
10894       Cond.push_back(MI.getOperand(4));
10895     else
10896       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10897     Cond.push_back(MI.getOperand(1));
10898 
10899     DebugLoc dl = MI.getDebugLoc();
10900     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10901                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10902   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10903              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10904              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10905              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10906              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10907              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10908              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10909              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10910              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10911              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10912              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10913              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10914              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10915              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10916              MI.getOpcode() == PPC::SELECT_I4 ||
10917              MI.getOpcode() == PPC::SELECT_I8 ||
10918              MI.getOpcode() == PPC::SELECT_F4 ||
10919              MI.getOpcode() == PPC::SELECT_F8 ||
10920              MI.getOpcode() == PPC::SELECT_F16 ||
10921              MI.getOpcode() == PPC::SELECT_QFRC ||
10922              MI.getOpcode() == PPC::SELECT_QSRC ||
10923              MI.getOpcode() == PPC::SELECT_QBRC ||
10924              MI.getOpcode() == PPC::SELECT_SPE ||
10925              MI.getOpcode() == PPC::SELECT_SPE4 ||
10926              MI.getOpcode() == PPC::SELECT_VRRC ||
10927              MI.getOpcode() == PPC::SELECT_VSFRC ||
10928              MI.getOpcode() == PPC::SELECT_VSSRC ||
10929              MI.getOpcode() == PPC::SELECT_VSRC) {
10930     // The incoming instruction knows the destination vreg to set, the
10931     // condition code register to branch on, the true/false values to
10932     // select between, and a branch opcode to use.
10933 
10934     //  thisMBB:
10935     //  ...
10936     //   TrueVal = ...
10937     //   cmpTY ccX, r1, r2
10938     //   bCC copy1MBB
10939     //   fallthrough --> copy0MBB
10940     MachineBasicBlock *thisMBB = BB;
10941     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10942     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10943     DebugLoc dl = MI.getDebugLoc();
10944     F->insert(It, copy0MBB);
10945     F->insert(It, sinkMBB);
10946 
10947     // Transfer the remainder of BB and its successor edges to sinkMBB.
10948     sinkMBB->splice(sinkMBB->begin(), BB,
10949                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10950     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10951 
10952     // Next, add the true and fallthrough blocks as its successors.
10953     BB->addSuccessor(copy0MBB);
10954     BB->addSuccessor(sinkMBB);
10955 
10956     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10957         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10958         MI.getOpcode() == PPC::SELECT_F16 ||
10959         MI.getOpcode() == PPC::SELECT_SPE4 ||
10960         MI.getOpcode() == PPC::SELECT_SPE ||
10961         MI.getOpcode() == PPC::SELECT_QFRC ||
10962         MI.getOpcode() == PPC::SELECT_QSRC ||
10963         MI.getOpcode() == PPC::SELECT_QBRC ||
10964         MI.getOpcode() == PPC::SELECT_VRRC ||
10965         MI.getOpcode() == PPC::SELECT_VSFRC ||
10966         MI.getOpcode() == PPC::SELECT_VSSRC ||
10967         MI.getOpcode() == PPC::SELECT_VSRC) {
10968       BuildMI(BB, dl, TII->get(PPC::BC))
10969           .addReg(MI.getOperand(1).getReg())
10970           .addMBB(sinkMBB);
10971     } else {
10972       unsigned SelectPred = MI.getOperand(4).getImm();
10973       BuildMI(BB, dl, TII->get(PPC::BCC))
10974           .addImm(SelectPred)
10975           .addReg(MI.getOperand(1).getReg())
10976           .addMBB(sinkMBB);
10977     }
10978 
10979     //  copy0MBB:
10980     //   %FalseValue = ...
10981     //   # fallthrough to sinkMBB
10982     BB = copy0MBB;
10983 
10984     // Update machine-CFG edges
10985     BB->addSuccessor(sinkMBB);
10986 
10987     //  sinkMBB:
10988     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10989     //  ...
10990     BB = sinkMBB;
10991     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10992         .addReg(MI.getOperand(3).getReg())
10993         .addMBB(copy0MBB)
10994         .addReg(MI.getOperand(2).getReg())
10995         .addMBB(thisMBB);
10996   } else if (MI.getOpcode() == PPC::ReadTB) {
10997     // To read the 64-bit time-base register on a 32-bit target, we read the
10998     // two halves. Should the counter have wrapped while it was being read, we
10999     // need to try again.
11000     // ...
11001     // readLoop:
11002     // mfspr Rx,TBU # load from TBU
11003     // mfspr Ry,TB  # load from TB
11004     // mfspr Rz,TBU # load from TBU
11005     // cmpw crX,Rx,Rz # check if 'old'='new'
11006     // bne readLoop   # branch if they're not equal
11007     // ...
11008 
11009     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11010     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11011     DebugLoc dl = MI.getDebugLoc();
11012     F->insert(It, readMBB);
11013     F->insert(It, sinkMBB);
11014 
11015     // Transfer the remainder of BB and its successor edges to sinkMBB.
11016     sinkMBB->splice(sinkMBB->begin(), BB,
11017                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11018     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11019 
11020     BB->addSuccessor(readMBB);
11021     BB = readMBB;
11022 
11023     MachineRegisterInfo &RegInfo = F->getRegInfo();
11024     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11025     Register LoReg = MI.getOperand(0).getReg();
11026     Register HiReg = MI.getOperand(1).getReg();
11027 
11028     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11029     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11030     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11031 
11032     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11033 
11034     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11035         .addReg(HiReg)
11036         .addReg(ReadAgainReg);
11037     BuildMI(BB, dl, TII->get(PPC::BCC))
11038         .addImm(PPC::PRED_NE)
11039         .addReg(CmpReg)
11040         .addMBB(readMBB);
11041 
11042     BB->addSuccessor(readMBB);
11043     BB->addSuccessor(sinkMBB);
11044   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11045     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11046   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11047     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11048   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11049     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11050   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11051     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11052 
11053   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11054     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11055   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11056     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11057   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11058     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11059   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11060     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11061 
11062   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11063     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11064   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11065     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11066   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11067     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11068   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11069     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11070 
11071   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11072     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11073   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11074     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11075   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11076     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11077   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11078     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11079 
11080   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11081     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11082   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11083     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11084   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11085     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11086   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11087     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11088 
11089   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11090     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11091   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11092     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11093   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11094     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11095   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11096     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11097 
11098   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11099     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11100   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11101     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11102   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11103     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11104   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11105     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11106 
11107   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11108     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11109   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11110     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11111   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11112     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11113   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11114     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11115 
11116   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11117     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11118   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11119     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11120   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11121     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11122   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11123     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11124 
11125   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11126     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11127   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11128     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11129   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11130     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11131   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11132     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11133 
11134   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11135     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11136   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11137     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11138   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11139     BB = EmitAtomicBinary(MI, BB, 4, 0);
11140   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11141     BB = EmitAtomicBinary(MI, BB, 8, 0);
11142   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11143            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11144            (Subtarget.hasPartwordAtomics() &&
11145             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11146            (Subtarget.hasPartwordAtomics() &&
11147             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11148     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11149 
11150     auto LoadMnemonic = PPC::LDARX;
11151     auto StoreMnemonic = PPC::STDCX;
11152     switch (MI.getOpcode()) {
11153     default:
11154       llvm_unreachable("Compare and swap of unknown size");
11155     case PPC::ATOMIC_CMP_SWAP_I8:
11156       LoadMnemonic = PPC::LBARX;
11157       StoreMnemonic = PPC::STBCX;
11158       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11159       break;
11160     case PPC::ATOMIC_CMP_SWAP_I16:
11161       LoadMnemonic = PPC::LHARX;
11162       StoreMnemonic = PPC::STHCX;
11163       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11164       break;
11165     case PPC::ATOMIC_CMP_SWAP_I32:
11166       LoadMnemonic = PPC::LWARX;
11167       StoreMnemonic = PPC::STWCX;
11168       break;
11169     case PPC::ATOMIC_CMP_SWAP_I64:
11170       LoadMnemonic = PPC::LDARX;
11171       StoreMnemonic = PPC::STDCX;
11172       break;
11173     }
11174     Register dest = MI.getOperand(0).getReg();
11175     Register ptrA = MI.getOperand(1).getReg();
11176     Register ptrB = MI.getOperand(2).getReg();
11177     Register oldval = MI.getOperand(3).getReg();
11178     Register newval = MI.getOperand(4).getReg();
11179     DebugLoc dl = MI.getDebugLoc();
11180 
11181     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11182     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11183     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11184     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11185     F->insert(It, loop1MBB);
11186     F->insert(It, loop2MBB);
11187     F->insert(It, midMBB);
11188     F->insert(It, exitMBB);
11189     exitMBB->splice(exitMBB->begin(), BB,
11190                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11191     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11192 
11193     //  thisMBB:
11194     //   ...
11195     //   fallthrough --> loopMBB
11196     BB->addSuccessor(loop1MBB);
11197 
11198     // loop1MBB:
11199     //   l[bhwd]arx dest, ptr
11200     //   cmp[wd] dest, oldval
11201     //   bne- midMBB
11202     // loop2MBB:
11203     //   st[bhwd]cx. newval, ptr
11204     //   bne- loopMBB
11205     //   b exitBB
11206     // midMBB:
11207     //   st[bhwd]cx. dest, ptr
11208     // exitBB:
11209     BB = loop1MBB;
11210     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11211     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11212         .addReg(oldval)
11213         .addReg(dest);
11214     BuildMI(BB, dl, TII->get(PPC::BCC))
11215         .addImm(PPC::PRED_NE)
11216         .addReg(PPC::CR0)
11217         .addMBB(midMBB);
11218     BB->addSuccessor(loop2MBB);
11219     BB->addSuccessor(midMBB);
11220 
11221     BB = loop2MBB;
11222     BuildMI(BB, dl, TII->get(StoreMnemonic))
11223         .addReg(newval)
11224         .addReg(ptrA)
11225         .addReg(ptrB);
11226     BuildMI(BB, dl, TII->get(PPC::BCC))
11227         .addImm(PPC::PRED_NE)
11228         .addReg(PPC::CR0)
11229         .addMBB(loop1MBB);
11230     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11231     BB->addSuccessor(loop1MBB);
11232     BB->addSuccessor(exitMBB);
11233 
11234     BB = midMBB;
11235     BuildMI(BB, dl, TII->get(StoreMnemonic))
11236         .addReg(dest)
11237         .addReg(ptrA)
11238         .addReg(ptrB);
11239     BB->addSuccessor(exitMBB);
11240 
11241     //  exitMBB:
11242     //   ...
11243     BB = exitMBB;
11244   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11245              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11246     // We must use 64-bit registers for addresses when targeting 64-bit,
11247     // since we're actually doing arithmetic on them.  Other registers
11248     // can be 32-bit.
11249     bool is64bit = Subtarget.isPPC64();
11250     bool isLittleEndian = Subtarget.isLittleEndian();
11251     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11252 
11253     Register dest = MI.getOperand(0).getReg();
11254     Register ptrA = MI.getOperand(1).getReg();
11255     Register ptrB = MI.getOperand(2).getReg();
11256     Register oldval = MI.getOperand(3).getReg();
11257     Register newval = MI.getOperand(4).getReg();
11258     DebugLoc dl = MI.getDebugLoc();
11259 
11260     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11261     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11262     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11263     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11264     F->insert(It, loop1MBB);
11265     F->insert(It, loop2MBB);
11266     F->insert(It, midMBB);
11267     F->insert(It, exitMBB);
11268     exitMBB->splice(exitMBB->begin(), BB,
11269                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11270     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11271 
11272     MachineRegisterInfo &RegInfo = F->getRegInfo();
11273     const TargetRegisterClass *RC =
11274         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11275     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11276 
11277     Register PtrReg = RegInfo.createVirtualRegister(RC);
11278     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11279     Register ShiftReg =
11280         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11281     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11282     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11283     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11284     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11285     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11286     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11287     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11288     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11289     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11290     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11291     Register Ptr1Reg;
11292     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11293     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11294     //  thisMBB:
11295     //   ...
11296     //   fallthrough --> loopMBB
11297     BB->addSuccessor(loop1MBB);
11298 
11299     // The 4-byte load must be aligned, while a char or short may be
11300     // anywhere in the word.  Hence all this nasty bookkeeping code.
11301     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11302     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11303     //   xori shift, shift1, 24 [16]
11304     //   rlwinm ptr, ptr1, 0, 0, 29
11305     //   slw newval2, newval, shift
11306     //   slw oldval2, oldval,shift
11307     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11308     //   slw mask, mask2, shift
11309     //   and newval3, newval2, mask
11310     //   and oldval3, oldval2, mask
11311     // loop1MBB:
11312     //   lwarx tmpDest, ptr
11313     //   and tmp, tmpDest, mask
11314     //   cmpw tmp, oldval3
11315     //   bne- midMBB
11316     // loop2MBB:
11317     //   andc tmp2, tmpDest, mask
11318     //   or tmp4, tmp2, newval3
11319     //   stwcx. tmp4, ptr
11320     //   bne- loop1MBB
11321     //   b exitBB
11322     // midMBB:
11323     //   stwcx. tmpDest, ptr
11324     // exitBB:
11325     //   srw dest, tmpDest, shift
11326     if (ptrA != ZeroReg) {
11327       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11328       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11329           .addReg(ptrA)
11330           .addReg(ptrB);
11331     } else {
11332       Ptr1Reg = ptrB;
11333     }
11334 
11335     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11336     // mode.
11337     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11338         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11339         .addImm(3)
11340         .addImm(27)
11341         .addImm(is8bit ? 28 : 27);
11342     if (!isLittleEndian)
11343       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11344           .addReg(Shift1Reg)
11345           .addImm(is8bit ? 24 : 16);
11346     if (is64bit)
11347       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11348           .addReg(Ptr1Reg)
11349           .addImm(0)
11350           .addImm(61);
11351     else
11352       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11353           .addReg(Ptr1Reg)
11354           .addImm(0)
11355           .addImm(0)
11356           .addImm(29);
11357     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11358         .addReg(newval)
11359         .addReg(ShiftReg);
11360     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11361         .addReg(oldval)
11362         .addReg(ShiftReg);
11363     if (is8bit)
11364       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11365     else {
11366       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11367       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11368           .addReg(Mask3Reg)
11369           .addImm(65535);
11370     }
11371     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11372         .addReg(Mask2Reg)
11373         .addReg(ShiftReg);
11374     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11375         .addReg(NewVal2Reg)
11376         .addReg(MaskReg);
11377     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11378         .addReg(OldVal2Reg)
11379         .addReg(MaskReg);
11380 
11381     BB = loop1MBB;
11382     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11383         .addReg(ZeroReg)
11384         .addReg(PtrReg);
11385     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11386         .addReg(TmpDestReg)
11387         .addReg(MaskReg);
11388     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11389         .addReg(TmpReg)
11390         .addReg(OldVal3Reg);
11391     BuildMI(BB, dl, TII->get(PPC::BCC))
11392         .addImm(PPC::PRED_NE)
11393         .addReg(PPC::CR0)
11394         .addMBB(midMBB);
11395     BB->addSuccessor(loop2MBB);
11396     BB->addSuccessor(midMBB);
11397 
11398     BB = loop2MBB;
11399     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11400         .addReg(TmpDestReg)
11401         .addReg(MaskReg);
11402     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11403         .addReg(Tmp2Reg)
11404         .addReg(NewVal3Reg);
11405     BuildMI(BB, dl, TII->get(PPC::STWCX))
11406         .addReg(Tmp4Reg)
11407         .addReg(ZeroReg)
11408         .addReg(PtrReg);
11409     BuildMI(BB, dl, TII->get(PPC::BCC))
11410         .addImm(PPC::PRED_NE)
11411         .addReg(PPC::CR0)
11412         .addMBB(loop1MBB);
11413     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11414     BB->addSuccessor(loop1MBB);
11415     BB->addSuccessor(exitMBB);
11416 
11417     BB = midMBB;
11418     BuildMI(BB, dl, TII->get(PPC::STWCX))
11419         .addReg(TmpDestReg)
11420         .addReg(ZeroReg)
11421         .addReg(PtrReg);
11422     BB->addSuccessor(exitMBB);
11423 
11424     //  exitMBB:
11425     //   ...
11426     BB = exitMBB;
11427     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11428         .addReg(TmpReg)
11429         .addReg(ShiftReg);
11430   } else if (MI.getOpcode() == PPC::FADDrtz) {
11431     // This pseudo performs an FADD with rounding mode temporarily forced
11432     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11433     // is not modeled at the SelectionDAG level.
11434     Register Dest = MI.getOperand(0).getReg();
11435     Register Src1 = MI.getOperand(1).getReg();
11436     Register Src2 = MI.getOperand(2).getReg();
11437     DebugLoc dl = MI.getDebugLoc();
11438 
11439     MachineRegisterInfo &RegInfo = F->getRegInfo();
11440     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11441 
11442     // Save FPSCR value.
11443     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11444 
11445     // Set rounding mode to round-to-zero.
11446     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11447     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11448 
11449     // Perform addition.
11450     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11451 
11452     // Restore FPSCR value.
11453     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11454   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11455              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
11456              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11457              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
11458     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11459                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
11460                           ? PPC::ANDIo8
11461                           : PPC::ANDIo;
11462     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11463                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
11464 
11465     MachineRegisterInfo &RegInfo = F->getRegInfo();
11466     Register Dest = RegInfo.createVirtualRegister(
11467         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11468 
11469     DebugLoc dl = MI.getDebugLoc();
11470     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
11471         .addReg(MI.getOperand(1).getReg())
11472         .addImm(1);
11473     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
11474             MI.getOperand(0).getReg())
11475         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
11476   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11477     DebugLoc Dl = MI.getDebugLoc();
11478     MachineRegisterInfo &RegInfo = F->getRegInfo();
11479     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11480     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11481     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11482             MI.getOperand(0).getReg())
11483         .addReg(CRReg);
11484   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11485     DebugLoc Dl = MI.getDebugLoc();
11486     unsigned Imm = MI.getOperand(1).getImm();
11487     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11488     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11489             MI.getOperand(0).getReg())
11490         .addReg(PPC::CR0EQ);
11491   } else if (MI.getOpcode() == PPC::SETRNDi) {
11492     DebugLoc dl = MI.getDebugLoc();
11493     Register OldFPSCRReg = MI.getOperand(0).getReg();
11494 
11495     // Save FPSCR value.
11496     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11497 
11498     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11499     // the following settings:
11500     //   00 Round to nearest
11501     //   01 Round to 0
11502     //   10 Round to +inf
11503     //   11 Round to -inf
11504 
11505     // When the operand is immediate, using the two least significant bits of
11506     // the immediate to set the bits 62:63 of FPSCR.
11507     unsigned Mode = MI.getOperand(1).getImm();
11508     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11509       .addImm(31);
11510 
11511     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11512       .addImm(30);
11513   } else if (MI.getOpcode() == PPC::SETRND) {
11514     DebugLoc dl = MI.getDebugLoc();
11515 
11516     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11517     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11518     // If the target doesn't have DirectMove, we should use stack to do the
11519     // conversion, because the target doesn't have the instructions like mtvsrd
11520     // or mfvsrd to do this conversion directly.
11521     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11522       if (Subtarget.hasDirectMove()) {
11523         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11524           .addReg(SrcReg);
11525       } else {
11526         // Use stack to do the register copy.
11527         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11528         MachineRegisterInfo &RegInfo = F->getRegInfo();
11529         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11530         if (RC == &PPC::F8RCRegClass) {
11531           // Copy register from F8RCRegClass to G8RCRegclass.
11532           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11533                  "Unsupported RegClass.");
11534 
11535           StoreOp = PPC::STFD;
11536           LoadOp = PPC::LD;
11537         } else {
11538           // Copy register from G8RCRegClass to F8RCRegclass.
11539           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11540                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11541                  "Unsupported RegClass.");
11542         }
11543 
11544         MachineFrameInfo &MFI = F->getFrameInfo();
11545         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11546 
11547         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11548           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11549           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11550           MFI.getObjectAlignment(FrameIdx));
11551 
11552         // Store the SrcReg into the stack.
11553         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11554           .addReg(SrcReg)
11555           .addImm(0)
11556           .addFrameIndex(FrameIdx)
11557           .addMemOperand(MMOStore);
11558 
11559         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11560           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11561           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11562           MFI.getObjectAlignment(FrameIdx));
11563 
11564         // Load from the stack where SrcReg is stored, and save to DestReg,
11565         // so we have done the RegClass conversion from RegClass::SrcReg to
11566         // RegClass::DestReg.
11567         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11568           .addImm(0)
11569           .addFrameIndex(FrameIdx)
11570           .addMemOperand(MMOLoad);
11571       }
11572     };
11573 
11574     Register OldFPSCRReg = MI.getOperand(0).getReg();
11575 
11576     // Save FPSCR value.
11577     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11578 
11579     // When the operand is gprc register, use two least significant bits of the
11580     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11581     //
11582     // copy OldFPSCRTmpReg, OldFPSCRReg
11583     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11584     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11585     // copy NewFPSCRReg, NewFPSCRTmpReg
11586     // mtfsf 255, NewFPSCRReg
11587     MachineOperand SrcOp = MI.getOperand(1);
11588     MachineRegisterInfo &RegInfo = F->getRegInfo();
11589     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11590 
11591     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11592 
11593     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11594     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11595 
11596     // The first operand of INSERT_SUBREG should be a register which has
11597     // subregisters, we only care about its RegClass, so we should use an
11598     // IMPLICIT_DEF register.
11599     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11600     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11601       .addReg(ImDefReg)
11602       .add(SrcOp)
11603       .addImm(1);
11604 
11605     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11606     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11607       .addReg(OldFPSCRTmpReg)
11608       .addReg(ExtSrcReg)
11609       .addImm(0)
11610       .addImm(62);
11611 
11612     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11613     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11614 
11615     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11616     // bits of FPSCR.
11617     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11618       .addImm(255)
11619       .addReg(NewFPSCRReg)
11620       .addImm(0)
11621       .addImm(0);
11622   } else {
11623     llvm_unreachable("Unexpected instr type to insert");
11624   }
11625 
11626   MI.eraseFromParent(); // The pseudo instruction is gone now.
11627   return BB;
11628 }
11629 
11630 //===----------------------------------------------------------------------===//
11631 // Target Optimization Hooks
11632 //===----------------------------------------------------------------------===//
11633 
11634 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11635   // For the estimates, convergence is quadratic, so we essentially double the
11636   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11637   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11638   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11639   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11640   if (VT.getScalarType() == MVT::f64)
11641     RefinementSteps++;
11642   return RefinementSteps;
11643 }
11644 
11645 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11646                                            int Enabled, int &RefinementSteps,
11647                                            bool &UseOneConstNR,
11648                                            bool Reciprocal) const {
11649   EVT VT = Operand.getValueType();
11650   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11651       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11652       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11653       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11654       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11655       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11656     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11657       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11658 
11659     // The Newton-Raphson computation with a single constant does not provide
11660     // enough accuracy on some CPUs.
11661     UseOneConstNR = !Subtarget.needsTwoConstNR();
11662     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11663   }
11664   return SDValue();
11665 }
11666 
11667 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11668                                             int Enabled,
11669                                             int &RefinementSteps) const {
11670   EVT VT = Operand.getValueType();
11671   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11672       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11673       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11674       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11675       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11676       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11677     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11678       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11679     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11680   }
11681   return SDValue();
11682 }
11683 
11684 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11685   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11686   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11687   // enabled for division), this functionality is redundant with the default
11688   // combiner logic (once the division -> reciprocal/multiply transformation
11689   // has taken place). As a result, this matters more for older cores than for
11690   // newer ones.
11691 
11692   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11693   // reciprocal if there are two or more FDIVs (for embedded cores with only
11694   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11695   switch (Subtarget.getDarwinDirective()) {
11696   default:
11697     return 3;
11698   case PPC::DIR_440:
11699   case PPC::DIR_A2:
11700   case PPC::DIR_E500:
11701   case PPC::DIR_E500mc:
11702   case PPC::DIR_E5500:
11703     return 2;
11704   }
11705 }
11706 
11707 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11708 // collapsed, and so we need to look through chains of them.
11709 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11710                                      int64_t& Offset, SelectionDAG &DAG) {
11711   if (DAG.isBaseWithConstantOffset(Loc)) {
11712     Base = Loc.getOperand(0);
11713     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11714 
11715     // The base might itself be a base plus an offset, and if so, accumulate
11716     // that as well.
11717     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11718   }
11719 }
11720 
11721 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11722                             unsigned Bytes, int Dist,
11723                             SelectionDAG &DAG) {
11724   if (VT.getSizeInBits() / 8 != Bytes)
11725     return false;
11726 
11727   SDValue BaseLoc = Base->getBasePtr();
11728   if (Loc.getOpcode() == ISD::FrameIndex) {
11729     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11730       return false;
11731     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11732     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11733     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11734     int FS  = MFI.getObjectSize(FI);
11735     int BFS = MFI.getObjectSize(BFI);
11736     if (FS != BFS || FS != (int)Bytes) return false;
11737     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11738   }
11739 
11740   SDValue Base1 = Loc, Base2 = BaseLoc;
11741   int64_t Offset1 = 0, Offset2 = 0;
11742   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11743   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11744   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11745     return true;
11746 
11747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11748   const GlobalValue *GV1 = nullptr;
11749   const GlobalValue *GV2 = nullptr;
11750   Offset1 = 0;
11751   Offset2 = 0;
11752   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11753   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11754   if (isGA1 && isGA2 && GV1 == GV2)
11755     return Offset1 == (Offset2 + Dist*Bytes);
11756   return false;
11757 }
11758 
11759 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11760 // not enforce equality of the chain operands.
11761 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11762                             unsigned Bytes, int Dist,
11763                             SelectionDAG &DAG) {
11764   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11765     EVT VT = LS->getMemoryVT();
11766     SDValue Loc = LS->getBasePtr();
11767     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11768   }
11769 
11770   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11771     EVT VT;
11772     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11773     default: return false;
11774     case Intrinsic::ppc_qpx_qvlfd:
11775     case Intrinsic::ppc_qpx_qvlfda:
11776       VT = MVT::v4f64;
11777       break;
11778     case Intrinsic::ppc_qpx_qvlfs:
11779     case Intrinsic::ppc_qpx_qvlfsa:
11780       VT = MVT::v4f32;
11781       break;
11782     case Intrinsic::ppc_qpx_qvlfcd:
11783     case Intrinsic::ppc_qpx_qvlfcda:
11784       VT = MVT::v2f64;
11785       break;
11786     case Intrinsic::ppc_qpx_qvlfcs:
11787     case Intrinsic::ppc_qpx_qvlfcsa:
11788       VT = MVT::v2f32;
11789       break;
11790     case Intrinsic::ppc_qpx_qvlfiwa:
11791     case Intrinsic::ppc_qpx_qvlfiwz:
11792     case Intrinsic::ppc_altivec_lvx:
11793     case Intrinsic::ppc_altivec_lvxl:
11794     case Intrinsic::ppc_vsx_lxvw4x:
11795     case Intrinsic::ppc_vsx_lxvw4x_be:
11796       VT = MVT::v4i32;
11797       break;
11798     case Intrinsic::ppc_vsx_lxvd2x:
11799     case Intrinsic::ppc_vsx_lxvd2x_be:
11800       VT = MVT::v2f64;
11801       break;
11802     case Intrinsic::ppc_altivec_lvebx:
11803       VT = MVT::i8;
11804       break;
11805     case Intrinsic::ppc_altivec_lvehx:
11806       VT = MVT::i16;
11807       break;
11808     case Intrinsic::ppc_altivec_lvewx:
11809       VT = MVT::i32;
11810       break;
11811     }
11812 
11813     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11814   }
11815 
11816   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11817     EVT VT;
11818     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11819     default: return false;
11820     case Intrinsic::ppc_qpx_qvstfd:
11821     case Intrinsic::ppc_qpx_qvstfda:
11822       VT = MVT::v4f64;
11823       break;
11824     case Intrinsic::ppc_qpx_qvstfs:
11825     case Intrinsic::ppc_qpx_qvstfsa:
11826       VT = MVT::v4f32;
11827       break;
11828     case Intrinsic::ppc_qpx_qvstfcd:
11829     case Intrinsic::ppc_qpx_qvstfcda:
11830       VT = MVT::v2f64;
11831       break;
11832     case Intrinsic::ppc_qpx_qvstfcs:
11833     case Intrinsic::ppc_qpx_qvstfcsa:
11834       VT = MVT::v2f32;
11835       break;
11836     case Intrinsic::ppc_qpx_qvstfiw:
11837     case Intrinsic::ppc_qpx_qvstfiwa:
11838     case Intrinsic::ppc_altivec_stvx:
11839     case Intrinsic::ppc_altivec_stvxl:
11840     case Intrinsic::ppc_vsx_stxvw4x:
11841       VT = MVT::v4i32;
11842       break;
11843     case Intrinsic::ppc_vsx_stxvd2x:
11844       VT = MVT::v2f64;
11845       break;
11846     case Intrinsic::ppc_vsx_stxvw4x_be:
11847       VT = MVT::v4i32;
11848       break;
11849     case Intrinsic::ppc_vsx_stxvd2x_be:
11850       VT = MVT::v2f64;
11851       break;
11852     case Intrinsic::ppc_altivec_stvebx:
11853       VT = MVT::i8;
11854       break;
11855     case Intrinsic::ppc_altivec_stvehx:
11856       VT = MVT::i16;
11857       break;
11858     case Intrinsic::ppc_altivec_stvewx:
11859       VT = MVT::i32;
11860       break;
11861     }
11862 
11863     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11864   }
11865 
11866   return false;
11867 }
11868 
11869 // Return true is there is a nearyby consecutive load to the one provided
11870 // (regardless of alignment). We search up and down the chain, looking though
11871 // token factors and other loads (but nothing else). As a result, a true result
11872 // indicates that it is safe to create a new consecutive load adjacent to the
11873 // load provided.
11874 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11875   SDValue Chain = LD->getChain();
11876   EVT VT = LD->getMemoryVT();
11877 
11878   SmallSet<SDNode *, 16> LoadRoots;
11879   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11880   SmallSet<SDNode *, 16> Visited;
11881 
11882   // First, search up the chain, branching to follow all token-factor operands.
11883   // If we find a consecutive load, then we're done, otherwise, record all
11884   // nodes just above the top-level loads and token factors.
11885   while (!Queue.empty()) {
11886     SDNode *ChainNext = Queue.pop_back_val();
11887     if (!Visited.insert(ChainNext).second)
11888       continue;
11889 
11890     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11891       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11892         return true;
11893 
11894       if (!Visited.count(ChainLD->getChain().getNode()))
11895         Queue.push_back(ChainLD->getChain().getNode());
11896     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11897       for (const SDUse &O : ChainNext->ops())
11898         if (!Visited.count(O.getNode()))
11899           Queue.push_back(O.getNode());
11900     } else
11901       LoadRoots.insert(ChainNext);
11902   }
11903 
11904   // Second, search down the chain, starting from the top-level nodes recorded
11905   // in the first phase. These top-level nodes are the nodes just above all
11906   // loads and token factors. Starting with their uses, recursively look though
11907   // all loads (just the chain uses) and token factors to find a consecutive
11908   // load.
11909   Visited.clear();
11910   Queue.clear();
11911 
11912   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11913        IE = LoadRoots.end(); I != IE; ++I) {
11914     Queue.push_back(*I);
11915 
11916     while (!Queue.empty()) {
11917       SDNode *LoadRoot = Queue.pop_back_val();
11918       if (!Visited.insert(LoadRoot).second)
11919         continue;
11920 
11921       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11922         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11923           return true;
11924 
11925       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11926            UE = LoadRoot->use_end(); UI != UE; ++UI)
11927         if (((isa<MemSDNode>(*UI) &&
11928             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11929             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11930           Queue.push_back(*UI);
11931     }
11932   }
11933 
11934   return false;
11935 }
11936 
11937 /// This function is called when we have proved that a SETCC node can be replaced
11938 /// by subtraction (and other supporting instructions) so that the result of
11939 /// comparison is kept in a GPR instead of CR. This function is purely for
11940 /// codegen purposes and has some flags to guide the codegen process.
11941 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11942                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11943   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11944 
11945   // Zero extend the operands to the largest legal integer. Originally, they
11946   // must be of a strictly smaller size.
11947   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11948                          DAG.getConstant(Size, DL, MVT::i32));
11949   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11950                          DAG.getConstant(Size, DL, MVT::i32));
11951 
11952   // Swap if needed. Depends on the condition code.
11953   if (Swap)
11954     std::swap(Op0, Op1);
11955 
11956   // Subtract extended integers.
11957   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11958 
11959   // Move the sign bit to the least significant position and zero out the rest.
11960   // Now the least significant bit carries the result of original comparison.
11961   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11962                              DAG.getConstant(Size - 1, DL, MVT::i32));
11963   auto Final = Shifted;
11964 
11965   // Complement the result if needed. Based on the condition code.
11966   if (Complement)
11967     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11968                         DAG.getConstant(1, DL, MVT::i64));
11969 
11970   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11971 }
11972 
11973 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11974                                                   DAGCombinerInfo &DCI) const {
11975   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11976 
11977   SelectionDAG &DAG = DCI.DAG;
11978   SDLoc DL(N);
11979 
11980   // Size of integers being compared has a critical role in the following
11981   // analysis, so we prefer to do this when all types are legal.
11982   if (!DCI.isAfterLegalizeDAG())
11983     return SDValue();
11984 
11985   // If all users of SETCC extend its value to a legal integer type
11986   // then we replace SETCC with a subtraction
11987   for (SDNode::use_iterator UI = N->use_begin(),
11988        UE = N->use_end(); UI != UE; ++UI) {
11989     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11990       return SDValue();
11991   }
11992 
11993   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11994   auto OpSize = N->getOperand(0).getValueSizeInBits();
11995 
11996   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11997 
11998   if (OpSize < Size) {
11999     switch (CC) {
12000     default: break;
12001     case ISD::SETULT:
12002       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12003     case ISD::SETULE:
12004       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12005     case ISD::SETUGT:
12006       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12007     case ISD::SETUGE:
12008       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12009     }
12010   }
12011 
12012   return SDValue();
12013 }
12014 
12015 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12016                                                   DAGCombinerInfo &DCI) const {
12017   SelectionDAG &DAG = DCI.DAG;
12018   SDLoc dl(N);
12019 
12020   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12021   // If we're tracking CR bits, we need to be careful that we don't have:
12022   //   trunc(binary-ops(zext(x), zext(y)))
12023   // or
12024   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12025   // such that we're unnecessarily moving things into GPRs when it would be
12026   // better to keep them in CR bits.
12027 
12028   // Note that trunc here can be an actual i1 trunc, or can be the effective
12029   // truncation that comes from a setcc or select_cc.
12030   if (N->getOpcode() == ISD::TRUNCATE &&
12031       N->getValueType(0) != MVT::i1)
12032     return SDValue();
12033 
12034   if (N->getOperand(0).getValueType() != MVT::i32 &&
12035       N->getOperand(0).getValueType() != MVT::i64)
12036     return SDValue();
12037 
12038   if (N->getOpcode() == ISD::SETCC ||
12039       N->getOpcode() == ISD::SELECT_CC) {
12040     // If we're looking at a comparison, then we need to make sure that the
12041     // high bits (all except for the first) don't matter the result.
12042     ISD::CondCode CC =
12043       cast<CondCodeSDNode>(N->getOperand(
12044         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12045     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12046 
12047     if (ISD::isSignedIntSetCC(CC)) {
12048       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12049           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12050         return SDValue();
12051     } else if (ISD::isUnsignedIntSetCC(CC)) {
12052       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12053                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12054           !DAG.MaskedValueIsZero(N->getOperand(1),
12055                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12056         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12057                                              : SDValue());
12058     } else {
12059       // This is neither a signed nor an unsigned comparison, just make sure
12060       // that the high bits are equal.
12061       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12062       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12063 
12064       // We don't really care about what is known about the first bit (if
12065       // anything), so clear it in all masks prior to comparing them.
12066       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12067       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12068 
12069       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12070         return SDValue();
12071     }
12072   }
12073 
12074   // We now know that the higher-order bits are irrelevant, we just need to
12075   // make sure that all of the intermediate operations are bit operations, and
12076   // all inputs are extensions.
12077   if (N->getOperand(0).getOpcode() != ISD::AND &&
12078       N->getOperand(0).getOpcode() != ISD::OR  &&
12079       N->getOperand(0).getOpcode() != ISD::XOR &&
12080       N->getOperand(0).getOpcode() != ISD::SELECT &&
12081       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12082       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12083       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12084       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12085       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12086     return SDValue();
12087 
12088   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12089       N->getOperand(1).getOpcode() != ISD::AND &&
12090       N->getOperand(1).getOpcode() != ISD::OR  &&
12091       N->getOperand(1).getOpcode() != ISD::XOR &&
12092       N->getOperand(1).getOpcode() != ISD::SELECT &&
12093       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12094       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12095       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12096       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12097       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12098     return SDValue();
12099 
12100   SmallVector<SDValue, 4> Inputs;
12101   SmallVector<SDValue, 8> BinOps, PromOps;
12102   SmallPtrSet<SDNode *, 16> Visited;
12103 
12104   for (unsigned i = 0; i < 2; ++i) {
12105     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12106           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12107           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12108           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12109         isa<ConstantSDNode>(N->getOperand(i)))
12110       Inputs.push_back(N->getOperand(i));
12111     else
12112       BinOps.push_back(N->getOperand(i));
12113 
12114     if (N->getOpcode() == ISD::TRUNCATE)
12115       break;
12116   }
12117 
12118   // Visit all inputs, collect all binary operations (and, or, xor and
12119   // select) that are all fed by extensions.
12120   while (!BinOps.empty()) {
12121     SDValue BinOp = BinOps.back();
12122     BinOps.pop_back();
12123 
12124     if (!Visited.insert(BinOp.getNode()).second)
12125       continue;
12126 
12127     PromOps.push_back(BinOp);
12128 
12129     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12130       // The condition of the select is not promoted.
12131       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12132         continue;
12133       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12134         continue;
12135 
12136       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12137             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12138             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12139            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12140           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12141         Inputs.push_back(BinOp.getOperand(i));
12142       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12143                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12144                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12145                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12146                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12147                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12148                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12149                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12150                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12151         BinOps.push_back(BinOp.getOperand(i));
12152       } else {
12153         // We have an input that is not an extension or another binary
12154         // operation; we'll abort this transformation.
12155         return SDValue();
12156       }
12157     }
12158   }
12159 
12160   // Make sure that this is a self-contained cluster of operations (which
12161   // is not quite the same thing as saying that everything has only one
12162   // use).
12163   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12164     if (isa<ConstantSDNode>(Inputs[i]))
12165       continue;
12166 
12167     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12168                               UE = Inputs[i].getNode()->use_end();
12169          UI != UE; ++UI) {
12170       SDNode *User = *UI;
12171       if (User != N && !Visited.count(User))
12172         return SDValue();
12173 
12174       // Make sure that we're not going to promote the non-output-value
12175       // operand(s) or SELECT or SELECT_CC.
12176       // FIXME: Although we could sometimes handle this, and it does occur in
12177       // practice that one of the condition inputs to the select is also one of
12178       // the outputs, we currently can't deal with this.
12179       if (User->getOpcode() == ISD::SELECT) {
12180         if (User->getOperand(0) == Inputs[i])
12181           return SDValue();
12182       } else if (User->getOpcode() == ISD::SELECT_CC) {
12183         if (User->getOperand(0) == Inputs[i] ||
12184             User->getOperand(1) == Inputs[i])
12185           return SDValue();
12186       }
12187     }
12188   }
12189 
12190   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12191     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12192                               UE = PromOps[i].getNode()->use_end();
12193          UI != UE; ++UI) {
12194       SDNode *User = *UI;
12195       if (User != N && !Visited.count(User))
12196         return SDValue();
12197 
12198       // Make sure that we're not going to promote the non-output-value
12199       // operand(s) or SELECT or SELECT_CC.
12200       // FIXME: Although we could sometimes handle this, and it does occur in
12201       // practice that one of the condition inputs to the select is also one of
12202       // the outputs, we currently can't deal with this.
12203       if (User->getOpcode() == ISD::SELECT) {
12204         if (User->getOperand(0) == PromOps[i])
12205           return SDValue();
12206       } else if (User->getOpcode() == ISD::SELECT_CC) {
12207         if (User->getOperand(0) == PromOps[i] ||
12208             User->getOperand(1) == PromOps[i])
12209           return SDValue();
12210       }
12211     }
12212   }
12213 
12214   // Replace all inputs with the extension operand.
12215   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12216     // Constants may have users outside the cluster of to-be-promoted nodes,
12217     // and so we need to replace those as we do the promotions.
12218     if (isa<ConstantSDNode>(Inputs[i]))
12219       continue;
12220     else
12221       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12222   }
12223 
12224   std::list<HandleSDNode> PromOpHandles;
12225   for (auto &PromOp : PromOps)
12226     PromOpHandles.emplace_back(PromOp);
12227 
12228   // Replace all operations (these are all the same, but have a different
12229   // (i1) return type). DAG.getNode will validate that the types of
12230   // a binary operator match, so go through the list in reverse so that
12231   // we've likely promoted both operands first. Any intermediate truncations or
12232   // extensions disappear.
12233   while (!PromOpHandles.empty()) {
12234     SDValue PromOp = PromOpHandles.back().getValue();
12235     PromOpHandles.pop_back();
12236 
12237     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12238         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12239         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12240         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12241       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12242           PromOp.getOperand(0).getValueType() != MVT::i1) {
12243         // The operand is not yet ready (see comment below).
12244         PromOpHandles.emplace_front(PromOp);
12245         continue;
12246       }
12247 
12248       SDValue RepValue = PromOp.getOperand(0);
12249       if (isa<ConstantSDNode>(RepValue))
12250         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12251 
12252       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12253       continue;
12254     }
12255 
12256     unsigned C;
12257     switch (PromOp.getOpcode()) {
12258     default:             C = 0; break;
12259     case ISD::SELECT:    C = 1; break;
12260     case ISD::SELECT_CC: C = 2; break;
12261     }
12262 
12263     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12264          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12265         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12266          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12267       // The to-be-promoted operands of this node have not yet been
12268       // promoted (this should be rare because we're going through the
12269       // list backward, but if one of the operands has several users in
12270       // this cluster of to-be-promoted nodes, it is possible).
12271       PromOpHandles.emplace_front(PromOp);
12272       continue;
12273     }
12274 
12275     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12276                                 PromOp.getNode()->op_end());
12277 
12278     // If there are any constant inputs, make sure they're replaced now.
12279     for (unsigned i = 0; i < 2; ++i)
12280       if (isa<ConstantSDNode>(Ops[C+i]))
12281         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12282 
12283     DAG.ReplaceAllUsesOfValueWith(PromOp,
12284       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12285   }
12286 
12287   // Now we're left with the initial truncation itself.
12288   if (N->getOpcode() == ISD::TRUNCATE)
12289     return N->getOperand(0);
12290 
12291   // Otherwise, this is a comparison. The operands to be compared have just
12292   // changed type (to i1), but everything else is the same.
12293   return SDValue(N, 0);
12294 }
12295 
12296 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12297                                                   DAGCombinerInfo &DCI) const {
12298   SelectionDAG &DAG = DCI.DAG;
12299   SDLoc dl(N);
12300 
12301   // If we're tracking CR bits, we need to be careful that we don't have:
12302   //   zext(binary-ops(trunc(x), trunc(y)))
12303   // or
12304   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12305   // such that we're unnecessarily moving things into CR bits that can more
12306   // efficiently stay in GPRs. Note that if we're not certain that the high
12307   // bits are set as required by the final extension, we still may need to do
12308   // some masking to get the proper behavior.
12309 
12310   // This same functionality is important on PPC64 when dealing with
12311   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12312   // the return values of functions. Because it is so similar, it is handled
12313   // here as well.
12314 
12315   if (N->getValueType(0) != MVT::i32 &&
12316       N->getValueType(0) != MVT::i64)
12317     return SDValue();
12318 
12319   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12320         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12321     return SDValue();
12322 
12323   if (N->getOperand(0).getOpcode() != ISD::AND &&
12324       N->getOperand(0).getOpcode() != ISD::OR  &&
12325       N->getOperand(0).getOpcode() != ISD::XOR &&
12326       N->getOperand(0).getOpcode() != ISD::SELECT &&
12327       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12328     return SDValue();
12329 
12330   SmallVector<SDValue, 4> Inputs;
12331   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12332   SmallPtrSet<SDNode *, 16> Visited;
12333 
12334   // Visit all inputs, collect all binary operations (and, or, xor and
12335   // select) that are all fed by truncations.
12336   while (!BinOps.empty()) {
12337     SDValue BinOp = BinOps.back();
12338     BinOps.pop_back();
12339 
12340     if (!Visited.insert(BinOp.getNode()).second)
12341       continue;
12342 
12343     PromOps.push_back(BinOp);
12344 
12345     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12346       // The condition of the select is not promoted.
12347       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12348         continue;
12349       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12350         continue;
12351 
12352       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12353           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12354         Inputs.push_back(BinOp.getOperand(i));
12355       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12356                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12357                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12358                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12359                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12360         BinOps.push_back(BinOp.getOperand(i));
12361       } else {
12362         // We have an input that is not a truncation or another binary
12363         // operation; we'll abort this transformation.
12364         return SDValue();
12365       }
12366     }
12367   }
12368 
12369   // The operands of a select that must be truncated when the select is
12370   // promoted because the operand is actually part of the to-be-promoted set.
12371   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12372 
12373   // Make sure that this is a self-contained cluster of operations (which
12374   // is not quite the same thing as saying that everything has only one
12375   // use).
12376   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12377     if (isa<ConstantSDNode>(Inputs[i]))
12378       continue;
12379 
12380     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12381                               UE = Inputs[i].getNode()->use_end();
12382          UI != UE; ++UI) {
12383       SDNode *User = *UI;
12384       if (User != N && !Visited.count(User))
12385         return SDValue();
12386 
12387       // If we're going to promote the non-output-value operand(s) or SELECT or
12388       // SELECT_CC, record them for truncation.
12389       if (User->getOpcode() == ISD::SELECT) {
12390         if (User->getOperand(0) == Inputs[i])
12391           SelectTruncOp[0].insert(std::make_pair(User,
12392                                     User->getOperand(0).getValueType()));
12393       } else if (User->getOpcode() == ISD::SELECT_CC) {
12394         if (User->getOperand(0) == Inputs[i])
12395           SelectTruncOp[0].insert(std::make_pair(User,
12396                                     User->getOperand(0).getValueType()));
12397         if (User->getOperand(1) == Inputs[i])
12398           SelectTruncOp[1].insert(std::make_pair(User,
12399                                     User->getOperand(1).getValueType()));
12400       }
12401     }
12402   }
12403 
12404   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12405     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12406                               UE = PromOps[i].getNode()->use_end();
12407          UI != UE; ++UI) {
12408       SDNode *User = *UI;
12409       if (User != N && !Visited.count(User))
12410         return SDValue();
12411 
12412       // If we're going to promote the non-output-value operand(s) or SELECT or
12413       // SELECT_CC, record them for truncation.
12414       if (User->getOpcode() == ISD::SELECT) {
12415         if (User->getOperand(0) == PromOps[i])
12416           SelectTruncOp[0].insert(std::make_pair(User,
12417                                     User->getOperand(0).getValueType()));
12418       } else if (User->getOpcode() == ISD::SELECT_CC) {
12419         if (User->getOperand(0) == PromOps[i])
12420           SelectTruncOp[0].insert(std::make_pair(User,
12421                                     User->getOperand(0).getValueType()));
12422         if (User->getOperand(1) == PromOps[i])
12423           SelectTruncOp[1].insert(std::make_pair(User,
12424                                     User->getOperand(1).getValueType()));
12425       }
12426     }
12427   }
12428 
12429   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12430   bool ReallyNeedsExt = false;
12431   if (N->getOpcode() != ISD::ANY_EXTEND) {
12432     // If all of the inputs are not already sign/zero extended, then
12433     // we'll still need to do that at the end.
12434     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12435       if (isa<ConstantSDNode>(Inputs[i]))
12436         continue;
12437 
12438       unsigned OpBits =
12439         Inputs[i].getOperand(0).getValueSizeInBits();
12440       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12441 
12442       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12443            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12444                                   APInt::getHighBitsSet(OpBits,
12445                                                         OpBits-PromBits))) ||
12446           (N->getOpcode() == ISD::SIGN_EXTEND &&
12447            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12448              (OpBits-(PromBits-1)))) {
12449         ReallyNeedsExt = true;
12450         break;
12451       }
12452     }
12453   }
12454 
12455   // Replace all inputs, either with the truncation operand, or a
12456   // truncation or extension to the final output type.
12457   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12458     // Constant inputs need to be replaced with the to-be-promoted nodes that
12459     // use them because they might have users outside of the cluster of
12460     // promoted nodes.
12461     if (isa<ConstantSDNode>(Inputs[i]))
12462       continue;
12463 
12464     SDValue InSrc = Inputs[i].getOperand(0);
12465     if (Inputs[i].getValueType() == N->getValueType(0))
12466       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12467     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12468       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12469         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12470     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12471       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12472         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12473     else
12474       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12475         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12476   }
12477 
12478   std::list<HandleSDNode> PromOpHandles;
12479   for (auto &PromOp : PromOps)
12480     PromOpHandles.emplace_back(PromOp);
12481 
12482   // Replace all operations (these are all the same, but have a different
12483   // (promoted) return type). DAG.getNode will validate that the types of
12484   // a binary operator match, so go through the list in reverse so that
12485   // we've likely promoted both operands first.
12486   while (!PromOpHandles.empty()) {
12487     SDValue PromOp = PromOpHandles.back().getValue();
12488     PromOpHandles.pop_back();
12489 
12490     unsigned C;
12491     switch (PromOp.getOpcode()) {
12492     default:             C = 0; break;
12493     case ISD::SELECT:    C = 1; break;
12494     case ISD::SELECT_CC: C = 2; break;
12495     }
12496 
12497     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12498          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12499         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12500          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12501       // The to-be-promoted operands of this node have not yet been
12502       // promoted (this should be rare because we're going through the
12503       // list backward, but if one of the operands has several users in
12504       // this cluster of to-be-promoted nodes, it is possible).
12505       PromOpHandles.emplace_front(PromOp);
12506       continue;
12507     }
12508 
12509     // For SELECT and SELECT_CC nodes, we do a similar check for any
12510     // to-be-promoted comparison inputs.
12511     if (PromOp.getOpcode() == ISD::SELECT ||
12512         PromOp.getOpcode() == ISD::SELECT_CC) {
12513       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12514            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12515           (SelectTruncOp[1].count(PromOp.getNode()) &&
12516            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12517         PromOpHandles.emplace_front(PromOp);
12518         continue;
12519       }
12520     }
12521 
12522     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12523                                 PromOp.getNode()->op_end());
12524 
12525     // If this node has constant inputs, then they'll need to be promoted here.
12526     for (unsigned i = 0; i < 2; ++i) {
12527       if (!isa<ConstantSDNode>(Ops[C+i]))
12528         continue;
12529       if (Ops[C+i].getValueType() == N->getValueType(0))
12530         continue;
12531 
12532       if (N->getOpcode() == ISD::SIGN_EXTEND)
12533         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12534       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12535         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12536       else
12537         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12538     }
12539 
12540     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12541     // truncate them again to the original value type.
12542     if (PromOp.getOpcode() == ISD::SELECT ||
12543         PromOp.getOpcode() == ISD::SELECT_CC) {
12544       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12545       if (SI0 != SelectTruncOp[0].end())
12546         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12547       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12548       if (SI1 != SelectTruncOp[1].end())
12549         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12550     }
12551 
12552     DAG.ReplaceAllUsesOfValueWith(PromOp,
12553       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12554   }
12555 
12556   // Now we're left with the initial extension itself.
12557   if (!ReallyNeedsExt)
12558     return N->getOperand(0);
12559 
12560   // To zero extend, just mask off everything except for the first bit (in the
12561   // i1 case).
12562   if (N->getOpcode() == ISD::ZERO_EXTEND)
12563     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12564                        DAG.getConstant(APInt::getLowBitsSet(
12565                                          N->getValueSizeInBits(0), PromBits),
12566                                        dl, N->getValueType(0)));
12567 
12568   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12569          "Invalid extension type");
12570   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12571   SDValue ShiftCst =
12572       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12573   return DAG.getNode(
12574       ISD::SRA, dl, N->getValueType(0),
12575       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12576       ShiftCst);
12577 }
12578 
12579 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12580                                         DAGCombinerInfo &DCI) const {
12581   assert(N->getOpcode() == ISD::SETCC &&
12582          "Should be called with a SETCC node");
12583 
12584   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12585   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12586     SDValue LHS = N->getOperand(0);
12587     SDValue RHS = N->getOperand(1);
12588 
12589     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12590     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12591         LHS.hasOneUse())
12592       std::swap(LHS, RHS);
12593 
12594     // x == 0-y --> x+y == 0
12595     // x != 0-y --> x+y != 0
12596     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12597         RHS.hasOneUse()) {
12598       SDLoc DL(N);
12599       SelectionDAG &DAG = DCI.DAG;
12600       EVT VT = N->getValueType(0);
12601       EVT OpVT = LHS.getValueType();
12602       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12603       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12604     }
12605   }
12606 
12607   return DAGCombineTruncBoolExt(N, DCI);
12608 }
12609 
12610 // Is this an extending load from an f32 to an f64?
12611 static bool isFPExtLoad(SDValue Op) {
12612   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12613     return LD->getExtensionType() == ISD::EXTLOAD &&
12614       Op.getValueType() == MVT::f64;
12615   return false;
12616 }
12617 
12618 /// Reduces the number of fp-to-int conversion when building a vector.
12619 ///
12620 /// If this vector is built out of floating to integer conversions,
12621 /// transform it to a vector built out of floating point values followed by a
12622 /// single floating to integer conversion of the vector.
12623 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12624 /// becomes (fptosi (build_vector ($A, $B, ...)))
12625 SDValue PPCTargetLowering::
12626 combineElementTruncationToVectorTruncation(SDNode *N,
12627                                            DAGCombinerInfo &DCI) const {
12628   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12629          "Should be called with a BUILD_VECTOR node");
12630 
12631   SelectionDAG &DAG = DCI.DAG;
12632   SDLoc dl(N);
12633 
12634   SDValue FirstInput = N->getOperand(0);
12635   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12636          "The input operand must be an fp-to-int conversion.");
12637 
12638   // This combine happens after legalization so the fp_to_[su]i nodes are
12639   // already converted to PPCSISD nodes.
12640   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12641   if (FirstConversion == PPCISD::FCTIDZ ||
12642       FirstConversion == PPCISD::FCTIDUZ ||
12643       FirstConversion == PPCISD::FCTIWZ ||
12644       FirstConversion == PPCISD::FCTIWUZ) {
12645     bool IsSplat = true;
12646     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12647       FirstConversion == PPCISD::FCTIWUZ;
12648     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12649     SmallVector<SDValue, 4> Ops;
12650     EVT TargetVT = N->getValueType(0);
12651     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12652       SDValue NextOp = N->getOperand(i);
12653       if (NextOp.getOpcode() != PPCISD::MFVSR)
12654         return SDValue();
12655       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12656       if (NextConversion != FirstConversion)
12657         return SDValue();
12658       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12659       // This is not valid if the input was originally double precision. It is
12660       // also not profitable to do unless this is an extending load in which
12661       // case doing this combine will allow us to combine consecutive loads.
12662       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12663         return SDValue();
12664       if (N->getOperand(i) != FirstInput)
12665         IsSplat = false;
12666     }
12667 
12668     // If this is a splat, we leave it as-is since there will be only a single
12669     // fp-to-int conversion followed by a splat of the integer. This is better
12670     // for 32-bit and smaller ints and neutral for 64-bit ints.
12671     if (IsSplat)
12672       return SDValue();
12673 
12674     // Now that we know we have the right type of node, get its operands
12675     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12676       SDValue In = N->getOperand(i).getOperand(0);
12677       if (Is32Bit) {
12678         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12679         // here, we know that all inputs are extending loads so this is safe).
12680         if (In.isUndef())
12681           Ops.push_back(DAG.getUNDEF(SrcVT));
12682         else {
12683           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12684                                       MVT::f32, In.getOperand(0),
12685                                       DAG.getIntPtrConstant(1, dl));
12686           Ops.push_back(Trunc);
12687         }
12688       } else
12689         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12690     }
12691 
12692     unsigned Opcode;
12693     if (FirstConversion == PPCISD::FCTIDZ ||
12694         FirstConversion == PPCISD::FCTIWZ)
12695       Opcode = ISD::FP_TO_SINT;
12696     else
12697       Opcode = ISD::FP_TO_UINT;
12698 
12699     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12700     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12701     return DAG.getNode(Opcode, dl, TargetVT, BV);
12702   }
12703   return SDValue();
12704 }
12705 
12706 /// Reduce the number of loads when building a vector.
12707 ///
12708 /// Building a vector out of multiple loads can be converted to a load
12709 /// of the vector type if the loads are consecutive. If the loads are
12710 /// consecutive but in descending order, a shuffle is added at the end
12711 /// to reorder the vector.
12712 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12713   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12714          "Should be called with a BUILD_VECTOR node");
12715 
12716   SDLoc dl(N);
12717 
12718   // Return early for non byte-sized type, as they can't be consecutive.
12719   if (!N->getValueType(0).getVectorElementType().isByteSized())
12720     return SDValue();
12721 
12722   bool InputsAreConsecutiveLoads = true;
12723   bool InputsAreReverseConsecutive = true;
12724   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12725   SDValue FirstInput = N->getOperand(0);
12726   bool IsRoundOfExtLoad = false;
12727 
12728   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12729       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12730     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12731     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12732   }
12733   // Not a build vector of (possibly fp_rounded) loads.
12734   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12735       N->getNumOperands() == 1)
12736     return SDValue();
12737 
12738   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12739     // If any inputs are fp_round(extload), they all must be.
12740     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12741       return SDValue();
12742 
12743     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12744       N->getOperand(i);
12745     if (NextInput.getOpcode() != ISD::LOAD)
12746       return SDValue();
12747 
12748     SDValue PreviousInput =
12749       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12750     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12751     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12752 
12753     // If any inputs are fp_round(extload), they all must be.
12754     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12755       return SDValue();
12756 
12757     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12758       InputsAreConsecutiveLoads = false;
12759     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12760       InputsAreReverseConsecutive = false;
12761 
12762     // Exit early if the loads are neither consecutive nor reverse consecutive.
12763     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12764       return SDValue();
12765   }
12766 
12767   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12768          "The loads cannot be both consecutive and reverse consecutive.");
12769 
12770   SDValue FirstLoadOp =
12771     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12772   SDValue LastLoadOp =
12773     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12774                        N->getOperand(N->getNumOperands()-1);
12775 
12776   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12777   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12778   if (InputsAreConsecutiveLoads) {
12779     assert(LD1 && "Input needs to be a LoadSDNode.");
12780     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12781                        LD1->getBasePtr(), LD1->getPointerInfo(),
12782                        LD1->getAlignment());
12783   }
12784   if (InputsAreReverseConsecutive) {
12785     assert(LDL && "Input needs to be a LoadSDNode.");
12786     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12787                                LDL->getBasePtr(), LDL->getPointerInfo(),
12788                                LDL->getAlignment());
12789     SmallVector<int, 16> Ops;
12790     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12791       Ops.push_back(i);
12792 
12793     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12794                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12795   }
12796   return SDValue();
12797 }
12798 
12799 // This function adds the required vector_shuffle needed to get
12800 // the elements of the vector extract in the correct position
12801 // as specified by the CorrectElems encoding.
12802 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12803                                       SDValue Input, uint64_t Elems,
12804                                       uint64_t CorrectElems) {
12805   SDLoc dl(N);
12806 
12807   unsigned NumElems = Input.getValueType().getVectorNumElements();
12808   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12809 
12810   // Knowing the element indices being extracted from the original
12811   // vector and the order in which they're being inserted, just put
12812   // them at element indices required for the instruction.
12813   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12814     if (DAG.getDataLayout().isLittleEndian())
12815       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12816     else
12817       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12818     CorrectElems = CorrectElems >> 8;
12819     Elems = Elems >> 8;
12820   }
12821 
12822   SDValue Shuffle =
12823       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12824                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12825 
12826   EVT Ty = N->getValueType(0);
12827   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12828   return BV;
12829 }
12830 
12831 // Look for build vector patterns where input operands come from sign
12832 // extended vector_extract elements of specific indices. If the correct indices
12833 // aren't used, add a vector shuffle to fix up the indices and create a new
12834 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12835 // during instruction selection.
12836 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12837   // This array encodes the indices that the vector sign extend instructions
12838   // extract from when extending from one type to another for both BE and LE.
12839   // The right nibble of each byte corresponds to the LE incides.
12840   // and the left nibble of each byte corresponds to the BE incides.
12841   // For example: 0x3074B8FC  byte->word
12842   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12843   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12844   // For example: 0x000070F8  byte->double word
12845   // For LE: the allowed indices are: 0x0,0x8
12846   // For BE: the allowed indices are: 0x7,0xF
12847   uint64_t TargetElems[] = {
12848       0x3074B8FC, // b->w
12849       0x000070F8, // b->d
12850       0x10325476, // h->w
12851       0x00003074, // h->d
12852       0x00001032, // w->d
12853   };
12854 
12855   uint64_t Elems = 0;
12856   int Index;
12857   SDValue Input;
12858 
12859   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12860     if (!Op)
12861       return false;
12862     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12863         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12864       return false;
12865 
12866     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12867     // of the right width.
12868     SDValue Extract = Op.getOperand(0);
12869     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12870       Extract = Extract.getOperand(0);
12871     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12872       return false;
12873 
12874     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12875     if (!ExtOp)
12876       return false;
12877 
12878     Index = ExtOp->getZExtValue();
12879     if (Input && Input != Extract.getOperand(0))
12880       return false;
12881 
12882     if (!Input)
12883       Input = Extract.getOperand(0);
12884 
12885     Elems = Elems << 8;
12886     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12887     Elems |= Index;
12888 
12889     return true;
12890   };
12891 
12892   // If the build vector operands aren't sign extended vector extracts,
12893   // of the same input vector, then return.
12894   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12895     if (!isSExtOfVecExtract(N->getOperand(i))) {
12896       return SDValue();
12897     }
12898   }
12899 
12900   // If the vector extract indicies are not correct, add the appropriate
12901   // vector_shuffle.
12902   int TgtElemArrayIdx;
12903   int InputSize = Input.getValueType().getScalarSizeInBits();
12904   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12905   if (InputSize + OutputSize == 40)
12906     TgtElemArrayIdx = 0;
12907   else if (InputSize + OutputSize == 72)
12908     TgtElemArrayIdx = 1;
12909   else if (InputSize + OutputSize == 48)
12910     TgtElemArrayIdx = 2;
12911   else if (InputSize + OutputSize == 80)
12912     TgtElemArrayIdx = 3;
12913   else if (InputSize + OutputSize == 96)
12914     TgtElemArrayIdx = 4;
12915   else
12916     return SDValue();
12917 
12918   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12919   CorrectElems = DAG.getDataLayout().isLittleEndian()
12920                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12921                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12922   if (Elems != CorrectElems) {
12923     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12924   }
12925 
12926   // Regular lowering will catch cases where a shuffle is not needed.
12927   return SDValue();
12928 }
12929 
12930 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12931                                                  DAGCombinerInfo &DCI) const {
12932   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12933          "Should be called with a BUILD_VECTOR node");
12934 
12935   SelectionDAG &DAG = DCI.DAG;
12936   SDLoc dl(N);
12937 
12938   if (!Subtarget.hasVSX())
12939     return SDValue();
12940 
12941   // The target independent DAG combiner will leave a build_vector of
12942   // float-to-int conversions intact. We can generate MUCH better code for
12943   // a float-to-int conversion of a vector of floats.
12944   SDValue FirstInput = N->getOperand(0);
12945   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12946     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12947     if (Reduced)
12948       return Reduced;
12949   }
12950 
12951   // If we're building a vector out of consecutive loads, just load that
12952   // vector type.
12953   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12954   if (Reduced)
12955     return Reduced;
12956 
12957   // If we're building a vector out of extended elements from another vector
12958   // we have P9 vector integer extend instructions. The code assumes legal
12959   // input types (i.e. it can't handle things like v4i16) so do not run before
12960   // legalization.
12961   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12962     Reduced = combineBVOfVecSExt(N, DAG);
12963     if (Reduced)
12964       return Reduced;
12965   }
12966 
12967 
12968   if (N->getValueType(0) != MVT::v2f64)
12969     return SDValue();
12970 
12971   // Looking for:
12972   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12973   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12974       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12975     return SDValue();
12976   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12977       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12978     return SDValue();
12979   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12980     return SDValue();
12981 
12982   SDValue Ext1 = FirstInput.getOperand(0);
12983   SDValue Ext2 = N->getOperand(1).getOperand(0);
12984   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12985      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12986     return SDValue();
12987 
12988   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12989   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12990   if (!Ext1Op || !Ext2Op)
12991     return SDValue();
12992   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
12993       Ext1.getOperand(0) != Ext2.getOperand(0))
12994     return SDValue();
12995 
12996   int FirstElem = Ext1Op->getZExtValue();
12997   int SecondElem = Ext2Op->getZExtValue();
12998   int SubvecIdx;
12999   if (FirstElem == 0 && SecondElem == 1)
13000     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13001   else if (FirstElem == 2 && SecondElem == 3)
13002     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13003   else
13004     return SDValue();
13005 
13006   SDValue SrcVec = Ext1.getOperand(0);
13007   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13008     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13009   return DAG.getNode(NodeType, dl, MVT::v2f64,
13010                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13011 }
13012 
13013 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13014                                               DAGCombinerInfo &DCI) const {
13015   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13016           N->getOpcode() == ISD::UINT_TO_FP) &&
13017          "Need an int -> FP conversion node here");
13018 
13019   if (useSoftFloat() || !Subtarget.has64BitSupport())
13020     return SDValue();
13021 
13022   SelectionDAG &DAG = DCI.DAG;
13023   SDLoc dl(N);
13024   SDValue Op(N, 0);
13025 
13026   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13027   // from the hardware.
13028   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13029     return SDValue();
13030   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13031       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13032     return SDValue();
13033 
13034   SDValue FirstOperand(Op.getOperand(0));
13035   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13036     (FirstOperand.getValueType() == MVT::i8 ||
13037      FirstOperand.getValueType() == MVT::i16);
13038   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13039     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13040     bool DstDouble = Op.getValueType() == MVT::f64;
13041     unsigned ConvOp = Signed ?
13042       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13043       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13044     SDValue WidthConst =
13045       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13046                             dl, false);
13047     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13048     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13049     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13050                                          DAG.getVTList(MVT::f64, MVT::Other),
13051                                          Ops, MVT::i8, LDN->getMemOperand());
13052 
13053     // For signed conversion, we need to sign-extend the value in the VSR
13054     if (Signed) {
13055       SDValue ExtOps[] = { Ld, WidthConst };
13056       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13057       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13058     } else
13059       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13060   }
13061 
13062 
13063   // For i32 intermediate values, unfortunately, the conversion functions
13064   // leave the upper 32 bits of the value are undefined. Within the set of
13065   // scalar instructions, we have no method for zero- or sign-extending the
13066   // value. Thus, we cannot handle i32 intermediate values here.
13067   if (Op.getOperand(0).getValueType() == MVT::i32)
13068     return SDValue();
13069 
13070   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13071          "UINT_TO_FP is supported only with FPCVT");
13072 
13073   // If we have FCFIDS, then use it when converting to single-precision.
13074   // Otherwise, convert to double-precision and then round.
13075   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13076                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13077                                                             : PPCISD::FCFIDS)
13078                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13079                                                             : PPCISD::FCFID);
13080   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13081                   ? MVT::f32
13082                   : MVT::f64;
13083 
13084   // If we're converting from a float, to an int, and back to a float again,
13085   // then we don't need the store/load pair at all.
13086   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13087        Subtarget.hasFPCVT()) ||
13088       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13089     SDValue Src = Op.getOperand(0).getOperand(0);
13090     if (Src.getValueType() == MVT::f32) {
13091       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13092       DCI.AddToWorklist(Src.getNode());
13093     } else if (Src.getValueType() != MVT::f64) {
13094       // Make sure that we don't pick up a ppc_fp128 source value.
13095       return SDValue();
13096     }
13097 
13098     unsigned FCTOp =
13099       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13100                                                         PPCISD::FCTIDUZ;
13101 
13102     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13103     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13104 
13105     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13106       FP = DAG.getNode(ISD::FP_ROUND, dl,
13107                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13108       DCI.AddToWorklist(FP.getNode());
13109     }
13110 
13111     return FP;
13112   }
13113 
13114   return SDValue();
13115 }
13116 
13117 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13118 // builtins) into loads with swaps.
13119 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13120                                               DAGCombinerInfo &DCI) const {
13121   SelectionDAG &DAG = DCI.DAG;
13122   SDLoc dl(N);
13123   SDValue Chain;
13124   SDValue Base;
13125   MachineMemOperand *MMO;
13126 
13127   switch (N->getOpcode()) {
13128   default:
13129     llvm_unreachable("Unexpected opcode for little endian VSX load");
13130   case ISD::LOAD: {
13131     LoadSDNode *LD = cast<LoadSDNode>(N);
13132     Chain = LD->getChain();
13133     Base = LD->getBasePtr();
13134     MMO = LD->getMemOperand();
13135     // If the MMO suggests this isn't a load of a full vector, leave
13136     // things alone.  For a built-in, we have to make the change for
13137     // correctness, so if there is a size problem that will be a bug.
13138     if (MMO->getSize() < 16)
13139       return SDValue();
13140     break;
13141   }
13142   case ISD::INTRINSIC_W_CHAIN: {
13143     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13144     Chain = Intrin->getChain();
13145     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13146     // us what we want. Get operand 2 instead.
13147     Base = Intrin->getOperand(2);
13148     MMO = Intrin->getMemOperand();
13149     break;
13150   }
13151   }
13152 
13153   MVT VecTy = N->getValueType(0).getSimpleVT();
13154 
13155   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13156   // aligned and the type is a vector with elements up to 4 bytes
13157   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13158       && VecTy.getScalarSizeInBits() <= 32 ) {
13159     return SDValue();
13160   }
13161 
13162   SDValue LoadOps[] = { Chain, Base };
13163   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13164                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13165                                          LoadOps, MVT::v2f64, MMO);
13166 
13167   DCI.AddToWorklist(Load.getNode());
13168   Chain = Load.getValue(1);
13169   SDValue Swap = DAG.getNode(
13170       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13171   DCI.AddToWorklist(Swap.getNode());
13172 
13173   // Add a bitcast if the resulting load type doesn't match v2f64.
13174   if (VecTy != MVT::v2f64) {
13175     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13176     DCI.AddToWorklist(N.getNode());
13177     // Package {bitcast value, swap's chain} to match Load's shape.
13178     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13179                        N, Swap.getValue(1));
13180   }
13181 
13182   return Swap;
13183 }
13184 
13185 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13186 // builtins) into stores with swaps.
13187 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13188                                                DAGCombinerInfo &DCI) const {
13189   SelectionDAG &DAG = DCI.DAG;
13190   SDLoc dl(N);
13191   SDValue Chain;
13192   SDValue Base;
13193   unsigned SrcOpnd;
13194   MachineMemOperand *MMO;
13195 
13196   switch (N->getOpcode()) {
13197   default:
13198     llvm_unreachable("Unexpected opcode for little endian VSX store");
13199   case ISD::STORE: {
13200     StoreSDNode *ST = cast<StoreSDNode>(N);
13201     Chain = ST->getChain();
13202     Base = ST->getBasePtr();
13203     MMO = ST->getMemOperand();
13204     SrcOpnd = 1;
13205     // If the MMO suggests this isn't a store of a full vector, leave
13206     // things alone.  For a built-in, we have to make the change for
13207     // correctness, so if there is a size problem that will be a bug.
13208     if (MMO->getSize() < 16)
13209       return SDValue();
13210     break;
13211   }
13212   case ISD::INTRINSIC_VOID: {
13213     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13214     Chain = Intrin->getChain();
13215     // Intrin->getBasePtr() oddly does not get what we want.
13216     Base = Intrin->getOperand(3);
13217     MMO = Intrin->getMemOperand();
13218     SrcOpnd = 2;
13219     break;
13220   }
13221   }
13222 
13223   SDValue Src = N->getOperand(SrcOpnd);
13224   MVT VecTy = Src.getValueType().getSimpleVT();
13225 
13226   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13227   // aligned and the type is a vector with elements up to 4 bytes
13228   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13229       && VecTy.getScalarSizeInBits() <= 32 ) {
13230     return SDValue();
13231   }
13232 
13233   // All stores are done as v2f64 and possible bit cast.
13234   if (VecTy != MVT::v2f64) {
13235     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13236     DCI.AddToWorklist(Src.getNode());
13237   }
13238 
13239   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13240                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13241   DCI.AddToWorklist(Swap.getNode());
13242   Chain = Swap.getValue(1);
13243   SDValue StoreOps[] = { Chain, Swap, Base };
13244   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13245                                           DAG.getVTList(MVT::Other),
13246                                           StoreOps, VecTy, MMO);
13247   DCI.AddToWorklist(Store.getNode());
13248   return Store;
13249 }
13250 
13251 // Handle DAG combine for STORE (FP_TO_INT F).
13252 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13253                                                DAGCombinerInfo &DCI) const {
13254 
13255   SelectionDAG &DAG = DCI.DAG;
13256   SDLoc dl(N);
13257   unsigned Opcode = N->getOperand(1).getOpcode();
13258 
13259   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13260          && "Not a FP_TO_INT Instruction!");
13261 
13262   SDValue Val = N->getOperand(1).getOperand(0);
13263   EVT Op1VT = N->getOperand(1).getValueType();
13264   EVT ResVT = Val.getValueType();
13265 
13266   // Floating point types smaller than 32 bits are not legal on Power.
13267   if (ResVT.getScalarSizeInBits() < 32)
13268     return SDValue();
13269 
13270   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13271   bool ValidTypeForStoreFltAsInt =
13272         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13273          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13274 
13275   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13276       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13277     return SDValue();
13278 
13279   // Extend f32 values to f64
13280   if (ResVT.getScalarSizeInBits() == 32) {
13281     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13282     DCI.AddToWorklist(Val.getNode());
13283   }
13284 
13285   // Set signed or unsigned conversion opcode.
13286   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13287                           PPCISD::FP_TO_SINT_IN_VSR :
13288                           PPCISD::FP_TO_UINT_IN_VSR;
13289 
13290   Val = DAG.getNode(ConvOpcode,
13291                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13292   DCI.AddToWorklist(Val.getNode());
13293 
13294   // Set number of bytes being converted.
13295   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13296   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13297                     DAG.getIntPtrConstant(ByteSize, dl, false),
13298                     DAG.getValueType(Op1VT) };
13299 
13300   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13301           DAG.getVTList(MVT::Other), Ops,
13302           cast<StoreSDNode>(N)->getMemoryVT(),
13303           cast<StoreSDNode>(N)->getMemOperand());
13304 
13305   DCI.AddToWorklist(Val.getNode());
13306   return Val;
13307 }
13308 
13309 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13310                                                 LSBaseSDNode *LSBase,
13311                                                 DAGCombinerInfo &DCI) const {
13312   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13313         "Not a reverse memop pattern!");
13314 
13315   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13316     auto Mask = SVN->getMask();
13317     int i = 0;
13318     auto I = Mask.rbegin();
13319     auto E = Mask.rend();
13320 
13321     for (; I != E; ++I) {
13322       if (*I != i)
13323         return false;
13324       i++;
13325     }
13326     return true;
13327   };
13328 
13329   SelectionDAG &DAG = DCI.DAG;
13330   EVT VT = SVN->getValueType(0);
13331 
13332   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13333     return SDValue();
13334 
13335   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13336   // See comment in PPCVSXSwapRemoval.cpp.
13337   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13338   if (!Subtarget.hasP9Vector())
13339     return SDValue();
13340 
13341   if(!IsElementReverse(SVN))
13342     return SDValue();
13343 
13344   if (LSBase->getOpcode() == ISD::LOAD) {
13345     SDLoc dl(SVN);
13346     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13347     return DAG.getMemIntrinsicNode(
13348         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13349         LSBase->getMemoryVT(), LSBase->getMemOperand());
13350   }
13351 
13352   if (LSBase->getOpcode() == ISD::STORE) {
13353     SDLoc dl(LSBase);
13354     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13355                           LSBase->getBasePtr()};
13356     return DAG.getMemIntrinsicNode(
13357         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13358         LSBase->getMemoryVT(), LSBase->getMemOperand());
13359   }
13360 
13361   llvm_unreachable("Expected a load or store node here");
13362 }
13363 
13364 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13365                                              DAGCombinerInfo &DCI) const {
13366   SelectionDAG &DAG = DCI.DAG;
13367   SDLoc dl(N);
13368   switch (N->getOpcode()) {
13369   default: break;
13370   case ISD::ADD:
13371     return combineADD(N, DCI);
13372   case ISD::SHL:
13373     return combineSHL(N, DCI);
13374   case ISD::SRA:
13375     return combineSRA(N, DCI);
13376   case ISD::SRL:
13377     return combineSRL(N, DCI);
13378   case ISD::MUL:
13379     return combineMUL(N, DCI);
13380   case PPCISD::SHL:
13381     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13382         return N->getOperand(0);
13383     break;
13384   case PPCISD::SRL:
13385     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13386         return N->getOperand(0);
13387     break;
13388   case PPCISD::SRA:
13389     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13390       if (C->isNullValue() ||   //  0 >>s V -> 0.
13391           C->isAllOnesValue())    // -1 >>s V -> -1.
13392         return N->getOperand(0);
13393     }
13394     break;
13395   case ISD::SIGN_EXTEND:
13396   case ISD::ZERO_EXTEND:
13397   case ISD::ANY_EXTEND:
13398     return DAGCombineExtBoolTrunc(N, DCI);
13399   case ISD::TRUNCATE:
13400     return combineTRUNCATE(N, DCI);
13401   case ISD::SETCC:
13402     if (SDValue CSCC = combineSetCC(N, DCI))
13403       return CSCC;
13404     LLVM_FALLTHROUGH;
13405   case ISD::SELECT_CC:
13406     return DAGCombineTruncBoolExt(N, DCI);
13407   case ISD::SINT_TO_FP:
13408   case ISD::UINT_TO_FP:
13409     return combineFPToIntToFP(N, DCI);
13410   case ISD::VECTOR_SHUFFLE:
13411     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13412       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13413       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13414     }
13415     break;
13416   case ISD::STORE: {
13417 
13418     EVT Op1VT = N->getOperand(1).getValueType();
13419     unsigned Opcode = N->getOperand(1).getOpcode();
13420 
13421     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13422       SDValue Val= combineStoreFPToInt(N, DCI);
13423       if (Val)
13424         return Val;
13425     }
13426 
13427     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13428       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13429       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13430       if (Val)
13431         return Val;
13432     }
13433 
13434     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13435     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13436         N->getOperand(1).getNode()->hasOneUse() &&
13437         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13438          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13439 
13440       // STBRX can only handle simple types and it makes no sense to store less
13441       // two bytes in byte-reversed order.
13442       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13443       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13444         break;
13445 
13446       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13447       // Do an any-extend to 32-bits if this is a half-word input.
13448       if (BSwapOp.getValueType() == MVT::i16)
13449         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13450 
13451       // If the type of BSWAP operand is wider than stored memory width
13452       // it need to be shifted to the right side before STBRX.
13453       if (Op1VT.bitsGT(mVT)) {
13454         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13455         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13456                               DAG.getConstant(Shift, dl, MVT::i32));
13457         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13458         if (Op1VT == MVT::i64)
13459           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13460       }
13461 
13462       SDValue Ops[] = {
13463         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13464       };
13465       return
13466         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13467                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13468                                 cast<StoreSDNode>(N)->getMemOperand());
13469     }
13470 
13471     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13472     // So it can increase the chance of CSE constant construction.
13473     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13474         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13475       // Need to sign-extended to 64-bits to handle negative values.
13476       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13477       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13478                                     MemVT.getSizeInBits());
13479       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13480 
13481       // DAG.getTruncStore() can't be used here because it doesn't accept
13482       // the general (base + offset) addressing mode.
13483       // So we use UpdateNodeOperands and setTruncatingStore instead.
13484       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13485                              N->getOperand(3));
13486       cast<StoreSDNode>(N)->setTruncatingStore(true);
13487       return SDValue(N, 0);
13488     }
13489 
13490     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13491     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13492     if (Op1VT.isSimple()) {
13493       MVT StoreVT = Op1VT.getSimpleVT();
13494       if (Subtarget.needsSwapsForVSXMemOps() &&
13495           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13496            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13497         return expandVSXStoreForLE(N, DCI);
13498     }
13499     break;
13500   }
13501   case ISD::LOAD: {
13502     LoadSDNode *LD = cast<LoadSDNode>(N);
13503     EVT VT = LD->getValueType(0);
13504 
13505     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13506     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13507     if (VT.isSimple()) {
13508       MVT LoadVT = VT.getSimpleVT();
13509       if (Subtarget.needsSwapsForVSXMemOps() &&
13510           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13511            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13512         return expandVSXLoadForLE(N, DCI);
13513     }
13514 
13515     // We sometimes end up with a 64-bit integer load, from which we extract
13516     // two single-precision floating-point numbers. This happens with
13517     // std::complex<float>, and other similar structures, because of the way we
13518     // canonicalize structure copies. However, if we lack direct moves,
13519     // then the final bitcasts from the extracted integer values to the
13520     // floating-point numbers turn into store/load pairs. Even with direct moves,
13521     // just loading the two floating-point numbers is likely better.
13522     auto ReplaceTwoFloatLoad = [&]() {
13523       if (VT != MVT::i64)
13524         return false;
13525 
13526       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13527           LD->isVolatile())
13528         return false;
13529 
13530       //  We're looking for a sequence like this:
13531       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13532       //      t16: i64 = srl t13, Constant:i32<32>
13533       //    t17: i32 = truncate t16
13534       //  t18: f32 = bitcast t17
13535       //    t19: i32 = truncate t13
13536       //  t20: f32 = bitcast t19
13537 
13538       if (!LD->hasNUsesOfValue(2, 0))
13539         return false;
13540 
13541       auto UI = LD->use_begin();
13542       while (UI.getUse().getResNo() != 0) ++UI;
13543       SDNode *Trunc = *UI++;
13544       while (UI.getUse().getResNo() != 0) ++UI;
13545       SDNode *RightShift = *UI;
13546       if (Trunc->getOpcode() != ISD::TRUNCATE)
13547         std::swap(Trunc, RightShift);
13548 
13549       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13550           Trunc->getValueType(0) != MVT::i32 ||
13551           !Trunc->hasOneUse())
13552         return false;
13553       if (RightShift->getOpcode() != ISD::SRL ||
13554           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13555           RightShift->getConstantOperandVal(1) != 32 ||
13556           !RightShift->hasOneUse())
13557         return false;
13558 
13559       SDNode *Trunc2 = *RightShift->use_begin();
13560       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13561           Trunc2->getValueType(0) != MVT::i32 ||
13562           !Trunc2->hasOneUse())
13563         return false;
13564 
13565       SDNode *Bitcast = *Trunc->use_begin();
13566       SDNode *Bitcast2 = *Trunc2->use_begin();
13567 
13568       if (Bitcast->getOpcode() != ISD::BITCAST ||
13569           Bitcast->getValueType(0) != MVT::f32)
13570         return false;
13571       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13572           Bitcast2->getValueType(0) != MVT::f32)
13573         return false;
13574 
13575       if (Subtarget.isLittleEndian())
13576         std::swap(Bitcast, Bitcast2);
13577 
13578       // Bitcast has the second float (in memory-layout order) and Bitcast2
13579       // has the first one.
13580 
13581       SDValue BasePtr = LD->getBasePtr();
13582       if (LD->isIndexed()) {
13583         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13584                "Non-pre-inc AM on PPC?");
13585         BasePtr =
13586           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13587                       LD->getOffset());
13588       }
13589 
13590       auto MMOFlags =
13591           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13592       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13593                                       LD->getPointerInfo(), LD->getAlignment(),
13594                                       MMOFlags, LD->getAAInfo());
13595       SDValue AddPtr =
13596         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13597                     BasePtr, DAG.getIntPtrConstant(4, dl));
13598       SDValue FloatLoad2 = DAG.getLoad(
13599           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13600           LD->getPointerInfo().getWithOffset(4),
13601           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13602 
13603       if (LD->isIndexed()) {
13604         // Note that DAGCombine should re-form any pre-increment load(s) from
13605         // what is produced here if that makes sense.
13606         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13607       }
13608 
13609       DCI.CombineTo(Bitcast2, FloatLoad);
13610       DCI.CombineTo(Bitcast, FloatLoad2);
13611 
13612       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13613                                     SDValue(FloatLoad2.getNode(), 1));
13614       return true;
13615     };
13616 
13617     if (ReplaceTwoFloatLoad())
13618       return SDValue(N, 0);
13619 
13620     EVT MemVT = LD->getMemoryVT();
13621     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13622     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13623     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13624     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13625     if (LD->isUnindexed() && VT.isVector() &&
13626         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13627           // P8 and later hardware should just use LOAD.
13628           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13629                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13630          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13631           LD->getAlignment() >= ScalarABIAlignment)) &&
13632         LD->getAlignment() < ABIAlignment) {
13633       // This is a type-legal unaligned Altivec or QPX load.
13634       SDValue Chain = LD->getChain();
13635       SDValue Ptr = LD->getBasePtr();
13636       bool isLittleEndian = Subtarget.isLittleEndian();
13637 
13638       // This implements the loading of unaligned vectors as described in
13639       // the venerable Apple Velocity Engine overview. Specifically:
13640       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13641       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13642       //
13643       // The general idea is to expand a sequence of one or more unaligned
13644       // loads into an alignment-based permutation-control instruction (lvsl
13645       // or lvsr), a series of regular vector loads (which always truncate
13646       // their input address to an aligned address), and a series of
13647       // permutations.  The results of these permutations are the requested
13648       // loaded values.  The trick is that the last "extra" load is not taken
13649       // from the address you might suspect (sizeof(vector) bytes after the
13650       // last requested load), but rather sizeof(vector) - 1 bytes after the
13651       // last requested vector. The point of this is to avoid a page fault if
13652       // the base address happened to be aligned. This works because if the
13653       // base address is aligned, then adding less than a full vector length
13654       // will cause the last vector in the sequence to be (re)loaded.
13655       // Otherwise, the next vector will be fetched as you might suspect was
13656       // necessary.
13657 
13658       // We might be able to reuse the permutation generation from
13659       // a different base address offset from this one by an aligned amount.
13660       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13661       // optimization later.
13662       Intrinsic::ID Intr, IntrLD, IntrPerm;
13663       MVT PermCntlTy, PermTy, LDTy;
13664       if (Subtarget.hasAltivec()) {
13665         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13666                                  Intrinsic::ppc_altivec_lvsl;
13667         IntrLD = Intrinsic::ppc_altivec_lvx;
13668         IntrPerm = Intrinsic::ppc_altivec_vperm;
13669         PermCntlTy = MVT::v16i8;
13670         PermTy = MVT::v4i32;
13671         LDTy = MVT::v4i32;
13672       } else {
13673         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13674                                        Intrinsic::ppc_qpx_qvlpcls;
13675         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13676                                        Intrinsic::ppc_qpx_qvlfs;
13677         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13678         PermCntlTy = MVT::v4f64;
13679         PermTy = MVT::v4f64;
13680         LDTy = MemVT.getSimpleVT();
13681       }
13682 
13683       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13684 
13685       // Create the new MMO for the new base load. It is like the original MMO,
13686       // but represents an area in memory almost twice the vector size centered
13687       // on the original address. If the address is unaligned, we might start
13688       // reading up to (sizeof(vector)-1) bytes below the address of the
13689       // original unaligned load.
13690       MachineFunction &MF = DAG.getMachineFunction();
13691       MachineMemOperand *BaseMMO =
13692         MF.getMachineMemOperand(LD->getMemOperand(),
13693                                 -(long)MemVT.getStoreSize()+1,
13694                                 2*MemVT.getStoreSize()-1);
13695 
13696       // Create the new base load.
13697       SDValue LDXIntID =
13698           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13699       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13700       SDValue BaseLoad =
13701         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13702                                 DAG.getVTList(PermTy, MVT::Other),
13703                                 BaseLoadOps, LDTy, BaseMMO);
13704 
13705       // Note that the value of IncOffset (which is provided to the next
13706       // load's pointer info offset value, and thus used to calculate the
13707       // alignment), and the value of IncValue (which is actually used to
13708       // increment the pointer value) are different! This is because we
13709       // require the next load to appear to be aligned, even though it
13710       // is actually offset from the base pointer by a lesser amount.
13711       int IncOffset = VT.getSizeInBits() / 8;
13712       int IncValue = IncOffset;
13713 
13714       // Walk (both up and down) the chain looking for another load at the real
13715       // (aligned) offset (the alignment of the other load does not matter in
13716       // this case). If found, then do not use the offset reduction trick, as
13717       // that will prevent the loads from being later combined (as they would
13718       // otherwise be duplicates).
13719       if (!findConsecutiveLoad(LD, DAG))
13720         --IncValue;
13721 
13722       SDValue Increment =
13723           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13724       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13725 
13726       MachineMemOperand *ExtraMMO =
13727         MF.getMachineMemOperand(LD->getMemOperand(),
13728                                 1, 2*MemVT.getStoreSize()-1);
13729       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13730       SDValue ExtraLoad =
13731         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13732                                 DAG.getVTList(PermTy, MVT::Other),
13733                                 ExtraLoadOps, LDTy, ExtraMMO);
13734 
13735       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13736         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13737 
13738       // Because vperm has a big-endian bias, we must reverse the order
13739       // of the input vectors and complement the permute control vector
13740       // when generating little endian code.  We have already handled the
13741       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13742       // and ExtraLoad here.
13743       SDValue Perm;
13744       if (isLittleEndian)
13745         Perm = BuildIntrinsicOp(IntrPerm,
13746                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13747       else
13748         Perm = BuildIntrinsicOp(IntrPerm,
13749                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13750 
13751       if (VT != PermTy)
13752         Perm = Subtarget.hasAltivec() ?
13753                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13754                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13755                                DAG.getTargetConstant(1, dl, MVT::i64));
13756                                // second argument is 1 because this rounding
13757                                // is always exact.
13758 
13759       // The output of the permutation is our loaded result, the TokenFactor is
13760       // our new chain.
13761       DCI.CombineTo(N, Perm, TF);
13762       return SDValue(N, 0);
13763     }
13764     }
13765     break;
13766     case ISD::INTRINSIC_WO_CHAIN: {
13767       bool isLittleEndian = Subtarget.isLittleEndian();
13768       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13769       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13770                                            : Intrinsic::ppc_altivec_lvsl);
13771       if ((IID == Intr ||
13772            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13773            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13774         N->getOperand(1)->getOpcode() == ISD::ADD) {
13775         SDValue Add = N->getOperand(1);
13776 
13777         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13778                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13779 
13780         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13781                                   APInt::getAllOnesValue(Bits /* alignment */)
13782                                       .zext(Add.getScalarValueSizeInBits()))) {
13783           SDNode *BasePtr = Add->getOperand(0).getNode();
13784           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13785                                     UE = BasePtr->use_end();
13786                UI != UE; ++UI) {
13787             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13788                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13789               // We've found another LVSL/LVSR, and this address is an aligned
13790               // multiple of that one. The results will be the same, so use the
13791               // one we've just found instead.
13792 
13793               return SDValue(*UI, 0);
13794             }
13795           }
13796         }
13797 
13798         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13799           SDNode *BasePtr = Add->getOperand(0).getNode();
13800           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13801                UE = BasePtr->use_end(); UI != UE; ++UI) {
13802             if (UI->getOpcode() == ISD::ADD &&
13803                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13804                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13805                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13806                 (1ULL << Bits) == 0) {
13807               SDNode *OtherAdd = *UI;
13808               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13809                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13810                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13811                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13812                   return SDValue(*VI, 0);
13813                 }
13814               }
13815             }
13816           }
13817         }
13818       }
13819 
13820       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13821       // Expose the vabsduw/h/b opportunity for down stream
13822       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13823           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13824            IID == Intrinsic::ppc_altivec_vmaxsh ||
13825            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13826         SDValue V1 = N->getOperand(1);
13827         SDValue V2 = N->getOperand(2);
13828         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13829              V1.getSimpleValueType() == MVT::v8i16 ||
13830              V1.getSimpleValueType() == MVT::v16i8) &&
13831             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13832           // (0-a, a)
13833           if (V1.getOpcode() == ISD::SUB &&
13834               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13835               V1.getOperand(1) == V2) {
13836             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13837           }
13838           // (a, 0-a)
13839           if (V2.getOpcode() == ISD::SUB &&
13840               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13841               V2.getOperand(1) == V1) {
13842             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13843           }
13844           // (x-y, y-x)
13845           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13846               V1.getOperand(0) == V2.getOperand(1) &&
13847               V1.getOperand(1) == V2.getOperand(0)) {
13848             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13849           }
13850         }
13851       }
13852     }
13853 
13854     break;
13855   case ISD::INTRINSIC_W_CHAIN:
13856     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13857     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13858     if (Subtarget.needsSwapsForVSXMemOps()) {
13859       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13860       default:
13861         break;
13862       case Intrinsic::ppc_vsx_lxvw4x:
13863       case Intrinsic::ppc_vsx_lxvd2x:
13864         return expandVSXLoadForLE(N, DCI);
13865       }
13866     }
13867     break;
13868   case ISD::INTRINSIC_VOID:
13869     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13870     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13871     if (Subtarget.needsSwapsForVSXMemOps()) {
13872       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13873       default:
13874         break;
13875       case Intrinsic::ppc_vsx_stxvw4x:
13876       case Intrinsic::ppc_vsx_stxvd2x:
13877         return expandVSXStoreForLE(N, DCI);
13878       }
13879     }
13880     break;
13881   case ISD::BSWAP:
13882     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13883     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13884         N->getOperand(0).hasOneUse() &&
13885         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13886          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13887           N->getValueType(0) == MVT::i64))) {
13888       SDValue Load = N->getOperand(0);
13889       LoadSDNode *LD = cast<LoadSDNode>(Load);
13890       // Create the byte-swapping load.
13891       SDValue Ops[] = {
13892         LD->getChain(),    // Chain
13893         LD->getBasePtr(),  // Ptr
13894         DAG.getValueType(N->getValueType(0)) // VT
13895       };
13896       SDValue BSLoad =
13897         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13898                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13899                                               MVT::i64 : MVT::i32, MVT::Other),
13900                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13901 
13902       // If this is an i16 load, insert the truncate.
13903       SDValue ResVal = BSLoad;
13904       if (N->getValueType(0) == MVT::i16)
13905         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13906 
13907       // First, combine the bswap away.  This makes the value produced by the
13908       // load dead.
13909       DCI.CombineTo(N, ResVal);
13910 
13911       // Next, combine the load away, we give it a bogus result value but a real
13912       // chain result.  The result value is dead because the bswap is dead.
13913       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13914 
13915       // Return N so it doesn't get rechecked!
13916       return SDValue(N, 0);
13917     }
13918     break;
13919   case PPCISD::VCMP:
13920     // If a VCMPo node already exists with exactly the same operands as this
13921     // node, use its result instead of this node (VCMPo computes both a CR6 and
13922     // a normal output).
13923     //
13924     if (!N->getOperand(0).hasOneUse() &&
13925         !N->getOperand(1).hasOneUse() &&
13926         !N->getOperand(2).hasOneUse()) {
13927 
13928       // Scan all of the users of the LHS, looking for VCMPo's that match.
13929       SDNode *VCMPoNode = nullptr;
13930 
13931       SDNode *LHSN = N->getOperand(0).getNode();
13932       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13933            UI != E; ++UI)
13934         if (UI->getOpcode() == PPCISD::VCMPo &&
13935             UI->getOperand(1) == N->getOperand(1) &&
13936             UI->getOperand(2) == N->getOperand(2) &&
13937             UI->getOperand(0) == N->getOperand(0)) {
13938           VCMPoNode = *UI;
13939           break;
13940         }
13941 
13942       // If there is no VCMPo node, or if the flag value has a single use, don't
13943       // transform this.
13944       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13945         break;
13946 
13947       // Look at the (necessarily single) use of the flag value.  If it has a
13948       // chain, this transformation is more complex.  Note that multiple things
13949       // could use the value result, which we should ignore.
13950       SDNode *FlagUser = nullptr;
13951       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13952            FlagUser == nullptr; ++UI) {
13953         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13954         SDNode *User = *UI;
13955         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13956           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13957             FlagUser = User;
13958             break;
13959           }
13960         }
13961       }
13962 
13963       // If the user is a MFOCRF instruction, we know this is safe.
13964       // Otherwise we give up for right now.
13965       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13966         return SDValue(VCMPoNode, 0);
13967     }
13968     break;
13969   case ISD::BRCOND: {
13970     SDValue Cond = N->getOperand(1);
13971     SDValue Target = N->getOperand(2);
13972 
13973     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13974         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13975           Intrinsic::loop_decrement) {
13976 
13977       // We now need to make the intrinsic dead (it cannot be instruction
13978       // selected).
13979       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13980       assert(Cond.getNode()->hasOneUse() &&
13981              "Counter decrement has more than one use");
13982 
13983       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13984                          N->getOperand(0), Target);
13985     }
13986   }
13987   break;
13988   case ISD::BR_CC: {
13989     // If this is a branch on an altivec predicate comparison, lower this so
13990     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13991     // lowering is done pre-legalize, because the legalizer lowers the predicate
13992     // compare down to code that is difficult to reassemble.
13993     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13994     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13995 
13996     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13997     // value. If so, pass-through the AND to get to the intrinsic.
13998     if (LHS.getOpcode() == ISD::AND &&
13999         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14000         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14001           Intrinsic::loop_decrement &&
14002         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14003         !isNullConstant(LHS.getOperand(1)))
14004       LHS = LHS.getOperand(0);
14005 
14006     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14007         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14008           Intrinsic::loop_decrement &&
14009         isa<ConstantSDNode>(RHS)) {
14010       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14011              "Counter decrement comparison is not EQ or NE");
14012 
14013       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14014       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14015                     (CC == ISD::SETNE && !Val);
14016 
14017       // We now need to make the intrinsic dead (it cannot be instruction
14018       // selected).
14019       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14020       assert(LHS.getNode()->hasOneUse() &&
14021              "Counter decrement has more than one use");
14022 
14023       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14024                          N->getOperand(0), N->getOperand(4));
14025     }
14026 
14027     int CompareOpc;
14028     bool isDot;
14029 
14030     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14031         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14032         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14033       assert(isDot && "Can't compare against a vector result!");
14034 
14035       // If this is a comparison against something other than 0/1, then we know
14036       // that the condition is never/always true.
14037       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14038       if (Val != 0 && Val != 1) {
14039         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14040           return N->getOperand(0);
14041         // Always !=, turn it into an unconditional branch.
14042         return DAG.getNode(ISD::BR, dl, MVT::Other,
14043                            N->getOperand(0), N->getOperand(4));
14044       }
14045 
14046       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14047 
14048       // Create the PPCISD altivec 'dot' comparison node.
14049       SDValue Ops[] = {
14050         LHS.getOperand(2),  // LHS of compare
14051         LHS.getOperand(3),  // RHS of compare
14052         DAG.getConstant(CompareOpc, dl, MVT::i32)
14053       };
14054       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14055       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14056 
14057       // Unpack the result based on how the target uses it.
14058       PPC::Predicate CompOpc;
14059       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14060       default:  // Can't happen, don't crash on invalid number though.
14061       case 0:   // Branch on the value of the EQ bit of CR6.
14062         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14063         break;
14064       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14065         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14066         break;
14067       case 2:   // Branch on the value of the LT bit of CR6.
14068         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14069         break;
14070       case 3:   // Branch on the inverted value of the LT bit of CR6.
14071         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14072         break;
14073       }
14074 
14075       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14076                          DAG.getConstant(CompOpc, dl, MVT::i32),
14077                          DAG.getRegister(PPC::CR6, MVT::i32),
14078                          N->getOperand(4), CompNode.getValue(1));
14079     }
14080     break;
14081   }
14082   case ISD::BUILD_VECTOR:
14083     return DAGCombineBuildVector(N, DCI);
14084   case ISD::ABS:
14085     return combineABS(N, DCI);
14086   case ISD::VSELECT:
14087     return combineVSelect(N, DCI);
14088   }
14089 
14090   return SDValue();
14091 }
14092 
14093 SDValue
14094 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14095                                  SelectionDAG &DAG,
14096                                  SmallVectorImpl<SDNode *> &Created) const {
14097   // fold (sdiv X, pow2)
14098   EVT VT = N->getValueType(0);
14099   if (VT == MVT::i64 && !Subtarget.isPPC64())
14100     return SDValue();
14101   if ((VT != MVT::i32 && VT != MVT::i64) ||
14102       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14103     return SDValue();
14104 
14105   SDLoc DL(N);
14106   SDValue N0 = N->getOperand(0);
14107 
14108   bool IsNegPow2 = (-Divisor).isPowerOf2();
14109   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14110   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14111 
14112   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14113   Created.push_back(Op.getNode());
14114 
14115   if (IsNegPow2) {
14116     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14117     Created.push_back(Op.getNode());
14118   }
14119 
14120   return Op;
14121 }
14122 
14123 //===----------------------------------------------------------------------===//
14124 // Inline Assembly Support
14125 //===----------------------------------------------------------------------===//
14126 
14127 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14128                                                       KnownBits &Known,
14129                                                       const APInt &DemandedElts,
14130                                                       const SelectionDAG &DAG,
14131                                                       unsigned Depth) const {
14132   Known.resetAll();
14133   switch (Op.getOpcode()) {
14134   default: break;
14135   case PPCISD::LBRX: {
14136     // lhbrx is known to have the top bits cleared out.
14137     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14138       Known.Zero = 0xFFFF0000;
14139     break;
14140   }
14141   case ISD::INTRINSIC_WO_CHAIN: {
14142     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14143     default: break;
14144     case Intrinsic::ppc_altivec_vcmpbfp_p:
14145     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14146     case Intrinsic::ppc_altivec_vcmpequb_p:
14147     case Intrinsic::ppc_altivec_vcmpequh_p:
14148     case Intrinsic::ppc_altivec_vcmpequw_p:
14149     case Intrinsic::ppc_altivec_vcmpequd_p:
14150     case Intrinsic::ppc_altivec_vcmpgefp_p:
14151     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14152     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14153     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14154     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14155     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14156     case Intrinsic::ppc_altivec_vcmpgtub_p:
14157     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14158     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14159     case Intrinsic::ppc_altivec_vcmpgtud_p:
14160       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14161       break;
14162     }
14163   }
14164   }
14165 }
14166 
14167 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14168   switch (Subtarget.getDarwinDirective()) {
14169   default: break;
14170   case PPC::DIR_970:
14171   case PPC::DIR_PWR4:
14172   case PPC::DIR_PWR5:
14173   case PPC::DIR_PWR5X:
14174   case PPC::DIR_PWR6:
14175   case PPC::DIR_PWR6X:
14176   case PPC::DIR_PWR7:
14177   case PPC::DIR_PWR8:
14178   case PPC::DIR_PWR9: {
14179     if (!ML)
14180       break;
14181 
14182     if (!DisableInnermostLoopAlign32) {
14183       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14184       // so that we can decrease cache misses and branch-prediction misses.
14185       // Actual alignment of the loop will depend on the hotness check and other
14186       // logic in alignBlocks.
14187       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14188         return Align(32);
14189     }
14190 
14191     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14192 
14193     // For small loops (between 5 and 8 instructions), align to a 32-byte
14194     // boundary so that the entire loop fits in one instruction-cache line.
14195     uint64_t LoopSize = 0;
14196     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14197       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14198         LoopSize += TII->getInstSizeInBytes(*J);
14199         if (LoopSize > 32)
14200           break;
14201       }
14202 
14203     if (LoopSize > 16 && LoopSize <= 32)
14204       return Align(32);
14205 
14206     break;
14207   }
14208   }
14209 
14210   return TargetLowering::getPrefLoopAlignment(ML);
14211 }
14212 
14213 /// getConstraintType - Given a constraint, return the type of
14214 /// constraint it is for this target.
14215 PPCTargetLowering::ConstraintType
14216 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14217   if (Constraint.size() == 1) {
14218     switch (Constraint[0]) {
14219     default: break;
14220     case 'b':
14221     case 'r':
14222     case 'f':
14223     case 'd':
14224     case 'v':
14225     case 'y':
14226       return C_RegisterClass;
14227     case 'Z':
14228       // FIXME: While Z does indicate a memory constraint, it specifically
14229       // indicates an r+r address (used in conjunction with the 'y' modifier
14230       // in the replacement string). Currently, we're forcing the base
14231       // register to be r0 in the asm printer (which is interpreted as zero)
14232       // and forming the complete address in the second register. This is
14233       // suboptimal.
14234       return C_Memory;
14235     }
14236   } else if (Constraint == "wc") { // individual CR bits.
14237     return C_RegisterClass;
14238   } else if (Constraint == "wa" || Constraint == "wd" ||
14239              Constraint == "wf" || Constraint == "ws" ||
14240              Constraint == "wi" || Constraint == "ww") {
14241     return C_RegisterClass; // VSX registers.
14242   }
14243   return TargetLowering::getConstraintType(Constraint);
14244 }
14245 
14246 /// Examine constraint type and operand type and determine a weight value.
14247 /// This object must already have been set up with the operand type
14248 /// and the current alternative constraint selected.
14249 TargetLowering::ConstraintWeight
14250 PPCTargetLowering::getSingleConstraintMatchWeight(
14251     AsmOperandInfo &info, const char *constraint) const {
14252   ConstraintWeight weight = CW_Invalid;
14253   Value *CallOperandVal = info.CallOperandVal;
14254     // If we don't have a value, we can't do a match,
14255     // but allow it at the lowest weight.
14256   if (!CallOperandVal)
14257     return CW_Default;
14258   Type *type = CallOperandVal->getType();
14259 
14260   // Look at the constraint type.
14261   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14262     return CW_Register; // an individual CR bit.
14263   else if ((StringRef(constraint) == "wa" ||
14264             StringRef(constraint) == "wd" ||
14265             StringRef(constraint) == "wf") &&
14266            type->isVectorTy())
14267     return CW_Register;
14268   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14269     return CW_Register; // just hold 64-bit integers data.
14270   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14271     return CW_Register;
14272   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14273     return CW_Register;
14274 
14275   switch (*constraint) {
14276   default:
14277     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14278     break;
14279   case 'b':
14280     if (type->isIntegerTy())
14281       weight = CW_Register;
14282     break;
14283   case 'f':
14284     if (type->isFloatTy())
14285       weight = CW_Register;
14286     break;
14287   case 'd':
14288     if (type->isDoubleTy())
14289       weight = CW_Register;
14290     break;
14291   case 'v':
14292     if (type->isVectorTy())
14293       weight = CW_Register;
14294     break;
14295   case 'y':
14296     weight = CW_Register;
14297     break;
14298   case 'Z':
14299     weight = CW_Memory;
14300     break;
14301   }
14302   return weight;
14303 }
14304 
14305 std::pair<unsigned, const TargetRegisterClass *>
14306 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14307                                                 StringRef Constraint,
14308                                                 MVT VT) const {
14309   if (Constraint.size() == 1) {
14310     // GCC RS6000 Constraint Letters
14311     switch (Constraint[0]) {
14312     case 'b':   // R1-R31
14313       if (VT == MVT::i64 && Subtarget.isPPC64())
14314         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14315       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14316     case 'r':   // R0-R31
14317       if (VT == MVT::i64 && Subtarget.isPPC64())
14318         return std::make_pair(0U, &PPC::G8RCRegClass);
14319       return std::make_pair(0U, &PPC::GPRCRegClass);
14320     // 'd' and 'f' constraints are both defined to be "the floating point
14321     // registers", where one is for 32-bit and the other for 64-bit. We don't
14322     // really care overly much here so just give them all the same reg classes.
14323     case 'd':
14324     case 'f':
14325       if (Subtarget.hasSPE()) {
14326         if (VT == MVT::f32 || VT == MVT::i32)
14327           return std::make_pair(0U, &PPC::GPRCRegClass);
14328         if (VT == MVT::f64 || VT == MVT::i64)
14329           return std::make_pair(0U, &PPC::SPERCRegClass);
14330       } else {
14331         if (VT == MVT::f32 || VT == MVT::i32)
14332           return std::make_pair(0U, &PPC::F4RCRegClass);
14333         if (VT == MVT::f64 || VT == MVT::i64)
14334           return std::make_pair(0U, &PPC::F8RCRegClass);
14335         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14336           return std::make_pair(0U, &PPC::QFRCRegClass);
14337         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14338           return std::make_pair(0U, &PPC::QSRCRegClass);
14339       }
14340       break;
14341     case 'v':
14342       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14343         return std::make_pair(0U, &PPC::QFRCRegClass);
14344       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14345         return std::make_pair(0U, &PPC::QSRCRegClass);
14346       if (Subtarget.hasAltivec())
14347         return std::make_pair(0U, &PPC::VRRCRegClass);
14348       break;
14349     case 'y':   // crrc
14350       return std::make_pair(0U, &PPC::CRRCRegClass);
14351     }
14352   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14353     // An individual CR bit.
14354     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14355   } else if ((Constraint == "wa" || Constraint == "wd" ||
14356              Constraint == "wf" || Constraint == "wi") &&
14357              Subtarget.hasVSX()) {
14358     return std::make_pair(0U, &PPC::VSRCRegClass);
14359   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14360     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14361       return std::make_pair(0U, &PPC::VSSRCRegClass);
14362     else
14363       return std::make_pair(0U, &PPC::VSFRCRegClass);
14364   }
14365 
14366   std::pair<unsigned, const TargetRegisterClass *> R =
14367       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14368 
14369   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14370   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14371   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14372   // register.
14373   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14374   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14375   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14376       PPC::GPRCRegClass.contains(R.first))
14377     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14378                             PPC::sub_32, &PPC::G8RCRegClass),
14379                           &PPC::G8RCRegClass);
14380 
14381   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14382   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14383     R.first = PPC::CR0;
14384     R.second = &PPC::CRRCRegClass;
14385   }
14386 
14387   return R;
14388 }
14389 
14390 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14391 /// vector.  If it is invalid, don't add anything to Ops.
14392 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14393                                                      std::string &Constraint,
14394                                                      std::vector<SDValue>&Ops,
14395                                                      SelectionDAG &DAG) const {
14396   SDValue Result;
14397 
14398   // Only support length 1 constraints.
14399   if (Constraint.length() > 1) return;
14400 
14401   char Letter = Constraint[0];
14402   switch (Letter) {
14403   default: break;
14404   case 'I':
14405   case 'J':
14406   case 'K':
14407   case 'L':
14408   case 'M':
14409   case 'N':
14410   case 'O':
14411   case 'P': {
14412     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14413     if (!CST) return; // Must be an immediate to match.
14414     SDLoc dl(Op);
14415     int64_t Value = CST->getSExtValue();
14416     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14417                          // numbers are printed as such.
14418     switch (Letter) {
14419     default: llvm_unreachable("Unknown constraint letter!");
14420     case 'I':  // "I" is a signed 16-bit constant.
14421       if (isInt<16>(Value))
14422         Result = DAG.getTargetConstant(Value, dl, TCVT);
14423       break;
14424     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14425       if (isShiftedUInt<16, 16>(Value))
14426         Result = DAG.getTargetConstant(Value, dl, TCVT);
14427       break;
14428     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14429       if (isShiftedInt<16, 16>(Value))
14430         Result = DAG.getTargetConstant(Value, dl, TCVT);
14431       break;
14432     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14433       if (isUInt<16>(Value))
14434         Result = DAG.getTargetConstant(Value, dl, TCVT);
14435       break;
14436     case 'M':  // "M" is a constant that is greater than 31.
14437       if (Value > 31)
14438         Result = DAG.getTargetConstant(Value, dl, TCVT);
14439       break;
14440     case 'N':  // "N" is a positive constant that is an exact power of two.
14441       if (Value > 0 && isPowerOf2_64(Value))
14442         Result = DAG.getTargetConstant(Value, dl, TCVT);
14443       break;
14444     case 'O':  // "O" is the constant zero.
14445       if (Value == 0)
14446         Result = DAG.getTargetConstant(Value, dl, TCVT);
14447       break;
14448     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14449       if (isInt<16>(-Value))
14450         Result = DAG.getTargetConstant(Value, dl, TCVT);
14451       break;
14452     }
14453     break;
14454   }
14455   }
14456 
14457   if (Result.getNode()) {
14458     Ops.push_back(Result);
14459     return;
14460   }
14461 
14462   // Handle standard constraint letters.
14463   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14464 }
14465 
14466 // isLegalAddressingMode - Return true if the addressing mode represented
14467 // by AM is legal for this target, for a load/store of the specified type.
14468 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14469                                               const AddrMode &AM, Type *Ty,
14470                                               unsigned AS, Instruction *I) const {
14471   // PPC does not allow r+i addressing modes for vectors!
14472   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14473     return false;
14474 
14475   // PPC allows a sign-extended 16-bit immediate field.
14476   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14477     return false;
14478 
14479   // No global is ever allowed as a base.
14480   if (AM.BaseGV)
14481     return false;
14482 
14483   // PPC only support r+r,
14484   switch (AM.Scale) {
14485   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14486     break;
14487   case 1:
14488     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14489       return false;
14490     // Otherwise we have r+r or r+i.
14491     break;
14492   case 2:
14493     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14494       return false;
14495     // Allow 2*r as r+r.
14496     break;
14497   default:
14498     // No other scales are supported.
14499     return false;
14500   }
14501 
14502   return true;
14503 }
14504 
14505 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14506                                            SelectionDAG &DAG) const {
14507   MachineFunction &MF = DAG.getMachineFunction();
14508   MachineFrameInfo &MFI = MF.getFrameInfo();
14509   MFI.setReturnAddressIsTaken(true);
14510 
14511   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14512     return SDValue();
14513 
14514   SDLoc dl(Op);
14515   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14516 
14517   // Make sure the function does not optimize away the store of the RA to
14518   // the stack.
14519   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14520   FuncInfo->setLRStoreRequired();
14521   bool isPPC64 = Subtarget.isPPC64();
14522   auto PtrVT = getPointerTy(MF.getDataLayout());
14523 
14524   if (Depth > 0) {
14525     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14526     SDValue Offset =
14527         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14528                         isPPC64 ? MVT::i64 : MVT::i32);
14529     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14530                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14531                        MachinePointerInfo());
14532   }
14533 
14534   // Just load the return address off the stack.
14535   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14536   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14537                      MachinePointerInfo());
14538 }
14539 
14540 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14541                                           SelectionDAG &DAG) const {
14542   SDLoc dl(Op);
14543   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14544 
14545   MachineFunction &MF = DAG.getMachineFunction();
14546   MachineFrameInfo &MFI = MF.getFrameInfo();
14547   MFI.setFrameAddressIsTaken(true);
14548 
14549   EVT PtrVT = getPointerTy(MF.getDataLayout());
14550   bool isPPC64 = PtrVT == MVT::i64;
14551 
14552   // Naked functions never have a frame pointer, and so we use r1. For all
14553   // other functions, this decision must be delayed until during PEI.
14554   unsigned FrameReg;
14555   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14556     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14557   else
14558     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14559 
14560   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14561                                          PtrVT);
14562   while (Depth--)
14563     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14564                             FrameAddr, MachinePointerInfo());
14565   return FrameAddr;
14566 }
14567 
14568 // FIXME? Maybe this could be a TableGen attribute on some registers and
14569 // this table could be generated automatically from RegInfo.
14570 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
14571                                               const MachineFunction &MF) const {
14572   bool isPPC64 = Subtarget.isPPC64();
14573   bool IsDarwinABI = Subtarget.isDarwinABI();
14574 
14575   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
14576       (!isPPC64 && VT != MVT::i32))
14577     report_fatal_error("Invalid register global variable type");
14578 
14579   bool is64Bit = isPPC64 && VT == MVT::i64;
14580   Register Reg = StringSwitch<Register>(RegName)
14581                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14582                    .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2)
14583                    .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() :
14584                                   (is64Bit ? PPC::X13 : PPC::R13))
14585                    .Default(Register());
14586 
14587   if (Reg)
14588     return Reg;
14589   report_fatal_error("Invalid register name global variable");
14590 }
14591 
14592 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14593   // 32-bit SVR4 ABI access everything as got-indirect.
14594   if (Subtarget.is32BitELFABI())
14595     return true;
14596 
14597   // AIX accesses everything indirectly through the TOC, which is similar to
14598   // the GOT.
14599   if (Subtarget.isAIXABI())
14600     return true;
14601 
14602   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14603   // If it is small or large code model, module locals are accessed
14604   // indirectly by loading their address from .toc/.got.
14605   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14606     return true;
14607 
14608   // JumpTable and BlockAddress are accessed as got-indirect.
14609   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14610     return true;
14611 
14612   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14613     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14614 
14615   return false;
14616 }
14617 
14618 bool
14619 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14620   // The PowerPC target isn't yet aware of offsets.
14621   return false;
14622 }
14623 
14624 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14625                                            const CallInst &I,
14626                                            MachineFunction &MF,
14627                                            unsigned Intrinsic) const {
14628   switch (Intrinsic) {
14629   case Intrinsic::ppc_qpx_qvlfd:
14630   case Intrinsic::ppc_qpx_qvlfs:
14631   case Intrinsic::ppc_qpx_qvlfcd:
14632   case Intrinsic::ppc_qpx_qvlfcs:
14633   case Intrinsic::ppc_qpx_qvlfiwa:
14634   case Intrinsic::ppc_qpx_qvlfiwz:
14635   case Intrinsic::ppc_altivec_lvx:
14636   case Intrinsic::ppc_altivec_lvxl:
14637   case Intrinsic::ppc_altivec_lvebx:
14638   case Intrinsic::ppc_altivec_lvehx:
14639   case Intrinsic::ppc_altivec_lvewx:
14640   case Intrinsic::ppc_vsx_lxvd2x:
14641   case Intrinsic::ppc_vsx_lxvw4x: {
14642     EVT VT;
14643     switch (Intrinsic) {
14644     case Intrinsic::ppc_altivec_lvebx:
14645       VT = MVT::i8;
14646       break;
14647     case Intrinsic::ppc_altivec_lvehx:
14648       VT = MVT::i16;
14649       break;
14650     case Intrinsic::ppc_altivec_lvewx:
14651       VT = MVT::i32;
14652       break;
14653     case Intrinsic::ppc_vsx_lxvd2x:
14654       VT = MVT::v2f64;
14655       break;
14656     case Intrinsic::ppc_qpx_qvlfd:
14657       VT = MVT::v4f64;
14658       break;
14659     case Intrinsic::ppc_qpx_qvlfs:
14660       VT = MVT::v4f32;
14661       break;
14662     case Intrinsic::ppc_qpx_qvlfcd:
14663       VT = MVT::v2f64;
14664       break;
14665     case Intrinsic::ppc_qpx_qvlfcs:
14666       VT = MVT::v2f32;
14667       break;
14668     default:
14669       VT = MVT::v4i32;
14670       break;
14671     }
14672 
14673     Info.opc = ISD::INTRINSIC_W_CHAIN;
14674     Info.memVT = VT;
14675     Info.ptrVal = I.getArgOperand(0);
14676     Info.offset = -VT.getStoreSize()+1;
14677     Info.size = 2*VT.getStoreSize()-1;
14678     Info.align = Align::None();
14679     Info.flags = MachineMemOperand::MOLoad;
14680     return true;
14681   }
14682   case Intrinsic::ppc_qpx_qvlfda:
14683   case Intrinsic::ppc_qpx_qvlfsa:
14684   case Intrinsic::ppc_qpx_qvlfcda:
14685   case Intrinsic::ppc_qpx_qvlfcsa:
14686   case Intrinsic::ppc_qpx_qvlfiwaa:
14687   case Intrinsic::ppc_qpx_qvlfiwza: {
14688     EVT VT;
14689     switch (Intrinsic) {
14690     case Intrinsic::ppc_qpx_qvlfda:
14691       VT = MVT::v4f64;
14692       break;
14693     case Intrinsic::ppc_qpx_qvlfsa:
14694       VT = MVT::v4f32;
14695       break;
14696     case Intrinsic::ppc_qpx_qvlfcda:
14697       VT = MVT::v2f64;
14698       break;
14699     case Intrinsic::ppc_qpx_qvlfcsa:
14700       VT = MVT::v2f32;
14701       break;
14702     default:
14703       VT = MVT::v4i32;
14704       break;
14705     }
14706 
14707     Info.opc = ISD::INTRINSIC_W_CHAIN;
14708     Info.memVT = VT;
14709     Info.ptrVal = I.getArgOperand(0);
14710     Info.offset = 0;
14711     Info.size = VT.getStoreSize();
14712     Info.align = Align::None();
14713     Info.flags = MachineMemOperand::MOLoad;
14714     return true;
14715   }
14716   case Intrinsic::ppc_qpx_qvstfd:
14717   case Intrinsic::ppc_qpx_qvstfs:
14718   case Intrinsic::ppc_qpx_qvstfcd:
14719   case Intrinsic::ppc_qpx_qvstfcs:
14720   case Intrinsic::ppc_qpx_qvstfiw:
14721   case Intrinsic::ppc_altivec_stvx:
14722   case Intrinsic::ppc_altivec_stvxl:
14723   case Intrinsic::ppc_altivec_stvebx:
14724   case Intrinsic::ppc_altivec_stvehx:
14725   case Intrinsic::ppc_altivec_stvewx:
14726   case Intrinsic::ppc_vsx_stxvd2x:
14727   case Intrinsic::ppc_vsx_stxvw4x: {
14728     EVT VT;
14729     switch (Intrinsic) {
14730     case Intrinsic::ppc_altivec_stvebx:
14731       VT = MVT::i8;
14732       break;
14733     case Intrinsic::ppc_altivec_stvehx:
14734       VT = MVT::i16;
14735       break;
14736     case Intrinsic::ppc_altivec_stvewx:
14737       VT = MVT::i32;
14738       break;
14739     case Intrinsic::ppc_vsx_stxvd2x:
14740       VT = MVT::v2f64;
14741       break;
14742     case Intrinsic::ppc_qpx_qvstfd:
14743       VT = MVT::v4f64;
14744       break;
14745     case Intrinsic::ppc_qpx_qvstfs:
14746       VT = MVT::v4f32;
14747       break;
14748     case Intrinsic::ppc_qpx_qvstfcd:
14749       VT = MVT::v2f64;
14750       break;
14751     case Intrinsic::ppc_qpx_qvstfcs:
14752       VT = MVT::v2f32;
14753       break;
14754     default:
14755       VT = MVT::v4i32;
14756       break;
14757     }
14758 
14759     Info.opc = ISD::INTRINSIC_VOID;
14760     Info.memVT = VT;
14761     Info.ptrVal = I.getArgOperand(1);
14762     Info.offset = -VT.getStoreSize()+1;
14763     Info.size = 2*VT.getStoreSize()-1;
14764     Info.align = Align::None();
14765     Info.flags = MachineMemOperand::MOStore;
14766     return true;
14767   }
14768   case Intrinsic::ppc_qpx_qvstfda:
14769   case Intrinsic::ppc_qpx_qvstfsa:
14770   case Intrinsic::ppc_qpx_qvstfcda:
14771   case Intrinsic::ppc_qpx_qvstfcsa:
14772   case Intrinsic::ppc_qpx_qvstfiwa: {
14773     EVT VT;
14774     switch (Intrinsic) {
14775     case Intrinsic::ppc_qpx_qvstfda:
14776       VT = MVT::v4f64;
14777       break;
14778     case Intrinsic::ppc_qpx_qvstfsa:
14779       VT = MVT::v4f32;
14780       break;
14781     case Intrinsic::ppc_qpx_qvstfcda:
14782       VT = MVT::v2f64;
14783       break;
14784     case Intrinsic::ppc_qpx_qvstfcsa:
14785       VT = MVT::v2f32;
14786       break;
14787     default:
14788       VT = MVT::v4i32;
14789       break;
14790     }
14791 
14792     Info.opc = ISD::INTRINSIC_VOID;
14793     Info.memVT = VT;
14794     Info.ptrVal = I.getArgOperand(1);
14795     Info.offset = 0;
14796     Info.size = VT.getStoreSize();
14797     Info.align = Align::None();
14798     Info.flags = MachineMemOperand::MOStore;
14799     return true;
14800   }
14801   default:
14802     break;
14803   }
14804 
14805   return false;
14806 }
14807 
14808 /// getOptimalMemOpType - Returns the target specific optimal type for load
14809 /// and store operations as a result of memset, memcpy, and memmove
14810 /// lowering. If DstAlign is zero that means it's safe to destination
14811 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14812 /// means there isn't a need to check it against alignment requirement,
14813 /// probably because the source does not need to be loaded. If 'IsMemset' is
14814 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14815 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14816 /// source is constant so it does not need to be loaded.
14817 /// It returns EVT::Other if the type should be determined using generic
14818 /// target-independent logic.
14819 EVT PPCTargetLowering::getOptimalMemOpType(
14820     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14821     bool ZeroMemset, bool MemcpyStrSrc,
14822     const AttributeList &FuncAttributes) const {
14823   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14824     // When expanding a memset, require at least two QPX instructions to cover
14825     // the cost of loading the value to be stored from the constant pool.
14826     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14827        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14828         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14829       return MVT::v4f64;
14830     }
14831 
14832     // We should use Altivec/VSX loads and stores when available. For unaligned
14833     // addresses, unaligned VSX loads are only fast starting with the P8.
14834     if (Subtarget.hasAltivec() && Size >= 16 &&
14835         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14836          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14837       return MVT::v4i32;
14838   }
14839 
14840   if (Subtarget.isPPC64()) {
14841     return MVT::i64;
14842   }
14843 
14844   return MVT::i32;
14845 }
14846 
14847 /// Returns true if it is beneficial to convert a load of a constant
14848 /// to just the constant itself.
14849 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14850                                                           Type *Ty) const {
14851   assert(Ty->isIntegerTy());
14852 
14853   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14854   return !(BitSize == 0 || BitSize > 64);
14855 }
14856 
14857 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14858   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14859     return false;
14860   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14861   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14862   return NumBits1 == 64 && NumBits2 == 32;
14863 }
14864 
14865 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14866   if (!VT1.isInteger() || !VT2.isInteger())
14867     return false;
14868   unsigned NumBits1 = VT1.getSizeInBits();
14869   unsigned NumBits2 = VT2.getSizeInBits();
14870   return NumBits1 == 64 && NumBits2 == 32;
14871 }
14872 
14873 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14874   // Generally speaking, zexts are not free, but they are free when they can be
14875   // folded with other operations.
14876   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14877     EVT MemVT = LD->getMemoryVT();
14878     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14879          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14880         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14881          LD->getExtensionType() == ISD::ZEXTLOAD))
14882       return true;
14883   }
14884 
14885   // FIXME: Add other cases...
14886   //  - 32-bit shifts with a zext to i64
14887   //  - zext after ctlz, bswap, etc.
14888   //  - zext after and by a constant mask
14889 
14890   return TargetLowering::isZExtFree(Val, VT2);
14891 }
14892 
14893 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14894   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14895          "invalid fpext types");
14896   // Extending to float128 is not free.
14897   if (DestVT == MVT::f128)
14898     return false;
14899   return true;
14900 }
14901 
14902 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14903   return isInt<16>(Imm) || isUInt<16>(Imm);
14904 }
14905 
14906 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14907   return isInt<16>(Imm) || isUInt<16>(Imm);
14908 }
14909 
14910 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14911                                                        unsigned,
14912                                                        unsigned,
14913                                                        MachineMemOperand::Flags,
14914                                                        bool *Fast) const {
14915   if (DisablePPCUnaligned)
14916     return false;
14917 
14918   // PowerPC supports unaligned memory access for simple non-vector types.
14919   // Although accessing unaligned addresses is not as efficient as accessing
14920   // aligned addresses, it is generally more efficient than manual expansion,
14921   // and generally only traps for software emulation when crossing page
14922   // boundaries.
14923 
14924   if (!VT.isSimple())
14925     return false;
14926 
14927   if (VT.getSimpleVT().isVector()) {
14928     if (Subtarget.hasVSX()) {
14929       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14930           VT != MVT::v4f32 && VT != MVT::v4i32)
14931         return false;
14932     } else {
14933       return false;
14934     }
14935   }
14936 
14937   if (VT == MVT::ppcf128)
14938     return false;
14939 
14940   if (Fast)
14941     *Fast = true;
14942 
14943   return true;
14944 }
14945 
14946 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14947   VT = VT.getScalarType();
14948 
14949   if (!VT.isSimple())
14950     return false;
14951 
14952   switch (VT.getSimpleVT().SimpleTy) {
14953   case MVT::f32:
14954   case MVT::f64:
14955     return true;
14956   case MVT::f128:
14957     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14958   default:
14959     break;
14960   }
14961 
14962   return false;
14963 }
14964 
14965 const MCPhysReg *
14966 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14967   // LR is a callee-save register, but we must treat it as clobbered by any call
14968   // site. Hence we include LR in the scratch registers, which are in turn added
14969   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14970   // to CTR, which is used by any indirect call.
14971   static const MCPhysReg ScratchRegs[] = {
14972     PPC::X12, PPC::LR8, PPC::CTR8, 0
14973   };
14974 
14975   return ScratchRegs;
14976 }
14977 
14978 unsigned PPCTargetLowering::getExceptionPointerRegister(
14979     const Constant *PersonalityFn) const {
14980   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14981 }
14982 
14983 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14984     const Constant *PersonalityFn) const {
14985   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14986 }
14987 
14988 bool
14989 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14990                      EVT VT , unsigned DefinedValues) const {
14991   if (VT == MVT::v2i64)
14992     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14993 
14994   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14995     return true;
14996 
14997   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14998 }
14999 
15000 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15001   if (DisableILPPref || Subtarget.enableMachineScheduler())
15002     return TargetLowering::getSchedulingPreference(N);
15003 
15004   return Sched::ILP;
15005 }
15006 
15007 // Create a fast isel object.
15008 FastISel *
15009 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15010                                   const TargetLibraryInfo *LibInfo) const {
15011   return PPC::createFastISel(FuncInfo, LibInfo);
15012 }
15013 
15014 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15015   if (Subtarget.isDarwinABI()) return;
15016   if (!Subtarget.isPPC64()) return;
15017 
15018   // Update IsSplitCSR in PPCFunctionInfo
15019   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15020   PFI->setIsSplitCSR(true);
15021 }
15022 
15023 void PPCTargetLowering::insertCopiesSplitCSR(
15024   MachineBasicBlock *Entry,
15025   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15026   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15027   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15028   if (!IStart)
15029     return;
15030 
15031   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15032   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15033   MachineBasicBlock::iterator MBBI = Entry->begin();
15034   for (const MCPhysReg *I = IStart; *I; ++I) {
15035     const TargetRegisterClass *RC = nullptr;
15036     if (PPC::G8RCRegClass.contains(*I))
15037       RC = &PPC::G8RCRegClass;
15038     else if (PPC::F8RCRegClass.contains(*I))
15039       RC = &PPC::F8RCRegClass;
15040     else if (PPC::CRRCRegClass.contains(*I))
15041       RC = &PPC::CRRCRegClass;
15042     else if (PPC::VRRCRegClass.contains(*I))
15043       RC = &PPC::VRRCRegClass;
15044     else
15045       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15046 
15047     Register NewVR = MRI->createVirtualRegister(RC);
15048     // Create copy from CSR to a virtual register.
15049     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15050     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15051     // nounwind. If we want to generalize this later, we may need to emit
15052     // CFI pseudo-instructions.
15053     assert(Entry->getParent()->getFunction().hasFnAttribute(
15054              Attribute::NoUnwind) &&
15055            "Function should be nounwind in insertCopiesSplitCSR!");
15056     Entry->addLiveIn(*I);
15057     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15058       .addReg(*I);
15059 
15060     // Insert the copy-back instructions right before the terminator.
15061     for (auto *Exit : Exits)
15062       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15063               TII->get(TargetOpcode::COPY), *I)
15064         .addReg(NewVR);
15065   }
15066 }
15067 
15068 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15069 bool PPCTargetLowering::useLoadStackGuardNode() const {
15070   if (!Subtarget.isTargetLinux())
15071     return TargetLowering::useLoadStackGuardNode();
15072   return true;
15073 }
15074 
15075 // Override to disable global variable loading on Linux.
15076 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15077   if (!Subtarget.isTargetLinux())
15078     return TargetLowering::insertSSPDeclarations(M);
15079 }
15080 
15081 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15082                                      bool ForCodeSize) const {
15083   if (!VT.isSimple() || !Subtarget.hasVSX())
15084     return false;
15085 
15086   switch(VT.getSimpleVT().SimpleTy) {
15087   default:
15088     // For FP types that are currently not supported by PPC backend, return
15089     // false. Examples: f16, f80.
15090     return false;
15091   case MVT::f32:
15092   case MVT::f64:
15093   case MVT::ppcf128:
15094     return Imm.isPosZero();
15095   }
15096 }
15097 
15098 // For vector shift operation op, fold
15099 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15100 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15101                                   SelectionDAG &DAG) {
15102   SDValue N0 = N->getOperand(0);
15103   SDValue N1 = N->getOperand(1);
15104   EVT VT = N0.getValueType();
15105   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15106   unsigned Opcode = N->getOpcode();
15107   unsigned TargetOpcode;
15108 
15109   switch (Opcode) {
15110   default:
15111     llvm_unreachable("Unexpected shift operation");
15112   case ISD::SHL:
15113     TargetOpcode = PPCISD::SHL;
15114     break;
15115   case ISD::SRL:
15116     TargetOpcode = PPCISD::SRL;
15117     break;
15118   case ISD::SRA:
15119     TargetOpcode = PPCISD::SRA;
15120     break;
15121   }
15122 
15123   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15124       N1->getOpcode() == ISD::AND)
15125     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15126       if (Mask->getZExtValue() == OpSizeInBits - 1)
15127         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15128 
15129   return SDValue();
15130 }
15131 
15132 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15133   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15134     return Value;
15135 
15136   SDValue N0 = N->getOperand(0);
15137   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15138   if (!Subtarget.isISA3_0() ||
15139       N0.getOpcode() != ISD::SIGN_EXTEND ||
15140       N0.getOperand(0).getValueType() != MVT::i32 ||
15141       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15142     return SDValue();
15143 
15144   // We can't save an operation here if the value is already extended, and
15145   // the existing shift is easier to combine.
15146   SDValue ExtsSrc = N0.getOperand(0);
15147   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15148       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15149     return SDValue();
15150 
15151   SDLoc DL(N0);
15152   SDValue ShiftBy = SDValue(CN1, 0);
15153   // We want the shift amount to be i32 on the extswli, but the shift could
15154   // have an i64.
15155   if (ShiftBy.getValueType() == MVT::i64)
15156     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15157 
15158   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15159                          ShiftBy);
15160 }
15161 
15162 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15163   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15164     return Value;
15165 
15166   return SDValue();
15167 }
15168 
15169 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15170   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15171     return Value;
15172 
15173   return SDValue();
15174 }
15175 
15176 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15177 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15178 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15179 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15180 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15181                                  const PPCSubtarget &Subtarget) {
15182   if (!Subtarget.isPPC64())
15183     return SDValue();
15184 
15185   SDValue LHS = N->getOperand(0);
15186   SDValue RHS = N->getOperand(1);
15187 
15188   auto isZextOfCompareWithConstant = [](SDValue Op) {
15189     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15190         Op.getValueType() != MVT::i64)
15191       return false;
15192 
15193     SDValue Cmp = Op.getOperand(0);
15194     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15195         Cmp.getOperand(0).getValueType() != MVT::i64)
15196       return false;
15197 
15198     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15199       int64_t NegConstant = 0 - Constant->getSExtValue();
15200       // Due to the limitations of the addi instruction,
15201       // -C is required to be [-32768, 32767].
15202       return isInt<16>(NegConstant);
15203     }
15204 
15205     return false;
15206   };
15207 
15208   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15209   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15210 
15211   // If there is a pattern, canonicalize a zext operand to the RHS.
15212   if (LHSHasPattern && !RHSHasPattern)
15213     std::swap(LHS, RHS);
15214   else if (!LHSHasPattern && !RHSHasPattern)
15215     return SDValue();
15216 
15217   SDLoc DL(N);
15218   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15219   SDValue Cmp = RHS.getOperand(0);
15220   SDValue Z = Cmp.getOperand(0);
15221   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15222 
15223   assert(Constant && "Constant Should not be a null pointer.");
15224   int64_t NegConstant = 0 - Constant->getSExtValue();
15225 
15226   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15227   default: break;
15228   case ISD::SETNE: {
15229     //                                 when C == 0
15230     //                             --> addze X, (addic Z, -1).carry
15231     //                            /
15232     // add X, (zext(setne Z, C))--
15233     //                            \    when -32768 <= -C <= 32767 && C != 0
15234     //                             --> addze X, (addic (addi Z, -C), -1).carry
15235     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15236                               DAG.getConstant(NegConstant, DL, MVT::i64));
15237     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15238     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15239                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15240     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15241                        SDValue(Addc.getNode(), 1));
15242     }
15243   case ISD::SETEQ: {
15244     //                                 when C == 0
15245     //                             --> addze X, (subfic Z, 0).carry
15246     //                            /
15247     // add X, (zext(sete  Z, C))--
15248     //                            \    when -32768 <= -C <= 32767 && C != 0
15249     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15250     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15251                               DAG.getConstant(NegConstant, DL, MVT::i64));
15252     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15253     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15254                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15255     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15256                        SDValue(Subc.getNode(), 1));
15257     }
15258   }
15259 
15260   return SDValue();
15261 }
15262 
15263 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15264   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15265     return Value;
15266 
15267   return SDValue();
15268 }
15269 
15270 // Detect TRUNCATE operations on bitcasts of float128 values.
15271 // What we are looking for here is the situtation where we extract a subset
15272 // of bits from a 128 bit float.
15273 // This can be of two forms:
15274 // 1) BITCAST of f128 feeding TRUNCATE
15275 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15276 // The reason this is required is because we do not have a legal i128 type
15277 // and so we want to prevent having to store the f128 and then reload part
15278 // of it.
15279 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15280                                            DAGCombinerInfo &DCI) const {
15281   // If we are using CRBits then try that first.
15282   if (Subtarget.useCRBits()) {
15283     // Check if CRBits did anything and return that if it did.
15284     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15285       return CRTruncValue;
15286   }
15287 
15288   SDLoc dl(N);
15289   SDValue Op0 = N->getOperand(0);
15290 
15291   // Looking for a truncate of i128 to i64.
15292   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15293     return SDValue();
15294 
15295   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15296 
15297   // SRL feeding TRUNCATE.
15298   if (Op0.getOpcode() == ISD::SRL) {
15299     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15300     // The right shift has to be by 64 bits.
15301     if (!ConstNode || ConstNode->getZExtValue() != 64)
15302       return SDValue();
15303 
15304     // Switch the element number to extract.
15305     EltToExtract = EltToExtract ? 0 : 1;
15306     // Update Op0 past the SRL.
15307     Op0 = Op0.getOperand(0);
15308   }
15309 
15310   // BITCAST feeding a TRUNCATE possibly via SRL.
15311   if (Op0.getOpcode() == ISD::BITCAST &&
15312       Op0.getValueType() == MVT::i128 &&
15313       Op0.getOperand(0).getValueType() == MVT::f128) {
15314     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15315     return DCI.DAG.getNode(
15316         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15317         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15318   }
15319   return SDValue();
15320 }
15321 
15322 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15323   SelectionDAG &DAG = DCI.DAG;
15324 
15325   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15326   if (!ConstOpOrElement)
15327     return SDValue();
15328 
15329   // An imul is usually smaller than the alternative sequence for legal type.
15330   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15331       isOperationLegal(ISD::MUL, N->getValueType(0)))
15332     return SDValue();
15333 
15334   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15335     switch (this->Subtarget.getDarwinDirective()) {
15336     default:
15337       // TODO: enhance the condition for subtarget before pwr8
15338       return false;
15339     case PPC::DIR_PWR8:
15340       //  type        mul     add    shl
15341       // scalar        4       1      1
15342       // vector        7       2      2
15343       return true;
15344     case PPC::DIR_PWR9:
15345       //  type        mul     add    shl
15346       // scalar        5       2      2
15347       // vector        7       2      2
15348 
15349       // The cycle RATIO of related operations are showed as a table above.
15350       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15351       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15352       // are 4, it is always profitable; but for 3 instrs patterns
15353       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15354       // So we should only do it for vector type.
15355       return IsAddOne && IsNeg ? VT.isVector() : true;
15356     }
15357   };
15358 
15359   EVT VT = N->getValueType(0);
15360   SDLoc DL(N);
15361 
15362   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15363   bool IsNeg = MulAmt.isNegative();
15364   APInt MulAmtAbs = MulAmt.abs();
15365 
15366   if ((MulAmtAbs - 1).isPowerOf2()) {
15367     // (mul x, 2^N + 1) => (add (shl x, N), x)
15368     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15369 
15370     if (!IsProfitable(IsNeg, true, VT))
15371       return SDValue();
15372 
15373     SDValue Op0 = N->getOperand(0);
15374     SDValue Op1 =
15375         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15376                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15377     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15378 
15379     if (!IsNeg)
15380       return Res;
15381 
15382     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15383   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15384     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15385     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15386 
15387     if (!IsProfitable(IsNeg, false, VT))
15388       return SDValue();
15389 
15390     SDValue Op0 = N->getOperand(0);
15391     SDValue Op1 =
15392         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15393                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15394 
15395     if (!IsNeg)
15396       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15397     else
15398       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15399 
15400   } else {
15401     return SDValue();
15402   }
15403 }
15404 
15405 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15406   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15407   if (!Subtarget.is64BitELFABI())
15408     return false;
15409 
15410   // If not a tail call then no need to proceed.
15411   if (!CI->isTailCall())
15412     return false;
15413 
15414   // If tail calls are disabled for the caller then we are done.
15415   const Function *Caller = CI->getParent()->getParent();
15416   auto Attr = Caller->getFnAttribute("disable-tail-calls");
15417   if (Attr.getValueAsString() == "true")
15418     return false;
15419 
15420   // If sibling calls have been disabled and tail-calls aren't guaranteed
15421   // there is no reason to duplicate.
15422   auto &TM = getTargetMachine();
15423   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15424     return false;
15425 
15426   // Can't tail call a function called indirectly, or if it has variadic args.
15427   const Function *Callee = CI->getCalledFunction();
15428   if (!Callee || Callee->isVarArg())
15429     return false;
15430 
15431   // Make sure the callee and caller calling conventions are eligible for tco.
15432   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15433                                            CI->getCallingConv()))
15434       return false;
15435 
15436   // If the function is local then we have a good chance at tail-calling it
15437   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15438 }
15439 
15440 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15441   if (!Subtarget.hasVSX())
15442     return false;
15443   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15444     return true;
15445   return VT == MVT::f32 || VT == MVT::f64 ||
15446     VT == MVT::v4f32 || VT == MVT::v2f64;
15447 }
15448 
15449 bool PPCTargetLowering::
15450 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15451   const Value *Mask = AndI.getOperand(1);
15452   // If the mask is suitable for andi. or andis. we should sink the and.
15453   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15454     // Can't handle constants wider than 64-bits.
15455     if (CI->getBitWidth() > 64)
15456       return false;
15457     int64_t ConstVal = CI->getZExtValue();
15458     return isUInt<16>(ConstVal) ||
15459       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15460   }
15461 
15462   // For non-constant masks, we can always use the record-form and.
15463   return true;
15464 }
15465 
15466 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15467 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15468 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15469 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15470 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15471 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15472   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15473   assert(Subtarget.hasP9Altivec() &&
15474          "Only combine this when P9 altivec supported!");
15475   EVT VT = N->getValueType(0);
15476   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15477     return SDValue();
15478 
15479   SelectionDAG &DAG = DCI.DAG;
15480   SDLoc dl(N);
15481   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15482     // Even for signed integers, if it's known to be positive (as signed
15483     // integer) due to zero-extended inputs.
15484     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15485     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15486     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15487          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15488         (SubOpcd1 == ISD::ZERO_EXTEND ||
15489          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15490       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15491                          N->getOperand(0)->getOperand(0),
15492                          N->getOperand(0)->getOperand(1),
15493                          DAG.getTargetConstant(0, dl, MVT::i32));
15494     }
15495 
15496     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15497     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15498         N->getOperand(0).hasOneUse()) {
15499       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15500                          N->getOperand(0)->getOperand(0),
15501                          N->getOperand(0)->getOperand(1),
15502                          DAG.getTargetConstant(1, dl, MVT::i32));
15503     }
15504   }
15505 
15506   return SDValue();
15507 }
15508 
15509 // For type v4i32/v8ii16/v16i8, transform
15510 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15511 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15512 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15513 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15514 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15515                                           DAGCombinerInfo &DCI) const {
15516   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15517   assert(Subtarget.hasP9Altivec() &&
15518          "Only combine this when P9 altivec supported!");
15519 
15520   SelectionDAG &DAG = DCI.DAG;
15521   SDLoc dl(N);
15522   SDValue Cond = N->getOperand(0);
15523   SDValue TrueOpnd = N->getOperand(1);
15524   SDValue FalseOpnd = N->getOperand(2);
15525   EVT VT = N->getOperand(1).getValueType();
15526 
15527   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15528       FalseOpnd.getOpcode() != ISD::SUB)
15529     return SDValue();
15530 
15531   // ABSD only available for type v4i32/v8i16/v16i8
15532   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15533     return SDValue();
15534 
15535   // At least to save one more dependent computation
15536   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15537     return SDValue();
15538 
15539   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15540 
15541   // Can only handle unsigned comparison here
15542   switch (CC) {
15543   default:
15544     return SDValue();
15545   case ISD::SETUGT:
15546   case ISD::SETUGE:
15547     break;
15548   case ISD::SETULT:
15549   case ISD::SETULE:
15550     std::swap(TrueOpnd, FalseOpnd);
15551     break;
15552   }
15553 
15554   SDValue CmpOpnd1 = Cond.getOperand(0);
15555   SDValue CmpOpnd2 = Cond.getOperand(1);
15556 
15557   // SETCC CmpOpnd1 CmpOpnd2 cond
15558   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15559   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15560   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15561       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15562       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15563       FalseOpnd.getOperand(1) == CmpOpnd1) {
15564     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15565                        CmpOpnd1, CmpOpnd2,
15566                        DAG.getTargetConstant(0, dl, MVT::i32));
15567   }
15568 
15569   return SDValue();
15570 }
15571