1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCTargetMachine.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 27 #include "llvm/CallingConv.h" 28 #include "llvm/Constants.h" 29 #include "llvm/Function.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/DerivedTypes.h" 37 using namespace llvm; 38 39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 40 CCValAssign::LocInfo &LocInfo, 41 ISD::ArgFlagsTy &ArgFlags, 42 CCState &State); 43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 44 MVT &LocVT, 45 CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, 47 CCState &State); 48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 49 MVT &LocVT, 50 CCValAssign::LocInfo &LocInfo, 51 ISD::ArgFlagsTy &ArgFlags, 52 CCState &State); 53 54 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 55 cl::desc("enable preincrement load/store generation on PPC (experimental)"), 56 cl::Hidden); 57 58 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 59 if (TM.getSubtargetImpl()->isDarwin()) 60 return new TargetLoweringObjectFileMachO(); 61 62 return new TargetLoweringObjectFileELF(); 63 } 64 65 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 66 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 67 68 setPow2DivIsCheap(); 69 70 // Use _setjmp/_longjmp instead of setjmp/longjmp. 71 setUseUnderscoreSetJmp(true); 72 setUseUnderscoreLongJmp(true); 73 74 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 75 // arguments are at least 4/8 bytes aligned. 76 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 77 78 // Set up the register classes. 79 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 80 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 81 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 82 83 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 84 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 85 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 86 87 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 88 89 // PowerPC has pre-inc load and store's. 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 100 101 // This is used in the ppcf128->int sequence. Note it has different semantics 102 // from FP_ROUND: that rounds to nearest, this rounds to zero. 103 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 104 105 // We do not currently implment this libm ops for PowerPC. 106 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 107 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 108 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 109 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 110 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 111 112 // PowerPC has no SREM/UREM instructions 113 setOperationAction(ISD::SREM, MVT::i32, Expand); 114 setOperationAction(ISD::UREM, MVT::i32, Expand); 115 setOperationAction(ISD::SREM, MVT::i64, Expand); 116 setOperationAction(ISD::UREM, MVT::i64, Expand); 117 118 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 119 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 120 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 121 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 122 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 123 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 124 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 125 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 126 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 127 128 // We don't support sin/cos/sqrt/fmod/pow 129 setOperationAction(ISD::FSIN , MVT::f64, Expand); 130 setOperationAction(ISD::FCOS , MVT::f64, Expand); 131 setOperationAction(ISD::FREM , MVT::f64, Expand); 132 setOperationAction(ISD::FPOW , MVT::f64, Expand); 133 setOperationAction(ISD::FMA , MVT::f64, Expand); 134 setOperationAction(ISD::FSIN , MVT::f32, Expand); 135 setOperationAction(ISD::FCOS , MVT::f32, Expand); 136 setOperationAction(ISD::FREM , MVT::f32, Expand); 137 setOperationAction(ISD::FPOW , MVT::f32, Expand); 138 setOperationAction(ISD::FMA , MVT::f32, Expand); 139 140 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 141 142 // If we're enabling GP optimizations, use hardware square root 143 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 144 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 145 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 146 } 147 148 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 149 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 150 151 // PowerPC does not have BSWAP, CTPOP or CTTZ 152 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 153 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 154 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 155 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 156 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 157 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 158 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 159 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 160 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 161 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 162 163 // PowerPC does not have ROTR 164 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 165 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 166 167 // PowerPC does not have Select 168 setOperationAction(ISD::SELECT, MVT::i32, Expand); 169 setOperationAction(ISD::SELECT, MVT::i64, Expand); 170 setOperationAction(ISD::SELECT, MVT::f32, Expand); 171 setOperationAction(ISD::SELECT, MVT::f64, Expand); 172 173 // PowerPC wants to turn select_cc of FP into fsel when possible. 174 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 175 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 176 177 // PowerPC wants to optimize integer setcc a bit 178 setOperationAction(ISD::SETCC, MVT::i32, Custom); 179 180 // PowerPC does not have BRCOND which requires SetCC 181 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 182 183 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 184 185 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 186 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 187 188 // PowerPC does not have [U|S]INT_TO_FP 189 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 190 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 191 192 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 193 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 194 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 195 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 196 197 // We cannot sextinreg(i1). Expand to shifts. 198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 199 200 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 201 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 202 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 203 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 204 205 206 // We want to legalize GlobalAddress and ConstantPool nodes into the 207 // appropriate instructions to materialize the address. 208 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 209 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 210 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 211 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 212 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 213 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 214 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 215 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 216 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 217 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 218 219 // TRAP is legal. 220 setOperationAction(ISD::TRAP, MVT::Other, Legal); 221 222 // TRAMPOLINE is custom lowered. 223 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 224 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 225 226 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 227 setOperationAction(ISD::VASTART , MVT::Other, Custom); 228 229 // VAARG is custom lowered with the 32-bit SVR4 ABI. 230 if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 231 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) { 232 setOperationAction(ISD::VAARG, MVT::Other, Custom); 233 setOperationAction(ISD::VAARG, MVT::i64, Custom); 234 } else 235 setOperationAction(ISD::VAARG, MVT::Other, Expand); 236 237 // Use the default implementation. 238 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 239 setOperationAction(ISD::VAEND , MVT::Other, Expand); 240 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 241 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 242 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 243 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 244 245 // We want to custom lower some of our intrinsics. 246 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 247 248 // Comparisons that require checking two conditions. 249 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 250 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 251 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 252 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 253 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 254 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 255 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 256 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 257 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 258 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 259 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 260 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 261 262 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 263 // They also have instructions for converting between i64 and fp. 264 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 // This is just the low 32 bits of a (signed) fp->i64 conversion. 269 // We cannot do this with Promote because i64 is not a legal type. 270 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 271 272 // FIXME: disable this lowered code. This generates 64-bit register values, 273 // and we don't model the fact that the top part is clobbered by calls. We 274 // need to flag these together so that the value isn't live across a call. 275 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 276 } else { 277 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 278 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 279 } 280 281 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 282 // 64-bit PowerPC implementations can support i64 types directly 283 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 284 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 285 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 286 // 64-bit PowerPC wants to expand i128 shifts itself. 287 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 288 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 289 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 290 } else { 291 // 32-bit PowerPC wants to expand i64 shifts itself. 292 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 293 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 294 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 295 } 296 297 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 298 // First set operation action for all vector types to expand. Then we 299 // will selectively turn on ones that can be effectively codegen'd. 300 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 301 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 302 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 303 304 // add/sub are legal for all supported vector VT's. 305 setOperationAction(ISD::ADD , VT, Legal); 306 setOperationAction(ISD::SUB , VT, Legal); 307 308 // We promote all shuffles to v16i8. 309 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 310 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 311 312 // We promote all non-typed operations to v4i32. 313 setOperationAction(ISD::AND , VT, Promote); 314 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 315 setOperationAction(ISD::OR , VT, Promote); 316 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 317 setOperationAction(ISD::XOR , VT, Promote); 318 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 319 setOperationAction(ISD::LOAD , VT, Promote); 320 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 321 setOperationAction(ISD::SELECT, VT, Promote); 322 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 323 setOperationAction(ISD::STORE, VT, Promote); 324 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 325 326 // No other operations are legal. 327 setOperationAction(ISD::MUL , VT, Expand); 328 setOperationAction(ISD::SDIV, VT, Expand); 329 setOperationAction(ISD::SREM, VT, Expand); 330 setOperationAction(ISD::UDIV, VT, Expand); 331 setOperationAction(ISD::UREM, VT, Expand); 332 setOperationAction(ISD::FDIV, VT, Expand); 333 setOperationAction(ISD::FNEG, VT, Expand); 334 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 335 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 336 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 337 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 338 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 339 setOperationAction(ISD::UDIVREM, VT, Expand); 340 setOperationAction(ISD::SDIVREM, VT, Expand); 341 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 342 setOperationAction(ISD::FPOW, VT, Expand); 343 setOperationAction(ISD::CTPOP, VT, Expand); 344 setOperationAction(ISD::CTLZ, VT, Expand); 345 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 346 setOperationAction(ISD::CTTZ, VT, Expand); 347 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 348 } 349 350 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 351 // with merges, splats, etc. 352 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 353 354 setOperationAction(ISD::AND , MVT::v4i32, Legal); 355 setOperationAction(ISD::OR , MVT::v4i32, Legal); 356 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 357 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 358 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 359 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 360 361 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 362 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 363 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 364 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 365 366 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 367 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 368 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 369 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 370 371 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 372 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 373 374 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 375 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 376 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 377 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 378 } 379 380 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 381 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 382 383 setBooleanContents(ZeroOrOneBooleanContent); 384 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 385 386 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 387 setStackPointerRegisterToSaveRestore(PPC::X1); 388 setExceptionPointerRegister(PPC::X3); 389 setExceptionSelectorRegister(PPC::X4); 390 } else { 391 setStackPointerRegisterToSaveRestore(PPC::R1); 392 setExceptionPointerRegister(PPC::R3); 393 setExceptionSelectorRegister(PPC::R4); 394 } 395 396 // We have target-specific dag combine patterns for the following nodes: 397 setTargetDAGCombine(ISD::SINT_TO_FP); 398 setTargetDAGCombine(ISD::STORE); 399 setTargetDAGCombine(ISD::BR_CC); 400 setTargetDAGCombine(ISD::BSWAP); 401 402 // Darwin long double math library functions have $LDBL128 appended. 403 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 404 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 405 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 406 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 407 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 408 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 409 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 410 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 411 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 412 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 413 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 414 } 415 416 setMinFunctionAlignment(2); 417 if (PPCSubTarget.isDarwin()) 418 setPrefFunctionAlignment(4); 419 420 setInsertFencesForAtomic(true); 421 422 setSchedulingPreference(Sched::Hybrid); 423 424 computeRegisterProperties(); 425 } 426 427 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 428 /// function arguments in the caller parameter area. 429 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 430 const TargetMachine &TM = getTargetMachine(); 431 // Darwin passes everything on 4 byte boundary. 432 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 433 return 4; 434 // FIXME SVR4 TBD 435 return 4; 436 } 437 438 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 439 switch (Opcode) { 440 default: return 0; 441 case PPCISD::FSEL: return "PPCISD::FSEL"; 442 case PPCISD::FCFID: return "PPCISD::FCFID"; 443 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 444 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 445 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 446 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 447 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 448 case PPCISD::VPERM: return "PPCISD::VPERM"; 449 case PPCISD::Hi: return "PPCISD::Hi"; 450 case PPCISD::Lo: return "PPCISD::Lo"; 451 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 452 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 453 case PPCISD::LOAD: return "PPCISD::LOAD"; 454 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 455 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 456 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 457 case PPCISD::SRL: return "PPCISD::SRL"; 458 case PPCISD::SRA: return "PPCISD::SRA"; 459 case PPCISD::SHL: return "PPCISD::SHL"; 460 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 461 case PPCISD::STD_32: return "PPCISD::STD_32"; 462 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 463 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 464 case PPCISD::NOP: return "PPCISD::NOP"; 465 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 466 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 467 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 468 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 469 case PPCISD::MFCR: return "PPCISD::MFCR"; 470 case PPCISD::VCMP: return "PPCISD::VCMP"; 471 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 472 case PPCISD::LBRX: return "PPCISD::LBRX"; 473 case PPCISD::STBRX: return "PPCISD::STBRX"; 474 case PPCISD::LARX: return "PPCISD::LARX"; 475 case PPCISD::STCX: return "PPCISD::STCX"; 476 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 477 case PPCISD::MFFS: return "PPCISD::MFFS"; 478 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 479 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 480 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 481 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 482 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 483 } 484 } 485 486 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { 487 return MVT::i32; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // Node matching predicates, for use by the tblgen matching code. 492 //===----------------------------------------------------------------------===// 493 494 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 495 static bool isFloatingPointZero(SDValue Op) { 496 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 497 return CFP->getValueAPF().isZero(); 498 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 499 // Maybe this has already been legalized into the constant pool? 500 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 501 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 502 return CFP->getValueAPF().isZero(); 503 } 504 return false; 505 } 506 507 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 508 /// true if Op is undef or if it matches the specified value. 509 static bool isConstantOrUndef(int Op, int Val) { 510 return Op < 0 || Op == Val; 511 } 512 513 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 514 /// VPKUHUM instruction. 515 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 516 if (!isUnary) { 517 for (unsigned i = 0; i != 16; ++i) 518 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 519 return false; 520 } else { 521 for (unsigned i = 0; i != 8; ++i) 522 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 523 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 524 return false; 525 } 526 return true; 527 } 528 529 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 530 /// VPKUWUM instruction. 531 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 532 if (!isUnary) { 533 for (unsigned i = 0; i != 16; i += 2) 534 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 535 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 536 return false; 537 } else { 538 for (unsigned i = 0; i != 8; i += 2) 539 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 540 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 541 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 542 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 543 return false; 544 } 545 return true; 546 } 547 548 /// isVMerge - Common function, used to match vmrg* shuffles. 549 /// 550 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 551 unsigned LHSStart, unsigned RHSStart) { 552 assert(N->getValueType(0) == MVT::v16i8 && 553 "PPC only supports shuffles by bytes!"); 554 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 555 "Unsupported merge size!"); 556 557 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 558 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 559 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 560 LHSStart+j+i*UnitSize) || 561 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 562 RHSStart+j+i*UnitSize)) 563 return false; 564 } 565 return true; 566 } 567 568 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 569 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 570 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 571 bool isUnary) { 572 if (!isUnary) 573 return isVMerge(N, UnitSize, 8, 24); 574 return isVMerge(N, UnitSize, 8, 8); 575 } 576 577 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 578 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 579 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 580 bool isUnary) { 581 if (!isUnary) 582 return isVMerge(N, UnitSize, 0, 16); 583 return isVMerge(N, UnitSize, 0, 0); 584 } 585 586 587 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 588 /// amount, otherwise return -1. 589 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 590 assert(N->getValueType(0) == MVT::v16i8 && 591 "PPC only supports shuffles by bytes!"); 592 593 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 594 595 // Find the first non-undef value in the shuffle mask. 596 unsigned i; 597 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 598 /*search*/; 599 600 if (i == 16) return -1; // all undef. 601 602 // Otherwise, check to see if the rest of the elements are consecutively 603 // numbered from this value. 604 unsigned ShiftAmt = SVOp->getMaskElt(i); 605 if (ShiftAmt < i) return -1; 606 ShiftAmt -= i; 607 608 if (!isUnary) { 609 // Check the rest of the elements to see if they are consecutive. 610 for (++i; i != 16; ++i) 611 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 612 return -1; 613 } else { 614 // Check the rest of the elements to see if they are consecutive. 615 for (++i; i != 16; ++i) 616 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 617 return -1; 618 } 619 return ShiftAmt; 620 } 621 622 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 623 /// specifies a splat of a single element that is suitable for input to 624 /// VSPLTB/VSPLTH/VSPLTW. 625 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 626 assert(N->getValueType(0) == MVT::v16i8 && 627 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 628 629 // This is a splat operation if each element of the permute is the same, and 630 // if the value doesn't reference the second vector. 631 unsigned ElementBase = N->getMaskElt(0); 632 633 // FIXME: Handle UNDEF elements too! 634 if (ElementBase >= 16) 635 return false; 636 637 // Check that the indices are consecutive, in the case of a multi-byte element 638 // splatted with a v16i8 mask. 639 for (unsigned i = 1; i != EltSize; ++i) 640 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 641 return false; 642 643 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 644 if (N->getMaskElt(i) < 0) continue; 645 for (unsigned j = 0; j != EltSize; ++j) 646 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 647 return false; 648 } 649 return true; 650 } 651 652 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 653 /// are -0.0. 654 bool PPC::isAllNegativeZeroVector(SDNode *N) { 655 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 656 657 APInt APVal, APUndef; 658 unsigned BitSize; 659 bool HasAnyUndefs; 660 661 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 662 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 663 return CFP->getValueAPF().isNegZero(); 664 665 return false; 666 } 667 668 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 669 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 670 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 671 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 672 assert(isSplatShuffleMask(SVOp, EltSize)); 673 return SVOp->getMaskElt(0) / EltSize; 674 } 675 676 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 677 /// by using a vspltis[bhw] instruction of the specified element size, return 678 /// the constant being splatted. The ByteSize field indicates the number of 679 /// bytes of each element [124] -> [bhw]. 680 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 681 SDValue OpVal(0, 0); 682 683 // If ByteSize of the splat is bigger than the element size of the 684 // build_vector, then we have a case where we are checking for a splat where 685 // multiple elements of the buildvector are folded together into a single 686 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 687 unsigned EltSize = 16/N->getNumOperands(); 688 if (EltSize < ByteSize) { 689 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 690 SDValue UniquedVals[4]; 691 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 692 693 // See if all of the elements in the buildvector agree across. 694 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 695 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 696 // If the element isn't a constant, bail fully out. 697 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 698 699 700 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 701 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 702 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 703 return SDValue(); // no match. 704 } 705 706 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 707 // either constant or undef values that are identical for each chunk. See 708 // if these chunks can form into a larger vspltis*. 709 710 // Check to see if all of the leading entries are either 0 or -1. If 711 // neither, then this won't fit into the immediate field. 712 bool LeadingZero = true; 713 bool LeadingOnes = true; 714 for (unsigned i = 0; i != Multiple-1; ++i) { 715 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 716 717 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 718 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 719 } 720 // Finally, check the least significant entry. 721 if (LeadingZero) { 722 if (UniquedVals[Multiple-1].getNode() == 0) 723 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 724 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 725 if (Val < 16) 726 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 727 } 728 if (LeadingOnes) { 729 if (UniquedVals[Multiple-1].getNode() == 0) 730 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 731 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 732 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 733 return DAG.getTargetConstant(Val, MVT::i32); 734 } 735 736 return SDValue(); 737 } 738 739 // Check to see if this buildvec has a single non-undef value in its elements. 740 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 741 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 742 if (OpVal.getNode() == 0) 743 OpVal = N->getOperand(i); 744 else if (OpVal != N->getOperand(i)) 745 return SDValue(); 746 } 747 748 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 749 750 unsigned ValSizeInBytes = EltSize; 751 uint64_t Value = 0; 752 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 753 Value = CN->getZExtValue(); 754 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 755 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 756 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 757 } 758 759 // If the splat value is larger than the element value, then we can never do 760 // this splat. The only case that we could fit the replicated bits into our 761 // immediate field for would be zero, and we prefer to use vxor for it. 762 if (ValSizeInBytes < ByteSize) return SDValue(); 763 764 // If the element value is larger than the splat value, cut it in half and 765 // check to see if the two halves are equal. Continue doing this until we 766 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 767 while (ValSizeInBytes > ByteSize) { 768 ValSizeInBytes >>= 1; 769 770 // If the top half equals the bottom half, we're still ok. 771 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 772 (Value & ((1 << (8*ValSizeInBytes))-1))) 773 return SDValue(); 774 } 775 776 // Properly sign extend the value. 777 int ShAmt = (4-ByteSize)*8; 778 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 779 780 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 781 if (MaskVal == 0) return SDValue(); 782 783 // Finally, if this value fits in a 5 bit sext field, return it 784 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 785 return DAG.getTargetConstant(MaskVal, MVT::i32); 786 return SDValue(); 787 } 788 789 //===----------------------------------------------------------------------===// 790 // Addressing Mode Selection 791 //===----------------------------------------------------------------------===// 792 793 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 794 /// or 64-bit immediate, and if the value can be accurately represented as a 795 /// sign extension from a 16-bit value. If so, this returns true and the 796 /// immediate. 797 static bool isIntS16Immediate(SDNode *N, short &Imm) { 798 if (N->getOpcode() != ISD::Constant) 799 return false; 800 801 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 802 if (N->getValueType(0) == MVT::i32) 803 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 804 else 805 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 806 } 807 static bool isIntS16Immediate(SDValue Op, short &Imm) { 808 return isIntS16Immediate(Op.getNode(), Imm); 809 } 810 811 812 /// SelectAddressRegReg - Given the specified addressed, check to see if it 813 /// can be represented as an indexed [r+r] operation. Returns false if it 814 /// can be more efficiently represented with [r+imm]. 815 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 816 SDValue &Index, 817 SelectionDAG &DAG) const { 818 short imm = 0; 819 if (N.getOpcode() == ISD::ADD) { 820 if (isIntS16Immediate(N.getOperand(1), imm)) 821 return false; // r+i 822 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 823 return false; // r+i 824 825 Base = N.getOperand(0); 826 Index = N.getOperand(1); 827 return true; 828 } else if (N.getOpcode() == ISD::OR) { 829 if (isIntS16Immediate(N.getOperand(1), imm)) 830 return false; // r+i can fold it if we can. 831 832 // If this is an or of disjoint bitfields, we can codegen this as an add 833 // (for better address arithmetic) if the LHS and RHS of the OR are provably 834 // disjoint. 835 APInt LHSKnownZero, LHSKnownOne; 836 APInt RHSKnownZero, RHSKnownOne; 837 DAG.ComputeMaskedBits(N.getOperand(0), 838 APInt::getAllOnesValue(N.getOperand(0) 839 .getValueSizeInBits()), 840 LHSKnownZero, LHSKnownOne); 841 842 if (LHSKnownZero.getBoolValue()) { 843 DAG.ComputeMaskedBits(N.getOperand(1), 844 APInt::getAllOnesValue(N.getOperand(1) 845 .getValueSizeInBits()), 846 RHSKnownZero, RHSKnownOne); 847 // If all of the bits are known zero on the LHS or RHS, the add won't 848 // carry. 849 if (~(LHSKnownZero | RHSKnownZero) == 0) { 850 Base = N.getOperand(0); 851 Index = N.getOperand(1); 852 return true; 853 } 854 } 855 } 856 857 return false; 858 } 859 860 /// Returns true if the address N can be represented by a base register plus 861 /// a signed 16-bit displacement [r+imm], and if it is not better 862 /// represented as reg+reg. 863 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 864 SDValue &Base, 865 SelectionDAG &DAG) const { 866 // FIXME dl should come from parent load or store, not from address 867 DebugLoc dl = N.getDebugLoc(); 868 // If this can be more profitably realized as r+r, fail. 869 if (SelectAddressRegReg(N, Disp, Base, DAG)) 870 return false; 871 872 if (N.getOpcode() == ISD::ADD) { 873 short imm = 0; 874 if (isIntS16Immediate(N.getOperand(1), imm)) { 875 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 876 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 877 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 878 } else { 879 Base = N.getOperand(0); 880 } 881 return true; // [r+i] 882 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 883 // Match LOAD (ADD (X, Lo(G))). 884 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 885 && "Cannot handle constant offsets yet!"); 886 Disp = N.getOperand(1).getOperand(0); // The global address. 887 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 888 Disp.getOpcode() == ISD::TargetConstantPool || 889 Disp.getOpcode() == ISD::TargetJumpTable); 890 Base = N.getOperand(0); 891 return true; // [&g+r] 892 } 893 } else if (N.getOpcode() == ISD::OR) { 894 short imm = 0; 895 if (isIntS16Immediate(N.getOperand(1), imm)) { 896 // If this is an or of disjoint bitfields, we can codegen this as an add 897 // (for better address arithmetic) if the LHS and RHS of the OR are 898 // provably disjoint. 899 APInt LHSKnownZero, LHSKnownOne; 900 DAG.ComputeMaskedBits(N.getOperand(0), 901 APInt::getAllOnesValue(N.getOperand(0) 902 .getValueSizeInBits()), 903 LHSKnownZero, LHSKnownOne); 904 905 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 906 // If all of the bits are known zero on the LHS or RHS, the add won't 907 // carry. 908 Base = N.getOperand(0); 909 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 910 return true; 911 } 912 } 913 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 914 // Loading from a constant address. 915 916 // If this address fits entirely in a 16-bit sext immediate field, codegen 917 // this as "d, 0" 918 short Imm; 919 if (isIntS16Immediate(CN, Imm)) { 920 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 921 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 922 CN->getValueType(0)); 923 return true; 924 } 925 926 // Handle 32-bit sext immediates with LIS + addr mode. 927 if (CN->getValueType(0) == MVT::i32 || 928 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 929 int Addr = (int)CN->getZExtValue(); 930 931 // Otherwise, break this down into an LIS + disp. 932 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 933 934 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 935 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 936 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 937 return true; 938 } 939 } 940 941 Disp = DAG.getTargetConstant(0, getPointerTy()); 942 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 943 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 944 else 945 Base = N; 946 return true; // [r+0] 947 } 948 949 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 950 /// represented as an indexed [r+r] operation. 951 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 952 SDValue &Index, 953 SelectionDAG &DAG) const { 954 // Check to see if we can easily represent this as an [r+r] address. This 955 // will fail if it thinks that the address is more profitably represented as 956 // reg+imm, e.g. where imm = 0. 957 if (SelectAddressRegReg(N, Base, Index, DAG)) 958 return true; 959 960 // If the operand is an addition, always emit this as [r+r], since this is 961 // better (for code size, and execution, as the memop does the add for free) 962 // than emitting an explicit add. 963 if (N.getOpcode() == ISD::ADD) { 964 Base = N.getOperand(0); 965 Index = N.getOperand(1); 966 return true; 967 } 968 969 // Otherwise, do it the hard way, using R0 as the base register. 970 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 971 N.getValueType()); 972 Index = N; 973 return true; 974 } 975 976 /// SelectAddressRegImmShift - Returns true if the address N can be 977 /// represented by a base register plus a signed 14-bit displacement 978 /// [r+imm*4]. Suitable for use by STD and friends. 979 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 980 SDValue &Base, 981 SelectionDAG &DAG) const { 982 // FIXME dl should come from the parent load or store, not the address 983 DebugLoc dl = N.getDebugLoc(); 984 // If this can be more profitably realized as r+r, fail. 985 if (SelectAddressRegReg(N, Disp, Base, DAG)) 986 return false; 987 988 if (N.getOpcode() == ISD::ADD) { 989 short imm = 0; 990 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 991 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 992 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 993 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 994 } else { 995 Base = N.getOperand(0); 996 } 997 return true; // [r+i] 998 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 999 // Match LOAD (ADD (X, Lo(G))). 1000 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1001 && "Cannot handle constant offsets yet!"); 1002 Disp = N.getOperand(1).getOperand(0); // The global address. 1003 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1004 Disp.getOpcode() == ISD::TargetConstantPool || 1005 Disp.getOpcode() == ISD::TargetJumpTable); 1006 Base = N.getOperand(0); 1007 return true; // [&g+r] 1008 } 1009 } else if (N.getOpcode() == ISD::OR) { 1010 short imm = 0; 1011 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1012 // If this is an or of disjoint bitfields, we can codegen this as an add 1013 // (for better address arithmetic) if the LHS and RHS of the OR are 1014 // provably disjoint. 1015 APInt LHSKnownZero, LHSKnownOne; 1016 DAG.ComputeMaskedBits(N.getOperand(0), 1017 APInt::getAllOnesValue(N.getOperand(0) 1018 .getValueSizeInBits()), 1019 LHSKnownZero, LHSKnownOne); 1020 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1021 // If all of the bits are known zero on the LHS or RHS, the add won't 1022 // carry. 1023 Base = N.getOperand(0); 1024 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1025 return true; 1026 } 1027 } 1028 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1029 // Loading from a constant address. Verify low two bits are clear. 1030 if ((CN->getZExtValue() & 3) == 0) { 1031 // If this address fits entirely in a 14-bit sext immediate field, codegen 1032 // this as "d, 0" 1033 short Imm; 1034 if (isIntS16Immediate(CN, Imm)) { 1035 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1036 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1037 CN->getValueType(0)); 1038 return true; 1039 } 1040 1041 // Fold the low-part of 32-bit absolute addresses into addr mode. 1042 if (CN->getValueType(0) == MVT::i32 || 1043 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1044 int Addr = (int)CN->getZExtValue(); 1045 1046 // Otherwise, break this down into an LIS + disp. 1047 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1048 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1049 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1050 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1051 return true; 1052 } 1053 } 1054 } 1055 1056 Disp = DAG.getTargetConstant(0, getPointerTy()); 1057 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1058 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1059 else 1060 Base = N; 1061 return true; // [r+0] 1062 } 1063 1064 1065 /// getPreIndexedAddressParts - returns true by value, base pointer and 1066 /// offset pointer and addressing mode by reference if the node's address 1067 /// can be legally represented as pre-indexed load / store address. 1068 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1069 SDValue &Offset, 1070 ISD::MemIndexedMode &AM, 1071 SelectionDAG &DAG) const { 1072 // Disabled by default for now. 1073 if (!EnablePPCPreinc) return false; 1074 1075 SDValue Ptr; 1076 EVT VT; 1077 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1078 Ptr = LD->getBasePtr(); 1079 VT = LD->getMemoryVT(); 1080 1081 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1082 Ptr = ST->getBasePtr(); 1083 VT = ST->getMemoryVT(); 1084 } else 1085 return false; 1086 1087 // PowerPC doesn't have preinc load/store instructions for vectors. 1088 if (VT.isVector()) 1089 return false; 1090 1091 // TODO: Check reg+reg first. 1092 1093 // LDU/STU use reg+imm*4, others use reg+imm. 1094 if (VT != MVT::i64) { 1095 // reg + imm 1096 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1097 return false; 1098 } else { 1099 // reg + imm * 4. 1100 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1101 return false; 1102 } 1103 1104 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1105 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1106 // sext i32 to i64 when addr mode is r+i. 1107 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1108 LD->getExtensionType() == ISD::SEXTLOAD && 1109 isa<ConstantSDNode>(Offset)) 1110 return false; 1111 } 1112 1113 AM = ISD::PRE_INC; 1114 return true; 1115 } 1116 1117 //===----------------------------------------------------------------------===// 1118 // LowerOperation implementation 1119 //===----------------------------------------------------------------------===// 1120 1121 /// GetLabelAccessInfo - Return true if we should reference labels using a 1122 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1123 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1124 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1125 HiOpFlags = PPCII::MO_HA16; 1126 LoOpFlags = PPCII::MO_LO16; 1127 1128 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1129 // non-darwin platform. We don't support PIC on other platforms yet. 1130 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1131 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1132 if (isPIC) { 1133 HiOpFlags |= PPCII::MO_PIC_FLAG; 1134 LoOpFlags |= PPCII::MO_PIC_FLAG; 1135 } 1136 1137 // If this is a reference to a global value that requires a non-lazy-ptr, make 1138 // sure that instruction lowering adds it. 1139 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1140 HiOpFlags |= PPCII::MO_NLP_FLAG; 1141 LoOpFlags |= PPCII::MO_NLP_FLAG; 1142 1143 if (GV->hasHiddenVisibility()) { 1144 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1145 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1146 } 1147 } 1148 1149 return isPIC; 1150 } 1151 1152 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1153 SelectionDAG &DAG) { 1154 EVT PtrVT = HiPart.getValueType(); 1155 SDValue Zero = DAG.getConstant(0, PtrVT); 1156 DebugLoc DL = HiPart.getDebugLoc(); 1157 1158 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1159 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1160 1161 // With PIC, the first instruction is actually "GR+hi(&G)". 1162 if (isPIC) 1163 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1164 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1165 1166 // Generate non-pic code that has direct accesses to the constant pool. 1167 // The address of the global is just (hi(&g)+lo(&g)). 1168 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1169 } 1170 1171 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1172 SelectionDAG &DAG) const { 1173 EVT PtrVT = Op.getValueType(); 1174 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1175 const Constant *C = CP->getConstVal(); 1176 1177 unsigned MOHiFlag, MOLoFlag; 1178 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1179 SDValue CPIHi = 1180 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1181 SDValue CPILo = 1182 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1183 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1184 } 1185 1186 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1187 EVT PtrVT = Op.getValueType(); 1188 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1189 1190 unsigned MOHiFlag, MOLoFlag; 1191 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1192 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1193 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1194 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1195 } 1196 1197 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1198 SelectionDAG &DAG) const { 1199 EVT PtrVT = Op.getValueType(); 1200 1201 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1202 1203 unsigned MOHiFlag, MOLoFlag; 1204 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1205 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1206 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1207 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1208 } 1209 1210 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1211 SelectionDAG &DAG) const { 1212 EVT PtrVT = Op.getValueType(); 1213 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1214 DebugLoc DL = GSDN->getDebugLoc(); 1215 const GlobalValue *GV = GSDN->getGlobal(); 1216 1217 // 64-bit SVR4 ABI code is always position-independent. 1218 // The actual address of the GlobalValue is stored in the TOC. 1219 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1220 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1221 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1222 DAG.getRegister(PPC::X2, MVT::i64)); 1223 } 1224 1225 unsigned MOHiFlag, MOLoFlag; 1226 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1227 1228 SDValue GAHi = 1229 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1230 SDValue GALo = 1231 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1232 1233 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1234 1235 // If the global reference is actually to a non-lazy-pointer, we have to do an 1236 // extra load to get the address of the global. 1237 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1238 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1239 false, false, false, 0); 1240 return Ptr; 1241 } 1242 1243 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1244 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1245 DebugLoc dl = Op.getDebugLoc(); 1246 1247 // If we're comparing for equality to zero, expose the fact that this is 1248 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1249 // fold the new nodes. 1250 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1251 if (C->isNullValue() && CC == ISD::SETEQ) { 1252 EVT VT = Op.getOperand(0).getValueType(); 1253 SDValue Zext = Op.getOperand(0); 1254 if (VT.bitsLT(MVT::i32)) { 1255 VT = MVT::i32; 1256 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1257 } 1258 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1259 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1260 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1261 DAG.getConstant(Log2b, MVT::i32)); 1262 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1263 } 1264 // Leave comparisons against 0 and -1 alone for now, since they're usually 1265 // optimized. FIXME: revisit this when we can custom lower all setcc 1266 // optimizations. 1267 if (C->isAllOnesValue() || C->isNullValue()) 1268 return SDValue(); 1269 } 1270 1271 // If we have an integer seteq/setne, turn it into a compare against zero 1272 // by xor'ing the rhs with the lhs, which is faster than setting a 1273 // condition register, reading it back out, and masking the correct bit. The 1274 // normal approach here uses sub to do this instead of xor. Using xor exposes 1275 // the result to other bit-twiddling opportunities. 1276 EVT LHSVT = Op.getOperand(0).getValueType(); 1277 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1278 EVT VT = Op.getValueType(); 1279 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1280 Op.getOperand(1)); 1281 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1282 } 1283 return SDValue(); 1284 } 1285 1286 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1287 const PPCSubtarget &Subtarget) const { 1288 SDNode *Node = Op.getNode(); 1289 EVT VT = Node->getValueType(0); 1290 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1291 SDValue InChain = Node->getOperand(0); 1292 SDValue VAListPtr = Node->getOperand(1); 1293 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1294 DebugLoc dl = Node->getDebugLoc(); 1295 1296 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1297 1298 // gpr_index 1299 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1300 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1301 false, false, 0); 1302 InChain = GprIndex.getValue(1); 1303 1304 if (VT == MVT::i64) { 1305 // Check if GprIndex is even 1306 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1307 DAG.getConstant(1, MVT::i32)); 1308 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1309 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1310 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1311 DAG.getConstant(1, MVT::i32)); 1312 // Align GprIndex to be even if it isn't 1313 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1314 GprIndex); 1315 } 1316 1317 // fpr index is 1 byte after gpr 1318 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1319 DAG.getConstant(1, MVT::i32)); 1320 1321 // fpr 1322 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1323 FprPtr, MachinePointerInfo(SV), MVT::i8, 1324 false, false, 0); 1325 InChain = FprIndex.getValue(1); 1326 1327 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1328 DAG.getConstant(8, MVT::i32)); 1329 1330 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1331 DAG.getConstant(4, MVT::i32)); 1332 1333 // areas 1334 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1335 MachinePointerInfo(), false, false, 1336 false, 0); 1337 InChain = OverflowArea.getValue(1); 1338 1339 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1340 MachinePointerInfo(), false, false, 1341 false, 0); 1342 InChain = RegSaveArea.getValue(1); 1343 1344 // select overflow_area if index > 8 1345 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1346 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1347 1348 // adjustment constant gpr_index * 4/8 1349 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1350 VT.isInteger() ? GprIndex : FprIndex, 1351 DAG.getConstant(VT.isInteger() ? 4 : 8, 1352 MVT::i32)); 1353 1354 // OurReg = RegSaveArea + RegConstant 1355 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1356 RegConstant); 1357 1358 // Floating types are 32 bytes into RegSaveArea 1359 if (VT.isFloatingPoint()) 1360 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1361 DAG.getConstant(32, MVT::i32)); 1362 1363 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1364 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1365 VT.isInteger() ? GprIndex : FprIndex, 1366 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1367 MVT::i32)); 1368 1369 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1370 VT.isInteger() ? VAListPtr : FprPtr, 1371 MachinePointerInfo(SV), 1372 MVT::i8, false, false, 0); 1373 1374 // determine if we should load from reg_save_area or overflow_area 1375 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1376 1377 // increase overflow_area by 4/8 if gpr/fpr > 8 1378 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1379 DAG.getConstant(VT.isInteger() ? 4 : 8, 1380 MVT::i32)); 1381 1382 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1383 OverflowAreaPlusN); 1384 1385 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1386 OverflowAreaPtr, 1387 MachinePointerInfo(), 1388 MVT::i32, false, false, 0); 1389 1390 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 1391 false, false, false, 0); 1392 } 1393 1394 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 1395 SelectionDAG &DAG) const { 1396 return Op.getOperand(0); 1397 } 1398 1399 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 1400 SelectionDAG &DAG) const { 1401 SDValue Chain = Op.getOperand(0); 1402 SDValue Trmp = Op.getOperand(1); // trampoline 1403 SDValue FPtr = Op.getOperand(2); // nested function 1404 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1405 DebugLoc dl = Op.getDebugLoc(); 1406 1407 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1408 bool isPPC64 = (PtrVT == MVT::i64); 1409 Type *IntPtrTy = 1410 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1411 *DAG.getContext()); 1412 1413 TargetLowering::ArgListTy Args; 1414 TargetLowering::ArgListEntry Entry; 1415 1416 Entry.Ty = IntPtrTy; 1417 Entry.Node = Trmp; Args.push_back(Entry); 1418 1419 // TrampSize == (isPPC64 ? 48 : 40); 1420 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1421 isPPC64 ? MVT::i64 : MVT::i32); 1422 Args.push_back(Entry); 1423 1424 Entry.Node = FPtr; Args.push_back(Entry); 1425 Entry.Node = Nest; Args.push_back(Entry); 1426 1427 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1428 std::pair<SDValue, SDValue> CallResult = 1429 LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), 1430 false, false, false, false, 0, CallingConv::C, false, 1431 /*isReturnValueUsed=*/true, 1432 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1433 Args, DAG, dl); 1434 1435 return CallResult.second; 1436 } 1437 1438 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1439 const PPCSubtarget &Subtarget) const { 1440 MachineFunction &MF = DAG.getMachineFunction(); 1441 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1442 1443 DebugLoc dl = Op.getDebugLoc(); 1444 1445 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1446 // vastart just stores the address of the VarArgsFrameIndex slot into the 1447 // memory location argument. 1448 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1449 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1450 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1451 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1452 MachinePointerInfo(SV), 1453 false, false, 0); 1454 } 1455 1456 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1457 // We suppose the given va_list is already allocated. 1458 // 1459 // typedef struct { 1460 // char gpr; /* index into the array of 8 GPRs 1461 // * stored in the register save area 1462 // * gpr=0 corresponds to r3, 1463 // * gpr=1 to r4, etc. 1464 // */ 1465 // char fpr; /* index into the array of 8 FPRs 1466 // * stored in the register save area 1467 // * fpr=0 corresponds to f1, 1468 // * fpr=1 to f2, etc. 1469 // */ 1470 // char *overflow_arg_area; 1471 // /* location on stack that holds 1472 // * the next overflow argument 1473 // */ 1474 // char *reg_save_area; 1475 // /* where r3:r10 and f1:f8 (if saved) 1476 // * are stored 1477 // */ 1478 // } va_list[1]; 1479 1480 1481 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1482 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1483 1484 1485 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1486 1487 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1488 PtrVT); 1489 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1490 PtrVT); 1491 1492 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1493 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1494 1495 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1496 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1497 1498 uint64_t FPROffset = 1; 1499 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1500 1501 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1502 1503 // Store first byte : number of int regs 1504 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1505 Op.getOperand(1), 1506 MachinePointerInfo(SV), 1507 MVT::i8, false, false, 0); 1508 uint64_t nextOffset = FPROffset; 1509 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1510 ConstFPROffset); 1511 1512 // Store second byte : number of float regs 1513 SDValue secondStore = 1514 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1515 MachinePointerInfo(SV, nextOffset), MVT::i8, 1516 false, false, 0); 1517 nextOffset += StackOffset; 1518 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1519 1520 // Store second word : arguments given on stack 1521 SDValue thirdStore = 1522 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1523 MachinePointerInfo(SV, nextOffset), 1524 false, false, 0); 1525 nextOffset += FrameOffset; 1526 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1527 1528 // Store third word : arguments given in registers 1529 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1530 MachinePointerInfo(SV, nextOffset), 1531 false, false, 0); 1532 1533 } 1534 1535 #include "PPCGenCallingConv.inc" 1536 1537 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1538 CCValAssign::LocInfo &LocInfo, 1539 ISD::ArgFlagsTy &ArgFlags, 1540 CCState &State) { 1541 return true; 1542 } 1543 1544 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1545 MVT &LocVT, 1546 CCValAssign::LocInfo &LocInfo, 1547 ISD::ArgFlagsTy &ArgFlags, 1548 CCState &State) { 1549 static const unsigned ArgRegs[] = { 1550 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1551 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1552 }; 1553 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1554 1555 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1556 1557 // Skip one register if the first unallocated register has an even register 1558 // number and there are still argument registers available which have not been 1559 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1560 // need to skip a register if RegNum is odd. 1561 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1562 State.AllocateReg(ArgRegs[RegNum]); 1563 } 1564 1565 // Always return false here, as this function only makes sure that the first 1566 // unallocated register has an odd register number and does not actually 1567 // allocate a register for the current argument. 1568 return false; 1569 } 1570 1571 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1572 MVT &LocVT, 1573 CCValAssign::LocInfo &LocInfo, 1574 ISD::ArgFlagsTy &ArgFlags, 1575 CCState &State) { 1576 static const unsigned ArgRegs[] = { 1577 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1578 PPC::F8 1579 }; 1580 1581 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1582 1583 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1584 1585 // If there is only one Floating-point register left we need to put both f64 1586 // values of a split ppc_fp128 value on the stack. 1587 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1588 State.AllocateReg(ArgRegs[RegNum]); 1589 } 1590 1591 // Always return false here, as this function only makes sure that the two f64 1592 // values a ppc_fp128 value is split into are both passed in registers or both 1593 // passed on the stack and does not actually allocate a register for the 1594 // current argument. 1595 return false; 1596 } 1597 1598 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1599 /// on Darwin. 1600 static const unsigned *GetFPR() { 1601 static const unsigned FPR[] = { 1602 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1603 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1604 }; 1605 1606 return FPR; 1607 } 1608 1609 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1610 /// the stack. 1611 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1612 unsigned PtrByteSize) { 1613 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1614 if (Flags.isByVal()) 1615 ArgSize = Flags.getByValSize(); 1616 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1617 1618 return ArgSize; 1619 } 1620 1621 SDValue 1622 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1623 CallingConv::ID CallConv, bool isVarArg, 1624 const SmallVectorImpl<ISD::InputArg> 1625 &Ins, 1626 DebugLoc dl, SelectionDAG &DAG, 1627 SmallVectorImpl<SDValue> &InVals) 1628 const { 1629 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1630 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1631 dl, DAG, InVals); 1632 } else { 1633 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1634 dl, DAG, InVals); 1635 } 1636 } 1637 1638 SDValue 1639 PPCTargetLowering::LowerFormalArguments_SVR4( 1640 SDValue Chain, 1641 CallingConv::ID CallConv, bool isVarArg, 1642 const SmallVectorImpl<ISD::InputArg> 1643 &Ins, 1644 DebugLoc dl, SelectionDAG &DAG, 1645 SmallVectorImpl<SDValue> &InVals) const { 1646 1647 // 32-bit SVR4 ABI Stack Frame Layout: 1648 // +-----------------------------------+ 1649 // +--> | Back chain | 1650 // | +-----------------------------------+ 1651 // | | Floating-point register save area | 1652 // | +-----------------------------------+ 1653 // | | General register save area | 1654 // | +-----------------------------------+ 1655 // | | CR save word | 1656 // | +-----------------------------------+ 1657 // | | VRSAVE save word | 1658 // | +-----------------------------------+ 1659 // | | Alignment padding | 1660 // | +-----------------------------------+ 1661 // | | Vector register save area | 1662 // | +-----------------------------------+ 1663 // | | Local variable space | 1664 // | +-----------------------------------+ 1665 // | | Parameter list area | 1666 // | +-----------------------------------+ 1667 // | | LR save word | 1668 // | +-----------------------------------+ 1669 // SP--> +--- | Back chain | 1670 // +-----------------------------------+ 1671 // 1672 // Specifications: 1673 // System V Application Binary Interface PowerPC Processor Supplement 1674 // AltiVec Technology Programming Interface Manual 1675 1676 MachineFunction &MF = DAG.getMachineFunction(); 1677 MachineFrameInfo *MFI = MF.getFrameInfo(); 1678 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1679 1680 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1681 // Potential tail calls could cause overwriting of argument stack slots. 1682 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1683 (CallConv == CallingConv::Fast)); 1684 unsigned PtrByteSize = 4; 1685 1686 // Assign locations to all of the incoming arguments. 1687 SmallVector<CCValAssign, 16> ArgLocs; 1688 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1689 getTargetMachine(), ArgLocs, *DAG.getContext()); 1690 1691 // Reserve space for the linkage area on the stack. 1692 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1693 1694 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1695 1696 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1697 CCValAssign &VA = ArgLocs[i]; 1698 1699 // Arguments stored in registers. 1700 if (VA.isRegLoc()) { 1701 TargetRegisterClass *RC; 1702 EVT ValVT = VA.getValVT(); 1703 1704 switch (ValVT.getSimpleVT().SimpleTy) { 1705 default: 1706 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1707 case MVT::i32: 1708 RC = PPC::GPRCRegisterClass; 1709 break; 1710 case MVT::f32: 1711 RC = PPC::F4RCRegisterClass; 1712 break; 1713 case MVT::f64: 1714 RC = PPC::F8RCRegisterClass; 1715 break; 1716 case MVT::v16i8: 1717 case MVT::v8i16: 1718 case MVT::v4i32: 1719 case MVT::v4f32: 1720 RC = PPC::VRRCRegisterClass; 1721 break; 1722 } 1723 1724 // Transform the arguments stored in physical registers into virtual ones. 1725 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1726 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1727 1728 InVals.push_back(ArgValue); 1729 } else { 1730 // Argument stored in memory. 1731 assert(VA.isMemLoc()); 1732 1733 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1734 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1735 isImmutable); 1736 1737 // Create load nodes to retrieve arguments from the stack. 1738 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1739 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1740 MachinePointerInfo(), 1741 false, false, false, 0)); 1742 } 1743 } 1744 1745 // Assign locations to all of the incoming aggregate by value arguments. 1746 // Aggregates passed by value are stored in the local variable space of the 1747 // caller's stack frame, right above the parameter list area. 1748 SmallVector<CCValAssign, 16> ByValArgLocs; 1749 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1750 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1751 1752 // Reserve stack space for the allocations in CCInfo. 1753 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1754 1755 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1756 1757 // Area that is at least reserved in the caller of this function. 1758 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1759 1760 // Set the size that is at least reserved in caller of this function. Tail 1761 // call optimized function's reserved stack space needs to be aligned so that 1762 // taking the difference between two stack areas will result in an aligned 1763 // stack. 1764 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1765 1766 MinReservedArea = 1767 std::max(MinReservedArea, 1768 PPCFrameLowering::getMinCallFrameSize(false, false)); 1769 1770 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1771 getStackAlignment(); 1772 unsigned AlignMask = TargetAlign-1; 1773 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1774 1775 FI->setMinReservedArea(MinReservedArea); 1776 1777 SmallVector<SDValue, 8> MemOps; 1778 1779 // If the function takes variable number of arguments, make a frame index for 1780 // the start of the first vararg value... for expansion of llvm.va_start. 1781 if (isVarArg) { 1782 static const unsigned GPArgRegs[] = { 1783 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1784 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1785 }; 1786 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1787 1788 static const unsigned FPArgRegs[] = { 1789 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1790 PPC::F8 1791 }; 1792 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1793 1794 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1795 NumGPArgRegs)); 1796 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1797 NumFPArgRegs)); 1798 1799 // Make room for NumGPArgRegs and NumFPArgRegs. 1800 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1801 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1802 1803 FuncInfo->setVarArgsStackOffset( 1804 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1805 CCInfo.getNextStackOffset(), true)); 1806 1807 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1808 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1809 1810 // The fixed integer arguments of a variadic function are stored to the 1811 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1812 // the result of va_next. 1813 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1814 // Get an existing live-in vreg, or add a new one. 1815 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1816 if (!VReg) 1817 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1818 1819 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1820 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1821 MachinePointerInfo(), false, false, 0); 1822 MemOps.push_back(Store); 1823 // Increment the address by four for the next argument to store 1824 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1825 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1826 } 1827 1828 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1829 // is set. 1830 // The double arguments are stored to the VarArgsFrameIndex 1831 // on the stack. 1832 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1833 // Get an existing live-in vreg, or add a new one. 1834 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1835 if (!VReg) 1836 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1837 1838 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1839 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1840 MachinePointerInfo(), false, false, 0); 1841 MemOps.push_back(Store); 1842 // Increment the address by eight for the next argument to store 1843 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1844 PtrVT); 1845 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1846 } 1847 } 1848 1849 if (!MemOps.empty()) 1850 Chain = DAG.getNode(ISD::TokenFactor, dl, 1851 MVT::Other, &MemOps[0], MemOps.size()); 1852 1853 return Chain; 1854 } 1855 1856 SDValue 1857 PPCTargetLowering::LowerFormalArguments_Darwin( 1858 SDValue Chain, 1859 CallingConv::ID CallConv, bool isVarArg, 1860 const SmallVectorImpl<ISD::InputArg> 1861 &Ins, 1862 DebugLoc dl, SelectionDAG &DAG, 1863 SmallVectorImpl<SDValue> &InVals) const { 1864 // TODO: add description of PPC stack frame format, or at least some docs. 1865 // 1866 MachineFunction &MF = DAG.getMachineFunction(); 1867 MachineFrameInfo *MFI = MF.getFrameInfo(); 1868 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1869 1870 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1871 bool isPPC64 = PtrVT == MVT::i64; 1872 // Potential tail calls could cause overwriting of argument stack slots. 1873 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1874 (CallConv == CallingConv::Fast)); 1875 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1876 1877 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1878 // Area that is at least reserved in caller of this function. 1879 unsigned MinReservedArea = ArgOffset; 1880 1881 static const unsigned GPR_32[] = { // 32-bit registers. 1882 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1883 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1884 }; 1885 static const unsigned GPR_64[] = { // 64-bit registers. 1886 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1887 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1888 }; 1889 1890 static const unsigned *FPR = GetFPR(); 1891 1892 static const unsigned VR[] = { 1893 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1894 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1895 }; 1896 1897 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1898 const unsigned Num_FPR_Regs = 13; 1899 const unsigned Num_VR_Regs = array_lengthof( VR); 1900 1901 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1902 1903 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1904 1905 // In 32-bit non-varargs functions, the stack space for vectors is after the 1906 // stack space for non-vectors. We do not use this space unless we have 1907 // too many vectors to fit in registers, something that only occurs in 1908 // constructed examples:), but we have to walk the arglist to figure 1909 // that out...for the pathological case, compute VecArgOffset as the 1910 // start of the vector parameter area. Computing VecArgOffset is the 1911 // entire point of the following loop. 1912 unsigned VecArgOffset = ArgOffset; 1913 if (!isVarArg && !isPPC64) { 1914 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1915 ++ArgNo) { 1916 EVT ObjectVT = Ins[ArgNo].VT; 1917 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1918 1919 if (Flags.isByVal()) { 1920 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1921 unsigned ObjSize = Flags.getByValSize(); 1922 unsigned ArgSize = 1923 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1924 VecArgOffset += ArgSize; 1925 continue; 1926 } 1927 1928 switch(ObjectVT.getSimpleVT().SimpleTy) { 1929 default: llvm_unreachable("Unhandled argument type!"); 1930 case MVT::i32: 1931 case MVT::f32: 1932 VecArgOffset += isPPC64 ? 8 : 4; 1933 break; 1934 case MVT::i64: // PPC64 1935 case MVT::f64: 1936 VecArgOffset += 8; 1937 break; 1938 case MVT::v4f32: 1939 case MVT::v4i32: 1940 case MVT::v8i16: 1941 case MVT::v16i8: 1942 // Nothing to do, we're only looking at Nonvector args here. 1943 break; 1944 } 1945 } 1946 } 1947 // We've found where the vector parameter area in memory is. Skip the 1948 // first 12 parameters; these don't use that memory. 1949 VecArgOffset = ((VecArgOffset+15)/16)*16; 1950 VecArgOffset += 12*16; 1951 1952 // Add DAG nodes to load the arguments or copy them out of registers. On 1953 // entry to a function on PPC, the arguments start after the linkage area, 1954 // although the first ones are often in registers. 1955 1956 SmallVector<SDValue, 8> MemOps; 1957 unsigned nAltivecParamsAtEnd = 0; 1958 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1959 SDValue ArgVal; 1960 bool needsLoad = false; 1961 EVT ObjectVT = Ins[ArgNo].VT; 1962 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1963 unsigned ArgSize = ObjSize; 1964 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1965 1966 unsigned CurArgOffset = ArgOffset; 1967 1968 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1969 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1970 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1971 if (isVarArg || isPPC64) { 1972 MinReservedArea = ((MinReservedArea+15)/16)*16; 1973 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1974 Flags, 1975 PtrByteSize); 1976 } else nAltivecParamsAtEnd++; 1977 } else 1978 // Calculate min reserved area. 1979 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1980 Flags, 1981 PtrByteSize); 1982 1983 // FIXME the codegen can be much improved in some cases. 1984 // We do not have to keep everything in memory. 1985 if (Flags.isByVal()) { 1986 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1987 ObjSize = Flags.getByValSize(); 1988 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1989 // Objects of size 1 and 2 are right justified, everything else is 1990 // left justified. This means the memory address is adjusted forwards. 1991 if (ObjSize==1 || ObjSize==2) { 1992 CurArgOffset = CurArgOffset + (4 - ObjSize); 1993 } 1994 // The value of the object is its address. 1995 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1996 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1997 InVals.push_back(FIN); 1998 if (ObjSize==1 || ObjSize==2) { 1999 if (GPR_idx != Num_GPR_Regs) { 2000 unsigned VReg; 2001 if (isPPC64) 2002 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2003 else 2004 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2005 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2006 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2007 MachinePointerInfo(), 2008 ObjSize==1 ? MVT::i8 : MVT::i16, 2009 false, false, 0); 2010 MemOps.push_back(Store); 2011 ++GPR_idx; 2012 } 2013 2014 ArgOffset += PtrByteSize; 2015 2016 continue; 2017 } 2018 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2019 // Store whatever pieces of the object are in registers 2020 // to memory. ArgVal will be address of the beginning of 2021 // the object. 2022 if (GPR_idx != Num_GPR_Regs) { 2023 unsigned VReg; 2024 if (isPPC64) 2025 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2026 else 2027 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2028 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2029 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2030 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2031 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2032 MachinePointerInfo(), 2033 false, false, 0); 2034 MemOps.push_back(Store); 2035 ++GPR_idx; 2036 ArgOffset += PtrByteSize; 2037 } else { 2038 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2039 break; 2040 } 2041 } 2042 continue; 2043 } 2044 2045 switch (ObjectVT.getSimpleVT().SimpleTy) { 2046 default: llvm_unreachable("Unhandled argument type!"); 2047 case MVT::i32: 2048 if (!isPPC64) { 2049 if (GPR_idx != Num_GPR_Regs) { 2050 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2051 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2052 ++GPR_idx; 2053 } else { 2054 needsLoad = true; 2055 ArgSize = PtrByteSize; 2056 } 2057 // All int arguments reserve stack space in the Darwin ABI. 2058 ArgOffset += PtrByteSize; 2059 break; 2060 } 2061 // FALLTHROUGH 2062 case MVT::i64: // PPC64 2063 if (GPR_idx != Num_GPR_Regs) { 2064 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2065 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2066 2067 if (ObjectVT == MVT::i32) { 2068 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2069 // value to MVT::i64 and then truncate to the correct register size. 2070 if (Flags.isSExt()) 2071 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2072 DAG.getValueType(ObjectVT)); 2073 else if (Flags.isZExt()) 2074 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2075 DAG.getValueType(ObjectVT)); 2076 2077 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2078 } 2079 2080 ++GPR_idx; 2081 } else { 2082 needsLoad = true; 2083 ArgSize = PtrByteSize; 2084 } 2085 // All int arguments reserve stack space in the Darwin ABI. 2086 ArgOffset += 8; 2087 break; 2088 2089 case MVT::f32: 2090 case MVT::f64: 2091 // Every 4 bytes of argument space consumes one of the GPRs available for 2092 // argument passing. 2093 if (GPR_idx != Num_GPR_Regs) { 2094 ++GPR_idx; 2095 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2096 ++GPR_idx; 2097 } 2098 if (FPR_idx != Num_FPR_Regs) { 2099 unsigned VReg; 2100 2101 if (ObjectVT == MVT::f32) 2102 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2103 else 2104 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2105 2106 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2107 ++FPR_idx; 2108 } else { 2109 needsLoad = true; 2110 } 2111 2112 // All FP arguments reserve stack space in the Darwin ABI. 2113 ArgOffset += isPPC64 ? 8 : ObjSize; 2114 break; 2115 case MVT::v4f32: 2116 case MVT::v4i32: 2117 case MVT::v8i16: 2118 case MVT::v16i8: 2119 // Note that vector arguments in registers don't reserve stack space, 2120 // except in varargs functions. 2121 if (VR_idx != Num_VR_Regs) { 2122 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2123 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2124 if (isVarArg) { 2125 while ((ArgOffset % 16) != 0) { 2126 ArgOffset += PtrByteSize; 2127 if (GPR_idx != Num_GPR_Regs) 2128 GPR_idx++; 2129 } 2130 ArgOffset += 16; 2131 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2132 } 2133 ++VR_idx; 2134 } else { 2135 if (!isVarArg && !isPPC64) { 2136 // Vectors go after all the nonvectors. 2137 CurArgOffset = VecArgOffset; 2138 VecArgOffset += 16; 2139 } else { 2140 // Vectors are aligned. 2141 ArgOffset = ((ArgOffset+15)/16)*16; 2142 CurArgOffset = ArgOffset; 2143 ArgOffset += 16; 2144 } 2145 needsLoad = true; 2146 } 2147 break; 2148 } 2149 2150 // We need to load the argument to a virtual register if we determined above 2151 // that we ran out of physical registers of the appropriate type. 2152 if (needsLoad) { 2153 int FI = MFI->CreateFixedObject(ObjSize, 2154 CurArgOffset + (ArgSize - ObjSize), 2155 isImmutable); 2156 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2157 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2158 false, false, false, 0); 2159 } 2160 2161 InVals.push_back(ArgVal); 2162 } 2163 2164 // Set the size that is at least reserved in caller of this function. Tail 2165 // call optimized function's reserved stack space needs to be aligned so that 2166 // taking the difference between two stack areas will result in an aligned 2167 // stack. 2168 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2169 // Add the Altivec parameters at the end, if needed. 2170 if (nAltivecParamsAtEnd) { 2171 MinReservedArea = ((MinReservedArea+15)/16)*16; 2172 MinReservedArea += 16*nAltivecParamsAtEnd; 2173 } 2174 MinReservedArea = 2175 std::max(MinReservedArea, 2176 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2177 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2178 getStackAlignment(); 2179 unsigned AlignMask = TargetAlign-1; 2180 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2181 FI->setMinReservedArea(MinReservedArea); 2182 2183 // If the function takes variable number of arguments, make a frame index for 2184 // the start of the first vararg value... for expansion of llvm.va_start. 2185 if (isVarArg) { 2186 int Depth = ArgOffset; 2187 2188 FuncInfo->setVarArgsFrameIndex( 2189 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2190 Depth, true)); 2191 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2192 2193 // If this function is vararg, store any remaining integer argument regs 2194 // to their spots on the stack so that they may be loaded by deferencing the 2195 // result of va_next. 2196 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2197 unsigned VReg; 2198 2199 if (isPPC64) 2200 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2201 else 2202 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2203 2204 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2205 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2206 MachinePointerInfo(), false, false, 0); 2207 MemOps.push_back(Store); 2208 // Increment the address by four for the next argument to store 2209 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2210 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2211 } 2212 } 2213 2214 if (!MemOps.empty()) 2215 Chain = DAG.getNode(ISD::TokenFactor, dl, 2216 MVT::Other, &MemOps[0], MemOps.size()); 2217 2218 return Chain; 2219 } 2220 2221 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2222 /// linkage area for the Darwin ABI. 2223 static unsigned 2224 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2225 bool isPPC64, 2226 bool isVarArg, 2227 unsigned CC, 2228 const SmallVectorImpl<ISD::OutputArg> 2229 &Outs, 2230 const SmallVectorImpl<SDValue> &OutVals, 2231 unsigned &nAltivecParamsAtEnd) { 2232 // Count how many bytes are to be pushed on the stack, including the linkage 2233 // area, and parameter passing area. We start with 24/48 bytes, which is 2234 // prereserved space for [SP][CR][LR][3 x unused]. 2235 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2236 unsigned NumOps = Outs.size(); 2237 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2238 2239 // Add up all the space actually used. 2240 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2241 // they all go in registers, but we must reserve stack space for them for 2242 // possible use by the caller. In varargs or 64-bit calls, parameters are 2243 // assigned stack space in order, with padding so Altivec parameters are 2244 // 16-byte aligned. 2245 nAltivecParamsAtEnd = 0; 2246 for (unsigned i = 0; i != NumOps; ++i) { 2247 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2248 EVT ArgVT = Outs[i].VT; 2249 // Varargs Altivec parameters are padded to a 16 byte boundary. 2250 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2251 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2252 if (!isVarArg && !isPPC64) { 2253 // Non-varargs Altivec parameters go after all the non-Altivec 2254 // parameters; handle those later so we know how much padding we need. 2255 nAltivecParamsAtEnd++; 2256 continue; 2257 } 2258 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2259 NumBytes = ((NumBytes+15)/16)*16; 2260 } 2261 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2262 } 2263 2264 // Allow for Altivec parameters at the end, if needed. 2265 if (nAltivecParamsAtEnd) { 2266 NumBytes = ((NumBytes+15)/16)*16; 2267 NumBytes += 16*nAltivecParamsAtEnd; 2268 } 2269 2270 // The prolog code of the callee may store up to 8 GPR argument registers to 2271 // the stack, allowing va_start to index over them in memory if its varargs. 2272 // Because we cannot tell if this is needed on the caller side, we have to 2273 // conservatively assume that it is needed. As such, make sure we have at 2274 // least enough stack space for the caller to store the 8 GPRs. 2275 NumBytes = std::max(NumBytes, 2276 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2277 2278 // Tail call needs the stack to be aligned. 2279 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ 2280 unsigned TargetAlign = DAG.getMachineFunction().getTarget(). 2281 getFrameLowering()->getStackAlignment(); 2282 unsigned AlignMask = TargetAlign-1; 2283 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2284 } 2285 2286 return NumBytes; 2287 } 2288 2289 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2290 /// adjusted to accommodate the arguments for the tailcall. 2291 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2292 unsigned ParamSize) { 2293 2294 if (!isTailCall) return 0; 2295 2296 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2297 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2298 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2299 // Remember only if the new adjustement is bigger. 2300 if (SPDiff < FI->getTailCallSPDelta()) 2301 FI->setTailCallSPDelta(SPDiff); 2302 2303 return SPDiff; 2304 } 2305 2306 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2307 /// for tail call optimization. Targets which want to do tail call 2308 /// optimization should implement this function. 2309 bool 2310 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2311 CallingConv::ID CalleeCC, 2312 bool isVarArg, 2313 const SmallVectorImpl<ISD::InputArg> &Ins, 2314 SelectionDAG& DAG) const { 2315 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 2316 return false; 2317 2318 // Variable argument functions are not supported. 2319 if (isVarArg) 2320 return false; 2321 2322 MachineFunction &MF = DAG.getMachineFunction(); 2323 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2324 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2325 // Functions containing by val parameters are not supported. 2326 for (unsigned i = 0; i != Ins.size(); i++) { 2327 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2328 if (Flags.isByVal()) return false; 2329 } 2330 2331 // Non PIC/GOT tail calls are supported. 2332 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2333 return true; 2334 2335 // At the moment we can only do local tail calls (in same module, hidden 2336 // or protected) if we are generating PIC. 2337 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2338 return G->getGlobal()->hasHiddenVisibility() 2339 || G->getGlobal()->hasProtectedVisibility(); 2340 } 2341 2342 return false; 2343 } 2344 2345 /// isCallCompatibleAddress - Return the immediate to use if the specified 2346 /// 32-bit value is representable in the immediate field of a BxA instruction. 2347 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2348 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2349 if (!C) return 0; 2350 2351 int Addr = C->getZExtValue(); 2352 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2353 (Addr << 6 >> 6) != Addr) 2354 return 0; // Top 6 bits have to be sext of immediate. 2355 2356 return DAG.getConstant((int)C->getZExtValue() >> 2, 2357 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2358 } 2359 2360 namespace { 2361 2362 struct TailCallArgumentInfo { 2363 SDValue Arg; 2364 SDValue FrameIdxOp; 2365 int FrameIdx; 2366 2367 TailCallArgumentInfo() : FrameIdx(0) {} 2368 }; 2369 2370 } 2371 2372 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2373 static void 2374 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2375 SDValue Chain, 2376 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2377 SmallVector<SDValue, 8> &MemOpChains, 2378 DebugLoc dl) { 2379 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2380 SDValue Arg = TailCallArgs[i].Arg; 2381 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2382 int FI = TailCallArgs[i].FrameIdx; 2383 // Store relative to framepointer. 2384 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2385 MachinePointerInfo::getFixedStack(FI), 2386 false, false, 0)); 2387 } 2388 } 2389 2390 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2391 /// the appropriate stack slot for the tail call optimized function call. 2392 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2393 MachineFunction &MF, 2394 SDValue Chain, 2395 SDValue OldRetAddr, 2396 SDValue OldFP, 2397 int SPDiff, 2398 bool isPPC64, 2399 bool isDarwinABI, 2400 DebugLoc dl) { 2401 if (SPDiff) { 2402 // Calculate the new stack slot for the return address. 2403 int SlotSize = isPPC64 ? 8 : 4; 2404 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2405 isDarwinABI); 2406 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2407 NewRetAddrLoc, true); 2408 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2409 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2410 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2411 MachinePointerInfo::getFixedStack(NewRetAddr), 2412 false, false, 0); 2413 2414 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2415 // slot as the FP is never overwritten. 2416 if (isDarwinABI) { 2417 int NewFPLoc = 2418 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2419 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2420 true); 2421 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2422 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2423 MachinePointerInfo::getFixedStack(NewFPIdx), 2424 false, false, 0); 2425 } 2426 } 2427 return Chain; 2428 } 2429 2430 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2431 /// the position of the argument. 2432 static void 2433 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2434 SDValue Arg, int SPDiff, unsigned ArgOffset, 2435 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2436 int Offset = ArgOffset + SPDiff; 2437 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2438 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2439 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2440 SDValue FIN = DAG.getFrameIndex(FI, VT); 2441 TailCallArgumentInfo Info; 2442 Info.Arg = Arg; 2443 Info.FrameIdxOp = FIN; 2444 Info.FrameIdx = FI; 2445 TailCallArguments.push_back(Info); 2446 } 2447 2448 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2449 /// stack slot. Returns the chain as result and the loaded frame pointers in 2450 /// LROpOut/FPOpout. Used when tail calling. 2451 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2452 int SPDiff, 2453 SDValue Chain, 2454 SDValue &LROpOut, 2455 SDValue &FPOpOut, 2456 bool isDarwinABI, 2457 DebugLoc dl) const { 2458 if (SPDiff) { 2459 // Load the LR and FP stack slot for later adjusting. 2460 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2461 LROpOut = getReturnAddrFrameIndex(DAG); 2462 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2463 false, false, false, 0); 2464 Chain = SDValue(LROpOut.getNode(), 1); 2465 2466 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2467 // slot as the FP is never overwritten. 2468 if (isDarwinABI) { 2469 FPOpOut = getFramePointerFrameIndex(DAG); 2470 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2471 false, false, false, 0); 2472 Chain = SDValue(FPOpOut.getNode(), 1); 2473 } 2474 } 2475 return Chain; 2476 } 2477 2478 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2479 /// by "Src" to address "Dst" of size "Size". Alignment information is 2480 /// specified by the specific parameter attribute. The copy will be passed as 2481 /// a byval function parameter. 2482 /// Sometimes what we are copying is the end of a larger object, the part that 2483 /// does not fit in registers. 2484 static SDValue 2485 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2486 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2487 DebugLoc dl) { 2488 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2489 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2490 false, false, MachinePointerInfo(0), 2491 MachinePointerInfo(0)); 2492 } 2493 2494 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2495 /// tail calls. 2496 static void 2497 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2498 SDValue Arg, SDValue PtrOff, int SPDiff, 2499 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2500 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2501 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2502 DebugLoc dl) { 2503 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2504 if (!isTailCall) { 2505 if (isVector) { 2506 SDValue StackPtr; 2507 if (isPPC64) 2508 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2509 else 2510 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2511 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2512 DAG.getConstant(ArgOffset, PtrVT)); 2513 } 2514 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2515 MachinePointerInfo(), false, false, 0)); 2516 // Calculate and remember argument location. 2517 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2518 TailCallArguments); 2519 } 2520 2521 static 2522 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2523 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2524 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2525 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2526 MachineFunction &MF = DAG.getMachineFunction(); 2527 2528 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2529 // might overwrite each other in case of tail call optimization. 2530 SmallVector<SDValue, 8> MemOpChains2; 2531 // Do not flag preceding copytoreg stuff together with the following stuff. 2532 InFlag = SDValue(); 2533 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2534 MemOpChains2, dl); 2535 if (!MemOpChains2.empty()) 2536 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2537 &MemOpChains2[0], MemOpChains2.size()); 2538 2539 // Store the return address to the appropriate stack slot. 2540 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2541 isPPC64, isDarwinABI, dl); 2542 2543 // Emit callseq_end just before tailcall node. 2544 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2545 DAG.getIntPtrConstant(0, true), InFlag); 2546 InFlag = Chain.getValue(1); 2547 } 2548 2549 static 2550 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2551 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2552 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2553 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2554 const PPCSubtarget &PPCSubTarget) { 2555 2556 bool isPPC64 = PPCSubTarget.isPPC64(); 2557 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2558 2559 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2560 NodeTys.push_back(MVT::Other); // Returns a chain 2561 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2562 2563 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2564 2565 bool needIndirectCall = true; 2566 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2567 // If this is an absolute destination address, use the munged value. 2568 Callee = SDValue(Dest, 0); 2569 needIndirectCall = false; 2570 } 2571 2572 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2573 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2574 // Use indirect calls for ALL functions calls in JIT mode, since the 2575 // far-call stubs may be outside relocation limits for a BL instruction. 2576 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2577 unsigned OpFlags = 0; 2578 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2579 (PPCSubTarget.getTargetTriple().isMacOSX() && 2580 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2581 (G->getGlobal()->isDeclaration() || 2582 G->getGlobal()->isWeakForLinker())) { 2583 // PC-relative references to external symbols should go through $stub, 2584 // unless we're building with the leopard linker or later, which 2585 // automatically synthesizes these stubs. 2586 OpFlags = PPCII::MO_DARWIN_STUB; 2587 } 2588 2589 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2590 // every direct call is) turn it into a TargetGlobalAddress / 2591 // TargetExternalSymbol node so that legalize doesn't hack it. 2592 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2593 Callee.getValueType(), 2594 0, OpFlags); 2595 needIndirectCall = false; 2596 } 2597 } 2598 2599 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2600 unsigned char OpFlags = 0; 2601 2602 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2603 (PPCSubTarget.getTargetTriple().isMacOSX() && 2604 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2605 // PC-relative references to external symbols should go through $stub, 2606 // unless we're building with the leopard linker or later, which 2607 // automatically synthesizes these stubs. 2608 OpFlags = PPCII::MO_DARWIN_STUB; 2609 } 2610 2611 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2612 OpFlags); 2613 needIndirectCall = false; 2614 } 2615 2616 if (needIndirectCall) { 2617 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2618 // to do the call, we can't use PPCISD::CALL. 2619 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2620 2621 if (isSVR4ABI && isPPC64) { 2622 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2623 // entry point, but to the function descriptor (the function entry point 2624 // address is part of the function descriptor though). 2625 // The function descriptor is a three doubleword structure with the 2626 // following fields: function entry point, TOC base address and 2627 // environment pointer. 2628 // Thus for a call through a function pointer, the following actions need 2629 // to be performed: 2630 // 1. Save the TOC of the caller in the TOC save area of its stack 2631 // frame (this is done in LowerCall_Darwin()). 2632 // 2. Load the address of the function entry point from the function 2633 // descriptor. 2634 // 3. Load the TOC of the callee from the function descriptor into r2. 2635 // 4. Load the environment pointer from the function descriptor into 2636 // r11. 2637 // 5. Branch to the function entry point address. 2638 // 6. On return of the callee, the TOC of the caller needs to be 2639 // restored (this is done in FinishCall()). 2640 // 2641 // All those operations are flagged together to ensure that no other 2642 // operations can be scheduled in between. E.g. without flagging the 2643 // operations together, a TOC access in the caller could be scheduled 2644 // between the load of the callee TOC and the branch to the callee, which 2645 // results in the TOC access going through the TOC of the callee instead 2646 // of going through the TOC of the caller, which leads to incorrect code. 2647 2648 // Load the address of the function entry point from the function 2649 // descriptor. 2650 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2651 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2652 InFlag.getNode() ? 3 : 2); 2653 Chain = LoadFuncPtr.getValue(1); 2654 InFlag = LoadFuncPtr.getValue(2); 2655 2656 // Load environment pointer into r11. 2657 // Offset of the environment pointer within the function descriptor. 2658 SDValue PtrOff = DAG.getIntPtrConstant(16); 2659 2660 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2661 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2662 InFlag); 2663 Chain = LoadEnvPtr.getValue(1); 2664 InFlag = LoadEnvPtr.getValue(2); 2665 2666 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2667 InFlag); 2668 Chain = EnvVal.getValue(0); 2669 InFlag = EnvVal.getValue(1); 2670 2671 // Load TOC of the callee into r2. We are using a target-specific load 2672 // with r2 hard coded, because the result of a target-independent load 2673 // would never go directly into r2, since r2 is a reserved register (which 2674 // prevents the register allocator from allocating it), resulting in an 2675 // additional register being allocated and an unnecessary move instruction 2676 // being generated. 2677 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2678 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2679 Callee, InFlag); 2680 Chain = LoadTOCPtr.getValue(0); 2681 InFlag = LoadTOCPtr.getValue(1); 2682 2683 MTCTROps[0] = Chain; 2684 MTCTROps[1] = LoadFuncPtr; 2685 MTCTROps[2] = InFlag; 2686 } 2687 2688 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2689 2 + (InFlag.getNode() != 0)); 2690 InFlag = Chain.getValue(1); 2691 2692 NodeTys.clear(); 2693 NodeTys.push_back(MVT::Other); 2694 NodeTys.push_back(MVT::Glue); 2695 Ops.push_back(Chain); 2696 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2697 Callee.setNode(0); 2698 // Add CTR register as callee so a bctr can be emitted later. 2699 if (isTailCall) 2700 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 2701 } 2702 2703 // If this is a direct call, pass the chain and the callee. 2704 if (Callee.getNode()) { 2705 Ops.push_back(Chain); 2706 Ops.push_back(Callee); 2707 } 2708 // If this is a tail call add stack pointer delta. 2709 if (isTailCall) 2710 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2711 2712 // Add argument registers to the end of the list so that they are known live 2713 // into the call. 2714 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2715 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2716 RegsToPass[i].second.getValueType())); 2717 2718 return CallOpc; 2719 } 2720 2721 SDValue 2722 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2723 CallingConv::ID CallConv, bool isVarArg, 2724 const SmallVectorImpl<ISD::InputArg> &Ins, 2725 DebugLoc dl, SelectionDAG &DAG, 2726 SmallVectorImpl<SDValue> &InVals) const { 2727 2728 SmallVector<CCValAssign, 16> RVLocs; 2729 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2730 getTargetMachine(), RVLocs, *DAG.getContext()); 2731 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2732 2733 // Copy all of the result registers out of their specified physreg. 2734 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2735 CCValAssign &VA = RVLocs[i]; 2736 EVT VT = VA.getValVT(); 2737 assert(VA.isRegLoc() && "Can only return in registers!"); 2738 Chain = DAG.getCopyFromReg(Chain, dl, 2739 VA.getLocReg(), VT, InFlag).getValue(1); 2740 InVals.push_back(Chain.getValue(0)); 2741 InFlag = Chain.getValue(2); 2742 } 2743 2744 return Chain; 2745 } 2746 2747 SDValue 2748 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2749 bool isTailCall, bool isVarArg, 2750 SelectionDAG &DAG, 2751 SmallVector<std::pair<unsigned, SDValue>, 8> 2752 &RegsToPass, 2753 SDValue InFlag, SDValue Chain, 2754 SDValue &Callee, 2755 int SPDiff, unsigned NumBytes, 2756 const SmallVectorImpl<ISD::InputArg> &Ins, 2757 SmallVectorImpl<SDValue> &InVals) const { 2758 std::vector<EVT> NodeTys; 2759 SmallVector<SDValue, 8> Ops; 2760 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2761 isTailCall, RegsToPass, Ops, NodeTys, 2762 PPCSubTarget); 2763 2764 // When performing tail call optimization the callee pops its arguments off 2765 // the stack. Account for this here so these bytes can be pushed back on in 2766 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2767 int BytesCalleePops = 2768 (CallConv == CallingConv::Fast && 2769 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 2770 2771 if (InFlag.getNode()) 2772 Ops.push_back(InFlag); 2773 2774 // Emit tail call. 2775 if (isTailCall) { 2776 // If this is the first return lowered for this function, add the regs 2777 // to the liveout set for the function. 2778 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2779 SmallVector<CCValAssign, 16> RVLocs; 2780 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2781 getTargetMachine(), RVLocs, *DAG.getContext()); 2782 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2783 for (unsigned i = 0; i != RVLocs.size(); ++i) 2784 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2785 } 2786 2787 assert(((Callee.getOpcode() == ISD::Register && 2788 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2789 Callee.getOpcode() == ISD::TargetExternalSymbol || 2790 Callee.getOpcode() == ISD::TargetGlobalAddress || 2791 isa<ConstantSDNode>(Callee)) && 2792 "Expecting an global address, external symbol, absolute value or register"); 2793 2794 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2795 } 2796 2797 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2798 InFlag = Chain.getValue(1); 2799 2800 // Add a NOP immediately after the branch instruction when using the 64-bit 2801 // SVR4 ABI. At link time, if caller and callee are in a different module and 2802 // thus have a different TOC, the call will be replaced with a call to a stub 2803 // function which saves the current TOC, loads the TOC of the callee and 2804 // branches to the callee. The NOP will be replaced with a load instruction 2805 // which restores the TOC of the caller from the TOC save slot of the current 2806 // stack frame. If caller and callee belong to the same module (and have the 2807 // same TOC), the NOP will remain unchanged. 2808 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2809 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2810 if (CallOpc == PPCISD::BCTRL_SVR4) { 2811 // This is a call through a function pointer. 2812 // Restore the caller TOC from the save area into R2. 2813 // See PrepareCall() for more information about calls through function 2814 // pointers in the 64-bit SVR4 ABI. 2815 // We are using a target-specific load with r2 hard coded, because the 2816 // result of a target-independent load would never go directly into r2, 2817 // since r2 is a reserved register (which prevents the register allocator 2818 // from allocating it), resulting in an additional register being 2819 // allocated and an unnecessary move instruction being generated. 2820 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2821 InFlag = Chain.getValue(1); 2822 } else { 2823 // Otherwise insert NOP. 2824 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2825 } 2826 } 2827 2828 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2829 DAG.getIntPtrConstant(BytesCalleePops, true), 2830 InFlag); 2831 if (!Ins.empty()) 2832 InFlag = Chain.getValue(1); 2833 2834 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2835 Ins, dl, DAG, InVals); 2836 } 2837 2838 SDValue 2839 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2840 CallingConv::ID CallConv, bool isVarArg, 2841 bool &isTailCall, 2842 const SmallVectorImpl<ISD::OutputArg> &Outs, 2843 const SmallVectorImpl<SDValue> &OutVals, 2844 const SmallVectorImpl<ISD::InputArg> &Ins, 2845 DebugLoc dl, SelectionDAG &DAG, 2846 SmallVectorImpl<SDValue> &InVals) const { 2847 if (isTailCall) 2848 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2849 Ins, DAG); 2850 2851 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2852 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2853 isTailCall, Outs, OutVals, Ins, 2854 dl, DAG, InVals); 2855 2856 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2857 isTailCall, Outs, OutVals, Ins, 2858 dl, DAG, InVals); 2859 } 2860 2861 SDValue 2862 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2863 CallingConv::ID CallConv, bool isVarArg, 2864 bool isTailCall, 2865 const SmallVectorImpl<ISD::OutputArg> &Outs, 2866 const SmallVectorImpl<SDValue> &OutVals, 2867 const SmallVectorImpl<ISD::InputArg> &Ins, 2868 DebugLoc dl, SelectionDAG &DAG, 2869 SmallVectorImpl<SDValue> &InVals) const { 2870 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2871 // of the 32-bit SVR4 ABI stack frame layout. 2872 2873 assert((CallConv == CallingConv::C || 2874 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2875 2876 unsigned PtrByteSize = 4; 2877 2878 MachineFunction &MF = DAG.getMachineFunction(); 2879 2880 // Mark this function as potentially containing a function that contains a 2881 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2882 // and restoring the callers stack pointer in this functions epilog. This is 2883 // done because by tail calling the called function might overwrite the value 2884 // in this function's (MF) stack pointer stack slot 0(SP). 2885 if (getTargetMachine().Options.GuaranteedTailCallOpt && 2886 CallConv == CallingConv::Fast) 2887 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2888 2889 // Count how many bytes are to be pushed on the stack, including the linkage 2890 // area, parameter list area and the part of the local variable space which 2891 // contains copies of aggregates which are passed by value. 2892 2893 // Assign locations to all of the outgoing arguments. 2894 SmallVector<CCValAssign, 16> ArgLocs; 2895 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2896 getTargetMachine(), ArgLocs, *DAG.getContext()); 2897 2898 // Reserve space for the linkage area on the stack. 2899 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2900 2901 if (isVarArg) { 2902 // Handle fixed and variable vector arguments differently. 2903 // Fixed vector arguments go into registers as long as registers are 2904 // available. Variable vector arguments always go into memory. 2905 unsigned NumArgs = Outs.size(); 2906 2907 for (unsigned i = 0; i != NumArgs; ++i) { 2908 MVT ArgVT = Outs[i].VT; 2909 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2910 bool Result; 2911 2912 if (Outs[i].IsFixed) { 2913 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2914 CCInfo); 2915 } else { 2916 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2917 ArgFlags, CCInfo); 2918 } 2919 2920 if (Result) { 2921 #ifndef NDEBUG 2922 errs() << "Call operand #" << i << " has unhandled type " 2923 << EVT(ArgVT).getEVTString() << "\n"; 2924 #endif 2925 llvm_unreachable(0); 2926 } 2927 } 2928 } else { 2929 // All arguments are treated the same. 2930 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2931 } 2932 2933 // Assign locations to all of the outgoing aggregate by value arguments. 2934 SmallVector<CCValAssign, 16> ByValArgLocs; 2935 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2936 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 2937 2938 // Reserve stack space for the allocations in CCInfo. 2939 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2940 2941 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2942 2943 // Size of the linkage area, parameter list area and the part of the local 2944 // space variable where copies of aggregates which are passed by value are 2945 // stored. 2946 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2947 2948 // Calculate by how many bytes the stack has to be adjusted in case of tail 2949 // call optimization. 2950 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2951 2952 // Adjust the stack pointer for the new arguments... 2953 // These operations are automatically eliminated by the prolog/epilog pass 2954 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2955 SDValue CallSeqStart = Chain; 2956 2957 // Load the return address and frame pointer so it can be moved somewhere else 2958 // later. 2959 SDValue LROp, FPOp; 2960 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2961 dl); 2962 2963 // Set up a copy of the stack pointer for use loading and storing any 2964 // arguments that may not fit in the registers available for argument 2965 // passing. 2966 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2967 2968 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2969 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2970 SmallVector<SDValue, 8> MemOpChains; 2971 2972 bool seenFloatArg = false; 2973 // Walk the register/memloc assignments, inserting copies/loads. 2974 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2975 i != e; 2976 ++i) { 2977 CCValAssign &VA = ArgLocs[i]; 2978 SDValue Arg = OutVals[i]; 2979 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2980 2981 if (Flags.isByVal()) { 2982 // Argument is an aggregate which is passed by value, thus we need to 2983 // create a copy of it in the local variable space of the current stack 2984 // frame (which is the stack frame of the caller) and pass the address of 2985 // this copy to the callee. 2986 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2987 CCValAssign &ByValVA = ByValArgLocs[j++]; 2988 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2989 2990 // Memory reserved in the local variable space of the callers stack frame. 2991 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2992 2993 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2994 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2995 2996 // Create a copy of the argument in the local area of the current 2997 // stack frame. 2998 SDValue MemcpyCall = 2999 CreateCopyOfByValArgument(Arg, PtrOff, 3000 CallSeqStart.getNode()->getOperand(0), 3001 Flags, DAG, dl); 3002 3003 // This must go outside the CALLSEQ_START..END. 3004 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3005 CallSeqStart.getNode()->getOperand(1)); 3006 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3007 NewCallSeqStart.getNode()); 3008 Chain = CallSeqStart = NewCallSeqStart; 3009 3010 // Pass the address of the aggregate copy on the stack either in a 3011 // physical register or in the parameter list area of the current stack 3012 // frame to the callee. 3013 Arg = PtrOff; 3014 } 3015 3016 if (VA.isRegLoc()) { 3017 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 3018 // Put argument in a physical register. 3019 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3020 } else { 3021 // Put argument in the parameter list area of the current stack frame. 3022 assert(VA.isMemLoc()); 3023 unsigned LocMemOffset = VA.getLocMemOffset(); 3024 3025 if (!isTailCall) { 3026 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3027 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3028 3029 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3030 MachinePointerInfo(), 3031 false, false, 0)); 3032 } else { 3033 // Calculate and remember argument location. 3034 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3035 TailCallArguments); 3036 } 3037 } 3038 } 3039 3040 if (!MemOpChains.empty()) 3041 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3042 &MemOpChains[0], MemOpChains.size()); 3043 3044 // Set CR6 to true if this is a vararg call with floating args passed in 3045 // registers. 3046 if (isVarArg) { 3047 SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET, 3048 dl, MVT::i32), 0); 3049 RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR)); 3050 } 3051 3052 // Build a sequence of copy-to-reg nodes chained together with token chain 3053 // and flag operands which copy the outgoing args into the appropriate regs. 3054 SDValue InFlag; 3055 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3056 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3057 RegsToPass[i].second, InFlag); 3058 InFlag = Chain.getValue(1); 3059 } 3060 3061 if (isTailCall) 3062 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3063 false, TailCallArguments); 3064 3065 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3066 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3067 Ins, InVals); 3068 } 3069 3070 SDValue 3071 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 3072 CallingConv::ID CallConv, bool isVarArg, 3073 bool isTailCall, 3074 const SmallVectorImpl<ISD::OutputArg> &Outs, 3075 const SmallVectorImpl<SDValue> &OutVals, 3076 const SmallVectorImpl<ISD::InputArg> &Ins, 3077 DebugLoc dl, SelectionDAG &DAG, 3078 SmallVectorImpl<SDValue> &InVals) const { 3079 3080 unsigned NumOps = Outs.size(); 3081 3082 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3083 bool isPPC64 = PtrVT == MVT::i64; 3084 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3085 3086 MachineFunction &MF = DAG.getMachineFunction(); 3087 3088 // Mark this function as potentially containing a function that contains a 3089 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3090 // and restoring the callers stack pointer in this functions epilog. This is 3091 // done because by tail calling the called function might overwrite the value 3092 // in this function's (MF) stack pointer stack slot 0(SP). 3093 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3094 CallConv == CallingConv::Fast) 3095 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3096 3097 unsigned nAltivecParamsAtEnd = 0; 3098 3099 // Count how many bytes are to be pushed on the stack, including the linkage 3100 // area, and parameter passing area. We start with 24/48 bytes, which is 3101 // prereserved space for [SP][CR][LR][3 x unused]. 3102 unsigned NumBytes = 3103 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3104 Outs, OutVals, 3105 nAltivecParamsAtEnd); 3106 3107 // Calculate by how many bytes the stack has to be adjusted in case of tail 3108 // call optimization. 3109 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3110 3111 // To protect arguments on the stack from being clobbered in a tail call, 3112 // force all the loads to happen before doing any other lowering. 3113 if (isTailCall) 3114 Chain = DAG.getStackArgumentTokenFactor(Chain); 3115 3116 // Adjust the stack pointer for the new arguments... 3117 // These operations are automatically eliminated by the prolog/epilog pass 3118 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3119 SDValue CallSeqStart = Chain; 3120 3121 // Load the return address and frame pointer so it can be move somewhere else 3122 // later. 3123 SDValue LROp, FPOp; 3124 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3125 dl); 3126 3127 // Set up a copy of the stack pointer for use loading and storing any 3128 // arguments that may not fit in the registers available for argument 3129 // passing. 3130 SDValue StackPtr; 3131 if (isPPC64) 3132 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3133 else 3134 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3135 3136 // Figure out which arguments are going to go in registers, and which in 3137 // memory. Also, if this is a vararg function, floating point operations 3138 // must be stored to our stack, and loaded into integer regs as well, if 3139 // any integer regs are available for argument passing. 3140 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3141 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3142 3143 static const unsigned GPR_32[] = { // 32-bit registers. 3144 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3145 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3146 }; 3147 static const unsigned GPR_64[] = { // 64-bit registers. 3148 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3149 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3150 }; 3151 static const unsigned *FPR = GetFPR(); 3152 3153 static const unsigned VR[] = { 3154 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3155 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3156 }; 3157 const unsigned NumGPRs = array_lengthof(GPR_32); 3158 const unsigned NumFPRs = 13; 3159 const unsigned NumVRs = array_lengthof(VR); 3160 3161 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3162 3163 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3164 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3165 3166 SmallVector<SDValue, 8> MemOpChains; 3167 for (unsigned i = 0; i != NumOps; ++i) { 3168 SDValue Arg = OutVals[i]; 3169 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3170 3171 // PtrOff will be used to store the current argument to the stack if a 3172 // register cannot be found for it. 3173 SDValue PtrOff; 3174 3175 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3176 3177 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3178 3179 // On PPC64, promote integers to 64-bit values. 3180 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3181 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3182 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3183 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3184 } 3185 3186 // FIXME memcpy is used way more than necessary. Correctness first. 3187 if (Flags.isByVal()) { 3188 unsigned Size = Flags.getByValSize(); 3189 if (Size==1 || Size==2) { 3190 // Very small objects are passed right-justified. 3191 // Everything else is passed left-justified. 3192 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3193 if (GPR_idx != NumGPRs) { 3194 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3195 MachinePointerInfo(), VT, 3196 false, false, 0); 3197 MemOpChains.push_back(Load.getValue(1)); 3198 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3199 3200 ArgOffset += PtrByteSize; 3201 } else { 3202 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3203 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3204 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3205 CallSeqStart.getNode()->getOperand(0), 3206 Flags, DAG, dl); 3207 // This must go outside the CALLSEQ_START..END. 3208 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3209 CallSeqStart.getNode()->getOperand(1)); 3210 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3211 NewCallSeqStart.getNode()); 3212 Chain = CallSeqStart = NewCallSeqStart; 3213 ArgOffset += PtrByteSize; 3214 } 3215 continue; 3216 } 3217 // Copy entire object into memory. There are cases where gcc-generated 3218 // code assumes it is there, even if it could be put entirely into 3219 // registers. (This is not what the doc says.) 3220 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3221 CallSeqStart.getNode()->getOperand(0), 3222 Flags, DAG, dl); 3223 // This must go outside the CALLSEQ_START..END. 3224 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3225 CallSeqStart.getNode()->getOperand(1)); 3226 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3227 Chain = CallSeqStart = NewCallSeqStart; 3228 // And copy the pieces of it that fit into registers. 3229 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3230 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3231 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3232 if (GPR_idx != NumGPRs) { 3233 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3234 MachinePointerInfo(), 3235 false, false, false, 0); 3236 MemOpChains.push_back(Load.getValue(1)); 3237 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3238 ArgOffset += PtrByteSize; 3239 } else { 3240 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3241 break; 3242 } 3243 } 3244 continue; 3245 } 3246 3247 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3248 default: llvm_unreachable("Unexpected ValueType for argument!"); 3249 case MVT::i32: 3250 case MVT::i64: 3251 if (GPR_idx != NumGPRs) { 3252 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3253 } else { 3254 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3255 isPPC64, isTailCall, false, MemOpChains, 3256 TailCallArguments, dl); 3257 } 3258 ArgOffset += PtrByteSize; 3259 break; 3260 case MVT::f32: 3261 case MVT::f64: 3262 if (FPR_idx != NumFPRs) { 3263 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3264 3265 if (isVarArg) { 3266 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3267 MachinePointerInfo(), false, false, 0); 3268 MemOpChains.push_back(Store); 3269 3270 // Float varargs are always shadowed in available integer registers 3271 if (GPR_idx != NumGPRs) { 3272 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3273 MachinePointerInfo(), false, false, 3274 false, 0); 3275 MemOpChains.push_back(Load.getValue(1)); 3276 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3277 } 3278 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3279 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3280 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3281 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3282 MachinePointerInfo(), 3283 false, false, false, 0); 3284 MemOpChains.push_back(Load.getValue(1)); 3285 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3286 } 3287 } else { 3288 // If we have any FPRs remaining, we may also have GPRs remaining. 3289 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3290 // GPRs. 3291 if (GPR_idx != NumGPRs) 3292 ++GPR_idx; 3293 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3294 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3295 ++GPR_idx; 3296 } 3297 } else { 3298 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3299 isPPC64, isTailCall, false, MemOpChains, 3300 TailCallArguments, dl); 3301 } 3302 if (isPPC64) 3303 ArgOffset += 8; 3304 else 3305 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3306 break; 3307 case MVT::v4f32: 3308 case MVT::v4i32: 3309 case MVT::v8i16: 3310 case MVT::v16i8: 3311 if (isVarArg) { 3312 // These go aligned on the stack, or in the corresponding R registers 3313 // when within range. The Darwin PPC ABI doc claims they also go in 3314 // V registers; in fact gcc does this only for arguments that are 3315 // prototyped, not for those that match the ... We do it for all 3316 // arguments, seems to work. 3317 while (ArgOffset % 16 !=0) { 3318 ArgOffset += PtrByteSize; 3319 if (GPR_idx != NumGPRs) 3320 GPR_idx++; 3321 } 3322 // We could elide this store in the case where the object fits 3323 // entirely in R registers. Maybe later. 3324 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3325 DAG.getConstant(ArgOffset, PtrVT)); 3326 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3327 MachinePointerInfo(), false, false, 0); 3328 MemOpChains.push_back(Store); 3329 if (VR_idx != NumVRs) { 3330 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3331 MachinePointerInfo(), 3332 false, false, false, 0); 3333 MemOpChains.push_back(Load.getValue(1)); 3334 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3335 } 3336 ArgOffset += 16; 3337 for (unsigned i=0; i<16; i+=PtrByteSize) { 3338 if (GPR_idx == NumGPRs) 3339 break; 3340 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3341 DAG.getConstant(i, PtrVT)); 3342 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3343 false, false, false, 0); 3344 MemOpChains.push_back(Load.getValue(1)); 3345 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3346 } 3347 break; 3348 } 3349 3350 // Non-varargs Altivec params generally go in registers, but have 3351 // stack space allocated at the end. 3352 if (VR_idx != NumVRs) { 3353 // Doesn't have GPR space allocated. 3354 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3355 } else if (nAltivecParamsAtEnd==0) { 3356 // We are emitting Altivec params in order. 3357 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3358 isPPC64, isTailCall, true, MemOpChains, 3359 TailCallArguments, dl); 3360 ArgOffset += 16; 3361 } 3362 break; 3363 } 3364 } 3365 // If all Altivec parameters fit in registers, as they usually do, 3366 // they get stack space following the non-Altivec parameters. We 3367 // don't track this here because nobody below needs it. 3368 // If there are more Altivec parameters than fit in registers emit 3369 // the stores here. 3370 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3371 unsigned j = 0; 3372 // Offset is aligned; skip 1st 12 params which go in V registers. 3373 ArgOffset = ((ArgOffset+15)/16)*16; 3374 ArgOffset += 12*16; 3375 for (unsigned i = 0; i != NumOps; ++i) { 3376 SDValue Arg = OutVals[i]; 3377 EVT ArgType = Outs[i].VT; 3378 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3379 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3380 if (++j > NumVRs) { 3381 SDValue PtrOff; 3382 // We are emitting Altivec params in order. 3383 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3384 isPPC64, isTailCall, true, MemOpChains, 3385 TailCallArguments, dl); 3386 ArgOffset += 16; 3387 } 3388 } 3389 } 3390 } 3391 3392 if (!MemOpChains.empty()) 3393 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3394 &MemOpChains[0], MemOpChains.size()); 3395 3396 // Check if this is an indirect call (MTCTR/BCTRL). 3397 // See PrepareCall() for more information about calls through function 3398 // pointers in the 64-bit SVR4 ABI. 3399 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3400 !dyn_cast<GlobalAddressSDNode>(Callee) && 3401 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3402 !isBLACompatibleAddress(Callee, DAG)) { 3403 // Load r2 into a virtual register and store it to the TOC save area. 3404 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3405 // TOC save area offset. 3406 SDValue PtrOff = DAG.getIntPtrConstant(40); 3407 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3408 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3409 false, false, 0); 3410 } 3411 3412 // On Darwin, R12 must contain the address of an indirect callee. This does 3413 // not mean the MTCTR instruction must use R12; it's easier to model this as 3414 // an extra parameter, so do that. 3415 if (!isTailCall && 3416 !dyn_cast<GlobalAddressSDNode>(Callee) && 3417 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3418 !isBLACompatibleAddress(Callee, DAG)) 3419 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3420 PPC::R12), Callee)); 3421 3422 // Build a sequence of copy-to-reg nodes chained together with token chain 3423 // and flag operands which copy the outgoing args into the appropriate regs. 3424 SDValue InFlag; 3425 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3426 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3427 RegsToPass[i].second, InFlag); 3428 InFlag = Chain.getValue(1); 3429 } 3430 3431 if (isTailCall) 3432 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3433 FPOp, true, TailCallArguments); 3434 3435 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3436 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3437 Ins, InVals); 3438 } 3439 3440 bool 3441 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3442 MachineFunction &MF, bool isVarArg, 3443 const SmallVectorImpl<ISD::OutputArg> &Outs, 3444 LLVMContext &Context) const { 3445 SmallVector<CCValAssign, 16> RVLocs; 3446 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), 3447 RVLocs, Context); 3448 return CCInfo.CheckReturn(Outs, RetCC_PPC); 3449 } 3450 3451 SDValue 3452 PPCTargetLowering::LowerReturn(SDValue Chain, 3453 CallingConv::ID CallConv, bool isVarArg, 3454 const SmallVectorImpl<ISD::OutputArg> &Outs, 3455 const SmallVectorImpl<SDValue> &OutVals, 3456 DebugLoc dl, SelectionDAG &DAG) const { 3457 3458 SmallVector<CCValAssign, 16> RVLocs; 3459 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3460 getTargetMachine(), RVLocs, *DAG.getContext()); 3461 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3462 3463 // If this is the first return lowered for this function, add the regs to the 3464 // liveout set for the function. 3465 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3466 for (unsigned i = 0; i != RVLocs.size(); ++i) 3467 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3468 } 3469 3470 SDValue Flag; 3471 3472 // Copy the result values into the output registers. 3473 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3474 CCValAssign &VA = RVLocs[i]; 3475 assert(VA.isRegLoc() && "Can only return in registers!"); 3476 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3477 OutVals[i], Flag); 3478 Flag = Chain.getValue(1); 3479 } 3480 3481 if (Flag.getNode()) 3482 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3483 else 3484 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3485 } 3486 3487 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3488 const PPCSubtarget &Subtarget) const { 3489 // When we pop the dynamic allocation we need to restore the SP link. 3490 DebugLoc dl = Op.getDebugLoc(); 3491 3492 // Get the corect type for pointers. 3493 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3494 3495 // Construct the stack pointer operand. 3496 bool isPPC64 = Subtarget.isPPC64(); 3497 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3498 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3499 3500 // Get the operands for the STACKRESTORE. 3501 SDValue Chain = Op.getOperand(0); 3502 SDValue SaveSP = Op.getOperand(1); 3503 3504 // Load the old link SP. 3505 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3506 MachinePointerInfo(), 3507 false, false, false, 0); 3508 3509 // Restore the stack pointer. 3510 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3511 3512 // Store the old link SP. 3513 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3514 false, false, 0); 3515 } 3516 3517 3518 3519 SDValue 3520 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3521 MachineFunction &MF = DAG.getMachineFunction(); 3522 bool isPPC64 = PPCSubTarget.isPPC64(); 3523 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3524 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3525 3526 // Get current frame pointer save index. The users of this index will be 3527 // primarily DYNALLOC instructions. 3528 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3529 int RASI = FI->getReturnAddrSaveIndex(); 3530 3531 // If the frame pointer save index hasn't been defined yet. 3532 if (!RASI) { 3533 // Find out what the fix offset of the frame pointer save area. 3534 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3535 // Allocate the frame index for frame pointer save area. 3536 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3537 // Save the result. 3538 FI->setReturnAddrSaveIndex(RASI); 3539 } 3540 return DAG.getFrameIndex(RASI, PtrVT); 3541 } 3542 3543 SDValue 3544 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3545 MachineFunction &MF = DAG.getMachineFunction(); 3546 bool isPPC64 = PPCSubTarget.isPPC64(); 3547 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3548 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3549 3550 // Get current frame pointer save index. The users of this index will be 3551 // primarily DYNALLOC instructions. 3552 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3553 int FPSI = FI->getFramePointerSaveIndex(); 3554 3555 // If the frame pointer save index hasn't been defined yet. 3556 if (!FPSI) { 3557 // Find out what the fix offset of the frame pointer save area. 3558 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3559 isDarwinABI); 3560 3561 // Allocate the frame index for frame pointer save area. 3562 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3563 // Save the result. 3564 FI->setFramePointerSaveIndex(FPSI); 3565 } 3566 return DAG.getFrameIndex(FPSI, PtrVT); 3567 } 3568 3569 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3570 SelectionDAG &DAG, 3571 const PPCSubtarget &Subtarget) const { 3572 // Get the inputs. 3573 SDValue Chain = Op.getOperand(0); 3574 SDValue Size = Op.getOperand(1); 3575 DebugLoc dl = Op.getDebugLoc(); 3576 3577 // Get the corect type for pointers. 3578 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3579 // Negate the size. 3580 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3581 DAG.getConstant(0, PtrVT), Size); 3582 // Construct a node for the frame pointer save index. 3583 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3584 // Build a DYNALLOC node. 3585 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3586 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3587 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3588 } 3589 3590 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3591 /// possible. 3592 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3593 // Not FP? Not a fsel. 3594 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3595 !Op.getOperand(2).getValueType().isFloatingPoint()) 3596 return Op; 3597 3598 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3599 3600 // Cannot handle SETEQ/SETNE. 3601 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3602 3603 EVT ResVT = Op.getValueType(); 3604 EVT CmpVT = Op.getOperand(0).getValueType(); 3605 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3606 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3607 DebugLoc dl = Op.getDebugLoc(); 3608 3609 // If the RHS of the comparison is a 0.0, we don't need to do the 3610 // subtraction at all. 3611 if (isFloatingPointZero(RHS)) 3612 switch (CC) { 3613 default: break; // SETUO etc aren't handled by fsel. 3614 case ISD::SETULT: 3615 case ISD::SETLT: 3616 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3617 case ISD::SETOGE: 3618 case ISD::SETGE: 3619 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3620 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3621 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3622 case ISD::SETUGT: 3623 case ISD::SETGT: 3624 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3625 case ISD::SETOLE: 3626 case ISD::SETLE: 3627 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3628 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3629 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3630 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3631 } 3632 3633 SDValue Cmp; 3634 switch (CC) { 3635 default: break; // SETUO etc aren't handled by fsel. 3636 case ISD::SETULT: 3637 case ISD::SETLT: 3638 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3639 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3640 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3641 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3642 case ISD::SETOGE: 3643 case ISD::SETGE: 3644 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3645 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3646 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3647 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3648 case ISD::SETUGT: 3649 case ISD::SETGT: 3650 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3651 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3652 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3653 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3654 case ISD::SETOLE: 3655 case ISD::SETLE: 3656 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3657 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3658 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3659 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3660 } 3661 return Op; 3662 } 3663 3664 // FIXME: Split this code up when LegalizeDAGTypes lands. 3665 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3666 DebugLoc dl) const { 3667 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3668 SDValue Src = Op.getOperand(0); 3669 if (Src.getValueType() == MVT::f32) 3670 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3671 3672 SDValue Tmp; 3673 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3674 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3675 case MVT::i32: 3676 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3677 PPCISD::FCTIDZ, 3678 dl, MVT::f64, Src); 3679 break; 3680 case MVT::i64: 3681 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3682 break; 3683 } 3684 3685 // Convert the FP value to an int value through memory. 3686 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3687 3688 // Emit a store to the stack slot. 3689 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3690 MachinePointerInfo(), false, false, 0); 3691 3692 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3693 // add in a bias. 3694 if (Op.getValueType() == MVT::i32) 3695 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3696 DAG.getConstant(4, FIPtr.getValueType())); 3697 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3698 false, false, false, 0); 3699 } 3700 3701 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3702 SelectionDAG &DAG) const { 3703 DebugLoc dl = Op.getDebugLoc(); 3704 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3705 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3706 return SDValue(); 3707 3708 if (Op.getOperand(0).getValueType() == MVT::i64) { 3709 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3710 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3711 if (Op.getValueType() == MVT::f32) 3712 FP = DAG.getNode(ISD::FP_ROUND, dl, 3713 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3714 return FP; 3715 } 3716 3717 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3718 "Unhandled SINT_TO_FP type in custom expander!"); 3719 // Since we only generate this in 64-bit mode, we can take advantage of 3720 // 64-bit registers. In particular, sign extend the input value into the 3721 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3722 // then lfd it and fcfid it. 3723 MachineFunction &MF = DAG.getMachineFunction(); 3724 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3725 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3726 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3727 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3728 3729 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3730 Op.getOperand(0)); 3731 3732 // STD the extended value into the stack slot. 3733 MachineMemOperand *MMO = 3734 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3735 MachineMemOperand::MOStore, 8, 8); 3736 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3737 SDValue Store = 3738 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3739 Ops, 4, MVT::i64, MMO); 3740 // Load the value as a double. 3741 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3742 false, false, false, 0); 3743 3744 // FCFID it and return it. 3745 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3746 if (Op.getValueType() == MVT::f32) 3747 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3748 return FP; 3749 } 3750 3751 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3752 SelectionDAG &DAG) const { 3753 DebugLoc dl = Op.getDebugLoc(); 3754 /* 3755 The rounding mode is in bits 30:31 of FPSR, and has the following 3756 settings: 3757 00 Round to nearest 3758 01 Round to 0 3759 10 Round to +inf 3760 11 Round to -inf 3761 3762 FLT_ROUNDS, on the other hand, expects the following: 3763 -1 Undefined 3764 0 Round to 0 3765 1 Round to nearest 3766 2 Round to +inf 3767 3 Round to -inf 3768 3769 To perform the conversion, we do: 3770 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3771 */ 3772 3773 MachineFunction &MF = DAG.getMachineFunction(); 3774 EVT VT = Op.getValueType(); 3775 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3776 std::vector<EVT> NodeTys; 3777 SDValue MFFSreg, InFlag; 3778 3779 // Save FP Control Word to register 3780 NodeTys.push_back(MVT::f64); // return register 3781 NodeTys.push_back(MVT::Glue); // unused in this context 3782 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3783 3784 // Save FP register to stack slot 3785 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3786 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3787 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3788 StackSlot, MachinePointerInfo(), false, false,0); 3789 3790 // Load FP Control Word from low 32 bits of stack slot. 3791 SDValue Four = DAG.getConstant(4, PtrVT); 3792 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3793 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3794 false, false, false, 0); 3795 3796 // Transform as necessary 3797 SDValue CWD1 = 3798 DAG.getNode(ISD::AND, dl, MVT::i32, 3799 CWD, DAG.getConstant(3, MVT::i32)); 3800 SDValue CWD2 = 3801 DAG.getNode(ISD::SRL, dl, MVT::i32, 3802 DAG.getNode(ISD::AND, dl, MVT::i32, 3803 DAG.getNode(ISD::XOR, dl, MVT::i32, 3804 CWD, DAG.getConstant(3, MVT::i32)), 3805 DAG.getConstant(3, MVT::i32)), 3806 DAG.getConstant(1, MVT::i32)); 3807 3808 SDValue RetVal = 3809 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3810 3811 return DAG.getNode((VT.getSizeInBits() < 16 ? 3812 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3813 } 3814 3815 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3816 EVT VT = Op.getValueType(); 3817 unsigned BitWidth = VT.getSizeInBits(); 3818 DebugLoc dl = Op.getDebugLoc(); 3819 assert(Op.getNumOperands() == 3 && 3820 VT == Op.getOperand(1).getValueType() && 3821 "Unexpected SHL!"); 3822 3823 // Expand into a bunch of logical ops. Note that these ops 3824 // depend on the PPC behavior for oversized shift amounts. 3825 SDValue Lo = Op.getOperand(0); 3826 SDValue Hi = Op.getOperand(1); 3827 SDValue Amt = Op.getOperand(2); 3828 EVT AmtVT = Amt.getValueType(); 3829 3830 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3831 DAG.getConstant(BitWidth, AmtVT), Amt); 3832 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3833 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3834 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3835 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3836 DAG.getConstant(-BitWidth, AmtVT)); 3837 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3838 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3839 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3840 SDValue OutOps[] = { OutLo, OutHi }; 3841 return DAG.getMergeValues(OutOps, 2, dl); 3842 } 3843 3844 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3845 EVT VT = Op.getValueType(); 3846 DebugLoc dl = Op.getDebugLoc(); 3847 unsigned BitWidth = VT.getSizeInBits(); 3848 assert(Op.getNumOperands() == 3 && 3849 VT == Op.getOperand(1).getValueType() && 3850 "Unexpected SRL!"); 3851 3852 // Expand into a bunch of logical ops. Note that these ops 3853 // depend on the PPC behavior for oversized shift amounts. 3854 SDValue Lo = Op.getOperand(0); 3855 SDValue Hi = Op.getOperand(1); 3856 SDValue Amt = Op.getOperand(2); 3857 EVT AmtVT = Amt.getValueType(); 3858 3859 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3860 DAG.getConstant(BitWidth, AmtVT), Amt); 3861 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3862 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3863 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3864 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3865 DAG.getConstant(-BitWidth, AmtVT)); 3866 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3867 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3868 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3869 SDValue OutOps[] = { OutLo, OutHi }; 3870 return DAG.getMergeValues(OutOps, 2, dl); 3871 } 3872 3873 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3874 DebugLoc dl = Op.getDebugLoc(); 3875 EVT VT = Op.getValueType(); 3876 unsigned BitWidth = VT.getSizeInBits(); 3877 assert(Op.getNumOperands() == 3 && 3878 VT == Op.getOperand(1).getValueType() && 3879 "Unexpected SRA!"); 3880 3881 // Expand into a bunch of logical ops, followed by a select_cc. 3882 SDValue Lo = Op.getOperand(0); 3883 SDValue Hi = Op.getOperand(1); 3884 SDValue Amt = Op.getOperand(2); 3885 EVT AmtVT = Amt.getValueType(); 3886 3887 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3888 DAG.getConstant(BitWidth, AmtVT), Amt); 3889 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3890 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3891 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3892 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3893 DAG.getConstant(-BitWidth, AmtVT)); 3894 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3895 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3896 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3897 Tmp4, Tmp6, ISD::SETLE); 3898 SDValue OutOps[] = { OutLo, OutHi }; 3899 return DAG.getMergeValues(OutOps, 2, dl); 3900 } 3901 3902 //===----------------------------------------------------------------------===// 3903 // Vector related lowering. 3904 // 3905 3906 /// BuildSplatI - Build a canonical splati of Val with an element size of 3907 /// SplatSize. Cast the result to VT. 3908 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3909 SelectionDAG &DAG, DebugLoc dl) { 3910 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3911 3912 static const EVT VTys[] = { // canonical VT to use for each size. 3913 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3914 }; 3915 3916 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3917 3918 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3919 if (Val == -1) 3920 SplatSize = 1; 3921 3922 EVT CanonicalVT = VTys[SplatSize-1]; 3923 3924 // Build a canonical splat for this value. 3925 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3926 SmallVector<SDValue, 8> Ops; 3927 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3928 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3929 &Ops[0], Ops.size()); 3930 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3931 } 3932 3933 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3934 /// specified intrinsic ID. 3935 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3936 SelectionDAG &DAG, DebugLoc dl, 3937 EVT DestVT = MVT::Other) { 3938 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3939 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3940 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3941 } 3942 3943 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3944 /// specified intrinsic ID. 3945 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3946 SDValue Op2, SelectionDAG &DAG, 3947 DebugLoc dl, EVT DestVT = MVT::Other) { 3948 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3949 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3950 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3951 } 3952 3953 3954 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3955 /// amount. The result has the specified value type. 3956 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3957 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3958 // Force LHS/RHS to be the right type. 3959 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3960 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3961 3962 int Ops[16]; 3963 for (unsigned i = 0; i != 16; ++i) 3964 Ops[i] = i + Amt; 3965 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3966 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3967 } 3968 3969 // If this is a case we can't handle, return null and let the default 3970 // expansion code take care of it. If we CAN select this case, and if it 3971 // selects to a single instruction, return Op. Otherwise, if we can codegen 3972 // this case more efficiently than a constant pool load, lower it to the 3973 // sequence of ops that should be used. 3974 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3975 SelectionDAG &DAG) const { 3976 DebugLoc dl = Op.getDebugLoc(); 3977 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3978 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3979 3980 // Check if this is a splat of a constant value. 3981 APInt APSplatBits, APSplatUndef; 3982 unsigned SplatBitSize; 3983 bool HasAnyUndefs; 3984 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3985 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3986 return SDValue(); 3987 3988 unsigned SplatBits = APSplatBits.getZExtValue(); 3989 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3990 unsigned SplatSize = SplatBitSize / 8; 3991 3992 // First, handle single instruction cases. 3993 3994 // All zeros? 3995 if (SplatBits == 0) { 3996 // Canonicalize all zero vectors to be v4i32. 3997 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 3998 SDValue Z = DAG.getConstant(0, MVT::i32); 3999 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 4000 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 4001 } 4002 return Op; 4003 } 4004 4005 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 4006 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 4007 (32-SplatBitSize)); 4008 if (SextVal >= -16 && SextVal <= 15) 4009 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 4010 4011 4012 // Two instruction sequences. 4013 4014 // If this value is in the range [-32,30] and is even, use: 4015 // tmp = VSPLTI[bhw], result = add tmp, tmp 4016 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 4017 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 4018 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 4019 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4020 } 4021 4022 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 4023 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 4024 // for fneg/fabs. 4025 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 4026 // Make -1 and vspltisw -1: 4027 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 4028 4029 // Make the VSLW intrinsic, computing 0x8000_0000. 4030 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 4031 OnesV, DAG, dl); 4032 4033 // xor by OnesV to invert it. 4034 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 4035 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4036 } 4037 4038 // Check to see if this is a wide variety of vsplti*, binop self cases. 4039 static const signed char SplatCsts[] = { 4040 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 4041 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 4042 }; 4043 4044 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4045 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4046 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4047 int i = SplatCsts[idx]; 4048 4049 // Figure out what shift amount will be used by altivec if shifted by i in 4050 // this splat size. 4051 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4052 4053 // vsplti + shl self. 4054 if (SextVal == (i << (int)TypeShiftAmt)) { 4055 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4056 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4057 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4058 Intrinsic::ppc_altivec_vslw 4059 }; 4060 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4061 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4062 } 4063 4064 // vsplti + srl self. 4065 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4066 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4067 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4068 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4069 Intrinsic::ppc_altivec_vsrw 4070 }; 4071 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4072 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4073 } 4074 4075 // vsplti + sra self. 4076 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4077 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4078 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4079 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4080 Intrinsic::ppc_altivec_vsraw 4081 }; 4082 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4083 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4084 } 4085 4086 // vsplti + rol self. 4087 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4088 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4089 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4090 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4091 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4092 Intrinsic::ppc_altivec_vrlw 4093 }; 4094 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4095 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4096 } 4097 4098 // t = vsplti c, result = vsldoi t, t, 1 4099 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 4100 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4101 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4102 } 4103 // t = vsplti c, result = vsldoi t, t, 2 4104 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 4105 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4106 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4107 } 4108 // t = vsplti c, result = vsldoi t, t, 3 4109 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4110 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4111 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4112 } 4113 } 4114 4115 // Three instruction sequences. 4116 4117 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4118 if (SextVal >= 0 && SextVal <= 31) { 4119 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4120 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4121 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4122 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4123 } 4124 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4125 if (SextVal >= -31 && SextVal <= 0) { 4126 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4127 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4128 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4129 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4130 } 4131 4132 return SDValue(); 4133 } 4134 4135 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4136 /// the specified operations to build the shuffle. 4137 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4138 SDValue RHS, SelectionDAG &DAG, 4139 DebugLoc dl) { 4140 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4141 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4142 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4143 4144 enum { 4145 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4146 OP_VMRGHW, 4147 OP_VMRGLW, 4148 OP_VSPLTISW0, 4149 OP_VSPLTISW1, 4150 OP_VSPLTISW2, 4151 OP_VSPLTISW3, 4152 OP_VSLDOI4, 4153 OP_VSLDOI8, 4154 OP_VSLDOI12 4155 }; 4156 4157 if (OpNum == OP_COPY) { 4158 if (LHSID == (1*9+2)*9+3) return LHS; 4159 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4160 return RHS; 4161 } 4162 4163 SDValue OpLHS, OpRHS; 4164 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4165 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4166 4167 int ShufIdxs[16]; 4168 switch (OpNum) { 4169 default: llvm_unreachable("Unknown i32 permute!"); 4170 case OP_VMRGHW: 4171 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4172 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4173 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4174 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4175 break; 4176 case OP_VMRGLW: 4177 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4178 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4179 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4180 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4181 break; 4182 case OP_VSPLTISW0: 4183 for (unsigned i = 0; i != 16; ++i) 4184 ShufIdxs[i] = (i&3)+0; 4185 break; 4186 case OP_VSPLTISW1: 4187 for (unsigned i = 0; i != 16; ++i) 4188 ShufIdxs[i] = (i&3)+4; 4189 break; 4190 case OP_VSPLTISW2: 4191 for (unsigned i = 0; i != 16; ++i) 4192 ShufIdxs[i] = (i&3)+8; 4193 break; 4194 case OP_VSPLTISW3: 4195 for (unsigned i = 0; i != 16; ++i) 4196 ShufIdxs[i] = (i&3)+12; 4197 break; 4198 case OP_VSLDOI4: 4199 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4200 case OP_VSLDOI8: 4201 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4202 case OP_VSLDOI12: 4203 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4204 } 4205 EVT VT = OpLHS.getValueType(); 4206 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4207 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4208 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4209 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4210 } 4211 4212 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4213 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4214 /// return the code it can be lowered into. Worst case, it can always be 4215 /// lowered into a vperm. 4216 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4217 SelectionDAG &DAG) const { 4218 DebugLoc dl = Op.getDebugLoc(); 4219 SDValue V1 = Op.getOperand(0); 4220 SDValue V2 = Op.getOperand(1); 4221 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4222 EVT VT = Op.getValueType(); 4223 4224 // Cases that are handled by instructions that take permute immediates 4225 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4226 // selected by the instruction selector. 4227 if (V2.getOpcode() == ISD::UNDEF) { 4228 if (PPC::isSplatShuffleMask(SVOp, 1) || 4229 PPC::isSplatShuffleMask(SVOp, 2) || 4230 PPC::isSplatShuffleMask(SVOp, 4) || 4231 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4232 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4233 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4234 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4235 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4236 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4237 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4238 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4239 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4240 return Op; 4241 } 4242 } 4243 4244 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4245 // and produce a fixed permutation. If any of these match, do not lower to 4246 // VPERM. 4247 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4248 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4249 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4250 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4251 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4252 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4253 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4254 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4255 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4256 return Op; 4257 4258 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4259 // perfect shuffle table to emit an optimal matching sequence. 4260 ArrayRef<int> PermMask = SVOp->getMask(); 4261 4262 unsigned PFIndexes[4]; 4263 bool isFourElementShuffle = true; 4264 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4265 unsigned EltNo = 8; // Start out undef. 4266 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4267 if (PermMask[i*4+j] < 0) 4268 continue; // Undef, ignore it. 4269 4270 unsigned ByteSource = PermMask[i*4+j]; 4271 if ((ByteSource & 3) != j) { 4272 isFourElementShuffle = false; 4273 break; 4274 } 4275 4276 if (EltNo == 8) { 4277 EltNo = ByteSource/4; 4278 } else if (EltNo != ByteSource/4) { 4279 isFourElementShuffle = false; 4280 break; 4281 } 4282 } 4283 PFIndexes[i] = EltNo; 4284 } 4285 4286 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4287 // perfect shuffle vector to determine if it is cost effective to do this as 4288 // discrete instructions, or whether we should use a vperm. 4289 if (isFourElementShuffle) { 4290 // Compute the index in the perfect shuffle table. 4291 unsigned PFTableIndex = 4292 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4293 4294 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4295 unsigned Cost = (PFEntry >> 30); 4296 4297 // Determining when to avoid vperm is tricky. Many things affect the cost 4298 // of vperm, particularly how many times the perm mask needs to be computed. 4299 // For example, if the perm mask can be hoisted out of a loop or is already 4300 // used (perhaps because there are multiple permutes with the same shuffle 4301 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4302 // the loop requires an extra register. 4303 // 4304 // As a compromise, we only emit discrete instructions if the shuffle can be 4305 // generated in 3 or fewer operations. When we have loop information 4306 // available, if this block is within a loop, we should avoid using vperm 4307 // for 3-operation perms and use a constant pool load instead. 4308 if (Cost < 3) 4309 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4310 } 4311 4312 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4313 // vector that will get spilled to the constant pool. 4314 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4315 4316 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4317 // that it is in input element units, not in bytes. Convert now. 4318 EVT EltVT = V1.getValueType().getVectorElementType(); 4319 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4320 4321 SmallVector<SDValue, 16> ResultMask; 4322 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4323 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4324 4325 for (unsigned j = 0; j != BytesPerElement; ++j) 4326 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4327 MVT::i32)); 4328 } 4329 4330 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4331 &ResultMask[0], ResultMask.size()); 4332 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4333 } 4334 4335 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4336 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4337 /// information about the intrinsic. 4338 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4339 bool &isDot) { 4340 unsigned IntrinsicID = 4341 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4342 CompareOpc = -1; 4343 isDot = false; 4344 switch (IntrinsicID) { 4345 default: return false; 4346 // Comparison predicates. 4347 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4348 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4349 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4350 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4351 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4352 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4353 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4354 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4355 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4356 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4357 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4358 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4359 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4360 4361 // Normal Comparisons. 4362 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4363 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4364 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4365 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4366 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4367 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4368 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4369 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4370 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4371 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4372 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4373 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4374 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4375 } 4376 return true; 4377 } 4378 4379 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4380 /// lower, do it, otherwise return null. 4381 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4382 SelectionDAG &DAG) const { 4383 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4384 // opcode number of the comparison. 4385 DebugLoc dl = Op.getDebugLoc(); 4386 int CompareOpc; 4387 bool isDot; 4388 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4389 return SDValue(); // Don't custom lower most intrinsics. 4390 4391 // If this is a non-dot comparison, make the VCMP node and we are done. 4392 if (!isDot) { 4393 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4394 Op.getOperand(1), Op.getOperand(2), 4395 DAG.getConstant(CompareOpc, MVT::i32)); 4396 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4397 } 4398 4399 // Create the PPCISD altivec 'dot' comparison node. 4400 SDValue Ops[] = { 4401 Op.getOperand(2), // LHS 4402 Op.getOperand(3), // RHS 4403 DAG.getConstant(CompareOpc, MVT::i32) 4404 }; 4405 std::vector<EVT> VTs; 4406 VTs.push_back(Op.getOperand(2).getValueType()); 4407 VTs.push_back(MVT::Glue); 4408 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4409 4410 // Now that we have the comparison, emit a copy from the CR to a GPR. 4411 // This is flagged to the above dot comparison. 4412 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4413 DAG.getRegister(PPC::CR6, MVT::i32), 4414 CompNode.getValue(1)); 4415 4416 // Unpack the result based on how the target uses it. 4417 unsigned BitNo; // Bit # of CR6. 4418 bool InvertBit; // Invert result? 4419 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4420 default: // Can't happen, don't crash on invalid number though. 4421 case 0: // Return the value of the EQ bit of CR6. 4422 BitNo = 0; InvertBit = false; 4423 break; 4424 case 1: // Return the inverted value of the EQ bit of CR6. 4425 BitNo = 0; InvertBit = true; 4426 break; 4427 case 2: // Return the value of the LT bit of CR6. 4428 BitNo = 2; InvertBit = false; 4429 break; 4430 case 3: // Return the inverted value of the LT bit of CR6. 4431 BitNo = 2; InvertBit = true; 4432 break; 4433 } 4434 4435 // Shift the bit into the low position. 4436 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4437 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4438 // Isolate the bit. 4439 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4440 DAG.getConstant(1, MVT::i32)); 4441 4442 // If we are supposed to, toggle the bit. 4443 if (InvertBit) 4444 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4445 DAG.getConstant(1, MVT::i32)); 4446 return Flags; 4447 } 4448 4449 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4450 SelectionDAG &DAG) const { 4451 DebugLoc dl = Op.getDebugLoc(); 4452 // Create a stack slot that is 16-byte aligned. 4453 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4454 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4455 EVT PtrVT = getPointerTy(); 4456 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4457 4458 // Store the input value into Value#0 of the stack slot. 4459 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4460 Op.getOperand(0), FIdx, MachinePointerInfo(), 4461 false, false, 0); 4462 // Load it out. 4463 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4464 false, false, false, 0); 4465 } 4466 4467 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4468 DebugLoc dl = Op.getDebugLoc(); 4469 if (Op.getValueType() == MVT::v4i32) { 4470 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4471 4472 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4473 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4474 4475 SDValue RHSSwap = // = vrlw RHS, 16 4476 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4477 4478 // Shrinkify inputs to v8i16. 4479 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4480 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4481 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4482 4483 // Low parts multiplied together, generating 32-bit results (we ignore the 4484 // top parts). 4485 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4486 LHS, RHS, DAG, dl, MVT::v4i32); 4487 4488 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4489 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4490 // Shift the high parts up 16 bits. 4491 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4492 Neg16, DAG, dl); 4493 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4494 } else if (Op.getValueType() == MVT::v8i16) { 4495 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4496 4497 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4498 4499 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4500 LHS, RHS, Zero, DAG, dl); 4501 } else if (Op.getValueType() == MVT::v16i8) { 4502 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4503 4504 // Multiply the even 8-bit parts, producing 16-bit sums. 4505 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4506 LHS, RHS, DAG, dl, MVT::v8i16); 4507 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4508 4509 // Multiply the odd 8-bit parts, producing 16-bit sums. 4510 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4511 LHS, RHS, DAG, dl, MVT::v8i16); 4512 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4513 4514 // Merge the results together. 4515 int Ops[16]; 4516 for (unsigned i = 0; i != 8; ++i) { 4517 Ops[i*2 ] = 2*i+1; 4518 Ops[i*2+1] = 2*i+1+16; 4519 } 4520 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4521 } else { 4522 llvm_unreachable("Unknown mul to lower!"); 4523 } 4524 } 4525 4526 /// LowerOperation - Provide custom lowering hooks for some operations. 4527 /// 4528 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4529 switch (Op.getOpcode()) { 4530 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4531 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4532 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4533 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4534 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4535 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4536 case ISD::SETCC: return LowerSETCC(Op, DAG); 4537 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 4538 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 4539 case ISD::VASTART: 4540 return LowerVASTART(Op, DAG, PPCSubTarget); 4541 4542 case ISD::VAARG: 4543 return LowerVAARG(Op, DAG, PPCSubTarget); 4544 4545 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4546 case ISD::DYNAMIC_STACKALLOC: 4547 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4548 4549 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4550 case ISD::FP_TO_UINT: 4551 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4552 Op.getDebugLoc()); 4553 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4554 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4555 4556 // Lower 64-bit shifts. 4557 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4558 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4559 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4560 4561 // Vector-related lowering. 4562 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4563 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4564 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4565 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4566 case ISD::MUL: return LowerMUL(Op, DAG); 4567 4568 // Frame & Return address. 4569 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4570 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4571 } 4572 } 4573 4574 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4575 SmallVectorImpl<SDValue>&Results, 4576 SelectionDAG &DAG) const { 4577 const TargetMachine &TM = getTargetMachine(); 4578 DebugLoc dl = N->getDebugLoc(); 4579 switch (N->getOpcode()) { 4580 default: 4581 assert(false && "Do not know how to custom type legalize this operation!"); 4582 return; 4583 case ISD::VAARG: { 4584 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 4585 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 4586 return; 4587 4588 EVT VT = N->getValueType(0); 4589 4590 if (VT == MVT::i64) { 4591 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 4592 4593 Results.push_back(NewNode); 4594 Results.push_back(NewNode.getValue(1)); 4595 } 4596 return; 4597 } 4598 case ISD::FP_ROUND_INREG: { 4599 assert(N->getValueType(0) == MVT::ppcf128); 4600 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4601 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4602 MVT::f64, N->getOperand(0), 4603 DAG.getIntPtrConstant(0)); 4604 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4605 MVT::f64, N->getOperand(0), 4606 DAG.getIntPtrConstant(1)); 4607 4608 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4609 // of the long double, and puts FPSCR back the way it was. We do not 4610 // actually model FPSCR. 4611 std::vector<EVT> NodeTys; 4612 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4613 4614 NodeTys.push_back(MVT::f64); // Return register 4615 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4616 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4617 MFFSreg = Result.getValue(0); 4618 InFlag = Result.getValue(1); 4619 4620 NodeTys.clear(); 4621 NodeTys.push_back(MVT::Glue); // Returns a flag 4622 Ops[0] = DAG.getConstant(31, MVT::i32); 4623 Ops[1] = InFlag; 4624 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4625 InFlag = Result.getValue(0); 4626 4627 NodeTys.clear(); 4628 NodeTys.push_back(MVT::Glue); // Returns a flag 4629 Ops[0] = DAG.getConstant(30, MVT::i32); 4630 Ops[1] = InFlag; 4631 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4632 InFlag = Result.getValue(0); 4633 4634 NodeTys.clear(); 4635 NodeTys.push_back(MVT::f64); // result of add 4636 NodeTys.push_back(MVT::Glue); // Returns a flag 4637 Ops[0] = Lo; 4638 Ops[1] = Hi; 4639 Ops[2] = InFlag; 4640 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4641 FPreg = Result.getValue(0); 4642 InFlag = Result.getValue(1); 4643 4644 NodeTys.clear(); 4645 NodeTys.push_back(MVT::f64); 4646 Ops[0] = DAG.getConstant(1, MVT::i32); 4647 Ops[1] = MFFSreg; 4648 Ops[2] = FPreg; 4649 Ops[3] = InFlag; 4650 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4651 FPreg = Result.getValue(0); 4652 4653 // We know the low half is about to be thrown away, so just use something 4654 // convenient. 4655 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4656 FPreg, FPreg)); 4657 return; 4658 } 4659 case ISD::FP_TO_SINT: 4660 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4661 return; 4662 } 4663 } 4664 4665 4666 //===----------------------------------------------------------------------===// 4667 // Other Lowering Code 4668 //===----------------------------------------------------------------------===// 4669 4670 MachineBasicBlock * 4671 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4672 bool is64bit, unsigned BinOpcode) const { 4673 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4674 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4675 4676 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4677 MachineFunction *F = BB->getParent(); 4678 MachineFunction::iterator It = BB; 4679 ++It; 4680 4681 unsigned dest = MI->getOperand(0).getReg(); 4682 unsigned ptrA = MI->getOperand(1).getReg(); 4683 unsigned ptrB = MI->getOperand(2).getReg(); 4684 unsigned incr = MI->getOperand(3).getReg(); 4685 DebugLoc dl = MI->getDebugLoc(); 4686 4687 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4688 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4689 F->insert(It, loopMBB); 4690 F->insert(It, exitMBB); 4691 exitMBB->splice(exitMBB->begin(), BB, 4692 llvm::next(MachineBasicBlock::iterator(MI)), 4693 BB->end()); 4694 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4695 4696 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4697 unsigned TmpReg = (!BinOpcode) ? incr : 4698 RegInfo.createVirtualRegister( 4699 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4700 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4701 4702 // thisMBB: 4703 // ... 4704 // fallthrough --> loopMBB 4705 BB->addSuccessor(loopMBB); 4706 4707 // loopMBB: 4708 // l[wd]arx dest, ptr 4709 // add r0, dest, incr 4710 // st[wd]cx. r0, ptr 4711 // bne- loopMBB 4712 // fallthrough --> exitMBB 4713 BB = loopMBB; 4714 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4715 .addReg(ptrA).addReg(ptrB); 4716 if (BinOpcode) 4717 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4718 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4719 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4720 BuildMI(BB, dl, TII->get(PPC::BCC)) 4721 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4722 BB->addSuccessor(loopMBB); 4723 BB->addSuccessor(exitMBB); 4724 4725 // exitMBB: 4726 // ... 4727 BB = exitMBB; 4728 return BB; 4729 } 4730 4731 MachineBasicBlock * 4732 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4733 MachineBasicBlock *BB, 4734 bool is8bit, // operation 4735 unsigned BinOpcode) const { 4736 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4737 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4738 // In 64 bit mode we have to use 64 bits for addresses, even though the 4739 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4740 // registers without caring whether they're 32 or 64, but here we're 4741 // doing actual arithmetic on the addresses. 4742 bool is64bit = PPCSubTarget.isPPC64(); 4743 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4744 4745 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4746 MachineFunction *F = BB->getParent(); 4747 MachineFunction::iterator It = BB; 4748 ++It; 4749 4750 unsigned dest = MI->getOperand(0).getReg(); 4751 unsigned ptrA = MI->getOperand(1).getReg(); 4752 unsigned ptrB = MI->getOperand(2).getReg(); 4753 unsigned incr = MI->getOperand(3).getReg(); 4754 DebugLoc dl = MI->getDebugLoc(); 4755 4756 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4757 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4758 F->insert(It, loopMBB); 4759 F->insert(It, exitMBB); 4760 exitMBB->splice(exitMBB->begin(), BB, 4761 llvm::next(MachineBasicBlock::iterator(MI)), 4762 BB->end()); 4763 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4764 4765 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4766 const TargetRegisterClass *RC = 4767 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4768 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4769 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4770 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4771 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4772 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4773 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4774 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4775 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4776 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4777 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4778 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4779 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4780 unsigned Ptr1Reg; 4781 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4782 4783 // thisMBB: 4784 // ... 4785 // fallthrough --> loopMBB 4786 BB->addSuccessor(loopMBB); 4787 4788 // The 4-byte load must be aligned, while a char or short may be 4789 // anywhere in the word. Hence all this nasty bookkeeping code. 4790 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4791 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4792 // xori shift, shift1, 24 [16] 4793 // rlwinm ptr, ptr1, 0, 0, 29 4794 // slw incr2, incr, shift 4795 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4796 // slw mask, mask2, shift 4797 // loopMBB: 4798 // lwarx tmpDest, ptr 4799 // add tmp, tmpDest, incr2 4800 // andc tmp2, tmpDest, mask 4801 // and tmp3, tmp, mask 4802 // or tmp4, tmp3, tmp2 4803 // stwcx. tmp4, ptr 4804 // bne- loopMBB 4805 // fallthrough --> exitMBB 4806 // srw dest, tmpDest, shift 4807 if (ptrA != ZeroReg) { 4808 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4809 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4810 .addReg(ptrA).addReg(ptrB); 4811 } else { 4812 Ptr1Reg = ptrB; 4813 } 4814 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4815 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4816 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4817 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4818 if (is64bit) 4819 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4820 .addReg(Ptr1Reg).addImm(0).addImm(61); 4821 else 4822 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4823 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4824 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4825 .addReg(incr).addReg(ShiftReg); 4826 if (is8bit) 4827 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4828 else { 4829 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4830 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4831 } 4832 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4833 .addReg(Mask2Reg).addReg(ShiftReg); 4834 4835 BB = loopMBB; 4836 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4837 .addReg(ZeroReg).addReg(PtrReg); 4838 if (BinOpcode) 4839 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4840 .addReg(Incr2Reg).addReg(TmpDestReg); 4841 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4842 .addReg(TmpDestReg).addReg(MaskReg); 4843 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4844 .addReg(TmpReg).addReg(MaskReg); 4845 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4846 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4847 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4848 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4849 BuildMI(BB, dl, TII->get(PPC::BCC)) 4850 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4851 BB->addSuccessor(loopMBB); 4852 BB->addSuccessor(exitMBB); 4853 4854 // exitMBB: 4855 // ... 4856 BB = exitMBB; 4857 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4858 .addReg(ShiftReg); 4859 return BB; 4860 } 4861 4862 MachineBasicBlock * 4863 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4864 MachineBasicBlock *BB) const { 4865 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4866 4867 // To "insert" these instructions we actually have to insert their 4868 // control-flow patterns. 4869 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4870 MachineFunction::iterator It = BB; 4871 ++It; 4872 4873 MachineFunction *F = BB->getParent(); 4874 4875 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4876 MI->getOpcode() == PPC::SELECT_CC_I8 || 4877 MI->getOpcode() == PPC::SELECT_CC_F4 || 4878 MI->getOpcode() == PPC::SELECT_CC_F8 || 4879 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4880 4881 // The incoming instruction knows the destination vreg to set, the 4882 // condition code register to branch on, the true/false values to 4883 // select between, and a branch opcode to use. 4884 4885 // thisMBB: 4886 // ... 4887 // TrueVal = ... 4888 // cmpTY ccX, r1, r2 4889 // bCC copy1MBB 4890 // fallthrough --> copy0MBB 4891 MachineBasicBlock *thisMBB = BB; 4892 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4893 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4894 unsigned SelectPred = MI->getOperand(4).getImm(); 4895 DebugLoc dl = MI->getDebugLoc(); 4896 F->insert(It, copy0MBB); 4897 F->insert(It, sinkMBB); 4898 4899 // Transfer the remainder of BB and its successor edges to sinkMBB. 4900 sinkMBB->splice(sinkMBB->begin(), BB, 4901 llvm::next(MachineBasicBlock::iterator(MI)), 4902 BB->end()); 4903 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4904 4905 // Next, add the true and fallthrough blocks as its successors. 4906 BB->addSuccessor(copy0MBB); 4907 BB->addSuccessor(sinkMBB); 4908 4909 BuildMI(BB, dl, TII->get(PPC::BCC)) 4910 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4911 4912 // copy0MBB: 4913 // %FalseValue = ... 4914 // # fallthrough to sinkMBB 4915 BB = copy0MBB; 4916 4917 // Update machine-CFG edges 4918 BB->addSuccessor(sinkMBB); 4919 4920 // sinkMBB: 4921 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4922 // ... 4923 BB = sinkMBB; 4924 BuildMI(*BB, BB->begin(), dl, 4925 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4926 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4927 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4928 } 4929 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4930 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4931 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4932 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4933 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4934 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4935 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4936 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4937 4938 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4939 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4940 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4941 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4942 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4943 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4944 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4945 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4946 4947 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4948 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4949 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4950 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4951 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4952 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4953 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4954 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4955 4956 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4957 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4958 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4959 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4960 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4961 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4962 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4963 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4964 4965 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4966 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4967 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4968 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4969 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4970 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4971 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4972 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4973 4974 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4975 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4976 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4977 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4978 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4979 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4980 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4981 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4982 4983 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4984 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4985 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4986 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4987 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4988 BB = EmitAtomicBinary(MI, BB, false, 0); 4989 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4990 BB = EmitAtomicBinary(MI, BB, true, 0); 4991 4992 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4993 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4994 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4995 4996 unsigned dest = MI->getOperand(0).getReg(); 4997 unsigned ptrA = MI->getOperand(1).getReg(); 4998 unsigned ptrB = MI->getOperand(2).getReg(); 4999 unsigned oldval = MI->getOperand(3).getReg(); 5000 unsigned newval = MI->getOperand(4).getReg(); 5001 DebugLoc dl = MI->getDebugLoc(); 5002 5003 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5004 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5005 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5006 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5007 F->insert(It, loop1MBB); 5008 F->insert(It, loop2MBB); 5009 F->insert(It, midMBB); 5010 F->insert(It, exitMBB); 5011 exitMBB->splice(exitMBB->begin(), BB, 5012 llvm::next(MachineBasicBlock::iterator(MI)), 5013 BB->end()); 5014 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5015 5016 // thisMBB: 5017 // ... 5018 // fallthrough --> loopMBB 5019 BB->addSuccessor(loop1MBB); 5020 5021 // loop1MBB: 5022 // l[wd]arx dest, ptr 5023 // cmp[wd] dest, oldval 5024 // bne- midMBB 5025 // loop2MBB: 5026 // st[wd]cx. newval, ptr 5027 // bne- loopMBB 5028 // b exitBB 5029 // midMBB: 5030 // st[wd]cx. dest, ptr 5031 // exitBB: 5032 BB = loop1MBB; 5033 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5034 .addReg(ptrA).addReg(ptrB); 5035 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 5036 .addReg(oldval).addReg(dest); 5037 BuildMI(BB, dl, TII->get(PPC::BCC)) 5038 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5039 BB->addSuccessor(loop2MBB); 5040 BB->addSuccessor(midMBB); 5041 5042 BB = loop2MBB; 5043 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5044 .addReg(newval).addReg(ptrA).addReg(ptrB); 5045 BuildMI(BB, dl, TII->get(PPC::BCC)) 5046 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5047 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5048 BB->addSuccessor(loop1MBB); 5049 BB->addSuccessor(exitMBB); 5050 5051 BB = midMBB; 5052 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5053 .addReg(dest).addReg(ptrA).addReg(ptrB); 5054 BB->addSuccessor(exitMBB); 5055 5056 // exitMBB: 5057 // ... 5058 BB = exitMBB; 5059 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5060 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5061 // We must use 64-bit registers for addresses when targeting 64-bit, 5062 // since we're actually doing arithmetic on them. Other registers 5063 // can be 32-bit. 5064 bool is64bit = PPCSubTarget.isPPC64(); 5065 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5066 5067 unsigned dest = MI->getOperand(0).getReg(); 5068 unsigned ptrA = MI->getOperand(1).getReg(); 5069 unsigned ptrB = MI->getOperand(2).getReg(); 5070 unsigned oldval = MI->getOperand(3).getReg(); 5071 unsigned newval = MI->getOperand(4).getReg(); 5072 DebugLoc dl = MI->getDebugLoc(); 5073 5074 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5075 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5076 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5077 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5078 F->insert(It, loop1MBB); 5079 F->insert(It, loop2MBB); 5080 F->insert(It, midMBB); 5081 F->insert(It, exitMBB); 5082 exitMBB->splice(exitMBB->begin(), BB, 5083 llvm::next(MachineBasicBlock::iterator(MI)), 5084 BB->end()); 5085 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5086 5087 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5088 const TargetRegisterClass *RC = 5089 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5090 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5091 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5092 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5093 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5094 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5095 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5096 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5097 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5098 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5099 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5100 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5101 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5102 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5103 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5104 unsigned Ptr1Reg; 5105 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5106 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5107 // thisMBB: 5108 // ... 5109 // fallthrough --> loopMBB 5110 BB->addSuccessor(loop1MBB); 5111 5112 // The 4-byte load must be aligned, while a char or short may be 5113 // anywhere in the word. Hence all this nasty bookkeeping code. 5114 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5115 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5116 // xori shift, shift1, 24 [16] 5117 // rlwinm ptr, ptr1, 0, 0, 29 5118 // slw newval2, newval, shift 5119 // slw oldval2, oldval,shift 5120 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5121 // slw mask, mask2, shift 5122 // and newval3, newval2, mask 5123 // and oldval3, oldval2, mask 5124 // loop1MBB: 5125 // lwarx tmpDest, ptr 5126 // and tmp, tmpDest, mask 5127 // cmpw tmp, oldval3 5128 // bne- midMBB 5129 // loop2MBB: 5130 // andc tmp2, tmpDest, mask 5131 // or tmp4, tmp2, newval3 5132 // stwcx. tmp4, ptr 5133 // bne- loop1MBB 5134 // b exitBB 5135 // midMBB: 5136 // stwcx. tmpDest, ptr 5137 // exitBB: 5138 // srw dest, tmpDest, shift 5139 if (ptrA != ZeroReg) { 5140 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5141 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5142 .addReg(ptrA).addReg(ptrB); 5143 } else { 5144 Ptr1Reg = ptrB; 5145 } 5146 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5147 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5148 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5149 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5150 if (is64bit) 5151 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5152 .addReg(Ptr1Reg).addImm(0).addImm(61); 5153 else 5154 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5155 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5156 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5157 .addReg(newval).addReg(ShiftReg); 5158 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5159 .addReg(oldval).addReg(ShiftReg); 5160 if (is8bit) 5161 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5162 else { 5163 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5164 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5165 .addReg(Mask3Reg).addImm(65535); 5166 } 5167 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5168 .addReg(Mask2Reg).addReg(ShiftReg); 5169 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5170 .addReg(NewVal2Reg).addReg(MaskReg); 5171 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5172 .addReg(OldVal2Reg).addReg(MaskReg); 5173 5174 BB = loop1MBB; 5175 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5176 .addReg(ZeroReg).addReg(PtrReg); 5177 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5178 .addReg(TmpDestReg).addReg(MaskReg); 5179 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5180 .addReg(TmpReg).addReg(OldVal3Reg); 5181 BuildMI(BB, dl, TII->get(PPC::BCC)) 5182 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5183 BB->addSuccessor(loop2MBB); 5184 BB->addSuccessor(midMBB); 5185 5186 BB = loop2MBB; 5187 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5188 .addReg(TmpDestReg).addReg(MaskReg); 5189 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5190 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5191 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5192 .addReg(ZeroReg).addReg(PtrReg); 5193 BuildMI(BB, dl, TII->get(PPC::BCC)) 5194 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5195 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5196 BB->addSuccessor(loop1MBB); 5197 BB->addSuccessor(exitMBB); 5198 5199 BB = midMBB; 5200 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5201 .addReg(ZeroReg).addReg(PtrReg); 5202 BB->addSuccessor(exitMBB); 5203 5204 // exitMBB: 5205 // ... 5206 BB = exitMBB; 5207 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5208 .addReg(ShiftReg); 5209 } else { 5210 llvm_unreachable("Unexpected instr type to insert"); 5211 } 5212 5213 MI->eraseFromParent(); // The pseudo instruction is gone now. 5214 return BB; 5215 } 5216 5217 //===----------------------------------------------------------------------===// 5218 // Target Optimization Hooks 5219 //===----------------------------------------------------------------------===// 5220 5221 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5222 DAGCombinerInfo &DCI) const { 5223 const TargetMachine &TM = getTargetMachine(); 5224 SelectionDAG &DAG = DCI.DAG; 5225 DebugLoc dl = N->getDebugLoc(); 5226 switch (N->getOpcode()) { 5227 default: break; 5228 case PPCISD::SHL: 5229 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5230 if (C->isNullValue()) // 0 << V -> 0. 5231 return N->getOperand(0); 5232 } 5233 break; 5234 case PPCISD::SRL: 5235 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5236 if (C->isNullValue()) // 0 >>u V -> 0. 5237 return N->getOperand(0); 5238 } 5239 break; 5240 case PPCISD::SRA: 5241 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5242 if (C->isNullValue() || // 0 >>s V -> 0. 5243 C->isAllOnesValue()) // -1 >>s V -> -1. 5244 return N->getOperand(0); 5245 } 5246 break; 5247 5248 case ISD::SINT_TO_FP: 5249 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5250 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5251 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5252 // We allow the src/dst to be either f32/f64, but the intermediate 5253 // type must be i64. 5254 if (N->getOperand(0).getValueType() == MVT::i64 && 5255 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5256 SDValue Val = N->getOperand(0).getOperand(0); 5257 if (Val.getValueType() == MVT::f32) { 5258 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5259 DCI.AddToWorklist(Val.getNode()); 5260 } 5261 5262 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5263 DCI.AddToWorklist(Val.getNode()); 5264 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5265 DCI.AddToWorklist(Val.getNode()); 5266 if (N->getValueType(0) == MVT::f32) { 5267 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5268 DAG.getIntPtrConstant(0)); 5269 DCI.AddToWorklist(Val.getNode()); 5270 } 5271 return Val; 5272 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5273 // If the intermediate type is i32, we can avoid the load/store here 5274 // too. 5275 } 5276 } 5277 } 5278 break; 5279 case ISD::STORE: 5280 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5281 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5282 !cast<StoreSDNode>(N)->isTruncatingStore() && 5283 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5284 N->getOperand(1).getValueType() == MVT::i32 && 5285 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5286 SDValue Val = N->getOperand(1).getOperand(0); 5287 if (Val.getValueType() == MVT::f32) { 5288 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5289 DCI.AddToWorklist(Val.getNode()); 5290 } 5291 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5292 DCI.AddToWorklist(Val.getNode()); 5293 5294 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5295 N->getOperand(2), N->getOperand(3)); 5296 DCI.AddToWorklist(Val.getNode()); 5297 return Val; 5298 } 5299 5300 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5301 if (cast<StoreSDNode>(N)->isUnindexed() && 5302 N->getOperand(1).getOpcode() == ISD::BSWAP && 5303 N->getOperand(1).getNode()->hasOneUse() && 5304 (N->getOperand(1).getValueType() == MVT::i32 || 5305 N->getOperand(1).getValueType() == MVT::i16)) { 5306 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5307 // Do an any-extend to 32-bits if this is a half-word input. 5308 if (BSwapOp.getValueType() == MVT::i16) 5309 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5310 5311 SDValue Ops[] = { 5312 N->getOperand(0), BSwapOp, N->getOperand(2), 5313 DAG.getValueType(N->getOperand(1).getValueType()) 5314 }; 5315 return 5316 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5317 Ops, array_lengthof(Ops), 5318 cast<StoreSDNode>(N)->getMemoryVT(), 5319 cast<StoreSDNode>(N)->getMemOperand()); 5320 } 5321 break; 5322 case ISD::BSWAP: 5323 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5324 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5325 N->getOperand(0).hasOneUse() && 5326 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5327 SDValue Load = N->getOperand(0); 5328 LoadSDNode *LD = cast<LoadSDNode>(Load); 5329 // Create the byte-swapping load. 5330 SDValue Ops[] = { 5331 LD->getChain(), // Chain 5332 LD->getBasePtr(), // Ptr 5333 DAG.getValueType(N->getValueType(0)) // VT 5334 }; 5335 SDValue BSLoad = 5336 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5337 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5338 LD->getMemoryVT(), LD->getMemOperand()); 5339 5340 // If this is an i16 load, insert the truncate. 5341 SDValue ResVal = BSLoad; 5342 if (N->getValueType(0) == MVT::i16) 5343 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5344 5345 // First, combine the bswap away. This makes the value produced by the 5346 // load dead. 5347 DCI.CombineTo(N, ResVal); 5348 5349 // Next, combine the load away, we give it a bogus result value but a real 5350 // chain result. The result value is dead because the bswap is dead. 5351 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5352 5353 // Return N so it doesn't get rechecked! 5354 return SDValue(N, 0); 5355 } 5356 5357 break; 5358 case PPCISD::VCMP: { 5359 // If a VCMPo node already exists with exactly the same operands as this 5360 // node, use its result instead of this node (VCMPo computes both a CR6 and 5361 // a normal output). 5362 // 5363 if (!N->getOperand(0).hasOneUse() && 5364 !N->getOperand(1).hasOneUse() && 5365 !N->getOperand(2).hasOneUse()) { 5366 5367 // Scan all of the users of the LHS, looking for VCMPo's that match. 5368 SDNode *VCMPoNode = 0; 5369 5370 SDNode *LHSN = N->getOperand(0).getNode(); 5371 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5372 UI != E; ++UI) 5373 if (UI->getOpcode() == PPCISD::VCMPo && 5374 UI->getOperand(1) == N->getOperand(1) && 5375 UI->getOperand(2) == N->getOperand(2) && 5376 UI->getOperand(0) == N->getOperand(0)) { 5377 VCMPoNode = *UI; 5378 break; 5379 } 5380 5381 // If there is no VCMPo node, or if the flag value has a single use, don't 5382 // transform this. 5383 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5384 break; 5385 5386 // Look at the (necessarily single) use of the flag value. If it has a 5387 // chain, this transformation is more complex. Note that multiple things 5388 // could use the value result, which we should ignore. 5389 SDNode *FlagUser = 0; 5390 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5391 FlagUser == 0; ++UI) { 5392 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5393 SDNode *User = *UI; 5394 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5395 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5396 FlagUser = User; 5397 break; 5398 } 5399 } 5400 } 5401 5402 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5403 // give up for right now. 5404 if (FlagUser->getOpcode() == PPCISD::MFCR) 5405 return SDValue(VCMPoNode, 0); 5406 } 5407 break; 5408 } 5409 case ISD::BR_CC: { 5410 // If this is a branch on an altivec predicate comparison, lower this so 5411 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5412 // lowering is done pre-legalize, because the legalizer lowers the predicate 5413 // compare down to code that is difficult to reassemble. 5414 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5415 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5416 int CompareOpc; 5417 bool isDot; 5418 5419 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5420 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5421 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5422 assert(isDot && "Can't compare against a vector result!"); 5423 5424 // If this is a comparison against something other than 0/1, then we know 5425 // that the condition is never/always true. 5426 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5427 if (Val != 0 && Val != 1) { 5428 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5429 return N->getOperand(0); 5430 // Always !=, turn it into an unconditional branch. 5431 return DAG.getNode(ISD::BR, dl, MVT::Other, 5432 N->getOperand(0), N->getOperand(4)); 5433 } 5434 5435 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5436 5437 // Create the PPCISD altivec 'dot' comparison node. 5438 std::vector<EVT> VTs; 5439 SDValue Ops[] = { 5440 LHS.getOperand(2), // LHS of compare 5441 LHS.getOperand(3), // RHS of compare 5442 DAG.getConstant(CompareOpc, MVT::i32) 5443 }; 5444 VTs.push_back(LHS.getOperand(2).getValueType()); 5445 VTs.push_back(MVT::Glue); 5446 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5447 5448 // Unpack the result based on how the target uses it. 5449 PPC::Predicate CompOpc; 5450 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5451 default: // Can't happen, don't crash on invalid number though. 5452 case 0: // Branch on the value of the EQ bit of CR6. 5453 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5454 break; 5455 case 1: // Branch on the inverted value of the EQ bit of CR6. 5456 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5457 break; 5458 case 2: // Branch on the value of the LT bit of CR6. 5459 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5460 break; 5461 case 3: // Branch on the inverted value of the LT bit of CR6. 5462 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5463 break; 5464 } 5465 5466 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5467 DAG.getConstant(CompOpc, MVT::i32), 5468 DAG.getRegister(PPC::CR6, MVT::i32), 5469 N->getOperand(4), CompNode.getValue(1)); 5470 } 5471 break; 5472 } 5473 } 5474 5475 return SDValue(); 5476 } 5477 5478 //===----------------------------------------------------------------------===// 5479 // Inline Assembly Support 5480 //===----------------------------------------------------------------------===// 5481 5482 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5483 const APInt &Mask, 5484 APInt &KnownZero, 5485 APInt &KnownOne, 5486 const SelectionDAG &DAG, 5487 unsigned Depth) const { 5488 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5489 switch (Op.getOpcode()) { 5490 default: break; 5491 case PPCISD::LBRX: { 5492 // lhbrx is known to have the top bits cleared out. 5493 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5494 KnownZero = 0xFFFF0000; 5495 break; 5496 } 5497 case ISD::INTRINSIC_WO_CHAIN: { 5498 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5499 default: break; 5500 case Intrinsic::ppc_altivec_vcmpbfp_p: 5501 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5502 case Intrinsic::ppc_altivec_vcmpequb_p: 5503 case Intrinsic::ppc_altivec_vcmpequh_p: 5504 case Intrinsic::ppc_altivec_vcmpequw_p: 5505 case Intrinsic::ppc_altivec_vcmpgefp_p: 5506 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5507 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5508 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5509 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5510 case Intrinsic::ppc_altivec_vcmpgtub_p: 5511 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5512 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5513 KnownZero = ~1U; // All bits but the low one are known to be zero. 5514 break; 5515 } 5516 } 5517 } 5518 } 5519 5520 5521 /// getConstraintType - Given a constraint, return the type of 5522 /// constraint it is for this target. 5523 PPCTargetLowering::ConstraintType 5524 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5525 if (Constraint.size() == 1) { 5526 switch (Constraint[0]) { 5527 default: break; 5528 case 'b': 5529 case 'r': 5530 case 'f': 5531 case 'v': 5532 case 'y': 5533 return C_RegisterClass; 5534 } 5535 } 5536 return TargetLowering::getConstraintType(Constraint); 5537 } 5538 5539 /// Examine constraint type and operand type and determine a weight value. 5540 /// This object must already have been set up with the operand type 5541 /// and the current alternative constraint selected. 5542 TargetLowering::ConstraintWeight 5543 PPCTargetLowering::getSingleConstraintMatchWeight( 5544 AsmOperandInfo &info, const char *constraint) const { 5545 ConstraintWeight weight = CW_Invalid; 5546 Value *CallOperandVal = info.CallOperandVal; 5547 // If we don't have a value, we can't do a match, 5548 // but allow it at the lowest weight. 5549 if (CallOperandVal == NULL) 5550 return CW_Default; 5551 Type *type = CallOperandVal->getType(); 5552 // Look at the constraint type. 5553 switch (*constraint) { 5554 default: 5555 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5556 break; 5557 case 'b': 5558 if (type->isIntegerTy()) 5559 weight = CW_Register; 5560 break; 5561 case 'f': 5562 if (type->isFloatTy()) 5563 weight = CW_Register; 5564 break; 5565 case 'd': 5566 if (type->isDoubleTy()) 5567 weight = CW_Register; 5568 break; 5569 case 'v': 5570 if (type->isVectorTy()) 5571 weight = CW_Register; 5572 break; 5573 case 'y': 5574 weight = CW_Register; 5575 break; 5576 } 5577 return weight; 5578 } 5579 5580 std::pair<unsigned, const TargetRegisterClass*> 5581 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5582 EVT VT) const { 5583 if (Constraint.size() == 1) { 5584 // GCC RS6000 Constraint Letters 5585 switch (Constraint[0]) { 5586 case 'b': // R1-R31 5587 case 'r': // R0-R31 5588 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5589 return std::make_pair(0U, PPC::G8RCRegisterClass); 5590 return std::make_pair(0U, PPC::GPRCRegisterClass); 5591 case 'f': 5592 if (VT == MVT::f32) 5593 return std::make_pair(0U, PPC::F4RCRegisterClass); 5594 else if (VT == MVT::f64) 5595 return std::make_pair(0U, PPC::F8RCRegisterClass); 5596 break; 5597 case 'v': 5598 return std::make_pair(0U, PPC::VRRCRegisterClass); 5599 case 'y': // crrc 5600 return std::make_pair(0U, PPC::CRRCRegisterClass); 5601 } 5602 } 5603 5604 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5605 } 5606 5607 5608 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5609 /// vector. If it is invalid, don't add anything to Ops. 5610 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5611 std::string &Constraint, 5612 std::vector<SDValue>&Ops, 5613 SelectionDAG &DAG) const { 5614 SDValue Result(0,0); 5615 5616 // Only support length 1 constraints. 5617 if (Constraint.length() > 1) return; 5618 5619 char Letter = Constraint[0]; 5620 switch (Letter) { 5621 default: break; 5622 case 'I': 5623 case 'J': 5624 case 'K': 5625 case 'L': 5626 case 'M': 5627 case 'N': 5628 case 'O': 5629 case 'P': { 5630 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5631 if (!CST) return; // Must be an immediate to match. 5632 unsigned Value = CST->getZExtValue(); 5633 switch (Letter) { 5634 default: llvm_unreachable("Unknown constraint letter!"); 5635 case 'I': // "I" is a signed 16-bit constant. 5636 if ((short)Value == (int)Value) 5637 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5638 break; 5639 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5640 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5641 if ((short)Value == 0) 5642 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5643 break; 5644 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5645 if ((Value >> 16) == 0) 5646 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5647 break; 5648 case 'M': // "M" is a constant that is greater than 31. 5649 if (Value > 31) 5650 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5651 break; 5652 case 'N': // "N" is a positive constant that is an exact power of two. 5653 if ((int)Value > 0 && isPowerOf2_32(Value)) 5654 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5655 break; 5656 case 'O': // "O" is the constant zero. 5657 if (Value == 0) 5658 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5659 break; 5660 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5661 if ((short)-Value == (int)-Value) 5662 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5663 break; 5664 } 5665 break; 5666 } 5667 } 5668 5669 if (Result.getNode()) { 5670 Ops.push_back(Result); 5671 return; 5672 } 5673 5674 // Handle standard constraint letters. 5675 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5676 } 5677 5678 // isLegalAddressingMode - Return true if the addressing mode represented 5679 // by AM is legal for this target, for a load/store of the specified type. 5680 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5681 Type *Ty) const { 5682 // FIXME: PPC does not allow r+i addressing modes for vectors! 5683 5684 // PPC allows a sign-extended 16-bit immediate field. 5685 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5686 return false; 5687 5688 // No global is ever allowed as a base. 5689 if (AM.BaseGV) 5690 return false; 5691 5692 // PPC only support r+r, 5693 switch (AM.Scale) { 5694 case 0: // "r+i" or just "i", depending on HasBaseReg. 5695 break; 5696 case 1: 5697 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5698 return false; 5699 // Otherwise we have r+r or r+i. 5700 break; 5701 case 2: 5702 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5703 return false; 5704 // Allow 2*r as r+r. 5705 break; 5706 default: 5707 // No other scales are supported. 5708 return false; 5709 } 5710 5711 return true; 5712 } 5713 5714 /// isLegalAddressImmediate - Return true if the integer value can be used 5715 /// as the offset of the target addressing mode for load / store of the 5716 /// given type. 5717 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 5718 // PPC allows a sign-extended 16-bit immediate field. 5719 return (V > -(1 << 16) && V < (1 << 16)-1); 5720 } 5721 5722 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5723 return false; 5724 } 5725 5726 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5727 SelectionDAG &DAG) const { 5728 MachineFunction &MF = DAG.getMachineFunction(); 5729 MachineFrameInfo *MFI = MF.getFrameInfo(); 5730 MFI->setReturnAddressIsTaken(true); 5731 5732 DebugLoc dl = Op.getDebugLoc(); 5733 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5734 5735 // Make sure the function does not optimize away the store of the RA to 5736 // the stack. 5737 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5738 FuncInfo->setLRStoreRequired(); 5739 bool isPPC64 = PPCSubTarget.isPPC64(); 5740 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5741 5742 if (Depth > 0) { 5743 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5744 SDValue Offset = 5745 5746 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5747 isPPC64? MVT::i64 : MVT::i32); 5748 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5749 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5750 FrameAddr, Offset), 5751 MachinePointerInfo(), false, false, false, 0); 5752 } 5753 5754 // Just load the return address off the stack. 5755 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5756 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5757 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 5758 } 5759 5760 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5761 SelectionDAG &DAG) const { 5762 DebugLoc dl = Op.getDebugLoc(); 5763 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5764 5765 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5766 bool isPPC64 = PtrVT == MVT::i64; 5767 5768 MachineFunction &MF = DAG.getMachineFunction(); 5769 MachineFrameInfo *MFI = MF.getFrameInfo(); 5770 MFI->setFrameAddressIsTaken(true); 5771 bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || 5772 MFI->hasVarSizedObjects()) && 5773 MFI->getStackSize() && 5774 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5775 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5776 (is31 ? PPC::R31 : PPC::R1); 5777 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5778 PtrVT); 5779 while (Depth--) 5780 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5781 FrameAddr, MachinePointerInfo(), false, false, 5782 false, 0); 5783 return FrameAddr; 5784 } 5785 5786 bool 5787 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5788 // The PowerPC target isn't yet aware of offsets. 5789 return false; 5790 } 5791 5792 /// getOptimalMemOpType - Returns the target specific optimal type for load 5793 /// and store operations as a result of memset, memcpy, and memmove 5794 /// lowering. If DstAlign is zero that means it's safe to destination 5795 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5796 /// means there isn't a need to check it against alignment requirement, 5797 /// probably because the source does not need to be loaded. If 5798 /// 'IsZeroVal' is true, that means it's safe to return a 5799 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 5800 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5801 /// constant so it does not need to be loaded. 5802 /// It returns EVT::Other if the type should be determined using generic 5803 /// target-independent logic. 5804 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5805 unsigned DstAlign, unsigned SrcAlign, 5806 bool IsZeroVal, 5807 bool MemcpyStrSrc, 5808 MachineFunction &MF) const { 5809 if (this->PPCSubTarget.isPPC64()) { 5810 return MVT::i64; 5811 } else { 5812 return MVT::i32; 5813 } 5814 } 5815