1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 121 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 122 123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 124 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 125 126 STATISTIC(NumTailCalls, "Number of tail calls"); 127 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 128 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 if (Subtarget.isISA3_0()) { 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 172 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 174 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 175 } else { 176 // No extending loads from f16 or HW conversions back and forth. 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 178 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 179 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 181 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 182 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 183 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 184 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 185 } 186 187 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 188 189 // PowerPC has pre-inc load and store's. 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 200 if (!Subtarget.hasSPE()) { 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 205 } 206 207 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 208 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 209 for (MVT VT : ScalarIntVTs) { 210 setOperationAction(ISD::ADDC, VT, Legal); 211 setOperationAction(ISD::ADDE, VT, Legal); 212 setOperationAction(ISD::SUBC, VT, Legal); 213 setOperationAction(ISD::SUBE, VT, Legal); 214 } 215 216 if (Subtarget.useCRBits()) { 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 218 219 if (isPPC64 || Subtarget.hasFPCVT()) { 220 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 221 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 222 isPPC64 ? MVT::i64 : MVT::i32); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 224 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 225 isPPC64 ? MVT::i64 : MVT::i32); 226 } else { 227 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 228 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 229 } 230 231 // PowerPC does not support direct load/store of condition registers. 232 setOperationAction(ISD::LOAD, MVT::i1, Custom); 233 setOperationAction(ISD::STORE, MVT::i1, Custom); 234 235 // FIXME: Remove this once the ANDI glue bug is fixed: 236 if (ANDIGlueBug) 237 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 238 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setTruncStoreAction(VT, MVT::i1, Expand); 243 } 244 245 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 246 } 247 248 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 249 // PPC (the libcall is not available). 250 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 251 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 252 253 // We do not currently implement these libm ops for PowerPC. 254 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 260 261 // PowerPC has no SREM/UREM instructions unless we are on P9 262 // On P9 we may use a hardware instruction to compute the remainder. 263 // The instructions are not legalized directly because in the cases where the 264 // result of both the remainder and the division is required it is more 265 // efficient to compute the remainder from the result of the division rather 266 // than use the remainder instruction. 267 if (Subtarget.isISA3_0()) { 268 setOperationAction(ISD::SREM, MVT::i32, Custom); 269 setOperationAction(ISD::UREM, MVT::i32, Custom); 270 setOperationAction(ISD::SREM, MVT::i64, Custom); 271 setOperationAction(ISD::UREM, MVT::i64, Custom); 272 } else { 273 setOperationAction(ISD::SREM, MVT::i32, Expand); 274 setOperationAction(ISD::UREM, MVT::i32, Expand); 275 setOperationAction(ISD::SREM, MVT::i64, Expand); 276 setOperationAction(ISD::UREM, MVT::i64, Expand); 277 } 278 279 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 280 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 282 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 284 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 288 289 // Handle constrained floating-point operations of scalar. 290 // TODO: Handle SPE specific operation. 291 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 295 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 296 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 297 298 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 300 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 301 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 302 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 303 if (Subtarget.hasVSX()) 304 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 305 306 if (Subtarget.hasFSQRT()) { 307 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 313 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 314 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 315 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 316 317 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 319 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 320 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 321 } 322 323 // We don't support sin/cos/sqrt/fmod/pow 324 setOperationAction(ISD::FSIN , MVT::f64, Expand); 325 setOperationAction(ISD::FCOS , MVT::f64, Expand); 326 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 327 setOperationAction(ISD::FREM , MVT::f64, Expand); 328 setOperationAction(ISD::FPOW , MVT::f64, Expand); 329 setOperationAction(ISD::FSIN , MVT::f32, Expand); 330 setOperationAction(ISD::FCOS , MVT::f32, Expand); 331 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 332 setOperationAction(ISD::FREM , MVT::f32, Expand); 333 setOperationAction(ISD::FPOW , MVT::f32, Expand); 334 if (Subtarget.hasSPE()) { 335 setOperationAction(ISD::FMA , MVT::f64, Expand); 336 setOperationAction(ISD::FMA , MVT::f32, Expand); 337 } else { 338 setOperationAction(ISD::FMA , MVT::f64, Legal); 339 setOperationAction(ISD::FMA , MVT::f32, Legal); 340 } 341 342 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 343 344 // If we're enabling GP optimizations, use hardware square root 345 if (!Subtarget.hasFSQRT() && 346 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 347 Subtarget.hasFRE())) 348 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 349 350 if (!Subtarget.hasFSQRT() && 351 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 352 Subtarget.hasFRES())) 353 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 354 355 if (Subtarget.hasFCPSGN()) { 356 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 357 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 358 } else { 359 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 361 } 362 363 if (Subtarget.hasFPRND()) { 364 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 365 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 366 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 367 setOperationAction(ISD::FROUND, MVT::f64, Legal); 368 369 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 370 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 371 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 372 setOperationAction(ISD::FROUND, MVT::f32, Legal); 373 } 374 375 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 376 // to speed up scalar BSWAP64. 377 // CTPOP or CTTZ were introduced in P8/P9 respectively 378 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 379 if (Subtarget.hasP9Vector()) 380 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 381 else 382 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 383 if (Subtarget.isISA3_0()) { 384 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 385 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 386 } else { 387 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 388 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 389 } 390 391 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 392 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 393 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 394 } else { 395 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 396 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 397 } 398 399 // PowerPC does not have ROTR 400 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 401 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 402 403 if (!Subtarget.useCRBits()) { 404 // PowerPC does not have Select 405 setOperationAction(ISD::SELECT, MVT::i32, Expand); 406 setOperationAction(ISD::SELECT, MVT::i64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT, MVT::f64, Expand); 409 } 410 411 // PowerPC wants to turn select_cc of FP into fsel when possible. 412 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 413 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 414 415 // PowerPC wants to optimize integer setcc a bit 416 if (!Subtarget.useCRBits()) 417 setOperationAction(ISD::SETCC, MVT::i32, Custom); 418 419 // PowerPC does not have BRCOND which requires SetCC 420 if (!Subtarget.useCRBits()) 421 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 422 423 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 424 425 if (Subtarget.hasSPE()) { 426 // SPE has built-in conversions 427 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 428 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 429 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 430 } else { 431 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 432 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 433 434 // PowerPC does not have [U|S]INT_TO_FP 435 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 436 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 437 } 438 439 if (Subtarget.hasDirectMove() && isPPC64) { 440 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 441 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 442 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 443 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 444 if (TM.Options.UnsafeFPMath) { 445 setOperationAction(ISD::LRINT, MVT::f64, Legal); 446 setOperationAction(ISD::LRINT, MVT::f32, Legal); 447 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 448 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 449 setOperationAction(ISD::LROUND, MVT::f64, Legal); 450 setOperationAction(ISD::LROUND, MVT::f32, Legal); 451 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 452 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 453 } 454 } else { 455 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 456 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 457 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 458 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 459 } 460 461 // We cannot sextinreg(i1). Expand to shifts. 462 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 463 464 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 465 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 466 // support continuation, user-level threading, and etc.. As a result, no 467 // other SjLj exception interfaces are implemented and please don't build 468 // your own exception handling based on them. 469 // LLVM/Clang supports zero-cost DWARF exception handling. 470 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 471 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 472 473 // We want to legalize GlobalAddress and ConstantPool nodes into the 474 // appropriate instructions to materialize the address. 475 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 476 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 477 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 478 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 479 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 480 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 481 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 482 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 483 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 484 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 485 486 // TRAP is legal. 487 setOperationAction(ISD::TRAP, MVT::Other, Legal); 488 489 // TRAMPOLINE is custom lowered. 490 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 491 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 492 493 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 494 setOperationAction(ISD::VASTART , MVT::Other, Custom); 495 496 if (Subtarget.is64BitELFABI()) { 497 // VAARG always uses double-word chunks, so promote anything smaller. 498 setOperationAction(ISD::VAARG, MVT::i1, Promote); 499 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 500 setOperationAction(ISD::VAARG, MVT::i8, Promote); 501 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 502 setOperationAction(ISD::VAARG, MVT::i16, Promote); 503 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 504 setOperationAction(ISD::VAARG, MVT::i32, Promote); 505 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 506 setOperationAction(ISD::VAARG, MVT::Other, Expand); 507 } else if (Subtarget.is32BitELFABI()) { 508 // VAARG is custom lowered with the 32-bit SVR4 ABI. 509 setOperationAction(ISD::VAARG, MVT::Other, Custom); 510 setOperationAction(ISD::VAARG, MVT::i64, Custom); 511 } else 512 setOperationAction(ISD::VAARG, MVT::Other, Expand); 513 514 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 515 if (Subtarget.is32BitELFABI()) 516 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 517 else 518 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 519 520 // Use the default implementation. 521 setOperationAction(ISD::VAEND , MVT::Other, Expand); 522 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 523 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 524 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 525 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 526 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 527 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 528 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 529 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 530 531 // We want to custom lower some of our intrinsics. 532 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 533 534 // To handle counter-based loop conditions. 535 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 536 537 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 538 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 539 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 540 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 541 542 // Comparisons that require checking two conditions. 543 if (Subtarget.hasSPE()) { 544 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 545 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 546 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 547 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 548 } 549 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 550 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 551 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 552 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 553 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 554 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 555 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 556 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 557 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 558 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 559 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 560 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 561 562 if (Subtarget.has64BitSupport()) { 563 // They also have instructions for converting between i64 and fp. 564 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 565 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 566 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 567 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 568 // This is just the low 32 bits of a (signed) fp->i64 conversion. 569 // We cannot do this with Promote because i64 is not a legal type. 570 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 571 572 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 573 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 574 } else { 575 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 576 if (Subtarget.hasSPE()) 577 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 578 else 579 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 580 } 581 582 // With the instructions enabled under FPCVT, we can do everything. 583 if (Subtarget.hasFPCVT()) { 584 if (Subtarget.has64BitSupport()) { 585 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 586 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 587 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 588 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 589 } 590 591 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 592 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 593 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 594 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 595 } 596 597 if (Subtarget.use64BitRegs()) { 598 // 64-bit PowerPC implementations can support i64 types directly 599 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 600 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 601 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 602 // 64-bit PowerPC wants to expand i128 shifts itself. 603 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 604 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 605 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 606 } else { 607 // 32-bit PowerPC wants to expand i64 shifts itself. 608 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 609 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 610 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 611 } 612 613 if (Subtarget.hasVSX()) { 614 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 615 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 616 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 617 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 618 } 619 620 if (Subtarget.hasAltivec()) { 621 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 622 setOperationAction(ISD::SADDSAT, VT, Legal); 623 setOperationAction(ISD::SSUBSAT, VT, Legal); 624 setOperationAction(ISD::UADDSAT, VT, Legal); 625 setOperationAction(ISD::USUBSAT, VT, Legal); 626 } 627 // First set operation action for all vector types to expand. Then we 628 // will selectively turn on ones that can be effectively codegen'd. 629 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 630 // add/sub are legal for all supported vector VT's. 631 setOperationAction(ISD::ADD, VT, Legal); 632 setOperationAction(ISD::SUB, VT, Legal); 633 634 // For v2i64, these are only valid with P8Vector. This is corrected after 635 // the loop. 636 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 637 setOperationAction(ISD::SMAX, VT, Legal); 638 setOperationAction(ISD::SMIN, VT, Legal); 639 setOperationAction(ISD::UMAX, VT, Legal); 640 setOperationAction(ISD::UMIN, VT, Legal); 641 } 642 else { 643 setOperationAction(ISD::SMAX, VT, Expand); 644 setOperationAction(ISD::SMIN, VT, Expand); 645 setOperationAction(ISD::UMAX, VT, Expand); 646 setOperationAction(ISD::UMIN, VT, Expand); 647 } 648 649 if (Subtarget.hasVSX()) { 650 setOperationAction(ISD::FMAXNUM, VT, Legal); 651 setOperationAction(ISD::FMINNUM, VT, Legal); 652 } 653 654 // Vector instructions introduced in P8 655 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 656 setOperationAction(ISD::CTPOP, VT, Legal); 657 setOperationAction(ISD::CTLZ, VT, Legal); 658 } 659 else { 660 setOperationAction(ISD::CTPOP, VT, Expand); 661 setOperationAction(ISD::CTLZ, VT, Expand); 662 } 663 664 // Vector instructions introduced in P9 665 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 666 setOperationAction(ISD::CTTZ, VT, Legal); 667 else 668 setOperationAction(ISD::CTTZ, VT, Expand); 669 670 // We promote all shuffles to v16i8. 671 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 672 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 673 674 // We promote all non-typed operations to v4i32. 675 setOperationAction(ISD::AND , VT, Promote); 676 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 677 setOperationAction(ISD::OR , VT, Promote); 678 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 679 setOperationAction(ISD::XOR , VT, Promote); 680 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 681 setOperationAction(ISD::LOAD , VT, Promote); 682 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 683 setOperationAction(ISD::SELECT, VT, Promote); 684 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 685 setOperationAction(ISD::VSELECT, VT, Legal); 686 setOperationAction(ISD::SELECT_CC, VT, Promote); 687 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 688 setOperationAction(ISD::STORE, VT, Promote); 689 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 690 691 // No other operations are legal. 692 setOperationAction(ISD::MUL , VT, Expand); 693 setOperationAction(ISD::SDIV, VT, Expand); 694 setOperationAction(ISD::SREM, VT, Expand); 695 setOperationAction(ISD::UDIV, VT, Expand); 696 setOperationAction(ISD::UREM, VT, Expand); 697 setOperationAction(ISD::FDIV, VT, Expand); 698 setOperationAction(ISD::FREM, VT, Expand); 699 setOperationAction(ISD::FNEG, VT, Expand); 700 setOperationAction(ISD::FSQRT, VT, Expand); 701 setOperationAction(ISD::FLOG, VT, Expand); 702 setOperationAction(ISD::FLOG10, VT, Expand); 703 setOperationAction(ISD::FLOG2, VT, Expand); 704 setOperationAction(ISD::FEXP, VT, Expand); 705 setOperationAction(ISD::FEXP2, VT, Expand); 706 setOperationAction(ISD::FSIN, VT, Expand); 707 setOperationAction(ISD::FCOS, VT, Expand); 708 setOperationAction(ISD::FABS, VT, Expand); 709 setOperationAction(ISD::FFLOOR, VT, Expand); 710 setOperationAction(ISD::FCEIL, VT, Expand); 711 setOperationAction(ISD::FTRUNC, VT, Expand); 712 setOperationAction(ISD::FRINT, VT, Expand); 713 setOperationAction(ISD::FNEARBYINT, VT, Expand); 714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 715 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 716 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 717 setOperationAction(ISD::MULHU, VT, Expand); 718 setOperationAction(ISD::MULHS, VT, Expand); 719 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 720 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 721 setOperationAction(ISD::UDIVREM, VT, Expand); 722 setOperationAction(ISD::SDIVREM, VT, Expand); 723 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 724 setOperationAction(ISD::FPOW, VT, Expand); 725 setOperationAction(ISD::BSWAP, VT, Expand); 726 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 727 setOperationAction(ISD::ROTL, VT, Expand); 728 setOperationAction(ISD::ROTR, VT, Expand); 729 730 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 731 setTruncStoreAction(VT, InnerVT, Expand); 732 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 733 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 734 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 735 } 736 } 737 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 738 if (!Subtarget.hasP8Vector()) { 739 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 740 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 741 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 742 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 743 } 744 745 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 746 setOperationAction(ISD::ABS, VT, Custom); 747 748 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 749 // with merges, splats, etc. 750 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 751 752 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 753 // are cheap, so handle them before they get expanded to scalar. 754 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 755 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 756 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 757 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 758 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 759 760 setOperationAction(ISD::AND , MVT::v4i32, Legal); 761 setOperationAction(ISD::OR , MVT::v4i32, Legal); 762 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 763 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 764 setOperationAction(ISD::SELECT, MVT::v4i32, 765 Subtarget.useCRBits() ? Legal : Expand); 766 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 767 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 768 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 769 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 770 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 771 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 772 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 773 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 774 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 775 776 // Without hasP8Altivec set, v2i64 SMAX isn't available. 777 // But ABS custom lowering requires SMAX support. 778 if (!Subtarget.hasP8Altivec()) 779 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 780 781 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 782 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 783 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 784 if (Subtarget.hasAltivec()) 785 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 786 setOperationAction(ISD::ROTL, VT, Legal); 787 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 788 if (Subtarget.hasP8Altivec()) 789 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 790 791 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 792 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 793 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 794 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 795 796 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 797 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 798 799 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 800 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 801 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 802 } 803 804 if (Subtarget.hasP8Altivec()) 805 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 806 else 807 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 808 809 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 810 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 811 812 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 813 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 814 815 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 816 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 817 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 818 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 819 820 // Altivec does not contain unordered floating-point compare instructions 821 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 822 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 823 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 824 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 825 826 if (Subtarget.hasVSX()) { 827 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 828 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 829 if (Subtarget.hasP8Vector()) { 830 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 831 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 832 } 833 if (Subtarget.hasDirectMove() && isPPC64) { 834 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 835 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 836 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 837 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 838 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 839 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 840 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 841 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 842 } 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 844 845 // The nearbyint variants are not allowed to raise the inexact exception 846 // so we can only code-gen them with unsafe math. 847 if (TM.Options.UnsafeFPMath) { 848 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 849 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 850 } 851 852 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 853 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 854 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 855 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 856 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 857 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 858 setOperationAction(ISD::FROUND, MVT::f64, Legal); 859 setOperationAction(ISD::FRINT, MVT::f64, Legal); 860 861 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 862 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 863 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 864 setOperationAction(ISD::FROUND, MVT::f32, Legal); 865 setOperationAction(ISD::FRINT, MVT::f32, Legal); 866 867 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 868 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 869 870 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 871 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 872 873 // Share the Altivec comparison restrictions. 874 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 875 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 876 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 877 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 878 879 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 880 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 881 882 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 883 884 if (Subtarget.hasP8Vector()) 885 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 886 887 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 888 889 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 890 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 891 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 892 893 if (Subtarget.hasP8Altivec()) { 894 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 895 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 896 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 897 898 // 128 bit shifts can be accomplished via 3 instructions for SHL and 899 // SRL, but not for SRA because of the instructions available: 900 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 901 // doing 902 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 903 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 904 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 905 906 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 907 } 908 else { 909 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 910 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 911 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 912 913 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 914 915 // VSX v2i64 only supports non-arithmetic operations. 916 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 917 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 918 } 919 920 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 921 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 922 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 923 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 924 925 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 926 927 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 928 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 929 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 930 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 931 932 // Custom handling for partial vectors of integers converted to 933 // floating point. We already have optimal handling for v2i32 through 934 // the DAG combine, so those aren't necessary. 935 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 936 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 937 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 938 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 939 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 940 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 941 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 942 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 943 944 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 945 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 946 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 947 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 948 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 949 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 950 951 if (Subtarget.hasDirectMove()) 952 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 953 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 954 955 // Handle constrained floating-point operations of vector. 956 // The predictor is `hasVSX` because altivec instruction has 957 // no exception but VSX vector instruction has. 958 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 959 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 960 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 961 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 962 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 963 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 964 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 965 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 966 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 967 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 968 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 969 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 970 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 971 972 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 973 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 974 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 975 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 976 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 977 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 978 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 979 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 980 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 981 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 982 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 983 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 984 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 985 986 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 987 } 988 989 if (Subtarget.hasP8Altivec()) { 990 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 991 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 992 } 993 994 if (Subtarget.hasP9Vector()) { 995 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 996 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 997 998 // 128 bit shifts can be accomplished via 3 instructions for SHL and 999 // SRL, but not for SRA because of the instructions available: 1000 // VS{RL} and VS{RL}O. 1001 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1002 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1003 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1004 1005 if (EnableQuadPrecision) { 1006 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1007 setOperationAction(ISD::FADD, MVT::f128, Legal); 1008 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1009 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1010 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1011 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1012 // No extending loads to f128 on PPC. 1013 for (MVT FPT : MVT::fp_valuetypes()) 1014 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1015 setOperationAction(ISD::FMA, MVT::f128, Legal); 1016 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1017 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1018 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1019 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1020 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1021 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1022 1023 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1024 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1025 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1026 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1027 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1028 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1029 1030 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1031 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1032 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1033 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1034 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1035 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1036 // No implementation for these ops for PowerPC. 1037 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1038 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1039 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1040 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1041 setOperationAction(ISD::FREM, MVT::f128, Expand); 1042 1043 // Handle constrained floating-point operations of fp128 1044 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1045 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1046 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1047 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1048 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1049 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1050 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1051 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1052 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1053 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1054 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1055 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1056 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1057 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1058 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1059 } 1060 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1061 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1062 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1063 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1064 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1065 } 1066 1067 if (Subtarget.hasP9Altivec()) { 1068 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1069 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1070 1071 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1072 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1073 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1074 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1075 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1076 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1077 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1078 } 1079 } 1080 1081 if (Subtarget.hasQPX()) { 1082 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1083 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1084 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1085 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1086 1087 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1088 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1089 1090 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1091 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1092 1093 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1094 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1095 1096 if (!Subtarget.useCRBits()) 1097 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1098 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1099 1100 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1101 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1102 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1103 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1104 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1105 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1106 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1107 1108 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1109 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1110 1111 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1112 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1113 1114 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1115 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1116 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1117 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1118 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1119 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1120 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1121 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1122 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1123 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1124 1125 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1126 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1127 1128 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1129 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1130 1131 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1132 1133 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1134 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1135 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1136 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1137 1138 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1139 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1140 1141 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1142 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1143 1144 if (!Subtarget.useCRBits()) 1145 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1146 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1147 1148 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1149 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1150 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1151 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1152 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1153 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1154 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1155 1156 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1157 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1158 1159 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1160 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1161 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1162 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1163 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1164 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1165 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1166 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1167 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1168 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1169 1170 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1171 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1172 1173 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1174 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1175 1176 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1177 1178 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1179 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1180 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1181 1182 if (!Subtarget.useCRBits()) 1183 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1184 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1185 1186 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1187 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1188 1189 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1190 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1191 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1192 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1193 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1194 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1195 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1196 1197 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1198 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1199 1200 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1201 1202 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1203 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1204 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1205 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1206 1207 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1208 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1209 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1210 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1211 1212 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1213 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1214 1215 // These need to set FE_INEXACT, and so cannot be vectorized here. 1216 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1217 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1218 1219 if (TM.Options.UnsafeFPMath) { 1220 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1221 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1222 1223 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1224 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1225 } else { 1226 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1227 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1228 1229 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1230 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1231 } 1232 1233 // TODO: Handle constrained floating-point operations of v4f64 1234 } 1235 1236 if (Subtarget.has64BitSupport()) 1237 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1238 1239 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1240 1241 if (!isPPC64) { 1242 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1243 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1244 } 1245 1246 setBooleanContents(ZeroOrOneBooleanContent); 1247 1248 if (Subtarget.hasAltivec()) { 1249 // Altivec instructions set fields to all zeros or all ones. 1250 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1251 } 1252 1253 if (!isPPC64) { 1254 // These libcalls are not available in 32-bit. 1255 setLibcallName(RTLIB::SHL_I128, nullptr); 1256 setLibcallName(RTLIB::SRL_I128, nullptr); 1257 setLibcallName(RTLIB::SRA_I128, nullptr); 1258 } 1259 1260 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1261 1262 // We have target-specific dag combine patterns for the following nodes: 1263 setTargetDAGCombine(ISD::ADD); 1264 setTargetDAGCombine(ISD::SHL); 1265 setTargetDAGCombine(ISD::SRA); 1266 setTargetDAGCombine(ISD::SRL); 1267 setTargetDAGCombine(ISD::MUL); 1268 setTargetDAGCombine(ISD::FMA); 1269 setTargetDAGCombine(ISD::SINT_TO_FP); 1270 setTargetDAGCombine(ISD::BUILD_VECTOR); 1271 if (Subtarget.hasFPCVT()) 1272 setTargetDAGCombine(ISD::UINT_TO_FP); 1273 setTargetDAGCombine(ISD::LOAD); 1274 setTargetDAGCombine(ISD::STORE); 1275 setTargetDAGCombine(ISD::BR_CC); 1276 if (Subtarget.useCRBits()) 1277 setTargetDAGCombine(ISD::BRCOND); 1278 setTargetDAGCombine(ISD::BSWAP); 1279 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1280 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1281 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1282 1283 setTargetDAGCombine(ISD::SIGN_EXTEND); 1284 setTargetDAGCombine(ISD::ZERO_EXTEND); 1285 setTargetDAGCombine(ISD::ANY_EXTEND); 1286 1287 setTargetDAGCombine(ISD::TRUNCATE); 1288 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1289 1290 1291 if (Subtarget.useCRBits()) { 1292 setTargetDAGCombine(ISD::TRUNCATE); 1293 setTargetDAGCombine(ISD::SETCC); 1294 setTargetDAGCombine(ISD::SELECT_CC); 1295 } 1296 1297 // Use reciprocal estimates. 1298 if (TM.Options.UnsafeFPMath) { 1299 setTargetDAGCombine(ISD::FDIV); 1300 setTargetDAGCombine(ISD::FSQRT); 1301 } 1302 1303 if (Subtarget.hasP9Altivec()) { 1304 setTargetDAGCombine(ISD::ABS); 1305 setTargetDAGCombine(ISD::VSELECT); 1306 } 1307 1308 if (EnableQuadPrecision) { 1309 setLibcallName(RTLIB::LOG_F128, "logf128"); 1310 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1311 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1312 setLibcallName(RTLIB::EXP_F128, "expf128"); 1313 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1314 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1315 setLibcallName(RTLIB::COS_F128, "cosf128"); 1316 setLibcallName(RTLIB::POW_F128, "powf128"); 1317 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1318 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1319 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1320 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1321 } 1322 1323 // With 32 condition bits, we don't need to sink (and duplicate) compares 1324 // aggressively in CodeGenPrep. 1325 if (Subtarget.useCRBits()) { 1326 setHasMultipleConditionRegisters(); 1327 setJumpIsExpensive(); 1328 } 1329 1330 setMinFunctionAlignment(Align(4)); 1331 1332 switch (Subtarget.getCPUDirective()) { 1333 default: break; 1334 case PPC::DIR_970: 1335 case PPC::DIR_A2: 1336 case PPC::DIR_E500: 1337 case PPC::DIR_E500mc: 1338 case PPC::DIR_E5500: 1339 case PPC::DIR_PWR4: 1340 case PPC::DIR_PWR5: 1341 case PPC::DIR_PWR5X: 1342 case PPC::DIR_PWR6: 1343 case PPC::DIR_PWR6X: 1344 case PPC::DIR_PWR7: 1345 case PPC::DIR_PWR8: 1346 case PPC::DIR_PWR9: 1347 case PPC::DIR_PWR10: 1348 case PPC::DIR_PWR_FUTURE: 1349 setPrefLoopAlignment(Align(16)); 1350 setPrefFunctionAlignment(Align(16)); 1351 break; 1352 } 1353 1354 if (Subtarget.enableMachineScheduler()) 1355 setSchedulingPreference(Sched::Source); 1356 else 1357 setSchedulingPreference(Sched::Hybrid); 1358 1359 computeRegisterProperties(STI.getRegisterInfo()); 1360 1361 // The Freescale cores do better with aggressive inlining of memcpy and 1362 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1363 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1364 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1365 MaxStoresPerMemset = 32; 1366 MaxStoresPerMemsetOptSize = 16; 1367 MaxStoresPerMemcpy = 32; 1368 MaxStoresPerMemcpyOptSize = 8; 1369 MaxStoresPerMemmove = 32; 1370 MaxStoresPerMemmoveOptSize = 8; 1371 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1372 // The A2 also benefits from (very) aggressive inlining of memcpy and 1373 // friends. The overhead of a the function call, even when warm, can be 1374 // over one hundred cycles. 1375 MaxStoresPerMemset = 128; 1376 MaxStoresPerMemcpy = 128; 1377 MaxStoresPerMemmove = 128; 1378 MaxLoadsPerMemcmp = 128; 1379 } else { 1380 MaxLoadsPerMemcmp = 8; 1381 MaxLoadsPerMemcmpOptSize = 4; 1382 } 1383 1384 // Let the subtarget (CPU) decide if a predictable select is more expensive 1385 // than the corresponding branch. This information is used in CGP to decide 1386 // when to convert selects into branches. 1387 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1388 } 1389 1390 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1391 /// the desired ByVal argument alignment. 1392 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1393 unsigned MaxMaxAlign) { 1394 if (MaxAlign == MaxMaxAlign) 1395 return; 1396 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1397 if (MaxMaxAlign >= 32 && 1398 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1399 MaxAlign = 32; 1400 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1401 MaxAlign < 16) 1402 MaxAlign = 16; 1403 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1404 unsigned EltAlign = 0; 1405 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1406 if (EltAlign > MaxAlign) 1407 MaxAlign = EltAlign; 1408 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1409 for (auto *EltTy : STy->elements()) { 1410 unsigned EltAlign = 0; 1411 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1412 if (EltAlign > MaxAlign) 1413 MaxAlign = EltAlign; 1414 if (MaxAlign == MaxMaxAlign) 1415 break; 1416 } 1417 } 1418 } 1419 1420 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1421 /// function arguments in the caller parameter area. 1422 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1423 const DataLayout &DL) const { 1424 // 16byte and wider vectors are passed on 16byte boundary. 1425 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1426 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1427 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1428 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1429 return Align; 1430 } 1431 1432 bool PPCTargetLowering::useSoftFloat() const { 1433 return Subtarget.useSoftFloat(); 1434 } 1435 1436 bool PPCTargetLowering::hasSPE() const { 1437 return Subtarget.hasSPE(); 1438 } 1439 1440 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1441 return VT.isScalarInteger(); 1442 } 1443 1444 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1445 /// type is cheaper than a multiply followed by a shift. 1446 /// This is true for words and doublewords on 64-bit PowerPC. 1447 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1448 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1449 isOperationLegal(ISD::MULHU, Type))) 1450 return true; 1451 return TargetLowering::isMulhCheaperThanMulShift(Type); 1452 } 1453 1454 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1455 switch ((PPCISD::NodeType)Opcode) { 1456 case PPCISD::FIRST_NUMBER: break; 1457 case PPCISD::FSEL: return "PPCISD::FSEL"; 1458 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1459 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1460 case PPCISD::FCFID: return "PPCISD::FCFID"; 1461 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1462 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1463 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1464 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1465 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1466 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1467 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1468 case PPCISD::FP_TO_UINT_IN_VSR: 1469 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1470 case PPCISD::FP_TO_SINT_IN_VSR: 1471 return "PPCISD::FP_TO_SINT_IN_VSR"; 1472 case PPCISD::FRE: return "PPCISD::FRE"; 1473 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1474 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1475 case PPCISD::VPERM: return "PPCISD::VPERM"; 1476 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1477 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1478 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1479 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1480 case PPCISD::CMPB: return "PPCISD::CMPB"; 1481 case PPCISD::Hi: return "PPCISD::Hi"; 1482 case PPCISD::Lo: return "PPCISD::Lo"; 1483 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1484 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1485 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1486 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1487 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1488 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1489 case PPCISD::SRL: return "PPCISD::SRL"; 1490 case PPCISD::SRA: return "PPCISD::SRA"; 1491 case PPCISD::SHL: return "PPCISD::SHL"; 1492 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1493 case PPCISD::CALL: return "PPCISD::CALL"; 1494 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1495 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1496 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1497 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1498 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1499 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1500 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1501 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1502 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1503 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1504 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1505 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1506 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1507 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1508 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1509 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1510 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1511 case PPCISD::ANDI_rec_1_EQ_BIT: 1512 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1513 case PPCISD::ANDI_rec_1_GT_BIT: 1514 return "PPCISD::ANDI_rec_1_GT_BIT"; 1515 case PPCISD::VCMP: return "PPCISD::VCMP"; 1516 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1517 case PPCISD::LBRX: return "PPCISD::LBRX"; 1518 case PPCISD::STBRX: return "PPCISD::STBRX"; 1519 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1520 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1521 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1522 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1523 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1524 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1525 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1526 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1527 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1528 case PPCISD::ST_VSR_SCAL_INT: 1529 return "PPCISD::ST_VSR_SCAL_INT"; 1530 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1531 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1532 case PPCISD::BDZ: return "PPCISD::BDZ"; 1533 case PPCISD::MFFS: return "PPCISD::MFFS"; 1534 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1535 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1536 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1537 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1538 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1539 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1540 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1541 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1542 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1543 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1544 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1545 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1546 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1547 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1548 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1549 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1550 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1551 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1552 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1553 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1554 case PPCISD::SC: return "PPCISD::SC"; 1555 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1556 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1557 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1558 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1559 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1560 case PPCISD::VABSD: return "PPCISD::VABSD"; 1561 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1562 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1563 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1564 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1565 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1566 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1567 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1568 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1569 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1570 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1571 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1572 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1573 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1574 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1575 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1576 } 1577 return nullptr; 1578 } 1579 1580 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1581 EVT VT) const { 1582 if (!VT.isVector()) 1583 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1584 1585 if (Subtarget.hasQPX()) 1586 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1587 1588 return VT.changeVectorElementTypeToInteger(); 1589 } 1590 1591 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1592 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1593 return true; 1594 } 1595 1596 //===----------------------------------------------------------------------===// 1597 // Node matching predicates, for use by the tblgen matching code. 1598 //===----------------------------------------------------------------------===// 1599 1600 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1601 static bool isFloatingPointZero(SDValue Op) { 1602 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1603 return CFP->getValueAPF().isZero(); 1604 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1605 // Maybe this has already been legalized into the constant pool? 1606 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1607 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1608 return CFP->getValueAPF().isZero(); 1609 } 1610 return false; 1611 } 1612 1613 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1614 /// true if Op is undef or if it matches the specified value. 1615 static bool isConstantOrUndef(int Op, int Val) { 1616 return Op < 0 || Op == Val; 1617 } 1618 1619 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1620 /// VPKUHUM instruction. 1621 /// The ShuffleKind distinguishes between big-endian operations with 1622 /// two different inputs (0), either-endian operations with two identical 1623 /// inputs (1), and little-endian operations with two different inputs (2). 1624 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1625 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1626 SelectionDAG &DAG) { 1627 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1628 if (ShuffleKind == 0) { 1629 if (IsLE) 1630 return false; 1631 for (unsigned i = 0; i != 16; ++i) 1632 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1633 return false; 1634 } else if (ShuffleKind == 2) { 1635 if (!IsLE) 1636 return false; 1637 for (unsigned i = 0; i != 16; ++i) 1638 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1639 return false; 1640 } else if (ShuffleKind == 1) { 1641 unsigned j = IsLE ? 0 : 1; 1642 for (unsigned i = 0; i != 8; ++i) 1643 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1644 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1645 return false; 1646 } 1647 return true; 1648 } 1649 1650 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1651 /// VPKUWUM instruction. 1652 /// The ShuffleKind distinguishes between big-endian operations with 1653 /// two different inputs (0), either-endian operations with two identical 1654 /// inputs (1), and little-endian operations with two different inputs (2). 1655 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1656 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1657 SelectionDAG &DAG) { 1658 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1659 if (ShuffleKind == 0) { 1660 if (IsLE) 1661 return false; 1662 for (unsigned i = 0; i != 16; i += 2) 1663 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1664 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1665 return false; 1666 } else if (ShuffleKind == 2) { 1667 if (!IsLE) 1668 return false; 1669 for (unsigned i = 0; i != 16; i += 2) 1670 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1671 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1672 return false; 1673 } else if (ShuffleKind == 1) { 1674 unsigned j = IsLE ? 0 : 2; 1675 for (unsigned i = 0; i != 8; i += 2) 1676 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1677 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1678 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1679 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1680 return false; 1681 } 1682 return true; 1683 } 1684 1685 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1686 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1687 /// current subtarget. 1688 /// 1689 /// The ShuffleKind distinguishes between big-endian operations with 1690 /// two different inputs (0), either-endian operations with two identical 1691 /// inputs (1), and little-endian operations with two different inputs (2). 1692 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1693 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1694 SelectionDAG &DAG) { 1695 const PPCSubtarget& Subtarget = 1696 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1697 if (!Subtarget.hasP8Vector()) 1698 return false; 1699 1700 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1701 if (ShuffleKind == 0) { 1702 if (IsLE) 1703 return false; 1704 for (unsigned i = 0; i != 16; i += 4) 1705 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1706 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1707 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1708 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1709 return false; 1710 } else if (ShuffleKind == 2) { 1711 if (!IsLE) 1712 return false; 1713 for (unsigned i = 0; i != 16; i += 4) 1714 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1715 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1716 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1717 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1718 return false; 1719 } else if (ShuffleKind == 1) { 1720 unsigned j = IsLE ? 0 : 4; 1721 for (unsigned i = 0; i != 8; i += 4) 1722 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1723 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1724 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1725 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1726 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1727 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1728 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1729 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1730 return false; 1731 } 1732 return true; 1733 } 1734 1735 /// isVMerge - Common function, used to match vmrg* shuffles. 1736 /// 1737 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1738 unsigned LHSStart, unsigned RHSStart) { 1739 if (N->getValueType(0) != MVT::v16i8) 1740 return false; 1741 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1742 "Unsupported merge size!"); 1743 1744 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1745 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1746 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1747 LHSStart+j+i*UnitSize) || 1748 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1749 RHSStart+j+i*UnitSize)) 1750 return false; 1751 } 1752 return true; 1753 } 1754 1755 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1756 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1757 /// The ShuffleKind distinguishes between big-endian merges with two 1758 /// different inputs (0), either-endian merges with two identical inputs (1), 1759 /// and little-endian merges with two different inputs (2). For the latter, 1760 /// the input operands are swapped (see PPCInstrAltivec.td). 1761 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1762 unsigned ShuffleKind, SelectionDAG &DAG) { 1763 if (DAG.getDataLayout().isLittleEndian()) { 1764 if (ShuffleKind == 1) // unary 1765 return isVMerge(N, UnitSize, 0, 0); 1766 else if (ShuffleKind == 2) // swapped 1767 return isVMerge(N, UnitSize, 0, 16); 1768 else 1769 return false; 1770 } else { 1771 if (ShuffleKind == 1) // unary 1772 return isVMerge(N, UnitSize, 8, 8); 1773 else if (ShuffleKind == 0) // normal 1774 return isVMerge(N, UnitSize, 8, 24); 1775 else 1776 return false; 1777 } 1778 } 1779 1780 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1781 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1782 /// The ShuffleKind distinguishes between big-endian merges with two 1783 /// different inputs (0), either-endian merges with two identical inputs (1), 1784 /// and little-endian merges with two different inputs (2). For the latter, 1785 /// the input operands are swapped (see PPCInstrAltivec.td). 1786 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1787 unsigned ShuffleKind, SelectionDAG &DAG) { 1788 if (DAG.getDataLayout().isLittleEndian()) { 1789 if (ShuffleKind == 1) // unary 1790 return isVMerge(N, UnitSize, 8, 8); 1791 else if (ShuffleKind == 2) // swapped 1792 return isVMerge(N, UnitSize, 8, 24); 1793 else 1794 return false; 1795 } else { 1796 if (ShuffleKind == 1) // unary 1797 return isVMerge(N, UnitSize, 0, 0); 1798 else if (ShuffleKind == 0) // normal 1799 return isVMerge(N, UnitSize, 0, 16); 1800 else 1801 return false; 1802 } 1803 } 1804 1805 /** 1806 * Common function used to match vmrgew and vmrgow shuffles 1807 * 1808 * The indexOffset determines whether to look for even or odd words in 1809 * the shuffle mask. This is based on the of the endianness of the target 1810 * machine. 1811 * - Little Endian: 1812 * - Use offset of 0 to check for odd elements 1813 * - Use offset of 4 to check for even elements 1814 * - Big Endian: 1815 * - Use offset of 0 to check for even elements 1816 * - Use offset of 4 to check for odd elements 1817 * A detailed description of the vector element ordering for little endian and 1818 * big endian can be found at 1819 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1820 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1821 * compiler differences mean to you 1822 * 1823 * The mask to the shuffle vector instruction specifies the indices of the 1824 * elements from the two input vectors to place in the result. The elements are 1825 * numbered in array-access order, starting with the first vector. These vectors 1826 * are always of type v16i8, thus each vector will contain 16 elements of size 1827 * 8. More info on the shuffle vector can be found in the 1828 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1829 * Language Reference. 1830 * 1831 * The RHSStartValue indicates whether the same input vectors are used (unary) 1832 * or two different input vectors are used, based on the following: 1833 * - If the instruction uses the same vector for both inputs, the range of the 1834 * indices will be 0 to 15. In this case, the RHSStart value passed should 1835 * be 0. 1836 * - If the instruction has two different vectors then the range of the 1837 * indices will be 0 to 31. In this case, the RHSStart value passed should 1838 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1839 * to 31 specify elements in the second vector). 1840 * 1841 * \param[in] N The shuffle vector SD Node to analyze 1842 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1843 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1844 * vector to the shuffle_vector instruction 1845 * \return true iff this shuffle vector represents an even or odd word merge 1846 */ 1847 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1848 unsigned RHSStartValue) { 1849 if (N->getValueType(0) != MVT::v16i8) 1850 return false; 1851 1852 for (unsigned i = 0; i < 2; ++i) 1853 for (unsigned j = 0; j < 4; ++j) 1854 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1855 i*RHSStartValue+j+IndexOffset) || 1856 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1857 i*RHSStartValue+j+IndexOffset+8)) 1858 return false; 1859 return true; 1860 } 1861 1862 /** 1863 * Determine if the specified shuffle mask is suitable for the vmrgew or 1864 * vmrgow instructions. 1865 * 1866 * \param[in] N The shuffle vector SD Node to analyze 1867 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1868 * \param[in] ShuffleKind Identify the type of merge: 1869 * - 0 = big-endian merge with two different inputs; 1870 * - 1 = either-endian merge with two identical inputs; 1871 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1872 * little-endian merges). 1873 * \param[in] DAG The current SelectionDAG 1874 * \return true iff this shuffle mask 1875 */ 1876 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1877 unsigned ShuffleKind, SelectionDAG &DAG) { 1878 if (DAG.getDataLayout().isLittleEndian()) { 1879 unsigned indexOffset = CheckEven ? 4 : 0; 1880 if (ShuffleKind == 1) // Unary 1881 return isVMerge(N, indexOffset, 0); 1882 else if (ShuffleKind == 2) // swapped 1883 return isVMerge(N, indexOffset, 16); 1884 else 1885 return false; 1886 } 1887 else { 1888 unsigned indexOffset = CheckEven ? 0 : 4; 1889 if (ShuffleKind == 1) // Unary 1890 return isVMerge(N, indexOffset, 0); 1891 else if (ShuffleKind == 0) // Normal 1892 return isVMerge(N, indexOffset, 16); 1893 else 1894 return false; 1895 } 1896 return false; 1897 } 1898 1899 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1900 /// amount, otherwise return -1. 1901 /// The ShuffleKind distinguishes between big-endian operations with two 1902 /// different inputs (0), either-endian operations with two identical inputs 1903 /// (1), and little-endian operations with two different inputs (2). For the 1904 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1905 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1906 SelectionDAG &DAG) { 1907 if (N->getValueType(0) != MVT::v16i8) 1908 return -1; 1909 1910 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1911 1912 // Find the first non-undef value in the shuffle mask. 1913 unsigned i; 1914 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1915 /*search*/; 1916 1917 if (i == 16) return -1; // all undef. 1918 1919 // Otherwise, check to see if the rest of the elements are consecutively 1920 // numbered from this value. 1921 unsigned ShiftAmt = SVOp->getMaskElt(i); 1922 if (ShiftAmt < i) return -1; 1923 1924 ShiftAmt -= i; 1925 bool isLE = DAG.getDataLayout().isLittleEndian(); 1926 1927 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1928 // Check the rest of the elements to see if they are consecutive. 1929 for (++i; i != 16; ++i) 1930 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1931 return -1; 1932 } else if (ShuffleKind == 1) { 1933 // Check the rest of the elements to see if they are consecutive. 1934 for (++i; i != 16; ++i) 1935 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1936 return -1; 1937 } else 1938 return -1; 1939 1940 if (isLE) 1941 ShiftAmt = 16 - ShiftAmt; 1942 1943 return ShiftAmt; 1944 } 1945 1946 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1947 /// specifies a splat of a single element that is suitable for input to 1948 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1949 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1950 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1951 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1952 1953 // The consecutive indices need to specify an element, not part of two 1954 // different elements. So abandon ship early if this isn't the case. 1955 if (N->getMaskElt(0) % EltSize != 0) 1956 return false; 1957 1958 // This is a splat operation if each element of the permute is the same, and 1959 // if the value doesn't reference the second vector. 1960 unsigned ElementBase = N->getMaskElt(0); 1961 1962 // FIXME: Handle UNDEF elements too! 1963 if (ElementBase >= 16) 1964 return false; 1965 1966 // Check that the indices are consecutive, in the case of a multi-byte element 1967 // splatted with a v16i8 mask. 1968 for (unsigned i = 1; i != EltSize; ++i) 1969 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1970 return false; 1971 1972 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1973 if (N->getMaskElt(i) < 0) continue; 1974 for (unsigned j = 0; j != EltSize; ++j) 1975 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1976 return false; 1977 } 1978 return true; 1979 } 1980 1981 /// Check that the mask is shuffling N byte elements. Within each N byte 1982 /// element of the mask, the indices could be either in increasing or 1983 /// decreasing order as long as they are consecutive. 1984 /// \param[in] N the shuffle vector SD Node to analyze 1985 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1986 /// Word/DoubleWord/QuadWord). 1987 /// \param[in] StepLen the delta indices number among the N byte element, if 1988 /// the mask is in increasing/decreasing order then it is 1/-1. 1989 /// \return true iff the mask is shuffling N byte elements. 1990 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1991 int StepLen) { 1992 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1993 "Unexpected element width."); 1994 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1995 1996 unsigned NumOfElem = 16 / Width; 1997 unsigned MaskVal[16]; // Width is never greater than 16 1998 for (unsigned i = 0; i < NumOfElem; ++i) { 1999 MaskVal[0] = N->getMaskElt(i * Width); 2000 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2001 return false; 2002 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2003 return false; 2004 } 2005 2006 for (unsigned int j = 1; j < Width; ++j) { 2007 MaskVal[j] = N->getMaskElt(i * Width + j); 2008 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2009 return false; 2010 } 2011 } 2012 } 2013 2014 return true; 2015 } 2016 2017 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2018 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2019 if (!isNByteElemShuffleMask(N, 4, 1)) 2020 return false; 2021 2022 // Now we look at mask elements 0,4,8,12 2023 unsigned M0 = N->getMaskElt(0) / 4; 2024 unsigned M1 = N->getMaskElt(4) / 4; 2025 unsigned M2 = N->getMaskElt(8) / 4; 2026 unsigned M3 = N->getMaskElt(12) / 4; 2027 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2028 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2029 2030 // Below, let H and L be arbitrary elements of the shuffle mask 2031 // where H is in the range [4,7] and L is in the range [0,3]. 2032 // H, 1, 2, 3 or L, 5, 6, 7 2033 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2034 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2035 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2036 InsertAtByte = IsLE ? 12 : 0; 2037 Swap = M0 < 4; 2038 return true; 2039 } 2040 // 0, H, 2, 3 or 4, L, 6, 7 2041 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2042 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2043 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2044 InsertAtByte = IsLE ? 8 : 4; 2045 Swap = M1 < 4; 2046 return true; 2047 } 2048 // 0, 1, H, 3 or 4, 5, L, 7 2049 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2050 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2051 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2052 InsertAtByte = IsLE ? 4 : 8; 2053 Swap = M2 < 4; 2054 return true; 2055 } 2056 // 0, 1, 2, H or 4, 5, 6, L 2057 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2058 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2059 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2060 InsertAtByte = IsLE ? 0 : 12; 2061 Swap = M3 < 4; 2062 return true; 2063 } 2064 2065 // If both vector operands for the shuffle are the same vector, the mask will 2066 // contain only elements from the first one and the second one will be undef. 2067 if (N->getOperand(1).isUndef()) { 2068 ShiftElts = 0; 2069 Swap = true; 2070 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2071 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2072 InsertAtByte = IsLE ? 12 : 0; 2073 return true; 2074 } 2075 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2076 InsertAtByte = IsLE ? 8 : 4; 2077 return true; 2078 } 2079 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2080 InsertAtByte = IsLE ? 4 : 8; 2081 return true; 2082 } 2083 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2084 InsertAtByte = IsLE ? 0 : 12; 2085 return true; 2086 } 2087 } 2088 2089 return false; 2090 } 2091 2092 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2093 bool &Swap, bool IsLE) { 2094 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2095 // Ensure each byte index of the word is consecutive. 2096 if (!isNByteElemShuffleMask(N, 4, 1)) 2097 return false; 2098 2099 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2100 unsigned M0 = N->getMaskElt(0) / 4; 2101 unsigned M1 = N->getMaskElt(4) / 4; 2102 unsigned M2 = N->getMaskElt(8) / 4; 2103 unsigned M3 = N->getMaskElt(12) / 4; 2104 2105 // If both vector operands for the shuffle are the same vector, the mask will 2106 // contain only elements from the first one and the second one will be undef. 2107 if (N->getOperand(1).isUndef()) { 2108 assert(M0 < 4 && "Indexing into an undef vector?"); 2109 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2110 return false; 2111 2112 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2113 Swap = false; 2114 return true; 2115 } 2116 2117 // Ensure each word index of the ShuffleVector Mask is consecutive. 2118 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2119 return false; 2120 2121 if (IsLE) { 2122 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2123 // Input vectors don't need to be swapped if the leading element 2124 // of the result is one of the 3 left elements of the second vector 2125 // (or if there is no shift to be done at all). 2126 Swap = false; 2127 ShiftElts = (8 - M0) % 8; 2128 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2129 // Input vectors need to be swapped if the leading element 2130 // of the result is one of the 3 left elements of the first vector 2131 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2132 Swap = true; 2133 ShiftElts = (4 - M0) % 4; 2134 } 2135 2136 return true; 2137 } else { // BE 2138 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2139 // Input vectors don't need to be swapped if the leading element 2140 // of the result is one of the 4 elements of the first vector. 2141 Swap = false; 2142 ShiftElts = M0; 2143 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2144 // Input vectors need to be swapped if the leading element 2145 // of the result is one of the 4 elements of the right vector. 2146 Swap = true; 2147 ShiftElts = M0 - 4; 2148 } 2149 2150 return true; 2151 } 2152 } 2153 2154 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2155 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2156 2157 if (!isNByteElemShuffleMask(N, Width, -1)) 2158 return false; 2159 2160 for (int i = 0; i < 16; i += Width) 2161 if (N->getMaskElt(i) != i + Width - 1) 2162 return false; 2163 2164 return true; 2165 } 2166 2167 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2168 return isXXBRShuffleMaskHelper(N, 2); 2169 } 2170 2171 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2172 return isXXBRShuffleMaskHelper(N, 4); 2173 } 2174 2175 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2176 return isXXBRShuffleMaskHelper(N, 8); 2177 } 2178 2179 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2180 return isXXBRShuffleMaskHelper(N, 16); 2181 } 2182 2183 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2184 /// if the inputs to the instruction should be swapped and set \p DM to the 2185 /// value for the immediate. 2186 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2187 /// AND element 0 of the result comes from the first input (LE) or second input 2188 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2189 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2190 /// mask. 2191 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2192 bool &Swap, bool IsLE) { 2193 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2194 2195 // Ensure each byte index of the double word is consecutive. 2196 if (!isNByteElemShuffleMask(N, 8, 1)) 2197 return false; 2198 2199 unsigned M0 = N->getMaskElt(0) / 8; 2200 unsigned M1 = N->getMaskElt(8) / 8; 2201 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2202 2203 // If both vector operands for the shuffle are the same vector, the mask will 2204 // contain only elements from the first one and the second one will be undef. 2205 if (N->getOperand(1).isUndef()) { 2206 if ((M0 | M1) < 2) { 2207 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2208 Swap = false; 2209 return true; 2210 } else 2211 return false; 2212 } 2213 2214 if (IsLE) { 2215 if (M0 > 1 && M1 < 2) { 2216 Swap = false; 2217 } else if (M0 < 2 && M1 > 1) { 2218 M0 = (M0 + 2) % 4; 2219 M1 = (M1 + 2) % 4; 2220 Swap = true; 2221 } else 2222 return false; 2223 2224 // Note: if control flow comes here that means Swap is already set above 2225 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2226 return true; 2227 } else { // BE 2228 if (M0 < 2 && M1 > 1) { 2229 Swap = false; 2230 } else if (M0 > 1 && M1 < 2) { 2231 M0 = (M0 + 2) % 4; 2232 M1 = (M1 + 2) % 4; 2233 Swap = true; 2234 } else 2235 return false; 2236 2237 // Note: if control flow comes here that means Swap is already set above 2238 DM = (M0 << 1) + (M1 & 1); 2239 return true; 2240 } 2241 } 2242 2243 2244 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2245 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2246 /// elements are counted from the left of the vector register). 2247 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2248 SelectionDAG &DAG) { 2249 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2250 assert(isSplatShuffleMask(SVOp, EltSize)); 2251 if (DAG.getDataLayout().isLittleEndian()) 2252 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2253 else 2254 return SVOp->getMaskElt(0) / EltSize; 2255 } 2256 2257 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2258 /// by using a vspltis[bhw] instruction of the specified element size, return 2259 /// the constant being splatted. The ByteSize field indicates the number of 2260 /// bytes of each element [124] -> [bhw]. 2261 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2262 SDValue OpVal(nullptr, 0); 2263 2264 // If ByteSize of the splat is bigger than the element size of the 2265 // build_vector, then we have a case where we are checking for a splat where 2266 // multiple elements of the buildvector are folded together into a single 2267 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2268 unsigned EltSize = 16/N->getNumOperands(); 2269 if (EltSize < ByteSize) { 2270 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2271 SDValue UniquedVals[4]; 2272 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2273 2274 // See if all of the elements in the buildvector agree across. 2275 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2276 if (N->getOperand(i).isUndef()) continue; 2277 // If the element isn't a constant, bail fully out. 2278 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2279 2280 if (!UniquedVals[i&(Multiple-1)].getNode()) 2281 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2282 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2283 return SDValue(); // no match. 2284 } 2285 2286 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2287 // either constant or undef values that are identical for each chunk. See 2288 // if these chunks can form into a larger vspltis*. 2289 2290 // Check to see if all of the leading entries are either 0 or -1. If 2291 // neither, then this won't fit into the immediate field. 2292 bool LeadingZero = true; 2293 bool LeadingOnes = true; 2294 for (unsigned i = 0; i != Multiple-1; ++i) { 2295 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2296 2297 LeadingZero &= isNullConstant(UniquedVals[i]); 2298 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2299 } 2300 // Finally, check the least significant entry. 2301 if (LeadingZero) { 2302 if (!UniquedVals[Multiple-1].getNode()) 2303 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2304 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2305 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2306 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2307 } 2308 if (LeadingOnes) { 2309 if (!UniquedVals[Multiple-1].getNode()) 2310 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2311 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2312 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2313 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2314 } 2315 2316 return SDValue(); 2317 } 2318 2319 // Check to see if this buildvec has a single non-undef value in its elements. 2320 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2321 if (N->getOperand(i).isUndef()) continue; 2322 if (!OpVal.getNode()) 2323 OpVal = N->getOperand(i); 2324 else if (OpVal != N->getOperand(i)) 2325 return SDValue(); 2326 } 2327 2328 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2329 2330 unsigned ValSizeInBytes = EltSize; 2331 uint64_t Value = 0; 2332 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2333 Value = CN->getZExtValue(); 2334 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2335 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2336 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2337 } 2338 2339 // If the splat value is larger than the element value, then we can never do 2340 // this splat. The only case that we could fit the replicated bits into our 2341 // immediate field for would be zero, and we prefer to use vxor for it. 2342 if (ValSizeInBytes < ByteSize) return SDValue(); 2343 2344 // If the element value is larger than the splat value, check if it consists 2345 // of a repeated bit pattern of size ByteSize. 2346 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2347 return SDValue(); 2348 2349 // Properly sign extend the value. 2350 int MaskVal = SignExtend32(Value, ByteSize * 8); 2351 2352 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2353 if (MaskVal == 0) return SDValue(); 2354 2355 // Finally, if this value fits in a 5 bit sext field, return it 2356 if (SignExtend32<5>(MaskVal) == MaskVal) 2357 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2358 return SDValue(); 2359 } 2360 2361 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2362 /// amount, otherwise return -1. 2363 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2364 EVT VT = N->getValueType(0); 2365 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2366 return -1; 2367 2368 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2369 2370 // Find the first non-undef value in the shuffle mask. 2371 unsigned i; 2372 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2373 /*search*/; 2374 2375 if (i == 4) return -1; // all undef. 2376 2377 // Otherwise, check to see if the rest of the elements are consecutively 2378 // numbered from this value. 2379 unsigned ShiftAmt = SVOp->getMaskElt(i); 2380 if (ShiftAmt < i) return -1; 2381 ShiftAmt -= i; 2382 2383 // Check the rest of the elements to see if they are consecutive. 2384 for (++i; i != 4; ++i) 2385 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2386 return -1; 2387 2388 return ShiftAmt; 2389 } 2390 2391 //===----------------------------------------------------------------------===// 2392 // Addressing Mode Selection 2393 //===----------------------------------------------------------------------===// 2394 2395 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2396 /// or 64-bit immediate, and if the value can be accurately represented as a 2397 /// sign extension from a 16-bit value. If so, this returns true and the 2398 /// immediate. 2399 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2400 if (!isa<ConstantSDNode>(N)) 2401 return false; 2402 2403 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2404 if (N->getValueType(0) == MVT::i32) 2405 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2406 else 2407 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2408 } 2409 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2410 return isIntS16Immediate(Op.getNode(), Imm); 2411 } 2412 2413 2414 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2415 /// be represented as an indexed [r+r] operation. 2416 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2417 SDValue &Index, 2418 SelectionDAG &DAG) const { 2419 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2420 UI != E; ++UI) { 2421 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2422 if (Memop->getMemoryVT() == MVT::f64) { 2423 Base = N.getOperand(0); 2424 Index = N.getOperand(1); 2425 return true; 2426 } 2427 } 2428 } 2429 return false; 2430 } 2431 2432 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2433 /// can be represented as an indexed [r+r] operation. Returns false if it 2434 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2435 /// non-zero and N can be represented by a base register plus a signed 16-bit 2436 /// displacement, make a more precise judgement by checking (displacement % \p 2437 /// EncodingAlignment). 2438 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2439 SDValue &Index, SelectionDAG &DAG, 2440 unsigned EncodingAlignment) const { 2441 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2442 // a [pc+imm]. 2443 if (SelectAddressPCRel(N, Base)) 2444 return false; 2445 2446 int16_t imm = 0; 2447 if (N.getOpcode() == ISD::ADD) { 2448 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2449 // SPE load/store can only handle 8-bit offsets. 2450 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2451 return true; 2452 if (isIntS16Immediate(N.getOperand(1), imm) && 2453 (!EncodingAlignment || !(imm % EncodingAlignment))) 2454 return false; // r+i 2455 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2456 return false; // r+i 2457 2458 Base = N.getOperand(0); 2459 Index = N.getOperand(1); 2460 return true; 2461 } else if (N.getOpcode() == ISD::OR) { 2462 if (isIntS16Immediate(N.getOperand(1), imm) && 2463 (!EncodingAlignment || !(imm % EncodingAlignment))) 2464 return false; // r+i can fold it if we can. 2465 2466 // If this is an or of disjoint bitfields, we can codegen this as an add 2467 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2468 // disjoint. 2469 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2470 2471 if (LHSKnown.Zero.getBoolValue()) { 2472 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2473 // If all of the bits are known zero on the LHS or RHS, the add won't 2474 // carry. 2475 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2476 Base = N.getOperand(0); 2477 Index = N.getOperand(1); 2478 return true; 2479 } 2480 } 2481 } 2482 2483 return false; 2484 } 2485 2486 // If we happen to be doing an i64 load or store into a stack slot that has 2487 // less than a 4-byte alignment, then the frame-index elimination may need to 2488 // use an indexed load or store instruction (because the offset may not be a 2489 // multiple of 4). The extra register needed to hold the offset comes from the 2490 // register scavenger, and it is possible that the scavenger will need to use 2491 // an emergency spill slot. As a result, we need to make sure that a spill slot 2492 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2493 // stack slot. 2494 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2495 // FIXME: This does not handle the LWA case. 2496 if (VT != MVT::i64) 2497 return; 2498 2499 // NOTE: We'll exclude negative FIs here, which come from argument 2500 // lowering, because there are no known test cases triggering this problem 2501 // using packed structures (or similar). We can remove this exclusion if 2502 // we find such a test case. The reason why this is so test-case driven is 2503 // because this entire 'fixup' is only to prevent crashes (from the 2504 // register scavenger) on not-really-valid inputs. For example, if we have: 2505 // %a = alloca i1 2506 // %b = bitcast i1* %a to i64* 2507 // store i64* a, i64 b 2508 // then the store should really be marked as 'align 1', but is not. If it 2509 // were marked as 'align 1' then the indexed form would have been 2510 // instruction-selected initially, and the problem this 'fixup' is preventing 2511 // won't happen regardless. 2512 if (FrameIdx < 0) 2513 return; 2514 2515 MachineFunction &MF = DAG.getMachineFunction(); 2516 MachineFrameInfo &MFI = MF.getFrameInfo(); 2517 2518 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2519 return; 2520 2521 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2522 FuncInfo->setHasNonRISpills(); 2523 } 2524 2525 /// Returns true if the address N can be represented by a base register plus 2526 /// a signed 16-bit displacement [r+imm], and if it is not better 2527 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2528 /// displacements that are multiples of that value. 2529 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2530 SDValue &Base, 2531 SelectionDAG &DAG, 2532 unsigned EncodingAlignment) const { 2533 // FIXME dl should come from parent load or store, not from address 2534 SDLoc dl(N); 2535 2536 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2537 // a [pc+imm]. 2538 if (SelectAddressPCRel(N, Base)) 2539 return false; 2540 2541 // If this can be more profitably realized as r+r, fail. 2542 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2543 return false; 2544 2545 if (N.getOpcode() == ISD::ADD) { 2546 int16_t imm = 0; 2547 if (isIntS16Immediate(N.getOperand(1), imm) && 2548 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2549 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2550 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2551 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2552 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2553 } else { 2554 Base = N.getOperand(0); 2555 } 2556 return true; // [r+i] 2557 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2558 // Match LOAD (ADD (X, Lo(G))). 2559 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2560 && "Cannot handle constant offsets yet!"); 2561 Disp = N.getOperand(1).getOperand(0); // The global address. 2562 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2563 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2564 Disp.getOpcode() == ISD::TargetConstantPool || 2565 Disp.getOpcode() == ISD::TargetJumpTable); 2566 Base = N.getOperand(0); 2567 return true; // [&g+r] 2568 } 2569 } else if (N.getOpcode() == ISD::OR) { 2570 int16_t imm = 0; 2571 if (isIntS16Immediate(N.getOperand(1), imm) && 2572 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2573 // If this is an or of disjoint bitfields, we can codegen this as an add 2574 // (for better address arithmetic) if the LHS and RHS of the OR are 2575 // provably disjoint. 2576 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2577 2578 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2579 // If all of the bits are known zero on the LHS or RHS, the add won't 2580 // carry. 2581 if (FrameIndexSDNode *FI = 2582 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2583 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2584 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2585 } else { 2586 Base = N.getOperand(0); 2587 } 2588 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2589 return true; 2590 } 2591 } 2592 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2593 // Loading from a constant address. 2594 2595 // If this address fits entirely in a 16-bit sext immediate field, codegen 2596 // this as "d, 0" 2597 int16_t Imm; 2598 if (isIntS16Immediate(CN, Imm) && 2599 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2600 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2601 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2602 CN->getValueType(0)); 2603 return true; 2604 } 2605 2606 // Handle 32-bit sext immediates with LIS + addr mode. 2607 if ((CN->getValueType(0) == MVT::i32 || 2608 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2609 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2610 int Addr = (int)CN->getZExtValue(); 2611 2612 // Otherwise, break this down into an LIS + disp. 2613 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2614 2615 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2616 MVT::i32); 2617 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2618 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2619 return true; 2620 } 2621 } 2622 2623 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2624 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2625 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2626 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2627 } else 2628 Base = N; 2629 return true; // [r+0] 2630 } 2631 2632 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2633 /// represented as an indexed [r+r] operation. 2634 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2635 SDValue &Index, 2636 SelectionDAG &DAG) const { 2637 // Check to see if we can easily represent this as an [r+r] address. This 2638 // will fail if it thinks that the address is more profitably represented as 2639 // reg+imm, e.g. where imm = 0. 2640 if (SelectAddressRegReg(N, Base, Index, DAG)) 2641 return true; 2642 2643 // If the address is the result of an add, we will utilize the fact that the 2644 // address calculation includes an implicit add. However, we can reduce 2645 // register pressure if we do not materialize a constant just for use as the 2646 // index register. We only get rid of the add if it is not an add of a 2647 // value and a 16-bit signed constant and both have a single use. 2648 int16_t imm = 0; 2649 if (N.getOpcode() == ISD::ADD && 2650 (!isIntS16Immediate(N.getOperand(1), imm) || 2651 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2652 Base = N.getOperand(0); 2653 Index = N.getOperand(1); 2654 return true; 2655 } 2656 2657 // Otherwise, do it the hard way, using R0 as the base register. 2658 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2659 N.getValueType()); 2660 Index = N; 2661 return true; 2662 } 2663 2664 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2665 Ty *PCRelCand = dyn_cast<Ty>(N); 2666 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2667 } 2668 2669 /// Returns true if this address is a PC Relative address. 2670 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2671 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2672 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2673 // This is a materialize PC Relative node. Always select this as PC Relative. 2674 Base = N; 2675 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2676 return true; 2677 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2678 isValidPCRelNode<GlobalAddressSDNode>(N) || 2679 isValidPCRelNode<JumpTableSDNode>(N) || 2680 isValidPCRelNode<BlockAddressSDNode>(N)) 2681 return true; 2682 return false; 2683 } 2684 2685 /// Returns true if we should use a direct load into vector instruction 2686 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2687 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2688 2689 // If there are any other uses other than scalar to vector, then we should 2690 // keep it as a scalar load -> direct move pattern to prevent multiple 2691 // loads. 2692 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2693 if (!LD) 2694 return false; 2695 2696 EVT MemVT = LD->getMemoryVT(); 2697 if (!MemVT.isSimple()) 2698 return false; 2699 switch(MemVT.getSimpleVT().SimpleTy) { 2700 case MVT::i64: 2701 break; 2702 case MVT::i32: 2703 if (!ST.hasP8Vector()) 2704 return false; 2705 break; 2706 case MVT::i16: 2707 case MVT::i8: 2708 if (!ST.hasP9Vector()) 2709 return false; 2710 break; 2711 default: 2712 return false; 2713 } 2714 2715 SDValue LoadedVal(N, 0); 2716 if (!LoadedVal.hasOneUse()) 2717 return false; 2718 2719 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2720 UI != UE; ++UI) 2721 if (UI.getUse().get().getResNo() == 0 && 2722 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2723 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2724 return false; 2725 2726 return true; 2727 } 2728 2729 /// getPreIndexedAddressParts - returns true by value, base pointer and 2730 /// offset pointer and addressing mode by reference if the node's address 2731 /// can be legally represented as pre-indexed load / store address. 2732 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2733 SDValue &Offset, 2734 ISD::MemIndexedMode &AM, 2735 SelectionDAG &DAG) const { 2736 if (DisablePPCPreinc) return false; 2737 2738 bool isLoad = true; 2739 SDValue Ptr; 2740 EVT VT; 2741 unsigned Alignment; 2742 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2743 Ptr = LD->getBasePtr(); 2744 VT = LD->getMemoryVT(); 2745 Alignment = LD->getAlignment(); 2746 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2747 Ptr = ST->getBasePtr(); 2748 VT = ST->getMemoryVT(); 2749 Alignment = ST->getAlignment(); 2750 isLoad = false; 2751 } else 2752 return false; 2753 2754 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2755 // instructions because we can fold these into a more efficient instruction 2756 // instead, (such as LXSD). 2757 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2758 return false; 2759 } 2760 2761 // PowerPC doesn't have preinc load/store instructions for vectors (except 2762 // for QPX, which does have preinc r+r forms). 2763 if (VT.isVector()) { 2764 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2765 return false; 2766 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2767 AM = ISD::PRE_INC; 2768 return true; 2769 } 2770 } 2771 2772 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2773 // Common code will reject creating a pre-inc form if the base pointer 2774 // is a frame index, or if N is a store and the base pointer is either 2775 // the same as or a predecessor of the value being stored. Check for 2776 // those situations here, and try with swapped Base/Offset instead. 2777 bool Swap = false; 2778 2779 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2780 Swap = true; 2781 else if (!isLoad) { 2782 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2783 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2784 Swap = true; 2785 } 2786 2787 if (Swap) 2788 std::swap(Base, Offset); 2789 2790 AM = ISD::PRE_INC; 2791 return true; 2792 } 2793 2794 // LDU/STU can only handle immediates that are a multiple of 4. 2795 if (VT != MVT::i64) { 2796 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2797 return false; 2798 } else { 2799 // LDU/STU need an address with at least 4-byte alignment. 2800 if (Alignment < 4) 2801 return false; 2802 2803 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2804 return false; 2805 } 2806 2807 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2808 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2809 // sext i32 to i64 when addr mode is r+i. 2810 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2811 LD->getExtensionType() == ISD::SEXTLOAD && 2812 isa<ConstantSDNode>(Offset)) 2813 return false; 2814 } 2815 2816 AM = ISD::PRE_INC; 2817 return true; 2818 } 2819 2820 //===----------------------------------------------------------------------===// 2821 // LowerOperation implementation 2822 //===----------------------------------------------------------------------===// 2823 2824 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2825 /// and LoOpFlags to the target MO flags. 2826 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2827 unsigned &HiOpFlags, unsigned &LoOpFlags, 2828 const GlobalValue *GV = nullptr) { 2829 HiOpFlags = PPCII::MO_HA; 2830 LoOpFlags = PPCII::MO_LO; 2831 2832 // Don't use the pic base if not in PIC relocation model. 2833 if (IsPIC) { 2834 HiOpFlags |= PPCII::MO_PIC_FLAG; 2835 LoOpFlags |= PPCII::MO_PIC_FLAG; 2836 } 2837 } 2838 2839 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2840 SelectionDAG &DAG) { 2841 SDLoc DL(HiPart); 2842 EVT PtrVT = HiPart.getValueType(); 2843 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2844 2845 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2846 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2847 2848 // With PIC, the first instruction is actually "GR+hi(&G)". 2849 if (isPIC) 2850 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2851 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2852 2853 // Generate non-pic code that has direct accesses to the constant pool. 2854 // The address of the global is just (hi(&g)+lo(&g)). 2855 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2856 } 2857 2858 static void setUsesTOCBasePtr(MachineFunction &MF) { 2859 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2860 FuncInfo->setUsesTOCBasePtr(); 2861 } 2862 2863 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2864 setUsesTOCBasePtr(DAG.getMachineFunction()); 2865 } 2866 2867 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2868 SDValue GA) const { 2869 const bool Is64Bit = Subtarget.isPPC64(); 2870 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2871 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2872 : Subtarget.isAIXABI() 2873 ? DAG.getRegister(PPC::R2, VT) 2874 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2875 SDValue Ops[] = { GA, Reg }; 2876 return DAG.getMemIntrinsicNode( 2877 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2878 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2879 MachineMemOperand::MOLoad); 2880 } 2881 2882 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2883 SelectionDAG &DAG) const { 2884 EVT PtrVT = Op.getValueType(); 2885 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2886 const Constant *C = CP->getConstVal(); 2887 2888 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2889 // The actual address of the GlobalValue is stored in the TOC. 2890 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2891 if (Subtarget.isUsingPCRelativeCalls()) { 2892 SDLoc DL(CP); 2893 EVT Ty = getPointerTy(DAG.getDataLayout()); 2894 SDValue ConstPool = DAG.getTargetConstantPool( 2895 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2896 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2897 } 2898 setUsesTOCBasePtr(DAG); 2899 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2900 return getTOCEntry(DAG, SDLoc(CP), GA); 2901 } 2902 2903 unsigned MOHiFlag, MOLoFlag; 2904 bool IsPIC = isPositionIndependent(); 2905 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2906 2907 if (IsPIC && Subtarget.isSVR4ABI()) { 2908 SDValue GA = 2909 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2910 return getTOCEntry(DAG, SDLoc(CP), GA); 2911 } 2912 2913 SDValue CPIHi = 2914 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2915 SDValue CPILo = 2916 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2917 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2918 } 2919 2920 // For 64-bit PowerPC, prefer the more compact relative encodings. 2921 // This trades 32 bits per jump table entry for one or two instructions 2922 // on the jump site. 2923 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2924 if (isJumpTableRelative()) 2925 return MachineJumpTableInfo::EK_LabelDifference32; 2926 2927 return TargetLowering::getJumpTableEncoding(); 2928 } 2929 2930 bool PPCTargetLowering::isJumpTableRelative() const { 2931 if (UseAbsoluteJumpTables) 2932 return false; 2933 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2934 return true; 2935 return TargetLowering::isJumpTableRelative(); 2936 } 2937 2938 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2939 SelectionDAG &DAG) const { 2940 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2941 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2942 2943 switch (getTargetMachine().getCodeModel()) { 2944 case CodeModel::Small: 2945 case CodeModel::Medium: 2946 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2947 default: 2948 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2949 getPointerTy(DAG.getDataLayout())); 2950 } 2951 } 2952 2953 const MCExpr * 2954 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2955 unsigned JTI, 2956 MCContext &Ctx) const { 2957 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2958 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2959 2960 switch (getTargetMachine().getCodeModel()) { 2961 case CodeModel::Small: 2962 case CodeModel::Medium: 2963 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2964 default: 2965 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2966 } 2967 } 2968 2969 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2970 EVT PtrVT = Op.getValueType(); 2971 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2972 2973 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2974 if (Subtarget.isUsingPCRelativeCalls()) { 2975 SDLoc DL(JT); 2976 EVT Ty = getPointerTy(DAG.getDataLayout()); 2977 SDValue GA = 2978 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2979 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2980 return MatAddr; 2981 } 2982 2983 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2984 // The actual address of the GlobalValue is stored in the TOC. 2985 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2986 setUsesTOCBasePtr(DAG); 2987 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2988 return getTOCEntry(DAG, SDLoc(JT), GA); 2989 } 2990 2991 unsigned MOHiFlag, MOLoFlag; 2992 bool IsPIC = isPositionIndependent(); 2993 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2994 2995 if (IsPIC && Subtarget.isSVR4ABI()) { 2996 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2997 PPCII::MO_PIC_FLAG); 2998 return getTOCEntry(DAG, SDLoc(GA), GA); 2999 } 3000 3001 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3002 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3003 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3004 } 3005 3006 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3007 SelectionDAG &DAG) const { 3008 EVT PtrVT = Op.getValueType(); 3009 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3010 const BlockAddress *BA = BASDN->getBlockAddress(); 3011 3012 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3013 if (Subtarget.isUsingPCRelativeCalls()) { 3014 SDLoc DL(BASDN); 3015 EVT Ty = getPointerTy(DAG.getDataLayout()); 3016 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3017 PPCII::MO_PCREL_FLAG); 3018 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3019 return MatAddr; 3020 } 3021 3022 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3023 // The actual BlockAddress is stored in the TOC. 3024 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3025 setUsesTOCBasePtr(DAG); 3026 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3027 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3028 } 3029 3030 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3031 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3032 return getTOCEntry( 3033 DAG, SDLoc(BASDN), 3034 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3035 3036 unsigned MOHiFlag, MOLoFlag; 3037 bool IsPIC = isPositionIndependent(); 3038 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3039 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3040 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3041 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3042 } 3043 3044 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3045 SelectionDAG &DAG) const { 3046 // FIXME: TLS addresses currently use medium model code sequences, 3047 // which is the most useful form. Eventually support for small and 3048 // large models could be added if users need it, at the cost of 3049 // additional complexity. 3050 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3051 if (DAG.getTarget().useEmulatedTLS()) 3052 return LowerToTLSEmulatedModel(GA, DAG); 3053 3054 SDLoc dl(GA); 3055 const GlobalValue *GV = GA->getGlobal(); 3056 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3057 bool is64bit = Subtarget.isPPC64(); 3058 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3059 PICLevel::Level picLevel = M->getPICLevel(); 3060 3061 const TargetMachine &TM = getTargetMachine(); 3062 TLSModel::Model Model = TM.getTLSModel(GV); 3063 3064 if (Model == TLSModel::LocalExec) { 3065 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3066 PPCII::MO_TPREL_HA); 3067 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3068 PPCII::MO_TPREL_LO); 3069 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3070 : DAG.getRegister(PPC::R2, MVT::i32); 3071 3072 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3073 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3074 } 3075 3076 if (Model == TLSModel::InitialExec) { 3077 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3078 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3079 PPCII::MO_TLS); 3080 SDValue GOTPtr; 3081 if (is64bit) { 3082 setUsesTOCBasePtr(DAG); 3083 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3084 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 3085 PtrVT, GOTReg, TGA); 3086 } else { 3087 if (!TM.isPositionIndependent()) 3088 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3089 else if (picLevel == PICLevel::SmallPIC) 3090 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3091 else 3092 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3093 } 3094 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3095 PtrVT, TGA, GOTPtr); 3096 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3097 } 3098 3099 if (Model == TLSModel::GeneralDynamic) { 3100 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3101 SDValue GOTPtr; 3102 if (is64bit) { 3103 setUsesTOCBasePtr(DAG); 3104 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3105 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3106 GOTReg, TGA); 3107 } else { 3108 if (picLevel == PICLevel::SmallPIC) 3109 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3110 else 3111 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3112 } 3113 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3114 GOTPtr, TGA, TGA); 3115 } 3116 3117 if (Model == TLSModel::LocalDynamic) { 3118 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3119 SDValue GOTPtr; 3120 if (is64bit) { 3121 setUsesTOCBasePtr(DAG); 3122 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3123 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3124 GOTReg, TGA); 3125 } else { 3126 if (picLevel == PICLevel::SmallPIC) 3127 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3128 else 3129 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3130 } 3131 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3132 PtrVT, GOTPtr, TGA, TGA); 3133 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3134 PtrVT, TLSAddr, TGA); 3135 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3136 } 3137 3138 llvm_unreachable("Unknown TLS model!"); 3139 } 3140 3141 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3142 SelectionDAG &DAG) const { 3143 EVT PtrVT = Op.getValueType(); 3144 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3145 SDLoc DL(GSDN); 3146 const GlobalValue *GV = GSDN->getGlobal(); 3147 3148 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3149 // The actual address of the GlobalValue is stored in the TOC. 3150 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3151 if (Subtarget.isUsingPCRelativeCalls()) { 3152 EVT Ty = getPointerTy(DAG.getDataLayout()); 3153 if (isAccessedAsGotIndirect(Op)) { 3154 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3155 PPCII::MO_PCREL_FLAG | 3156 PPCII::MO_GOT_FLAG); 3157 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3158 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3159 MachinePointerInfo()); 3160 return Load; 3161 } else { 3162 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3163 PPCII::MO_PCREL_FLAG); 3164 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3165 } 3166 } 3167 setUsesTOCBasePtr(DAG); 3168 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3169 return getTOCEntry(DAG, DL, GA); 3170 } 3171 3172 unsigned MOHiFlag, MOLoFlag; 3173 bool IsPIC = isPositionIndependent(); 3174 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3175 3176 if (IsPIC && Subtarget.isSVR4ABI()) { 3177 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3178 GSDN->getOffset(), 3179 PPCII::MO_PIC_FLAG); 3180 return getTOCEntry(DAG, DL, GA); 3181 } 3182 3183 SDValue GAHi = 3184 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3185 SDValue GALo = 3186 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3187 3188 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3189 } 3190 3191 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3192 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3193 SDLoc dl(Op); 3194 3195 if (Op.getValueType() == MVT::v2i64) { 3196 // When the operands themselves are v2i64 values, we need to do something 3197 // special because VSX has no underlying comparison operations for these. 3198 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3199 // Equality can be handled by casting to the legal type for Altivec 3200 // comparisons, everything else needs to be expanded. 3201 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3202 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3203 DAG.getSetCC(dl, MVT::v4i32, 3204 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3205 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3206 CC)); 3207 } 3208 3209 return SDValue(); 3210 } 3211 3212 // We handle most of these in the usual way. 3213 return Op; 3214 } 3215 3216 // If we're comparing for equality to zero, expose the fact that this is 3217 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3218 // fold the new nodes. 3219 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3220 return V; 3221 3222 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3223 // Leave comparisons against 0 and -1 alone for now, since they're usually 3224 // optimized. FIXME: revisit this when we can custom lower all setcc 3225 // optimizations. 3226 if (C->isAllOnesValue() || C->isNullValue()) 3227 return SDValue(); 3228 } 3229 3230 // If we have an integer seteq/setne, turn it into a compare against zero 3231 // by xor'ing the rhs with the lhs, which is faster than setting a 3232 // condition register, reading it back out, and masking the correct bit. The 3233 // normal approach here uses sub to do this instead of xor. Using xor exposes 3234 // the result to other bit-twiddling opportunities. 3235 EVT LHSVT = Op.getOperand(0).getValueType(); 3236 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3237 EVT VT = Op.getValueType(); 3238 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3239 Op.getOperand(1)); 3240 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3241 } 3242 return SDValue(); 3243 } 3244 3245 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3246 SDNode *Node = Op.getNode(); 3247 EVT VT = Node->getValueType(0); 3248 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3249 SDValue InChain = Node->getOperand(0); 3250 SDValue VAListPtr = Node->getOperand(1); 3251 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3252 SDLoc dl(Node); 3253 3254 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3255 3256 // gpr_index 3257 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3258 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3259 InChain = GprIndex.getValue(1); 3260 3261 if (VT == MVT::i64) { 3262 // Check if GprIndex is even 3263 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3264 DAG.getConstant(1, dl, MVT::i32)); 3265 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3266 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3267 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3268 DAG.getConstant(1, dl, MVT::i32)); 3269 // Align GprIndex to be even if it isn't 3270 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3271 GprIndex); 3272 } 3273 3274 // fpr index is 1 byte after gpr 3275 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3276 DAG.getConstant(1, dl, MVT::i32)); 3277 3278 // fpr 3279 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3280 FprPtr, MachinePointerInfo(SV), MVT::i8); 3281 InChain = FprIndex.getValue(1); 3282 3283 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3284 DAG.getConstant(8, dl, MVT::i32)); 3285 3286 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3287 DAG.getConstant(4, dl, MVT::i32)); 3288 3289 // areas 3290 SDValue OverflowArea = 3291 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3292 InChain = OverflowArea.getValue(1); 3293 3294 SDValue RegSaveArea = 3295 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3296 InChain = RegSaveArea.getValue(1); 3297 3298 // select overflow_area if index > 8 3299 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3300 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3301 3302 // adjustment constant gpr_index * 4/8 3303 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3304 VT.isInteger() ? GprIndex : FprIndex, 3305 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3306 MVT::i32)); 3307 3308 // OurReg = RegSaveArea + RegConstant 3309 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3310 RegConstant); 3311 3312 // Floating types are 32 bytes into RegSaveArea 3313 if (VT.isFloatingPoint()) 3314 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3315 DAG.getConstant(32, dl, MVT::i32)); 3316 3317 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3318 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3319 VT.isInteger() ? GprIndex : FprIndex, 3320 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3321 MVT::i32)); 3322 3323 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3324 VT.isInteger() ? VAListPtr : FprPtr, 3325 MachinePointerInfo(SV), MVT::i8); 3326 3327 // determine if we should load from reg_save_area or overflow_area 3328 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3329 3330 // increase overflow_area by 4/8 if gpr/fpr > 8 3331 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3332 DAG.getConstant(VT.isInteger() ? 4 : 8, 3333 dl, MVT::i32)); 3334 3335 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3336 OverflowAreaPlusN); 3337 3338 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3339 MachinePointerInfo(), MVT::i32); 3340 3341 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3342 } 3343 3344 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3345 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3346 3347 // We have to copy the entire va_list struct: 3348 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3349 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3350 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3351 false, true, false, MachinePointerInfo(), 3352 MachinePointerInfo()); 3353 } 3354 3355 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3356 SelectionDAG &DAG) const { 3357 if (Subtarget.isAIXABI()) 3358 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3359 3360 return Op.getOperand(0); 3361 } 3362 3363 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3364 SelectionDAG &DAG) const { 3365 if (Subtarget.isAIXABI()) 3366 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3367 3368 SDValue Chain = Op.getOperand(0); 3369 SDValue Trmp = Op.getOperand(1); // trampoline 3370 SDValue FPtr = Op.getOperand(2); // nested function 3371 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3372 SDLoc dl(Op); 3373 3374 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3375 bool isPPC64 = (PtrVT == MVT::i64); 3376 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3377 3378 TargetLowering::ArgListTy Args; 3379 TargetLowering::ArgListEntry Entry; 3380 3381 Entry.Ty = IntPtrTy; 3382 Entry.Node = Trmp; Args.push_back(Entry); 3383 3384 // TrampSize == (isPPC64 ? 48 : 40); 3385 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3386 isPPC64 ? MVT::i64 : MVT::i32); 3387 Args.push_back(Entry); 3388 3389 Entry.Node = FPtr; Args.push_back(Entry); 3390 Entry.Node = Nest; Args.push_back(Entry); 3391 3392 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3393 TargetLowering::CallLoweringInfo CLI(DAG); 3394 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3395 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3396 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3397 3398 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3399 return CallResult.second; 3400 } 3401 3402 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3403 MachineFunction &MF = DAG.getMachineFunction(); 3404 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3405 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3406 3407 SDLoc dl(Op); 3408 3409 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3410 // vastart just stores the address of the VarArgsFrameIndex slot into the 3411 // memory location argument. 3412 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3413 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3414 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3415 MachinePointerInfo(SV)); 3416 } 3417 3418 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3419 // We suppose the given va_list is already allocated. 3420 // 3421 // typedef struct { 3422 // char gpr; /* index into the array of 8 GPRs 3423 // * stored in the register save area 3424 // * gpr=0 corresponds to r3, 3425 // * gpr=1 to r4, etc. 3426 // */ 3427 // char fpr; /* index into the array of 8 FPRs 3428 // * stored in the register save area 3429 // * fpr=0 corresponds to f1, 3430 // * fpr=1 to f2, etc. 3431 // */ 3432 // char *overflow_arg_area; 3433 // /* location on stack that holds 3434 // * the next overflow argument 3435 // */ 3436 // char *reg_save_area; 3437 // /* where r3:r10 and f1:f8 (if saved) 3438 // * are stored 3439 // */ 3440 // } va_list[1]; 3441 3442 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3443 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3444 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3445 PtrVT); 3446 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3447 PtrVT); 3448 3449 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3450 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3451 3452 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3453 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3454 3455 uint64_t FPROffset = 1; 3456 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3457 3458 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3459 3460 // Store first byte : number of int regs 3461 SDValue firstStore = 3462 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3463 MachinePointerInfo(SV), MVT::i8); 3464 uint64_t nextOffset = FPROffset; 3465 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3466 ConstFPROffset); 3467 3468 // Store second byte : number of float regs 3469 SDValue secondStore = 3470 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3471 MachinePointerInfo(SV, nextOffset), MVT::i8); 3472 nextOffset += StackOffset; 3473 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3474 3475 // Store second word : arguments given on stack 3476 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3477 MachinePointerInfo(SV, nextOffset)); 3478 nextOffset += FrameOffset; 3479 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3480 3481 // Store third word : arguments given in registers 3482 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3483 MachinePointerInfo(SV, nextOffset)); 3484 } 3485 3486 /// FPR - The set of FP registers that should be allocated for arguments 3487 /// on Darwin and AIX. 3488 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3489 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3490 PPC::F11, PPC::F12, PPC::F13}; 3491 3492 /// QFPR - The set of QPX registers that should be allocated for arguments. 3493 static const MCPhysReg QFPR[] = { 3494 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3495 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3496 3497 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3498 /// the stack. 3499 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3500 unsigned PtrByteSize) { 3501 unsigned ArgSize = ArgVT.getStoreSize(); 3502 if (Flags.isByVal()) 3503 ArgSize = Flags.getByValSize(); 3504 3505 // Round up to multiples of the pointer size, except for array members, 3506 // which are always packed. 3507 if (!Flags.isInConsecutiveRegs()) 3508 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3509 3510 return ArgSize; 3511 } 3512 3513 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3514 /// on the stack. 3515 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3516 ISD::ArgFlagsTy Flags, 3517 unsigned PtrByteSize) { 3518 Align Alignment(PtrByteSize); 3519 3520 // Altivec parameters are padded to a 16 byte boundary. 3521 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3522 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3523 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3524 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3525 Alignment = Align(16); 3526 // QPX vector types stored in double-precision are padded to a 32 byte 3527 // boundary. 3528 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3529 Alignment = Align(32); 3530 3531 // ByVal parameters are aligned as requested. 3532 if (Flags.isByVal()) { 3533 auto BVAlign = Flags.getNonZeroByValAlign(); 3534 if (BVAlign > PtrByteSize) { 3535 if (BVAlign.value() % PtrByteSize != 0) 3536 llvm_unreachable( 3537 "ByVal alignment is not a multiple of the pointer size"); 3538 3539 Alignment = BVAlign; 3540 } 3541 } 3542 3543 // Array members are always packed to their original alignment. 3544 if (Flags.isInConsecutiveRegs()) { 3545 // If the array member was split into multiple registers, the first 3546 // needs to be aligned to the size of the full type. (Except for 3547 // ppcf128, which is only aligned as its f64 components.) 3548 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3549 Alignment = Align(OrigVT.getStoreSize()); 3550 else 3551 Alignment = Align(ArgVT.getStoreSize()); 3552 } 3553 3554 return Alignment; 3555 } 3556 3557 /// CalculateStackSlotUsed - Return whether this argument will use its 3558 /// stack slot (instead of being passed in registers). ArgOffset, 3559 /// AvailableFPRs, and AvailableVRs must hold the current argument 3560 /// position, and will be updated to account for this argument. 3561 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3562 ISD::ArgFlagsTy Flags, 3563 unsigned PtrByteSize, 3564 unsigned LinkageSize, 3565 unsigned ParamAreaSize, 3566 unsigned &ArgOffset, 3567 unsigned &AvailableFPRs, 3568 unsigned &AvailableVRs, bool HasQPX) { 3569 bool UseMemory = false; 3570 3571 // Respect alignment of argument on the stack. 3572 Align Alignment = 3573 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3574 ArgOffset = alignTo(ArgOffset, Alignment); 3575 // If there's no space left in the argument save area, we must 3576 // use memory (this check also catches zero-sized arguments). 3577 if (ArgOffset >= LinkageSize + ParamAreaSize) 3578 UseMemory = true; 3579 3580 // Allocate argument on the stack. 3581 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3582 if (Flags.isInConsecutiveRegsLast()) 3583 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3584 // If we overran the argument save area, we must use memory 3585 // (this check catches arguments passed partially in memory) 3586 if (ArgOffset > LinkageSize + ParamAreaSize) 3587 UseMemory = true; 3588 3589 // However, if the argument is actually passed in an FPR or a VR, 3590 // we don't use memory after all. 3591 if (!Flags.isByVal()) { 3592 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3593 // QPX registers overlap with the scalar FP registers. 3594 (HasQPX && (ArgVT == MVT::v4f32 || 3595 ArgVT == MVT::v4f64 || 3596 ArgVT == MVT::v4i1))) 3597 if (AvailableFPRs > 0) { 3598 --AvailableFPRs; 3599 return false; 3600 } 3601 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3602 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3603 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3604 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3605 if (AvailableVRs > 0) { 3606 --AvailableVRs; 3607 return false; 3608 } 3609 } 3610 3611 return UseMemory; 3612 } 3613 3614 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3615 /// ensure minimum alignment required for target. 3616 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3617 unsigned NumBytes) { 3618 return alignTo(NumBytes, Lowering->getStackAlign()); 3619 } 3620 3621 SDValue PPCTargetLowering::LowerFormalArguments( 3622 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3623 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3624 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3625 if (Subtarget.isAIXABI()) 3626 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3627 InVals); 3628 if (Subtarget.is64BitELFABI()) 3629 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3630 InVals); 3631 if (Subtarget.is32BitELFABI()) 3632 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3633 InVals); 3634 3635 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3636 InVals); 3637 } 3638 3639 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3640 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3641 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3642 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3643 3644 // 32-bit SVR4 ABI Stack Frame Layout: 3645 // +-----------------------------------+ 3646 // +--> | Back chain | 3647 // | +-----------------------------------+ 3648 // | | Floating-point register save area | 3649 // | +-----------------------------------+ 3650 // | | General register save area | 3651 // | +-----------------------------------+ 3652 // | | CR save word | 3653 // | +-----------------------------------+ 3654 // | | VRSAVE save word | 3655 // | +-----------------------------------+ 3656 // | | Alignment padding | 3657 // | +-----------------------------------+ 3658 // | | Vector register save area | 3659 // | +-----------------------------------+ 3660 // | | Local variable space | 3661 // | +-----------------------------------+ 3662 // | | Parameter list area | 3663 // | +-----------------------------------+ 3664 // | | LR save word | 3665 // | +-----------------------------------+ 3666 // SP--> +--- | Back chain | 3667 // +-----------------------------------+ 3668 // 3669 // Specifications: 3670 // System V Application Binary Interface PowerPC Processor Supplement 3671 // AltiVec Technology Programming Interface Manual 3672 3673 MachineFunction &MF = DAG.getMachineFunction(); 3674 MachineFrameInfo &MFI = MF.getFrameInfo(); 3675 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3676 3677 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3678 // Potential tail calls could cause overwriting of argument stack slots. 3679 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3680 (CallConv == CallingConv::Fast)); 3681 const Align PtrAlign(4); 3682 3683 // Assign locations to all of the incoming arguments. 3684 SmallVector<CCValAssign, 16> ArgLocs; 3685 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3686 *DAG.getContext()); 3687 3688 // Reserve space for the linkage area on the stack. 3689 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3690 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3691 if (useSoftFloat()) 3692 CCInfo.PreAnalyzeFormalArguments(Ins); 3693 3694 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3695 CCInfo.clearWasPPCF128(); 3696 3697 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3698 CCValAssign &VA = ArgLocs[i]; 3699 3700 // Arguments stored in registers. 3701 if (VA.isRegLoc()) { 3702 const TargetRegisterClass *RC; 3703 EVT ValVT = VA.getValVT(); 3704 3705 switch (ValVT.getSimpleVT().SimpleTy) { 3706 default: 3707 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3708 case MVT::i1: 3709 case MVT::i32: 3710 RC = &PPC::GPRCRegClass; 3711 break; 3712 case MVT::f32: 3713 if (Subtarget.hasP8Vector()) 3714 RC = &PPC::VSSRCRegClass; 3715 else if (Subtarget.hasSPE()) 3716 RC = &PPC::GPRCRegClass; 3717 else 3718 RC = &PPC::F4RCRegClass; 3719 break; 3720 case MVT::f64: 3721 if (Subtarget.hasVSX()) 3722 RC = &PPC::VSFRCRegClass; 3723 else if (Subtarget.hasSPE()) 3724 // SPE passes doubles in GPR pairs. 3725 RC = &PPC::GPRCRegClass; 3726 else 3727 RC = &PPC::F8RCRegClass; 3728 break; 3729 case MVT::v16i8: 3730 case MVT::v8i16: 3731 case MVT::v4i32: 3732 RC = &PPC::VRRCRegClass; 3733 break; 3734 case MVT::v4f32: 3735 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3736 break; 3737 case MVT::v2f64: 3738 case MVT::v2i64: 3739 RC = &PPC::VRRCRegClass; 3740 break; 3741 case MVT::v4f64: 3742 RC = &PPC::QFRCRegClass; 3743 break; 3744 case MVT::v4i1: 3745 RC = &PPC::QBRCRegClass; 3746 break; 3747 } 3748 3749 SDValue ArgValue; 3750 // Transform the arguments stored in physical registers into 3751 // virtual ones. 3752 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3753 assert(i + 1 < e && "No second half of double precision argument"); 3754 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3755 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3756 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3757 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3758 if (!Subtarget.isLittleEndian()) 3759 std::swap (ArgValueLo, ArgValueHi); 3760 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3761 ArgValueHi); 3762 } else { 3763 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3764 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3765 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3766 if (ValVT == MVT::i1) 3767 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3768 } 3769 3770 InVals.push_back(ArgValue); 3771 } else { 3772 // Argument stored in memory. 3773 assert(VA.isMemLoc()); 3774 3775 // Get the extended size of the argument type in stack 3776 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3777 // Get the actual size of the argument type 3778 unsigned ObjSize = VA.getValVT().getStoreSize(); 3779 unsigned ArgOffset = VA.getLocMemOffset(); 3780 // Stack objects in PPC32 are right justified. 3781 ArgOffset += ArgSize - ObjSize; 3782 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3783 3784 // Create load nodes to retrieve arguments from the stack. 3785 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3786 InVals.push_back( 3787 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3788 } 3789 } 3790 3791 // Assign locations to all of the incoming aggregate by value arguments. 3792 // Aggregates passed by value are stored in the local variable space of the 3793 // caller's stack frame, right above the parameter list area. 3794 SmallVector<CCValAssign, 16> ByValArgLocs; 3795 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3796 ByValArgLocs, *DAG.getContext()); 3797 3798 // Reserve stack space for the allocations in CCInfo. 3799 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3800 3801 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3802 3803 // Area that is at least reserved in the caller of this function. 3804 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3805 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3806 3807 // Set the size that is at least reserved in caller of this function. Tail 3808 // call optimized function's reserved stack space needs to be aligned so that 3809 // taking the difference between two stack areas will result in an aligned 3810 // stack. 3811 MinReservedArea = 3812 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3813 FuncInfo->setMinReservedArea(MinReservedArea); 3814 3815 SmallVector<SDValue, 8> MemOps; 3816 3817 // If the function takes variable number of arguments, make a frame index for 3818 // the start of the first vararg value... for expansion of llvm.va_start. 3819 if (isVarArg) { 3820 static const MCPhysReg GPArgRegs[] = { 3821 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3822 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3823 }; 3824 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3825 3826 static const MCPhysReg FPArgRegs[] = { 3827 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3828 PPC::F8 3829 }; 3830 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3831 3832 if (useSoftFloat() || hasSPE()) 3833 NumFPArgRegs = 0; 3834 3835 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3836 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3837 3838 // Make room for NumGPArgRegs and NumFPArgRegs. 3839 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3840 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3841 3842 FuncInfo->setVarArgsStackOffset( 3843 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3844 CCInfo.getNextStackOffset(), true)); 3845 3846 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3847 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3848 3849 // The fixed integer arguments of a variadic function are stored to the 3850 // VarArgsFrameIndex on the stack so that they may be loaded by 3851 // dereferencing the result of va_next. 3852 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3853 // Get an existing live-in vreg, or add a new one. 3854 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3855 if (!VReg) 3856 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3857 3858 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3859 SDValue Store = 3860 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3861 MemOps.push_back(Store); 3862 // Increment the address by four for the next argument to store 3863 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3864 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3865 } 3866 3867 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3868 // is set. 3869 // The double arguments are stored to the VarArgsFrameIndex 3870 // on the stack. 3871 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3872 // Get an existing live-in vreg, or add a new one. 3873 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3874 if (!VReg) 3875 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3876 3877 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3878 SDValue Store = 3879 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3880 MemOps.push_back(Store); 3881 // Increment the address by eight for the next argument to store 3882 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3883 PtrVT); 3884 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3885 } 3886 } 3887 3888 if (!MemOps.empty()) 3889 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3890 3891 return Chain; 3892 } 3893 3894 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3895 // value to MVT::i64 and then truncate to the correct register size. 3896 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3897 EVT ObjectVT, SelectionDAG &DAG, 3898 SDValue ArgVal, 3899 const SDLoc &dl) const { 3900 if (Flags.isSExt()) 3901 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3902 DAG.getValueType(ObjectVT)); 3903 else if (Flags.isZExt()) 3904 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3905 DAG.getValueType(ObjectVT)); 3906 3907 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3908 } 3909 3910 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3911 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3912 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3913 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3914 // TODO: add description of PPC stack frame format, or at least some docs. 3915 // 3916 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3917 bool isLittleEndian = Subtarget.isLittleEndian(); 3918 MachineFunction &MF = DAG.getMachineFunction(); 3919 MachineFrameInfo &MFI = MF.getFrameInfo(); 3920 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3921 3922 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3923 "fastcc not supported on varargs functions"); 3924 3925 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3926 // Potential tail calls could cause overwriting of argument stack slots. 3927 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3928 (CallConv == CallingConv::Fast)); 3929 unsigned PtrByteSize = 8; 3930 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3931 3932 static const MCPhysReg GPR[] = { 3933 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3934 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3935 }; 3936 static const MCPhysReg VR[] = { 3937 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3938 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3939 }; 3940 3941 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3942 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3943 const unsigned Num_VR_Regs = array_lengthof(VR); 3944 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3945 3946 // Do a first pass over the arguments to determine whether the ABI 3947 // guarantees that our caller has allocated the parameter save area 3948 // on its stack frame. In the ELFv1 ABI, this is always the case; 3949 // in the ELFv2 ABI, it is true if this is a vararg function or if 3950 // any parameter is located in a stack slot. 3951 3952 bool HasParameterArea = !isELFv2ABI || isVarArg; 3953 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3954 unsigned NumBytes = LinkageSize; 3955 unsigned AvailableFPRs = Num_FPR_Regs; 3956 unsigned AvailableVRs = Num_VR_Regs; 3957 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3958 if (Ins[i].Flags.isNest()) 3959 continue; 3960 3961 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3962 PtrByteSize, LinkageSize, ParamAreaSize, 3963 NumBytes, AvailableFPRs, AvailableVRs, 3964 Subtarget.hasQPX())) 3965 HasParameterArea = true; 3966 } 3967 3968 // Add DAG nodes to load the arguments or copy them out of registers. On 3969 // entry to a function on PPC, the arguments start after the linkage area, 3970 // although the first ones are often in registers. 3971 3972 unsigned ArgOffset = LinkageSize; 3973 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3974 unsigned &QFPR_idx = FPR_idx; 3975 SmallVector<SDValue, 8> MemOps; 3976 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3977 unsigned CurArgIdx = 0; 3978 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3979 SDValue ArgVal; 3980 bool needsLoad = false; 3981 EVT ObjectVT = Ins[ArgNo].VT; 3982 EVT OrigVT = Ins[ArgNo].ArgVT; 3983 unsigned ObjSize = ObjectVT.getStoreSize(); 3984 unsigned ArgSize = ObjSize; 3985 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3986 if (Ins[ArgNo].isOrigArg()) { 3987 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3988 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3989 } 3990 // We re-align the argument offset for each argument, except when using the 3991 // fast calling convention, when we need to make sure we do that only when 3992 // we'll actually use a stack slot. 3993 unsigned CurArgOffset; 3994 Align Alignment; 3995 auto ComputeArgOffset = [&]() { 3996 /* Respect alignment of argument on the stack. */ 3997 Alignment = 3998 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3999 ArgOffset = alignTo(ArgOffset, Alignment); 4000 CurArgOffset = ArgOffset; 4001 }; 4002 4003 if (CallConv != CallingConv::Fast) { 4004 ComputeArgOffset(); 4005 4006 /* Compute GPR index associated with argument offset. */ 4007 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4008 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4009 } 4010 4011 // FIXME the codegen can be much improved in some cases. 4012 // We do not have to keep everything in memory. 4013 if (Flags.isByVal()) { 4014 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4015 4016 if (CallConv == CallingConv::Fast) 4017 ComputeArgOffset(); 4018 4019 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4020 ObjSize = Flags.getByValSize(); 4021 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4022 // Empty aggregate parameters do not take up registers. Examples: 4023 // struct { } a; 4024 // union { } b; 4025 // int c[0]; 4026 // etc. However, we have to provide a place-holder in InVals, so 4027 // pretend we have an 8-byte item at the current address for that 4028 // purpose. 4029 if (!ObjSize) { 4030 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4031 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4032 InVals.push_back(FIN); 4033 continue; 4034 } 4035 4036 // Create a stack object covering all stack doublewords occupied 4037 // by the argument. If the argument is (fully or partially) on 4038 // the stack, or if the argument is fully in registers but the 4039 // caller has allocated the parameter save anyway, we can refer 4040 // directly to the caller's stack frame. Otherwise, create a 4041 // local copy in our own frame. 4042 int FI; 4043 if (HasParameterArea || 4044 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4045 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4046 else 4047 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4048 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4049 4050 // Handle aggregates smaller than 8 bytes. 4051 if (ObjSize < PtrByteSize) { 4052 // The value of the object is its address, which differs from the 4053 // address of the enclosing doubleword on big-endian systems. 4054 SDValue Arg = FIN; 4055 if (!isLittleEndian) { 4056 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4057 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4058 } 4059 InVals.push_back(Arg); 4060 4061 if (GPR_idx != Num_GPR_Regs) { 4062 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4063 FuncInfo->addLiveInAttr(VReg, Flags); 4064 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4065 SDValue Store; 4066 4067 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4068 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4069 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4070 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4071 MachinePointerInfo(&*FuncArg), ObjType); 4072 } else { 4073 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4074 // store the whole register as-is to the parameter save area 4075 // slot. 4076 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4077 MachinePointerInfo(&*FuncArg)); 4078 } 4079 4080 MemOps.push_back(Store); 4081 } 4082 // Whether we copied from a register or not, advance the offset 4083 // into the parameter save area by a full doubleword. 4084 ArgOffset += PtrByteSize; 4085 continue; 4086 } 4087 4088 // The value of the object is its address, which is the address of 4089 // its first stack doubleword. 4090 InVals.push_back(FIN); 4091 4092 // Store whatever pieces of the object are in registers to memory. 4093 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4094 if (GPR_idx == Num_GPR_Regs) 4095 break; 4096 4097 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4098 FuncInfo->addLiveInAttr(VReg, Flags); 4099 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4100 SDValue Addr = FIN; 4101 if (j) { 4102 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4103 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4104 } 4105 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4106 MachinePointerInfo(&*FuncArg, j)); 4107 MemOps.push_back(Store); 4108 ++GPR_idx; 4109 } 4110 ArgOffset += ArgSize; 4111 continue; 4112 } 4113 4114 switch (ObjectVT.getSimpleVT().SimpleTy) { 4115 default: llvm_unreachable("Unhandled argument type!"); 4116 case MVT::i1: 4117 case MVT::i32: 4118 case MVT::i64: 4119 if (Flags.isNest()) { 4120 // The 'nest' parameter, if any, is passed in R11. 4121 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4122 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4123 4124 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4125 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4126 4127 break; 4128 } 4129 4130 // These can be scalar arguments or elements of an integer array type 4131 // passed directly. Clang may use those instead of "byval" aggregate 4132 // types to avoid forcing arguments to memory unnecessarily. 4133 if (GPR_idx != Num_GPR_Regs) { 4134 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4135 FuncInfo->addLiveInAttr(VReg, Flags); 4136 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4137 4138 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4139 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4140 // value to MVT::i64 and then truncate to the correct register size. 4141 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4142 } else { 4143 if (CallConv == CallingConv::Fast) 4144 ComputeArgOffset(); 4145 4146 needsLoad = true; 4147 ArgSize = PtrByteSize; 4148 } 4149 if (CallConv != CallingConv::Fast || needsLoad) 4150 ArgOffset += 8; 4151 break; 4152 4153 case MVT::f32: 4154 case MVT::f64: 4155 // These can be scalar arguments or elements of a float array type 4156 // passed directly. The latter are used to implement ELFv2 homogenous 4157 // float aggregates. 4158 if (FPR_idx != Num_FPR_Regs) { 4159 unsigned VReg; 4160 4161 if (ObjectVT == MVT::f32) 4162 VReg = MF.addLiveIn(FPR[FPR_idx], 4163 Subtarget.hasP8Vector() 4164 ? &PPC::VSSRCRegClass 4165 : &PPC::F4RCRegClass); 4166 else 4167 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4168 ? &PPC::VSFRCRegClass 4169 : &PPC::F8RCRegClass); 4170 4171 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4172 ++FPR_idx; 4173 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4174 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4175 // once we support fp <-> gpr moves. 4176 4177 // This can only ever happen in the presence of f32 array types, 4178 // since otherwise we never run out of FPRs before running out 4179 // of GPRs. 4180 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4181 FuncInfo->addLiveInAttr(VReg, Flags); 4182 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4183 4184 if (ObjectVT == MVT::f32) { 4185 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4186 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4187 DAG.getConstant(32, dl, MVT::i32)); 4188 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4189 } 4190 4191 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4192 } else { 4193 if (CallConv == CallingConv::Fast) 4194 ComputeArgOffset(); 4195 4196 needsLoad = true; 4197 } 4198 4199 // When passing an array of floats, the array occupies consecutive 4200 // space in the argument area; only round up to the next doubleword 4201 // at the end of the array. Otherwise, each float takes 8 bytes. 4202 if (CallConv != CallingConv::Fast || needsLoad) { 4203 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4204 ArgOffset += ArgSize; 4205 if (Flags.isInConsecutiveRegsLast()) 4206 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4207 } 4208 break; 4209 case MVT::v4f32: 4210 case MVT::v4i32: 4211 case MVT::v8i16: 4212 case MVT::v16i8: 4213 case MVT::v2f64: 4214 case MVT::v2i64: 4215 case MVT::v1i128: 4216 case MVT::f128: 4217 if (!Subtarget.hasQPX()) { 4218 // These can be scalar arguments or elements of a vector array type 4219 // passed directly. The latter are used to implement ELFv2 homogenous 4220 // vector aggregates. 4221 if (VR_idx != Num_VR_Regs) { 4222 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4223 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4224 ++VR_idx; 4225 } else { 4226 if (CallConv == CallingConv::Fast) 4227 ComputeArgOffset(); 4228 needsLoad = true; 4229 } 4230 if (CallConv != CallingConv::Fast || needsLoad) 4231 ArgOffset += 16; 4232 break; 4233 } // not QPX 4234 4235 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4236 "Invalid QPX parameter type"); 4237 LLVM_FALLTHROUGH; 4238 4239 case MVT::v4f64: 4240 case MVT::v4i1: 4241 // QPX vectors are treated like their scalar floating-point subregisters 4242 // (except that they're larger). 4243 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4244 if (QFPR_idx != Num_QFPR_Regs) { 4245 const TargetRegisterClass *RC; 4246 switch (ObjectVT.getSimpleVT().SimpleTy) { 4247 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4248 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4249 default: RC = &PPC::QBRCRegClass; break; 4250 } 4251 4252 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4253 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4254 ++QFPR_idx; 4255 } else { 4256 if (CallConv == CallingConv::Fast) 4257 ComputeArgOffset(); 4258 needsLoad = true; 4259 } 4260 if (CallConv != CallingConv::Fast || needsLoad) 4261 ArgOffset += Sz; 4262 break; 4263 } 4264 4265 // We need to load the argument to a virtual register if we determined 4266 // above that we ran out of physical registers of the appropriate type. 4267 if (needsLoad) { 4268 if (ObjSize < ArgSize && !isLittleEndian) 4269 CurArgOffset += ArgSize - ObjSize; 4270 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4271 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4272 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4273 } 4274 4275 InVals.push_back(ArgVal); 4276 } 4277 4278 // Area that is at least reserved in the caller of this function. 4279 unsigned MinReservedArea; 4280 if (HasParameterArea) 4281 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4282 else 4283 MinReservedArea = LinkageSize; 4284 4285 // Set the size that is at least reserved in caller of this function. Tail 4286 // call optimized functions' reserved stack space needs to be aligned so that 4287 // taking the difference between two stack areas will result in an aligned 4288 // stack. 4289 MinReservedArea = 4290 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4291 FuncInfo->setMinReservedArea(MinReservedArea); 4292 4293 // If the function takes variable number of arguments, make a frame index for 4294 // the start of the first vararg value... for expansion of llvm.va_start. 4295 if (isVarArg) { 4296 int Depth = ArgOffset; 4297 4298 FuncInfo->setVarArgsFrameIndex( 4299 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4300 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4301 4302 // If this function is vararg, store any remaining integer argument regs 4303 // to their spots on the stack so that they may be loaded by dereferencing 4304 // the result of va_next. 4305 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4306 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4307 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4308 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4309 SDValue Store = 4310 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4311 MemOps.push_back(Store); 4312 // Increment the address by four for the next argument to store 4313 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4314 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4315 } 4316 } 4317 4318 if (!MemOps.empty()) 4319 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4320 4321 return Chain; 4322 } 4323 4324 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4325 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4326 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4327 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4328 // TODO: add description of PPC stack frame format, or at least some docs. 4329 // 4330 MachineFunction &MF = DAG.getMachineFunction(); 4331 MachineFrameInfo &MFI = MF.getFrameInfo(); 4332 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4333 4334 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4335 bool isPPC64 = PtrVT == MVT::i64; 4336 // Potential tail calls could cause overwriting of argument stack slots. 4337 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4338 (CallConv == CallingConv::Fast)); 4339 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4340 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4341 unsigned ArgOffset = LinkageSize; 4342 // Area that is at least reserved in caller of this function. 4343 unsigned MinReservedArea = ArgOffset; 4344 4345 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4346 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4347 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4348 }; 4349 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4350 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4351 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4352 }; 4353 static const MCPhysReg VR[] = { 4354 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4355 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4356 }; 4357 4358 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4359 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4360 const unsigned Num_VR_Regs = array_lengthof( VR); 4361 4362 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4363 4364 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4365 4366 // In 32-bit non-varargs functions, the stack space for vectors is after the 4367 // stack space for non-vectors. We do not use this space unless we have 4368 // too many vectors to fit in registers, something that only occurs in 4369 // constructed examples:), but we have to walk the arglist to figure 4370 // that out...for the pathological case, compute VecArgOffset as the 4371 // start of the vector parameter area. Computing VecArgOffset is the 4372 // entire point of the following loop. 4373 unsigned VecArgOffset = ArgOffset; 4374 if (!isVarArg && !isPPC64) { 4375 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4376 ++ArgNo) { 4377 EVT ObjectVT = Ins[ArgNo].VT; 4378 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4379 4380 if (Flags.isByVal()) { 4381 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4382 unsigned ObjSize = Flags.getByValSize(); 4383 unsigned ArgSize = 4384 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4385 VecArgOffset += ArgSize; 4386 continue; 4387 } 4388 4389 switch(ObjectVT.getSimpleVT().SimpleTy) { 4390 default: llvm_unreachable("Unhandled argument type!"); 4391 case MVT::i1: 4392 case MVT::i32: 4393 case MVT::f32: 4394 VecArgOffset += 4; 4395 break; 4396 case MVT::i64: // PPC64 4397 case MVT::f64: 4398 // FIXME: We are guaranteed to be !isPPC64 at this point. 4399 // Does MVT::i64 apply? 4400 VecArgOffset += 8; 4401 break; 4402 case MVT::v4f32: 4403 case MVT::v4i32: 4404 case MVT::v8i16: 4405 case MVT::v16i8: 4406 // Nothing to do, we're only looking at Nonvector args here. 4407 break; 4408 } 4409 } 4410 } 4411 // We've found where the vector parameter area in memory is. Skip the 4412 // first 12 parameters; these don't use that memory. 4413 VecArgOffset = ((VecArgOffset+15)/16)*16; 4414 VecArgOffset += 12*16; 4415 4416 // Add DAG nodes to load the arguments or copy them out of registers. On 4417 // entry to a function on PPC, the arguments start after the linkage area, 4418 // although the first ones are often in registers. 4419 4420 SmallVector<SDValue, 8> MemOps; 4421 unsigned nAltivecParamsAtEnd = 0; 4422 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4423 unsigned CurArgIdx = 0; 4424 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4425 SDValue ArgVal; 4426 bool needsLoad = false; 4427 EVT ObjectVT = Ins[ArgNo].VT; 4428 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4429 unsigned ArgSize = ObjSize; 4430 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4431 if (Ins[ArgNo].isOrigArg()) { 4432 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4433 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4434 } 4435 unsigned CurArgOffset = ArgOffset; 4436 4437 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4438 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4439 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4440 if (isVarArg || isPPC64) { 4441 MinReservedArea = ((MinReservedArea+15)/16)*16; 4442 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4443 Flags, 4444 PtrByteSize); 4445 } else nAltivecParamsAtEnd++; 4446 } else 4447 // Calculate min reserved area. 4448 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4449 Flags, 4450 PtrByteSize); 4451 4452 // FIXME the codegen can be much improved in some cases. 4453 // We do not have to keep everything in memory. 4454 if (Flags.isByVal()) { 4455 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4456 4457 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4458 ObjSize = Flags.getByValSize(); 4459 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4460 // Objects of size 1 and 2 are right justified, everything else is 4461 // left justified. This means the memory address is adjusted forwards. 4462 if (ObjSize==1 || ObjSize==2) { 4463 CurArgOffset = CurArgOffset + (4 - ObjSize); 4464 } 4465 // The value of the object is its address. 4466 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4467 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4468 InVals.push_back(FIN); 4469 if (ObjSize==1 || ObjSize==2) { 4470 if (GPR_idx != Num_GPR_Regs) { 4471 unsigned VReg; 4472 if (isPPC64) 4473 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4474 else 4475 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4476 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4477 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4478 SDValue Store = 4479 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4480 MachinePointerInfo(&*FuncArg), ObjType); 4481 MemOps.push_back(Store); 4482 ++GPR_idx; 4483 } 4484 4485 ArgOffset += PtrByteSize; 4486 4487 continue; 4488 } 4489 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4490 // Store whatever pieces of the object are in registers 4491 // to memory. ArgOffset will be the address of the beginning 4492 // of the object. 4493 if (GPR_idx != Num_GPR_Regs) { 4494 unsigned VReg; 4495 if (isPPC64) 4496 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4497 else 4498 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4499 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4500 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4501 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4502 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4503 MachinePointerInfo(&*FuncArg, j)); 4504 MemOps.push_back(Store); 4505 ++GPR_idx; 4506 ArgOffset += PtrByteSize; 4507 } else { 4508 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4509 break; 4510 } 4511 } 4512 continue; 4513 } 4514 4515 switch (ObjectVT.getSimpleVT().SimpleTy) { 4516 default: llvm_unreachable("Unhandled argument type!"); 4517 case MVT::i1: 4518 case MVT::i32: 4519 if (!isPPC64) { 4520 if (GPR_idx != Num_GPR_Regs) { 4521 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4522 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4523 4524 if (ObjectVT == MVT::i1) 4525 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4526 4527 ++GPR_idx; 4528 } else { 4529 needsLoad = true; 4530 ArgSize = PtrByteSize; 4531 } 4532 // All int arguments reserve stack space in the Darwin ABI. 4533 ArgOffset += PtrByteSize; 4534 break; 4535 } 4536 LLVM_FALLTHROUGH; 4537 case MVT::i64: // PPC64 4538 if (GPR_idx != Num_GPR_Regs) { 4539 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4540 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4541 4542 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4543 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4544 // value to MVT::i64 and then truncate to the correct register size. 4545 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4546 4547 ++GPR_idx; 4548 } else { 4549 needsLoad = true; 4550 ArgSize = PtrByteSize; 4551 } 4552 // All int arguments reserve stack space in the Darwin ABI. 4553 ArgOffset += 8; 4554 break; 4555 4556 case MVT::f32: 4557 case MVT::f64: 4558 // Every 4 bytes of argument space consumes one of the GPRs available for 4559 // argument passing. 4560 if (GPR_idx != Num_GPR_Regs) { 4561 ++GPR_idx; 4562 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4563 ++GPR_idx; 4564 } 4565 if (FPR_idx != Num_FPR_Regs) { 4566 unsigned VReg; 4567 4568 if (ObjectVT == MVT::f32) 4569 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4570 else 4571 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4572 4573 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4574 ++FPR_idx; 4575 } else { 4576 needsLoad = true; 4577 } 4578 4579 // All FP arguments reserve stack space in the Darwin ABI. 4580 ArgOffset += isPPC64 ? 8 : ObjSize; 4581 break; 4582 case MVT::v4f32: 4583 case MVT::v4i32: 4584 case MVT::v8i16: 4585 case MVT::v16i8: 4586 // Note that vector arguments in registers don't reserve stack space, 4587 // except in varargs functions. 4588 if (VR_idx != Num_VR_Regs) { 4589 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4590 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4591 if (isVarArg) { 4592 while ((ArgOffset % 16) != 0) { 4593 ArgOffset += PtrByteSize; 4594 if (GPR_idx != Num_GPR_Regs) 4595 GPR_idx++; 4596 } 4597 ArgOffset += 16; 4598 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4599 } 4600 ++VR_idx; 4601 } else { 4602 if (!isVarArg && !isPPC64) { 4603 // Vectors go after all the nonvectors. 4604 CurArgOffset = VecArgOffset; 4605 VecArgOffset += 16; 4606 } else { 4607 // Vectors are aligned. 4608 ArgOffset = ((ArgOffset+15)/16)*16; 4609 CurArgOffset = ArgOffset; 4610 ArgOffset += 16; 4611 } 4612 needsLoad = true; 4613 } 4614 break; 4615 } 4616 4617 // We need to load the argument to a virtual register if we determined above 4618 // that we ran out of physical registers of the appropriate type. 4619 if (needsLoad) { 4620 int FI = MFI.CreateFixedObject(ObjSize, 4621 CurArgOffset + (ArgSize - ObjSize), 4622 isImmutable); 4623 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4624 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4625 } 4626 4627 InVals.push_back(ArgVal); 4628 } 4629 4630 // Allow for Altivec parameters at the end, if needed. 4631 if (nAltivecParamsAtEnd) { 4632 MinReservedArea = ((MinReservedArea+15)/16)*16; 4633 MinReservedArea += 16*nAltivecParamsAtEnd; 4634 } 4635 4636 // Area that is at least reserved in the caller of this function. 4637 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4638 4639 // Set the size that is at least reserved in caller of this function. Tail 4640 // call optimized functions' reserved stack space needs to be aligned so that 4641 // taking the difference between two stack areas will result in an aligned 4642 // stack. 4643 MinReservedArea = 4644 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4645 FuncInfo->setMinReservedArea(MinReservedArea); 4646 4647 // If the function takes variable number of arguments, make a frame index for 4648 // the start of the first vararg value... for expansion of llvm.va_start. 4649 if (isVarArg) { 4650 int Depth = ArgOffset; 4651 4652 FuncInfo->setVarArgsFrameIndex( 4653 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4654 Depth, true)); 4655 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4656 4657 // If this function is vararg, store any remaining integer argument regs 4658 // to their spots on the stack so that they may be loaded by dereferencing 4659 // the result of va_next. 4660 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4661 unsigned VReg; 4662 4663 if (isPPC64) 4664 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4665 else 4666 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4667 4668 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4669 SDValue Store = 4670 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4671 MemOps.push_back(Store); 4672 // Increment the address by four for the next argument to store 4673 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4674 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4675 } 4676 } 4677 4678 if (!MemOps.empty()) 4679 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4680 4681 return Chain; 4682 } 4683 4684 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4685 /// adjusted to accommodate the arguments for the tailcall. 4686 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4687 unsigned ParamSize) { 4688 4689 if (!isTailCall) return 0; 4690 4691 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4692 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4693 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4694 // Remember only if the new adjustment is bigger. 4695 if (SPDiff < FI->getTailCallSPDelta()) 4696 FI->setTailCallSPDelta(SPDiff); 4697 4698 return SPDiff; 4699 } 4700 4701 static bool isFunctionGlobalAddress(SDValue Callee); 4702 4703 static bool 4704 callsShareTOCBase(const Function *Caller, SDValue Callee, 4705 const TargetMachine &TM) { 4706 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4707 // don't have enough information to determine if the caller and calle share 4708 // the same TOC base, so we have to pessimistically assume they don't for 4709 // correctness. 4710 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4711 if (!G) 4712 return false; 4713 4714 const GlobalValue *GV = G->getGlobal(); 4715 // The medium and large code models are expected to provide a sufficiently 4716 // large TOC to provide all data addressing needs of a module with a 4717 // single TOC. Since each module will be addressed with a single TOC then we 4718 // only need to check that caller and callee don't cross dso boundaries. 4719 if (CodeModel::Medium == TM.getCodeModel() || 4720 CodeModel::Large == TM.getCodeModel()) 4721 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4722 4723 // Otherwise we need to ensure callee and caller are in the same section, 4724 // since the linker may allocate multiple TOCs, and we don't know which 4725 // sections will belong to the same TOC base. 4726 4727 if (!GV->isStrongDefinitionForLinker()) 4728 return false; 4729 4730 // Any explicitly-specified sections and section prefixes must also match. 4731 // Also, if we're using -ffunction-sections, then each function is always in 4732 // a different section (the same is true for COMDAT functions). 4733 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4734 GV->getSection() != Caller->getSection()) 4735 return false; 4736 if (const auto *F = dyn_cast<Function>(GV)) { 4737 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4738 return false; 4739 } 4740 4741 // If the callee might be interposed, then we can't assume the ultimate call 4742 // target will be in the same section. Even in cases where we can assume that 4743 // interposition won't happen, in any case where the linker might insert a 4744 // stub to allow for interposition, we must generate code as though 4745 // interposition might occur. To understand why this matters, consider a 4746 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4747 // in the same section, but a is in a different module (i.e. has a different 4748 // TOC base pointer). If the linker allows for interposition between b and c, 4749 // then it will generate a stub for the call edge between b and c which will 4750 // save the TOC pointer into the designated stack slot allocated by b. If we 4751 // return true here, and therefore allow a tail call between b and c, that 4752 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4753 // pointer into the stack slot allocated by a (where the a -> b stub saved 4754 // a's TOC base pointer). If we're not considering a tail call, but rather, 4755 // whether a nop is needed after the call instruction in b, because the linker 4756 // will insert a stub, it might complain about a missing nop if we omit it 4757 // (although many don't complain in this case). 4758 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4759 return false; 4760 4761 return true; 4762 } 4763 4764 static bool 4765 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4766 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4767 assert(Subtarget.is64BitELFABI()); 4768 4769 const unsigned PtrByteSize = 8; 4770 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4771 4772 static const MCPhysReg GPR[] = { 4773 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4774 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4775 }; 4776 static const MCPhysReg VR[] = { 4777 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4778 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4779 }; 4780 4781 const unsigned NumGPRs = array_lengthof(GPR); 4782 const unsigned NumFPRs = 13; 4783 const unsigned NumVRs = array_lengthof(VR); 4784 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4785 4786 unsigned NumBytes = LinkageSize; 4787 unsigned AvailableFPRs = NumFPRs; 4788 unsigned AvailableVRs = NumVRs; 4789 4790 for (const ISD::OutputArg& Param : Outs) { 4791 if (Param.Flags.isNest()) continue; 4792 4793 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4794 PtrByteSize, LinkageSize, ParamAreaSize, 4795 NumBytes, AvailableFPRs, AvailableVRs, 4796 Subtarget.hasQPX())) 4797 return true; 4798 } 4799 return false; 4800 } 4801 4802 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4803 if (CB.arg_size() != CallerFn->arg_size()) 4804 return false; 4805 4806 auto CalleeArgIter = CB.arg_begin(); 4807 auto CalleeArgEnd = CB.arg_end(); 4808 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4809 4810 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4811 const Value* CalleeArg = *CalleeArgIter; 4812 const Value* CallerArg = &(*CallerArgIter); 4813 if (CalleeArg == CallerArg) 4814 continue; 4815 4816 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4817 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4818 // } 4819 // 1st argument of callee is undef and has the same type as caller. 4820 if (CalleeArg->getType() == CallerArg->getType() && 4821 isa<UndefValue>(CalleeArg)) 4822 continue; 4823 4824 return false; 4825 } 4826 4827 return true; 4828 } 4829 4830 // Returns true if TCO is possible between the callers and callees 4831 // calling conventions. 4832 static bool 4833 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4834 CallingConv::ID CalleeCC) { 4835 // Tail calls are possible with fastcc and ccc. 4836 auto isTailCallableCC = [] (CallingConv::ID CC){ 4837 return CC == CallingConv::C || CC == CallingConv::Fast; 4838 }; 4839 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4840 return false; 4841 4842 // We can safely tail call both fastcc and ccc callees from a c calling 4843 // convention caller. If the caller is fastcc, we may have less stack space 4844 // than a non-fastcc caller with the same signature so disable tail-calls in 4845 // that case. 4846 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4847 } 4848 4849 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4850 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4851 const SmallVectorImpl<ISD::OutputArg> &Outs, 4852 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4853 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4854 4855 if (DisableSCO && !TailCallOpt) return false; 4856 4857 // Variadic argument functions are not supported. 4858 if (isVarArg) return false; 4859 4860 auto &Caller = DAG.getMachineFunction().getFunction(); 4861 // Check that the calling conventions are compatible for tco. 4862 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4863 return false; 4864 4865 // Caller contains any byval parameter is not supported. 4866 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4867 return false; 4868 4869 // Callee contains any byval parameter is not supported, too. 4870 // Note: This is a quick work around, because in some cases, e.g. 4871 // caller's stack size > callee's stack size, we are still able to apply 4872 // sibling call optimization. For example, gcc is able to do SCO for caller1 4873 // in the following example, but not for caller2. 4874 // struct test { 4875 // long int a; 4876 // char ary[56]; 4877 // } gTest; 4878 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4879 // b->a = v.a; 4880 // return 0; 4881 // } 4882 // void caller1(struct test a, struct test c, struct test *b) { 4883 // callee(gTest, b); } 4884 // void caller2(struct test *b) { callee(gTest, b); } 4885 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4886 return false; 4887 4888 // If callee and caller use different calling conventions, we cannot pass 4889 // parameters on stack since offsets for the parameter area may be different. 4890 if (Caller.getCallingConv() != CalleeCC && 4891 needStackSlotPassParameters(Subtarget, Outs)) 4892 return false; 4893 4894 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4895 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4896 // callee potentially have different TOC bases then we cannot tail call since 4897 // we need to restore the TOC pointer after the call. 4898 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4899 // We cannot guarantee this for indirect calls or calls to external functions. 4900 // When PC-Relative addressing is used, the concept of the TOC is no longer 4901 // applicable so this check is not required. 4902 // Check first for indirect calls. 4903 if (!Subtarget.isUsingPCRelativeCalls() && 4904 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4905 return false; 4906 4907 // Check if we share the TOC base. 4908 if (!Subtarget.isUsingPCRelativeCalls() && 4909 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4910 return false; 4911 4912 // TCO allows altering callee ABI, so we don't have to check further. 4913 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4914 return true; 4915 4916 if (DisableSCO) return false; 4917 4918 // If callee use the same argument list that caller is using, then we can 4919 // apply SCO on this case. If it is not, then we need to check if callee needs 4920 // stack for passing arguments. 4921 // PC Relative tail calls may not have a CallBase. 4922 // If there is no CallBase we cannot verify if we have the same argument 4923 // list so assume that we don't have the same argument list. 4924 if (CB && !hasSameArgumentList(&Caller, *CB) && 4925 needStackSlotPassParameters(Subtarget, Outs)) 4926 return false; 4927 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4928 return false; 4929 4930 return true; 4931 } 4932 4933 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4934 /// for tail call optimization. Targets which want to do tail call 4935 /// optimization should implement this function. 4936 bool 4937 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4938 CallingConv::ID CalleeCC, 4939 bool isVarArg, 4940 const SmallVectorImpl<ISD::InputArg> &Ins, 4941 SelectionDAG& DAG) const { 4942 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4943 return false; 4944 4945 // Variable argument functions are not supported. 4946 if (isVarArg) 4947 return false; 4948 4949 MachineFunction &MF = DAG.getMachineFunction(); 4950 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4951 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4952 // Functions containing by val parameters are not supported. 4953 for (unsigned i = 0; i != Ins.size(); i++) { 4954 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4955 if (Flags.isByVal()) return false; 4956 } 4957 4958 // Non-PIC/GOT tail calls are supported. 4959 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4960 return true; 4961 4962 // At the moment we can only do local tail calls (in same module, hidden 4963 // or protected) if we are generating PIC. 4964 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4965 return G->getGlobal()->hasHiddenVisibility() 4966 || G->getGlobal()->hasProtectedVisibility(); 4967 } 4968 4969 return false; 4970 } 4971 4972 /// isCallCompatibleAddress - Return the immediate to use if the specified 4973 /// 32-bit value is representable in the immediate field of a BxA instruction. 4974 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4975 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4976 if (!C) return nullptr; 4977 4978 int Addr = C->getZExtValue(); 4979 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4980 SignExtend32<26>(Addr) != Addr) 4981 return nullptr; // Top 6 bits have to be sext of immediate. 4982 4983 return DAG 4984 .getConstant( 4985 (int)C->getZExtValue() >> 2, SDLoc(Op), 4986 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4987 .getNode(); 4988 } 4989 4990 namespace { 4991 4992 struct TailCallArgumentInfo { 4993 SDValue Arg; 4994 SDValue FrameIdxOp; 4995 int FrameIdx = 0; 4996 4997 TailCallArgumentInfo() = default; 4998 }; 4999 5000 } // end anonymous namespace 5001 5002 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5003 static void StoreTailCallArgumentsToStackSlot( 5004 SelectionDAG &DAG, SDValue Chain, 5005 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5006 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5007 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5008 SDValue Arg = TailCallArgs[i].Arg; 5009 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5010 int FI = TailCallArgs[i].FrameIdx; 5011 // Store relative to framepointer. 5012 MemOpChains.push_back(DAG.getStore( 5013 Chain, dl, Arg, FIN, 5014 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5015 } 5016 } 5017 5018 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5019 /// the appropriate stack slot for the tail call optimized function call. 5020 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5021 SDValue OldRetAddr, SDValue OldFP, 5022 int SPDiff, const SDLoc &dl) { 5023 if (SPDiff) { 5024 // Calculate the new stack slot for the return address. 5025 MachineFunction &MF = DAG.getMachineFunction(); 5026 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5027 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5028 bool isPPC64 = Subtarget.isPPC64(); 5029 int SlotSize = isPPC64 ? 8 : 4; 5030 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5031 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5032 NewRetAddrLoc, true); 5033 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5034 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5035 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5036 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5037 } 5038 return Chain; 5039 } 5040 5041 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5042 /// the position of the argument. 5043 static void 5044 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5045 SDValue Arg, int SPDiff, unsigned ArgOffset, 5046 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5047 int Offset = ArgOffset + SPDiff; 5048 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5049 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5050 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5051 SDValue FIN = DAG.getFrameIndex(FI, VT); 5052 TailCallArgumentInfo Info; 5053 Info.Arg = Arg; 5054 Info.FrameIdxOp = FIN; 5055 Info.FrameIdx = FI; 5056 TailCallArguments.push_back(Info); 5057 } 5058 5059 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5060 /// stack slot. Returns the chain as result and the loaded frame pointers in 5061 /// LROpOut/FPOpout. Used when tail calling. 5062 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5063 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5064 SDValue &FPOpOut, const SDLoc &dl) const { 5065 if (SPDiff) { 5066 // Load the LR and FP stack slot for later adjusting. 5067 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5068 LROpOut = getReturnAddrFrameIndex(DAG); 5069 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5070 Chain = SDValue(LROpOut.getNode(), 1); 5071 } 5072 return Chain; 5073 } 5074 5075 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5076 /// by "Src" to address "Dst" of size "Size". Alignment information is 5077 /// specified by the specific parameter attribute. The copy will be passed as 5078 /// a byval function parameter. 5079 /// Sometimes what we are copying is the end of a larger object, the part that 5080 /// does not fit in registers. 5081 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5082 SDValue Chain, ISD::ArgFlagsTy Flags, 5083 SelectionDAG &DAG, const SDLoc &dl) { 5084 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5085 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5086 Flags.getNonZeroByValAlign(), false, false, false, 5087 MachinePointerInfo(), MachinePointerInfo()); 5088 } 5089 5090 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5091 /// tail calls. 5092 static void LowerMemOpCallTo( 5093 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5094 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5095 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5096 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5097 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5098 if (!isTailCall) { 5099 if (isVector) { 5100 SDValue StackPtr; 5101 if (isPPC64) 5102 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5103 else 5104 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5105 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5106 DAG.getConstant(ArgOffset, dl, PtrVT)); 5107 } 5108 MemOpChains.push_back( 5109 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5110 // Calculate and remember argument location. 5111 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5112 TailCallArguments); 5113 } 5114 5115 static void 5116 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5117 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5118 SDValue FPOp, 5119 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5120 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5121 // might overwrite each other in case of tail call optimization. 5122 SmallVector<SDValue, 8> MemOpChains2; 5123 // Do not flag preceding copytoreg stuff together with the following stuff. 5124 InFlag = SDValue(); 5125 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5126 MemOpChains2, dl); 5127 if (!MemOpChains2.empty()) 5128 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5129 5130 // Store the return address to the appropriate stack slot. 5131 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5132 5133 // Emit callseq_end just before tailcall node. 5134 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5135 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5136 InFlag = Chain.getValue(1); 5137 } 5138 5139 // Is this global address that of a function that can be called by name? (as 5140 // opposed to something that must hold a descriptor for an indirect call). 5141 static bool isFunctionGlobalAddress(SDValue Callee) { 5142 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5143 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5144 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5145 return false; 5146 5147 return G->getGlobal()->getValueType()->isFunctionTy(); 5148 } 5149 5150 return false; 5151 } 5152 5153 SDValue PPCTargetLowering::LowerCallResult( 5154 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5155 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5156 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5157 SmallVector<CCValAssign, 16> RVLocs; 5158 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5159 *DAG.getContext()); 5160 5161 CCRetInfo.AnalyzeCallResult( 5162 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5163 ? RetCC_PPC_Cold 5164 : RetCC_PPC); 5165 5166 // Copy all of the result registers out of their specified physreg. 5167 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5168 CCValAssign &VA = RVLocs[i]; 5169 assert(VA.isRegLoc() && "Can only return in registers!"); 5170 5171 SDValue Val; 5172 5173 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5174 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5175 InFlag); 5176 Chain = Lo.getValue(1); 5177 InFlag = Lo.getValue(2); 5178 VA = RVLocs[++i]; // skip ahead to next loc 5179 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5180 InFlag); 5181 Chain = Hi.getValue(1); 5182 InFlag = Hi.getValue(2); 5183 if (!Subtarget.isLittleEndian()) 5184 std::swap (Lo, Hi); 5185 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5186 } else { 5187 Val = DAG.getCopyFromReg(Chain, dl, 5188 VA.getLocReg(), VA.getLocVT(), InFlag); 5189 Chain = Val.getValue(1); 5190 InFlag = Val.getValue(2); 5191 } 5192 5193 switch (VA.getLocInfo()) { 5194 default: llvm_unreachable("Unknown loc info!"); 5195 case CCValAssign::Full: break; 5196 case CCValAssign::AExt: 5197 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5198 break; 5199 case CCValAssign::ZExt: 5200 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5201 DAG.getValueType(VA.getValVT())); 5202 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5203 break; 5204 case CCValAssign::SExt: 5205 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5206 DAG.getValueType(VA.getValVT())); 5207 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5208 break; 5209 } 5210 5211 InVals.push_back(Val); 5212 } 5213 5214 return Chain; 5215 } 5216 5217 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5218 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5219 // PatchPoint calls are not indirect. 5220 if (isPatchPoint) 5221 return false; 5222 5223 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5224 return false; 5225 5226 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5227 // becuase the immediate function pointer points to a descriptor instead of 5228 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5229 // pointer immediate points to the global entry point, while the BLA would 5230 // need to jump to the local entry point (see rL211174). 5231 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5232 isBLACompatibleAddress(Callee, DAG)) 5233 return false; 5234 5235 return true; 5236 } 5237 5238 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5239 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5240 return Subtarget.isAIXABI() || 5241 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5242 } 5243 5244 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5245 const Function &Caller, 5246 const SDValue &Callee, 5247 const PPCSubtarget &Subtarget, 5248 const TargetMachine &TM) { 5249 if (CFlags.IsTailCall) 5250 return PPCISD::TC_RETURN; 5251 5252 // This is a call through a function pointer. 5253 if (CFlags.IsIndirect) { 5254 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5255 // indirect calls. The save of the caller's TOC pointer to the stack will be 5256 // inserted into the DAG as part of call lowering. The restore of the TOC 5257 // pointer is modeled by using a pseudo instruction for the call opcode that 5258 // represents the 2 instruction sequence of an indirect branch and link, 5259 // immediately followed by a load of the TOC pointer from the the stack save 5260 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5261 // as it is not saved or used. 5262 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5263 : PPCISD::BCTRL; 5264 } 5265 5266 if (Subtarget.isUsingPCRelativeCalls()) { 5267 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5268 return PPCISD::CALL_NOTOC; 5269 } 5270 5271 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5272 // immediately following the call instruction if the caller and callee may 5273 // have different TOC bases. At link time if the linker determines the calls 5274 // may not share a TOC base, the call is redirected to a trampoline inserted 5275 // by the linker. The trampoline will (among other things) save the callers 5276 // TOC pointer at an ABI designated offset in the linkage area and the linker 5277 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5278 // into gpr2. 5279 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5280 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5281 : PPCISD::CALL_NOP; 5282 5283 return PPCISD::CALL; 5284 } 5285 5286 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5287 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5288 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5289 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5290 return SDValue(Dest, 0); 5291 5292 // Returns true if the callee is local, and false otherwise. 5293 auto isLocalCallee = [&]() { 5294 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5295 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5296 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5297 5298 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5299 !dyn_cast_or_null<GlobalIFunc>(GV); 5300 }; 5301 5302 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5303 // a static relocation model causes some versions of GNU LD (2.17.50, at 5304 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5305 // built with secure-PLT. 5306 bool UsePlt = 5307 Subtarget.is32BitELFABI() && !isLocalCallee() && 5308 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5309 5310 // On AIX, direct function calls reference the symbol for the function's 5311 // entry point, which is named by prepending a "." before the function's 5312 // C-linkage name. 5313 const auto getAIXFuncEntryPointSymbolSDNode = 5314 [&](StringRef FuncName, bool IsDeclaration, 5315 const XCOFF::StorageClass &SC) { 5316 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5317 5318 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5319 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5320 5321 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5322 // On AIX, an undefined symbol needs to be associated with a 5323 // MCSectionXCOFF to get the correct storage mapping class. 5324 // In this case, XCOFF::XMC_PR. 5325 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5326 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5327 SectionKind::getMetadata()); 5328 S->setRepresentedCsect(Sec); 5329 } 5330 5331 MVT PtrVT = 5332 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5333 return DAG.getMCSymbol(S, PtrVT); 5334 }; 5335 5336 if (isFunctionGlobalAddress(Callee)) { 5337 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5338 const GlobalValue *GV = G->getGlobal(); 5339 5340 if (!Subtarget.isAIXABI()) 5341 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5342 UsePlt ? PPCII::MO_PLT : 0); 5343 5344 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5345 const GlobalObject *GO = cast<GlobalObject>(GV); 5346 const XCOFF::StorageClass SC = 5347 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5348 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5349 SC); 5350 } 5351 5352 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5353 const char *SymName = S->getSymbol(); 5354 if (!Subtarget.isAIXABI()) 5355 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5356 UsePlt ? PPCII::MO_PLT : 0); 5357 5358 // If there exists a user-declared function whose name is the same as the 5359 // ExternalSymbol's, then we pick up the user-declared version. 5360 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5361 if (const Function *F = 5362 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5363 const XCOFF::StorageClass SC = 5364 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5365 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5366 SC); 5367 } 5368 5369 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5370 } 5371 5372 // No transformation needed. 5373 assert(Callee.getNode() && "What no callee?"); 5374 return Callee; 5375 } 5376 5377 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5378 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5379 "Expected a CALLSEQ_STARTSDNode."); 5380 5381 // The last operand is the chain, except when the node has glue. If the node 5382 // has glue, then the last operand is the glue, and the chain is the second 5383 // last operand. 5384 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5385 if (LastValue.getValueType() != MVT::Glue) 5386 return LastValue; 5387 5388 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5389 } 5390 5391 // Creates the node that moves a functions address into the count register 5392 // to prepare for an indirect call instruction. 5393 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5394 SDValue &Glue, SDValue &Chain, 5395 const SDLoc &dl) { 5396 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5397 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5398 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5399 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5400 // The glue is the second value produced. 5401 Glue = Chain.getValue(1); 5402 } 5403 5404 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5405 SDValue &Glue, SDValue &Chain, 5406 SDValue CallSeqStart, 5407 const CallBase *CB, const SDLoc &dl, 5408 bool hasNest, 5409 const PPCSubtarget &Subtarget) { 5410 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5411 // entry point, but to the function descriptor (the function entry point 5412 // address is part of the function descriptor though). 5413 // The function descriptor is a three doubleword structure with the 5414 // following fields: function entry point, TOC base address and 5415 // environment pointer. 5416 // Thus for a call through a function pointer, the following actions need 5417 // to be performed: 5418 // 1. Save the TOC of the caller in the TOC save area of its stack 5419 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5420 // 2. Load the address of the function entry point from the function 5421 // descriptor. 5422 // 3. Load the TOC of the callee from the function descriptor into r2. 5423 // 4. Load the environment pointer from the function descriptor into 5424 // r11. 5425 // 5. Branch to the function entry point address. 5426 // 6. On return of the callee, the TOC of the caller needs to be 5427 // restored (this is done in FinishCall()). 5428 // 5429 // The loads are scheduled at the beginning of the call sequence, and the 5430 // register copies are flagged together to ensure that no other 5431 // operations can be scheduled in between. E.g. without flagging the 5432 // copies together, a TOC access in the caller could be scheduled between 5433 // the assignment of the callee TOC and the branch to the callee, which leads 5434 // to incorrect code. 5435 5436 // Start by loading the function address from the descriptor. 5437 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5438 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5439 ? (MachineMemOperand::MODereferenceable | 5440 MachineMemOperand::MOInvariant) 5441 : MachineMemOperand::MONone; 5442 5443 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5444 5445 // Registers used in building the DAG. 5446 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5447 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5448 5449 // Offsets of descriptor members. 5450 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5451 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5452 5453 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5454 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5455 5456 // One load for the functions entry point address. 5457 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5458 Alignment, MMOFlags); 5459 5460 // One for loading the TOC anchor for the module that contains the called 5461 // function. 5462 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5463 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5464 SDValue TOCPtr = 5465 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5466 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5467 5468 // One for loading the environment pointer. 5469 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5470 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5471 SDValue LoadEnvPtr = 5472 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5473 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5474 5475 5476 // Then copy the newly loaded TOC anchor to the TOC pointer. 5477 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5478 Chain = TOCVal.getValue(0); 5479 Glue = TOCVal.getValue(1); 5480 5481 // If the function call has an explicit 'nest' parameter, it takes the 5482 // place of the environment pointer. 5483 assert((!hasNest || !Subtarget.isAIXABI()) && 5484 "Nest parameter is not supported on AIX."); 5485 if (!hasNest) { 5486 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5487 Chain = EnvVal.getValue(0); 5488 Glue = EnvVal.getValue(1); 5489 } 5490 5491 // The rest of the indirect call sequence is the same as the non-descriptor 5492 // DAG. 5493 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5494 } 5495 5496 static void 5497 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5498 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5499 SelectionDAG &DAG, 5500 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5501 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5502 const PPCSubtarget &Subtarget) { 5503 const bool IsPPC64 = Subtarget.isPPC64(); 5504 // MVT for a general purpose register. 5505 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5506 5507 // First operand is always the chain. 5508 Ops.push_back(Chain); 5509 5510 // If it's a direct call pass the callee as the second operand. 5511 if (!CFlags.IsIndirect) 5512 Ops.push_back(Callee); 5513 else { 5514 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5515 5516 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5517 // on the stack (this would have been done in `LowerCall_64SVR4` or 5518 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5519 // represents both the indirect branch and a load that restores the TOC 5520 // pointer from the linkage area. The operand for the TOC restore is an add 5521 // of the TOC save offset to the stack pointer. This must be the second 5522 // operand: after the chain input but before any other variadic arguments. 5523 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5524 // saved or used. 5525 if (isTOCSaveRestoreRequired(Subtarget)) { 5526 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5527 5528 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5529 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5530 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5531 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5532 Ops.push_back(AddTOC); 5533 } 5534 5535 // Add the register used for the environment pointer. 5536 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5537 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5538 RegVT)); 5539 5540 5541 // Add CTR register as callee so a bctr can be emitted later. 5542 if (CFlags.IsTailCall) 5543 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5544 } 5545 5546 // If this is a tail call add stack pointer delta. 5547 if (CFlags.IsTailCall) 5548 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5549 5550 // Add argument registers to the end of the list so that they are known live 5551 // into the call. 5552 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5553 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5554 RegsToPass[i].second.getValueType())); 5555 5556 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5557 // no way to mark dependencies as implicit here. 5558 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5559 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5560 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5561 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5562 5563 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5564 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5565 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5566 5567 // Add a register mask operand representing the call-preserved registers. 5568 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5569 const uint32_t *Mask = 5570 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5571 assert(Mask && "Missing call preserved mask for calling convention"); 5572 Ops.push_back(DAG.getRegisterMask(Mask)); 5573 5574 // If the glue is valid, it is the last operand. 5575 if (Glue.getNode()) 5576 Ops.push_back(Glue); 5577 } 5578 5579 SDValue PPCTargetLowering::FinishCall( 5580 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5581 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5582 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5583 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5584 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5585 5586 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5587 Subtarget.isAIXABI()) 5588 setUsesTOCBasePtr(DAG); 5589 5590 unsigned CallOpc = 5591 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5592 Subtarget, DAG.getTarget()); 5593 5594 if (!CFlags.IsIndirect) 5595 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5596 else if (Subtarget.usesFunctionDescriptors()) 5597 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5598 dl, CFlags.HasNest, Subtarget); 5599 else 5600 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5601 5602 // Build the operand list for the call instruction. 5603 SmallVector<SDValue, 8> Ops; 5604 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5605 SPDiff, Subtarget); 5606 5607 // Emit tail call. 5608 if (CFlags.IsTailCall) { 5609 // Indirect tail call when using PC Relative calls do not have the same 5610 // constraints. 5611 assert(((Callee.getOpcode() == ISD::Register && 5612 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5613 Callee.getOpcode() == ISD::TargetExternalSymbol || 5614 Callee.getOpcode() == ISD::TargetGlobalAddress || 5615 isa<ConstantSDNode>(Callee) || 5616 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5617 "Expecting a global address, external symbol, absolute value, " 5618 "register or an indirect tail call when PC Relative calls are " 5619 "used."); 5620 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5621 assert(CallOpc == PPCISD::TC_RETURN && 5622 "Unexpected call opcode for a tail call."); 5623 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5624 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5625 } 5626 5627 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5628 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5629 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5630 Glue = Chain.getValue(1); 5631 5632 // When performing tail call optimization the callee pops its arguments off 5633 // the stack. Account for this here so these bytes can be pushed back on in 5634 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5635 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5636 getTargetMachine().Options.GuaranteedTailCallOpt) 5637 ? NumBytes 5638 : 0; 5639 5640 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5641 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5642 Glue, dl); 5643 Glue = Chain.getValue(1); 5644 5645 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5646 DAG, InVals); 5647 } 5648 5649 SDValue 5650 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5651 SmallVectorImpl<SDValue> &InVals) const { 5652 SelectionDAG &DAG = CLI.DAG; 5653 SDLoc &dl = CLI.DL; 5654 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5655 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5656 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5657 SDValue Chain = CLI.Chain; 5658 SDValue Callee = CLI.Callee; 5659 bool &isTailCall = CLI.IsTailCall; 5660 CallingConv::ID CallConv = CLI.CallConv; 5661 bool isVarArg = CLI.IsVarArg; 5662 bool isPatchPoint = CLI.IsPatchPoint; 5663 const CallBase *CB = CLI.CB; 5664 5665 if (isTailCall) { 5666 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5667 isTailCall = false; 5668 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5669 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5670 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5671 else 5672 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5673 Ins, DAG); 5674 if (isTailCall) { 5675 ++NumTailCalls; 5676 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5677 ++NumSiblingCalls; 5678 5679 // PC Relative calls no longer guarantee that the callee is a Global 5680 // Address Node. The callee could be an indirect tail call in which 5681 // case the SDValue for the callee could be a load (to load the address 5682 // of a function pointer) or it may be a register copy (to move the 5683 // address of the callee from a function parameter into a virtual 5684 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5685 assert((Subtarget.isUsingPCRelativeCalls() || 5686 isa<GlobalAddressSDNode>(Callee)) && 5687 "Callee should be an llvm::Function object."); 5688 5689 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5690 << "\nTCO callee: "); 5691 LLVM_DEBUG(Callee.dump()); 5692 } 5693 } 5694 5695 if (!isTailCall && CB && CB->isMustTailCall()) 5696 report_fatal_error("failed to perform tail call elimination on a call " 5697 "site marked musttail"); 5698 5699 // When long calls (i.e. indirect calls) are always used, calls are always 5700 // made via function pointer. If we have a function name, first translate it 5701 // into a pointer. 5702 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5703 !isTailCall) 5704 Callee = LowerGlobalAddress(Callee, DAG); 5705 5706 CallFlags CFlags( 5707 CallConv, isTailCall, isVarArg, isPatchPoint, 5708 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5709 // hasNest 5710 Subtarget.is64BitELFABI() && 5711 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5712 CLI.NoMerge); 5713 5714 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5715 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5716 InVals, CB); 5717 5718 if (Subtarget.isSVR4ABI()) 5719 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5720 InVals, CB); 5721 5722 if (Subtarget.isAIXABI()) 5723 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5724 InVals, CB); 5725 5726 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5727 InVals, CB); 5728 } 5729 5730 SDValue PPCTargetLowering::LowerCall_32SVR4( 5731 SDValue Chain, SDValue Callee, CallFlags CFlags, 5732 const SmallVectorImpl<ISD::OutputArg> &Outs, 5733 const SmallVectorImpl<SDValue> &OutVals, 5734 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5735 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5736 const CallBase *CB) const { 5737 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5738 // of the 32-bit SVR4 ABI stack frame layout. 5739 5740 const CallingConv::ID CallConv = CFlags.CallConv; 5741 const bool IsVarArg = CFlags.IsVarArg; 5742 const bool IsTailCall = CFlags.IsTailCall; 5743 5744 assert((CallConv == CallingConv::C || 5745 CallConv == CallingConv::Cold || 5746 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5747 5748 const Align PtrAlign(4); 5749 5750 MachineFunction &MF = DAG.getMachineFunction(); 5751 5752 // Mark this function as potentially containing a function that contains a 5753 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5754 // and restoring the callers stack pointer in this functions epilog. This is 5755 // done because by tail calling the called function might overwrite the value 5756 // in this function's (MF) stack pointer stack slot 0(SP). 5757 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5758 CallConv == CallingConv::Fast) 5759 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5760 5761 // Count how many bytes are to be pushed on the stack, including the linkage 5762 // area, parameter list area and the part of the local variable space which 5763 // contains copies of aggregates which are passed by value. 5764 5765 // Assign locations to all of the outgoing arguments. 5766 SmallVector<CCValAssign, 16> ArgLocs; 5767 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5768 5769 // Reserve space for the linkage area on the stack. 5770 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5771 PtrAlign); 5772 if (useSoftFloat()) 5773 CCInfo.PreAnalyzeCallOperands(Outs); 5774 5775 if (IsVarArg) { 5776 // Handle fixed and variable vector arguments differently. 5777 // Fixed vector arguments go into registers as long as registers are 5778 // available. Variable vector arguments always go into memory. 5779 unsigned NumArgs = Outs.size(); 5780 5781 for (unsigned i = 0; i != NumArgs; ++i) { 5782 MVT ArgVT = Outs[i].VT; 5783 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5784 bool Result; 5785 5786 if (Outs[i].IsFixed) { 5787 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5788 CCInfo); 5789 } else { 5790 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5791 ArgFlags, CCInfo); 5792 } 5793 5794 if (Result) { 5795 #ifndef NDEBUG 5796 errs() << "Call operand #" << i << " has unhandled type " 5797 << EVT(ArgVT).getEVTString() << "\n"; 5798 #endif 5799 llvm_unreachable(nullptr); 5800 } 5801 } 5802 } else { 5803 // All arguments are treated the same. 5804 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5805 } 5806 CCInfo.clearWasPPCF128(); 5807 5808 // Assign locations to all of the outgoing aggregate by value arguments. 5809 SmallVector<CCValAssign, 16> ByValArgLocs; 5810 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5811 5812 // Reserve stack space for the allocations in CCInfo. 5813 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5814 5815 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5816 5817 // Size of the linkage area, parameter list area and the part of the local 5818 // space variable where copies of aggregates which are passed by value are 5819 // stored. 5820 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5821 5822 // Calculate by how many bytes the stack has to be adjusted in case of tail 5823 // call optimization. 5824 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5825 5826 // Adjust the stack pointer for the new arguments... 5827 // These operations are automatically eliminated by the prolog/epilog pass 5828 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5829 SDValue CallSeqStart = Chain; 5830 5831 // Load the return address and frame pointer so it can be moved somewhere else 5832 // later. 5833 SDValue LROp, FPOp; 5834 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5835 5836 // Set up a copy of the stack pointer for use loading and storing any 5837 // arguments that may not fit in the registers available for argument 5838 // passing. 5839 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5840 5841 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5842 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5843 SmallVector<SDValue, 8> MemOpChains; 5844 5845 bool seenFloatArg = false; 5846 // Walk the register/memloc assignments, inserting copies/loads. 5847 // i - Tracks the index into the list of registers allocated for the call 5848 // RealArgIdx - Tracks the index into the list of actual function arguments 5849 // j - Tracks the index into the list of byval arguments 5850 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5851 i != e; 5852 ++i, ++RealArgIdx) { 5853 CCValAssign &VA = ArgLocs[i]; 5854 SDValue Arg = OutVals[RealArgIdx]; 5855 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5856 5857 if (Flags.isByVal()) { 5858 // Argument is an aggregate which is passed by value, thus we need to 5859 // create a copy of it in the local variable space of the current stack 5860 // frame (which is the stack frame of the caller) and pass the address of 5861 // this copy to the callee. 5862 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5863 CCValAssign &ByValVA = ByValArgLocs[j++]; 5864 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5865 5866 // Memory reserved in the local variable space of the callers stack frame. 5867 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5868 5869 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5870 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5871 StackPtr, PtrOff); 5872 5873 // Create a copy of the argument in the local area of the current 5874 // stack frame. 5875 SDValue MemcpyCall = 5876 CreateCopyOfByValArgument(Arg, PtrOff, 5877 CallSeqStart.getNode()->getOperand(0), 5878 Flags, DAG, dl); 5879 5880 // This must go outside the CALLSEQ_START..END. 5881 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5882 SDLoc(MemcpyCall)); 5883 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5884 NewCallSeqStart.getNode()); 5885 Chain = CallSeqStart = NewCallSeqStart; 5886 5887 // Pass the address of the aggregate copy on the stack either in a 5888 // physical register or in the parameter list area of the current stack 5889 // frame to the callee. 5890 Arg = PtrOff; 5891 } 5892 5893 // When useCRBits() is true, there can be i1 arguments. 5894 // It is because getRegisterType(MVT::i1) => MVT::i1, 5895 // and for other integer types getRegisterType() => MVT::i32. 5896 // Extend i1 and ensure callee will get i32. 5897 if (Arg.getValueType() == MVT::i1) 5898 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5899 dl, MVT::i32, Arg); 5900 5901 if (VA.isRegLoc()) { 5902 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5903 // Put argument in a physical register. 5904 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5905 bool IsLE = Subtarget.isLittleEndian(); 5906 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5907 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5908 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5909 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5910 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5911 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5912 SVal.getValue(0))); 5913 } else 5914 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5915 } else { 5916 // Put argument in the parameter list area of the current stack frame. 5917 assert(VA.isMemLoc()); 5918 unsigned LocMemOffset = VA.getLocMemOffset(); 5919 5920 if (!IsTailCall) { 5921 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5922 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5923 StackPtr, PtrOff); 5924 5925 MemOpChains.push_back( 5926 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5927 } else { 5928 // Calculate and remember argument location. 5929 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5930 TailCallArguments); 5931 } 5932 } 5933 } 5934 5935 if (!MemOpChains.empty()) 5936 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5937 5938 // Build a sequence of copy-to-reg nodes chained together with token chain 5939 // and flag operands which copy the outgoing args into the appropriate regs. 5940 SDValue InFlag; 5941 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5942 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5943 RegsToPass[i].second, InFlag); 5944 InFlag = Chain.getValue(1); 5945 } 5946 5947 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5948 // registers. 5949 if (IsVarArg) { 5950 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5951 SDValue Ops[] = { Chain, InFlag }; 5952 5953 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5954 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5955 5956 InFlag = Chain.getValue(1); 5957 } 5958 5959 if (IsTailCall) 5960 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5961 TailCallArguments); 5962 5963 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5964 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5965 } 5966 5967 // Copy an argument into memory, being careful to do this outside the 5968 // call sequence for the call to which the argument belongs. 5969 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5970 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5971 SelectionDAG &DAG, const SDLoc &dl) const { 5972 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5973 CallSeqStart.getNode()->getOperand(0), 5974 Flags, DAG, dl); 5975 // The MEMCPY must go outside the CALLSEQ_START..END. 5976 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5977 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5978 SDLoc(MemcpyCall)); 5979 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5980 NewCallSeqStart.getNode()); 5981 return NewCallSeqStart; 5982 } 5983 5984 SDValue PPCTargetLowering::LowerCall_64SVR4( 5985 SDValue Chain, SDValue Callee, CallFlags CFlags, 5986 const SmallVectorImpl<ISD::OutputArg> &Outs, 5987 const SmallVectorImpl<SDValue> &OutVals, 5988 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5989 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5990 const CallBase *CB) const { 5991 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5992 bool isLittleEndian = Subtarget.isLittleEndian(); 5993 unsigned NumOps = Outs.size(); 5994 bool IsSibCall = false; 5995 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5996 5997 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5998 unsigned PtrByteSize = 8; 5999 6000 MachineFunction &MF = DAG.getMachineFunction(); 6001 6002 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6003 IsSibCall = true; 6004 6005 // Mark this function as potentially containing a function that contains a 6006 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6007 // and restoring the callers stack pointer in this functions epilog. This is 6008 // done because by tail calling the called function might overwrite the value 6009 // in this function's (MF) stack pointer stack slot 0(SP). 6010 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6011 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6012 6013 assert(!(IsFastCall && CFlags.IsVarArg) && 6014 "fastcc not supported on varargs functions"); 6015 6016 // Count how many bytes are to be pushed on the stack, including the linkage 6017 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6018 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6019 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6020 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6021 unsigned NumBytes = LinkageSize; 6022 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6023 unsigned &QFPR_idx = FPR_idx; 6024 6025 static const MCPhysReg GPR[] = { 6026 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6027 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6028 }; 6029 static const MCPhysReg VR[] = { 6030 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6031 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6032 }; 6033 6034 const unsigned NumGPRs = array_lengthof(GPR); 6035 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6036 const unsigned NumVRs = array_lengthof(VR); 6037 const unsigned NumQFPRs = NumFPRs; 6038 6039 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6040 // can be passed to the callee in registers. 6041 // For the fast calling convention, there is another check below. 6042 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6043 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6044 if (!HasParameterArea) { 6045 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6046 unsigned AvailableFPRs = NumFPRs; 6047 unsigned AvailableVRs = NumVRs; 6048 unsigned NumBytesTmp = NumBytes; 6049 for (unsigned i = 0; i != NumOps; ++i) { 6050 if (Outs[i].Flags.isNest()) continue; 6051 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6052 PtrByteSize, LinkageSize, ParamAreaSize, 6053 NumBytesTmp, AvailableFPRs, AvailableVRs, 6054 Subtarget.hasQPX())) 6055 HasParameterArea = true; 6056 } 6057 } 6058 6059 // When using the fast calling convention, we don't provide backing for 6060 // arguments that will be in registers. 6061 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6062 6063 // Avoid allocating parameter area for fastcc functions if all the arguments 6064 // can be passed in the registers. 6065 if (IsFastCall) 6066 HasParameterArea = false; 6067 6068 // Add up all the space actually used. 6069 for (unsigned i = 0; i != NumOps; ++i) { 6070 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6071 EVT ArgVT = Outs[i].VT; 6072 EVT OrigVT = Outs[i].ArgVT; 6073 6074 if (Flags.isNest()) 6075 continue; 6076 6077 if (IsFastCall) { 6078 if (Flags.isByVal()) { 6079 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6080 if (NumGPRsUsed > NumGPRs) 6081 HasParameterArea = true; 6082 } else { 6083 switch (ArgVT.getSimpleVT().SimpleTy) { 6084 default: llvm_unreachable("Unexpected ValueType for argument!"); 6085 case MVT::i1: 6086 case MVT::i32: 6087 case MVT::i64: 6088 if (++NumGPRsUsed <= NumGPRs) 6089 continue; 6090 break; 6091 case MVT::v4i32: 6092 case MVT::v8i16: 6093 case MVT::v16i8: 6094 case MVT::v2f64: 6095 case MVT::v2i64: 6096 case MVT::v1i128: 6097 case MVT::f128: 6098 if (++NumVRsUsed <= NumVRs) 6099 continue; 6100 break; 6101 case MVT::v4f32: 6102 // When using QPX, this is handled like a FP register, otherwise, it 6103 // is an Altivec register. 6104 if (Subtarget.hasQPX()) { 6105 if (++NumFPRsUsed <= NumFPRs) 6106 continue; 6107 } else { 6108 if (++NumVRsUsed <= NumVRs) 6109 continue; 6110 } 6111 break; 6112 case MVT::f32: 6113 case MVT::f64: 6114 case MVT::v4f64: // QPX 6115 case MVT::v4i1: // QPX 6116 if (++NumFPRsUsed <= NumFPRs) 6117 continue; 6118 break; 6119 } 6120 HasParameterArea = true; 6121 } 6122 } 6123 6124 /* Respect alignment of argument on the stack. */ 6125 auto Alignement = 6126 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6127 NumBytes = alignTo(NumBytes, Alignement); 6128 6129 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6130 if (Flags.isInConsecutiveRegsLast()) 6131 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6132 } 6133 6134 unsigned NumBytesActuallyUsed = NumBytes; 6135 6136 // In the old ELFv1 ABI, 6137 // the prolog code of the callee may store up to 8 GPR argument registers to 6138 // the stack, allowing va_start to index over them in memory if its varargs. 6139 // Because we cannot tell if this is needed on the caller side, we have to 6140 // conservatively assume that it is needed. As such, make sure we have at 6141 // least enough stack space for the caller to store the 8 GPRs. 6142 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6143 // really requires memory operands, e.g. a vararg function. 6144 if (HasParameterArea) 6145 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6146 else 6147 NumBytes = LinkageSize; 6148 6149 // Tail call needs the stack to be aligned. 6150 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6151 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6152 6153 int SPDiff = 0; 6154 6155 // Calculate by how many bytes the stack has to be adjusted in case of tail 6156 // call optimization. 6157 if (!IsSibCall) 6158 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6159 6160 // To protect arguments on the stack from being clobbered in a tail call, 6161 // force all the loads to happen before doing any other lowering. 6162 if (CFlags.IsTailCall) 6163 Chain = DAG.getStackArgumentTokenFactor(Chain); 6164 6165 // Adjust the stack pointer for the new arguments... 6166 // These operations are automatically eliminated by the prolog/epilog pass 6167 if (!IsSibCall) 6168 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6169 SDValue CallSeqStart = Chain; 6170 6171 // Load the return address and frame pointer so it can be move somewhere else 6172 // later. 6173 SDValue LROp, FPOp; 6174 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6175 6176 // Set up a copy of the stack pointer for use loading and storing any 6177 // arguments that may not fit in the registers available for argument 6178 // passing. 6179 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6180 6181 // Figure out which arguments are going to go in registers, and which in 6182 // memory. Also, if this is a vararg function, floating point operations 6183 // must be stored to our stack, and loaded into integer regs as well, if 6184 // any integer regs are available for argument passing. 6185 unsigned ArgOffset = LinkageSize; 6186 6187 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6188 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6189 6190 SmallVector<SDValue, 8> MemOpChains; 6191 for (unsigned i = 0; i != NumOps; ++i) { 6192 SDValue Arg = OutVals[i]; 6193 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6194 EVT ArgVT = Outs[i].VT; 6195 EVT OrigVT = Outs[i].ArgVT; 6196 6197 // PtrOff will be used to store the current argument to the stack if a 6198 // register cannot be found for it. 6199 SDValue PtrOff; 6200 6201 // We re-align the argument offset for each argument, except when using the 6202 // fast calling convention, when we need to make sure we do that only when 6203 // we'll actually use a stack slot. 6204 auto ComputePtrOff = [&]() { 6205 /* Respect alignment of argument on the stack. */ 6206 auto Alignment = 6207 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6208 ArgOffset = alignTo(ArgOffset, Alignment); 6209 6210 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6211 6212 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6213 }; 6214 6215 if (!IsFastCall) { 6216 ComputePtrOff(); 6217 6218 /* Compute GPR index associated with argument offset. */ 6219 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6220 GPR_idx = std::min(GPR_idx, NumGPRs); 6221 } 6222 6223 // Promote integers to 64-bit values. 6224 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6225 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6226 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6227 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6228 } 6229 6230 // FIXME memcpy is used way more than necessary. Correctness first. 6231 // Note: "by value" is code for passing a structure by value, not 6232 // basic types. 6233 if (Flags.isByVal()) { 6234 // Note: Size includes alignment padding, so 6235 // struct x { short a; char b; } 6236 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6237 // These are the proper values we need for right-justifying the 6238 // aggregate in a parameter register. 6239 unsigned Size = Flags.getByValSize(); 6240 6241 // An empty aggregate parameter takes up no storage and no 6242 // registers. 6243 if (Size == 0) 6244 continue; 6245 6246 if (IsFastCall) 6247 ComputePtrOff(); 6248 6249 // All aggregates smaller than 8 bytes must be passed right-justified. 6250 if (Size==1 || Size==2 || Size==4) { 6251 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6252 if (GPR_idx != NumGPRs) { 6253 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6254 MachinePointerInfo(), VT); 6255 MemOpChains.push_back(Load.getValue(1)); 6256 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6257 6258 ArgOffset += PtrByteSize; 6259 continue; 6260 } 6261 } 6262 6263 if (GPR_idx == NumGPRs && Size < 8) { 6264 SDValue AddPtr = PtrOff; 6265 if (!isLittleEndian) { 6266 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6267 PtrOff.getValueType()); 6268 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6269 } 6270 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6271 CallSeqStart, 6272 Flags, DAG, dl); 6273 ArgOffset += PtrByteSize; 6274 continue; 6275 } 6276 // Copy entire object into memory. There are cases where gcc-generated 6277 // code assumes it is there, even if it could be put entirely into 6278 // registers. (This is not what the doc says.) 6279 6280 // FIXME: The above statement is likely due to a misunderstanding of the 6281 // documents. All arguments must be copied into the parameter area BY 6282 // THE CALLEE in the event that the callee takes the address of any 6283 // formal argument. That has not yet been implemented. However, it is 6284 // reasonable to use the stack area as a staging area for the register 6285 // load. 6286 6287 // Skip this for small aggregates, as we will use the same slot for a 6288 // right-justified copy, below. 6289 if (Size >= 8) 6290 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6291 CallSeqStart, 6292 Flags, DAG, dl); 6293 6294 // When a register is available, pass a small aggregate right-justified. 6295 if (Size < 8 && GPR_idx != NumGPRs) { 6296 // The easiest way to get this right-justified in a register 6297 // is to copy the structure into the rightmost portion of a 6298 // local variable slot, then load the whole slot into the 6299 // register. 6300 // FIXME: The memcpy seems to produce pretty awful code for 6301 // small aggregates, particularly for packed ones. 6302 // FIXME: It would be preferable to use the slot in the 6303 // parameter save area instead of a new local variable. 6304 SDValue AddPtr = PtrOff; 6305 if (!isLittleEndian) { 6306 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6307 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6308 } 6309 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6310 CallSeqStart, 6311 Flags, DAG, dl); 6312 6313 // Load the slot into the register. 6314 SDValue Load = 6315 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6316 MemOpChains.push_back(Load.getValue(1)); 6317 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6318 6319 // Done with this argument. 6320 ArgOffset += PtrByteSize; 6321 continue; 6322 } 6323 6324 // For aggregates larger than PtrByteSize, copy the pieces of the 6325 // object that fit into registers from the parameter save area. 6326 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6327 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6328 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6329 if (GPR_idx != NumGPRs) { 6330 SDValue Load = 6331 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6332 MemOpChains.push_back(Load.getValue(1)); 6333 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6334 ArgOffset += PtrByteSize; 6335 } else { 6336 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6337 break; 6338 } 6339 } 6340 continue; 6341 } 6342 6343 switch (Arg.getSimpleValueType().SimpleTy) { 6344 default: llvm_unreachable("Unexpected ValueType for argument!"); 6345 case MVT::i1: 6346 case MVT::i32: 6347 case MVT::i64: 6348 if (Flags.isNest()) { 6349 // The 'nest' parameter, if any, is passed in R11. 6350 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6351 break; 6352 } 6353 6354 // These can be scalar arguments or elements of an integer array type 6355 // passed directly. Clang may use those instead of "byval" aggregate 6356 // types to avoid forcing arguments to memory unnecessarily. 6357 if (GPR_idx != NumGPRs) { 6358 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6359 } else { 6360 if (IsFastCall) 6361 ComputePtrOff(); 6362 6363 assert(HasParameterArea && 6364 "Parameter area must exist to pass an argument in memory."); 6365 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6366 true, CFlags.IsTailCall, false, MemOpChains, 6367 TailCallArguments, dl); 6368 if (IsFastCall) 6369 ArgOffset += PtrByteSize; 6370 } 6371 if (!IsFastCall) 6372 ArgOffset += PtrByteSize; 6373 break; 6374 case MVT::f32: 6375 case MVT::f64: { 6376 // These can be scalar arguments or elements of a float array type 6377 // passed directly. The latter are used to implement ELFv2 homogenous 6378 // float aggregates. 6379 6380 // Named arguments go into FPRs first, and once they overflow, the 6381 // remaining arguments go into GPRs and then the parameter save area. 6382 // Unnamed arguments for vararg functions always go to GPRs and 6383 // then the parameter save area. For now, put all arguments to vararg 6384 // routines always in both locations (FPR *and* GPR or stack slot). 6385 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6386 bool NeededLoad = false; 6387 6388 // First load the argument into the next available FPR. 6389 if (FPR_idx != NumFPRs) 6390 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6391 6392 // Next, load the argument into GPR or stack slot if needed. 6393 if (!NeedGPROrStack) 6394 ; 6395 else if (GPR_idx != NumGPRs && !IsFastCall) { 6396 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6397 // once we support fp <-> gpr moves. 6398 6399 // In the non-vararg case, this can only ever happen in the 6400 // presence of f32 array types, since otherwise we never run 6401 // out of FPRs before running out of GPRs. 6402 SDValue ArgVal; 6403 6404 // Double values are always passed in a single GPR. 6405 if (Arg.getValueType() != MVT::f32) { 6406 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6407 6408 // Non-array float values are extended and passed in a GPR. 6409 } else if (!Flags.isInConsecutiveRegs()) { 6410 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6411 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6412 6413 // If we have an array of floats, we collect every odd element 6414 // together with its predecessor into one GPR. 6415 } else if (ArgOffset % PtrByteSize != 0) { 6416 SDValue Lo, Hi; 6417 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6418 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6419 if (!isLittleEndian) 6420 std::swap(Lo, Hi); 6421 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6422 6423 // The final element, if even, goes into the first half of a GPR. 6424 } else if (Flags.isInConsecutiveRegsLast()) { 6425 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6426 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6427 if (!isLittleEndian) 6428 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6429 DAG.getConstant(32, dl, MVT::i32)); 6430 6431 // Non-final even elements are skipped; they will be handled 6432 // together the with subsequent argument on the next go-around. 6433 } else 6434 ArgVal = SDValue(); 6435 6436 if (ArgVal.getNode()) 6437 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6438 } else { 6439 if (IsFastCall) 6440 ComputePtrOff(); 6441 6442 // Single-precision floating-point values are mapped to the 6443 // second (rightmost) word of the stack doubleword. 6444 if (Arg.getValueType() == MVT::f32 && 6445 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6446 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6447 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6448 } 6449 6450 assert(HasParameterArea && 6451 "Parameter area must exist to pass an argument in memory."); 6452 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6453 true, CFlags.IsTailCall, false, MemOpChains, 6454 TailCallArguments, dl); 6455 6456 NeededLoad = true; 6457 } 6458 // When passing an array of floats, the array occupies consecutive 6459 // space in the argument area; only round up to the next doubleword 6460 // at the end of the array. Otherwise, each float takes 8 bytes. 6461 if (!IsFastCall || NeededLoad) { 6462 ArgOffset += (Arg.getValueType() == MVT::f32 && 6463 Flags.isInConsecutiveRegs()) ? 4 : 8; 6464 if (Flags.isInConsecutiveRegsLast()) 6465 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6466 } 6467 break; 6468 } 6469 case MVT::v4f32: 6470 case MVT::v4i32: 6471 case MVT::v8i16: 6472 case MVT::v16i8: 6473 case MVT::v2f64: 6474 case MVT::v2i64: 6475 case MVT::v1i128: 6476 case MVT::f128: 6477 if (!Subtarget.hasQPX()) { 6478 // These can be scalar arguments or elements of a vector array type 6479 // passed directly. The latter are used to implement ELFv2 homogenous 6480 // vector aggregates. 6481 6482 // For a varargs call, named arguments go into VRs or on the stack as 6483 // usual; unnamed arguments always go to the stack or the corresponding 6484 // GPRs when within range. For now, we always put the value in both 6485 // locations (or even all three). 6486 if (CFlags.IsVarArg) { 6487 assert(HasParameterArea && 6488 "Parameter area must exist if we have a varargs call."); 6489 // We could elide this store in the case where the object fits 6490 // entirely in R registers. Maybe later. 6491 SDValue Store = 6492 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6493 MemOpChains.push_back(Store); 6494 if (VR_idx != NumVRs) { 6495 SDValue Load = 6496 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6497 MemOpChains.push_back(Load.getValue(1)); 6498 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6499 } 6500 ArgOffset += 16; 6501 for (unsigned i=0; i<16; i+=PtrByteSize) { 6502 if (GPR_idx == NumGPRs) 6503 break; 6504 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6505 DAG.getConstant(i, dl, PtrVT)); 6506 SDValue Load = 6507 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6508 MemOpChains.push_back(Load.getValue(1)); 6509 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6510 } 6511 break; 6512 } 6513 6514 // Non-varargs Altivec params go into VRs or on the stack. 6515 if (VR_idx != NumVRs) { 6516 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6517 } else { 6518 if (IsFastCall) 6519 ComputePtrOff(); 6520 6521 assert(HasParameterArea && 6522 "Parameter area must exist to pass an argument in memory."); 6523 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6524 true, CFlags.IsTailCall, true, MemOpChains, 6525 TailCallArguments, dl); 6526 if (IsFastCall) 6527 ArgOffset += 16; 6528 } 6529 6530 if (!IsFastCall) 6531 ArgOffset += 16; 6532 break; 6533 } // not QPX 6534 6535 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6536 "Invalid QPX parameter type"); 6537 6538 LLVM_FALLTHROUGH; 6539 case MVT::v4f64: 6540 case MVT::v4i1: { 6541 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6542 if (CFlags.IsVarArg) { 6543 assert(HasParameterArea && 6544 "Parameter area must exist if we have a varargs call."); 6545 // We could elide this store in the case where the object fits 6546 // entirely in R registers. Maybe later. 6547 SDValue Store = 6548 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6549 MemOpChains.push_back(Store); 6550 if (QFPR_idx != NumQFPRs) { 6551 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6552 PtrOff, MachinePointerInfo()); 6553 MemOpChains.push_back(Load.getValue(1)); 6554 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6555 } 6556 ArgOffset += (IsF32 ? 16 : 32); 6557 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6558 if (GPR_idx == NumGPRs) 6559 break; 6560 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6561 DAG.getConstant(i, dl, PtrVT)); 6562 SDValue Load = 6563 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6564 MemOpChains.push_back(Load.getValue(1)); 6565 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6566 } 6567 break; 6568 } 6569 6570 // Non-varargs QPX params go into registers or on the stack. 6571 if (QFPR_idx != NumQFPRs) { 6572 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6573 } else { 6574 if (IsFastCall) 6575 ComputePtrOff(); 6576 6577 assert(HasParameterArea && 6578 "Parameter area must exist to pass an argument in memory."); 6579 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6580 true, CFlags.IsTailCall, true, MemOpChains, 6581 TailCallArguments, dl); 6582 if (IsFastCall) 6583 ArgOffset += (IsF32 ? 16 : 32); 6584 } 6585 6586 if (!IsFastCall) 6587 ArgOffset += (IsF32 ? 16 : 32); 6588 break; 6589 } 6590 } 6591 } 6592 6593 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6594 "mismatch in size of parameter area"); 6595 (void)NumBytesActuallyUsed; 6596 6597 if (!MemOpChains.empty()) 6598 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6599 6600 // Check if this is an indirect call (MTCTR/BCTRL). 6601 // See prepareDescriptorIndirectCall and buildCallOperands for more 6602 // information about calls through function pointers in the 64-bit SVR4 ABI. 6603 if (CFlags.IsIndirect) { 6604 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6605 // caller in the TOC save area. 6606 if (isTOCSaveRestoreRequired(Subtarget)) { 6607 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6608 // Load r2 into a virtual register and store it to the TOC save area. 6609 setUsesTOCBasePtr(DAG); 6610 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6611 // TOC save area offset. 6612 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6613 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6614 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6615 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6616 MachinePointerInfo::getStack( 6617 DAG.getMachineFunction(), TOCSaveOffset)); 6618 } 6619 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6620 // This does not mean the MTCTR instruction must use R12; it's easier 6621 // to model this as an extra parameter, so do that. 6622 if (isELFv2ABI && !CFlags.IsPatchPoint) 6623 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6624 } 6625 6626 // Build a sequence of copy-to-reg nodes chained together with token chain 6627 // and flag operands which copy the outgoing args into the appropriate regs. 6628 SDValue InFlag; 6629 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6630 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6631 RegsToPass[i].second, InFlag); 6632 InFlag = Chain.getValue(1); 6633 } 6634 6635 if (CFlags.IsTailCall && !IsSibCall) 6636 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6637 TailCallArguments); 6638 6639 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6640 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6641 } 6642 6643 SDValue PPCTargetLowering::LowerCall_Darwin( 6644 SDValue Chain, SDValue Callee, CallFlags CFlags, 6645 const SmallVectorImpl<ISD::OutputArg> &Outs, 6646 const SmallVectorImpl<SDValue> &OutVals, 6647 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6648 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6649 const CallBase *CB) const { 6650 unsigned NumOps = Outs.size(); 6651 6652 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6653 bool isPPC64 = PtrVT == MVT::i64; 6654 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6655 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 6658 // Mark this function as potentially containing a function that contains a 6659 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6660 // and restoring the callers stack pointer in this functions epilog. This is 6661 // done because by tail calling the called function might overwrite the value 6662 // in this function's (MF) stack pointer stack slot 0(SP). 6663 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6664 CFlags.CallConv == CallingConv::Fast) 6665 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6666 6667 // Count how many bytes are to be pushed on the stack, including the linkage 6668 // area, and parameter passing area. We start with 24/48 bytes, which is 6669 // prereserved space for [SP][CR][LR][3 x unused]. 6670 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6671 unsigned NumBytes = LinkageSize; 6672 6673 // Add up all the space actually used. 6674 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6675 // they all go in registers, but we must reserve stack space for them for 6676 // possible use by the caller. In varargs or 64-bit calls, parameters are 6677 // assigned stack space in order, with padding so Altivec parameters are 6678 // 16-byte aligned. 6679 unsigned nAltivecParamsAtEnd = 0; 6680 for (unsigned i = 0; i != NumOps; ++i) { 6681 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6682 EVT ArgVT = Outs[i].VT; 6683 // Varargs Altivec parameters are padded to a 16 byte boundary. 6684 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6685 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6686 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6687 if (!CFlags.IsVarArg && !isPPC64) { 6688 // Non-varargs Altivec parameters go after all the non-Altivec 6689 // parameters; handle those later so we know how much padding we need. 6690 nAltivecParamsAtEnd++; 6691 continue; 6692 } 6693 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6694 NumBytes = ((NumBytes+15)/16)*16; 6695 } 6696 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6697 } 6698 6699 // Allow for Altivec parameters at the end, if needed. 6700 if (nAltivecParamsAtEnd) { 6701 NumBytes = ((NumBytes+15)/16)*16; 6702 NumBytes += 16*nAltivecParamsAtEnd; 6703 } 6704 6705 // The prolog code of the callee may store up to 8 GPR argument registers to 6706 // the stack, allowing va_start to index over them in memory if its varargs. 6707 // Because we cannot tell if this is needed on the caller side, we have to 6708 // conservatively assume that it is needed. As such, make sure we have at 6709 // least enough stack space for the caller to store the 8 GPRs. 6710 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6711 6712 // Tail call needs the stack to be aligned. 6713 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6714 CFlags.CallConv == CallingConv::Fast) 6715 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6716 6717 // Calculate by how many bytes the stack has to be adjusted in case of tail 6718 // call optimization. 6719 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6720 6721 // To protect arguments on the stack from being clobbered in a tail call, 6722 // force all the loads to happen before doing any other lowering. 6723 if (CFlags.IsTailCall) 6724 Chain = DAG.getStackArgumentTokenFactor(Chain); 6725 6726 // Adjust the stack pointer for the new arguments... 6727 // These operations are automatically eliminated by the prolog/epilog pass 6728 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6729 SDValue CallSeqStart = Chain; 6730 6731 // Load the return address and frame pointer so it can be move somewhere else 6732 // later. 6733 SDValue LROp, FPOp; 6734 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6735 6736 // Set up a copy of the stack pointer for use loading and storing any 6737 // arguments that may not fit in the registers available for argument 6738 // passing. 6739 SDValue StackPtr; 6740 if (isPPC64) 6741 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6742 else 6743 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6744 6745 // Figure out which arguments are going to go in registers, and which in 6746 // memory. Also, if this is a vararg function, floating point operations 6747 // must be stored to our stack, and loaded into integer regs as well, if 6748 // any integer regs are available for argument passing. 6749 unsigned ArgOffset = LinkageSize; 6750 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6751 6752 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6753 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6754 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6755 }; 6756 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6757 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6758 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6759 }; 6760 static const MCPhysReg VR[] = { 6761 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6762 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6763 }; 6764 const unsigned NumGPRs = array_lengthof(GPR_32); 6765 const unsigned NumFPRs = 13; 6766 const unsigned NumVRs = array_lengthof(VR); 6767 6768 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6769 6770 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6771 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6772 6773 SmallVector<SDValue, 8> MemOpChains; 6774 for (unsigned i = 0; i != NumOps; ++i) { 6775 SDValue Arg = OutVals[i]; 6776 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6777 6778 // PtrOff will be used to store the current argument to the stack if a 6779 // register cannot be found for it. 6780 SDValue PtrOff; 6781 6782 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6783 6784 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6785 6786 // On PPC64, promote integers to 64-bit values. 6787 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6788 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6789 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6790 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6791 } 6792 6793 // FIXME memcpy is used way more than necessary. Correctness first. 6794 // Note: "by value" is code for passing a structure by value, not 6795 // basic types. 6796 if (Flags.isByVal()) { 6797 unsigned Size = Flags.getByValSize(); 6798 // Very small objects are passed right-justified. Everything else is 6799 // passed left-justified. 6800 if (Size==1 || Size==2) { 6801 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6802 if (GPR_idx != NumGPRs) { 6803 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6804 MachinePointerInfo(), VT); 6805 MemOpChains.push_back(Load.getValue(1)); 6806 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6807 6808 ArgOffset += PtrByteSize; 6809 } else { 6810 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6811 PtrOff.getValueType()); 6812 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6813 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6814 CallSeqStart, 6815 Flags, DAG, dl); 6816 ArgOffset += PtrByteSize; 6817 } 6818 continue; 6819 } 6820 // Copy entire object into memory. There are cases where gcc-generated 6821 // code assumes it is there, even if it could be put entirely into 6822 // registers. (This is not what the doc says.) 6823 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6824 CallSeqStart, 6825 Flags, DAG, dl); 6826 6827 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6828 // copy the pieces of the object that fit into registers from the 6829 // parameter save area. 6830 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6831 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6832 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6833 if (GPR_idx != NumGPRs) { 6834 SDValue Load = 6835 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6836 MemOpChains.push_back(Load.getValue(1)); 6837 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6838 ArgOffset += PtrByteSize; 6839 } else { 6840 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6841 break; 6842 } 6843 } 6844 continue; 6845 } 6846 6847 switch (Arg.getSimpleValueType().SimpleTy) { 6848 default: llvm_unreachable("Unexpected ValueType for argument!"); 6849 case MVT::i1: 6850 case MVT::i32: 6851 case MVT::i64: 6852 if (GPR_idx != NumGPRs) { 6853 if (Arg.getValueType() == MVT::i1) 6854 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6855 6856 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6857 } else { 6858 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6859 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6860 TailCallArguments, dl); 6861 } 6862 ArgOffset += PtrByteSize; 6863 break; 6864 case MVT::f32: 6865 case MVT::f64: 6866 if (FPR_idx != NumFPRs) { 6867 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6868 6869 if (CFlags.IsVarArg) { 6870 SDValue Store = 6871 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6872 MemOpChains.push_back(Store); 6873 6874 // Float varargs are always shadowed in available integer registers 6875 if (GPR_idx != NumGPRs) { 6876 SDValue Load = 6877 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6878 MemOpChains.push_back(Load.getValue(1)); 6879 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6880 } 6881 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6882 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6883 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6884 SDValue Load = 6885 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6886 MemOpChains.push_back(Load.getValue(1)); 6887 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6888 } 6889 } else { 6890 // If we have any FPRs remaining, we may also have GPRs remaining. 6891 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6892 // GPRs. 6893 if (GPR_idx != NumGPRs) 6894 ++GPR_idx; 6895 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6896 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6897 ++GPR_idx; 6898 } 6899 } else 6900 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6901 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6902 TailCallArguments, dl); 6903 if (isPPC64) 6904 ArgOffset += 8; 6905 else 6906 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6907 break; 6908 case MVT::v4f32: 6909 case MVT::v4i32: 6910 case MVT::v8i16: 6911 case MVT::v16i8: 6912 if (CFlags.IsVarArg) { 6913 // These go aligned on the stack, or in the corresponding R registers 6914 // when within range. The Darwin PPC ABI doc claims they also go in 6915 // V registers; in fact gcc does this only for arguments that are 6916 // prototyped, not for those that match the ... We do it for all 6917 // arguments, seems to work. 6918 while (ArgOffset % 16 !=0) { 6919 ArgOffset += PtrByteSize; 6920 if (GPR_idx != NumGPRs) 6921 GPR_idx++; 6922 } 6923 // We could elide this store in the case where the object fits 6924 // entirely in R registers. Maybe later. 6925 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6926 DAG.getConstant(ArgOffset, dl, PtrVT)); 6927 SDValue Store = 6928 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6929 MemOpChains.push_back(Store); 6930 if (VR_idx != NumVRs) { 6931 SDValue Load = 6932 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6933 MemOpChains.push_back(Load.getValue(1)); 6934 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6935 } 6936 ArgOffset += 16; 6937 for (unsigned i=0; i<16; i+=PtrByteSize) { 6938 if (GPR_idx == NumGPRs) 6939 break; 6940 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6941 DAG.getConstant(i, dl, PtrVT)); 6942 SDValue Load = 6943 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6944 MemOpChains.push_back(Load.getValue(1)); 6945 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6946 } 6947 break; 6948 } 6949 6950 // Non-varargs Altivec params generally go in registers, but have 6951 // stack space allocated at the end. 6952 if (VR_idx != NumVRs) { 6953 // Doesn't have GPR space allocated. 6954 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6955 } else if (nAltivecParamsAtEnd==0) { 6956 // We are emitting Altivec params in order. 6957 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6958 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6959 TailCallArguments, dl); 6960 ArgOffset += 16; 6961 } 6962 break; 6963 } 6964 } 6965 // If all Altivec parameters fit in registers, as they usually do, 6966 // they get stack space following the non-Altivec parameters. We 6967 // don't track this here because nobody below needs it. 6968 // If there are more Altivec parameters than fit in registers emit 6969 // the stores here. 6970 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6971 unsigned j = 0; 6972 // Offset is aligned; skip 1st 12 params which go in V registers. 6973 ArgOffset = ((ArgOffset+15)/16)*16; 6974 ArgOffset += 12*16; 6975 for (unsigned i = 0; i != NumOps; ++i) { 6976 SDValue Arg = OutVals[i]; 6977 EVT ArgType = Outs[i].VT; 6978 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6979 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6980 if (++j > NumVRs) { 6981 SDValue PtrOff; 6982 // We are emitting Altivec params in order. 6983 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6984 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6985 TailCallArguments, dl); 6986 ArgOffset += 16; 6987 } 6988 } 6989 } 6990 } 6991 6992 if (!MemOpChains.empty()) 6993 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6994 6995 // On Darwin, R12 must contain the address of an indirect callee. This does 6996 // not mean the MTCTR instruction must use R12; it's easier to model this as 6997 // an extra parameter, so do that. 6998 if (CFlags.IsIndirect) { 6999 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7000 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 7001 PPC::R12), Callee)); 7002 } 7003 7004 // Build a sequence of copy-to-reg nodes chained together with token chain 7005 // and flag operands which copy the outgoing args into the appropriate regs. 7006 SDValue InFlag; 7007 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 7008 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 7009 RegsToPass[i].second, InFlag); 7010 InFlag = Chain.getValue(1); 7011 } 7012 7013 if (CFlags.IsTailCall) 7014 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 7015 TailCallArguments); 7016 7017 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7018 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7019 } 7020 7021 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 7022 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 7023 CCState &State) { 7024 7025 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 7026 State.getMachineFunction().getSubtarget()); 7027 const bool IsPPC64 = Subtarget.isPPC64(); 7028 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 7029 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 7030 7031 assert((!ValVT.isInteger() || 7032 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 7033 "Integer argument exceeds register size: should have been legalized"); 7034 7035 if (ValVT == MVT::f128) 7036 report_fatal_error("f128 is unimplemented on AIX."); 7037 7038 if (ArgFlags.isNest()) 7039 report_fatal_error("Nest arguments are unimplemented."); 7040 7041 if (ValVT.isVector() || LocVT.isVector()) 7042 report_fatal_error("Vector arguments are unimplemented on AIX."); 7043 7044 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7045 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7046 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7047 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7048 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7049 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7050 7051 if (ArgFlags.isByVal()) { 7052 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7053 report_fatal_error("Pass-by-value arguments with alignment greater than " 7054 "register width are not supported."); 7055 7056 const unsigned ByValSize = ArgFlags.getByValSize(); 7057 7058 // An empty aggregate parameter takes up no storage and no registers, 7059 // but needs a MemLoc for a stack slot for the formal arguments side. 7060 if (ByValSize == 0) { 7061 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7062 State.getNextStackOffset(), RegVT, 7063 LocInfo)); 7064 return false; 7065 } 7066 7067 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7068 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7069 for (const unsigned E = Offset + StackSize; Offset < E; 7070 Offset += PtrAlign.value()) { 7071 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7072 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7073 else { 7074 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7075 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7076 LocInfo)); 7077 break; 7078 } 7079 } 7080 return false; 7081 } 7082 7083 // Arguments always reserve parameter save area. 7084 switch (ValVT.SimpleTy) { 7085 default: 7086 report_fatal_error("Unhandled value type for argument."); 7087 case MVT::i64: 7088 // i64 arguments should have been split to i32 for PPC32. 7089 assert(IsPPC64 && "PPC32 should have split i64 values."); 7090 LLVM_FALLTHROUGH; 7091 case MVT::i1: 7092 case MVT::i32: { 7093 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7094 // AIX integer arguments are always passed in register width. 7095 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 7096 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7097 : CCValAssign::LocInfo::ZExt; 7098 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7099 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7100 else 7101 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7102 7103 return false; 7104 } 7105 case MVT::f32: 7106 case MVT::f64: { 7107 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7108 const unsigned StoreSize = LocVT.getStoreSize(); 7109 // Floats are always 4-byte aligned in the PSA on AIX. 7110 // This includes f64 in 64-bit mode for ABI compatibility. 7111 const unsigned Offset = 7112 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7113 unsigned FReg = State.AllocateReg(FPR); 7114 if (FReg) 7115 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7116 7117 // Reserve and initialize GPRs or initialize the PSA as required. 7118 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7119 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7120 assert(FReg && "An FPR should be available when a GPR is reserved."); 7121 if (State.isVarArg()) { 7122 // Successfully reserved GPRs are only initialized for vararg calls. 7123 // Custom handling is required for: 7124 // f64 in PPC32 needs to be split into 2 GPRs. 7125 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7126 State.addLoc( 7127 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7128 } 7129 } else { 7130 // If there are insufficient GPRs, the PSA needs to be initialized. 7131 // Initialization occurs even if an FPR was initialized for 7132 // compatibility with the AIX XL compiler. The full memory for the 7133 // argument will be initialized even if a prior word is saved in GPR. 7134 // A custom memLoc is used when the argument also passes in FPR so 7135 // that the callee handling can skip over it easily. 7136 State.addLoc( 7137 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7138 LocInfo) 7139 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7140 break; 7141 } 7142 } 7143 7144 return false; 7145 } 7146 } 7147 return true; 7148 } 7149 7150 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7151 bool IsPPC64) { 7152 assert((IsPPC64 || SVT != MVT::i64) && 7153 "i64 should have been split for 32-bit codegen."); 7154 7155 switch (SVT) { 7156 default: 7157 report_fatal_error("Unexpected value type for formal argument"); 7158 case MVT::i1: 7159 case MVT::i32: 7160 case MVT::i64: 7161 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7162 case MVT::f32: 7163 return &PPC::F4RCRegClass; 7164 case MVT::f64: 7165 return &PPC::F8RCRegClass; 7166 } 7167 } 7168 7169 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7170 SelectionDAG &DAG, SDValue ArgValue, 7171 MVT LocVT, const SDLoc &dl) { 7172 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7173 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7174 7175 if (Flags.isSExt()) 7176 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7177 DAG.getValueType(ValVT)); 7178 else if (Flags.isZExt()) 7179 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7180 DAG.getValueType(ValVT)); 7181 7182 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7183 } 7184 7185 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7186 const unsigned LASize = FL->getLinkageSize(); 7187 7188 if (PPC::GPRCRegClass.contains(Reg)) { 7189 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7190 "Reg must be a valid argument register!"); 7191 return LASize + 4 * (Reg - PPC::R3); 7192 } 7193 7194 if (PPC::G8RCRegClass.contains(Reg)) { 7195 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7196 "Reg must be a valid argument register!"); 7197 return LASize + 8 * (Reg - PPC::X3); 7198 } 7199 7200 llvm_unreachable("Only general purpose registers expected."); 7201 } 7202 7203 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7204 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7205 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7206 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7207 7208 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7209 CallConv == CallingConv::Fast) && 7210 "Unexpected calling convention!"); 7211 7212 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7213 report_fatal_error("Tail call support is unimplemented on AIX."); 7214 7215 if (useSoftFloat()) 7216 report_fatal_error("Soft float support is unimplemented on AIX."); 7217 7218 const PPCSubtarget &Subtarget = 7219 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7220 if (Subtarget.hasQPX()) 7221 report_fatal_error("QPX support is not supported on AIX."); 7222 7223 const bool IsPPC64 = Subtarget.isPPC64(); 7224 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7225 7226 // Assign locations to all of the incoming arguments. 7227 SmallVector<CCValAssign, 16> ArgLocs; 7228 MachineFunction &MF = DAG.getMachineFunction(); 7229 MachineFrameInfo &MFI = MF.getFrameInfo(); 7230 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7231 7232 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7233 // Reserve space for the linkage area on the stack. 7234 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7235 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7236 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7237 7238 SmallVector<SDValue, 8> MemOps; 7239 7240 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7241 CCValAssign &VA = ArgLocs[I++]; 7242 MVT LocVT = VA.getLocVT(); 7243 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7244 7245 // For compatibility with the AIX XL compiler, the float args in the 7246 // parameter save area are initialized even if the argument is available 7247 // in register. The caller is required to initialize both the register 7248 // and memory, however, the callee can choose to expect it in either. 7249 // The memloc is dismissed here because the argument is retrieved from 7250 // the register. 7251 if (VA.isMemLoc() && VA.needsCustom()) 7252 continue; 7253 7254 if (Flags.isByVal() && VA.isMemLoc()) { 7255 const unsigned Size = 7256 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7257 PtrByteSize); 7258 const int FI = MF.getFrameInfo().CreateFixedObject( 7259 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7260 /* IsAliased */ true); 7261 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7262 InVals.push_back(FIN); 7263 7264 continue; 7265 } 7266 7267 if (Flags.isByVal()) { 7268 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7269 7270 const MCPhysReg ArgReg = VA.getLocReg(); 7271 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7272 7273 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7274 report_fatal_error("Over aligned byvals not supported yet."); 7275 7276 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7277 const int FI = MF.getFrameInfo().CreateFixedObject( 7278 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7279 /* IsAliased */ true); 7280 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7281 InVals.push_back(FIN); 7282 7283 // Add live ins for all the RegLocs for the same ByVal. 7284 const TargetRegisterClass *RegClass = 7285 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7286 7287 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7288 unsigned Offset) { 7289 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7290 // Since the callers side has left justified the aggregate in the 7291 // register, we can simply store the entire register into the stack 7292 // slot. 7293 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7294 // The store to the fixedstack object is needed becuase accessing a 7295 // field of the ByVal will use a gep and load. Ideally we will optimize 7296 // to extracting the value from the register directly, and elide the 7297 // stores when the arguments address is not taken, but that will need to 7298 // be future work. 7299 SDValue Store = 7300 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7301 DAG.getObjectPtrOffset(dl, FIN, Offset), 7302 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7303 7304 MemOps.push_back(Store); 7305 }; 7306 7307 unsigned Offset = 0; 7308 HandleRegLoc(VA.getLocReg(), Offset); 7309 Offset += PtrByteSize; 7310 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7311 Offset += PtrByteSize) { 7312 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7313 "RegLocs should be for ByVal argument."); 7314 7315 const CCValAssign RL = ArgLocs[I++]; 7316 HandleRegLoc(RL.getLocReg(), Offset); 7317 } 7318 7319 if (Offset != StackSize) { 7320 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7321 "Expected MemLoc for remaining bytes."); 7322 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7323 // Consume the MemLoc.The InVal has already been emitted, so nothing 7324 // more needs to be done. 7325 ++I; 7326 } 7327 7328 continue; 7329 } 7330 7331 EVT ValVT = VA.getValVT(); 7332 if (VA.isRegLoc() && !VA.needsCustom()) { 7333 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7334 unsigned VReg = 7335 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7336 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7337 if (ValVT.isScalarInteger() && 7338 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7339 ArgValue = 7340 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7341 } 7342 InVals.push_back(ArgValue); 7343 continue; 7344 } 7345 if (VA.isMemLoc()) { 7346 const unsigned LocSize = LocVT.getStoreSize(); 7347 const unsigned ValSize = ValVT.getStoreSize(); 7348 assert((ValSize <= LocSize) && 7349 "Object size is larger than size of MemLoc"); 7350 int CurArgOffset = VA.getLocMemOffset(); 7351 // Objects are right-justified because AIX is big-endian. 7352 if (LocSize > ValSize) 7353 CurArgOffset += LocSize - ValSize; 7354 // Potential tail calls could cause overwriting of argument stack slots. 7355 const bool IsImmutable = 7356 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7357 (CallConv == CallingConv::Fast)); 7358 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7359 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7360 SDValue ArgValue = 7361 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7362 InVals.push_back(ArgValue); 7363 continue; 7364 } 7365 } 7366 7367 // On AIX a minimum of 8 words is saved to the parameter save area. 7368 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7369 // Area that is at least reserved in the caller of this function. 7370 unsigned CallerReservedArea = 7371 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7372 7373 // Set the size that is at least reserved in caller of this function. Tail 7374 // call optimized function's reserved stack space needs to be aligned so 7375 // that taking the difference between two stack areas will result in an 7376 // aligned stack. 7377 CallerReservedArea = 7378 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7379 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7380 FuncInfo->setMinReservedArea(CallerReservedArea); 7381 7382 if (isVarArg) { 7383 FuncInfo->setVarArgsFrameIndex( 7384 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7385 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7386 7387 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7388 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7389 7390 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7391 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7392 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7393 7394 // The fixed integer arguments of a variadic function are stored to the 7395 // VarArgsFrameIndex on the stack so that they may be loaded by 7396 // dereferencing the result of va_next. 7397 for (unsigned GPRIndex = 7398 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7399 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7400 7401 const unsigned VReg = 7402 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7403 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7404 7405 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7406 SDValue Store = 7407 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7408 MemOps.push_back(Store); 7409 // Increment the address for the next argument to store. 7410 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7411 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7412 } 7413 } 7414 7415 if (!MemOps.empty()) 7416 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7417 7418 return Chain; 7419 } 7420 7421 SDValue PPCTargetLowering::LowerCall_AIX( 7422 SDValue Chain, SDValue Callee, CallFlags CFlags, 7423 const SmallVectorImpl<ISD::OutputArg> &Outs, 7424 const SmallVectorImpl<SDValue> &OutVals, 7425 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7426 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7427 const CallBase *CB) const { 7428 7429 assert((CFlags.CallConv == CallingConv::C || 7430 CFlags.CallConv == CallingConv::Cold || 7431 CFlags.CallConv == CallingConv::Fast) && 7432 "Unexpected calling convention!"); 7433 7434 if (CFlags.IsPatchPoint) 7435 report_fatal_error("This call type is unimplemented on AIX."); 7436 7437 const PPCSubtarget& Subtarget = 7438 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7439 if (Subtarget.hasQPX()) 7440 report_fatal_error("QPX is not supported on AIX."); 7441 if (Subtarget.hasAltivec()) 7442 report_fatal_error("Altivec support is unimplemented on AIX."); 7443 7444 MachineFunction &MF = DAG.getMachineFunction(); 7445 SmallVector<CCValAssign, 16> ArgLocs; 7446 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7447 *DAG.getContext()); 7448 7449 // Reserve space for the linkage save area (LSA) on the stack. 7450 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7451 // [SP][CR][LR][2 x reserved][TOC]. 7452 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7453 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7454 const bool IsPPC64 = Subtarget.isPPC64(); 7455 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7456 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7457 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7458 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7459 7460 // The prolog code of the callee may store up to 8 GPR argument registers to 7461 // the stack, allowing va_start to index over them in memory if the callee 7462 // is variadic. 7463 // Because we cannot tell if this is needed on the caller side, we have to 7464 // conservatively assume that it is needed. As such, make sure we have at 7465 // least enough stack space for the caller to store the 8 GPRs. 7466 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7467 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7468 CCInfo.getNextStackOffset()); 7469 7470 // Adjust the stack pointer for the new arguments... 7471 // These operations are automatically eliminated by the prolog/epilog pass. 7472 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7473 SDValue CallSeqStart = Chain; 7474 7475 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7476 SmallVector<SDValue, 8> MemOpChains; 7477 7478 // Set up a copy of the stack pointer for loading and storing any 7479 // arguments that may not fit in the registers available for argument 7480 // passing. 7481 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7482 : DAG.getRegister(PPC::R1, MVT::i32); 7483 7484 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7485 const unsigned ValNo = ArgLocs[I].getValNo(); 7486 SDValue Arg = OutVals[ValNo]; 7487 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7488 7489 if (Flags.isByVal()) { 7490 const unsigned ByValSize = Flags.getByValSize(); 7491 7492 // Nothing to do for zero-sized ByVals on the caller side. 7493 if (!ByValSize) { 7494 ++I; 7495 continue; 7496 } 7497 7498 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7499 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7500 (LoadOffset != 0) 7501 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7502 : Arg, 7503 MachinePointerInfo(), VT); 7504 }; 7505 7506 unsigned LoadOffset = 0; 7507 7508 // Initialize registers, which are fully occupied by the by-val argument. 7509 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7510 SDValue Load = GetLoad(PtrVT, LoadOffset); 7511 MemOpChains.push_back(Load.getValue(1)); 7512 LoadOffset += PtrByteSize; 7513 const CCValAssign &ByValVA = ArgLocs[I++]; 7514 assert(ByValVA.getValNo() == ValNo && 7515 "Unexpected location for pass-by-value argument."); 7516 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7517 } 7518 7519 if (LoadOffset == ByValSize) 7520 continue; 7521 7522 // There must be one more loc to handle the remainder. 7523 assert(ArgLocs[I].getValNo() == ValNo && 7524 "Expected additional location for by-value argument."); 7525 7526 if (ArgLocs[I].isMemLoc()) { 7527 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7528 const CCValAssign &ByValVA = ArgLocs[I++]; 7529 ISD::ArgFlagsTy MemcpyFlags = Flags; 7530 // Only memcpy the bytes that don't pass in register. 7531 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7532 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7533 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7534 : Arg, 7535 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7536 CallSeqStart, MemcpyFlags, DAG, dl); 7537 continue; 7538 } 7539 7540 // Initialize the final register residue. 7541 // Any residue that occupies the final by-val arg register must be 7542 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7543 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7544 // 2 and 1 byte loads. 7545 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7546 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7547 "Unexpected register residue for by-value argument."); 7548 SDValue ResidueVal; 7549 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7550 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7551 const MVT VT = 7552 N == 1 ? MVT::i8 7553 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7554 SDValue Load = GetLoad(VT, LoadOffset); 7555 MemOpChains.push_back(Load.getValue(1)); 7556 LoadOffset += N; 7557 Bytes += N; 7558 7559 // By-val arguments are passed left-justfied in register. 7560 // Every load here needs to be shifted, otherwise a full register load 7561 // should have been used. 7562 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7563 "Unexpected load emitted during handling of pass-by-value " 7564 "argument."); 7565 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7566 EVT ShiftAmountTy = 7567 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7568 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7569 SDValue ShiftedLoad = 7570 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7571 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7572 ShiftedLoad) 7573 : ShiftedLoad; 7574 } 7575 7576 const CCValAssign &ByValVA = ArgLocs[I++]; 7577 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7578 continue; 7579 } 7580 7581 CCValAssign &VA = ArgLocs[I++]; 7582 const MVT LocVT = VA.getLocVT(); 7583 const MVT ValVT = VA.getValVT(); 7584 7585 switch (VA.getLocInfo()) { 7586 default: 7587 report_fatal_error("Unexpected argument extension type."); 7588 case CCValAssign::Full: 7589 break; 7590 case CCValAssign::ZExt: 7591 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7592 break; 7593 case CCValAssign::SExt: 7594 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7595 break; 7596 } 7597 7598 if (VA.isRegLoc() && !VA.needsCustom()) { 7599 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7600 continue; 7601 } 7602 7603 if (VA.isMemLoc()) { 7604 SDValue PtrOff = 7605 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7606 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7607 MemOpChains.push_back( 7608 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7609 7610 continue; 7611 } 7612 7613 // Custom handling is used for GPR initializations for vararg float 7614 // arguments. 7615 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7616 ValVT.isFloatingPoint() && LocVT.isInteger() && 7617 "Unexpected register handling for calling convention."); 7618 7619 SDValue ArgAsInt = 7620 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7621 7622 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7623 // f32 in 32-bit GPR 7624 // f64 in 64-bit GPR 7625 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7626 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7627 // f32 in 64-bit GPR. 7628 RegsToPass.push_back(std::make_pair( 7629 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7630 else { 7631 // f64 in two 32-bit GPRs 7632 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7633 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7634 "Unexpected custom register for argument!"); 7635 CCValAssign &GPR1 = VA; 7636 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7637 DAG.getConstant(32, dl, MVT::i8)); 7638 RegsToPass.push_back(std::make_pair( 7639 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7640 7641 if (I != E) { 7642 // If only 1 GPR was available, there will only be one custom GPR and 7643 // the argument will also pass in memory. 7644 CCValAssign &PeekArg = ArgLocs[I]; 7645 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7646 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7647 CCValAssign &GPR2 = ArgLocs[I++]; 7648 RegsToPass.push_back(std::make_pair( 7649 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7650 } 7651 } 7652 } 7653 } 7654 7655 if (!MemOpChains.empty()) 7656 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7657 7658 // For indirect calls, we need to save the TOC base to the stack for 7659 // restoration after the call. 7660 if (CFlags.IsIndirect) { 7661 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7662 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7663 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7664 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7665 const unsigned TOCSaveOffset = 7666 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7667 7668 setUsesTOCBasePtr(DAG); 7669 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7670 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7671 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7672 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7673 Chain = DAG.getStore( 7674 Val.getValue(1), dl, Val, AddPtr, 7675 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7676 } 7677 7678 // Build a sequence of copy-to-reg nodes chained together with token chain 7679 // and flag operands which copy the outgoing args into the appropriate regs. 7680 SDValue InFlag; 7681 for (auto Reg : RegsToPass) { 7682 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7683 InFlag = Chain.getValue(1); 7684 } 7685 7686 const int SPDiff = 0; 7687 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7688 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7689 } 7690 7691 bool 7692 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7693 MachineFunction &MF, bool isVarArg, 7694 const SmallVectorImpl<ISD::OutputArg> &Outs, 7695 LLVMContext &Context) const { 7696 SmallVector<CCValAssign, 16> RVLocs; 7697 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7698 return CCInfo.CheckReturn( 7699 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7700 ? RetCC_PPC_Cold 7701 : RetCC_PPC); 7702 } 7703 7704 SDValue 7705 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7706 bool isVarArg, 7707 const SmallVectorImpl<ISD::OutputArg> &Outs, 7708 const SmallVectorImpl<SDValue> &OutVals, 7709 const SDLoc &dl, SelectionDAG &DAG) const { 7710 SmallVector<CCValAssign, 16> RVLocs; 7711 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7712 *DAG.getContext()); 7713 CCInfo.AnalyzeReturn(Outs, 7714 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7715 ? RetCC_PPC_Cold 7716 : RetCC_PPC); 7717 7718 SDValue Flag; 7719 SmallVector<SDValue, 4> RetOps(1, Chain); 7720 7721 // Copy the result values into the output registers. 7722 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7723 CCValAssign &VA = RVLocs[i]; 7724 assert(VA.isRegLoc() && "Can only return in registers!"); 7725 7726 SDValue Arg = OutVals[RealResIdx]; 7727 7728 switch (VA.getLocInfo()) { 7729 default: llvm_unreachable("Unknown loc info!"); 7730 case CCValAssign::Full: break; 7731 case CCValAssign::AExt: 7732 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7733 break; 7734 case CCValAssign::ZExt: 7735 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7736 break; 7737 case CCValAssign::SExt: 7738 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7739 break; 7740 } 7741 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7742 bool isLittleEndian = Subtarget.isLittleEndian(); 7743 // Legalize ret f64 -> ret 2 x i32. 7744 SDValue SVal = 7745 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7746 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7747 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7748 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7749 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7750 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7751 Flag = Chain.getValue(1); 7752 VA = RVLocs[++i]; // skip ahead to next loc 7753 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7754 } else 7755 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7756 Flag = Chain.getValue(1); 7757 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7758 } 7759 7760 RetOps[0] = Chain; // Update chain. 7761 7762 // Add the flag if we have it. 7763 if (Flag.getNode()) 7764 RetOps.push_back(Flag); 7765 7766 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7767 } 7768 7769 SDValue 7770 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7771 SelectionDAG &DAG) const { 7772 SDLoc dl(Op); 7773 7774 // Get the correct type for integers. 7775 EVT IntVT = Op.getValueType(); 7776 7777 // Get the inputs. 7778 SDValue Chain = Op.getOperand(0); 7779 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7780 // Build a DYNAREAOFFSET node. 7781 SDValue Ops[2] = {Chain, FPSIdx}; 7782 SDVTList VTs = DAG.getVTList(IntVT); 7783 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7784 } 7785 7786 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7787 SelectionDAG &DAG) const { 7788 // When we pop the dynamic allocation we need to restore the SP link. 7789 SDLoc dl(Op); 7790 7791 // Get the correct type for pointers. 7792 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7793 7794 // Construct the stack pointer operand. 7795 bool isPPC64 = Subtarget.isPPC64(); 7796 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7797 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7798 7799 // Get the operands for the STACKRESTORE. 7800 SDValue Chain = Op.getOperand(0); 7801 SDValue SaveSP = Op.getOperand(1); 7802 7803 // Load the old link SP. 7804 SDValue LoadLinkSP = 7805 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7806 7807 // Restore the stack pointer. 7808 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7809 7810 // Store the old link SP. 7811 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7812 } 7813 7814 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7815 MachineFunction &MF = DAG.getMachineFunction(); 7816 bool isPPC64 = Subtarget.isPPC64(); 7817 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7818 7819 // Get current frame pointer save index. The users of this index will be 7820 // primarily DYNALLOC instructions. 7821 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7822 int RASI = FI->getReturnAddrSaveIndex(); 7823 7824 // If the frame pointer save index hasn't been defined yet. 7825 if (!RASI) { 7826 // Find out what the fix offset of the frame pointer save area. 7827 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7828 // Allocate the frame index for frame pointer save area. 7829 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7830 // Save the result. 7831 FI->setReturnAddrSaveIndex(RASI); 7832 } 7833 return DAG.getFrameIndex(RASI, PtrVT); 7834 } 7835 7836 SDValue 7837 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7838 MachineFunction &MF = DAG.getMachineFunction(); 7839 bool isPPC64 = Subtarget.isPPC64(); 7840 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7841 7842 // Get current frame pointer save index. The users of this index will be 7843 // primarily DYNALLOC instructions. 7844 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7845 int FPSI = FI->getFramePointerSaveIndex(); 7846 7847 // If the frame pointer save index hasn't been defined yet. 7848 if (!FPSI) { 7849 // Find out what the fix offset of the frame pointer save area. 7850 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7851 // Allocate the frame index for frame pointer save area. 7852 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7853 // Save the result. 7854 FI->setFramePointerSaveIndex(FPSI); 7855 } 7856 return DAG.getFrameIndex(FPSI, PtrVT); 7857 } 7858 7859 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7860 SelectionDAG &DAG) const { 7861 // Get the inputs. 7862 SDValue Chain = Op.getOperand(0); 7863 SDValue Size = Op.getOperand(1); 7864 SDLoc dl(Op); 7865 7866 // Get the correct type for pointers. 7867 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7868 // Negate the size. 7869 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7870 DAG.getConstant(0, dl, PtrVT), Size); 7871 // Construct a node for the frame pointer save index. 7872 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7873 // Build a DYNALLOC node. 7874 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7875 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7876 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7877 } 7878 7879 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7880 SelectionDAG &DAG) const { 7881 MachineFunction &MF = DAG.getMachineFunction(); 7882 7883 bool isPPC64 = Subtarget.isPPC64(); 7884 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7885 7886 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7887 return DAG.getFrameIndex(FI, PtrVT); 7888 } 7889 7890 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7891 SelectionDAG &DAG) const { 7892 SDLoc DL(Op); 7893 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7894 DAG.getVTList(MVT::i32, MVT::Other), 7895 Op.getOperand(0), Op.getOperand(1)); 7896 } 7897 7898 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7899 SelectionDAG &DAG) const { 7900 SDLoc DL(Op); 7901 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7902 Op.getOperand(0), Op.getOperand(1)); 7903 } 7904 7905 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7906 if (Op.getValueType().isVector()) 7907 return LowerVectorLoad(Op, DAG); 7908 7909 assert(Op.getValueType() == MVT::i1 && 7910 "Custom lowering only for i1 loads"); 7911 7912 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7913 7914 SDLoc dl(Op); 7915 LoadSDNode *LD = cast<LoadSDNode>(Op); 7916 7917 SDValue Chain = LD->getChain(); 7918 SDValue BasePtr = LD->getBasePtr(); 7919 MachineMemOperand *MMO = LD->getMemOperand(); 7920 7921 SDValue NewLD = 7922 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7923 BasePtr, MVT::i8, MMO); 7924 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7925 7926 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7927 return DAG.getMergeValues(Ops, dl); 7928 } 7929 7930 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7931 if (Op.getOperand(1).getValueType().isVector()) 7932 return LowerVectorStore(Op, DAG); 7933 7934 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7935 "Custom lowering only for i1 stores"); 7936 7937 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7938 7939 SDLoc dl(Op); 7940 StoreSDNode *ST = cast<StoreSDNode>(Op); 7941 7942 SDValue Chain = ST->getChain(); 7943 SDValue BasePtr = ST->getBasePtr(); 7944 SDValue Value = ST->getValue(); 7945 MachineMemOperand *MMO = ST->getMemOperand(); 7946 7947 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7948 Value); 7949 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7950 } 7951 7952 // FIXME: Remove this once the ANDI glue bug is fixed: 7953 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7954 assert(Op.getValueType() == MVT::i1 && 7955 "Custom lowering only for i1 results"); 7956 7957 SDLoc DL(Op); 7958 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7959 } 7960 7961 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7962 SelectionDAG &DAG) const { 7963 7964 // Implements a vector truncate that fits in a vector register as a shuffle. 7965 // We want to legalize vector truncates down to where the source fits in 7966 // a vector register (and target is therefore smaller than vector register 7967 // size). At that point legalization will try to custom lower the sub-legal 7968 // result and get here - where we can contain the truncate as a single target 7969 // operation. 7970 7971 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7972 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7973 // 7974 // We will implement it for big-endian ordering as this (where x denotes 7975 // undefined): 7976 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7977 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7978 // 7979 // The same operation in little-endian ordering will be: 7980 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7981 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7982 7983 assert(Op.getValueType().isVector() && "Vector type expected."); 7984 7985 SDLoc DL(Op); 7986 SDValue N1 = Op.getOperand(0); 7987 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7988 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7989 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7990 7991 EVT TrgVT = Op.getValueType(); 7992 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7993 EVT EltVT = TrgVT.getVectorElementType(); 7994 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7995 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7996 7997 // First list the elements we want to keep. 7998 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7999 SmallVector<int, 16> ShuffV; 8000 if (Subtarget.isLittleEndian()) 8001 for (unsigned i = 0; i < TrgNumElts; ++i) 8002 ShuffV.push_back(i * SizeMult); 8003 else 8004 for (unsigned i = 1; i <= TrgNumElts; ++i) 8005 ShuffV.push_back(i * SizeMult - 1); 8006 8007 // Populate the remaining elements with undefs. 8008 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8009 // ShuffV.push_back(i + WideNumElts); 8010 ShuffV.push_back(WideNumElts + 1); 8011 8012 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 8013 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 8014 } 8015 8016 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8017 /// possible. 8018 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8019 // Not FP? Not a fsel. 8020 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8021 !Op.getOperand(2).getValueType().isFloatingPoint()) 8022 return Op; 8023 8024 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8025 8026 EVT ResVT = Op.getValueType(); 8027 EVT CmpVT = Op.getOperand(0).getValueType(); 8028 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8029 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8030 SDLoc dl(Op); 8031 SDNodeFlags Flags = Op.getNode()->getFlags(); 8032 8033 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8034 // presence of infinities. 8035 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8036 switch (CC) { 8037 default: 8038 break; 8039 case ISD::SETOGT: 8040 case ISD::SETGT: 8041 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8042 case ISD::SETOLT: 8043 case ISD::SETLT: 8044 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8045 } 8046 } 8047 8048 // We might be able to do better than this under some circumstances, but in 8049 // general, fsel-based lowering of select is a finite-math-only optimization. 8050 // For more information, see section F.3 of the 2.06 ISA specification. 8051 // With ISA 3.0 8052 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8053 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8054 return Op; 8055 8056 // If the RHS of the comparison is a 0.0, we don't need to do the 8057 // subtraction at all. 8058 SDValue Sel1; 8059 if (isFloatingPointZero(RHS)) 8060 switch (CC) { 8061 default: break; // SETUO etc aren't handled by fsel. 8062 case ISD::SETNE: 8063 std::swap(TV, FV); 8064 LLVM_FALLTHROUGH; 8065 case ISD::SETEQ: 8066 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8067 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8068 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8069 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8070 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8071 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8072 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8073 case ISD::SETULT: 8074 case ISD::SETLT: 8075 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8076 LLVM_FALLTHROUGH; 8077 case ISD::SETOGE: 8078 case ISD::SETGE: 8079 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8080 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8081 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8082 case ISD::SETUGT: 8083 case ISD::SETGT: 8084 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8085 LLVM_FALLTHROUGH; 8086 case ISD::SETOLE: 8087 case ISD::SETLE: 8088 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8089 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8090 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8091 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8092 } 8093 8094 SDValue Cmp; 8095 switch (CC) { 8096 default: break; // SETUO etc aren't handled by fsel. 8097 case ISD::SETNE: 8098 std::swap(TV, FV); 8099 LLVM_FALLTHROUGH; 8100 case ISD::SETEQ: 8101 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8102 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8103 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8104 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8105 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8106 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8107 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8108 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8109 case ISD::SETULT: 8110 case ISD::SETLT: 8111 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8112 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8113 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8114 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8115 case ISD::SETOGE: 8116 case ISD::SETGE: 8117 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8118 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8119 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8120 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8121 case ISD::SETUGT: 8122 case ISD::SETGT: 8123 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8124 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8125 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8126 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8127 case ISD::SETOLE: 8128 case ISD::SETLE: 8129 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8130 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8131 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8132 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8133 } 8134 return Op; 8135 } 8136 8137 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8138 SelectionDAG &DAG, 8139 const SDLoc &dl) const { 8140 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8141 SDValue Src = Op.getOperand(0); 8142 if (Src.getValueType() == MVT::f32) 8143 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8144 8145 SDValue Tmp; 8146 switch (Op.getSimpleValueType().SimpleTy) { 8147 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8148 case MVT::i32: 8149 Tmp = DAG.getNode( 8150 Op.getOpcode() == ISD::FP_TO_SINT 8151 ? PPCISD::FCTIWZ 8152 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8153 dl, MVT::f64, Src); 8154 break; 8155 case MVT::i64: 8156 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8157 "i64 FP_TO_UINT is supported only with FPCVT"); 8158 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8159 PPCISD::FCTIDUZ, 8160 dl, MVT::f64, Src); 8161 break; 8162 } 8163 8164 // Convert the FP value to an int value through memory. 8165 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8166 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8167 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8168 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8169 MachinePointerInfo MPI = 8170 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8171 8172 // Emit a store to the stack slot. 8173 SDValue Chain; 8174 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8175 if (i32Stack) { 8176 MachineFunction &MF = DAG.getMachineFunction(); 8177 Alignment = Align(4); 8178 MachineMemOperand *MMO = 8179 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8180 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8181 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8182 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8183 } else 8184 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8185 8186 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8187 // add in a bias on big endian. 8188 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8189 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8190 DAG.getConstant(4, dl, FIPtr.getValueType())); 8191 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8192 } 8193 8194 RLI.Chain = Chain; 8195 RLI.Ptr = FIPtr; 8196 RLI.MPI = MPI; 8197 RLI.Alignment = Alignment; 8198 } 8199 8200 /// Custom lowers floating point to integer conversions to use 8201 /// the direct move instructions available in ISA 2.07 to avoid the 8202 /// need for load/store combinations. 8203 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8204 SelectionDAG &DAG, 8205 const SDLoc &dl) const { 8206 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8207 SDValue Src = Op.getOperand(0); 8208 8209 if (Src.getValueType() == MVT::f32) 8210 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8211 8212 SDValue Tmp; 8213 switch (Op.getSimpleValueType().SimpleTy) { 8214 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8215 case MVT::i32: 8216 Tmp = DAG.getNode( 8217 Op.getOpcode() == ISD::FP_TO_SINT 8218 ? PPCISD::FCTIWZ 8219 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8220 dl, MVT::f64, Src); 8221 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8222 break; 8223 case MVT::i64: 8224 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8225 "i64 FP_TO_UINT is supported only with FPCVT"); 8226 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8227 PPCISD::FCTIDUZ, 8228 dl, MVT::f64, Src); 8229 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8230 break; 8231 } 8232 return Tmp; 8233 } 8234 8235 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8236 const SDLoc &dl) const { 8237 8238 // FP to INT conversions are legal for f128. 8239 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 8240 return Op; 8241 8242 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8243 // PPC (the libcall is not available). 8244 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8245 if (Op.getValueType() == MVT::i32) { 8246 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8247 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8248 MVT::f64, Op.getOperand(0), 8249 DAG.getIntPtrConstant(0, dl)); 8250 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8251 MVT::f64, Op.getOperand(0), 8252 DAG.getIntPtrConstant(1, dl)); 8253 8254 // Add the two halves of the long double in round-to-zero mode. 8255 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8256 8257 // Now use a smaller FP_TO_SINT. 8258 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8259 } 8260 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8261 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8262 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8263 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8264 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8265 // FIXME: generated code sucks. 8266 // TODO: Are there fast-math-flags to propagate to this FSUB? 8267 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8268 Op.getOperand(0), Tmp); 8269 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8270 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8271 DAG.getConstant(0x80000000, dl, MVT::i32)); 8272 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8273 Op.getOperand(0)); 8274 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8275 ISD::SETGE); 8276 } 8277 } 8278 8279 return SDValue(); 8280 } 8281 8282 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8283 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8284 8285 ReuseLoadInfo RLI; 8286 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8287 8288 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8289 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8290 } 8291 8292 // We're trying to insert a regular store, S, and then a load, L. If the 8293 // incoming value, O, is a load, we might just be able to have our load use the 8294 // address used by O. However, we don't know if anything else will store to 8295 // that address before we can load from it. To prevent this situation, we need 8296 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8297 // the same chain operand as O, we create a token factor from the chain results 8298 // of O and L, and we replace all uses of O's chain result with that token 8299 // factor (see spliceIntoChain below for this last part). 8300 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8301 ReuseLoadInfo &RLI, 8302 SelectionDAG &DAG, 8303 ISD::LoadExtType ET) const { 8304 SDLoc dl(Op); 8305 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8306 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8307 if (ET == ISD::NON_EXTLOAD && 8308 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8309 isOperationLegalOrCustom(Op.getOpcode(), 8310 Op.getOperand(0).getValueType())) { 8311 8312 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8313 return true; 8314 } 8315 8316 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8317 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8318 LD->isNonTemporal()) 8319 return false; 8320 if (LD->getMemoryVT() != MemVT) 8321 return false; 8322 8323 RLI.Ptr = LD->getBasePtr(); 8324 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8325 assert(LD->getAddressingMode() == ISD::PRE_INC && 8326 "Non-pre-inc AM on PPC?"); 8327 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8328 LD->getOffset()); 8329 } 8330 8331 RLI.Chain = LD->getChain(); 8332 RLI.MPI = LD->getPointerInfo(); 8333 RLI.IsDereferenceable = LD->isDereferenceable(); 8334 RLI.IsInvariant = LD->isInvariant(); 8335 RLI.Alignment = LD->getAlign(); 8336 RLI.AAInfo = LD->getAAInfo(); 8337 RLI.Ranges = LD->getRanges(); 8338 8339 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8340 return true; 8341 } 8342 8343 // Given the head of the old chain, ResChain, insert a token factor containing 8344 // it and NewResChain, and make users of ResChain now be users of that token 8345 // factor. 8346 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8347 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8348 SDValue NewResChain, 8349 SelectionDAG &DAG) const { 8350 if (!ResChain) 8351 return; 8352 8353 SDLoc dl(NewResChain); 8354 8355 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8356 NewResChain, DAG.getUNDEF(MVT::Other)); 8357 assert(TF.getNode() != NewResChain.getNode() && 8358 "A new TF really is required here"); 8359 8360 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8361 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8362 } 8363 8364 /// Analyze profitability of direct move 8365 /// prefer float load to int load plus direct move 8366 /// when there is no integer use of int load 8367 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8368 SDNode *Origin = Op.getOperand(0).getNode(); 8369 if (Origin->getOpcode() != ISD::LOAD) 8370 return true; 8371 8372 // If there is no LXSIBZX/LXSIHZX, like Power8, 8373 // prefer direct move if the memory size is 1 or 2 bytes. 8374 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8375 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8376 return true; 8377 8378 for (SDNode::use_iterator UI = Origin->use_begin(), 8379 UE = Origin->use_end(); 8380 UI != UE; ++UI) { 8381 8382 // Only look at the users of the loaded value. 8383 if (UI.getUse().get().getResNo() != 0) 8384 continue; 8385 8386 if (UI->getOpcode() != ISD::SINT_TO_FP && 8387 UI->getOpcode() != ISD::UINT_TO_FP) 8388 return true; 8389 } 8390 8391 return false; 8392 } 8393 8394 /// Custom lowers integer to floating point conversions to use 8395 /// the direct move instructions available in ISA 2.07 to avoid the 8396 /// need for load/store combinations. 8397 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8398 SelectionDAG &DAG, 8399 const SDLoc &dl) const { 8400 assert((Op.getValueType() == MVT::f32 || 8401 Op.getValueType() == MVT::f64) && 8402 "Invalid floating point type as target of conversion"); 8403 assert(Subtarget.hasFPCVT() && 8404 "Int to FP conversions with direct moves require FPCVT"); 8405 SDValue FP; 8406 SDValue Src = Op.getOperand(0); 8407 bool SinglePrec = Op.getValueType() == MVT::f32; 8408 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8409 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8410 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8411 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8412 8413 if (WordInt) { 8414 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8415 dl, MVT::f64, Src); 8416 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8417 } 8418 else { 8419 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8420 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8421 } 8422 8423 return FP; 8424 } 8425 8426 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8427 8428 EVT VecVT = Vec.getValueType(); 8429 assert(VecVT.isVector() && "Expected a vector type."); 8430 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8431 8432 EVT EltVT = VecVT.getVectorElementType(); 8433 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8434 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8435 8436 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8437 SmallVector<SDValue, 16> Ops(NumConcat); 8438 Ops[0] = Vec; 8439 SDValue UndefVec = DAG.getUNDEF(VecVT); 8440 for (unsigned i = 1; i < NumConcat; ++i) 8441 Ops[i] = UndefVec; 8442 8443 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8444 } 8445 8446 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8447 const SDLoc &dl) const { 8448 8449 unsigned Opc = Op.getOpcode(); 8450 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8451 "Unexpected conversion type"); 8452 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8453 "Supports conversions to v2f64/v4f32 only."); 8454 8455 bool SignedConv = Opc == ISD::SINT_TO_FP; 8456 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8457 8458 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8459 EVT WideVT = Wide.getValueType(); 8460 unsigned WideNumElts = WideVT.getVectorNumElements(); 8461 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8462 8463 SmallVector<int, 16> ShuffV; 8464 for (unsigned i = 0; i < WideNumElts; ++i) 8465 ShuffV.push_back(i + WideNumElts); 8466 8467 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8468 int SaveElts = FourEltRes ? 4 : 2; 8469 if (Subtarget.isLittleEndian()) 8470 for (int i = 0; i < SaveElts; i++) 8471 ShuffV[i * Stride] = i; 8472 else 8473 for (int i = 1; i <= SaveElts; i++) 8474 ShuffV[i * Stride - 1] = i - 1; 8475 8476 SDValue ShuffleSrc2 = 8477 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8478 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8479 8480 SDValue Extend; 8481 if (SignedConv) { 8482 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8483 EVT ExtVT = Op.getOperand(0).getValueType(); 8484 if (Subtarget.hasP9Altivec()) 8485 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8486 IntermediateVT.getVectorNumElements()); 8487 8488 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8489 DAG.getValueType(ExtVT)); 8490 } else 8491 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8492 8493 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8494 } 8495 8496 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8497 SelectionDAG &DAG) const { 8498 SDLoc dl(Op); 8499 8500 EVT InVT = Op.getOperand(0).getValueType(); 8501 EVT OutVT = Op.getValueType(); 8502 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8503 isOperationCustom(Op.getOpcode(), InVT)) 8504 return LowerINT_TO_FPVector(Op, DAG, dl); 8505 8506 // Conversions to f128 are legal. 8507 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8508 return Op; 8509 8510 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8511 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8512 return SDValue(); 8513 8514 SDValue Value = Op.getOperand(0); 8515 // The values are now known to be -1 (false) or 1 (true). To convert this 8516 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8517 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8518 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8519 8520 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8521 8522 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8523 8524 if (Op.getValueType() != MVT::v4f64) 8525 Value = DAG.getNode(ISD::FP_ROUND, dl, 8526 Op.getValueType(), Value, 8527 DAG.getIntPtrConstant(1, dl)); 8528 return Value; 8529 } 8530 8531 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8532 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8533 return SDValue(); 8534 8535 if (Op.getOperand(0).getValueType() == MVT::i1) 8536 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8537 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8538 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8539 8540 // If we have direct moves, we can do all the conversion, skip the store/load 8541 // however, without FPCVT we can't do most conversions. 8542 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8543 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8544 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8545 8546 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8547 "UINT_TO_FP is supported only with FPCVT"); 8548 8549 // If we have FCFIDS, then use it when converting to single-precision. 8550 // Otherwise, convert to double-precision and then round. 8551 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8552 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8553 : PPCISD::FCFIDS) 8554 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8555 : PPCISD::FCFID); 8556 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8557 ? MVT::f32 8558 : MVT::f64; 8559 8560 if (Op.getOperand(0).getValueType() == MVT::i64) { 8561 SDValue SINT = Op.getOperand(0); 8562 // When converting to single-precision, we actually need to convert 8563 // to double-precision first and then round to single-precision. 8564 // To avoid double-rounding effects during that operation, we have 8565 // to prepare the input operand. Bits that might be truncated when 8566 // converting to double-precision are replaced by a bit that won't 8567 // be lost at this stage, but is below the single-precision rounding 8568 // position. 8569 // 8570 // However, if -enable-unsafe-fp-math is in effect, accept double 8571 // rounding to avoid the extra overhead. 8572 if (Op.getValueType() == MVT::f32 && 8573 !Subtarget.hasFPCVT() && 8574 !DAG.getTarget().Options.UnsafeFPMath) { 8575 8576 // Twiddle input to make sure the low 11 bits are zero. (If this 8577 // is the case, we are guaranteed the value will fit into the 53 bit 8578 // mantissa of an IEEE double-precision value without rounding.) 8579 // If any of those low 11 bits were not zero originally, make sure 8580 // bit 12 (value 2048) is set instead, so that the final rounding 8581 // to single-precision gets the correct result. 8582 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8583 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8584 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8585 Round, DAG.getConstant(2047, dl, MVT::i64)); 8586 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8587 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8588 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8589 8590 // However, we cannot use that value unconditionally: if the magnitude 8591 // of the input value is small, the bit-twiddling we did above might 8592 // end up visibly changing the output. Fortunately, in that case, we 8593 // don't need to twiddle bits since the original input will convert 8594 // exactly to double-precision floating-point already. Therefore, 8595 // construct a conditional to use the original value if the top 11 8596 // bits are all sign-bit copies, and use the rounded value computed 8597 // above otherwise. 8598 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8599 SINT, DAG.getConstant(53, dl, MVT::i32)); 8600 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8601 Cond, DAG.getConstant(1, dl, MVT::i64)); 8602 Cond = DAG.getSetCC( 8603 dl, 8604 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8605 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8606 8607 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8608 } 8609 8610 ReuseLoadInfo RLI; 8611 SDValue Bits; 8612 8613 MachineFunction &MF = DAG.getMachineFunction(); 8614 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8615 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8616 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8617 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8618 } else if (Subtarget.hasLFIWAX() && 8619 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8620 MachineMemOperand *MMO = 8621 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8622 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8623 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8624 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8625 DAG.getVTList(MVT::f64, MVT::Other), 8626 Ops, MVT::i32, MMO); 8627 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8628 } else if (Subtarget.hasFPCVT() && 8629 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8630 MachineMemOperand *MMO = 8631 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8632 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8633 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8634 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8635 DAG.getVTList(MVT::f64, MVT::Other), 8636 Ops, MVT::i32, MMO); 8637 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8638 } else if (((Subtarget.hasLFIWAX() && 8639 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8640 (Subtarget.hasFPCVT() && 8641 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8642 SINT.getOperand(0).getValueType() == MVT::i32) { 8643 MachineFrameInfo &MFI = MF.getFrameInfo(); 8644 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8645 8646 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8647 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8648 8649 SDValue Store = 8650 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8651 MachinePointerInfo::getFixedStack( 8652 DAG.getMachineFunction(), FrameIdx)); 8653 8654 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8655 "Expected an i32 store"); 8656 8657 RLI.Ptr = FIdx; 8658 RLI.Chain = Store; 8659 RLI.MPI = 8660 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8661 RLI.Alignment = Align(4); 8662 8663 MachineMemOperand *MMO = 8664 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8665 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8666 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8667 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8668 PPCISD::LFIWZX : PPCISD::LFIWAX, 8669 dl, DAG.getVTList(MVT::f64, MVT::Other), 8670 Ops, MVT::i32, MMO); 8671 } else 8672 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8673 8674 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8675 8676 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8677 FP = DAG.getNode(ISD::FP_ROUND, dl, 8678 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8679 return FP; 8680 } 8681 8682 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8683 "Unhandled INT_TO_FP type in custom expander!"); 8684 // Since we only generate this in 64-bit mode, we can take advantage of 8685 // 64-bit registers. In particular, sign extend the input value into the 8686 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8687 // then lfd it and fcfid it. 8688 MachineFunction &MF = DAG.getMachineFunction(); 8689 MachineFrameInfo &MFI = MF.getFrameInfo(); 8690 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8691 8692 SDValue Ld; 8693 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8694 ReuseLoadInfo RLI; 8695 bool ReusingLoad; 8696 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8697 DAG))) { 8698 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8699 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8700 8701 SDValue Store = 8702 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8703 MachinePointerInfo::getFixedStack( 8704 DAG.getMachineFunction(), FrameIdx)); 8705 8706 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8707 "Expected an i32 store"); 8708 8709 RLI.Ptr = FIdx; 8710 RLI.Chain = Store; 8711 RLI.MPI = 8712 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8713 RLI.Alignment = Align(4); 8714 } 8715 8716 MachineMemOperand *MMO = 8717 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8718 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8719 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8720 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8721 PPCISD::LFIWZX : PPCISD::LFIWAX, 8722 dl, DAG.getVTList(MVT::f64, MVT::Other), 8723 Ops, MVT::i32, MMO); 8724 if (ReusingLoad) 8725 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8726 } else { 8727 assert(Subtarget.isPPC64() && 8728 "i32->FP without LFIWAX supported only on PPC64"); 8729 8730 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8731 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8732 8733 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8734 Op.getOperand(0)); 8735 8736 // STD the extended value into the stack slot. 8737 SDValue Store = DAG.getStore( 8738 DAG.getEntryNode(), dl, Ext64, FIdx, 8739 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8740 8741 // Load the value as a double. 8742 Ld = DAG.getLoad( 8743 MVT::f64, dl, Store, FIdx, 8744 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8745 } 8746 8747 // FCFID it and return it. 8748 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8749 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8750 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8751 DAG.getIntPtrConstant(0, dl)); 8752 return FP; 8753 } 8754 8755 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8756 SelectionDAG &DAG) const { 8757 SDLoc dl(Op); 8758 /* 8759 The rounding mode is in bits 30:31 of FPSR, and has the following 8760 settings: 8761 00 Round to nearest 8762 01 Round to 0 8763 10 Round to +inf 8764 11 Round to -inf 8765 8766 FLT_ROUNDS, on the other hand, expects the following: 8767 -1 Undefined 8768 0 Round to 0 8769 1 Round to nearest 8770 2 Round to +inf 8771 3 Round to -inf 8772 8773 To perform the conversion, we do: 8774 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8775 */ 8776 8777 MachineFunction &MF = DAG.getMachineFunction(); 8778 EVT VT = Op.getValueType(); 8779 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8780 8781 // Save FP Control Word to register 8782 SDValue Chain = Op.getOperand(0); 8783 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8784 Chain = MFFS.getValue(1); 8785 8786 // Save FP register to stack slot 8787 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8788 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8789 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8790 8791 // Load FP Control Word from low 32 bits of stack slot. 8792 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8793 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8794 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8795 Chain = CWD.getValue(1); 8796 8797 // Transform as necessary 8798 SDValue CWD1 = 8799 DAG.getNode(ISD::AND, dl, MVT::i32, 8800 CWD, DAG.getConstant(3, dl, MVT::i32)); 8801 SDValue CWD2 = 8802 DAG.getNode(ISD::SRL, dl, MVT::i32, 8803 DAG.getNode(ISD::AND, dl, MVT::i32, 8804 DAG.getNode(ISD::XOR, dl, MVT::i32, 8805 CWD, DAG.getConstant(3, dl, MVT::i32)), 8806 DAG.getConstant(3, dl, MVT::i32)), 8807 DAG.getConstant(1, dl, MVT::i32)); 8808 8809 SDValue RetVal = 8810 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8811 8812 RetVal = 8813 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8814 dl, VT, RetVal); 8815 8816 return DAG.getMergeValues({RetVal, Chain}, dl); 8817 } 8818 8819 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8820 EVT VT = Op.getValueType(); 8821 unsigned BitWidth = VT.getSizeInBits(); 8822 SDLoc dl(Op); 8823 assert(Op.getNumOperands() == 3 && 8824 VT == Op.getOperand(1).getValueType() && 8825 "Unexpected SHL!"); 8826 8827 // Expand into a bunch of logical ops. Note that these ops 8828 // depend on the PPC behavior for oversized shift amounts. 8829 SDValue Lo = Op.getOperand(0); 8830 SDValue Hi = Op.getOperand(1); 8831 SDValue Amt = Op.getOperand(2); 8832 EVT AmtVT = Amt.getValueType(); 8833 8834 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8835 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8836 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8837 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8838 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8839 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8840 DAG.getConstant(-BitWidth, dl, AmtVT)); 8841 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8842 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8843 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8844 SDValue OutOps[] = { OutLo, OutHi }; 8845 return DAG.getMergeValues(OutOps, dl); 8846 } 8847 8848 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8849 EVT VT = Op.getValueType(); 8850 SDLoc dl(Op); 8851 unsigned BitWidth = VT.getSizeInBits(); 8852 assert(Op.getNumOperands() == 3 && 8853 VT == Op.getOperand(1).getValueType() && 8854 "Unexpected SRL!"); 8855 8856 // Expand into a bunch of logical ops. Note that these ops 8857 // depend on the PPC behavior for oversized shift amounts. 8858 SDValue Lo = Op.getOperand(0); 8859 SDValue Hi = Op.getOperand(1); 8860 SDValue Amt = Op.getOperand(2); 8861 EVT AmtVT = Amt.getValueType(); 8862 8863 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8864 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8865 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8866 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8867 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8868 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8869 DAG.getConstant(-BitWidth, dl, AmtVT)); 8870 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8871 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8872 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8873 SDValue OutOps[] = { OutLo, OutHi }; 8874 return DAG.getMergeValues(OutOps, dl); 8875 } 8876 8877 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8878 SDLoc dl(Op); 8879 EVT VT = Op.getValueType(); 8880 unsigned BitWidth = VT.getSizeInBits(); 8881 assert(Op.getNumOperands() == 3 && 8882 VT == Op.getOperand(1).getValueType() && 8883 "Unexpected SRA!"); 8884 8885 // Expand into a bunch of logical ops, followed by a select_cc. 8886 SDValue Lo = Op.getOperand(0); 8887 SDValue Hi = Op.getOperand(1); 8888 SDValue Amt = Op.getOperand(2); 8889 EVT AmtVT = Amt.getValueType(); 8890 8891 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8892 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8893 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8894 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8895 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8896 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8897 DAG.getConstant(-BitWidth, dl, AmtVT)); 8898 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8899 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8900 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8901 Tmp4, Tmp6, ISD::SETLE); 8902 SDValue OutOps[] = { OutLo, OutHi }; 8903 return DAG.getMergeValues(OutOps, dl); 8904 } 8905 8906 //===----------------------------------------------------------------------===// 8907 // Vector related lowering. 8908 // 8909 8910 /// BuildSplatI - Build a canonical splati of Val with an element size of 8911 /// SplatSize. Cast the result to VT. 8912 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8913 SelectionDAG &DAG, const SDLoc &dl) { 8914 static const MVT VTys[] = { // canonical VT to use for each size. 8915 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8916 }; 8917 8918 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8919 8920 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8921 if (Val == -1) 8922 SplatSize = 1; 8923 8924 EVT CanonicalVT = VTys[SplatSize-1]; 8925 8926 // Build a canonical splat for this value. 8927 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8928 } 8929 8930 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8931 /// specified intrinsic ID. 8932 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8933 const SDLoc &dl, EVT DestVT = MVT::Other) { 8934 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8935 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8936 DAG.getConstant(IID, dl, MVT::i32), Op); 8937 } 8938 8939 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8940 /// specified intrinsic ID. 8941 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8942 SelectionDAG &DAG, const SDLoc &dl, 8943 EVT DestVT = MVT::Other) { 8944 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8945 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8946 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8947 } 8948 8949 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8950 /// specified intrinsic ID. 8951 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8952 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8953 EVT DestVT = MVT::Other) { 8954 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8955 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8956 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8957 } 8958 8959 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8960 /// amount. The result has the specified value type. 8961 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8962 SelectionDAG &DAG, const SDLoc &dl) { 8963 // Force LHS/RHS to be the right type. 8964 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8965 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8966 8967 int Ops[16]; 8968 for (unsigned i = 0; i != 16; ++i) 8969 Ops[i] = i + Amt; 8970 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8971 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8972 } 8973 8974 /// Do we have an efficient pattern in a .td file for this node? 8975 /// 8976 /// \param V - pointer to the BuildVectorSDNode being matched 8977 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8978 /// 8979 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8980 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8981 /// the opposite is true (expansion is beneficial) are: 8982 /// - The node builds a vector out of integers that are not 32 or 64-bits 8983 /// - The node builds a vector out of constants 8984 /// - The node is a "load-and-splat" 8985 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8986 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8987 bool HasDirectMove, 8988 bool HasP8Vector) { 8989 EVT VecVT = V->getValueType(0); 8990 bool RightType = VecVT == MVT::v2f64 || 8991 (HasP8Vector && VecVT == MVT::v4f32) || 8992 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8993 if (!RightType) 8994 return false; 8995 8996 bool IsSplat = true; 8997 bool IsLoad = false; 8998 SDValue Op0 = V->getOperand(0); 8999 9000 // This function is called in a block that confirms the node is not a constant 9001 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9002 // different constants. 9003 if (V->isConstant()) 9004 return false; 9005 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9006 if (V->getOperand(i).isUndef()) 9007 return false; 9008 // We want to expand nodes that represent load-and-splat even if the 9009 // loaded value is a floating point truncation or conversion to int. 9010 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9011 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9012 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9013 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9014 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9015 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9016 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9017 IsLoad = true; 9018 // If the operands are different or the input is not a load and has more 9019 // uses than just this BV node, then it isn't a splat. 9020 if (V->getOperand(i) != Op0 || 9021 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9022 IsSplat = false; 9023 } 9024 return !(IsSplat && IsLoad); 9025 } 9026 9027 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9028 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9029 9030 SDLoc dl(Op); 9031 SDValue Op0 = Op->getOperand(0); 9032 9033 if (!EnableQuadPrecision || 9034 (Op.getValueType() != MVT::f128 ) || 9035 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9036 (Op0.getOperand(0).getValueType() != MVT::i64) || 9037 (Op0.getOperand(1).getValueType() != MVT::i64)) 9038 return SDValue(); 9039 9040 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9041 Op0.getOperand(1)); 9042 } 9043 9044 static const SDValue *getNormalLoadInput(const SDValue &Op) { 9045 const SDValue *InputLoad = &Op; 9046 if (InputLoad->getOpcode() == ISD::BITCAST) 9047 InputLoad = &InputLoad->getOperand(0); 9048 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9049 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) 9050 InputLoad = &InputLoad->getOperand(0); 9051 if (InputLoad->getOpcode() != ISD::LOAD) 9052 return nullptr; 9053 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9054 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9055 } 9056 9057 // If this is a case we can't handle, return null and let the default 9058 // expansion code take care of it. If we CAN select this case, and if it 9059 // selects to a single instruction, return Op. Otherwise, if we can codegen 9060 // this case more efficiently than a constant pool load, lower it to the 9061 // sequence of ops that should be used. 9062 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9063 SelectionDAG &DAG) const { 9064 SDLoc dl(Op); 9065 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9066 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9067 9068 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 9069 // We first build an i32 vector, load it into a QPX register, 9070 // then convert it to a floating-point vector and compare it 9071 // to a zero vector to get the boolean result. 9072 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9073 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9074 MachinePointerInfo PtrInfo = 9075 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9076 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9077 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9078 9079 assert(BVN->getNumOperands() == 4 && 9080 "BUILD_VECTOR for v4i1 does not have 4 operands"); 9081 9082 bool IsConst = true; 9083 for (unsigned i = 0; i < 4; ++i) { 9084 if (BVN->getOperand(i).isUndef()) continue; 9085 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 9086 IsConst = false; 9087 break; 9088 } 9089 } 9090 9091 if (IsConst) { 9092 Constant *One = 9093 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9094 Constant *NegOne = 9095 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9096 9097 Constant *CV[4]; 9098 for (unsigned i = 0; i < 4; ++i) { 9099 if (BVN->getOperand(i).isUndef()) 9100 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9101 else if (isNullConstant(BVN->getOperand(i))) 9102 CV[i] = NegOne; 9103 else 9104 CV[i] = One; 9105 } 9106 9107 Constant *CP = ConstantVector::get(CV); 9108 SDValue CPIdx = 9109 DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16)); 9110 9111 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9112 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9113 return DAG.getMemIntrinsicNode( 9114 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9115 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9116 } 9117 9118 SmallVector<SDValue, 4> Stores; 9119 for (unsigned i = 0; i < 4; ++i) { 9120 if (BVN->getOperand(i).isUndef()) continue; 9121 9122 unsigned Offset = 4*i; 9123 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9124 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9125 9126 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9127 if (StoreSize > 4) { 9128 Stores.push_back( 9129 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9130 PtrInfo.getWithOffset(Offset), MVT::i32)); 9131 } else { 9132 SDValue StoreValue = BVN->getOperand(i); 9133 if (StoreSize < 4) 9134 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9135 9136 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9137 PtrInfo.getWithOffset(Offset))); 9138 } 9139 } 9140 9141 SDValue StoreChain; 9142 if (!Stores.empty()) 9143 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9144 else 9145 StoreChain = DAG.getEntryNode(); 9146 9147 // Now load from v4i32 into the QPX register; this will extend it to 9148 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9149 // is typed as v4f64 because the QPX register integer states are not 9150 // explicitly represented. 9151 9152 SDValue Ops[] = {StoreChain, 9153 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9154 FIdx}; 9155 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9156 9157 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9158 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9159 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9160 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9161 LoadedVect); 9162 9163 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9164 9165 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9166 } 9167 9168 // All other QPX vectors are handled by generic code. 9169 if (Subtarget.hasQPX()) 9170 return SDValue(); 9171 9172 // Check if this is a splat of a constant value. 9173 APInt APSplatBits, APSplatUndef; 9174 unsigned SplatBitSize; 9175 bool HasAnyUndefs; 9176 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9177 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9178 SplatBitSize > 32) { 9179 9180 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 9181 // Handle load-and-splat patterns as we have instructions that will do this 9182 // in one go. 9183 if (InputLoad && DAG.isSplatValue(Op, true)) { 9184 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9185 9186 // We have handling for 4 and 8 byte elements. 9187 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9188 9189 // Checking for a single use of this load, we have to check for vector 9190 // width (128 bits) / ElementSize uses (since each operand of the 9191 // BUILD_VECTOR is a separate use of the value. 9192 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9193 ((Subtarget.hasVSX() && ElementSize == 64) || 9194 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9195 SDValue Ops[] = { 9196 LD->getChain(), // Chain 9197 LD->getBasePtr(), // Ptr 9198 DAG.getValueType(Op.getValueType()) // VT 9199 }; 9200 return 9201 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9202 DAG.getVTList(Op.getValueType(), MVT::Other), 9203 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9204 } 9205 } 9206 9207 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9208 // lowered to VSX instructions under certain conditions. 9209 // Without VSX, there is no pattern more efficient than expanding the node. 9210 if (Subtarget.hasVSX() && 9211 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9212 Subtarget.hasP8Vector())) 9213 return Op; 9214 return SDValue(); 9215 } 9216 9217 unsigned SplatBits = APSplatBits.getZExtValue(); 9218 unsigned SplatUndef = APSplatUndef.getZExtValue(); 9219 unsigned SplatSize = SplatBitSize / 8; 9220 9221 // First, handle single instruction cases. 9222 9223 // All zeros? 9224 if (SplatBits == 0) { 9225 // Canonicalize all zero vectors to be v4i32. 9226 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9227 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9228 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9229 } 9230 return Op; 9231 } 9232 9233 // We have XXSPLTIB for constant splats one byte wide 9234 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 9235 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 9236 if (Subtarget.hasP9Vector() && SplatSize == 1) 9237 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 9238 9239 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9240 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9241 (32-SplatBitSize)); 9242 if (SextVal >= -16 && SextVal <= 15) 9243 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 9244 9245 // Two instruction sequences. 9246 9247 // If this value is in the range [-32,30] and is even, use: 9248 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9249 // If this value is in the range [17,31] and is odd, use: 9250 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9251 // If this value is in the range [-31,-17] and is odd, use: 9252 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9253 // Note the last two are three-instruction sequences. 9254 if (SextVal >= -32 && SextVal <= 31) { 9255 // To avoid having these optimizations undone by constant folding, 9256 // we convert to a pseudo that will be expanded later into one of 9257 // the above forms. 9258 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9259 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9260 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9261 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9262 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9263 if (VT == Op.getValueType()) 9264 return RetVal; 9265 else 9266 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9267 } 9268 9269 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9270 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9271 // for fneg/fabs. 9272 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9273 // Make -1 and vspltisw -1: 9274 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 9275 9276 // Make the VSLW intrinsic, computing 0x8000_0000. 9277 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9278 OnesV, DAG, dl); 9279 9280 // xor by OnesV to invert it. 9281 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9282 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9283 } 9284 9285 // Check to see if this is a wide variety of vsplti*, binop self cases. 9286 static const signed char SplatCsts[] = { 9287 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9288 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9289 }; 9290 9291 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9292 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9293 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9294 int i = SplatCsts[idx]; 9295 9296 // Figure out what shift amount will be used by altivec if shifted by i in 9297 // this splat size. 9298 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9299 9300 // vsplti + shl self. 9301 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9302 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9303 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9304 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9305 Intrinsic::ppc_altivec_vslw 9306 }; 9307 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9308 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9309 } 9310 9311 // vsplti + srl self. 9312 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9313 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9314 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9315 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9316 Intrinsic::ppc_altivec_vsrw 9317 }; 9318 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9319 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9320 } 9321 9322 // vsplti + sra self. 9323 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9324 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9325 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9326 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9327 Intrinsic::ppc_altivec_vsraw 9328 }; 9329 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9330 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9331 } 9332 9333 // vsplti + rol self. 9334 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9335 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9336 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9337 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9338 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9339 Intrinsic::ppc_altivec_vrlw 9340 }; 9341 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9342 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9343 } 9344 9345 // t = vsplti c, result = vsldoi t, t, 1 9346 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9347 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9348 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9349 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9350 } 9351 // t = vsplti c, result = vsldoi t, t, 2 9352 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9353 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9354 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9355 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9356 } 9357 // t = vsplti c, result = vsldoi t, t, 3 9358 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9359 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9360 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9361 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9362 } 9363 } 9364 9365 return SDValue(); 9366 } 9367 9368 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9369 /// the specified operations to build the shuffle. 9370 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9371 SDValue RHS, SelectionDAG &DAG, 9372 const SDLoc &dl) { 9373 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9374 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9375 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9376 9377 enum { 9378 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9379 OP_VMRGHW, 9380 OP_VMRGLW, 9381 OP_VSPLTISW0, 9382 OP_VSPLTISW1, 9383 OP_VSPLTISW2, 9384 OP_VSPLTISW3, 9385 OP_VSLDOI4, 9386 OP_VSLDOI8, 9387 OP_VSLDOI12 9388 }; 9389 9390 if (OpNum == OP_COPY) { 9391 if (LHSID == (1*9+2)*9+3) return LHS; 9392 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9393 return RHS; 9394 } 9395 9396 SDValue OpLHS, OpRHS; 9397 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9398 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9399 9400 int ShufIdxs[16]; 9401 switch (OpNum) { 9402 default: llvm_unreachable("Unknown i32 permute!"); 9403 case OP_VMRGHW: 9404 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9405 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9406 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9407 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9408 break; 9409 case OP_VMRGLW: 9410 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9411 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9412 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9413 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9414 break; 9415 case OP_VSPLTISW0: 9416 for (unsigned i = 0; i != 16; ++i) 9417 ShufIdxs[i] = (i&3)+0; 9418 break; 9419 case OP_VSPLTISW1: 9420 for (unsigned i = 0; i != 16; ++i) 9421 ShufIdxs[i] = (i&3)+4; 9422 break; 9423 case OP_VSPLTISW2: 9424 for (unsigned i = 0; i != 16; ++i) 9425 ShufIdxs[i] = (i&3)+8; 9426 break; 9427 case OP_VSPLTISW3: 9428 for (unsigned i = 0; i != 16; ++i) 9429 ShufIdxs[i] = (i&3)+12; 9430 break; 9431 case OP_VSLDOI4: 9432 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9433 case OP_VSLDOI8: 9434 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9435 case OP_VSLDOI12: 9436 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9437 } 9438 EVT VT = OpLHS.getValueType(); 9439 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9440 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9441 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9442 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9443 } 9444 9445 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9446 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9447 /// SDValue. 9448 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9449 SelectionDAG &DAG) const { 9450 const unsigned BytesInVector = 16; 9451 bool IsLE = Subtarget.isLittleEndian(); 9452 SDLoc dl(N); 9453 SDValue V1 = N->getOperand(0); 9454 SDValue V2 = N->getOperand(1); 9455 unsigned ShiftElts = 0, InsertAtByte = 0; 9456 bool Swap = false; 9457 9458 // Shifts required to get the byte we want at element 7. 9459 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9460 0, 15, 14, 13, 12, 11, 10, 9}; 9461 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9462 1, 2, 3, 4, 5, 6, 7, 8}; 9463 9464 ArrayRef<int> Mask = N->getMask(); 9465 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9466 9467 // For each mask element, find out if we're just inserting something 9468 // from V2 into V1 or vice versa. 9469 // Possible permutations inserting an element from V2 into V1: 9470 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9471 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9472 // ... 9473 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9474 // Inserting from V1 into V2 will be similar, except mask range will be 9475 // [16,31]. 9476 9477 bool FoundCandidate = false; 9478 // If both vector operands for the shuffle are the same vector, the mask 9479 // will contain only elements from the first one and the second one will be 9480 // undef. 9481 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9482 // Go through the mask of half-words to find an element that's being moved 9483 // from one vector to the other. 9484 for (unsigned i = 0; i < BytesInVector; ++i) { 9485 unsigned CurrentElement = Mask[i]; 9486 // If 2nd operand is undefined, we should only look for element 7 in the 9487 // Mask. 9488 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9489 continue; 9490 9491 bool OtherElementsInOrder = true; 9492 // Examine the other elements in the Mask to see if they're in original 9493 // order. 9494 for (unsigned j = 0; j < BytesInVector; ++j) { 9495 if (j == i) 9496 continue; 9497 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9498 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9499 // in which we always assume we're always picking from the 1st operand. 9500 int MaskOffset = 9501 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9502 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9503 OtherElementsInOrder = false; 9504 break; 9505 } 9506 } 9507 // If other elements are in original order, we record the number of shifts 9508 // we need to get the element we want into element 7. Also record which byte 9509 // in the vector we should insert into. 9510 if (OtherElementsInOrder) { 9511 // If 2nd operand is undefined, we assume no shifts and no swapping. 9512 if (V2.isUndef()) { 9513 ShiftElts = 0; 9514 Swap = false; 9515 } else { 9516 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9517 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9518 : BigEndianShifts[CurrentElement & 0xF]; 9519 Swap = CurrentElement < BytesInVector; 9520 } 9521 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9522 FoundCandidate = true; 9523 break; 9524 } 9525 } 9526 9527 if (!FoundCandidate) 9528 return SDValue(); 9529 9530 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9531 // optionally with VECSHL if shift is required. 9532 if (Swap) 9533 std::swap(V1, V2); 9534 if (V2.isUndef()) 9535 V2 = V1; 9536 if (ShiftElts) { 9537 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9538 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9539 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9540 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9541 } 9542 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9543 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9544 } 9545 9546 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9547 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9548 /// SDValue. 9549 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9550 SelectionDAG &DAG) const { 9551 const unsigned NumHalfWords = 8; 9552 const unsigned BytesInVector = NumHalfWords * 2; 9553 // Check that the shuffle is on half-words. 9554 if (!isNByteElemShuffleMask(N, 2, 1)) 9555 return SDValue(); 9556 9557 bool IsLE = Subtarget.isLittleEndian(); 9558 SDLoc dl(N); 9559 SDValue V1 = N->getOperand(0); 9560 SDValue V2 = N->getOperand(1); 9561 unsigned ShiftElts = 0, InsertAtByte = 0; 9562 bool Swap = false; 9563 9564 // Shifts required to get the half-word we want at element 3. 9565 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9566 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9567 9568 uint32_t Mask = 0; 9569 uint32_t OriginalOrderLow = 0x1234567; 9570 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9571 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9572 // 32-bit space, only need 4-bit nibbles per element. 9573 for (unsigned i = 0; i < NumHalfWords; ++i) { 9574 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9575 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9576 } 9577 9578 // For each mask element, find out if we're just inserting something 9579 // from V2 into V1 or vice versa. Possible permutations inserting an element 9580 // from V2 into V1: 9581 // X, 1, 2, 3, 4, 5, 6, 7 9582 // 0, X, 2, 3, 4, 5, 6, 7 9583 // 0, 1, X, 3, 4, 5, 6, 7 9584 // 0, 1, 2, X, 4, 5, 6, 7 9585 // 0, 1, 2, 3, X, 5, 6, 7 9586 // 0, 1, 2, 3, 4, X, 6, 7 9587 // 0, 1, 2, 3, 4, 5, X, 7 9588 // 0, 1, 2, 3, 4, 5, 6, X 9589 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9590 9591 bool FoundCandidate = false; 9592 // Go through the mask of half-words to find an element that's being moved 9593 // from one vector to the other. 9594 for (unsigned i = 0; i < NumHalfWords; ++i) { 9595 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9596 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9597 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9598 uint32_t TargetOrder = 0x0; 9599 9600 // If both vector operands for the shuffle are the same vector, the mask 9601 // will contain only elements from the first one and the second one will be 9602 // undef. 9603 if (V2.isUndef()) { 9604 ShiftElts = 0; 9605 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9606 TargetOrder = OriginalOrderLow; 9607 Swap = false; 9608 // Skip if not the correct element or mask of other elements don't equal 9609 // to our expected order. 9610 if (MaskOneElt == VINSERTHSrcElem && 9611 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9612 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9613 FoundCandidate = true; 9614 break; 9615 } 9616 } else { // If both operands are defined. 9617 // Target order is [8,15] if the current mask is between [0,7]. 9618 TargetOrder = 9619 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9620 // Skip if mask of other elements don't equal our expected order. 9621 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9622 // We only need the last 3 bits for the number of shifts. 9623 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9624 : BigEndianShifts[MaskOneElt & 0x7]; 9625 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9626 Swap = MaskOneElt < NumHalfWords; 9627 FoundCandidate = true; 9628 break; 9629 } 9630 } 9631 } 9632 9633 if (!FoundCandidate) 9634 return SDValue(); 9635 9636 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9637 // optionally with VECSHL if shift is required. 9638 if (Swap) 9639 std::swap(V1, V2); 9640 if (V2.isUndef()) 9641 V2 = V1; 9642 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9643 if (ShiftElts) { 9644 // Double ShiftElts because we're left shifting on v16i8 type. 9645 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9646 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9647 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9648 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9649 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9650 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9651 } 9652 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9653 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9654 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9655 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9656 } 9657 9658 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9659 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9660 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9661 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9662 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9663 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9664 assert(Op.getValueType() == MVT::v1i128 && 9665 "Only set v1i128 as custom, other type shouldn't reach here!"); 9666 SDLoc dl(Op); 9667 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9668 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9669 unsigned SHLAmt = N1.getConstantOperandVal(0); 9670 if (SHLAmt % 8 == 0) { 9671 SmallVector<int, 16> Mask(16, 0); 9672 std::iota(Mask.begin(), Mask.end(), 0); 9673 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9674 if (SDValue Shuffle = 9675 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9676 DAG.getUNDEF(MVT::v16i8), Mask)) 9677 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9678 } 9679 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9680 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9681 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9682 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9683 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9684 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9685 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9686 } 9687 9688 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9689 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9690 /// return the code it can be lowered into. Worst case, it can always be 9691 /// lowered into a vperm. 9692 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9693 SelectionDAG &DAG) const { 9694 SDLoc dl(Op); 9695 SDValue V1 = Op.getOperand(0); 9696 SDValue V2 = Op.getOperand(1); 9697 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9698 9699 // Any nodes that were combined in the target-independent combiner prior 9700 // to vector legalization will not be sent to the target combine. Try to 9701 // combine it here. 9702 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9703 DAG.ReplaceAllUsesOfValueWith(Op, NewShuffle); 9704 Op = NewShuffle; 9705 SVOp = cast<ShuffleVectorSDNode>(Op); 9706 } 9707 EVT VT = Op.getValueType(); 9708 bool isLittleEndian = Subtarget.isLittleEndian(); 9709 9710 unsigned ShiftElts, InsertAtByte; 9711 bool Swap = false; 9712 9713 // If this is a load-and-splat, we can do that with a single instruction 9714 // in some cases. However if the load has multiple uses, we don't want to 9715 // combine it because that will just produce multiple loads. 9716 const SDValue *InputLoad = getNormalLoadInput(V1); 9717 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9718 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9719 InputLoad->hasOneUse()) { 9720 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9721 int SplatIdx = 9722 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9723 9724 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9725 // For 4-byte load-and-splat, we need Power9. 9726 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9727 uint64_t Offset = 0; 9728 if (IsFourByte) 9729 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9730 else 9731 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9732 9733 // If we are loading a partial vector, it does not make sense to adjust 9734 // the base pointer. This happens with (splat (s_to_v_permuted (ld))). 9735 if (LD->getMemoryVT().getSizeInBits() == (IsFourByte ? 32 : 64)) 9736 Offset = 0; 9737 SDValue BasePtr = LD->getBasePtr(); 9738 if (Offset != 0) 9739 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9740 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9741 SDValue Ops[] = { 9742 LD->getChain(), // Chain 9743 BasePtr, // BasePtr 9744 DAG.getValueType(Op.getValueType()) // VT 9745 }; 9746 SDVTList VTL = 9747 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9748 SDValue LdSplt = 9749 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9750 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9751 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9752 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9753 return LdSplt; 9754 } 9755 } 9756 if (Subtarget.hasP9Vector() && 9757 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9758 isLittleEndian)) { 9759 if (Swap) 9760 std::swap(V1, V2); 9761 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9762 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9763 if (ShiftElts) { 9764 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9765 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9766 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9767 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9768 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9769 } 9770 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9771 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9772 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9773 } 9774 9775 if (Subtarget.hasP9Altivec()) { 9776 SDValue NewISDNode; 9777 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9778 return NewISDNode; 9779 9780 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9781 return NewISDNode; 9782 } 9783 9784 if (Subtarget.hasVSX() && 9785 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9786 if (Swap) 9787 std::swap(V1, V2); 9788 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9789 SDValue Conv2 = 9790 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9791 9792 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9793 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9794 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9795 } 9796 9797 if (Subtarget.hasVSX() && 9798 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9799 if (Swap) 9800 std::swap(V1, V2); 9801 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9802 SDValue Conv2 = 9803 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9804 9805 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9806 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9807 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9808 } 9809 9810 if (Subtarget.hasP9Vector()) { 9811 if (PPC::isXXBRHShuffleMask(SVOp)) { 9812 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9813 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9814 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9815 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9816 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9817 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9818 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9819 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9820 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9821 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9822 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9823 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9824 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9825 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9826 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9827 } 9828 } 9829 9830 if (Subtarget.hasVSX()) { 9831 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9832 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9833 9834 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9835 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9836 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9837 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9838 } 9839 9840 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9841 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9842 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9843 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9844 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9845 } 9846 } 9847 9848 if (Subtarget.hasQPX()) { 9849 if (VT.getVectorNumElements() != 4) 9850 return SDValue(); 9851 9852 if (V2.isUndef()) V2 = V1; 9853 9854 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9855 if (AlignIdx != -1) { 9856 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9857 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9858 } else if (SVOp->isSplat()) { 9859 int SplatIdx = SVOp->getSplatIndex(); 9860 if (SplatIdx >= 4) { 9861 std::swap(V1, V2); 9862 SplatIdx -= 4; 9863 } 9864 9865 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9866 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9867 } 9868 9869 // Lower this into a qvgpci/qvfperm pair. 9870 9871 // Compute the qvgpci literal 9872 unsigned idx = 0; 9873 for (unsigned i = 0; i < 4; ++i) { 9874 int m = SVOp->getMaskElt(i); 9875 unsigned mm = m >= 0 ? (unsigned) m : i; 9876 idx |= mm << (3-i)*3; 9877 } 9878 9879 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9880 DAG.getConstant(idx, dl, MVT::i32)); 9881 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9882 } 9883 9884 // Cases that are handled by instructions that take permute immediates 9885 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9886 // selected by the instruction selector. 9887 if (V2.isUndef()) { 9888 if (PPC::isSplatShuffleMask(SVOp, 1) || 9889 PPC::isSplatShuffleMask(SVOp, 2) || 9890 PPC::isSplatShuffleMask(SVOp, 4) || 9891 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9892 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9893 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9894 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9895 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9896 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9897 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9898 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9899 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9900 (Subtarget.hasP8Altivec() && ( 9901 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9902 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9903 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9904 return Op; 9905 } 9906 } 9907 9908 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9909 // and produce a fixed permutation. If any of these match, do not lower to 9910 // VPERM. 9911 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9912 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9913 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9914 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9915 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9916 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9917 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9918 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9919 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9920 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9921 (Subtarget.hasP8Altivec() && ( 9922 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9923 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9924 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9925 return Op; 9926 9927 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9928 // perfect shuffle table to emit an optimal matching sequence. 9929 ArrayRef<int> PermMask = SVOp->getMask(); 9930 9931 unsigned PFIndexes[4]; 9932 bool isFourElementShuffle = true; 9933 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9934 unsigned EltNo = 8; // Start out undef. 9935 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9936 if (PermMask[i*4+j] < 0) 9937 continue; // Undef, ignore it. 9938 9939 unsigned ByteSource = PermMask[i*4+j]; 9940 if ((ByteSource & 3) != j) { 9941 isFourElementShuffle = false; 9942 break; 9943 } 9944 9945 if (EltNo == 8) { 9946 EltNo = ByteSource/4; 9947 } else if (EltNo != ByteSource/4) { 9948 isFourElementShuffle = false; 9949 break; 9950 } 9951 } 9952 PFIndexes[i] = EltNo; 9953 } 9954 9955 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9956 // perfect shuffle vector to determine if it is cost effective to do this as 9957 // discrete instructions, or whether we should use a vperm. 9958 // For now, we skip this for little endian until such time as we have a 9959 // little-endian perfect shuffle table. 9960 if (isFourElementShuffle && !isLittleEndian) { 9961 // Compute the index in the perfect shuffle table. 9962 unsigned PFTableIndex = 9963 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9964 9965 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9966 unsigned Cost = (PFEntry >> 30); 9967 9968 // Determining when to avoid vperm is tricky. Many things affect the cost 9969 // of vperm, particularly how many times the perm mask needs to be computed. 9970 // For example, if the perm mask can be hoisted out of a loop or is already 9971 // used (perhaps because there are multiple permutes with the same shuffle 9972 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9973 // the loop requires an extra register. 9974 // 9975 // As a compromise, we only emit discrete instructions if the shuffle can be 9976 // generated in 3 or fewer operations. When we have loop information 9977 // available, if this block is within a loop, we should avoid using vperm 9978 // for 3-operation perms and use a constant pool load instead. 9979 if (Cost < 3) 9980 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9981 } 9982 9983 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9984 // vector that will get spilled to the constant pool. 9985 if (V2.isUndef()) V2 = V1; 9986 9987 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9988 // that it is in input element units, not in bytes. Convert now. 9989 9990 // For little endian, the order of the input vectors is reversed, and 9991 // the permutation mask is complemented with respect to 31. This is 9992 // necessary to produce proper semantics with the big-endian-biased vperm 9993 // instruction. 9994 EVT EltVT = V1.getValueType().getVectorElementType(); 9995 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9996 9997 SmallVector<SDValue, 16> ResultMask; 9998 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9999 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10000 10001 for (unsigned j = 0; j != BytesPerElement; ++j) 10002 if (isLittleEndian) 10003 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10004 dl, MVT::i32)); 10005 else 10006 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10007 MVT::i32)); 10008 } 10009 10010 ShufflesHandledWithVPERM++; 10011 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10012 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10013 LLVM_DEBUG(SVOp->dump()); 10014 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10015 LLVM_DEBUG(VPermMask.dump()); 10016 10017 if (isLittleEndian) 10018 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10019 V2, V1, VPermMask); 10020 else 10021 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10022 V1, V2, VPermMask); 10023 } 10024 10025 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10026 /// vector comparison. If it is, return true and fill in Opc/isDot with 10027 /// information about the intrinsic. 10028 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10029 bool &isDot, const PPCSubtarget &Subtarget) { 10030 unsigned IntrinsicID = 10031 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10032 CompareOpc = -1; 10033 isDot = false; 10034 switch (IntrinsicID) { 10035 default: 10036 return false; 10037 // Comparison predicates. 10038 case Intrinsic::ppc_altivec_vcmpbfp_p: 10039 CompareOpc = 966; 10040 isDot = true; 10041 break; 10042 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10043 CompareOpc = 198; 10044 isDot = true; 10045 break; 10046 case Intrinsic::ppc_altivec_vcmpequb_p: 10047 CompareOpc = 6; 10048 isDot = true; 10049 break; 10050 case Intrinsic::ppc_altivec_vcmpequh_p: 10051 CompareOpc = 70; 10052 isDot = true; 10053 break; 10054 case Intrinsic::ppc_altivec_vcmpequw_p: 10055 CompareOpc = 134; 10056 isDot = true; 10057 break; 10058 case Intrinsic::ppc_altivec_vcmpequd_p: 10059 if (Subtarget.hasP8Altivec()) { 10060 CompareOpc = 199; 10061 isDot = true; 10062 } else 10063 return false; 10064 break; 10065 case Intrinsic::ppc_altivec_vcmpneb_p: 10066 case Intrinsic::ppc_altivec_vcmpneh_p: 10067 case Intrinsic::ppc_altivec_vcmpnew_p: 10068 case Intrinsic::ppc_altivec_vcmpnezb_p: 10069 case Intrinsic::ppc_altivec_vcmpnezh_p: 10070 case Intrinsic::ppc_altivec_vcmpnezw_p: 10071 if (Subtarget.hasP9Altivec()) { 10072 switch (IntrinsicID) { 10073 default: 10074 llvm_unreachable("Unknown comparison intrinsic."); 10075 case Intrinsic::ppc_altivec_vcmpneb_p: 10076 CompareOpc = 7; 10077 break; 10078 case Intrinsic::ppc_altivec_vcmpneh_p: 10079 CompareOpc = 71; 10080 break; 10081 case Intrinsic::ppc_altivec_vcmpnew_p: 10082 CompareOpc = 135; 10083 break; 10084 case Intrinsic::ppc_altivec_vcmpnezb_p: 10085 CompareOpc = 263; 10086 break; 10087 case Intrinsic::ppc_altivec_vcmpnezh_p: 10088 CompareOpc = 327; 10089 break; 10090 case Intrinsic::ppc_altivec_vcmpnezw_p: 10091 CompareOpc = 391; 10092 break; 10093 } 10094 isDot = true; 10095 } else 10096 return false; 10097 break; 10098 case Intrinsic::ppc_altivec_vcmpgefp_p: 10099 CompareOpc = 454; 10100 isDot = true; 10101 break; 10102 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10103 CompareOpc = 710; 10104 isDot = true; 10105 break; 10106 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10107 CompareOpc = 774; 10108 isDot = true; 10109 break; 10110 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10111 CompareOpc = 838; 10112 isDot = true; 10113 break; 10114 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10115 CompareOpc = 902; 10116 isDot = true; 10117 break; 10118 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10119 if (Subtarget.hasP8Altivec()) { 10120 CompareOpc = 967; 10121 isDot = true; 10122 } else 10123 return false; 10124 break; 10125 case Intrinsic::ppc_altivec_vcmpgtub_p: 10126 CompareOpc = 518; 10127 isDot = true; 10128 break; 10129 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10130 CompareOpc = 582; 10131 isDot = true; 10132 break; 10133 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10134 CompareOpc = 646; 10135 isDot = true; 10136 break; 10137 case Intrinsic::ppc_altivec_vcmpgtud_p: 10138 if (Subtarget.hasP8Altivec()) { 10139 CompareOpc = 711; 10140 isDot = true; 10141 } else 10142 return false; 10143 break; 10144 10145 // VSX predicate comparisons use the same infrastructure 10146 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10147 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10148 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10149 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10150 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10151 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10152 if (Subtarget.hasVSX()) { 10153 switch (IntrinsicID) { 10154 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10155 CompareOpc = 99; 10156 break; 10157 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10158 CompareOpc = 115; 10159 break; 10160 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10161 CompareOpc = 107; 10162 break; 10163 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10164 CompareOpc = 67; 10165 break; 10166 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10167 CompareOpc = 83; 10168 break; 10169 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10170 CompareOpc = 75; 10171 break; 10172 } 10173 isDot = true; 10174 } else 10175 return false; 10176 break; 10177 10178 // Normal Comparisons. 10179 case Intrinsic::ppc_altivec_vcmpbfp: 10180 CompareOpc = 966; 10181 break; 10182 case Intrinsic::ppc_altivec_vcmpeqfp: 10183 CompareOpc = 198; 10184 break; 10185 case Intrinsic::ppc_altivec_vcmpequb: 10186 CompareOpc = 6; 10187 break; 10188 case Intrinsic::ppc_altivec_vcmpequh: 10189 CompareOpc = 70; 10190 break; 10191 case Intrinsic::ppc_altivec_vcmpequw: 10192 CompareOpc = 134; 10193 break; 10194 case Intrinsic::ppc_altivec_vcmpequd: 10195 if (Subtarget.hasP8Altivec()) 10196 CompareOpc = 199; 10197 else 10198 return false; 10199 break; 10200 case Intrinsic::ppc_altivec_vcmpneb: 10201 case Intrinsic::ppc_altivec_vcmpneh: 10202 case Intrinsic::ppc_altivec_vcmpnew: 10203 case Intrinsic::ppc_altivec_vcmpnezb: 10204 case Intrinsic::ppc_altivec_vcmpnezh: 10205 case Intrinsic::ppc_altivec_vcmpnezw: 10206 if (Subtarget.hasP9Altivec()) 10207 switch (IntrinsicID) { 10208 default: 10209 llvm_unreachable("Unknown comparison intrinsic."); 10210 case Intrinsic::ppc_altivec_vcmpneb: 10211 CompareOpc = 7; 10212 break; 10213 case Intrinsic::ppc_altivec_vcmpneh: 10214 CompareOpc = 71; 10215 break; 10216 case Intrinsic::ppc_altivec_vcmpnew: 10217 CompareOpc = 135; 10218 break; 10219 case Intrinsic::ppc_altivec_vcmpnezb: 10220 CompareOpc = 263; 10221 break; 10222 case Intrinsic::ppc_altivec_vcmpnezh: 10223 CompareOpc = 327; 10224 break; 10225 case Intrinsic::ppc_altivec_vcmpnezw: 10226 CompareOpc = 391; 10227 break; 10228 } 10229 else 10230 return false; 10231 break; 10232 case Intrinsic::ppc_altivec_vcmpgefp: 10233 CompareOpc = 454; 10234 break; 10235 case Intrinsic::ppc_altivec_vcmpgtfp: 10236 CompareOpc = 710; 10237 break; 10238 case Intrinsic::ppc_altivec_vcmpgtsb: 10239 CompareOpc = 774; 10240 break; 10241 case Intrinsic::ppc_altivec_vcmpgtsh: 10242 CompareOpc = 838; 10243 break; 10244 case Intrinsic::ppc_altivec_vcmpgtsw: 10245 CompareOpc = 902; 10246 break; 10247 case Intrinsic::ppc_altivec_vcmpgtsd: 10248 if (Subtarget.hasP8Altivec()) 10249 CompareOpc = 967; 10250 else 10251 return false; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpgtub: 10254 CompareOpc = 518; 10255 break; 10256 case Intrinsic::ppc_altivec_vcmpgtuh: 10257 CompareOpc = 582; 10258 break; 10259 case Intrinsic::ppc_altivec_vcmpgtuw: 10260 CompareOpc = 646; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpgtud: 10263 if (Subtarget.hasP8Altivec()) 10264 CompareOpc = 711; 10265 else 10266 return false; 10267 break; 10268 } 10269 return true; 10270 } 10271 10272 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10273 /// lower, do it, otherwise return null. 10274 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10275 SelectionDAG &DAG) const { 10276 unsigned IntrinsicID = 10277 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10278 10279 SDLoc dl(Op); 10280 10281 if (IntrinsicID == Intrinsic::thread_pointer) { 10282 // Reads the thread pointer register, used for __builtin_thread_pointer. 10283 if (Subtarget.isPPC64()) 10284 return DAG.getRegister(PPC::X13, MVT::i64); 10285 return DAG.getRegister(PPC::R2, MVT::i32); 10286 } 10287 10288 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10289 // opcode number of the comparison. 10290 int CompareOpc; 10291 bool isDot; 10292 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10293 return SDValue(); // Don't custom lower most intrinsics. 10294 10295 // If this is a non-dot comparison, make the VCMP node and we are done. 10296 if (!isDot) { 10297 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10298 Op.getOperand(1), Op.getOperand(2), 10299 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10300 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10301 } 10302 10303 // Create the PPCISD altivec 'dot' comparison node. 10304 SDValue Ops[] = { 10305 Op.getOperand(2), // LHS 10306 Op.getOperand(3), // RHS 10307 DAG.getConstant(CompareOpc, dl, MVT::i32) 10308 }; 10309 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10310 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10311 10312 // Now that we have the comparison, emit a copy from the CR to a GPR. 10313 // This is flagged to the above dot comparison. 10314 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10315 DAG.getRegister(PPC::CR6, MVT::i32), 10316 CompNode.getValue(1)); 10317 10318 // Unpack the result based on how the target uses it. 10319 unsigned BitNo; // Bit # of CR6. 10320 bool InvertBit; // Invert result? 10321 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10322 default: // Can't happen, don't crash on invalid number though. 10323 case 0: // Return the value of the EQ bit of CR6. 10324 BitNo = 0; InvertBit = false; 10325 break; 10326 case 1: // Return the inverted value of the EQ bit of CR6. 10327 BitNo = 0; InvertBit = true; 10328 break; 10329 case 2: // Return the value of the LT bit of CR6. 10330 BitNo = 2; InvertBit = false; 10331 break; 10332 case 3: // Return the inverted value of the LT bit of CR6. 10333 BitNo = 2; InvertBit = true; 10334 break; 10335 } 10336 10337 // Shift the bit into the low position. 10338 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10339 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10340 // Isolate the bit. 10341 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10342 DAG.getConstant(1, dl, MVT::i32)); 10343 10344 // If we are supposed to, toggle the bit. 10345 if (InvertBit) 10346 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10347 DAG.getConstant(1, dl, MVT::i32)); 10348 return Flags; 10349 } 10350 10351 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10352 SelectionDAG &DAG) const { 10353 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10354 // the beginning of the argument list. 10355 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10356 SDLoc DL(Op); 10357 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10358 case Intrinsic::ppc_cfence: { 10359 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10360 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10361 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10362 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10363 Op.getOperand(ArgStart + 1)), 10364 Op.getOperand(0)), 10365 0); 10366 } 10367 default: 10368 break; 10369 } 10370 return SDValue(); 10371 } 10372 10373 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10374 // Check for a DIV with the same operands as this REM. 10375 for (auto UI : Op.getOperand(1)->uses()) { 10376 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10377 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10378 if (UI->getOperand(0) == Op.getOperand(0) && 10379 UI->getOperand(1) == Op.getOperand(1)) 10380 return SDValue(); 10381 } 10382 return Op; 10383 } 10384 10385 // Lower scalar BSWAP64 to xxbrd. 10386 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10387 SDLoc dl(Op); 10388 // MTVSRDD 10389 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10390 Op.getOperand(0)); 10391 // XXBRD 10392 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10393 // MFVSRD 10394 int VectorIndex = 0; 10395 if (Subtarget.isLittleEndian()) 10396 VectorIndex = 1; 10397 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10398 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10399 return Op; 10400 } 10401 10402 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10403 // compared to a value that is atomically loaded (atomic loads zero-extend). 10404 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10405 SelectionDAG &DAG) const { 10406 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10407 "Expecting an atomic compare-and-swap here."); 10408 SDLoc dl(Op); 10409 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10410 EVT MemVT = AtomicNode->getMemoryVT(); 10411 if (MemVT.getSizeInBits() >= 32) 10412 return Op; 10413 10414 SDValue CmpOp = Op.getOperand(2); 10415 // If this is already correctly zero-extended, leave it alone. 10416 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10417 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10418 return Op; 10419 10420 // Clear the high bits of the compare operand. 10421 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10422 SDValue NewCmpOp = 10423 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10424 DAG.getConstant(MaskVal, dl, MVT::i32)); 10425 10426 // Replace the existing compare operand with the properly zero-extended one. 10427 SmallVector<SDValue, 4> Ops; 10428 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10429 Ops.push_back(AtomicNode->getOperand(i)); 10430 Ops[2] = NewCmpOp; 10431 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10432 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10433 auto NodeTy = 10434 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10435 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10436 } 10437 10438 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10439 SelectionDAG &DAG) const { 10440 SDLoc dl(Op); 10441 // Create a stack slot that is 16-byte aligned. 10442 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10443 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10444 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10445 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10446 10447 // Store the input value into Value#0 of the stack slot. 10448 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10449 MachinePointerInfo()); 10450 // Load it out. 10451 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10452 } 10453 10454 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10455 SelectionDAG &DAG) const { 10456 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10457 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10458 10459 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10460 // We have legal lowering for constant indices but not for variable ones. 10461 if (!C) 10462 return SDValue(); 10463 10464 EVT VT = Op.getValueType(); 10465 SDLoc dl(Op); 10466 SDValue V1 = Op.getOperand(0); 10467 SDValue V2 = Op.getOperand(1); 10468 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10469 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10470 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10471 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10472 unsigned InsertAtElement = C->getZExtValue(); 10473 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10474 if (Subtarget.isLittleEndian()) { 10475 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10476 } 10477 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10478 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10479 } 10480 return Op; 10481 } 10482 10483 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10484 SelectionDAG &DAG) const { 10485 SDLoc dl(Op); 10486 SDNode *N = Op.getNode(); 10487 10488 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10489 "Unknown extract_vector_elt type"); 10490 10491 SDValue Value = N->getOperand(0); 10492 10493 // The first part of this is like the store lowering except that we don't 10494 // need to track the chain. 10495 10496 // The values are now known to be -1 (false) or 1 (true). To convert this 10497 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10498 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10499 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10500 10501 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10502 // understand how to form the extending load. 10503 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10504 10505 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10506 10507 // Now convert to an integer and store. 10508 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10509 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10510 Value); 10511 10512 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10513 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10514 MachinePointerInfo PtrInfo = 10515 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10516 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10517 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10518 10519 SDValue StoreChain = DAG.getEntryNode(); 10520 SDValue Ops[] = {StoreChain, 10521 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10522 Value, FIdx}; 10523 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10524 10525 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10526 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10527 10528 // Extract the value requested. 10529 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10530 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10531 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10532 10533 SDValue IntVal = 10534 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10535 10536 if (!Subtarget.useCRBits()) 10537 return IntVal; 10538 10539 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10540 } 10541 10542 /// Lowering for QPX v4i1 loads 10543 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10544 SelectionDAG &DAG) const { 10545 SDLoc dl(Op); 10546 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10547 SDValue LoadChain = LN->getChain(); 10548 SDValue BasePtr = LN->getBasePtr(); 10549 10550 if (Op.getValueType() == MVT::v4f64 || 10551 Op.getValueType() == MVT::v4f32) { 10552 EVT MemVT = LN->getMemoryVT(); 10553 unsigned Alignment = LN->getAlignment(); 10554 10555 // If this load is properly aligned, then it is legal. 10556 if (Alignment >= MemVT.getStoreSize()) 10557 return Op; 10558 10559 EVT ScalarVT = Op.getValueType().getScalarType(), 10560 ScalarMemVT = MemVT.getScalarType(); 10561 unsigned Stride = ScalarMemVT.getStoreSize(); 10562 10563 SDValue Vals[4], LoadChains[4]; 10564 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10565 SDValue Load; 10566 if (ScalarVT != ScalarMemVT) 10567 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10568 BasePtr, 10569 LN->getPointerInfo().getWithOffset(Idx * Stride), 10570 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10571 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10572 else 10573 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10574 LN->getPointerInfo().getWithOffset(Idx * Stride), 10575 MinAlign(Alignment, Idx * Stride), 10576 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10577 10578 if (Idx == 0 && LN->isIndexed()) { 10579 assert(LN->getAddressingMode() == ISD::PRE_INC && 10580 "Unknown addressing mode on vector load"); 10581 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10582 LN->getAddressingMode()); 10583 } 10584 10585 Vals[Idx] = Load; 10586 LoadChains[Idx] = Load.getValue(1); 10587 10588 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10589 DAG.getConstant(Stride, dl, 10590 BasePtr.getValueType())); 10591 } 10592 10593 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10594 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10595 10596 if (LN->isIndexed()) { 10597 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10598 return DAG.getMergeValues(RetOps, dl); 10599 } 10600 10601 SDValue RetOps[] = { Value, TF }; 10602 return DAG.getMergeValues(RetOps, dl); 10603 } 10604 10605 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10606 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10607 10608 // To lower v4i1 from a byte array, we load the byte elements of the 10609 // vector and then reuse the BUILD_VECTOR logic. 10610 10611 SDValue VectElmts[4], VectElmtChains[4]; 10612 for (unsigned i = 0; i < 4; ++i) { 10613 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10614 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10615 10616 VectElmts[i] = DAG.getExtLoad( 10617 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10618 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10619 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10620 VectElmtChains[i] = VectElmts[i].getValue(1); 10621 } 10622 10623 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10624 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10625 10626 SDValue RVals[] = { Value, LoadChain }; 10627 return DAG.getMergeValues(RVals, dl); 10628 } 10629 10630 /// Lowering for QPX v4i1 stores 10631 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10632 SelectionDAG &DAG) const { 10633 SDLoc dl(Op); 10634 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10635 SDValue StoreChain = SN->getChain(); 10636 SDValue BasePtr = SN->getBasePtr(); 10637 SDValue Value = SN->getValue(); 10638 10639 if (Value.getValueType() == MVT::v4f64 || 10640 Value.getValueType() == MVT::v4f32) { 10641 EVT MemVT = SN->getMemoryVT(); 10642 unsigned Alignment = SN->getAlignment(); 10643 10644 // If this store is properly aligned, then it is legal. 10645 if (Alignment >= MemVT.getStoreSize()) 10646 return Op; 10647 10648 EVT ScalarVT = Value.getValueType().getScalarType(), 10649 ScalarMemVT = MemVT.getScalarType(); 10650 unsigned Stride = ScalarMemVT.getStoreSize(); 10651 10652 SDValue Stores[4]; 10653 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10654 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10655 DAG.getVectorIdxConstant(Idx, dl)); 10656 SDValue Store; 10657 if (ScalarVT != ScalarMemVT) 10658 Store = 10659 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10660 SN->getPointerInfo().getWithOffset(Idx * Stride), 10661 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10662 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10663 else 10664 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10665 SN->getPointerInfo().getWithOffset(Idx * Stride), 10666 MinAlign(Alignment, Idx * Stride), 10667 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10668 10669 if (Idx == 0 && SN->isIndexed()) { 10670 assert(SN->getAddressingMode() == ISD::PRE_INC && 10671 "Unknown addressing mode on vector store"); 10672 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10673 SN->getAddressingMode()); 10674 } 10675 10676 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10677 DAG.getConstant(Stride, dl, 10678 BasePtr.getValueType())); 10679 Stores[Idx] = Store; 10680 } 10681 10682 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10683 10684 if (SN->isIndexed()) { 10685 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10686 return DAG.getMergeValues(RetOps, dl); 10687 } 10688 10689 return TF; 10690 } 10691 10692 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10693 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10694 10695 // The values are now known to be -1 (false) or 1 (true). To convert this 10696 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10697 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10698 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10699 10700 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10701 // understand how to form the extending load. 10702 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10703 10704 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10705 10706 // Now convert to an integer and store. 10707 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10708 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10709 Value); 10710 10711 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10712 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10713 MachinePointerInfo PtrInfo = 10714 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10715 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10716 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10717 10718 SDValue Ops[] = {StoreChain, 10719 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10720 Value, FIdx}; 10721 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10722 10723 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10724 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10725 10726 // Move data into the byte array. 10727 SDValue Loads[4], LoadChains[4]; 10728 for (unsigned i = 0; i < 4; ++i) { 10729 unsigned Offset = 4*i; 10730 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10731 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10732 10733 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10734 PtrInfo.getWithOffset(Offset)); 10735 LoadChains[i] = Loads[i].getValue(1); 10736 } 10737 10738 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10739 10740 SDValue Stores[4]; 10741 for (unsigned i = 0; i < 4; ++i) { 10742 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10743 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10744 10745 Stores[i] = DAG.getTruncStore( 10746 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10747 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10748 SN->getAAInfo()); 10749 } 10750 10751 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10752 10753 return StoreChain; 10754 } 10755 10756 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10757 SDLoc dl(Op); 10758 if (Op.getValueType() == MVT::v4i32) { 10759 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10760 10761 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10762 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10763 10764 SDValue RHSSwap = // = vrlw RHS, 16 10765 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10766 10767 // Shrinkify inputs to v8i16. 10768 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10769 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10770 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10771 10772 // Low parts multiplied together, generating 32-bit results (we ignore the 10773 // top parts). 10774 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10775 LHS, RHS, DAG, dl, MVT::v4i32); 10776 10777 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10778 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10779 // Shift the high parts up 16 bits. 10780 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10781 Neg16, DAG, dl); 10782 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10783 } else if (Op.getValueType() == MVT::v16i8) { 10784 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10785 bool isLittleEndian = Subtarget.isLittleEndian(); 10786 10787 // Multiply the even 8-bit parts, producing 16-bit sums. 10788 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10789 LHS, RHS, DAG, dl, MVT::v8i16); 10790 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10791 10792 // Multiply the odd 8-bit parts, producing 16-bit sums. 10793 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10794 LHS, RHS, DAG, dl, MVT::v8i16); 10795 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10796 10797 // Merge the results together. Because vmuleub and vmuloub are 10798 // instructions with a big-endian bias, we must reverse the 10799 // element numbering and reverse the meaning of "odd" and "even" 10800 // when generating little endian code. 10801 int Ops[16]; 10802 for (unsigned i = 0; i != 8; ++i) { 10803 if (isLittleEndian) { 10804 Ops[i*2 ] = 2*i; 10805 Ops[i*2+1] = 2*i+16; 10806 } else { 10807 Ops[i*2 ] = 2*i+1; 10808 Ops[i*2+1] = 2*i+1+16; 10809 } 10810 } 10811 if (isLittleEndian) 10812 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10813 else 10814 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10815 } else { 10816 llvm_unreachable("Unknown mul to lower!"); 10817 } 10818 } 10819 10820 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10821 10822 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10823 10824 EVT VT = Op.getValueType(); 10825 assert(VT.isVector() && 10826 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10827 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10828 VT == MVT::v16i8) && 10829 "Unexpected vector element type!"); 10830 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10831 "Current subtarget doesn't support smax v2i64!"); 10832 10833 // For vector abs, it can be lowered to: 10834 // abs x 10835 // ==> 10836 // y = -x 10837 // smax(x, y) 10838 10839 SDLoc dl(Op); 10840 SDValue X = Op.getOperand(0); 10841 SDValue Zero = DAG.getConstant(0, dl, VT); 10842 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10843 10844 // SMAX patch https://reviews.llvm.org/D47332 10845 // hasn't landed yet, so use intrinsic first here. 10846 // TODO: Should use SMAX directly once SMAX patch landed 10847 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10848 if (VT == MVT::v2i64) 10849 BifID = Intrinsic::ppc_altivec_vmaxsd; 10850 else if (VT == MVT::v8i16) 10851 BifID = Intrinsic::ppc_altivec_vmaxsh; 10852 else if (VT == MVT::v16i8) 10853 BifID = Intrinsic::ppc_altivec_vmaxsb; 10854 10855 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10856 } 10857 10858 // Custom lowering for fpext vf32 to v2f64 10859 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10860 10861 assert(Op.getOpcode() == ISD::FP_EXTEND && 10862 "Should only be called for ISD::FP_EXTEND"); 10863 10864 // FIXME: handle extends from half precision float vectors on P9. 10865 // We only want to custom lower an extend from v2f32 to v2f64. 10866 if (Op.getValueType() != MVT::v2f64 || 10867 Op.getOperand(0).getValueType() != MVT::v2f32) 10868 return SDValue(); 10869 10870 SDLoc dl(Op); 10871 SDValue Op0 = Op.getOperand(0); 10872 10873 switch (Op0.getOpcode()) { 10874 default: 10875 return SDValue(); 10876 case ISD::EXTRACT_SUBVECTOR: { 10877 assert(Op0.getNumOperands() == 2 && 10878 isa<ConstantSDNode>(Op0->getOperand(1)) && 10879 "Node should have 2 operands with second one being a constant!"); 10880 10881 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10882 return SDValue(); 10883 10884 // Custom lower is only done for high or low doubleword. 10885 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10886 if (Idx % 2 != 0) 10887 return SDValue(); 10888 10889 // Since input is v4f32, at this point Idx is either 0 or 2. 10890 // Shift to get the doubleword position we want. 10891 int DWord = Idx >> 1; 10892 10893 // High and low word positions are different on little endian. 10894 if (Subtarget.isLittleEndian()) 10895 DWord ^= 0x1; 10896 10897 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10898 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10899 } 10900 case ISD::FADD: 10901 case ISD::FMUL: 10902 case ISD::FSUB: { 10903 SDValue NewLoad[2]; 10904 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10905 // Ensure both input are loads. 10906 SDValue LdOp = Op0.getOperand(i); 10907 if (LdOp.getOpcode() != ISD::LOAD) 10908 return SDValue(); 10909 // Generate new load node. 10910 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10911 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10912 NewLoad[i] = DAG.getMemIntrinsicNode( 10913 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10914 LD->getMemoryVT(), LD->getMemOperand()); 10915 } 10916 SDValue NewOp = 10917 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10918 NewLoad[1], Op0.getNode()->getFlags()); 10919 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10920 DAG.getConstant(0, dl, MVT::i32)); 10921 } 10922 case ISD::LOAD: { 10923 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10924 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10925 SDValue NewLd = DAG.getMemIntrinsicNode( 10926 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10927 LD->getMemoryVT(), LD->getMemOperand()); 10928 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10929 DAG.getConstant(0, dl, MVT::i32)); 10930 } 10931 } 10932 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10933 } 10934 10935 /// LowerOperation - Provide custom lowering hooks for some operations. 10936 /// 10937 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10938 switch (Op.getOpcode()) { 10939 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10940 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10941 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10942 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10943 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10944 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10945 case ISD::SETCC: return LowerSETCC(Op, DAG); 10946 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10947 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10948 10949 // Variable argument lowering. 10950 case ISD::VASTART: return LowerVASTART(Op, DAG); 10951 case ISD::VAARG: return LowerVAARG(Op, DAG); 10952 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10953 10954 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10955 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10956 case ISD::GET_DYNAMIC_AREA_OFFSET: 10957 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10958 10959 // Exception handling lowering. 10960 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10961 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10962 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10963 10964 case ISD::LOAD: return LowerLOAD(Op, DAG); 10965 case ISD::STORE: return LowerSTORE(Op, DAG); 10966 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10967 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10968 case ISD::FP_TO_UINT: 10969 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10970 case ISD::UINT_TO_FP: 10971 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10972 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10973 10974 // Lower 64-bit shifts. 10975 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10976 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10977 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10978 10979 // Vector-related lowering. 10980 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10981 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10982 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10983 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10984 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10985 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10986 case ISD::MUL: return LowerMUL(Op, DAG); 10987 case ISD::ABS: return LowerABS(Op, DAG); 10988 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10989 case ISD::ROTL: return LowerROTL(Op, DAG); 10990 10991 // For counter-based loop handling. 10992 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10993 10994 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10995 10996 // Frame & Return address. 10997 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10998 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10999 11000 case ISD::INTRINSIC_VOID: 11001 return LowerINTRINSIC_VOID(Op, DAG); 11002 case ISD::SREM: 11003 case ISD::UREM: 11004 return LowerREM(Op, DAG); 11005 case ISD::BSWAP: 11006 return LowerBSWAP(Op, DAG); 11007 case ISD::ATOMIC_CMP_SWAP: 11008 return LowerATOMIC_CMP_SWAP(Op, DAG); 11009 } 11010 } 11011 11012 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11013 SmallVectorImpl<SDValue>&Results, 11014 SelectionDAG &DAG) const { 11015 SDLoc dl(N); 11016 switch (N->getOpcode()) { 11017 default: 11018 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11019 case ISD::READCYCLECOUNTER: { 11020 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11021 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11022 11023 Results.push_back( 11024 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11025 Results.push_back(RTB.getValue(2)); 11026 break; 11027 } 11028 case ISD::INTRINSIC_W_CHAIN: { 11029 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11030 Intrinsic::loop_decrement) 11031 break; 11032 11033 assert(N->getValueType(0) == MVT::i1 && 11034 "Unexpected result type for CTR decrement intrinsic"); 11035 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11036 N->getValueType(0)); 11037 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11038 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11039 N->getOperand(1)); 11040 11041 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11042 Results.push_back(NewInt.getValue(1)); 11043 break; 11044 } 11045 case ISD::VAARG: { 11046 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11047 return; 11048 11049 EVT VT = N->getValueType(0); 11050 11051 if (VT == MVT::i64) { 11052 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11053 11054 Results.push_back(NewNode); 11055 Results.push_back(NewNode.getValue(1)); 11056 } 11057 return; 11058 } 11059 case ISD::FP_TO_SINT: 11060 case ISD::FP_TO_UINT: 11061 // LowerFP_TO_INT() can only handle f32 and f64. 11062 if (N->getOperand(0).getValueType() == MVT::ppcf128) 11063 return; 11064 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11065 return; 11066 case ISD::TRUNCATE: { 11067 EVT TrgVT = N->getValueType(0); 11068 EVT OpVT = N->getOperand(0).getValueType(); 11069 if (TrgVT.isVector() && 11070 isOperationCustom(N->getOpcode(), TrgVT) && 11071 OpVT.getSizeInBits() <= 128 && 11072 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 11073 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 11074 return; 11075 } 11076 case ISD::BITCAST: 11077 // Don't handle bitcast here. 11078 return; 11079 case ISD::FP_EXTEND: 11080 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11081 if (Lowered) 11082 Results.push_back(Lowered); 11083 return; 11084 } 11085 } 11086 11087 //===----------------------------------------------------------------------===// 11088 // Other Lowering Code 11089 //===----------------------------------------------------------------------===// 11090 11091 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11092 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11093 Function *Func = Intrinsic::getDeclaration(M, Id); 11094 return Builder.CreateCall(Func, {}); 11095 } 11096 11097 // The mappings for emitLeading/TrailingFence is taken from 11098 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11099 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11100 Instruction *Inst, 11101 AtomicOrdering Ord) const { 11102 if (Ord == AtomicOrdering::SequentiallyConsistent) 11103 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11104 if (isReleaseOrStronger(Ord)) 11105 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11106 return nullptr; 11107 } 11108 11109 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11110 Instruction *Inst, 11111 AtomicOrdering Ord) const { 11112 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11113 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11114 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11115 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11116 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11117 return Builder.CreateCall( 11118 Intrinsic::getDeclaration( 11119 Builder.GetInsertBlock()->getParent()->getParent(), 11120 Intrinsic::ppc_cfence, {Inst->getType()}), 11121 {Inst}); 11122 // FIXME: Can use isync for rmw operation. 11123 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11124 } 11125 return nullptr; 11126 } 11127 11128 MachineBasicBlock * 11129 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11130 unsigned AtomicSize, 11131 unsigned BinOpcode, 11132 unsigned CmpOpcode, 11133 unsigned CmpPred) const { 11134 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11135 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11136 11137 auto LoadMnemonic = PPC::LDARX; 11138 auto StoreMnemonic = PPC::STDCX; 11139 switch (AtomicSize) { 11140 default: 11141 llvm_unreachable("Unexpected size of atomic entity"); 11142 case 1: 11143 LoadMnemonic = PPC::LBARX; 11144 StoreMnemonic = PPC::STBCX; 11145 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11146 break; 11147 case 2: 11148 LoadMnemonic = PPC::LHARX; 11149 StoreMnemonic = PPC::STHCX; 11150 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11151 break; 11152 case 4: 11153 LoadMnemonic = PPC::LWARX; 11154 StoreMnemonic = PPC::STWCX; 11155 break; 11156 case 8: 11157 LoadMnemonic = PPC::LDARX; 11158 StoreMnemonic = PPC::STDCX; 11159 break; 11160 } 11161 11162 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11163 MachineFunction *F = BB->getParent(); 11164 MachineFunction::iterator It = ++BB->getIterator(); 11165 11166 Register dest = MI.getOperand(0).getReg(); 11167 Register ptrA = MI.getOperand(1).getReg(); 11168 Register ptrB = MI.getOperand(2).getReg(); 11169 Register incr = MI.getOperand(3).getReg(); 11170 DebugLoc dl = MI.getDebugLoc(); 11171 11172 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11173 MachineBasicBlock *loop2MBB = 11174 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11175 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11176 F->insert(It, loopMBB); 11177 if (CmpOpcode) 11178 F->insert(It, loop2MBB); 11179 F->insert(It, exitMBB); 11180 exitMBB->splice(exitMBB->begin(), BB, 11181 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11182 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11183 11184 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11185 Register TmpReg = (!BinOpcode) ? incr : 11186 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11187 : &PPC::GPRCRegClass); 11188 11189 // thisMBB: 11190 // ... 11191 // fallthrough --> loopMBB 11192 BB->addSuccessor(loopMBB); 11193 11194 // loopMBB: 11195 // l[wd]arx dest, ptr 11196 // add r0, dest, incr 11197 // st[wd]cx. r0, ptr 11198 // bne- loopMBB 11199 // fallthrough --> exitMBB 11200 11201 // For max/min... 11202 // loopMBB: 11203 // l[wd]arx dest, ptr 11204 // cmpl?[wd] incr, dest 11205 // bgt exitMBB 11206 // loop2MBB: 11207 // st[wd]cx. dest, ptr 11208 // bne- loopMBB 11209 // fallthrough --> exitMBB 11210 11211 BB = loopMBB; 11212 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11213 .addReg(ptrA).addReg(ptrB); 11214 if (BinOpcode) 11215 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11216 if (CmpOpcode) { 11217 // Signed comparisons of byte or halfword values must be sign-extended. 11218 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11219 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11220 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11221 ExtReg).addReg(dest); 11222 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11223 .addReg(incr).addReg(ExtReg); 11224 } else 11225 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11226 .addReg(incr).addReg(dest); 11227 11228 BuildMI(BB, dl, TII->get(PPC::BCC)) 11229 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11230 BB->addSuccessor(loop2MBB); 11231 BB->addSuccessor(exitMBB); 11232 BB = loop2MBB; 11233 } 11234 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11235 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11236 BuildMI(BB, dl, TII->get(PPC::BCC)) 11237 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11238 BB->addSuccessor(loopMBB); 11239 BB->addSuccessor(exitMBB); 11240 11241 // exitMBB: 11242 // ... 11243 BB = exitMBB; 11244 return BB; 11245 } 11246 11247 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11248 MachineInstr &MI, MachineBasicBlock *BB, 11249 bool is8bit, // operation 11250 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11251 // If we support part-word atomic mnemonics, just use them 11252 if (Subtarget.hasPartwordAtomics()) 11253 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11254 CmpPred); 11255 11256 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11257 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11258 // In 64 bit mode we have to use 64 bits for addresses, even though the 11259 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11260 // registers without caring whether they're 32 or 64, but here we're 11261 // doing actual arithmetic on the addresses. 11262 bool is64bit = Subtarget.isPPC64(); 11263 bool isLittleEndian = Subtarget.isLittleEndian(); 11264 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11265 11266 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11267 MachineFunction *F = BB->getParent(); 11268 MachineFunction::iterator It = ++BB->getIterator(); 11269 11270 Register dest = MI.getOperand(0).getReg(); 11271 Register ptrA = MI.getOperand(1).getReg(); 11272 Register ptrB = MI.getOperand(2).getReg(); 11273 Register incr = MI.getOperand(3).getReg(); 11274 DebugLoc dl = MI.getDebugLoc(); 11275 11276 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11277 MachineBasicBlock *loop2MBB = 11278 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11279 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11280 F->insert(It, loopMBB); 11281 if (CmpOpcode) 11282 F->insert(It, loop2MBB); 11283 F->insert(It, exitMBB); 11284 exitMBB->splice(exitMBB->begin(), BB, 11285 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11286 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11287 11288 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11289 const TargetRegisterClass *RC = 11290 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11291 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11292 11293 Register PtrReg = RegInfo.createVirtualRegister(RC); 11294 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11295 Register ShiftReg = 11296 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11297 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11298 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11299 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11300 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11301 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11302 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11303 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11304 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11305 Register Ptr1Reg; 11306 Register TmpReg = 11307 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11308 11309 // thisMBB: 11310 // ... 11311 // fallthrough --> loopMBB 11312 BB->addSuccessor(loopMBB); 11313 11314 // The 4-byte load must be aligned, while a char or short may be 11315 // anywhere in the word. Hence all this nasty bookkeeping code. 11316 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11317 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11318 // xori shift, shift1, 24 [16] 11319 // rlwinm ptr, ptr1, 0, 0, 29 11320 // slw incr2, incr, shift 11321 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11322 // slw mask, mask2, shift 11323 // loopMBB: 11324 // lwarx tmpDest, ptr 11325 // add tmp, tmpDest, incr2 11326 // andc tmp2, tmpDest, mask 11327 // and tmp3, tmp, mask 11328 // or tmp4, tmp3, tmp2 11329 // stwcx. tmp4, ptr 11330 // bne- loopMBB 11331 // fallthrough --> exitMBB 11332 // srw dest, tmpDest, shift 11333 if (ptrA != ZeroReg) { 11334 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11335 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11336 .addReg(ptrA) 11337 .addReg(ptrB); 11338 } else { 11339 Ptr1Reg = ptrB; 11340 } 11341 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11342 // mode. 11343 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11344 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11345 .addImm(3) 11346 .addImm(27) 11347 .addImm(is8bit ? 28 : 27); 11348 if (!isLittleEndian) 11349 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11350 .addReg(Shift1Reg) 11351 .addImm(is8bit ? 24 : 16); 11352 if (is64bit) 11353 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11354 .addReg(Ptr1Reg) 11355 .addImm(0) 11356 .addImm(61); 11357 else 11358 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11359 .addReg(Ptr1Reg) 11360 .addImm(0) 11361 .addImm(0) 11362 .addImm(29); 11363 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11364 if (is8bit) 11365 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11366 else { 11367 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11368 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11369 .addReg(Mask3Reg) 11370 .addImm(65535); 11371 } 11372 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11373 .addReg(Mask2Reg) 11374 .addReg(ShiftReg); 11375 11376 BB = loopMBB; 11377 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11378 .addReg(ZeroReg) 11379 .addReg(PtrReg); 11380 if (BinOpcode) 11381 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11382 .addReg(Incr2Reg) 11383 .addReg(TmpDestReg); 11384 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11385 .addReg(TmpDestReg) 11386 .addReg(MaskReg); 11387 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11388 if (CmpOpcode) { 11389 // For unsigned comparisons, we can directly compare the shifted values. 11390 // For signed comparisons we shift and sign extend. 11391 Register SReg = RegInfo.createVirtualRegister(GPRC); 11392 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11393 .addReg(TmpDestReg) 11394 .addReg(MaskReg); 11395 unsigned ValueReg = SReg; 11396 unsigned CmpReg = Incr2Reg; 11397 if (CmpOpcode == PPC::CMPW) { 11398 ValueReg = RegInfo.createVirtualRegister(GPRC); 11399 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11400 .addReg(SReg) 11401 .addReg(ShiftReg); 11402 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11403 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11404 .addReg(ValueReg); 11405 ValueReg = ValueSReg; 11406 CmpReg = incr; 11407 } 11408 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11409 .addReg(CmpReg) 11410 .addReg(ValueReg); 11411 BuildMI(BB, dl, TII->get(PPC::BCC)) 11412 .addImm(CmpPred) 11413 .addReg(PPC::CR0) 11414 .addMBB(exitMBB); 11415 BB->addSuccessor(loop2MBB); 11416 BB->addSuccessor(exitMBB); 11417 BB = loop2MBB; 11418 } 11419 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11420 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11421 .addReg(Tmp4Reg) 11422 .addReg(ZeroReg) 11423 .addReg(PtrReg); 11424 BuildMI(BB, dl, TII->get(PPC::BCC)) 11425 .addImm(PPC::PRED_NE) 11426 .addReg(PPC::CR0) 11427 .addMBB(loopMBB); 11428 BB->addSuccessor(loopMBB); 11429 BB->addSuccessor(exitMBB); 11430 11431 // exitMBB: 11432 // ... 11433 BB = exitMBB; 11434 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11435 .addReg(TmpDestReg) 11436 .addReg(ShiftReg); 11437 return BB; 11438 } 11439 11440 llvm::MachineBasicBlock * 11441 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11442 MachineBasicBlock *MBB) const { 11443 DebugLoc DL = MI.getDebugLoc(); 11444 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11445 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11446 11447 MachineFunction *MF = MBB->getParent(); 11448 MachineRegisterInfo &MRI = MF->getRegInfo(); 11449 11450 const BasicBlock *BB = MBB->getBasicBlock(); 11451 MachineFunction::iterator I = ++MBB->getIterator(); 11452 11453 Register DstReg = MI.getOperand(0).getReg(); 11454 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11455 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11456 Register mainDstReg = MRI.createVirtualRegister(RC); 11457 Register restoreDstReg = MRI.createVirtualRegister(RC); 11458 11459 MVT PVT = getPointerTy(MF->getDataLayout()); 11460 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11461 "Invalid Pointer Size!"); 11462 // For v = setjmp(buf), we generate 11463 // 11464 // thisMBB: 11465 // SjLjSetup mainMBB 11466 // bl mainMBB 11467 // v_restore = 1 11468 // b sinkMBB 11469 // 11470 // mainMBB: 11471 // buf[LabelOffset] = LR 11472 // v_main = 0 11473 // 11474 // sinkMBB: 11475 // v = phi(main, restore) 11476 // 11477 11478 MachineBasicBlock *thisMBB = MBB; 11479 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11480 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11481 MF->insert(I, mainMBB); 11482 MF->insert(I, sinkMBB); 11483 11484 MachineInstrBuilder MIB; 11485 11486 // Transfer the remainder of BB and its successor edges to sinkMBB. 11487 sinkMBB->splice(sinkMBB->begin(), MBB, 11488 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11489 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11490 11491 // Note that the structure of the jmp_buf used here is not compatible 11492 // with that used by libc, and is not designed to be. Specifically, it 11493 // stores only those 'reserved' registers that LLVM does not otherwise 11494 // understand how to spill. Also, by convention, by the time this 11495 // intrinsic is called, Clang has already stored the frame address in the 11496 // first slot of the buffer and stack address in the third. Following the 11497 // X86 target code, we'll store the jump address in the second slot. We also 11498 // need to save the TOC pointer (R2) to handle jumps between shared 11499 // libraries, and that will be stored in the fourth slot. The thread 11500 // identifier (R13) is not affected. 11501 11502 // thisMBB: 11503 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11504 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11505 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11506 11507 // Prepare IP either in reg. 11508 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11509 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11510 Register BufReg = MI.getOperand(1).getReg(); 11511 11512 if (Subtarget.is64BitELFABI()) { 11513 setUsesTOCBasePtr(*MBB->getParent()); 11514 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11515 .addReg(PPC::X2) 11516 .addImm(TOCOffset) 11517 .addReg(BufReg) 11518 .cloneMemRefs(MI); 11519 } 11520 11521 // Naked functions never have a base pointer, and so we use r1. For all 11522 // other functions, this decision must be delayed until during PEI. 11523 unsigned BaseReg; 11524 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11525 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11526 else 11527 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11528 11529 MIB = BuildMI(*thisMBB, MI, DL, 11530 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11531 .addReg(BaseReg) 11532 .addImm(BPOffset) 11533 .addReg(BufReg) 11534 .cloneMemRefs(MI); 11535 11536 // Setup 11537 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11538 MIB.addRegMask(TRI->getNoPreservedMask()); 11539 11540 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11541 11542 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11543 .addMBB(mainMBB); 11544 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11545 11546 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11547 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11548 11549 // mainMBB: 11550 // mainDstReg = 0 11551 MIB = 11552 BuildMI(mainMBB, DL, 11553 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11554 11555 // Store IP 11556 if (Subtarget.isPPC64()) { 11557 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11558 .addReg(LabelReg) 11559 .addImm(LabelOffset) 11560 .addReg(BufReg); 11561 } else { 11562 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11563 .addReg(LabelReg) 11564 .addImm(LabelOffset) 11565 .addReg(BufReg); 11566 } 11567 MIB.cloneMemRefs(MI); 11568 11569 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11570 mainMBB->addSuccessor(sinkMBB); 11571 11572 // sinkMBB: 11573 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11574 TII->get(PPC::PHI), DstReg) 11575 .addReg(mainDstReg).addMBB(mainMBB) 11576 .addReg(restoreDstReg).addMBB(thisMBB); 11577 11578 MI.eraseFromParent(); 11579 return sinkMBB; 11580 } 11581 11582 MachineBasicBlock * 11583 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11584 MachineBasicBlock *MBB) const { 11585 DebugLoc DL = MI.getDebugLoc(); 11586 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11587 11588 MachineFunction *MF = MBB->getParent(); 11589 MachineRegisterInfo &MRI = MF->getRegInfo(); 11590 11591 MVT PVT = getPointerTy(MF->getDataLayout()); 11592 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11593 "Invalid Pointer Size!"); 11594 11595 const TargetRegisterClass *RC = 11596 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11597 Register Tmp = MRI.createVirtualRegister(RC); 11598 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11599 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11600 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11601 unsigned BP = 11602 (PVT == MVT::i64) 11603 ? PPC::X30 11604 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11605 : PPC::R30); 11606 11607 MachineInstrBuilder MIB; 11608 11609 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11610 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11611 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11612 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11613 11614 Register BufReg = MI.getOperand(0).getReg(); 11615 11616 // Reload FP (the jumped-to function may not have had a 11617 // frame pointer, and if so, then its r31 will be restored 11618 // as necessary). 11619 if (PVT == MVT::i64) { 11620 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11621 .addImm(0) 11622 .addReg(BufReg); 11623 } else { 11624 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11625 .addImm(0) 11626 .addReg(BufReg); 11627 } 11628 MIB.cloneMemRefs(MI); 11629 11630 // Reload IP 11631 if (PVT == MVT::i64) { 11632 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11633 .addImm(LabelOffset) 11634 .addReg(BufReg); 11635 } else { 11636 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11637 .addImm(LabelOffset) 11638 .addReg(BufReg); 11639 } 11640 MIB.cloneMemRefs(MI); 11641 11642 // Reload SP 11643 if (PVT == MVT::i64) { 11644 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11645 .addImm(SPOffset) 11646 .addReg(BufReg); 11647 } else { 11648 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11649 .addImm(SPOffset) 11650 .addReg(BufReg); 11651 } 11652 MIB.cloneMemRefs(MI); 11653 11654 // Reload BP 11655 if (PVT == MVT::i64) { 11656 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11657 .addImm(BPOffset) 11658 .addReg(BufReg); 11659 } else { 11660 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11661 .addImm(BPOffset) 11662 .addReg(BufReg); 11663 } 11664 MIB.cloneMemRefs(MI); 11665 11666 // Reload TOC 11667 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11668 setUsesTOCBasePtr(*MBB->getParent()); 11669 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11670 .addImm(TOCOffset) 11671 .addReg(BufReg) 11672 .cloneMemRefs(MI); 11673 } 11674 11675 // Jump 11676 BuildMI(*MBB, MI, DL, 11677 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11678 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11679 11680 MI.eraseFromParent(); 11681 return MBB; 11682 } 11683 11684 MachineBasicBlock * 11685 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11686 MachineBasicBlock *BB) const { 11687 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11688 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11689 if (Subtarget.is64BitELFABI() && 11690 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11691 !Subtarget.isUsingPCRelativeCalls()) { 11692 // Call lowering should have added an r2 operand to indicate a dependence 11693 // on the TOC base pointer value. It can't however, because there is no 11694 // way to mark the dependence as implicit there, and so the stackmap code 11695 // will confuse it with a regular operand. Instead, add the dependence 11696 // here. 11697 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11698 } 11699 11700 return emitPatchPoint(MI, BB); 11701 } 11702 11703 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11704 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11705 return emitEHSjLjSetJmp(MI, BB); 11706 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11707 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11708 return emitEHSjLjLongJmp(MI, BB); 11709 } 11710 11711 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11712 11713 // To "insert" these instructions we actually have to insert their 11714 // control-flow patterns. 11715 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11716 MachineFunction::iterator It = ++BB->getIterator(); 11717 11718 MachineFunction *F = BB->getParent(); 11719 11720 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11721 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11722 MI.getOpcode() == PPC::SELECT_I8) { 11723 SmallVector<MachineOperand, 2> Cond; 11724 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11725 MI.getOpcode() == PPC::SELECT_CC_I8) 11726 Cond.push_back(MI.getOperand(4)); 11727 else 11728 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11729 Cond.push_back(MI.getOperand(1)); 11730 11731 DebugLoc dl = MI.getDebugLoc(); 11732 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11733 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11734 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11735 MI.getOpcode() == PPC::SELECT_CC_F8 || 11736 MI.getOpcode() == PPC::SELECT_CC_F16 || 11737 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11738 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11739 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11740 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11741 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11742 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11743 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11744 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11745 MI.getOpcode() == PPC::SELECT_CC_SPE || 11746 MI.getOpcode() == PPC::SELECT_F4 || 11747 MI.getOpcode() == PPC::SELECT_F8 || 11748 MI.getOpcode() == PPC::SELECT_F16 || 11749 MI.getOpcode() == PPC::SELECT_QFRC || 11750 MI.getOpcode() == PPC::SELECT_QSRC || 11751 MI.getOpcode() == PPC::SELECT_QBRC || 11752 MI.getOpcode() == PPC::SELECT_SPE || 11753 MI.getOpcode() == PPC::SELECT_SPE4 || 11754 MI.getOpcode() == PPC::SELECT_VRRC || 11755 MI.getOpcode() == PPC::SELECT_VSFRC || 11756 MI.getOpcode() == PPC::SELECT_VSSRC || 11757 MI.getOpcode() == PPC::SELECT_VSRC) { 11758 // The incoming instruction knows the destination vreg to set, the 11759 // condition code register to branch on, the true/false values to 11760 // select between, and a branch opcode to use. 11761 11762 // thisMBB: 11763 // ... 11764 // TrueVal = ... 11765 // cmpTY ccX, r1, r2 11766 // bCC copy1MBB 11767 // fallthrough --> copy0MBB 11768 MachineBasicBlock *thisMBB = BB; 11769 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11770 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11771 DebugLoc dl = MI.getDebugLoc(); 11772 F->insert(It, copy0MBB); 11773 F->insert(It, sinkMBB); 11774 11775 // Transfer the remainder of BB and its successor edges to sinkMBB. 11776 sinkMBB->splice(sinkMBB->begin(), BB, 11777 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11778 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11779 11780 // Next, add the true and fallthrough blocks as its successors. 11781 BB->addSuccessor(copy0MBB); 11782 BB->addSuccessor(sinkMBB); 11783 11784 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11785 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11786 MI.getOpcode() == PPC::SELECT_F16 || 11787 MI.getOpcode() == PPC::SELECT_SPE4 || 11788 MI.getOpcode() == PPC::SELECT_SPE || 11789 MI.getOpcode() == PPC::SELECT_QFRC || 11790 MI.getOpcode() == PPC::SELECT_QSRC || 11791 MI.getOpcode() == PPC::SELECT_QBRC || 11792 MI.getOpcode() == PPC::SELECT_VRRC || 11793 MI.getOpcode() == PPC::SELECT_VSFRC || 11794 MI.getOpcode() == PPC::SELECT_VSSRC || 11795 MI.getOpcode() == PPC::SELECT_VSRC) { 11796 BuildMI(BB, dl, TII->get(PPC::BC)) 11797 .addReg(MI.getOperand(1).getReg()) 11798 .addMBB(sinkMBB); 11799 } else { 11800 unsigned SelectPred = MI.getOperand(4).getImm(); 11801 BuildMI(BB, dl, TII->get(PPC::BCC)) 11802 .addImm(SelectPred) 11803 .addReg(MI.getOperand(1).getReg()) 11804 .addMBB(sinkMBB); 11805 } 11806 11807 // copy0MBB: 11808 // %FalseValue = ... 11809 // # fallthrough to sinkMBB 11810 BB = copy0MBB; 11811 11812 // Update machine-CFG edges 11813 BB->addSuccessor(sinkMBB); 11814 11815 // sinkMBB: 11816 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11817 // ... 11818 BB = sinkMBB; 11819 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11820 .addReg(MI.getOperand(3).getReg()) 11821 .addMBB(copy0MBB) 11822 .addReg(MI.getOperand(2).getReg()) 11823 .addMBB(thisMBB); 11824 } else if (MI.getOpcode() == PPC::ReadTB) { 11825 // To read the 64-bit time-base register on a 32-bit target, we read the 11826 // two halves. Should the counter have wrapped while it was being read, we 11827 // need to try again. 11828 // ... 11829 // readLoop: 11830 // mfspr Rx,TBU # load from TBU 11831 // mfspr Ry,TB # load from TB 11832 // mfspr Rz,TBU # load from TBU 11833 // cmpw crX,Rx,Rz # check if 'old'='new' 11834 // bne readLoop # branch if they're not equal 11835 // ... 11836 11837 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11838 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11839 DebugLoc dl = MI.getDebugLoc(); 11840 F->insert(It, readMBB); 11841 F->insert(It, sinkMBB); 11842 11843 // Transfer the remainder of BB and its successor edges to sinkMBB. 11844 sinkMBB->splice(sinkMBB->begin(), BB, 11845 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11846 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11847 11848 BB->addSuccessor(readMBB); 11849 BB = readMBB; 11850 11851 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11852 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11853 Register LoReg = MI.getOperand(0).getReg(); 11854 Register HiReg = MI.getOperand(1).getReg(); 11855 11856 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11857 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11858 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11859 11860 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11861 11862 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11863 .addReg(HiReg) 11864 .addReg(ReadAgainReg); 11865 BuildMI(BB, dl, TII->get(PPC::BCC)) 11866 .addImm(PPC::PRED_NE) 11867 .addReg(CmpReg) 11868 .addMBB(readMBB); 11869 11870 BB->addSuccessor(readMBB); 11871 BB->addSuccessor(sinkMBB); 11872 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11873 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11874 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11875 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11876 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11877 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11878 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11879 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11880 11881 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11882 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11883 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11884 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11885 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11886 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11887 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11888 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11889 11890 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11891 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11892 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11893 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11894 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11895 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11896 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11897 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11898 11899 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11900 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11901 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11902 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11903 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11904 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11905 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11906 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11907 11908 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11909 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11910 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11911 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11912 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11913 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11914 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11915 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11916 11917 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11918 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11919 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11920 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11921 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11922 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11923 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11924 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11925 11926 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11927 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11928 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11929 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11930 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11931 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11932 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11933 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11934 11935 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11936 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11937 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11938 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11939 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11940 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11941 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11942 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11943 11944 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11945 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11946 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11947 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11948 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11949 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11950 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11951 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11952 11953 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11954 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11955 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11956 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11957 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11958 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11959 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11960 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11961 11962 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11963 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11964 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11965 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11966 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11967 BB = EmitAtomicBinary(MI, BB, 4, 0); 11968 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11969 BB = EmitAtomicBinary(MI, BB, 8, 0); 11970 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11971 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11972 (Subtarget.hasPartwordAtomics() && 11973 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11974 (Subtarget.hasPartwordAtomics() && 11975 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11976 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11977 11978 auto LoadMnemonic = PPC::LDARX; 11979 auto StoreMnemonic = PPC::STDCX; 11980 switch (MI.getOpcode()) { 11981 default: 11982 llvm_unreachable("Compare and swap of unknown size"); 11983 case PPC::ATOMIC_CMP_SWAP_I8: 11984 LoadMnemonic = PPC::LBARX; 11985 StoreMnemonic = PPC::STBCX; 11986 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11987 break; 11988 case PPC::ATOMIC_CMP_SWAP_I16: 11989 LoadMnemonic = PPC::LHARX; 11990 StoreMnemonic = PPC::STHCX; 11991 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11992 break; 11993 case PPC::ATOMIC_CMP_SWAP_I32: 11994 LoadMnemonic = PPC::LWARX; 11995 StoreMnemonic = PPC::STWCX; 11996 break; 11997 case PPC::ATOMIC_CMP_SWAP_I64: 11998 LoadMnemonic = PPC::LDARX; 11999 StoreMnemonic = PPC::STDCX; 12000 break; 12001 } 12002 Register dest = MI.getOperand(0).getReg(); 12003 Register ptrA = MI.getOperand(1).getReg(); 12004 Register ptrB = MI.getOperand(2).getReg(); 12005 Register oldval = MI.getOperand(3).getReg(); 12006 Register newval = MI.getOperand(4).getReg(); 12007 DebugLoc dl = MI.getDebugLoc(); 12008 12009 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12010 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12011 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12012 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12013 F->insert(It, loop1MBB); 12014 F->insert(It, loop2MBB); 12015 F->insert(It, midMBB); 12016 F->insert(It, exitMBB); 12017 exitMBB->splice(exitMBB->begin(), BB, 12018 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12019 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12020 12021 // thisMBB: 12022 // ... 12023 // fallthrough --> loopMBB 12024 BB->addSuccessor(loop1MBB); 12025 12026 // loop1MBB: 12027 // l[bhwd]arx dest, ptr 12028 // cmp[wd] dest, oldval 12029 // bne- midMBB 12030 // loop2MBB: 12031 // st[bhwd]cx. newval, ptr 12032 // bne- loopMBB 12033 // b exitBB 12034 // midMBB: 12035 // st[bhwd]cx. dest, ptr 12036 // exitBB: 12037 BB = loop1MBB; 12038 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12039 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12040 .addReg(oldval) 12041 .addReg(dest); 12042 BuildMI(BB, dl, TII->get(PPC::BCC)) 12043 .addImm(PPC::PRED_NE) 12044 .addReg(PPC::CR0) 12045 .addMBB(midMBB); 12046 BB->addSuccessor(loop2MBB); 12047 BB->addSuccessor(midMBB); 12048 12049 BB = loop2MBB; 12050 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12051 .addReg(newval) 12052 .addReg(ptrA) 12053 .addReg(ptrB); 12054 BuildMI(BB, dl, TII->get(PPC::BCC)) 12055 .addImm(PPC::PRED_NE) 12056 .addReg(PPC::CR0) 12057 .addMBB(loop1MBB); 12058 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12059 BB->addSuccessor(loop1MBB); 12060 BB->addSuccessor(exitMBB); 12061 12062 BB = midMBB; 12063 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12064 .addReg(dest) 12065 .addReg(ptrA) 12066 .addReg(ptrB); 12067 BB->addSuccessor(exitMBB); 12068 12069 // exitMBB: 12070 // ... 12071 BB = exitMBB; 12072 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12073 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12074 // We must use 64-bit registers for addresses when targeting 64-bit, 12075 // since we're actually doing arithmetic on them. Other registers 12076 // can be 32-bit. 12077 bool is64bit = Subtarget.isPPC64(); 12078 bool isLittleEndian = Subtarget.isLittleEndian(); 12079 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12080 12081 Register dest = MI.getOperand(0).getReg(); 12082 Register ptrA = MI.getOperand(1).getReg(); 12083 Register ptrB = MI.getOperand(2).getReg(); 12084 Register oldval = MI.getOperand(3).getReg(); 12085 Register newval = MI.getOperand(4).getReg(); 12086 DebugLoc dl = MI.getDebugLoc(); 12087 12088 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12089 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12090 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12091 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12092 F->insert(It, loop1MBB); 12093 F->insert(It, loop2MBB); 12094 F->insert(It, midMBB); 12095 F->insert(It, exitMBB); 12096 exitMBB->splice(exitMBB->begin(), BB, 12097 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12098 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12099 12100 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12101 const TargetRegisterClass *RC = 12102 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12103 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12104 12105 Register PtrReg = RegInfo.createVirtualRegister(RC); 12106 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12107 Register ShiftReg = 12108 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12109 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12110 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12111 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12112 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12113 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12114 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12115 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12116 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12117 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12118 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12119 Register Ptr1Reg; 12120 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12121 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12122 // thisMBB: 12123 // ... 12124 // fallthrough --> loopMBB 12125 BB->addSuccessor(loop1MBB); 12126 12127 // The 4-byte load must be aligned, while a char or short may be 12128 // anywhere in the word. Hence all this nasty bookkeeping code. 12129 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12130 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12131 // xori shift, shift1, 24 [16] 12132 // rlwinm ptr, ptr1, 0, 0, 29 12133 // slw newval2, newval, shift 12134 // slw oldval2, oldval,shift 12135 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12136 // slw mask, mask2, shift 12137 // and newval3, newval2, mask 12138 // and oldval3, oldval2, mask 12139 // loop1MBB: 12140 // lwarx tmpDest, ptr 12141 // and tmp, tmpDest, mask 12142 // cmpw tmp, oldval3 12143 // bne- midMBB 12144 // loop2MBB: 12145 // andc tmp2, tmpDest, mask 12146 // or tmp4, tmp2, newval3 12147 // stwcx. tmp4, ptr 12148 // bne- loop1MBB 12149 // b exitBB 12150 // midMBB: 12151 // stwcx. tmpDest, ptr 12152 // exitBB: 12153 // srw dest, tmpDest, shift 12154 if (ptrA != ZeroReg) { 12155 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12156 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12157 .addReg(ptrA) 12158 .addReg(ptrB); 12159 } else { 12160 Ptr1Reg = ptrB; 12161 } 12162 12163 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12164 // mode. 12165 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12166 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12167 .addImm(3) 12168 .addImm(27) 12169 .addImm(is8bit ? 28 : 27); 12170 if (!isLittleEndian) 12171 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12172 .addReg(Shift1Reg) 12173 .addImm(is8bit ? 24 : 16); 12174 if (is64bit) 12175 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12176 .addReg(Ptr1Reg) 12177 .addImm(0) 12178 .addImm(61); 12179 else 12180 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12181 .addReg(Ptr1Reg) 12182 .addImm(0) 12183 .addImm(0) 12184 .addImm(29); 12185 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12186 .addReg(newval) 12187 .addReg(ShiftReg); 12188 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12189 .addReg(oldval) 12190 .addReg(ShiftReg); 12191 if (is8bit) 12192 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12193 else { 12194 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12195 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12196 .addReg(Mask3Reg) 12197 .addImm(65535); 12198 } 12199 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12200 .addReg(Mask2Reg) 12201 .addReg(ShiftReg); 12202 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12203 .addReg(NewVal2Reg) 12204 .addReg(MaskReg); 12205 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12206 .addReg(OldVal2Reg) 12207 .addReg(MaskReg); 12208 12209 BB = loop1MBB; 12210 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12211 .addReg(ZeroReg) 12212 .addReg(PtrReg); 12213 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12214 .addReg(TmpDestReg) 12215 .addReg(MaskReg); 12216 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12217 .addReg(TmpReg) 12218 .addReg(OldVal3Reg); 12219 BuildMI(BB, dl, TII->get(PPC::BCC)) 12220 .addImm(PPC::PRED_NE) 12221 .addReg(PPC::CR0) 12222 .addMBB(midMBB); 12223 BB->addSuccessor(loop2MBB); 12224 BB->addSuccessor(midMBB); 12225 12226 BB = loop2MBB; 12227 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12228 .addReg(TmpDestReg) 12229 .addReg(MaskReg); 12230 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12231 .addReg(Tmp2Reg) 12232 .addReg(NewVal3Reg); 12233 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12234 .addReg(Tmp4Reg) 12235 .addReg(ZeroReg) 12236 .addReg(PtrReg); 12237 BuildMI(BB, dl, TII->get(PPC::BCC)) 12238 .addImm(PPC::PRED_NE) 12239 .addReg(PPC::CR0) 12240 .addMBB(loop1MBB); 12241 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12242 BB->addSuccessor(loop1MBB); 12243 BB->addSuccessor(exitMBB); 12244 12245 BB = midMBB; 12246 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12247 .addReg(TmpDestReg) 12248 .addReg(ZeroReg) 12249 .addReg(PtrReg); 12250 BB->addSuccessor(exitMBB); 12251 12252 // exitMBB: 12253 // ... 12254 BB = exitMBB; 12255 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12256 .addReg(TmpReg) 12257 .addReg(ShiftReg); 12258 } else if (MI.getOpcode() == PPC::FADDrtz) { 12259 // This pseudo performs an FADD with rounding mode temporarily forced 12260 // to round-to-zero. We emit this via custom inserter since the FPSCR 12261 // is not modeled at the SelectionDAG level. 12262 Register Dest = MI.getOperand(0).getReg(); 12263 Register Src1 = MI.getOperand(1).getReg(); 12264 Register Src2 = MI.getOperand(2).getReg(); 12265 DebugLoc dl = MI.getDebugLoc(); 12266 12267 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12268 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12269 12270 // Save FPSCR value. 12271 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12272 12273 // Set rounding mode to round-to-zero. 12274 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12275 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12276 12277 // Perform addition. 12278 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12279 12280 // Restore FPSCR value. 12281 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12282 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12283 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12284 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12285 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12286 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12287 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12288 ? PPC::ANDI8_rec 12289 : PPC::ANDI_rec; 12290 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12291 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12292 12293 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12294 Register Dest = RegInfo.createVirtualRegister( 12295 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12296 12297 DebugLoc Dl = MI.getDebugLoc(); 12298 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12299 .addReg(MI.getOperand(1).getReg()) 12300 .addImm(1); 12301 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12302 MI.getOperand(0).getReg()) 12303 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12304 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12305 DebugLoc Dl = MI.getDebugLoc(); 12306 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12307 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12308 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12309 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12310 MI.getOperand(0).getReg()) 12311 .addReg(CRReg); 12312 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12313 DebugLoc Dl = MI.getDebugLoc(); 12314 unsigned Imm = MI.getOperand(1).getImm(); 12315 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12316 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12317 MI.getOperand(0).getReg()) 12318 .addReg(PPC::CR0EQ); 12319 } else if (MI.getOpcode() == PPC::SETRNDi) { 12320 DebugLoc dl = MI.getDebugLoc(); 12321 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12322 12323 // Save FPSCR value. 12324 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12325 12326 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12327 // the following settings: 12328 // 00 Round to nearest 12329 // 01 Round to 0 12330 // 10 Round to +inf 12331 // 11 Round to -inf 12332 12333 // When the operand is immediate, using the two least significant bits of 12334 // the immediate to set the bits 62:63 of FPSCR. 12335 unsigned Mode = MI.getOperand(1).getImm(); 12336 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12337 .addImm(31); 12338 12339 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12340 .addImm(30); 12341 } else if (MI.getOpcode() == PPC::SETRND) { 12342 DebugLoc dl = MI.getDebugLoc(); 12343 12344 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12345 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12346 // If the target doesn't have DirectMove, we should use stack to do the 12347 // conversion, because the target doesn't have the instructions like mtvsrd 12348 // or mfvsrd to do this conversion directly. 12349 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12350 if (Subtarget.hasDirectMove()) { 12351 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12352 .addReg(SrcReg); 12353 } else { 12354 // Use stack to do the register copy. 12355 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12356 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12357 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12358 if (RC == &PPC::F8RCRegClass) { 12359 // Copy register from F8RCRegClass to G8RCRegclass. 12360 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12361 "Unsupported RegClass."); 12362 12363 StoreOp = PPC::STFD; 12364 LoadOp = PPC::LD; 12365 } else { 12366 // Copy register from G8RCRegClass to F8RCRegclass. 12367 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12368 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12369 "Unsupported RegClass."); 12370 } 12371 12372 MachineFrameInfo &MFI = F->getFrameInfo(); 12373 int FrameIdx = MFI.CreateStackObject(8, 8, false); 12374 12375 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12376 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12377 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12378 MFI.getObjectAlign(FrameIdx)); 12379 12380 // Store the SrcReg into the stack. 12381 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12382 .addReg(SrcReg) 12383 .addImm(0) 12384 .addFrameIndex(FrameIdx) 12385 .addMemOperand(MMOStore); 12386 12387 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12388 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12389 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12390 MFI.getObjectAlign(FrameIdx)); 12391 12392 // Load from the stack where SrcReg is stored, and save to DestReg, 12393 // so we have done the RegClass conversion from RegClass::SrcReg to 12394 // RegClass::DestReg. 12395 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12396 .addImm(0) 12397 .addFrameIndex(FrameIdx) 12398 .addMemOperand(MMOLoad); 12399 } 12400 }; 12401 12402 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12403 12404 // Save FPSCR value. 12405 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12406 12407 // When the operand is gprc register, use two least significant bits of the 12408 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12409 // 12410 // copy OldFPSCRTmpReg, OldFPSCRReg 12411 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12412 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12413 // copy NewFPSCRReg, NewFPSCRTmpReg 12414 // mtfsf 255, NewFPSCRReg 12415 MachineOperand SrcOp = MI.getOperand(1); 12416 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12417 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12418 12419 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12420 12421 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12422 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12423 12424 // The first operand of INSERT_SUBREG should be a register which has 12425 // subregisters, we only care about its RegClass, so we should use an 12426 // IMPLICIT_DEF register. 12427 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12428 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12429 .addReg(ImDefReg) 12430 .add(SrcOp) 12431 .addImm(1); 12432 12433 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12434 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12435 .addReg(OldFPSCRTmpReg) 12436 .addReg(ExtSrcReg) 12437 .addImm(0) 12438 .addImm(62); 12439 12440 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12441 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12442 12443 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12444 // bits of FPSCR. 12445 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12446 .addImm(255) 12447 .addReg(NewFPSCRReg) 12448 .addImm(0) 12449 .addImm(0); 12450 } else { 12451 llvm_unreachable("Unexpected instr type to insert"); 12452 } 12453 12454 MI.eraseFromParent(); // The pseudo instruction is gone now. 12455 return BB; 12456 } 12457 12458 //===----------------------------------------------------------------------===// 12459 // Target Optimization Hooks 12460 //===----------------------------------------------------------------------===// 12461 12462 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12463 // For the estimates, convergence is quadratic, so we essentially double the 12464 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12465 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12466 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12467 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12468 if (VT.getScalarType() == MVT::f64) 12469 RefinementSteps++; 12470 return RefinementSteps; 12471 } 12472 12473 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12474 int Enabled, int &RefinementSteps, 12475 bool &UseOneConstNR, 12476 bool Reciprocal) const { 12477 EVT VT = Operand.getValueType(); 12478 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12479 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12480 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12481 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12482 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12483 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12484 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12485 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12486 12487 // The Newton-Raphson computation with a single constant does not provide 12488 // enough accuracy on some CPUs. 12489 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12490 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12491 } 12492 return SDValue(); 12493 } 12494 12495 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12496 int Enabled, 12497 int &RefinementSteps) const { 12498 EVT VT = Operand.getValueType(); 12499 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12500 (VT == MVT::f64 && Subtarget.hasFRE()) || 12501 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12502 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12503 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12504 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12505 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12506 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12507 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12508 } 12509 return SDValue(); 12510 } 12511 12512 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12513 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12514 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12515 // enabled for division), this functionality is redundant with the default 12516 // combiner logic (once the division -> reciprocal/multiply transformation 12517 // has taken place). As a result, this matters more for older cores than for 12518 // newer ones. 12519 12520 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12521 // reciprocal if there are two or more FDIVs (for embedded cores with only 12522 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12523 switch (Subtarget.getCPUDirective()) { 12524 default: 12525 return 3; 12526 case PPC::DIR_440: 12527 case PPC::DIR_A2: 12528 case PPC::DIR_E500: 12529 case PPC::DIR_E500mc: 12530 case PPC::DIR_E5500: 12531 return 2; 12532 } 12533 } 12534 12535 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12536 // collapsed, and so we need to look through chains of them. 12537 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12538 int64_t& Offset, SelectionDAG &DAG) { 12539 if (DAG.isBaseWithConstantOffset(Loc)) { 12540 Base = Loc.getOperand(0); 12541 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12542 12543 // The base might itself be a base plus an offset, and if so, accumulate 12544 // that as well. 12545 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12546 } 12547 } 12548 12549 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12550 unsigned Bytes, int Dist, 12551 SelectionDAG &DAG) { 12552 if (VT.getSizeInBits() / 8 != Bytes) 12553 return false; 12554 12555 SDValue BaseLoc = Base->getBasePtr(); 12556 if (Loc.getOpcode() == ISD::FrameIndex) { 12557 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12558 return false; 12559 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12560 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12561 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12562 int FS = MFI.getObjectSize(FI); 12563 int BFS = MFI.getObjectSize(BFI); 12564 if (FS != BFS || FS != (int)Bytes) return false; 12565 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12566 } 12567 12568 SDValue Base1 = Loc, Base2 = BaseLoc; 12569 int64_t Offset1 = 0, Offset2 = 0; 12570 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12571 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12572 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12573 return true; 12574 12575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12576 const GlobalValue *GV1 = nullptr; 12577 const GlobalValue *GV2 = nullptr; 12578 Offset1 = 0; 12579 Offset2 = 0; 12580 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12581 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12582 if (isGA1 && isGA2 && GV1 == GV2) 12583 return Offset1 == (Offset2 + Dist*Bytes); 12584 return false; 12585 } 12586 12587 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12588 // not enforce equality of the chain operands. 12589 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12590 unsigned Bytes, int Dist, 12591 SelectionDAG &DAG) { 12592 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12593 EVT VT = LS->getMemoryVT(); 12594 SDValue Loc = LS->getBasePtr(); 12595 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12596 } 12597 12598 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12599 EVT VT; 12600 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12601 default: return false; 12602 case Intrinsic::ppc_qpx_qvlfd: 12603 case Intrinsic::ppc_qpx_qvlfda: 12604 VT = MVT::v4f64; 12605 break; 12606 case Intrinsic::ppc_qpx_qvlfs: 12607 case Intrinsic::ppc_qpx_qvlfsa: 12608 VT = MVT::v4f32; 12609 break; 12610 case Intrinsic::ppc_qpx_qvlfcd: 12611 case Intrinsic::ppc_qpx_qvlfcda: 12612 VT = MVT::v2f64; 12613 break; 12614 case Intrinsic::ppc_qpx_qvlfcs: 12615 case Intrinsic::ppc_qpx_qvlfcsa: 12616 VT = MVT::v2f32; 12617 break; 12618 case Intrinsic::ppc_qpx_qvlfiwa: 12619 case Intrinsic::ppc_qpx_qvlfiwz: 12620 case Intrinsic::ppc_altivec_lvx: 12621 case Intrinsic::ppc_altivec_lvxl: 12622 case Intrinsic::ppc_vsx_lxvw4x: 12623 case Intrinsic::ppc_vsx_lxvw4x_be: 12624 VT = MVT::v4i32; 12625 break; 12626 case Intrinsic::ppc_vsx_lxvd2x: 12627 case Intrinsic::ppc_vsx_lxvd2x_be: 12628 VT = MVT::v2f64; 12629 break; 12630 case Intrinsic::ppc_altivec_lvebx: 12631 VT = MVT::i8; 12632 break; 12633 case Intrinsic::ppc_altivec_lvehx: 12634 VT = MVT::i16; 12635 break; 12636 case Intrinsic::ppc_altivec_lvewx: 12637 VT = MVT::i32; 12638 break; 12639 } 12640 12641 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12642 } 12643 12644 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12645 EVT VT; 12646 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12647 default: return false; 12648 case Intrinsic::ppc_qpx_qvstfd: 12649 case Intrinsic::ppc_qpx_qvstfda: 12650 VT = MVT::v4f64; 12651 break; 12652 case Intrinsic::ppc_qpx_qvstfs: 12653 case Intrinsic::ppc_qpx_qvstfsa: 12654 VT = MVT::v4f32; 12655 break; 12656 case Intrinsic::ppc_qpx_qvstfcd: 12657 case Intrinsic::ppc_qpx_qvstfcda: 12658 VT = MVT::v2f64; 12659 break; 12660 case Intrinsic::ppc_qpx_qvstfcs: 12661 case Intrinsic::ppc_qpx_qvstfcsa: 12662 VT = MVT::v2f32; 12663 break; 12664 case Intrinsic::ppc_qpx_qvstfiw: 12665 case Intrinsic::ppc_qpx_qvstfiwa: 12666 case Intrinsic::ppc_altivec_stvx: 12667 case Intrinsic::ppc_altivec_stvxl: 12668 case Intrinsic::ppc_vsx_stxvw4x: 12669 VT = MVT::v4i32; 12670 break; 12671 case Intrinsic::ppc_vsx_stxvd2x: 12672 VT = MVT::v2f64; 12673 break; 12674 case Intrinsic::ppc_vsx_stxvw4x_be: 12675 VT = MVT::v4i32; 12676 break; 12677 case Intrinsic::ppc_vsx_stxvd2x_be: 12678 VT = MVT::v2f64; 12679 break; 12680 case Intrinsic::ppc_altivec_stvebx: 12681 VT = MVT::i8; 12682 break; 12683 case Intrinsic::ppc_altivec_stvehx: 12684 VT = MVT::i16; 12685 break; 12686 case Intrinsic::ppc_altivec_stvewx: 12687 VT = MVT::i32; 12688 break; 12689 } 12690 12691 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12692 } 12693 12694 return false; 12695 } 12696 12697 // Return true is there is a nearyby consecutive load to the one provided 12698 // (regardless of alignment). We search up and down the chain, looking though 12699 // token factors and other loads (but nothing else). As a result, a true result 12700 // indicates that it is safe to create a new consecutive load adjacent to the 12701 // load provided. 12702 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12703 SDValue Chain = LD->getChain(); 12704 EVT VT = LD->getMemoryVT(); 12705 12706 SmallSet<SDNode *, 16> LoadRoots; 12707 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12708 SmallSet<SDNode *, 16> Visited; 12709 12710 // First, search up the chain, branching to follow all token-factor operands. 12711 // If we find a consecutive load, then we're done, otherwise, record all 12712 // nodes just above the top-level loads and token factors. 12713 while (!Queue.empty()) { 12714 SDNode *ChainNext = Queue.pop_back_val(); 12715 if (!Visited.insert(ChainNext).second) 12716 continue; 12717 12718 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12719 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12720 return true; 12721 12722 if (!Visited.count(ChainLD->getChain().getNode())) 12723 Queue.push_back(ChainLD->getChain().getNode()); 12724 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12725 for (const SDUse &O : ChainNext->ops()) 12726 if (!Visited.count(O.getNode())) 12727 Queue.push_back(O.getNode()); 12728 } else 12729 LoadRoots.insert(ChainNext); 12730 } 12731 12732 // Second, search down the chain, starting from the top-level nodes recorded 12733 // in the first phase. These top-level nodes are the nodes just above all 12734 // loads and token factors. Starting with their uses, recursively look though 12735 // all loads (just the chain uses) and token factors to find a consecutive 12736 // load. 12737 Visited.clear(); 12738 Queue.clear(); 12739 12740 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12741 IE = LoadRoots.end(); I != IE; ++I) { 12742 Queue.push_back(*I); 12743 12744 while (!Queue.empty()) { 12745 SDNode *LoadRoot = Queue.pop_back_val(); 12746 if (!Visited.insert(LoadRoot).second) 12747 continue; 12748 12749 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12750 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12751 return true; 12752 12753 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12754 UE = LoadRoot->use_end(); UI != UE; ++UI) 12755 if (((isa<MemSDNode>(*UI) && 12756 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12757 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12758 Queue.push_back(*UI); 12759 } 12760 } 12761 12762 return false; 12763 } 12764 12765 /// This function is called when we have proved that a SETCC node can be replaced 12766 /// by subtraction (and other supporting instructions) so that the result of 12767 /// comparison is kept in a GPR instead of CR. This function is purely for 12768 /// codegen purposes and has some flags to guide the codegen process. 12769 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12770 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12771 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12772 12773 // Zero extend the operands to the largest legal integer. Originally, they 12774 // must be of a strictly smaller size. 12775 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12776 DAG.getConstant(Size, DL, MVT::i32)); 12777 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12778 DAG.getConstant(Size, DL, MVT::i32)); 12779 12780 // Swap if needed. Depends on the condition code. 12781 if (Swap) 12782 std::swap(Op0, Op1); 12783 12784 // Subtract extended integers. 12785 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12786 12787 // Move the sign bit to the least significant position and zero out the rest. 12788 // Now the least significant bit carries the result of original comparison. 12789 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12790 DAG.getConstant(Size - 1, DL, MVT::i32)); 12791 auto Final = Shifted; 12792 12793 // Complement the result if needed. Based on the condition code. 12794 if (Complement) 12795 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12796 DAG.getConstant(1, DL, MVT::i64)); 12797 12798 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12799 } 12800 12801 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12802 DAGCombinerInfo &DCI) const { 12803 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12804 12805 SelectionDAG &DAG = DCI.DAG; 12806 SDLoc DL(N); 12807 12808 // Size of integers being compared has a critical role in the following 12809 // analysis, so we prefer to do this when all types are legal. 12810 if (!DCI.isAfterLegalizeDAG()) 12811 return SDValue(); 12812 12813 // If all users of SETCC extend its value to a legal integer type 12814 // then we replace SETCC with a subtraction 12815 for (SDNode::use_iterator UI = N->use_begin(), 12816 UE = N->use_end(); UI != UE; ++UI) { 12817 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12818 return SDValue(); 12819 } 12820 12821 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12822 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12823 12824 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12825 12826 if (OpSize < Size) { 12827 switch (CC) { 12828 default: break; 12829 case ISD::SETULT: 12830 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12831 case ISD::SETULE: 12832 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12833 case ISD::SETUGT: 12834 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12835 case ISD::SETUGE: 12836 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12837 } 12838 } 12839 12840 return SDValue(); 12841 } 12842 12843 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12844 DAGCombinerInfo &DCI) const { 12845 SelectionDAG &DAG = DCI.DAG; 12846 SDLoc dl(N); 12847 12848 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12849 // If we're tracking CR bits, we need to be careful that we don't have: 12850 // trunc(binary-ops(zext(x), zext(y))) 12851 // or 12852 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12853 // such that we're unnecessarily moving things into GPRs when it would be 12854 // better to keep them in CR bits. 12855 12856 // Note that trunc here can be an actual i1 trunc, or can be the effective 12857 // truncation that comes from a setcc or select_cc. 12858 if (N->getOpcode() == ISD::TRUNCATE && 12859 N->getValueType(0) != MVT::i1) 12860 return SDValue(); 12861 12862 if (N->getOperand(0).getValueType() != MVT::i32 && 12863 N->getOperand(0).getValueType() != MVT::i64) 12864 return SDValue(); 12865 12866 if (N->getOpcode() == ISD::SETCC || 12867 N->getOpcode() == ISD::SELECT_CC) { 12868 // If we're looking at a comparison, then we need to make sure that the 12869 // high bits (all except for the first) don't matter the result. 12870 ISD::CondCode CC = 12871 cast<CondCodeSDNode>(N->getOperand( 12872 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12873 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12874 12875 if (ISD::isSignedIntSetCC(CC)) { 12876 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12877 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12878 return SDValue(); 12879 } else if (ISD::isUnsignedIntSetCC(CC)) { 12880 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12881 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12882 !DAG.MaskedValueIsZero(N->getOperand(1), 12883 APInt::getHighBitsSet(OpBits, OpBits-1))) 12884 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12885 : SDValue()); 12886 } else { 12887 // This is neither a signed nor an unsigned comparison, just make sure 12888 // that the high bits are equal. 12889 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12890 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12891 12892 // We don't really care about what is known about the first bit (if 12893 // anything), so clear it in all masks prior to comparing them. 12894 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12895 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12896 12897 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12898 return SDValue(); 12899 } 12900 } 12901 12902 // We now know that the higher-order bits are irrelevant, we just need to 12903 // make sure that all of the intermediate operations are bit operations, and 12904 // all inputs are extensions. 12905 if (N->getOperand(0).getOpcode() != ISD::AND && 12906 N->getOperand(0).getOpcode() != ISD::OR && 12907 N->getOperand(0).getOpcode() != ISD::XOR && 12908 N->getOperand(0).getOpcode() != ISD::SELECT && 12909 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12910 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12911 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12912 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12913 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12914 return SDValue(); 12915 12916 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12917 N->getOperand(1).getOpcode() != ISD::AND && 12918 N->getOperand(1).getOpcode() != ISD::OR && 12919 N->getOperand(1).getOpcode() != ISD::XOR && 12920 N->getOperand(1).getOpcode() != ISD::SELECT && 12921 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12922 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12923 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12924 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12925 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12926 return SDValue(); 12927 12928 SmallVector<SDValue, 4> Inputs; 12929 SmallVector<SDValue, 8> BinOps, PromOps; 12930 SmallPtrSet<SDNode *, 16> Visited; 12931 12932 for (unsigned i = 0; i < 2; ++i) { 12933 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12934 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12935 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12936 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12937 isa<ConstantSDNode>(N->getOperand(i))) 12938 Inputs.push_back(N->getOperand(i)); 12939 else 12940 BinOps.push_back(N->getOperand(i)); 12941 12942 if (N->getOpcode() == ISD::TRUNCATE) 12943 break; 12944 } 12945 12946 // Visit all inputs, collect all binary operations (and, or, xor and 12947 // select) that are all fed by extensions. 12948 while (!BinOps.empty()) { 12949 SDValue BinOp = BinOps.back(); 12950 BinOps.pop_back(); 12951 12952 if (!Visited.insert(BinOp.getNode()).second) 12953 continue; 12954 12955 PromOps.push_back(BinOp); 12956 12957 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12958 // The condition of the select is not promoted. 12959 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12960 continue; 12961 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12962 continue; 12963 12964 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12965 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12966 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12967 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12968 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12969 Inputs.push_back(BinOp.getOperand(i)); 12970 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12971 BinOp.getOperand(i).getOpcode() == ISD::OR || 12972 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12973 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12974 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12975 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12976 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12977 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12978 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12979 BinOps.push_back(BinOp.getOperand(i)); 12980 } else { 12981 // We have an input that is not an extension or another binary 12982 // operation; we'll abort this transformation. 12983 return SDValue(); 12984 } 12985 } 12986 } 12987 12988 // Make sure that this is a self-contained cluster of operations (which 12989 // is not quite the same thing as saying that everything has only one 12990 // use). 12991 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12992 if (isa<ConstantSDNode>(Inputs[i])) 12993 continue; 12994 12995 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12996 UE = Inputs[i].getNode()->use_end(); 12997 UI != UE; ++UI) { 12998 SDNode *User = *UI; 12999 if (User != N && !Visited.count(User)) 13000 return SDValue(); 13001 13002 // Make sure that we're not going to promote the non-output-value 13003 // operand(s) or SELECT or SELECT_CC. 13004 // FIXME: Although we could sometimes handle this, and it does occur in 13005 // practice that one of the condition inputs to the select is also one of 13006 // the outputs, we currently can't deal with this. 13007 if (User->getOpcode() == ISD::SELECT) { 13008 if (User->getOperand(0) == Inputs[i]) 13009 return SDValue(); 13010 } else if (User->getOpcode() == ISD::SELECT_CC) { 13011 if (User->getOperand(0) == Inputs[i] || 13012 User->getOperand(1) == Inputs[i]) 13013 return SDValue(); 13014 } 13015 } 13016 } 13017 13018 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13019 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13020 UE = PromOps[i].getNode()->use_end(); 13021 UI != UE; ++UI) { 13022 SDNode *User = *UI; 13023 if (User != N && !Visited.count(User)) 13024 return SDValue(); 13025 13026 // Make sure that we're not going to promote the non-output-value 13027 // operand(s) or SELECT or SELECT_CC. 13028 // FIXME: Although we could sometimes handle this, and it does occur in 13029 // practice that one of the condition inputs to the select is also one of 13030 // the outputs, we currently can't deal with this. 13031 if (User->getOpcode() == ISD::SELECT) { 13032 if (User->getOperand(0) == PromOps[i]) 13033 return SDValue(); 13034 } else if (User->getOpcode() == ISD::SELECT_CC) { 13035 if (User->getOperand(0) == PromOps[i] || 13036 User->getOperand(1) == PromOps[i]) 13037 return SDValue(); 13038 } 13039 } 13040 } 13041 13042 // Replace all inputs with the extension operand. 13043 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13044 // Constants may have users outside the cluster of to-be-promoted nodes, 13045 // and so we need to replace those as we do the promotions. 13046 if (isa<ConstantSDNode>(Inputs[i])) 13047 continue; 13048 else 13049 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13050 } 13051 13052 std::list<HandleSDNode> PromOpHandles; 13053 for (auto &PromOp : PromOps) 13054 PromOpHandles.emplace_back(PromOp); 13055 13056 // Replace all operations (these are all the same, but have a different 13057 // (i1) return type). DAG.getNode will validate that the types of 13058 // a binary operator match, so go through the list in reverse so that 13059 // we've likely promoted both operands first. Any intermediate truncations or 13060 // extensions disappear. 13061 while (!PromOpHandles.empty()) { 13062 SDValue PromOp = PromOpHandles.back().getValue(); 13063 PromOpHandles.pop_back(); 13064 13065 if (PromOp.getOpcode() == ISD::TRUNCATE || 13066 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13067 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13068 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13069 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13070 PromOp.getOperand(0).getValueType() != MVT::i1) { 13071 // The operand is not yet ready (see comment below). 13072 PromOpHandles.emplace_front(PromOp); 13073 continue; 13074 } 13075 13076 SDValue RepValue = PromOp.getOperand(0); 13077 if (isa<ConstantSDNode>(RepValue)) 13078 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13079 13080 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13081 continue; 13082 } 13083 13084 unsigned C; 13085 switch (PromOp.getOpcode()) { 13086 default: C = 0; break; 13087 case ISD::SELECT: C = 1; break; 13088 case ISD::SELECT_CC: C = 2; break; 13089 } 13090 13091 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13092 PromOp.getOperand(C).getValueType() != MVT::i1) || 13093 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13094 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13095 // The to-be-promoted operands of this node have not yet been 13096 // promoted (this should be rare because we're going through the 13097 // list backward, but if one of the operands has several users in 13098 // this cluster of to-be-promoted nodes, it is possible). 13099 PromOpHandles.emplace_front(PromOp); 13100 continue; 13101 } 13102 13103 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13104 PromOp.getNode()->op_end()); 13105 13106 // If there are any constant inputs, make sure they're replaced now. 13107 for (unsigned i = 0; i < 2; ++i) 13108 if (isa<ConstantSDNode>(Ops[C+i])) 13109 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13110 13111 DAG.ReplaceAllUsesOfValueWith(PromOp, 13112 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13113 } 13114 13115 // Now we're left with the initial truncation itself. 13116 if (N->getOpcode() == ISD::TRUNCATE) 13117 return N->getOperand(0); 13118 13119 // Otherwise, this is a comparison. The operands to be compared have just 13120 // changed type (to i1), but everything else is the same. 13121 return SDValue(N, 0); 13122 } 13123 13124 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13125 DAGCombinerInfo &DCI) const { 13126 SelectionDAG &DAG = DCI.DAG; 13127 SDLoc dl(N); 13128 13129 // If we're tracking CR bits, we need to be careful that we don't have: 13130 // zext(binary-ops(trunc(x), trunc(y))) 13131 // or 13132 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13133 // such that we're unnecessarily moving things into CR bits that can more 13134 // efficiently stay in GPRs. Note that if we're not certain that the high 13135 // bits are set as required by the final extension, we still may need to do 13136 // some masking to get the proper behavior. 13137 13138 // This same functionality is important on PPC64 when dealing with 13139 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13140 // the return values of functions. Because it is so similar, it is handled 13141 // here as well. 13142 13143 if (N->getValueType(0) != MVT::i32 && 13144 N->getValueType(0) != MVT::i64) 13145 return SDValue(); 13146 13147 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13148 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13149 return SDValue(); 13150 13151 if (N->getOperand(0).getOpcode() != ISD::AND && 13152 N->getOperand(0).getOpcode() != ISD::OR && 13153 N->getOperand(0).getOpcode() != ISD::XOR && 13154 N->getOperand(0).getOpcode() != ISD::SELECT && 13155 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13156 return SDValue(); 13157 13158 SmallVector<SDValue, 4> Inputs; 13159 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13160 SmallPtrSet<SDNode *, 16> Visited; 13161 13162 // Visit all inputs, collect all binary operations (and, or, xor and 13163 // select) that are all fed by truncations. 13164 while (!BinOps.empty()) { 13165 SDValue BinOp = BinOps.back(); 13166 BinOps.pop_back(); 13167 13168 if (!Visited.insert(BinOp.getNode()).second) 13169 continue; 13170 13171 PromOps.push_back(BinOp); 13172 13173 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13174 // The condition of the select is not promoted. 13175 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13176 continue; 13177 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13178 continue; 13179 13180 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13181 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13182 Inputs.push_back(BinOp.getOperand(i)); 13183 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13184 BinOp.getOperand(i).getOpcode() == ISD::OR || 13185 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13186 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13187 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13188 BinOps.push_back(BinOp.getOperand(i)); 13189 } else { 13190 // We have an input that is not a truncation or another binary 13191 // operation; we'll abort this transformation. 13192 return SDValue(); 13193 } 13194 } 13195 } 13196 13197 // The operands of a select that must be truncated when the select is 13198 // promoted because the operand is actually part of the to-be-promoted set. 13199 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13200 13201 // Make sure that this is a self-contained cluster of operations (which 13202 // is not quite the same thing as saying that everything has only one 13203 // use). 13204 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13205 if (isa<ConstantSDNode>(Inputs[i])) 13206 continue; 13207 13208 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13209 UE = Inputs[i].getNode()->use_end(); 13210 UI != UE; ++UI) { 13211 SDNode *User = *UI; 13212 if (User != N && !Visited.count(User)) 13213 return SDValue(); 13214 13215 // If we're going to promote the non-output-value operand(s) or SELECT or 13216 // SELECT_CC, record them for truncation. 13217 if (User->getOpcode() == ISD::SELECT) { 13218 if (User->getOperand(0) == Inputs[i]) 13219 SelectTruncOp[0].insert(std::make_pair(User, 13220 User->getOperand(0).getValueType())); 13221 } else if (User->getOpcode() == ISD::SELECT_CC) { 13222 if (User->getOperand(0) == Inputs[i]) 13223 SelectTruncOp[0].insert(std::make_pair(User, 13224 User->getOperand(0).getValueType())); 13225 if (User->getOperand(1) == Inputs[i]) 13226 SelectTruncOp[1].insert(std::make_pair(User, 13227 User->getOperand(1).getValueType())); 13228 } 13229 } 13230 } 13231 13232 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13233 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13234 UE = PromOps[i].getNode()->use_end(); 13235 UI != UE; ++UI) { 13236 SDNode *User = *UI; 13237 if (User != N && !Visited.count(User)) 13238 return SDValue(); 13239 13240 // If we're going to promote the non-output-value operand(s) or SELECT or 13241 // SELECT_CC, record them for truncation. 13242 if (User->getOpcode() == ISD::SELECT) { 13243 if (User->getOperand(0) == PromOps[i]) 13244 SelectTruncOp[0].insert(std::make_pair(User, 13245 User->getOperand(0).getValueType())); 13246 } else if (User->getOpcode() == ISD::SELECT_CC) { 13247 if (User->getOperand(0) == PromOps[i]) 13248 SelectTruncOp[0].insert(std::make_pair(User, 13249 User->getOperand(0).getValueType())); 13250 if (User->getOperand(1) == PromOps[i]) 13251 SelectTruncOp[1].insert(std::make_pair(User, 13252 User->getOperand(1).getValueType())); 13253 } 13254 } 13255 } 13256 13257 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13258 bool ReallyNeedsExt = false; 13259 if (N->getOpcode() != ISD::ANY_EXTEND) { 13260 // If all of the inputs are not already sign/zero extended, then 13261 // we'll still need to do that at the end. 13262 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13263 if (isa<ConstantSDNode>(Inputs[i])) 13264 continue; 13265 13266 unsigned OpBits = 13267 Inputs[i].getOperand(0).getValueSizeInBits(); 13268 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13269 13270 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13271 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13272 APInt::getHighBitsSet(OpBits, 13273 OpBits-PromBits))) || 13274 (N->getOpcode() == ISD::SIGN_EXTEND && 13275 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13276 (OpBits-(PromBits-1)))) { 13277 ReallyNeedsExt = true; 13278 break; 13279 } 13280 } 13281 } 13282 13283 // Replace all inputs, either with the truncation operand, or a 13284 // truncation or extension to the final output type. 13285 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13286 // Constant inputs need to be replaced with the to-be-promoted nodes that 13287 // use them because they might have users outside of the cluster of 13288 // promoted nodes. 13289 if (isa<ConstantSDNode>(Inputs[i])) 13290 continue; 13291 13292 SDValue InSrc = Inputs[i].getOperand(0); 13293 if (Inputs[i].getValueType() == N->getValueType(0)) 13294 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13295 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13296 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13297 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13298 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13299 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13300 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13301 else 13302 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13303 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13304 } 13305 13306 std::list<HandleSDNode> PromOpHandles; 13307 for (auto &PromOp : PromOps) 13308 PromOpHandles.emplace_back(PromOp); 13309 13310 // Replace all operations (these are all the same, but have a different 13311 // (promoted) return type). DAG.getNode will validate that the types of 13312 // a binary operator match, so go through the list in reverse so that 13313 // we've likely promoted both operands first. 13314 while (!PromOpHandles.empty()) { 13315 SDValue PromOp = PromOpHandles.back().getValue(); 13316 PromOpHandles.pop_back(); 13317 13318 unsigned C; 13319 switch (PromOp.getOpcode()) { 13320 default: C = 0; break; 13321 case ISD::SELECT: C = 1; break; 13322 case ISD::SELECT_CC: C = 2; break; 13323 } 13324 13325 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13326 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13327 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13328 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13329 // The to-be-promoted operands of this node have not yet been 13330 // promoted (this should be rare because we're going through the 13331 // list backward, but if one of the operands has several users in 13332 // this cluster of to-be-promoted nodes, it is possible). 13333 PromOpHandles.emplace_front(PromOp); 13334 continue; 13335 } 13336 13337 // For SELECT and SELECT_CC nodes, we do a similar check for any 13338 // to-be-promoted comparison inputs. 13339 if (PromOp.getOpcode() == ISD::SELECT || 13340 PromOp.getOpcode() == ISD::SELECT_CC) { 13341 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13342 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13343 (SelectTruncOp[1].count(PromOp.getNode()) && 13344 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13345 PromOpHandles.emplace_front(PromOp); 13346 continue; 13347 } 13348 } 13349 13350 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13351 PromOp.getNode()->op_end()); 13352 13353 // If this node has constant inputs, then they'll need to be promoted here. 13354 for (unsigned i = 0; i < 2; ++i) { 13355 if (!isa<ConstantSDNode>(Ops[C+i])) 13356 continue; 13357 if (Ops[C+i].getValueType() == N->getValueType(0)) 13358 continue; 13359 13360 if (N->getOpcode() == ISD::SIGN_EXTEND) 13361 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13362 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13363 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13364 else 13365 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13366 } 13367 13368 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13369 // truncate them again to the original value type. 13370 if (PromOp.getOpcode() == ISD::SELECT || 13371 PromOp.getOpcode() == ISD::SELECT_CC) { 13372 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13373 if (SI0 != SelectTruncOp[0].end()) 13374 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13375 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13376 if (SI1 != SelectTruncOp[1].end()) 13377 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13378 } 13379 13380 DAG.ReplaceAllUsesOfValueWith(PromOp, 13381 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13382 } 13383 13384 // Now we're left with the initial extension itself. 13385 if (!ReallyNeedsExt) 13386 return N->getOperand(0); 13387 13388 // To zero extend, just mask off everything except for the first bit (in the 13389 // i1 case). 13390 if (N->getOpcode() == ISD::ZERO_EXTEND) 13391 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13392 DAG.getConstant(APInt::getLowBitsSet( 13393 N->getValueSizeInBits(0), PromBits), 13394 dl, N->getValueType(0))); 13395 13396 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13397 "Invalid extension type"); 13398 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13399 SDValue ShiftCst = 13400 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13401 return DAG.getNode( 13402 ISD::SRA, dl, N->getValueType(0), 13403 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13404 ShiftCst); 13405 } 13406 13407 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13408 DAGCombinerInfo &DCI) const { 13409 assert(N->getOpcode() == ISD::SETCC && 13410 "Should be called with a SETCC node"); 13411 13412 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13413 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13414 SDValue LHS = N->getOperand(0); 13415 SDValue RHS = N->getOperand(1); 13416 13417 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13418 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13419 LHS.hasOneUse()) 13420 std::swap(LHS, RHS); 13421 13422 // x == 0-y --> x+y == 0 13423 // x != 0-y --> x+y != 0 13424 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13425 RHS.hasOneUse()) { 13426 SDLoc DL(N); 13427 SelectionDAG &DAG = DCI.DAG; 13428 EVT VT = N->getValueType(0); 13429 EVT OpVT = LHS.getValueType(); 13430 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13431 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13432 } 13433 } 13434 13435 return DAGCombineTruncBoolExt(N, DCI); 13436 } 13437 13438 // Is this an extending load from an f32 to an f64? 13439 static bool isFPExtLoad(SDValue Op) { 13440 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13441 return LD->getExtensionType() == ISD::EXTLOAD && 13442 Op.getValueType() == MVT::f64; 13443 return false; 13444 } 13445 13446 /// Reduces the number of fp-to-int conversion when building a vector. 13447 /// 13448 /// If this vector is built out of floating to integer conversions, 13449 /// transform it to a vector built out of floating point values followed by a 13450 /// single floating to integer conversion of the vector. 13451 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13452 /// becomes (fptosi (build_vector ($A, $B, ...))) 13453 SDValue PPCTargetLowering:: 13454 combineElementTruncationToVectorTruncation(SDNode *N, 13455 DAGCombinerInfo &DCI) const { 13456 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13457 "Should be called with a BUILD_VECTOR node"); 13458 13459 SelectionDAG &DAG = DCI.DAG; 13460 SDLoc dl(N); 13461 13462 SDValue FirstInput = N->getOperand(0); 13463 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13464 "The input operand must be an fp-to-int conversion."); 13465 13466 // This combine happens after legalization so the fp_to_[su]i nodes are 13467 // already converted to PPCSISD nodes. 13468 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13469 if (FirstConversion == PPCISD::FCTIDZ || 13470 FirstConversion == PPCISD::FCTIDUZ || 13471 FirstConversion == PPCISD::FCTIWZ || 13472 FirstConversion == PPCISD::FCTIWUZ) { 13473 bool IsSplat = true; 13474 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13475 FirstConversion == PPCISD::FCTIWUZ; 13476 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13477 SmallVector<SDValue, 4> Ops; 13478 EVT TargetVT = N->getValueType(0); 13479 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13480 SDValue NextOp = N->getOperand(i); 13481 if (NextOp.getOpcode() != PPCISD::MFVSR) 13482 return SDValue(); 13483 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13484 if (NextConversion != FirstConversion) 13485 return SDValue(); 13486 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13487 // This is not valid if the input was originally double precision. It is 13488 // also not profitable to do unless this is an extending load in which 13489 // case doing this combine will allow us to combine consecutive loads. 13490 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13491 return SDValue(); 13492 if (N->getOperand(i) != FirstInput) 13493 IsSplat = false; 13494 } 13495 13496 // If this is a splat, we leave it as-is since there will be only a single 13497 // fp-to-int conversion followed by a splat of the integer. This is better 13498 // for 32-bit and smaller ints and neutral for 64-bit ints. 13499 if (IsSplat) 13500 return SDValue(); 13501 13502 // Now that we know we have the right type of node, get its operands 13503 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13504 SDValue In = N->getOperand(i).getOperand(0); 13505 if (Is32Bit) { 13506 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13507 // here, we know that all inputs are extending loads so this is safe). 13508 if (In.isUndef()) 13509 Ops.push_back(DAG.getUNDEF(SrcVT)); 13510 else { 13511 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13512 MVT::f32, In.getOperand(0), 13513 DAG.getIntPtrConstant(1, dl)); 13514 Ops.push_back(Trunc); 13515 } 13516 } else 13517 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13518 } 13519 13520 unsigned Opcode; 13521 if (FirstConversion == PPCISD::FCTIDZ || 13522 FirstConversion == PPCISD::FCTIWZ) 13523 Opcode = ISD::FP_TO_SINT; 13524 else 13525 Opcode = ISD::FP_TO_UINT; 13526 13527 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13528 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13529 return DAG.getNode(Opcode, dl, TargetVT, BV); 13530 } 13531 return SDValue(); 13532 } 13533 13534 /// Reduce the number of loads when building a vector. 13535 /// 13536 /// Building a vector out of multiple loads can be converted to a load 13537 /// of the vector type if the loads are consecutive. If the loads are 13538 /// consecutive but in descending order, a shuffle is added at the end 13539 /// to reorder the vector. 13540 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13541 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13542 "Should be called with a BUILD_VECTOR node"); 13543 13544 SDLoc dl(N); 13545 13546 // Return early for non byte-sized type, as they can't be consecutive. 13547 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13548 return SDValue(); 13549 13550 bool InputsAreConsecutiveLoads = true; 13551 bool InputsAreReverseConsecutive = true; 13552 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13553 SDValue FirstInput = N->getOperand(0); 13554 bool IsRoundOfExtLoad = false; 13555 13556 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13557 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13558 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13559 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13560 } 13561 // Not a build vector of (possibly fp_rounded) loads. 13562 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13563 N->getNumOperands() == 1) 13564 return SDValue(); 13565 13566 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13567 // If any inputs are fp_round(extload), they all must be. 13568 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13569 return SDValue(); 13570 13571 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13572 N->getOperand(i); 13573 if (NextInput.getOpcode() != ISD::LOAD) 13574 return SDValue(); 13575 13576 SDValue PreviousInput = 13577 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13578 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13579 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13580 13581 // If any inputs are fp_round(extload), they all must be. 13582 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13583 return SDValue(); 13584 13585 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13586 InputsAreConsecutiveLoads = false; 13587 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13588 InputsAreReverseConsecutive = false; 13589 13590 // Exit early if the loads are neither consecutive nor reverse consecutive. 13591 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13592 return SDValue(); 13593 } 13594 13595 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13596 "The loads cannot be both consecutive and reverse consecutive."); 13597 13598 SDValue FirstLoadOp = 13599 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13600 SDValue LastLoadOp = 13601 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13602 N->getOperand(N->getNumOperands()-1); 13603 13604 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13605 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13606 if (InputsAreConsecutiveLoads) { 13607 assert(LD1 && "Input needs to be a LoadSDNode."); 13608 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13609 LD1->getBasePtr(), LD1->getPointerInfo(), 13610 LD1->getAlignment()); 13611 } 13612 if (InputsAreReverseConsecutive) { 13613 assert(LDL && "Input needs to be a LoadSDNode."); 13614 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13615 LDL->getBasePtr(), LDL->getPointerInfo(), 13616 LDL->getAlignment()); 13617 SmallVector<int, 16> Ops; 13618 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13619 Ops.push_back(i); 13620 13621 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13622 DAG.getUNDEF(N->getValueType(0)), Ops); 13623 } 13624 return SDValue(); 13625 } 13626 13627 // This function adds the required vector_shuffle needed to get 13628 // the elements of the vector extract in the correct position 13629 // as specified by the CorrectElems encoding. 13630 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13631 SDValue Input, uint64_t Elems, 13632 uint64_t CorrectElems) { 13633 SDLoc dl(N); 13634 13635 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13636 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13637 13638 // Knowing the element indices being extracted from the original 13639 // vector and the order in which they're being inserted, just put 13640 // them at element indices required for the instruction. 13641 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13642 if (DAG.getDataLayout().isLittleEndian()) 13643 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13644 else 13645 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13646 CorrectElems = CorrectElems >> 8; 13647 Elems = Elems >> 8; 13648 } 13649 13650 SDValue Shuffle = 13651 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13652 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13653 13654 EVT VT = N->getValueType(0); 13655 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13656 13657 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13658 Input.getValueType().getVectorElementType(), 13659 VT.getVectorNumElements()); 13660 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13661 DAG.getValueType(ExtVT)); 13662 } 13663 13664 // Look for build vector patterns where input operands come from sign 13665 // extended vector_extract elements of specific indices. If the correct indices 13666 // aren't used, add a vector shuffle to fix up the indices and create 13667 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13668 // during instruction selection. 13669 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13670 // This array encodes the indices that the vector sign extend instructions 13671 // extract from when extending from one type to another for both BE and LE. 13672 // The right nibble of each byte corresponds to the LE incides. 13673 // and the left nibble of each byte corresponds to the BE incides. 13674 // For example: 0x3074B8FC byte->word 13675 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13676 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13677 // For example: 0x000070F8 byte->double word 13678 // For LE: the allowed indices are: 0x0,0x8 13679 // For BE: the allowed indices are: 0x7,0xF 13680 uint64_t TargetElems[] = { 13681 0x3074B8FC, // b->w 13682 0x000070F8, // b->d 13683 0x10325476, // h->w 13684 0x00003074, // h->d 13685 0x00001032, // w->d 13686 }; 13687 13688 uint64_t Elems = 0; 13689 int Index; 13690 SDValue Input; 13691 13692 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13693 if (!Op) 13694 return false; 13695 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13696 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13697 return false; 13698 13699 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13700 // of the right width. 13701 SDValue Extract = Op.getOperand(0); 13702 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13703 Extract = Extract.getOperand(0); 13704 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13705 return false; 13706 13707 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13708 if (!ExtOp) 13709 return false; 13710 13711 Index = ExtOp->getZExtValue(); 13712 if (Input && Input != Extract.getOperand(0)) 13713 return false; 13714 13715 if (!Input) 13716 Input = Extract.getOperand(0); 13717 13718 Elems = Elems << 8; 13719 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13720 Elems |= Index; 13721 13722 return true; 13723 }; 13724 13725 // If the build vector operands aren't sign extended vector extracts, 13726 // of the same input vector, then return. 13727 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13728 if (!isSExtOfVecExtract(N->getOperand(i))) { 13729 return SDValue(); 13730 } 13731 } 13732 13733 // If the vector extract indicies are not correct, add the appropriate 13734 // vector_shuffle. 13735 int TgtElemArrayIdx; 13736 int InputSize = Input.getValueType().getScalarSizeInBits(); 13737 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13738 if (InputSize + OutputSize == 40) 13739 TgtElemArrayIdx = 0; 13740 else if (InputSize + OutputSize == 72) 13741 TgtElemArrayIdx = 1; 13742 else if (InputSize + OutputSize == 48) 13743 TgtElemArrayIdx = 2; 13744 else if (InputSize + OutputSize == 80) 13745 TgtElemArrayIdx = 3; 13746 else if (InputSize + OutputSize == 96) 13747 TgtElemArrayIdx = 4; 13748 else 13749 return SDValue(); 13750 13751 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13752 CorrectElems = DAG.getDataLayout().isLittleEndian() 13753 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13754 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13755 if (Elems != CorrectElems) { 13756 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13757 } 13758 13759 // Regular lowering will catch cases where a shuffle is not needed. 13760 return SDValue(); 13761 } 13762 13763 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13764 DAGCombinerInfo &DCI) const { 13765 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13766 "Should be called with a BUILD_VECTOR node"); 13767 13768 SelectionDAG &DAG = DCI.DAG; 13769 SDLoc dl(N); 13770 13771 if (!Subtarget.hasVSX()) 13772 return SDValue(); 13773 13774 // The target independent DAG combiner will leave a build_vector of 13775 // float-to-int conversions intact. We can generate MUCH better code for 13776 // a float-to-int conversion of a vector of floats. 13777 SDValue FirstInput = N->getOperand(0); 13778 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13779 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13780 if (Reduced) 13781 return Reduced; 13782 } 13783 13784 // If we're building a vector out of consecutive loads, just load that 13785 // vector type. 13786 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13787 if (Reduced) 13788 return Reduced; 13789 13790 // If we're building a vector out of extended elements from another vector 13791 // we have P9 vector integer extend instructions. The code assumes legal 13792 // input types (i.e. it can't handle things like v4i16) so do not run before 13793 // legalization. 13794 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13795 Reduced = combineBVOfVecSExt(N, DAG); 13796 if (Reduced) 13797 return Reduced; 13798 } 13799 13800 13801 if (N->getValueType(0) != MVT::v2f64) 13802 return SDValue(); 13803 13804 // Looking for: 13805 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13806 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13807 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13808 return SDValue(); 13809 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13810 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13811 return SDValue(); 13812 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13813 return SDValue(); 13814 13815 SDValue Ext1 = FirstInput.getOperand(0); 13816 SDValue Ext2 = N->getOperand(1).getOperand(0); 13817 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13818 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13819 return SDValue(); 13820 13821 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13822 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13823 if (!Ext1Op || !Ext2Op) 13824 return SDValue(); 13825 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13826 Ext1.getOperand(0) != Ext2.getOperand(0)) 13827 return SDValue(); 13828 13829 int FirstElem = Ext1Op->getZExtValue(); 13830 int SecondElem = Ext2Op->getZExtValue(); 13831 int SubvecIdx; 13832 if (FirstElem == 0 && SecondElem == 1) 13833 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13834 else if (FirstElem == 2 && SecondElem == 3) 13835 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13836 else 13837 return SDValue(); 13838 13839 SDValue SrcVec = Ext1.getOperand(0); 13840 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13841 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13842 return DAG.getNode(NodeType, dl, MVT::v2f64, 13843 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13844 } 13845 13846 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13847 DAGCombinerInfo &DCI) const { 13848 assert((N->getOpcode() == ISD::SINT_TO_FP || 13849 N->getOpcode() == ISD::UINT_TO_FP) && 13850 "Need an int -> FP conversion node here"); 13851 13852 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13853 return SDValue(); 13854 13855 SelectionDAG &DAG = DCI.DAG; 13856 SDLoc dl(N); 13857 SDValue Op(N, 0); 13858 13859 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13860 // from the hardware. 13861 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13862 return SDValue(); 13863 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13864 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13865 return SDValue(); 13866 13867 SDValue FirstOperand(Op.getOperand(0)); 13868 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13869 (FirstOperand.getValueType() == MVT::i8 || 13870 FirstOperand.getValueType() == MVT::i16); 13871 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13872 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13873 bool DstDouble = Op.getValueType() == MVT::f64; 13874 unsigned ConvOp = Signed ? 13875 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13876 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13877 SDValue WidthConst = 13878 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13879 dl, false); 13880 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13881 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13882 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13883 DAG.getVTList(MVT::f64, MVT::Other), 13884 Ops, MVT::i8, LDN->getMemOperand()); 13885 13886 // For signed conversion, we need to sign-extend the value in the VSR 13887 if (Signed) { 13888 SDValue ExtOps[] = { Ld, WidthConst }; 13889 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13890 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13891 } else 13892 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13893 } 13894 13895 13896 // For i32 intermediate values, unfortunately, the conversion functions 13897 // leave the upper 32 bits of the value are undefined. Within the set of 13898 // scalar instructions, we have no method for zero- or sign-extending the 13899 // value. Thus, we cannot handle i32 intermediate values here. 13900 if (Op.getOperand(0).getValueType() == MVT::i32) 13901 return SDValue(); 13902 13903 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13904 "UINT_TO_FP is supported only with FPCVT"); 13905 13906 // If we have FCFIDS, then use it when converting to single-precision. 13907 // Otherwise, convert to double-precision and then round. 13908 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13909 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13910 : PPCISD::FCFIDS) 13911 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13912 : PPCISD::FCFID); 13913 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13914 ? MVT::f32 13915 : MVT::f64; 13916 13917 // If we're converting from a float, to an int, and back to a float again, 13918 // then we don't need the store/load pair at all. 13919 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13920 Subtarget.hasFPCVT()) || 13921 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13922 SDValue Src = Op.getOperand(0).getOperand(0); 13923 if (Src.getValueType() == MVT::f32) { 13924 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13925 DCI.AddToWorklist(Src.getNode()); 13926 } else if (Src.getValueType() != MVT::f64) { 13927 // Make sure that we don't pick up a ppc_fp128 source value. 13928 return SDValue(); 13929 } 13930 13931 unsigned FCTOp = 13932 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13933 PPCISD::FCTIDUZ; 13934 13935 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13936 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13937 13938 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13939 FP = DAG.getNode(ISD::FP_ROUND, dl, 13940 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13941 DCI.AddToWorklist(FP.getNode()); 13942 } 13943 13944 return FP; 13945 } 13946 13947 return SDValue(); 13948 } 13949 13950 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13951 // builtins) into loads with swaps. 13952 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13953 DAGCombinerInfo &DCI) const { 13954 SelectionDAG &DAG = DCI.DAG; 13955 SDLoc dl(N); 13956 SDValue Chain; 13957 SDValue Base; 13958 MachineMemOperand *MMO; 13959 13960 switch (N->getOpcode()) { 13961 default: 13962 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13963 case ISD::LOAD: { 13964 LoadSDNode *LD = cast<LoadSDNode>(N); 13965 Chain = LD->getChain(); 13966 Base = LD->getBasePtr(); 13967 MMO = LD->getMemOperand(); 13968 // If the MMO suggests this isn't a load of a full vector, leave 13969 // things alone. For a built-in, we have to make the change for 13970 // correctness, so if there is a size problem that will be a bug. 13971 if (MMO->getSize() < 16) 13972 return SDValue(); 13973 break; 13974 } 13975 case ISD::INTRINSIC_W_CHAIN: { 13976 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13977 Chain = Intrin->getChain(); 13978 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13979 // us what we want. Get operand 2 instead. 13980 Base = Intrin->getOperand(2); 13981 MMO = Intrin->getMemOperand(); 13982 break; 13983 } 13984 } 13985 13986 MVT VecTy = N->getValueType(0).getSimpleVT(); 13987 13988 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13989 // aligned and the type is a vector with elements up to 4 bytes 13990 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13991 VecTy.getScalarSizeInBits() <= 32) { 13992 return SDValue(); 13993 } 13994 13995 SDValue LoadOps[] = { Chain, Base }; 13996 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13997 DAG.getVTList(MVT::v2f64, MVT::Other), 13998 LoadOps, MVT::v2f64, MMO); 13999 14000 DCI.AddToWorklist(Load.getNode()); 14001 Chain = Load.getValue(1); 14002 SDValue Swap = DAG.getNode( 14003 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14004 DCI.AddToWorklist(Swap.getNode()); 14005 14006 // Add a bitcast if the resulting load type doesn't match v2f64. 14007 if (VecTy != MVT::v2f64) { 14008 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14009 DCI.AddToWorklist(N.getNode()); 14010 // Package {bitcast value, swap's chain} to match Load's shape. 14011 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14012 N, Swap.getValue(1)); 14013 } 14014 14015 return Swap; 14016 } 14017 14018 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14019 // builtins) into stores with swaps. 14020 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14021 DAGCombinerInfo &DCI) const { 14022 SelectionDAG &DAG = DCI.DAG; 14023 SDLoc dl(N); 14024 SDValue Chain; 14025 SDValue Base; 14026 unsigned SrcOpnd; 14027 MachineMemOperand *MMO; 14028 14029 switch (N->getOpcode()) { 14030 default: 14031 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14032 case ISD::STORE: { 14033 StoreSDNode *ST = cast<StoreSDNode>(N); 14034 Chain = ST->getChain(); 14035 Base = ST->getBasePtr(); 14036 MMO = ST->getMemOperand(); 14037 SrcOpnd = 1; 14038 // If the MMO suggests this isn't a store of a full vector, leave 14039 // things alone. For a built-in, we have to make the change for 14040 // correctness, so if there is a size problem that will be a bug. 14041 if (MMO->getSize() < 16) 14042 return SDValue(); 14043 break; 14044 } 14045 case ISD::INTRINSIC_VOID: { 14046 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14047 Chain = Intrin->getChain(); 14048 // Intrin->getBasePtr() oddly does not get what we want. 14049 Base = Intrin->getOperand(3); 14050 MMO = Intrin->getMemOperand(); 14051 SrcOpnd = 2; 14052 break; 14053 } 14054 } 14055 14056 SDValue Src = N->getOperand(SrcOpnd); 14057 MVT VecTy = Src.getValueType().getSimpleVT(); 14058 14059 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14060 // aligned and the type is a vector with elements up to 4 bytes 14061 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14062 VecTy.getScalarSizeInBits() <= 32) { 14063 return SDValue(); 14064 } 14065 14066 // All stores are done as v2f64 and possible bit cast. 14067 if (VecTy != MVT::v2f64) { 14068 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14069 DCI.AddToWorklist(Src.getNode()); 14070 } 14071 14072 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14073 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14074 DCI.AddToWorklist(Swap.getNode()); 14075 Chain = Swap.getValue(1); 14076 SDValue StoreOps[] = { Chain, Swap, Base }; 14077 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14078 DAG.getVTList(MVT::Other), 14079 StoreOps, VecTy, MMO); 14080 DCI.AddToWorklist(Store.getNode()); 14081 return Store; 14082 } 14083 14084 // Handle DAG combine for STORE (FP_TO_INT F). 14085 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14086 DAGCombinerInfo &DCI) const { 14087 14088 SelectionDAG &DAG = DCI.DAG; 14089 SDLoc dl(N); 14090 unsigned Opcode = N->getOperand(1).getOpcode(); 14091 14092 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14093 && "Not a FP_TO_INT Instruction!"); 14094 14095 SDValue Val = N->getOperand(1).getOperand(0); 14096 EVT Op1VT = N->getOperand(1).getValueType(); 14097 EVT ResVT = Val.getValueType(); 14098 14099 // Floating point types smaller than 32 bits are not legal on Power. 14100 if (ResVT.getScalarSizeInBits() < 32) 14101 return SDValue(); 14102 14103 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14104 bool ValidTypeForStoreFltAsInt = 14105 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14106 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14107 14108 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14109 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14110 return SDValue(); 14111 14112 // Extend f32 values to f64 14113 if (ResVT.getScalarSizeInBits() == 32) { 14114 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14115 DCI.AddToWorklist(Val.getNode()); 14116 } 14117 14118 // Set signed or unsigned conversion opcode. 14119 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14120 PPCISD::FP_TO_SINT_IN_VSR : 14121 PPCISD::FP_TO_UINT_IN_VSR; 14122 14123 Val = DAG.getNode(ConvOpcode, 14124 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14125 DCI.AddToWorklist(Val.getNode()); 14126 14127 // Set number of bytes being converted. 14128 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14129 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14130 DAG.getIntPtrConstant(ByteSize, dl, false), 14131 DAG.getValueType(Op1VT) }; 14132 14133 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14134 DAG.getVTList(MVT::Other), Ops, 14135 cast<StoreSDNode>(N)->getMemoryVT(), 14136 cast<StoreSDNode>(N)->getMemOperand()); 14137 14138 DCI.AddToWorklist(Val.getNode()); 14139 return Val; 14140 } 14141 14142 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14143 // Check that the source of the element keeps flipping 14144 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14145 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14146 for (int i = 1, e = Mask.size(); i < e; i++) { 14147 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14148 return false; 14149 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14150 return false; 14151 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14152 } 14153 return true; 14154 } 14155 14156 static bool isSplatBV(SDValue Op) { 14157 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14158 return false; 14159 SDValue FirstOp; 14160 14161 // Find first non-undef input. 14162 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14163 FirstOp = Op.getOperand(i); 14164 if (!FirstOp.isUndef()) 14165 break; 14166 } 14167 14168 // All inputs are undef or the same as the first non-undef input. 14169 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14170 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14171 return false; 14172 return true; 14173 } 14174 14175 static SDValue isScalarToVec(SDValue Op) { 14176 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14177 return Op; 14178 if (Op.getOpcode() != ISD::BITCAST) 14179 return SDValue(); 14180 Op = Op.getOperand(0); 14181 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14182 return Op; 14183 return SDValue(); 14184 } 14185 14186 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14187 int LHSMaxIdx, int RHSMinIdx, 14188 int RHSMaxIdx, int HalfVec) { 14189 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14190 int Idx = ShuffV[i]; 14191 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14192 ShuffV[i] += HalfVec; 14193 } 14194 return; 14195 } 14196 14197 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14198 // the original is: 14199 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14200 // In such a case, just change the shuffle mask to extract the element 14201 // from the permuted index. 14202 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14203 SDLoc dl(OrigSToV); 14204 EVT VT = OrigSToV.getValueType(); 14205 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14206 "Expecting a SCALAR_TO_VECTOR here"); 14207 SDValue Input = OrigSToV.getOperand(0); 14208 14209 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14210 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14211 SDValue OrigVector = Input.getOperand(0); 14212 14213 // Can't handle non-const element indices or different vector types 14214 // for the input to the extract and the output of the scalar_to_vector. 14215 if (Idx && VT == OrigVector.getValueType()) { 14216 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14217 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14218 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14219 } 14220 } 14221 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14222 OrigSToV.getOperand(0)); 14223 } 14224 14225 // On little endian subtargets, combine shuffles such as: 14226 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14227 // into: 14228 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14229 // because the latter can be matched to a single instruction merge. 14230 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14231 // to put the value into element zero. Adjust the shuffle mask so that the 14232 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14233 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14234 SelectionDAG &DAG) const { 14235 SDValue LHS = SVN->getOperand(0); 14236 SDValue RHS = SVN->getOperand(1); 14237 auto Mask = SVN->getMask(); 14238 int NumElts = LHS.getValueType().getVectorNumElements(); 14239 SDValue Res(SVN, 0); 14240 SDLoc dl(SVN); 14241 14242 // None of these combines are useful on big endian systems since the ISA 14243 // already has a big endian bias. 14244 if (!Subtarget.isLittleEndian()) 14245 return Res; 14246 14247 // If this is not a shuffle of a shuffle and the first element comes from 14248 // the second vector, canonicalize to the commuted form. This will make it 14249 // more likely to match one of the single instruction patterns. 14250 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14251 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14252 std::swap(LHS, RHS); 14253 Res = DAG.getCommutedVectorShuffle(*SVN); 14254 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14255 } 14256 14257 // Adjust the shuffle mask if either input vector comes from a 14258 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14259 // form (to prevent the need for a swap). 14260 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14261 SDValue SToVLHS = isScalarToVec(LHS); 14262 SDValue SToVRHS = isScalarToVec(RHS); 14263 if (SToVLHS || SToVRHS) { 14264 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14265 : SToVRHS.getValueType().getVectorNumElements(); 14266 int NumEltsOut = ShuffV.size(); 14267 14268 // Initially assume that neither input is permuted. These will be adjusted 14269 // accordingly if either input is. 14270 int LHSMaxIdx = -1; 14271 int RHSMinIdx = -1; 14272 int RHSMaxIdx = -1; 14273 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14274 14275 // Get the permuted scalar to vector nodes for the source(s) that come from 14276 // ISD::SCALAR_TO_VECTOR. 14277 if (SToVLHS) { 14278 // Set up the values for the shuffle vector fixup. 14279 LHSMaxIdx = NumEltsOut / NumEltsIn; 14280 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14281 if (SToVLHS.getValueType() != LHS.getValueType()) 14282 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14283 LHS = SToVLHS; 14284 } 14285 if (SToVRHS) { 14286 RHSMinIdx = NumEltsOut; 14287 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14288 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14289 if (SToVRHS.getValueType() != RHS.getValueType()) 14290 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14291 RHS = SToVRHS; 14292 } 14293 14294 // Fix up the shuffle mask to reflect where the desired element actually is. 14295 // The minimum and maximum indices that correspond to element zero for both 14296 // the LHS and RHS are computed and will control which shuffle mask entries 14297 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14298 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14299 // HalfVec to refer to the corresponding element in the permuted vector. 14300 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14301 HalfVec); 14302 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14303 14304 // We may have simplified away the shuffle. We won't be able to do anything 14305 // further with it here. 14306 if (!isa<ShuffleVectorSDNode>(Res)) 14307 return Res; 14308 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14309 } 14310 14311 // The common case after we commuted the shuffle is that the RHS is a splat 14312 // and we have elements coming in from the splat at indices that are not 14313 // conducive to using a merge. 14314 // Example: 14315 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14316 if (!isSplatBV(RHS)) 14317 return Res; 14318 14319 // We are looking for a mask such that all even elements are from 14320 // one vector and all odd elements from the other. 14321 if (!isAlternatingShuffMask(Mask, NumElts)) 14322 return Res; 14323 14324 // Adjust the mask so we are pulling in the same index from the splat 14325 // as the index from the interesting vector in consecutive elements. 14326 // Example: 14327 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14328 for (int i = 1, e = Mask.size(); i < e; i += 2) 14329 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14330 14331 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14332 return Res; 14333 } 14334 14335 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14336 LSBaseSDNode *LSBase, 14337 DAGCombinerInfo &DCI) const { 14338 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14339 "Not a reverse memop pattern!"); 14340 14341 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14342 auto Mask = SVN->getMask(); 14343 int i = 0; 14344 auto I = Mask.rbegin(); 14345 auto E = Mask.rend(); 14346 14347 for (; I != E; ++I) { 14348 if (*I != i) 14349 return false; 14350 i++; 14351 } 14352 return true; 14353 }; 14354 14355 SelectionDAG &DAG = DCI.DAG; 14356 EVT VT = SVN->getValueType(0); 14357 14358 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14359 return SDValue(); 14360 14361 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14362 // See comment in PPCVSXSwapRemoval.cpp. 14363 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14364 if (!Subtarget.hasP9Vector()) 14365 return SDValue(); 14366 14367 if(!IsElementReverse(SVN)) 14368 return SDValue(); 14369 14370 if (LSBase->getOpcode() == ISD::LOAD) { 14371 SDLoc dl(SVN); 14372 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14373 return DAG.getMemIntrinsicNode( 14374 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14375 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14376 } 14377 14378 if (LSBase->getOpcode() == ISD::STORE) { 14379 SDLoc dl(LSBase); 14380 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14381 LSBase->getBasePtr()}; 14382 return DAG.getMemIntrinsicNode( 14383 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14384 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14385 } 14386 14387 llvm_unreachable("Expected a load or store node here"); 14388 } 14389 14390 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14391 DAGCombinerInfo &DCI) const { 14392 SelectionDAG &DAG = DCI.DAG; 14393 SDLoc dl(N); 14394 switch (N->getOpcode()) { 14395 default: break; 14396 case ISD::ADD: 14397 return combineADD(N, DCI); 14398 case ISD::SHL: 14399 return combineSHL(N, DCI); 14400 case ISD::SRA: 14401 return combineSRA(N, DCI); 14402 case ISD::SRL: 14403 return combineSRL(N, DCI); 14404 case ISD::MUL: 14405 return combineMUL(N, DCI); 14406 case ISD::FMA: 14407 case PPCISD::FNMSUB: 14408 return combineFMALike(N, DCI); 14409 case PPCISD::SHL: 14410 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14411 return N->getOperand(0); 14412 break; 14413 case PPCISD::SRL: 14414 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14415 return N->getOperand(0); 14416 break; 14417 case PPCISD::SRA: 14418 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14419 if (C->isNullValue() || // 0 >>s V -> 0. 14420 C->isAllOnesValue()) // -1 >>s V -> -1. 14421 return N->getOperand(0); 14422 } 14423 break; 14424 case ISD::SIGN_EXTEND: 14425 case ISD::ZERO_EXTEND: 14426 case ISD::ANY_EXTEND: 14427 return DAGCombineExtBoolTrunc(N, DCI); 14428 case ISD::TRUNCATE: 14429 return combineTRUNCATE(N, DCI); 14430 case ISD::SETCC: 14431 if (SDValue CSCC = combineSetCC(N, DCI)) 14432 return CSCC; 14433 LLVM_FALLTHROUGH; 14434 case ISD::SELECT_CC: 14435 return DAGCombineTruncBoolExt(N, DCI); 14436 case ISD::SINT_TO_FP: 14437 case ISD::UINT_TO_FP: 14438 return combineFPToIntToFP(N, DCI); 14439 case ISD::VECTOR_SHUFFLE: 14440 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14441 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14442 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14443 } 14444 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14445 case ISD::STORE: { 14446 14447 EVT Op1VT = N->getOperand(1).getValueType(); 14448 unsigned Opcode = N->getOperand(1).getOpcode(); 14449 14450 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14451 SDValue Val= combineStoreFPToInt(N, DCI); 14452 if (Val) 14453 return Val; 14454 } 14455 14456 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14457 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14458 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14459 if (Val) 14460 return Val; 14461 } 14462 14463 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14464 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14465 N->getOperand(1).getNode()->hasOneUse() && 14466 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14467 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14468 14469 // STBRX can only handle simple types and it makes no sense to store less 14470 // two bytes in byte-reversed order. 14471 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14472 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14473 break; 14474 14475 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14476 // Do an any-extend to 32-bits if this is a half-word input. 14477 if (BSwapOp.getValueType() == MVT::i16) 14478 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14479 14480 // If the type of BSWAP operand is wider than stored memory width 14481 // it need to be shifted to the right side before STBRX. 14482 if (Op1VT.bitsGT(mVT)) { 14483 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14484 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14485 DAG.getConstant(Shift, dl, MVT::i32)); 14486 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14487 if (Op1VT == MVT::i64) 14488 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14489 } 14490 14491 SDValue Ops[] = { 14492 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14493 }; 14494 return 14495 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14496 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14497 cast<StoreSDNode>(N)->getMemOperand()); 14498 } 14499 14500 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14501 // So it can increase the chance of CSE constant construction. 14502 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14503 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14504 // Need to sign-extended to 64-bits to handle negative values. 14505 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14506 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14507 MemVT.getSizeInBits()); 14508 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14509 14510 // DAG.getTruncStore() can't be used here because it doesn't accept 14511 // the general (base + offset) addressing mode. 14512 // So we use UpdateNodeOperands and setTruncatingStore instead. 14513 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14514 N->getOperand(3)); 14515 cast<StoreSDNode>(N)->setTruncatingStore(true); 14516 return SDValue(N, 0); 14517 } 14518 14519 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14520 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14521 if (Op1VT.isSimple()) { 14522 MVT StoreVT = Op1VT.getSimpleVT(); 14523 if (Subtarget.needsSwapsForVSXMemOps() && 14524 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14525 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14526 return expandVSXStoreForLE(N, DCI); 14527 } 14528 break; 14529 } 14530 case ISD::LOAD: { 14531 LoadSDNode *LD = cast<LoadSDNode>(N); 14532 EVT VT = LD->getValueType(0); 14533 14534 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14535 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14536 if (VT.isSimple()) { 14537 MVT LoadVT = VT.getSimpleVT(); 14538 if (Subtarget.needsSwapsForVSXMemOps() && 14539 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14540 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14541 return expandVSXLoadForLE(N, DCI); 14542 } 14543 14544 // We sometimes end up with a 64-bit integer load, from which we extract 14545 // two single-precision floating-point numbers. This happens with 14546 // std::complex<float>, and other similar structures, because of the way we 14547 // canonicalize structure copies. However, if we lack direct moves, 14548 // then the final bitcasts from the extracted integer values to the 14549 // floating-point numbers turn into store/load pairs. Even with direct moves, 14550 // just loading the two floating-point numbers is likely better. 14551 auto ReplaceTwoFloatLoad = [&]() { 14552 if (VT != MVT::i64) 14553 return false; 14554 14555 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14556 LD->isVolatile()) 14557 return false; 14558 14559 // We're looking for a sequence like this: 14560 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14561 // t16: i64 = srl t13, Constant:i32<32> 14562 // t17: i32 = truncate t16 14563 // t18: f32 = bitcast t17 14564 // t19: i32 = truncate t13 14565 // t20: f32 = bitcast t19 14566 14567 if (!LD->hasNUsesOfValue(2, 0)) 14568 return false; 14569 14570 auto UI = LD->use_begin(); 14571 while (UI.getUse().getResNo() != 0) ++UI; 14572 SDNode *Trunc = *UI++; 14573 while (UI.getUse().getResNo() != 0) ++UI; 14574 SDNode *RightShift = *UI; 14575 if (Trunc->getOpcode() != ISD::TRUNCATE) 14576 std::swap(Trunc, RightShift); 14577 14578 if (Trunc->getOpcode() != ISD::TRUNCATE || 14579 Trunc->getValueType(0) != MVT::i32 || 14580 !Trunc->hasOneUse()) 14581 return false; 14582 if (RightShift->getOpcode() != ISD::SRL || 14583 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14584 RightShift->getConstantOperandVal(1) != 32 || 14585 !RightShift->hasOneUse()) 14586 return false; 14587 14588 SDNode *Trunc2 = *RightShift->use_begin(); 14589 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14590 Trunc2->getValueType(0) != MVT::i32 || 14591 !Trunc2->hasOneUse()) 14592 return false; 14593 14594 SDNode *Bitcast = *Trunc->use_begin(); 14595 SDNode *Bitcast2 = *Trunc2->use_begin(); 14596 14597 if (Bitcast->getOpcode() != ISD::BITCAST || 14598 Bitcast->getValueType(0) != MVT::f32) 14599 return false; 14600 if (Bitcast2->getOpcode() != ISD::BITCAST || 14601 Bitcast2->getValueType(0) != MVT::f32) 14602 return false; 14603 14604 if (Subtarget.isLittleEndian()) 14605 std::swap(Bitcast, Bitcast2); 14606 14607 // Bitcast has the second float (in memory-layout order) and Bitcast2 14608 // has the first one. 14609 14610 SDValue BasePtr = LD->getBasePtr(); 14611 if (LD->isIndexed()) { 14612 assert(LD->getAddressingMode() == ISD::PRE_INC && 14613 "Non-pre-inc AM on PPC?"); 14614 BasePtr = 14615 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14616 LD->getOffset()); 14617 } 14618 14619 auto MMOFlags = 14620 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14621 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14622 LD->getPointerInfo(), LD->getAlignment(), 14623 MMOFlags, LD->getAAInfo()); 14624 SDValue AddPtr = 14625 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14626 BasePtr, DAG.getIntPtrConstant(4, dl)); 14627 SDValue FloatLoad2 = DAG.getLoad( 14628 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14629 LD->getPointerInfo().getWithOffset(4), 14630 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14631 14632 if (LD->isIndexed()) { 14633 // Note that DAGCombine should re-form any pre-increment load(s) from 14634 // what is produced here if that makes sense. 14635 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14636 } 14637 14638 DCI.CombineTo(Bitcast2, FloatLoad); 14639 DCI.CombineTo(Bitcast, FloatLoad2); 14640 14641 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14642 SDValue(FloatLoad2.getNode(), 1)); 14643 return true; 14644 }; 14645 14646 if (ReplaceTwoFloatLoad()) 14647 return SDValue(N, 0); 14648 14649 EVT MemVT = LD->getMemoryVT(); 14650 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14651 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14652 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14653 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14654 if (LD->isUnindexed() && VT.isVector() && 14655 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14656 // P8 and later hardware should just use LOAD. 14657 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14658 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14659 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14660 LD->getAlignment() >= ScalarABIAlignment)) && 14661 LD->getAlignment() < ABIAlignment) { 14662 // This is a type-legal unaligned Altivec or QPX load. 14663 SDValue Chain = LD->getChain(); 14664 SDValue Ptr = LD->getBasePtr(); 14665 bool isLittleEndian = Subtarget.isLittleEndian(); 14666 14667 // This implements the loading of unaligned vectors as described in 14668 // the venerable Apple Velocity Engine overview. Specifically: 14669 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14670 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14671 // 14672 // The general idea is to expand a sequence of one or more unaligned 14673 // loads into an alignment-based permutation-control instruction (lvsl 14674 // or lvsr), a series of regular vector loads (which always truncate 14675 // their input address to an aligned address), and a series of 14676 // permutations. The results of these permutations are the requested 14677 // loaded values. The trick is that the last "extra" load is not taken 14678 // from the address you might suspect (sizeof(vector) bytes after the 14679 // last requested load), but rather sizeof(vector) - 1 bytes after the 14680 // last requested vector. The point of this is to avoid a page fault if 14681 // the base address happened to be aligned. This works because if the 14682 // base address is aligned, then adding less than a full vector length 14683 // will cause the last vector in the sequence to be (re)loaded. 14684 // Otherwise, the next vector will be fetched as you might suspect was 14685 // necessary. 14686 14687 // We might be able to reuse the permutation generation from 14688 // a different base address offset from this one by an aligned amount. 14689 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14690 // optimization later. 14691 Intrinsic::ID Intr, IntrLD, IntrPerm; 14692 MVT PermCntlTy, PermTy, LDTy; 14693 if (Subtarget.hasAltivec()) { 14694 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14695 Intrinsic::ppc_altivec_lvsl; 14696 IntrLD = Intrinsic::ppc_altivec_lvx; 14697 IntrPerm = Intrinsic::ppc_altivec_vperm; 14698 PermCntlTy = MVT::v16i8; 14699 PermTy = MVT::v4i32; 14700 LDTy = MVT::v4i32; 14701 } else { 14702 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14703 Intrinsic::ppc_qpx_qvlpcls; 14704 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14705 Intrinsic::ppc_qpx_qvlfs; 14706 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14707 PermCntlTy = MVT::v4f64; 14708 PermTy = MVT::v4f64; 14709 LDTy = MemVT.getSimpleVT(); 14710 } 14711 14712 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14713 14714 // Create the new MMO for the new base load. It is like the original MMO, 14715 // but represents an area in memory almost twice the vector size centered 14716 // on the original address. If the address is unaligned, we might start 14717 // reading up to (sizeof(vector)-1) bytes below the address of the 14718 // original unaligned load. 14719 MachineFunction &MF = DAG.getMachineFunction(); 14720 MachineMemOperand *BaseMMO = 14721 MF.getMachineMemOperand(LD->getMemOperand(), 14722 -(long)MemVT.getStoreSize()+1, 14723 2*MemVT.getStoreSize()-1); 14724 14725 // Create the new base load. 14726 SDValue LDXIntID = 14727 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14728 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14729 SDValue BaseLoad = 14730 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14731 DAG.getVTList(PermTy, MVT::Other), 14732 BaseLoadOps, LDTy, BaseMMO); 14733 14734 // Note that the value of IncOffset (which is provided to the next 14735 // load's pointer info offset value, and thus used to calculate the 14736 // alignment), and the value of IncValue (which is actually used to 14737 // increment the pointer value) are different! This is because we 14738 // require the next load to appear to be aligned, even though it 14739 // is actually offset from the base pointer by a lesser amount. 14740 int IncOffset = VT.getSizeInBits() / 8; 14741 int IncValue = IncOffset; 14742 14743 // Walk (both up and down) the chain looking for another load at the real 14744 // (aligned) offset (the alignment of the other load does not matter in 14745 // this case). If found, then do not use the offset reduction trick, as 14746 // that will prevent the loads from being later combined (as they would 14747 // otherwise be duplicates). 14748 if (!findConsecutiveLoad(LD, DAG)) 14749 --IncValue; 14750 14751 SDValue Increment = 14752 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14753 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14754 14755 MachineMemOperand *ExtraMMO = 14756 MF.getMachineMemOperand(LD->getMemOperand(), 14757 1, 2*MemVT.getStoreSize()-1); 14758 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14759 SDValue ExtraLoad = 14760 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14761 DAG.getVTList(PermTy, MVT::Other), 14762 ExtraLoadOps, LDTy, ExtraMMO); 14763 14764 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14765 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14766 14767 // Because vperm has a big-endian bias, we must reverse the order 14768 // of the input vectors and complement the permute control vector 14769 // when generating little endian code. We have already handled the 14770 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14771 // and ExtraLoad here. 14772 SDValue Perm; 14773 if (isLittleEndian) 14774 Perm = BuildIntrinsicOp(IntrPerm, 14775 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14776 else 14777 Perm = BuildIntrinsicOp(IntrPerm, 14778 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14779 14780 if (VT != PermTy) 14781 Perm = Subtarget.hasAltivec() ? 14782 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14783 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14784 DAG.getTargetConstant(1, dl, MVT::i64)); 14785 // second argument is 1 because this rounding 14786 // is always exact. 14787 14788 // The output of the permutation is our loaded result, the TokenFactor is 14789 // our new chain. 14790 DCI.CombineTo(N, Perm, TF); 14791 return SDValue(N, 0); 14792 } 14793 } 14794 break; 14795 case ISD::INTRINSIC_WO_CHAIN: { 14796 bool isLittleEndian = Subtarget.isLittleEndian(); 14797 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14798 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14799 : Intrinsic::ppc_altivec_lvsl); 14800 if ((IID == Intr || 14801 IID == Intrinsic::ppc_qpx_qvlpcld || 14802 IID == Intrinsic::ppc_qpx_qvlpcls) && 14803 N->getOperand(1)->getOpcode() == ISD::ADD) { 14804 SDValue Add = N->getOperand(1); 14805 14806 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14807 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14808 14809 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14810 APInt::getAllOnesValue(Bits /* alignment */) 14811 .zext(Add.getScalarValueSizeInBits()))) { 14812 SDNode *BasePtr = Add->getOperand(0).getNode(); 14813 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14814 UE = BasePtr->use_end(); 14815 UI != UE; ++UI) { 14816 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14817 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14818 // We've found another LVSL/LVSR, and this address is an aligned 14819 // multiple of that one. The results will be the same, so use the 14820 // one we've just found instead. 14821 14822 return SDValue(*UI, 0); 14823 } 14824 } 14825 } 14826 14827 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14828 SDNode *BasePtr = Add->getOperand(0).getNode(); 14829 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14830 UE = BasePtr->use_end(); UI != UE; ++UI) { 14831 if (UI->getOpcode() == ISD::ADD && 14832 isa<ConstantSDNode>(UI->getOperand(1)) && 14833 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14834 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14835 (1ULL << Bits) == 0) { 14836 SDNode *OtherAdd = *UI; 14837 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14838 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14839 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14840 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14841 return SDValue(*VI, 0); 14842 } 14843 } 14844 } 14845 } 14846 } 14847 } 14848 14849 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14850 // Expose the vabsduw/h/b opportunity for down stream 14851 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14852 (IID == Intrinsic::ppc_altivec_vmaxsw || 14853 IID == Intrinsic::ppc_altivec_vmaxsh || 14854 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14855 SDValue V1 = N->getOperand(1); 14856 SDValue V2 = N->getOperand(2); 14857 if ((V1.getSimpleValueType() == MVT::v4i32 || 14858 V1.getSimpleValueType() == MVT::v8i16 || 14859 V1.getSimpleValueType() == MVT::v16i8) && 14860 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14861 // (0-a, a) 14862 if (V1.getOpcode() == ISD::SUB && 14863 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14864 V1.getOperand(1) == V2) { 14865 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14866 } 14867 // (a, 0-a) 14868 if (V2.getOpcode() == ISD::SUB && 14869 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14870 V2.getOperand(1) == V1) { 14871 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14872 } 14873 // (x-y, y-x) 14874 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14875 V1.getOperand(0) == V2.getOperand(1) && 14876 V1.getOperand(1) == V2.getOperand(0)) { 14877 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14878 } 14879 } 14880 } 14881 } 14882 14883 break; 14884 case ISD::INTRINSIC_W_CHAIN: 14885 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14886 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14887 if (Subtarget.needsSwapsForVSXMemOps()) { 14888 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14889 default: 14890 break; 14891 case Intrinsic::ppc_vsx_lxvw4x: 14892 case Intrinsic::ppc_vsx_lxvd2x: 14893 return expandVSXLoadForLE(N, DCI); 14894 } 14895 } 14896 break; 14897 case ISD::INTRINSIC_VOID: 14898 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14899 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14900 if (Subtarget.needsSwapsForVSXMemOps()) { 14901 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14902 default: 14903 break; 14904 case Intrinsic::ppc_vsx_stxvw4x: 14905 case Intrinsic::ppc_vsx_stxvd2x: 14906 return expandVSXStoreForLE(N, DCI); 14907 } 14908 } 14909 break; 14910 case ISD::BSWAP: 14911 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14912 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14913 N->getOperand(0).hasOneUse() && 14914 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14915 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14916 N->getValueType(0) == MVT::i64))) { 14917 SDValue Load = N->getOperand(0); 14918 LoadSDNode *LD = cast<LoadSDNode>(Load); 14919 // Create the byte-swapping load. 14920 SDValue Ops[] = { 14921 LD->getChain(), // Chain 14922 LD->getBasePtr(), // Ptr 14923 DAG.getValueType(N->getValueType(0)) // VT 14924 }; 14925 SDValue BSLoad = 14926 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14927 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14928 MVT::i64 : MVT::i32, MVT::Other), 14929 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14930 14931 // If this is an i16 load, insert the truncate. 14932 SDValue ResVal = BSLoad; 14933 if (N->getValueType(0) == MVT::i16) 14934 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14935 14936 // First, combine the bswap away. This makes the value produced by the 14937 // load dead. 14938 DCI.CombineTo(N, ResVal); 14939 14940 // Next, combine the load away, we give it a bogus result value but a real 14941 // chain result. The result value is dead because the bswap is dead. 14942 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14943 14944 // Return N so it doesn't get rechecked! 14945 return SDValue(N, 0); 14946 } 14947 break; 14948 case PPCISD::VCMP: 14949 // If a VCMPo node already exists with exactly the same operands as this 14950 // node, use its result instead of this node (VCMPo computes both a CR6 and 14951 // a normal output). 14952 // 14953 if (!N->getOperand(0).hasOneUse() && 14954 !N->getOperand(1).hasOneUse() && 14955 !N->getOperand(2).hasOneUse()) { 14956 14957 // Scan all of the users of the LHS, looking for VCMPo's that match. 14958 SDNode *VCMPoNode = nullptr; 14959 14960 SDNode *LHSN = N->getOperand(0).getNode(); 14961 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14962 UI != E; ++UI) 14963 if (UI->getOpcode() == PPCISD::VCMPo && 14964 UI->getOperand(1) == N->getOperand(1) && 14965 UI->getOperand(2) == N->getOperand(2) && 14966 UI->getOperand(0) == N->getOperand(0)) { 14967 VCMPoNode = *UI; 14968 break; 14969 } 14970 14971 // If there is no VCMPo node, or if the flag value has a single use, don't 14972 // transform this. 14973 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14974 break; 14975 14976 // Look at the (necessarily single) use of the flag value. If it has a 14977 // chain, this transformation is more complex. Note that multiple things 14978 // could use the value result, which we should ignore. 14979 SDNode *FlagUser = nullptr; 14980 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14981 FlagUser == nullptr; ++UI) { 14982 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14983 SDNode *User = *UI; 14984 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14985 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14986 FlagUser = User; 14987 break; 14988 } 14989 } 14990 } 14991 14992 // If the user is a MFOCRF instruction, we know this is safe. 14993 // Otherwise we give up for right now. 14994 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14995 return SDValue(VCMPoNode, 0); 14996 } 14997 break; 14998 case ISD::BRCOND: { 14999 SDValue Cond = N->getOperand(1); 15000 SDValue Target = N->getOperand(2); 15001 15002 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15003 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15004 Intrinsic::loop_decrement) { 15005 15006 // We now need to make the intrinsic dead (it cannot be instruction 15007 // selected). 15008 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15009 assert(Cond.getNode()->hasOneUse() && 15010 "Counter decrement has more than one use"); 15011 15012 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15013 N->getOperand(0), Target); 15014 } 15015 } 15016 break; 15017 case ISD::BR_CC: { 15018 // If this is a branch on an altivec predicate comparison, lower this so 15019 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15020 // lowering is done pre-legalize, because the legalizer lowers the predicate 15021 // compare down to code that is difficult to reassemble. 15022 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15023 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15024 15025 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15026 // value. If so, pass-through the AND to get to the intrinsic. 15027 if (LHS.getOpcode() == ISD::AND && 15028 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15029 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15030 Intrinsic::loop_decrement && 15031 isa<ConstantSDNode>(LHS.getOperand(1)) && 15032 !isNullConstant(LHS.getOperand(1))) 15033 LHS = LHS.getOperand(0); 15034 15035 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15036 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15037 Intrinsic::loop_decrement && 15038 isa<ConstantSDNode>(RHS)) { 15039 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15040 "Counter decrement comparison is not EQ or NE"); 15041 15042 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15043 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15044 (CC == ISD::SETNE && !Val); 15045 15046 // We now need to make the intrinsic dead (it cannot be instruction 15047 // selected). 15048 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15049 assert(LHS.getNode()->hasOneUse() && 15050 "Counter decrement has more than one use"); 15051 15052 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15053 N->getOperand(0), N->getOperand(4)); 15054 } 15055 15056 int CompareOpc; 15057 bool isDot; 15058 15059 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15060 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15061 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15062 assert(isDot && "Can't compare against a vector result!"); 15063 15064 // If this is a comparison against something other than 0/1, then we know 15065 // that the condition is never/always true. 15066 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15067 if (Val != 0 && Val != 1) { 15068 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15069 return N->getOperand(0); 15070 // Always !=, turn it into an unconditional branch. 15071 return DAG.getNode(ISD::BR, dl, MVT::Other, 15072 N->getOperand(0), N->getOperand(4)); 15073 } 15074 15075 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15076 15077 // Create the PPCISD altivec 'dot' comparison node. 15078 SDValue Ops[] = { 15079 LHS.getOperand(2), // LHS of compare 15080 LHS.getOperand(3), // RHS of compare 15081 DAG.getConstant(CompareOpc, dl, MVT::i32) 15082 }; 15083 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15084 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15085 15086 // Unpack the result based on how the target uses it. 15087 PPC::Predicate CompOpc; 15088 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15089 default: // Can't happen, don't crash on invalid number though. 15090 case 0: // Branch on the value of the EQ bit of CR6. 15091 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15092 break; 15093 case 1: // Branch on the inverted value of the EQ bit of CR6. 15094 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15095 break; 15096 case 2: // Branch on the value of the LT bit of CR6. 15097 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15098 break; 15099 case 3: // Branch on the inverted value of the LT bit of CR6. 15100 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15101 break; 15102 } 15103 15104 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15105 DAG.getConstant(CompOpc, dl, MVT::i32), 15106 DAG.getRegister(PPC::CR6, MVT::i32), 15107 N->getOperand(4), CompNode.getValue(1)); 15108 } 15109 break; 15110 } 15111 case ISD::BUILD_VECTOR: 15112 return DAGCombineBuildVector(N, DCI); 15113 case ISD::ABS: 15114 return combineABS(N, DCI); 15115 case ISD::VSELECT: 15116 return combineVSelect(N, DCI); 15117 } 15118 15119 return SDValue(); 15120 } 15121 15122 SDValue 15123 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15124 SelectionDAG &DAG, 15125 SmallVectorImpl<SDNode *> &Created) const { 15126 // fold (sdiv X, pow2) 15127 EVT VT = N->getValueType(0); 15128 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15129 return SDValue(); 15130 if ((VT != MVT::i32 && VT != MVT::i64) || 15131 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15132 return SDValue(); 15133 15134 SDLoc DL(N); 15135 SDValue N0 = N->getOperand(0); 15136 15137 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15138 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15139 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15140 15141 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15142 Created.push_back(Op.getNode()); 15143 15144 if (IsNegPow2) { 15145 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15146 Created.push_back(Op.getNode()); 15147 } 15148 15149 return Op; 15150 } 15151 15152 //===----------------------------------------------------------------------===// 15153 // Inline Assembly Support 15154 //===----------------------------------------------------------------------===// 15155 15156 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15157 KnownBits &Known, 15158 const APInt &DemandedElts, 15159 const SelectionDAG &DAG, 15160 unsigned Depth) const { 15161 Known.resetAll(); 15162 switch (Op.getOpcode()) { 15163 default: break; 15164 case PPCISD::LBRX: { 15165 // lhbrx is known to have the top bits cleared out. 15166 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15167 Known.Zero = 0xFFFF0000; 15168 break; 15169 } 15170 case ISD::INTRINSIC_WO_CHAIN: { 15171 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15172 default: break; 15173 case Intrinsic::ppc_altivec_vcmpbfp_p: 15174 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15175 case Intrinsic::ppc_altivec_vcmpequb_p: 15176 case Intrinsic::ppc_altivec_vcmpequh_p: 15177 case Intrinsic::ppc_altivec_vcmpequw_p: 15178 case Intrinsic::ppc_altivec_vcmpequd_p: 15179 case Intrinsic::ppc_altivec_vcmpgefp_p: 15180 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15181 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15182 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15183 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15184 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15185 case Intrinsic::ppc_altivec_vcmpgtub_p: 15186 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15187 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15188 case Intrinsic::ppc_altivec_vcmpgtud_p: 15189 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15190 break; 15191 } 15192 } 15193 } 15194 } 15195 15196 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15197 switch (Subtarget.getCPUDirective()) { 15198 default: break; 15199 case PPC::DIR_970: 15200 case PPC::DIR_PWR4: 15201 case PPC::DIR_PWR5: 15202 case PPC::DIR_PWR5X: 15203 case PPC::DIR_PWR6: 15204 case PPC::DIR_PWR6X: 15205 case PPC::DIR_PWR7: 15206 case PPC::DIR_PWR8: 15207 case PPC::DIR_PWR9: 15208 case PPC::DIR_PWR10: 15209 case PPC::DIR_PWR_FUTURE: { 15210 if (!ML) 15211 break; 15212 15213 if (!DisableInnermostLoopAlign32) { 15214 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15215 // so that we can decrease cache misses and branch-prediction misses. 15216 // Actual alignment of the loop will depend on the hotness check and other 15217 // logic in alignBlocks. 15218 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15219 return Align(32); 15220 } 15221 15222 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15223 15224 // For small loops (between 5 and 8 instructions), align to a 32-byte 15225 // boundary so that the entire loop fits in one instruction-cache line. 15226 uint64_t LoopSize = 0; 15227 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15228 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15229 LoopSize += TII->getInstSizeInBytes(*J); 15230 if (LoopSize > 32) 15231 break; 15232 } 15233 15234 if (LoopSize > 16 && LoopSize <= 32) 15235 return Align(32); 15236 15237 break; 15238 } 15239 } 15240 15241 return TargetLowering::getPrefLoopAlignment(ML); 15242 } 15243 15244 /// getConstraintType - Given a constraint, return the type of 15245 /// constraint it is for this target. 15246 PPCTargetLowering::ConstraintType 15247 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15248 if (Constraint.size() == 1) { 15249 switch (Constraint[0]) { 15250 default: break; 15251 case 'b': 15252 case 'r': 15253 case 'f': 15254 case 'd': 15255 case 'v': 15256 case 'y': 15257 return C_RegisterClass; 15258 case 'Z': 15259 // FIXME: While Z does indicate a memory constraint, it specifically 15260 // indicates an r+r address (used in conjunction with the 'y' modifier 15261 // in the replacement string). Currently, we're forcing the base 15262 // register to be r0 in the asm printer (which is interpreted as zero) 15263 // and forming the complete address in the second register. This is 15264 // suboptimal. 15265 return C_Memory; 15266 } 15267 } else if (Constraint == "wc") { // individual CR bits. 15268 return C_RegisterClass; 15269 } else if (Constraint == "wa" || Constraint == "wd" || 15270 Constraint == "wf" || Constraint == "ws" || 15271 Constraint == "wi" || Constraint == "ww") { 15272 return C_RegisterClass; // VSX registers. 15273 } 15274 return TargetLowering::getConstraintType(Constraint); 15275 } 15276 15277 /// Examine constraint type and operand type and determine a weight value. 15278 /// This object must already have been set up with the operand type 15279 /// and the current alternative constraint selected. 15280 TargetLowering::ConstraintWeight 15281 PPCTargetLowering::getSingleConstraintMatchWeight( 15282 AsmOperandInfo &info, const char *constraint) const { 15283 ConstraintWeight weight = CW_Invalid; 15284 Value *CallOperandVal = info.CallOperandVal; 15285 // If we don't have a value, we can't do a match, 15286 // but allow it at the lowest weight. 15287 if (!CallOperandVal) 15288 return CW_Default; 15289 Type *type = CallOperandVal->getType(); 15290 15291 // Look at the constraint type. 15292 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15293 return CW_Register; // an individual CR bit. 15294 else if ((StringRef(constraint) == "wa" || 15295 StringRef(constraint) == "wd" || 15296 StringRef(constraint) == "wf") && 15297 type->isVectorTy()) 15298 return CW_Register; 15299 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15300 return CW_Register; // just hold 64-bit integers data. 15301 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15302 return CW_Register; 15303 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15304 return CW_Register; 15305 15306 switch (*constraint) { 15307 default: 15308 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15309 break; 15310 case 'b': 15311 if (type->isIntegerTy()) 15312 weight = CW_Register; 15313 break; 15314 case 'f': 15315 if (type->isFloatTy()) 15316 weight = CW_Register; 15317 break; 15318 case 'd': 15319 if (type->isDoubleTy()) 15320 weight = CW_Register; 15321 break; 15322 case 'v': 15323 if (type->isVectorTy()) 15324 weight = CW_Register; 15325 break; 15326 case 'y': 15327 weight = CW_Register; 15328 break; 15329 case 'Z': 15330 weight = CW_Memory; 15331 break; 15332 } 15333 return weight; 15334 } 15335 15336 std::pair<unsigned, const TargetRegisterClass *> 15337 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15338 StringRef Constraint, 15339 MVT VT) const { 15340 if (Constraint.size() == 1) { 15341 // GCC RS6000 Constraint Letters 15342 switch (Constraint[0]) { 15343 case 'b': // R1-R31 15344 if (VT == MVT::i64 && Subtarget.isPPC64()) 15345 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15346 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15347 case 'r': // R0-R31 15348 if (VT == MVT::i64 && Subtarget.isPPC64()) 15349 return std::make_pair(0U, &PPC::G8RCRegClass); 15350 return std::make_pair(0U, &PPC::GPRCRegClass); 15351 // 'd' and 'f' constraints are both defined to be "the floating point 15352 // registers", where one is for 32-bit and the other for 64-bit. We don't 15353 // really care overly much here so just give them all the same reg classes. 15354 case 'd': 15355 case 'f': 15356 if (Subtarget.hasSPE()) { 15357 if (VT == MVT::f32 || VT == MVT::i32) 15358 return std::make_pair(0U, &PPC::GPRCRegClass); 15359 if (VT == MVT::f64 || VT == MVT::i64) 15360 return std::make_pair(0U, &PPC::SPERCRegClass); 15361 } else { 15362 if (VT == MVT::f32 || VT == MVT::i32) 15363 return std::make_pair(0U, &PPC::F4RCRegClass); 15364 if (VT == MVT::f64 || VT == MVT::i64) 15365 return std::make_pair(0U, &PPC::F8RCRegClass); 15366 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15367 return std::make_pair(0U, &PPC::QFRCRegClass); 15368 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15369 return std::make_pair(0U, &PPC::QSRCRegClass); 15370 } 15371 break; 15372 case 'v': 15373 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15374 return std::make_pair(0U, &PPC::QFRCRegClass); 15375 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15376 return std::make_pair(0U, &PPC::QSRCRegClass); 15377 if (Subtarget.hasAltivec()) 15378 return std::make_pair(0U, &PPC::VRRCRegClass); 15379 break; 15380 case 'y': // crrc 15381 return std::make_pair(0U, &PPC::CRRCRegClass); 15382 } 15383 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15384 // An individual CR bit. 15385 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15386 } else if ((Constraint == "wa" || Constraint == "wd" || 15387 Constraint == "wf" || Constraint == "wi") && 15388 Subtarget.hasVSX()) { 15389 return std::make_pair(0U, &PPC::VSRCRegClass); 15390 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15391 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15392 return std::make_pair(0U, &PPC::VSSRCRegClass); 15393 else 15394 return std::make_pair(0U, &PPC::VSFRCRegClass); 15395 } 15396 15397 // If we name a VSX register, we can't defer to the base class because it 15398 // will not recognize the correct register (their names will be VSL{0-31} 15399 // and V{0-31} so they won't match). So we match them here. 15400 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15401 int VSNum = atoi(Constraint.data() + 3); 15402 assert(VSNum >= 0 && VSNum <= 63 && 15403 "Attempted to access a vsr out of range"); 15404 if (VSNum < 32) 15405 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15406 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15407 } 15408 std::pair<unsigned, const TargetRegisterClass *> R = 15409 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15410 15411 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15412 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15413 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15414 // register. 15415 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15416 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15417 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15418 PPC::GPRCRegClass.contains(R.first)) 15419 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15420 PPC::sub_32, &PPC::G8RCRegClass), 15421 &PPC::G8RCRegClass); 15422 15423 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15424 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15425 R.first = PPC::CR0; 15426 R.second = &PPC::CRRCRegClass; 15427 } 15428 15429 return R; 15430 } 15431 15432 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15433 /// vector. If it is invalid, don't add anything to Ops. 15434 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15435 std::string &Constraint, 15436 std::vector<SDValue>&Ops, 15437 SelectionDAG &DAG) const { 15438 SDValue Result; 15439 15440 // Only support length 1 constraints. 15441 if (Constraint.length() > 1) return; 15442 15443 char Letter = Constraint[0]; 15444 switch (Letter) { 15445 default: break; 15446 case 'I': 15447 case 'J': 15448 case 'K': 15449 case 'L': 15450 case 'M': 15451 case 'N': 15452 case 'O': 15453 case 'P': { 15454 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15455 if (!CST) return; // Must be an immediate to match. 15456 SDLoc dl(Op); 15457 int64_t Value = CST->getSExtValue(); 15458 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15459 // numbers are printed as such. 15460 switch (Letter) { 15461 default: llvm_unreachable("Unknown constraint letter!"); 15462 case 'I': // "I" is a signed 16-bit constant. 15463 if (isInt<16>(Value)) 15464 Result = DAG.getTargetConstant(Value, dl, TCVT); 15465 break; 15466 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15467 if (isShiftedUInt<16, 16>(Value)) 15468 Result = DAG.getTargetConstant(Value, dl, TCVT); 15469 break; 15470 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15471 if (isShiftedInt<16, 16>(Value)) 15472 Result = DAG.getTargetConstant(Value, dl, TCVT); 15473 break; 15474 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15475 if (isUInt<16>(Value)) 15476 Result = DAG.getTargetConstant(Value, dl, TCVT); 15477 break; 15478 case 'M': // "M" is a constant that is greater than 31. 15479 if (Value > 31) 15480 Result = DAG.getTargetConstant(Value, dl, TCVT); 15481 break; 15482 case 'N': // "N" is a positive constant that is an exact power of two. 15483 if (Value > 0 && isPowerOf2_64(Value)) 15484 Result = DAG.getTargetConstant(Value, dl, TCVT); 15485 break; 15486 case 'O': // "O" is the constant zero. 15487 if (Value == 0) 15488 Result = DAG.getTargetConstant(Value, dl, TCVT); 15489 break; 15490 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15491 if (isInt<16>(-Value)) 15492 Result = DAG.getTargetConstant(Value, dl, TCVT); 15493 break; 15494 } 15495 break; 15496 } 15497 } 15498 15499 if (Result.getNode()) { 15500 Ops.push_back(Result); 15501 return; 15502 } 15503 15504 // Handle standard constraint letters. 15505 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15506 } 15507 15508 // isLegalAddressingMode - Return true if the addressing mode represented 15509 // by AM is legal for this target, for a load/store of the specified type. 15510 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15511 const AddrMode &AM, Type *Ty, 15512 unsigned AS, Instruction *I) const { 15513 // PPC does not allow r+i addressing modes for vectors! 15514 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15515 return false; 15516 15517 // PPC allows a sign-extended 16-bit immediate field. 15518 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15519 return false; 15520 15521 // No global is ever allowed as a base. 15522 if (AM.BaseGV) 15523 return false; 15524 15525 // PPC only support r+r, 15526 switch (AM.Scale) { 15527 case 0: // "r+i" or just "i", depending on HasBaseReg. 15528 break; 15529 case 1: 15530 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15531 return false; 15532 // Otherwise we have r+r or r+i. 15533 break; 15534 case 2: 15535 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15536 return false; 15537 // Allow 2*r as r+r. 15538 break; 15539 default: 15540 // No other scales are supported. 15541 return false; 15542 } 15543 15544 return true; 15545 } 15546 15547 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15548 SelectionDAG &DAG) const { 15549 MachineFunction &MF = DAG.getMachineFunction(); 15550 MachineFrameInfo &MFI = MF.getFrameInfo(); 15551 MFI.setReturnAddressIsTaken(true); 15552 15553 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15554 return SDValue(); 15555 15556 SDLoc dl(Op); 15557 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15558 15559 // Make sure the function does not optimize away the store of the RA to 15560 // the stack. 15561 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15562 FuncInfo->setLRStoreRequired(); 15563 bool isPPC64 = Subtarget.isPPC64(); 15564 auto PtrVT = getPointerTy(MF.getDataLayout()); 15565 15566 if (Depth > 0) { 15567 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15568 SDValue Offset = 15569 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15570 isPPC64 ? MVT::i64 : MVT::i32); 15571 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15572 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15573 MachinePointerInfo()); 15574 } 15575 15576 // Just load the return address off the stack. 15577 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15578 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15579 MachinePointerInfo()); 15580 } 15581 15582 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15583 SelectionDAG &DAG) const { 15584 SDLoc dl(Op); 15585 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15586 15587 MachineFunction &MF = DAG.getMachineFunction(); 15588 MachineFrameInfo &MFI = MF.getFrameInfo(); 15589 MFI.setFrameAddressIsTaken(true); 15590 15591 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15592 bool isPPC64 = PtrVT == MVT::i64; 15593 15594 // Naked functions never have a frame pointer, and so we use r1. For all 15595 // other functions, this decision must be delayed until during PEI. 15596 unsigned FrameReg; 15597 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15598 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15599 else 15600 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15601 15602 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15603 PtrVT); 15604 while (Depth--) 15605 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15606 FrameAddr, MachinePointerInfo()); 15607 return FrameAddr; 15608 } 15609 15610 // FIXME? Maybe this could be a TableGen attribute on some registers and 15611 // this table could be generated automatically from RegInfo. 15612 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15613 const MachineFunction &MF) const { 15614 bool isPPC64 = Subtarget.isPPC64(); 15615 15616 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15617 if (!is64Bit && VT != LLT::scalar(32)) 15618 report_fatal_error("Invalid register global variable type"); 15619 15620 Register Reg = StringSwitch<Register>(RegName) 15621 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15622 .Case("r2", isPPC64 ? Register() : PPC::R2) 15623 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15624 .Default(Register()); 15625 15626 if (Reg) 15627 return Reg; 15628 report_fatal_error("Invalid register name global variable"); 15629 } 15630 15631 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15632 // 32-bit SVR4 ABI access everything as got-indirect. 15633 if (Subtarget.is32BitELFABI()) 15634 return true; 15635 15636 // AIX accesses everything indirectly through the TOC, which is similar to 15637 // the GOT. 15638 if (Subtarget.isAIXABI()) 15639 return true; 15640 15641 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15642 // If it is small or large code model, module locals are accessed 15643 // indirectly by loading their address from .toc/.got. 15644 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15645 return true; 15646 15647 // JumpTable and BlockAddress are accessed as got-indirect. 15648 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15649 return true; 15650 15651 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15652 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15653 15654 return false; 15655 } 15656 15657 bool 15658 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15659 // The PowerPC target isn't yet aware of offsets. 15660 return false; 15661 } 15662 15663 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15664 const CallInst &I, 15665 MachineFunction &MF, 15666 unsigned Intrinsic) const { 15667 switch (Intrinsic) { 15668 case Intrinsic::ppc_qpx_qvlfd: 15669 case Intrinsic::ppc_qpx_qvlfs: 15670 case Intrinsic::ppc_qpx_qvlfcd: 15671 case Intrinsic::ppc_qpx_qvlfcs: 15672 case Intrinsic::ppc_qpx_qvlfiwa: 15673 case Intrinsic::ppc_qpx_qvlfiwz: 15674 case Intrinsic::ppc_altivec_lvx: 15675 case Intrinsic::ppc_altivec_lvxl: 15676 case Intrinsic::ppc_altivec_lvebx: 15677 case Intrinsic::ppc_altivec_lvehx: 15678 case Intrinsic::ppc_altivec_lvewx: 15679 case Intrinsic::ppc_vsx_lxvd2x: 15680 case Intrinsic::ppc_vsx_lxvw4x: { 15681 EVT VT; 15682 switch (Intrinsic) { 15683 case Intrinsic::ppc_altivec_lvebx: 15684 VT = MVT::i8; 15685 break; 15686 case Intrinsic::ppc_altivec_lvehx: 15687 VT = MVT::i16; 15688 break; 15689 case Intrinsic::ppc_altivec_lvewx: 15690 VT = MVT::i32; 15691 break; 15692 case Intrinsic::ppc_vsx_lxvd2x: 15693 VT = MVT::v2f64; 15694 break; 15695 case Intrinsic::ppc_qpx_qvlfd: 15696 VT = MVT::v4f64; 15697 break; 15698 case Intrinsic::ppc_qpx_qvlfs: 15699 VT = MVT::v4f32; 15700 break; 15701 case Intrinsic::ppc_qpx_qvlfcd: 15702 VT = MVT::v2f64; 15703 break; 15704 case Intrinsic::ppc_qpx_qvlfcs: 15705 VT = MVT::v2f32; 15706 break; 15707 default: 15708 VT = MVT::v4i32; 15709 break; 15710 } 15711 15712 Info.opc = ISD::INTRINSIC_W_CHAIN; 15713 Info.memVT = VT; 15714 Info.ptrVal = I.getArgOperand(0); 15715 Info.offset = -VT.getStoreSize()+1; 15716 Info.size = 2*VT.getStoreSize()-1; 15717 Info.align = Align(1); 15718 Info.flags = MachineMemOperand::MOLoad; 15719 return true; 15720 } 15721 case Intrinsic::ppc_qpx_qvlfda: 15722 case Intrinsic::ppc_qpx_qvlfsa: 15723 case Intrinsic::ppc_qpx_qvlfcda: 15724 case Intrinsic::ppc_qpx_qvlfcsa: 15725 case Intrinsic::ppc_qpx_qvlfiwaa: 15726 case Intrinsic::ppc_qpx_qvlfiwza: { 15727 EVT VT; 15728 switch (Intrinsic) { 15729 case Intrinsic::ppc_qpx_qvlfda: 15730 VT = MVT::v4f64; 15731 break; 15732 case Intrinsic::ppc_qpx_qvlfsa: 15733 VT = MVT::v4f32; 15734 break; 15735 case Intrinsic::ppc_qpx_qvlfcda: 15736 VT = MVT::v2f64; 15737 break; 15738 case Intrinsic::ppc_qpx_qvlfcsa: 15739 VT = MVT::v2f32; 15740 break; 15741 default: 15742 VT = MVT::v4i32; 15743 break; 15744 } 15745 15746 Info.opc = ISD::INTRINSIC_W_CHAIN; 15747 Info.memVT = VT; 15748 Info.ptrVal = I.getArgOperand(0); 15749 Info.offset = 0; 15750 Info.size = VT.getStoreSize(); 15751 Info.align = Align(1); 15752 Info.flags = MachineMemOperand::MOLoad; 15753 return true; 15754 } 15755 case Intrinsic::ppc_qpx_qvstfd: 15756 case Intrinsic::ppc_qpx_qvstfs: 15757 case Intrinsic::ppc_qpx_qvstfcd: 15758 case Intrinsic::ppc_qpx_qvstfcs: 15759 case Intrinsic::ppc_qpx_qvstfiw: 15760 case Intrinsic::ppc_altivec_stvx: 15761 case Intrinsic::ppc_altivec_stvxl: 15762 case Intrinsic::ppc_altivec_stvebx: 15763 case Intrinsic::ppc_altivec_stvehx: 15764 case Intrinsic::ppc_altivec_stvewx: 15765 case Intrinsic::ppc_vsx_stxvd2x: 15766 case Intrinsic::ppc_vsx_stxvw4x: { 15767 EVT VT; 15768 switch (Intrinsic) { 15769 case Intrinsic::ppc_altivec_stvebx: 15770 VT = MVT::i8; 15771 break; 15772 case Intrinsic::ppc_altivec_stvehx: 15773 VT = MVT::i16; 15774 break; 15775 case Intrinsic::ppc_altivec_stvewx: 15776 VT = MVT::i32; 15777 break; 15778 case Intrinsic::ppc_vsx_stxvd2x: 15779 VT = MVT::v2f64; 15780 break; 15781 case Intrinsic::ppc_qpx_qvstfd: 15782 VT = MVT::v4f64; 15783 break; 15784 case Intrinsic::ppc_qpx_qvstfs: 15785 VT = MVT::v4f32; 15786 break; 15787 case Intrinsic::ppc_qpx_qvstfcd: 15788 VT = MVT::v2f64; 15789 break; 15790 case Intrinsic::ppc_qpx_qvstfcs: 15791 VT = MVT::v2f32; 15792 break; 15793 default: 15794 VT = MVT::v4i32; 15795 break; 15796 } 15797 15798 Info.opc = ISD::INTRINSIC_VOID; 15799 Info.memVT = VT; 15800 Info.ptrVal = I.getArgOperand(1); 15801 Info.offset = -VT.getStoreSize()+1; 15802 Info.size = 2*VT.getStoreSize()-1; 15803 Info.align = Align(1); 15804 Info.flags = MachineMemOperand::MOStore; 15805 return true; 15806 } 15807 case Intrinsic::ppc_qpx_qvstfda: 15808 case Intrinsic::ppc_qpx_qvstfsa: 15809 case Intrinsic::ppc_qpx_qvstfcda: 15810 case Intrinsic::ppc_qpx_qvstfcsa: 15811 case Intrinsic::ppc_qpx_qvstfiwa: { 15812 EVT VT; 15813 switch (Intrinsic) { 15814 case Intrinsic::ppc_qpx_qvstfda: 15815 VT = MVT::v4f64; 15816 break; 15817 case Intrinsic::ppc_qpx_qvstfsa: 15818 VT = MVT::v4f32; 15819 break; 15820 case Intrinsic::ppc_qpx_qvstfcda: 15821 VT = MVT::v2f64; 15822 break; 15823 case Intrinsic::ppc_qpx_qvstfcsa: 15824 VT = MVT::v2f32; 15825 break; 15826 default: 15827 VT = MVT::v4i32; 15828 break; 15829 } 15830 15831 Info.opc = ISD::INTRINSIC_VOID; 15832 Info.memVT = VT; 15833 Info.ptrVal = I.getArgOperand(1); 15834 Info.offset = 0; 15835 Info.size = VT.getStoreSize(); 15836 Info.align = Align(1); 15837 Info.flags = MachineMemOperand::MOStore; 15838 return true; 15839 } 15840 default: 15841 break; 15842 } 15843 15844 return false; 15845 } 15846 15847 /// It returns EVT::Other if the type should be determined using generic 15848 /// target-independent logic. 15849 EVT PPCTargetLowering::getOptimalMemOpType( 15850 const MemOp &Op, const AttributeList &FuncAttributes) const { 15851 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15852 // When expanding a memset, require at least two QPX instructions to cover 15853 // the cost of loading the value to be stored from the constant pool. 15854 if (Subtarget.hasQPX() && Op.size() >= 32 && 15855 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15856 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15857 return MVT::v4f64; 15858 } 15859 15860 // We should use Altivec/VSX loads and stores when available. For unaligned 15861 // addresses, unaligned VSX loads are only fast starting with the P8. 15862 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15863 (Op.isAligned(Align(16)) || 15864 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15865 return MVT::v4i32; 15866 } 15867 15868 if (Subtarget.isPPC64()) { 15869 return MVT::i64; 15870 } 15871 15872 return MVT::i32; 15873 } 15874 15875 /// Returns true if it is beneficial to convert a load of a constant 15876 /// to just the constant itself. 15877 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15878 Type *Ty) const { 15879 assert(Ty->isIntegerTy()); 15880 15881 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15882 return !(BitSize == 0 || BitSize > 64); 15883 } 15884 15885 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15886 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15887 return false; 15888 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15889 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15890 return NumBits1 == 64 && NumBits2 == 32; 15891 } 15892 15893 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15894 if (!VT1.isInteger() || !VT2.isInteger()) 15895 return false; 15896 unsigned NumBits1 = VT1.getSizeInBits(); 15897 unsigned NumBits2 = VT2.getSizeInBits(); 15898 return NumBits1 == 64 && NumBits2 == 32; 15899 } 15900 15901 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15902 // Generally speaking, zexts are not free, but they are free when they can be 15903 // folded with other operations. 15904 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15905 EVT MemVT = LD->getMemoryVT(); 15906 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15907 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15908 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15909 LD->getExtensionType() == ISD::ZEXTLOAD)) 15910 return true; 15911 } 15912 15913 // FIXME: Add other cases... 15914 // - 32-bit shifts with a zext to i64 15915 // - zext after ctlz, bswap, etc. 15916 // - zext after and by a constant mask 15917 15918 return TargetLowering::isZExtFree(Val, VT2); 15919 } 15920 15921 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15922 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15923 "invalid fpext types"); 15924 // Extending to float128 is not free. 15925 if (DestVT == MVT::f128) 15926 return false; 15927 return true; 15928 } 15929 15930 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15931 return isInt<16>(Imm) || isUInt<16>(Imm); 15932 } 15933 15934 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15935 return isInt<16>(Imm) || isUInt<16>(Imm); 15936 } 15937 15938 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15939 unsigned, 15940 unsigned, 15941 MachineMemOperand::Flags, 15942 bool *Fast) const { 15943 if (DisablePPCUnaligned) 15944 return false; 15945 15946 // PowerPC supports unaligned memory access for simple non-vector types. 15947 // Although accessing unaligned addresses is not as efficient as accessing 15948 // aligned addresses, it is generally more efficient than manual expansion, 15949 // and generally only traps for software emulation when crossing page 15950 // boundaries. 15951 15952 if (!VT.isSimple()) 15953 return false; 15954 15955 if (VT.isFloatingPoint() && !VT.isVector() && 15956 !Subtarget.allowsUnalignedFPAccess()) 15957 return false; 15958 15959 if (VT.getSimpleVT().isVector()) { 15960 if (Subtarget.hasVSX()) { 15961 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15962 VT != MVT::v4f32 && VT != MVT::v4i32) 15963 return false; 15964 } else { 15965 return false; 15966 } 15967 } 15968 15969 if (VT == MVT::ppcf128) 15970 return false; 15971 15972 if (Fast) 15973 *Fast = true; 15974 15975 return true; 15976 } 15977 15978 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15979 EVT VT) const { 15980 return isFMAFasterThanFMulAndFAdd( 15981 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15982 } 15983 15984 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15985 Type *Ty) const { 15986 switch (Ty->getScalarType()->getTypeID()) { 15987 case Type::FloatTyID: 15988 case Type::DoubleTyID: 15989 return true; 15990 case Type::FP128TyID: 15991 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15992 default: 15993 return false; 15994 } 15995 } 15996 15997 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15998 // FIXME: add more patterns which are profitable to hoist. 15999 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16000 if (I->getOpcode() != Instruction::FMul) 16001 return true; 16002 16003 if (!I->hasOneUse()) 16004 return true; 16005 16006 Instruction *User = I->user_back(); 16007 assert(User && "A single use instruction with no uses."); 16008 16009 if (User->getOpcode() != Instruction::FSub && 16010 User->getOpcode() != Instruction::FAdd) 16011 return true; 16012 16013 const TargetOptions &Options = getTargetMachine().Options; 16014 const Function *F = I->getFunction(); 16015 const DataLayout &DL = F->getParent()->getDataLayout(); 16016 Type *Ty = User->getOperand(0)->getType(); 16017 16018 return !( 16019 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16020 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16021 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16022 } 16023 16024 const MCPhysReg * 16025 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16026 // LR is a callee-save register, but we must treat it as clobbered by any call 16027 // site. Hence we include LR in the scratch registers, which are in turn added 16028 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16029 // to CTR, which is used by any indirect call. 16030 static const MCPhysReg ScratchRegs[] = { 16031 PPC::X12, PPC::LR8, PPC::CTR8, 0 16032 }; 16033 16034 return ScratchRegs; 16035 } 16036 16037 Register PPCTargetLowering::getExceptionPointerRegister( 16038 const Constant *PersonalityFn) const { 16039 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16040 } 16041 16042 Register PPCTargetLowering::getExceptionSelectorRegister( 16043 const Constant *PersonalityFn) const { 16044 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16045 } 16046 16047 bool 16048 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16049 EVT VT , unsigned DefinedValues) const { 16050 if (VT == MVT::v2i64) 16051 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16052 16053 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 16054 return true; 16055 16056 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16057 } 16058 16059 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16060 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16061 return TargetLowering::getSchedulingPreference(N); 16062 16063 return Sched::ILP; 16064 } 16065 16066 // Create a fast isel object. 16067 FastISel * 16068 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16069 const TargetLibraryInfo *LibInfo) const { 16070 return PPC::createFastISel(FuncInfo, LibInfo); 16071 } 16072 16073 // 'Inverted' means the FMA opcode after negating one multiplicand. 16074 // For example, (fma -a b c) = (fnmsub a b c) 16075 static unsigned invertFMAOpcode(unsigned Opc) { 16076 switch (Opc) { 16077 default: 16078 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16079 case ISD::FMA: 16080 return PPCISD::FNMSUB; 16081 case PPCISD::FNMSUB: 16082 return ISD::FMA; 16083 } 16084 } 16085 16086 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16087 bool LegalOps, bool OptForSize, 16088 NegatibleCost &Cost, 16089 unsigned Depth) const { 16090 if (Depth > SelectionDAG::MaxRecursionDepth) 16091 return SDValue(); 16092 16093 unsigned Opc = Op.getOpcode(); 16094 EVT VT = Op.getValueType(); 16095 SDNodeFlags Flags = Op.getNode()->getFlags(); 16096 16097 switch (Opc) { 16098 case PPCISD::FNMSUB: 16099 // TODO: QPX subtarget is deprecated. No transformation here. 16100 if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX()) 16101 break; 16102 16103 const TargetOptions &Options = getTargetMachine().Options; 16104 SDValue N0 = Op.getOperand(0); 16105 SDValue N1 = Op.getOperand(1); 16106 SDValue N2 = Op.getOperand(2); 16107 SDLoc Loc(Op); 16108 16109 NegatibleCost N2Cost = NegatibleCost::Expensive; 16110 SDValue NegN2 = 16111 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16112 16113 if (!NegN2) 16114 return SDValue(); 16115 16116 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16117 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16118 // These transformations may change sign of zeroes. For example, 16119 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16120 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16121 // Try and choose the cheaper one to negate. 16122 NegatibleCost N0Cost = NegatibleCost::Expensive; 16123 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16124 N0Cost, Depth + 1); 16125 16126 NegatibleCost N1Cost = NegatibleCost::Expensive; 16127 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16128 N1Cost, Depth + 1); 16129 16130 if (NegN0 && N0Cost <= N1Cost) { 16131 Cost = std::min(N0Cost, N2Cost); 16132 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16133 } else if (NegN1) { 16134 Cost = std::min(N1Cost, N2Cost); 16135 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16136 } 16137 } 16138 16139 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16140 if (isOperationLegal(ISD::FMA, VT)) { 16141 Cost = N2Cost; 16142 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16143 } 16144 16145 break; 16146 } 16147 16148 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16149 Cost, Depth); 16150 } 16151 16152 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16153 bool PPCTargetLowering::useLoadStackGuardNode() const { 16154 if (!Subtarget.isTargetLinux()) 16155 return TargetLowering::useLoadStackGuardNode(); 16156 return true; 16157 } 16158 16159 // Override to disable global variable loading on Linux. 16160 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16161 if (!Subtarget.isTargetLinux()) 16162 return TargetLowering::insertSSPDeclarations(M); 16163 } 16164 16165 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16166 bool ForCodeSize) const { 16167 if (!VT.isSimple() || !Subtarget.hasVSX()) 16168 return false; 16169 16170 switch(VT.getSimpleVT().SimpleTy) { 16171 default: 16172 // For FP types that are currently not supported by PPC backend, return 16173 // false. Examples: f16, f80. 16174 return false; 16175 case MVT::f32: 16176 case MVT::f64: 16177 case MVT::ppcf128: 16178 return Imm.isPosZero(); 16179 } 16180 } 16181 16182 // For vector shift operation op, fold 16183 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16184 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16185 SelectionDAG &DAG) { 16186 SDValue N0 = N->getOperand(0); 16187 SDValue N1 = N->getOperand(1); 16188 EVT VT = N0.getValueType(); 16189 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16190 unsigned Opcode = N->getOpcode(); 16191 unsigned TargetOpcode; 16192 16193 switch (Opcode) { 16194 default: 16195 llvm_unreachable("Unexpected shift operation"); 16196 case ISD::SHL: 16197 TargetOpcode = PPCISD::SHL; 16198 break; 16199 case ISD::SRL: 16200 TargetOpcode = PPCISD::SRL; 16201 break; 16202 case ISD::SRA: 16203 TargetOpcode = PPCISD::SRA; 16204 break; 16205 } 16206 16207 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16208 N1->getOpcode() == ISD::AND) 16209 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16210 if (Mask->getZExtValue() == OpSizeInBits - 1) 16211 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16212 16213 return SDValue(); 16214 } 16215 16216 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16217 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16218 return Value; 16219 16220 SDValue N0 = N->getOperand(0); 16221 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16222 if (!Subtarget.isISA3_0() || 16223 N0.getOpcode() != ISD::SIGN_EXTEND || 16224 N0.getOperand(0).getValueType() != MVT::i32 || 16225 CN1 == nullptr || N->getValueType(0) != MVT::i64) 16226 return SDValue(); 16227 16228 // We can't save an operation here if the value is already extended, and 16229 // the existing shift is easier to combine. 16230 SDValue ExtsSrc = N0.getOperand(0); 16231 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16232 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16233 return SDValue(); 16234 16235 SDLoc DL(N0); 16236 SDValue ShiftBy = SDValue(CN1, 0); 16237 // We want the shift amount to be i32 on the extswli, but the shift could 16238 // have an i64. 16239 if (ShiftBy.getValueType() == MVT::i64) 16240 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16241 16242 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16243 ShiftBy); 16244 } 16245 16246 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16247 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16248 return Value; 16249 16250 return SDValue(); 16251 } 16252 16253 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16254 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16255 return Value; 16256 16257 return SDValue(); 16258 } 16259 16260 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16261 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16262 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16263 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16264 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16265 const PPCSubtarget &Subtarget) { 16266 if (!Subtarget.isPPC64()) 16267 return SDValue(); 16268 16269 SDValue LHS = N->getOperand(0); 16270 SDValue RHS = N->getOperand(1); 16271 16272 auto isZextOfCompareWithConstant = [](SDValue Op) { 16273 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16274 Op.getValueType() != MVT::i64) 16275 return false; 16276 16277 SDValue Cmp = Op.getOperand(0); 16278 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16279 Cmp.getOperand(0).getValueType() != MVT::i64) 16280 return false; 16281 16282 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16283 int64_t NegConstant = 0 - Constant->getSExtValue(); 16284 // Due to the limitations of the addi instruction, 16285 // -C is required to be [-32768, 32767]. 16286 return isInt<16>(NegConstant); 16287 } 16288 16289 return false; 16290 }; 16291 16292 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16293 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16294 16295 // If there is a pattern, canonicalize a zext operand to the RHS. 16296 if (LHSHasPattern && !RHSHasPattern) 16297 std::swap(LHS, RHS); 16298 else if (!LHSHasPattern && !RHSHasPattern) 16299 return SDValue(); 16300 16301 SDLoc DL(N); 16302 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16303 SDValue Cmp = RHS.getOperand(0); 16304 SDValue Z = Cmp.getOperand(0); 16305 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16306 16307 assert(Constant && "Constant Should not be a null pointer."); 16308 int64_t NegConstant = 0 - Constant->getSExtValue(); 16309 16310 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16311 default: break; 16312 case ISD::SETNE: { 16313 // when C == 0 16314 // --> addze X, (addic Z, -1).carry 16315 // / 16316 // add X, (zext(setne Z, C))-- 16317 // \ when -32768 <= -C <= 32767 && C != 0 16318 // --> addze X, (addic (addi Z, -C), -1).carry 16319 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16320 DAG.getConstant(NegConstant, DL, MVT::i64)); 16321 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16322 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16323 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16324 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16325 SDValue(Addc.getNode(), 1)); 16326 } 16327 case ISD::SETEQ: { 16328 // when C == 0 16329 // --> addze X, (subfic Z, 0).carry 16330 // / 16331 // add X, (zext(sete Z, C))-- 16332 // \ when -32768 <= -C <= 32767 && C != 0 16333 // --> addze X, (subfic (addi Z, -C), 0).carry 16334 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16335 DAG.getConstant(NegConstant, DL, MVT::i64)); 16336 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16337 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16338 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16339 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16340 SDValue(Subc.getNode(), 1)); 16341 } 16342 } 16343 16344 return SDValue(); 16345 } 16346 16347 // Transform 16348 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16349 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16350 // In this case both C1 and C2 must be known constants. 16351 // C1+C2 must fit into a 34 bit signed integer. 16352 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16353 const PPCSubtarget &Subtarget) { 16354 if (!Subtarget.isUsingPCRelativeCalls()) 16355 return SDValue(); 16356 16357 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16358 // If we find that node try to cast the Global Address and the Constant. 16359 SDValue LHS = N->getOperand(0); 16360 SDValue RHS = N->getOperand(1); 16361 16362 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16363 std::swap(LHS, RHS); 16364 16365 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16366 return SDValue(); 16367 16368 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16369 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16370 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16371 16372 // Check that both casts succeeded. 16373 if (!GSDN || !ConstNode) 16374 return SDValue(); 16375 16376 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16377 SDLoc DL(GSDN); 16378 16379 // The signed int offset needs to fit in 34 bits. 16380 if (!isInt<34>(NewOffset)) 16381 return SDValue(); 16382 16383 // The new global address is a copy of the old global address except 16384 // that it has the updated Offset. 16385 SDValue GA = 16386 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16387 NewOffset, GSDN->getTargetFlags()); 16388 SDValue MatPCRel = 16389 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16390 return MatPCRel; 16391 } 16392 16393 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16394 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16395 return Value; 16396 16397 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16398 return Value; 16399 16400 return SDValue(); 16401 } 16402 16403 // Detect TRUNCATE operations on bitcasts of float128 values. 16404 // What we are looking for here is the situtation where we extract a subset 16405 // of bits from a 128 bit float. 16406 // This can be of two forms: 16407 // 1) BITCAST of f128 feeding TRUNCATE 16408 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16409 // The reason this is required is because we do not have a legal i128 type 16410 // and so we want to prevent having to store the f128 and then reload part 16411 // of it. 16412 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16413 DAGCombinerInfo &DCI) const { 16414 // If we are using CRBits then try that first. 16415 if (Subtarget.useCRBits()) { 16416 // Check if CRBits did anything and return that if it did. 16417 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16418 return CRTruncValue; 16419 } 16420 16421 SDLoc dl(N); 16422 SDValue Op0 = N->getOperand(0); 16423 16424 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16425 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16426 EVT VT = N->getValueType(0); 16427 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16428 return SDValue(); 16429 SDValue Sub = Op0.getOperand(0); 16430 if (Sub.getOpcode() == ISD::SUB) { 16431 SDValue SubOp0 = Sub.getOperand(0); 16432 SDValue SubOp1 = Sub.getOperand(1); 16433 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16434 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16435 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16436 SubOp1.getOperand(0), 16437 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16438 } 16439 } 16440 } 16441 16442 // Looking for a truncate of i128 to i64. 16443 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16444 return SDValue(); 16445 16446 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16447 16448 // SRL feeding TRUNCATE. 16449 if (Op0.getOpcode() == ISD::SRL) { 16450 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16451 // The right shift has to be by 64 bits. 16452 if (!ConstNode || ConstNode->getZExtValue() != 64) 16453 return SDValue(); 16454 16455 // Switch the element number to extract. 16456 EltToExtract = EltToExtract ? 0 : 1; 16457 // Update Op0 past the SRL. 16458 Op0 = Op0.getOperand(0); 16459 } 16460 16461 // BITCAST feeding a TRUNCATE possibly via SRL. 16462 if (Op0.getOpcode() == ISD::BITCAST && 16463 Op0.getValueType() == MVT::i128 && 16464 Op0.getOperand(0).getValueType() == MVT::f128) { 16465 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16466 return DCI.DAG.getNode( 16467 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16468 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16469 } 16470 return SDValue(); 16471 } 16472 16473 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16474 SelectionDAG &DAG = DCI.DAG; 16475 16476 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16477 if (!ConstOpOrElement) 16478 return SDValue(); 16479 16480 // An imul is usually smaller than the alternative sequence for legal type. 16481 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16482 isOperationLegal(ISD::MUL, N->getValueType(0))) 16483 return SDValue(); 16484 16485 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16486 switch (this->Subtarget.getCPUDirective()) { 16487 default: 16488 // TODO: enhance the condition for subtarget before pwr8 16489 return false; 16490 case PPC::DIR_PWR8: 16491 // type mul add shl 16492 // scalar 4 1 1 16493 // vector 7 2 2 16494 return true; 16495 case PPC::DIR_PWR9: 16496 case PPC::DIR_PWR10: 16497 case PPC::DIR_PWR_FUTURE: 16498 // type mul add shl 16499 // scalar 5 2 2 16500 // vector 7 2 2 16501 16502 // The cycle RATIO of related operations are showed as a table above. 16503 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16504 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16505 // are 4, it is always profitable; but for 3 instrs patterns 16506 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16507 // So we should only do it for vector type. 16508 return IsAddOne && IsNeg ? VT.isVector() : true; 16509 } 16510 }; 16511 16512 EVT VT = N->getValueType(0); 16513 SDLoc DL(N); 16514 16515 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16516 bool IsNeg = MulAmt.isNegative(); 16517 APInt MulAmtAbs = MulAmt.abs(); 16518 16519 if ((MulAmtAbs - 1).isPowerOf2()) { 16520 // (mul x, 2^N + 1) => (add (shl x, N), x) 16521 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16522 16523 if (!IsProfitable(IsNeg, true, VT)) 16524 return SDValue(); 16525 16526 SDValue Op0 = N->getOperand(0); 16527 SDValue Op1 = 16528 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16529 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16530 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16531 16532 if (!IsNeg) 16533 return Res; 16534 16535 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16536 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16537 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16538 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16539 16540 if (!IsProfitable(IsNeg, false, VT)) 16541 return SDValue(); 16542 16543 SDValue Op0 = N->getOperand(0); 16544 SDValue Op1 = 16545 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16546 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16547 16548 if (!IsNeg) 16549 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16550 else 16551 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16552 16553 } else { 16554 return SDValue(); 16555 } 16556 } 16557 16558 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16559 // in combiner since we need to check SD flags and other subtarget features. 16560 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16561 DAGCombinerInfo &DCI) const { 16562 SDValue N0 = N->getOperand(0); 16563 SDValue N1 = N->getOperand(1); 16564 SDValue N2 = N->getOperand(2); 16565 SDNodeFlags Flags = N->getFlags(); 16566 EVT VT = N->getValueType(0); 16567 SelectionDAG &DAG = DCI.DAG; 16568 const TargetOptions &Options = getTargetMachine().Options; 16569 unsigned Opc = N->getOpcode(); 16570 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16571 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16572 SDLoc Loc(N); 16573 16574 // TODO: QPX subtarget is deprecated. No transformation here. 16575 if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT)) 16576 return SDValue(); 16577 16578 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16579 // since (fnmsub a b c)=-0 while c-ab=+0. 16580 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16581 return SDValue(); 16582 16583 // (fma (fneg a) b c) => (fnmsub a b c) 16584 // (fnmsub (fneg a) b c) => (fma a b c) 16585 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16586 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16587 16588 // (fma a (fneg b) c) => (fnmsub a b c) 16589 // (fnmsub a (fneg b) c) => (fma a b c) 16590 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16591 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16592 16593 return SDValue(); 16594 } 16595 16596 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16597 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16598 if (!Subtarget.is64BitELFABI()) 16599 return false; 16600 16601 // If not a tail call then no need to proceed. 16602 if (!CI->isTailCall()) 16603 return false; 16604 16605 // If sibling calls have been disabled and tail-calls aren't guaranteed 16606 // there is no reason to duplicate. 16607 auto &TM = getTargetMachine(); 16608 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16609 return false; 16610 16611 // Can't tail call a function called indirectly, or if it has variadic args. 16612 const Function *Callee = CI->getCalledFunction(); 16613 if (!Callee || Callee->isVarArg()) 16614 return false; 16615 16616 // Make sure the callee and caller calling conventions are eligible for tco. 16617 const Function *Caller = CI->getParent()->getParent(); 16618 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16619 CI->getCallingConv())) 16620 return false; 16621 16622 // If the function is local then we have a good chance at tail-calling it 16623 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16624 } 16625 16626 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16627 if (!Subtarget.hasVSX()) 16628 return false; 16629 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16630 return true; 16631 return VT == MVT::f32 || VT == MVT::f64 || 16632 VT == MVT::v4f32 || VT == MVT::v2f64; 16633 } 16634 16635 bool PPCTargetLowering:: 16636 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16637 const Value *Mask = AndI.getOperand(1); 16638 // If the mask is suitable for andi. or andis. we should sink the and. 16639 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16640 // Can't handle constants wider than 64-bits. 16641 if (CI->getBitWidth() > 64) 16642 return false; 16643 int64_t ConstVal = CI->getZExtValue(); 16644 return isUInt<16>(ConstVal) || 16645 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16646 } 16647 16648 // For non-constant masks, we can always use the record-form and. 16649 return true; 16650 } 16651 16652 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16653 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16654 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16655 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16656 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16657 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16658 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16659 assert(Subtarget.hasP9Altivec() && 16660 "Only combine this when P9 altivec supported!"); 16661 EVT VT = N->getValueType(0); 16662 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16663 return SDValue(); 16664 16665 SelectionDAG &DAG = DCI.DAG; 16666 SDLoc dl(N); 16667 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16668 // Even for signed integers, if it's known to be positive (as signed 16669 // integer) due to zero-extended inputs. 16670 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16671 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16672 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16673 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16674 (SubOpcd1 == ISD::ZERO_EXTEND || 16675 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16676 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16677 N->getOperand(0)->getOperand(0), 16678 N->getOperand(0)->getOperand(1), 16679 DAG.getTargetConstant(0, dl, MVT::i32)); 16680 } 16681 16682 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16683 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16684 N->getOperand(0).hasOneUse()) { 16685 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16686 N->getOperand(0)->getOperand(0), 16687 N->getOperand(0)->getOperand(1), 16688 DAG.getTargetConstant(1, dl, MVT::i32)); 16689 } 16690 } 16691 16692 return SDValue(); 16693 } 16694 16695 // For type v4i32/v8ii16/v16i8, transform 16696 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16697 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16698 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16699 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16700 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16701 DAGCombinerInfo &DCI) const { 16702 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16703 assert(Subtarget.hasP9Altivec() && 16704 "Only combine this when P9 altivec supported!"); 16705 16706 SelectionDAG &DAG = DCI.DAG; 16707 SDLoc dl(N); 16708 SDValue Cond = N->getOperand(0); 16709 SDValue TrueOpnd = N->getOperand(1); 16710 SDValue FalseOpnd = N->getOperand(2); 16711 EVT VT = N->getOperand(1).getValueType(); 16712 16713 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16714 FalseOpnd.getOpcode() != ISD::SUB) 16715 return SDValue(); 16716 16717 // ABSD only available for type v4i32/v8i16/v16i8 16718 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16719 return SDValue(); 16720 16721 // At least to save one more dependent computation 16722 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16723 return SDValue(); 16724 16725 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16726 16727 // Can only handle unsigned comparison here 16728 switch (CC) { 16729 default: 16730 return SDValue(); 16731 case ISD::SETUGT: 16732 case ISD::SETUGE: 16733 break; 16734 case ISD::SETULT: 16735 case ISD::SETULE: 16736 std::swap(TrueOpnd, FalseOpnd); 16737 break; 16738 } 16739 16740 SDValue CmpOpnd1 = Cond.getOperand(0); 16741 SDValue CmpOpnd2 = Cond.getOperand(1); 16742 16743 // SETCC CmpOpnd1 CmpOpnd2 cond 16744 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16745 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16746 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16747 TrueOpnd.getOperand(1) == CmpOpnd2 && 16748 FalseOpnd.getOperand(0) == CmpOpnd2 && 16749 FalseOpnd.getOperand(1) == CmpOpnd1) { 16750 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16751 CmpOpnd1, CmpOpnd2, 16752 DAG.getTargetConstant(0, dl, MVT::i32)); 16753 } 16754 16755 return SDValue(); 16756 } 16757